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Abstract

We study compactness properties for solutions of a semilinear elliptic equation with critical nonlinearity. For high dimensions,
we are able to show that any solutions sequence with uniformly bounded energy is uniformly bounded in the interior of the domain.
In particular, singularly perturbed Neumann equations admit pointwise concentration phenomena only at the boundary.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie les propriétés de compacité pour solutions d’une équation elliptique semi-linéaire avec non-linéarité critique. En hautes
dimensions, on démontre qu’une suite de solutions avec énergie uniformément bornée est uniformément bornée dans l’intérieur
du domaine. En particulier, les équations de Neumann perturbées singulièrement peuvent avoir des phénomènes de concentration
seulement sur la frontière.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction and statement of the results

The starting point in our investigation has been the study of asymptotic properties for the problem:⎧⎨
⎩

−�u + λu = up in Ω,

u > 0 in Ω,
∂u
∂n

= 0 on ∂Ω,

(1)
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where Ω is a smooth bounded domain in R
N , N � 3, p = N+2

N−2 is the critical exponent from the Sobolev viewpoint
and λ > 0 is a large parameter. Here, n(x) is the unit outward normal of Ω at x ∈ ∂Ω .

Under the transformation v(x) = λ
− 1

p−1 u(x), d2 = 1
λ

, problem (1) reads equivalently as a singularly perturbed
Neumann problem:⎧⎨

⎩
−d2�v + v = vp in Ω,

v > 0 in Ω,
∂v
∂n

= 0 on ∂Ω,

(2)

where p = N+2
N−2 . For general exponent p > 1, problem (2) is related to the study of stationary solutions for a chemo-

taxis system (see [17]) proposed by Keller, Segel and Gierer, Meinhardt (see [18]).
Problem (1) for λ large has been widely studied in the subcritical case p < N+2

N−2 . The asymptotic behaviour and the
construction of blowing up solutions have been considered by several authors. In particular, there exist peak solutions
which blow up at many finitely boundary and/or interior points of Ω .

The critical case p = N+2
N−2 has different features. Starting from the pioneering works of Adimurthi, Mancini and

Yadava [3] (see also [1,2]), asymptotic analysis (see [13,15] for low energy solutions) and construction of solutions
concentrating at boundary points of Ω have been considered by several authors (see for example [21]). We refer to
[20] for an extensive list of references about subcritical and critical case.

As far as interior concentration, the situation is quite different since in literature no results are available and it is
expected that in general such solutions should not exist. A first partial result in this direction is due to Cao, Noussair
and Yan [6] for N � 5 and for isolated blow-up points. They show that any concentrating solutions sequence with
bounded energy cannot have only interior peaks and so at least one blow-up point must lie on ∂Ω . At the same time,
Rey in [20] gets the same result for N = 3 by removing any assumption on the nature of interior blow-up points.

Using some techniques developed by Druet, Hebey and Vaugon in [12] for related problems on Riemannian man-
ifolds, Castorina and Mancini in [7] were able to show, among other things, that the conclusion of previous papers
holds without any restriction on the dimension. Namely, for N � 3 at least one blow-up point lies on ∂Ω .

However, all these papers do not answer to the full question: do there exist blowing up solutions for (1) with
bounded energy which do not remain bounded in the interior of Ω as λ → +∞? For N > 6 the answer is negative
since we will show that ALL the blow-up points have to lie on ∂Ω :

Theorem 1.1. Let N > 6. Let λn → +∞ and un be a solutions sequence of⎧⎪⎨
⎪⎩

−�un + λnun = N(N − 2)u
N+2
N−2
n in Ω,

un > 0 in Ω,

∂un

∂n
= 0 on ∂Ω,

(3)

with uniformly bounded energy:

sup
n∈N

∫
Ω

u
2N

N−2
n < +∞.

Then, for any K compact set in Ω there exists CK such that:

max
x∈K

un(x) � CK

for any n ∈ N.

Theorem 1.1 is based on a local description of possible compactness loss and does not need any boundary condition.
In fact, we realized that Theorem 1.1 is a particular case of a more general interior compactness result, which is still
more interesting that our initial question about singularly perturbed Neumann equations and becomes the main content
of this paper. There holds:
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Theorem 1.2. Let N > 6. Let K be a compact set in Ω and Λ > 0. There exists a constant C, depending on K and Λ,
such that any solution u of the problem:⎧⎨

⎩
−�u + u = N(N − 2)u

N+2
N−2 in Ω,

u > 0 in Ω,∫
Ω

|∇u|2 + u2 � Λ,

satisfies the bound:

max
x∈K

u(x) � C.

Compactness properties of the type we are considering appear in a Riemannian context in [8,9] where a careful
analysis based on the C0-theory developed in [10,11] for Riemannian manifolds gives the Schoen compactness result
in low dimensions and provides also in high dimensions results as in Theorem 1.2. However, in this context (without
homogeneous Dirichlet boundary condition) the C0-theory developed by Druet, Hebey and Robert is not available.

The paper is organized in the following way. In Section 2 we introduce the notion of (geometrical) blow-up set,
we give a description of this set and we show by a rescaling argument that Theorem 1.1 is a particular case of
Theorem 1.2. In Section 3, we provide the proof of Theorem 1.2: based on a technical result contained in [10,11] due
to Druet, Hebey and Robert (which we report in Appendix A for the sake of completeness), for any interior blowing up
solutions sequence we are able to prove an upper estimate (in terms of standard bubbles) which contradicts a related
local Pohozaev identity.

2. The blow-up set

Let un be a solutions sequence of⎧⎪⎨
⎪⎩

−�un + μnun = N(N − 2)u
N+2
N−2
n in Ω,

un > 0 in Ω,

supn∈N

∫
Ω

(|∇un|2 + u2
n) < +∞,

(4)

where Ω is a domain in R
N , N � 3, and 0 � μn → μ ∈ [0,+∞].

We define the (geometrical) blow-up set of un in Ω as

S =
{
x ∈ Ω: ∃xn → x s.t. lim sup

n→+∞
un(xn) = +∞

}
,

and, by definition of S, clearly un is uniformly bounded in C0
loc(Ω \ S).

Further, define the set

Σc =
{
x ∈ Ω: lim sup

n→+∞

∫
Br (x)

u
2N

N−2
n � c ∀r > 0

}
,

where c > 0. Let SN be the best constant related to the immersion of H 1
0 (Ω) into L

2N
N−2 (Ω):

SN = inf
u∈H 1

0 (Ω)\{0}

∫
Ω

|∇u|2
(
∫
Ω

|u| 2N
N−2 )

N−2
N

. (5)

By means of an iterative Moser-type scheme, we can describe the set S in the following way:

Proposition 2.1. There exists c = cN > 0 such that it holds S = Σc. In particular, S is a finite set and, if μ = +∞, we
have that un → 0 in C0

loc(Ω \ S) (up to a subsequence).

Proof. First of all, we show the following implication:∫
u

2N
N−2
n �

(
SN

qN(N − 2)

)N
2

, q � 2 ⇒
( ∫

u
N

N−2 q

n

)N−2
N

� 8

SNr2

∫
u

q
n

B2r (x) Br (x) B2r (x)
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for any r < 1
2 dist(x,R

N \ Ω). Let ϕ ∈ C∞
0 (B2r (x)) be so that 0 � ϕ � 1, ϕ ≡ 1 in Br(x) and ‖∇ϕ‖∞ � 2

r
. Multiply-

ing (4) by ϕ2u
q−1
n and integrating by parts, by (5) and Hölder’s inequality we get that:∫

Ω

∇un∇
(
ϕ2u

q−1
n

) + μn

∫
Ω

ϕ2u
q
n = N(N − 2)

∫
Ω

u
4

N−2
n

(
ϕu

q
2
n

)2

� N(N − 2)

SN

( ∫
B2r (x)

u
2N

N−2
n

) 2
N

∫
Ω

∣∣∇(
ϕu

q
2
n

)∣∣2
.

On the other hand, we can write:∫
Ω

∇un∇
(
ϕ2u

q−1
n

) = (q − 1)

∫
Ω

ϕ2u
q−2
n |∇un|2 + 2

∫
Ω

ϕu
q−1
n ∇ϕ∇un

= 2

q

∫
Ω

∣∣∇(
ϕu

q
2
n

)∣∣2 + q − 2

2

∫
Ω

ϕ2u
q−2
n |∇un|2 − 2

q

∫
Ω

|∇ϕ|2uq
n

� 2

q

∫
Ω

∣∣∇(
ϕu

q
2
n

)∣∣2 − 2

q

∫
Ω

|∇ϕ|2uq
n.

Combining these two estimates, we get that

2

q

∫
Ω

∣∣∇(
ϕu

q
2
n

)∣∣2 � 2

q

∫
Ω

|∇ϕ|2uq
n + N(N − 2)

SN

( ∫
B2r (x)

u
2N

N−2
n

) 2
N

∫
Ω

∣∣∇(
ϕu

q
2
n

)∣∣2

� 8

qr2

∫
B2r (x)

u
q
n + 1

q

∫
Ω

∣∣∇(
ϕu

q
2
n

)∣∣2

in view of
∫
B2r (x)

u
2N

N−2
n � (

SN

qN(N−2)
)

N
2 . Therefore, by (5) we obtain that

( ∫
Br(x)

u
N

N−2 q

n

)N−2
N

�
(∫

Ω

(
ϕu

q
2
n

) 2N
N−2

)N−2
N

� 1

SN

∫
Ω

∣∣∇(
ϕu

q
2
n

)∣∣2 � 8

SNr2

∫
B2r (x)

u
q
n.

Since N
N−2q > q , we can iterate the procedure starting from q = 2 up to get a-priori bounds in Lp-norms around x

for any p > 2 provided the L
2N

N−2 -norm around x is sufficiently small. Namely, we find 0 < δ < 1, p > N+2
N−2

N
2 and

c = cN > 0, depending only on N , such that, if
∫
B2r (x)

u
2N

N−2
n � c, then

( ∫
Bδr (x)

u
p
n

) 2
p

� C(N, r)

∫
B2r (x)

u2
n,

for some constant C(N, r) depending only on N and r . Let u
(1)
n be the solution of{

−�u
(1)
n = N(N − 2)u

N+2
N−2
n in Bδr(x),

u
(1)
n = 0 on ∂Bδr (x),

and u
(2)
n be an harmonic function such that u

(2)
n = un on ∂Bδr (x). Since

∥∥N(N − 2)u
N+2
N−2
n

∥∥
Ls(Bδr (x))

= O

(( ∫
u2

n

) 1
2
)

B2r (x)
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for some s > N
2 , by elliptic regularity theory (cf. [14]) we get that

∥∥u(1)
n

∥∥
C0(Bδr (x))

= O

(( ∫
B2r (x)

u2
n

) 1
2
)

provided
∫
B2r (x)

u
2N

N−2
n � c. By the representation formula for harmonic function, we get that

∥∥u(2)
n

∥∥
C0(Bδr/2(x))

= O

( ∫
∂Bδr (x)

un

)
.

Since by the maximum principle 0 < un � u
(1)
n + u

(2)
n , we get that

‖un‖C0(Bδr/2(x)) � C

(( ∫
B2r (x)

u2
n

) 1
2 +

∫
∂Bδr (x)

un

)
(6)

for some C > 0.

By the continuous embedding of H 1(Ω) into L
2N

N−2 (Ω) we get that supn∈N

∫
Ω

u
2N

N−2
n < +∞ and therefore, Σc is a

finite set, where c = cN is as above. Moreover, up to a subsequence we can assume that un ⇀ u weakly in H 1(Ω) and
un → u in L2(Ω), in view of the compact embedding of H 1(Ω) into L2(Ω). Integrating (4) against ϕun, ϕ ∈ C∞

0 (Ω),
we get that μnu

2
n is uniformly bounded in L1

loc(Ω) and hence, u = 0 if μ = +∞.
By the compactness of the embedding of H 1(B2r (x)) into L2(B2r (x)) and of H 1(Bδr (x)) into L1(∂Bδr (x)) in the

sense of traces, in view of (6) we get that S = ΣcN
is a finite set and, if μ = +∞, un → 0 in C0

loc(Ω \ S) (up to a
subsequence). �
Remark 2.2. Blowing up the sequence un around a point x ∈ S, by means of the same techniques which we will
exploit strongly in Appendix A, it is easy to show that:

lim sup
n→+∞

∫
Br(x)

u
2N

N−2
n �

(
SN

N(N − 2)

)N
2

for any r > 0. Hence, the value c = cN in Proposition 2.1 can be taken as c = (
SN

N(N−2)
)

N
2 .

We are now in position to deduce Theorem 1.1 by Theorem 1.2.

Proof of Theorem 1.1. Multiplying (3) by un and integrating by parts, we get that:∫
Ω

(|∇un|2 + λnu
2
n

)
� Λ := N(N − 2) sup

n∈N

∫
Ω

u
2N

N−2
n < +∞. (7)

We can define the blow-up set S of the sequence un. By the validity of Theorem 1.2, we deduce that S has to be an
empty set and therefore, un is uniformly bounded in C0

loc(Ω).
Otherwise, if S �= ∅, up to a subsequence, we can assume that there exists x0 ∈ S such that maxx∈Br (x0) un(x) →

+∞ as n → +∞, for any r > 0. By Proposition 2.1, we know that S is a finite set. Let 0 < r < dist(x0, S \ {x0})
and xn be such that un(xn) = maxx∈Br (x0) un(x) → +∞ as n → +∞. Clearly, since un is uniformly bounded in
C0

loc(Ω \ S), xn → x0 as n → +∞.

Introduce εn = un(xn)
− 2

N−2 → 0 and define Un(y) = ε
N−2

2
n un(εny + xn) for y ∈ Bn := B r

2εn
(0). We have that{

−�Un + μnUn = N(N − 2)U
N+2
N−2
n in Bn,

0 < U (y) � U (0) = 1,
n n
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where μn = λnε
2
n. Assume that μn = λnε

2
n → μ ∈ [0,+∞]. Since Un is uniformly bounded in H 1

loc(R
N) and

in C0
loc(R

N), if μ = +∞, Proposition 2.1 implies that Un → 0 in C0
loc(R

N) (up to a subsequence) contradicting
Un(0) = 1.

So, μ < +∞. By standard elliptic estimates (cf. [14]), we have that Un → U in C2
loc(R

N) where U ∈ H 1(RN) is a
solution of{

−�U + μU = N(N − 2)U
N+2
N−2 in R

N,

0 < U(y) � U(0) = 1
(8)

(in view of (7)). By a Pohozaev identity on R
N (see [19]), we must have that

μn = λnε
2
n → μ = 0.

Now, we do the following rescaling. Let vn(x) = λ
− N−2

4
n un(x/

√
λn + xn) be defined for x ∈ B1(0). The function vn

satisfies:⎧⎪⎨
⎪⎩

−�vn + vn = N(N − 2)v
N+2
N−2
n in B1(0),

vn > 0 in B1(0),∫
B1(0)

(|∇vn|2 + v2
n) � Λ,

since ∫
B1(0)

(|∇vn|2 + v2
n

) =
∫

B1/
√

λn
(xn)

(|∇un|2 + λnu
2
n

)
�

∫
Ω

(|∇un|2 + λnu
2
n

)
� Λ.

By Theorem 1.2 we get that there exists C > 0 such that

max
x∈B1/2(0)

vn(x) � C.

So, we reach a contradiction since we have already shown that

vn(0) = λ
− N−2

4
n un(xn) =

(
1

λnε2
n

)N−2
4 → +∞

as n → +∞. The proof is now complete. �
3. Nonexistence of interior blow-up points

The proof of Theorem 1.2 is based on a contradiction argument. In view of Proposition 2.1, let us assume the
existence of a solutions sequence un of the following problem:⎧⎪⎪⎨

⎪⎪⎩
−�un + un = N(N − 2)u

N+2
N−2
n in B1(0),

un > 0 in B1(0),

supn∈N

∫
B1(0)

u
2N

N−2
n < +∞,

which blows up in B1(0) only at 0: maxx∈B1(0) un(x) → +∞ as n → +∞ and un is uniformly bounded in
C0

loc(B1(0) \ {0}).
By means of Propositions A.1, A.2 and by elliptic regularity theory (cf. [14]), up to a subsequence, we will assume

throughout this section the existence of sequences x1
n, . . . , xk

n → 0, ε1
n, . . . , ε

k
n → 0 and x1, . . . , xk ∈ R

N such that for
any i = 1, . . . , k:

Ui
n(y) = (

εi
n

)N−2
2 un

(
εi
ny + xi

n

) → 1

(1 + |y − xi |2)N−2
2

in C2
loc

(
R

N \ Si

)
as n → +∞, (9)

un → u0 in C0 (
B1(0) \ {0}) as n → +∞, (10)
loc
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dk(x)
N−2

2 un(x) � C for any n ∈ N, |x| < 1, (11)

lim
R→+∞ lim sup

n→+∞
max
x∈Bn

R

(
dk(x)

N−2
2

∣∣un(x) − u0(x)
∣∣) = 0, (12)

for some constant C > 0 and for some smooth solution u0 � 0 of the equation:

−�u0 + u0 = N(N − 2)u
N+2
N−2
0 in B1(0),

where dk(x) = min{|x − xi
n|: i = 1, . . . , k}, Bn

R = {|x| < 1: |x − xi
n| � Rεi

n ∀i = 1, . . . , k} and

Si =
{
yj = lim

n→+∞
x

j
n − xi

n

εi
n

: j < i s.t.
|xj

n − xi
n|

εi
n

= O(1)

}
.

Let now x be so that |x − xi
n| = Rεi

n for some i = 1, . . . , k. We have that y = x−xi
n

εi
n

satisfies: |y| = R and |y − yj | �
R − |yj | � 1, for R large. Hence, by (9) we get that for any R > 0 large and C > 1 there exists N0 such that for any
n � N0 and |x − xi

n| = Rεi
n

un(x) � CUεi
n,xi

n+εi
nxi

(x),

where

Uε,y(x) = ε− N−2
2 U

(
x − y

ε

)
= ε

N−2
2

(ε2 + |x − y|2)N−2
2

.

Since |x − (xi
n + εi

nxi)| � (1 − maxi=1,...,k |xi |
R

)|x − xi
n| for |x − xi

n| = Rεi
n, we obtain that for any R > 0 large there

exists N0 such that

un(x) � 2Uεi
n,xi

n
(x) (13)

for any n � N0 and |x − xi
n| = Rεi

n.
The aim will be to estimate from above un(x) in terms of the standard bubbles Uεi

n,xi
n
(x), i = 1, . . . , k, in Bδ(0) \⋃k

i=1 BRεi
n
(xi

n), 0 < δ < 1. By performing some simple asymptotic analysis we get the following result (see also the
techniques developed by Schoen in [22] and exploited in [15,16]):

Lemma 3.1. Let α ∈ (0, N−2
2 ). There exist R > 0, 0 < δ < 1 and N0 ∈ N such that

un(x) �
k∑

i=1

((
εi
n

)N−2
2 −α∣∣x − xi

n

∣∣2−N+α + Mn

∣∣x − xi
n

∣∣−α)
,

for any n � N0 and |x| � δ with |x − xi
n| � Rεi

n, i = 1, . . . , k, where Mn = 2δα sup|x|=δ un(x).

Proof. Let us introduce the operator Ln = −� + 1 − N(N − 2)u
4

N−2
n . Since un is a positive solution of Lnun = 0 in

Bδ(0), we have that Ln satisfies the minimum principle in Bδ(0) for any 0 < δ < 1 (see [14]). Since u0 is a smooth

function, by (12) we have that there exist R > 2
1
α , 0 < δ < 1 and N0 ∈ N such that

dk(x)
N−2

2 un(x) �
(

α(N − 2 − α)

kN(N − 2)

)N−2
4

(14)

for any n � N0 and x ∈ Bδ(0): |x − xi
n| � Rεi

n, i = 1, . . . , k.
Define now a comparison function ϕn in the form ϕn = ∑k

i=1 ϕi
n, where

ϕi
n(x) = (

εi
n

)N−2
2 −α∣∣x − xi

n

∣∣2−N+α + Mn

∣∣x − xi
n

∣∣−α
,

and compute Ln on ϕn − un:
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Ln(ϕn − un) =
k∑

i=1

Lnϕ
i
n =

k∑
i=1

(
α(N − 2 − α)

∣∣x − xi
n

∣∣−2 + 1 − N(N − 2)u
4

N−2
n

)
ϕi

n.

Let x ∈ Bδ(0) be such that |x − xi
n| � Rεi

n, i = 1, . . . , k. There exists j ∈ {1, . . . , k} so that |x − x
j
n | = min{|x − xi

n|:
i = . . . , k}. Since |x − x

j
n | � |x − xi

n|, we have that ϕ
j
n(x) � ϕi

n(x) for any i = 1, . . . , k and therefore,

Ln(ϕn − un)(x) =
k∑

i=1

(
α(N − 2 − α)

∣∣x − xi
n

∣∣−2 + 1 − N(N − 2)un(x)
4

N−2
)
ϕi

n(x)

� α(N − 2 − α)
∣∣x − x

j
n

∣∣−2
ϕ

j
n(x) − N(N − 2)un(x)

4
N−2

k∑
i=1

ϕi
n(x)

�
[
α(N − 2 − α) − kN(N − 2)

(∣∣x − x
j
n

∣∣N−2
2 un(x)

) 4
N−2

]∣∣x − x
j
n

∣∣−2
ϕ

j
n(x) � 0

in view of (14), for any n � N0 and x ∈ Bδ(0): |x − xi
n| � Rεi

n, i = 1, . . . , k. In view of the validity of (13) on
∂BRεi

n
(xi

n), we can always assume that R and N0 are such that

un(x) � 2
(
εi
n

)N−2
2

∣∣x − xi
n

∣∣2−N

for any n � N0 and |x − xi
n| = Rεi

n. Therefore, we have that

un(x) � 2R−α
(
εi
n

)N−2
2 −α∣∣x − xi

n

∣∣2−N+α �
(
εi
n

)N−2
2 −α∣∣x − xi

n

∣∣2−N+α � ϕi
n(x) � ϕn(x)

for n � N0 and |x − xi
n| = Rεi

n for some i = 1, . . . , k. Since

un(x) � 1

2δα
Mn � Mn

k∑
i=1

∣∣x − xi
n

∣∣−α � ϕn(x)

for |x| = δ and n large, by the minimum principle for Ln we get the desired estimate in the region x ∈ Bδ(0) with
|x − xi

n| � Rεi
n ∀i = 1, . . . , k. �

We have to combine the estimate contained in Lemma 3.1 with the following Pohozaev-type inequality (“essen-
tially” proved in [7], for the Pohozaev identity refer to [19]):

Lemma 3.2. There exists C > 0, depending only on the dimension N , such that for any |x| < 1 and 0 < h <
1−|x|

4∫
Bh(x)

u2
n � C

∫
B2h(x)\Bh(x)

(
1

h2
u2

n + u
2N

N−2
n

)
. (15)

Proof. Since Lemma 3.2 is written in a slightly different way with respect to [7], let us outline why some difference
appears. By [7] we get that:∫

Bh(x)

u2
n � − 2

N

∫
Ω

〈x,∇ϕ〉ϕu
2N

N−2
n + Rn,

where ϕ ∈ C∞
0 (B2h(x)) is such that 0 � ϕ � 1, ϕ = 1 on Bh(x), and

Rn = −
∫
Ω

u2
n

[〈∇ϕ,∇〈x,∇ϕ〉〉 + N

2
ϕ�ϕ + 1

2

〈
x,∇(ϕ�ϕ)

〉 + N − 2

2
|∇ϕ|2

]
.

Assuming that |∇ϕ| � 2
h

, we have that 〈x,∇ϕ〉ϕ vanishes outside B2h(x) \ Bh(x) and∣∣〈x,∇ϕ〉ϕ∣∣ � 4
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in B2h(x) \ Bh(x). Hence, we get that∣∣∣∣
∫
Ω

〈x,∇ϕ〉ϕu
2N

N−2
n

∣∣∣∣ � 4
∫

B2h(x)\Bh(x)

u
2N

N−2
n .

Similarly, assuming that |∇2ϕ| � 2
h2 we show that

|Rn| � C

h2

∫
B2h(x)\Bh(x)

u2
n

for some constant C > 0. The proof is now complete. �
Let N > 6 and fix 0 < α < N−6

3 . Let us define the following sequence:

rn = max
{
εi
n: i = . . . , k

} 2+α
N−2−2α .

Up to a subsequence and a re-labeling, let us assume that εk
n = max{εi

n: i = . . . , k} and that, for some integer
s ∈ {1, . . . , k − 1}, there hold:

|xi
n − xk

n|
rn

→ +∞, i = 1, . . . , s,
|xi

n − xk
n|

rn
� D − 1, i = s + 1, . . . , k, (16)

as n → +∞, where D > 1 is a constant. By (16), we obtain that for x ∈ B2Drn(x
k
n) \ BDrn(x

k
n) there hold:{

|x − xi
n| � |xi

n − xk
n| − |x − xk

n| � |xi
n − xk

n| − 2Drn � rn if i = 1, . . . , s

|x − xi
n| � |x − xk

n| − |xk
n − xi

n| � Drn − (D − 1)rn = rn if i = s + 1, . . . , k.
(17)

We apply now (15) on BDrn(x
k
n). Let r = 1

2 min{|yj |: yj ∈ Sk, yj �= 0} if Sk \ {0} �= ∅ and r = 1 otherwise. Since
rn � εk

n for n large in view of α < N−4
3 , we have that

∫
BDrn (xk

n)

u2
n �

∫
B

rεkn
(xk

n)

u2
n = (

εk
n

)2
∫

Br(0)

(
Uk

n

)2 �
(
εk
n

)2
∫

Br(0)\Br/2(0)

(
Uk

n

)2
.

Since Sk ∩ { r
2 � |y| � r} = ∅, by (9) we get that∫

Br(0)\Br/2(0)

(
Uk

n

)2 →
∫

Br(0)\Br/2(0)

1

(1 + |y − xk|2)N−2
> 0

and hence,∫
BDrn (xk

n)

u2
n � 1

2

(
εk
n

)2
∫

Br (0)\Br/2(0)

1

(1 + |y − xk|2)N−2

for n large. Let us remark that for n large 1
4D

δ > rn � Rεk
n � Rεi

n for any i = 1, . . . , k. Therefore, we can use
Lemma 3.1 and (17) to provide that

un(x) �
k∑

i=1

((
εi
n

)N−2
2 −α∣∣x − xi

n

∣∣2−N+α + Mn

∣∣x − xi
n

∣∣−α)
� k

(
εk
n

)N−2
2 −α

r2−N+α
n + kMnr

−α
n , (18)

for any n � N0 and x ∈ B2Drn(x
k
n) \ BDrn(x

k
n). Hence, by (18) we get that
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∫
B2Drn (xk

n)\BDrn (xk
n)

(
1

D2r2
n

u2
n + u

2N
N−2
n

)

� C

((
εk
n

rn

)N−2−2α

+ M2
nrN−2−2α

n +
(

εk
n

rn

)N−α 2N
N−2 + M

2N
N−2
n r

N−α 2N
N−2

n

)

� C′
((

εk
n

rn

)N−2−2α

+ M2
nrN−2−2α

n

)
= C′((εk

n

)N−4−3α + M2
n

(
εk
n

)2+α)
since α < N−2

2 and Mn is bounded, in view of (10). Finally, by Lemma 3.2 we obtain that

1 � C
((

εk
n

)N−6−3α + (
εk
n

)α)
,

which gives a contradiction for n large, since εk
n → 0 as n → +∞.

Appendix A

In this appendix, we want to give a detailed local description of the blow-up phenomenon for a solutions sequence
un of the following problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−�un + un = N(N − 2)u

N+2
N−2
n in B1(0),

un > 0 in B1(0),

supn∈N

∫
B1(0)

u
2N

N−2
n < +∞.

We assume that 0 is the only blow-up point of un in B1(0):

max
x∈B1(0)

un(x) → +∞ as n → +∞, (19)

un → u0 in C0
loc

(
B1(0) \ {0}) (20)

(up to a subsequence), where u0 � 0 is a smooth solution of the limit equation:

−�u0 + u0 = N(N − 2)u
N+2
N−2
0 in B1(0).

First of all, the following classical result holds (see for example [10,11] and [4,22]):

Proposition A.1. Up to a subsequence of un, there exist s ∈ N
∗ and sequences x1

n, . . . , xs
n → 0 such that for any

i, j = 1, . . . , s, i �= j , we have:

εi
n := un

(
xi
n

)− 2
N−2 → 0,

εi
n + ε

j
n

|xi
n − x

j
n |

→ 0 as n → +∞, (21)

un

(
xi
n

) = max
x∈B

εin
(xi

n)
un(x) for n large, (22)

Ui
n(y) = (

εi
n

)N−2
2 un

(
εi
ny + xi

n

) → 1

(1 + |y|2)N−2
2

in C2
loc

(
R

N
)

as n → +∞, (23)

ds(x)
N−2

2 un(x) � C for any n ∈ N, |x| < 1, (24)

where dj (x) = min{|x − xi
n|: i = 1, . . . , j}, 1 � j � s. In particular, there holds

lim inf
n→+∞

∫
B1(0)

u
2N

N−2
n � s

(
SN

N(N − 2)

)N
2 +

∫
B1(0)

u
2N

N−2
0 , (25)

where SN is the Sobolev constant.
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Proof. Let x1
n be the maximum point of un in B1(0). By (19), (20) we deduce that x1

n → 0 and ε1
n = un(x

1
n)−

2
N−2 → 0.

Define U1
n (y) = (ε1

n)
N−2

2 un(ε
1
ny + x1

n) for y ∈ Bn := B(ε1
n)−1(−x1

n/ε1
n). We have that{

−�U1
n + (ε1

n)
2U1

n = N(N − 2)(U1
n )

N+2
N−2 in Bn,

0 < U1
n (y) � U1

n (0) = 1.

By standard elliptic estimates (cf. [14]) and a diagonal process, (up to a subsequence) we have that U1
n → U in

C2
loc(R

N) where U is a solution of{
−�U = N(N − 2)U

N+2
N−2 in R

N,

0 < U(y) � U(0) = 1.
(26)

By the classification in [5], problem (26) admits only the solution

U(y) = 1

(1 + |y|2)N−2
2

.

Hence, we get that

U1
n (y) → 1

(1 + |y|2)N−2
2

in C2
loc

(
R

N
)
.

Moreover, by taking the liminf as n → +∞ and the limit as δ → 0, R → +∞ in the following inequality chain:∫
B1(0)

u
2N

N−2
n �

∫
B

Rε1
n
(x1

n)

u
2N

N−2
n +

∫
B1(0)\Bδ(0)

u
2N

N−2
n =

∫
BR(0)

(
U1

n

) 2N
N−2 +

∫
B1(0)\Bδ(0)

u
2N

N−2
n ,

which is true for δ, R > 0 and n � N = N(δ,R), we deduce that

lim inf
n→+∞

∫
B1(0)

u
2N

N−2
n �

∫
RN

dy

(1 + |y|2)N +
∫

B1(0)

u
2N

N−2
0 =

(
SN

N(N − 2)

)N
2 +

∫
B1(0)

u
2N

N−2
0 .

If (24) holds true for x1
n , we take s = 1 and the proof is complete since (21)–(23) are already verified. Otherwise, by

induction assume that there exist j sequences x1
n, . . . , x

j
n → 0 as n → +∞ satisfying (21)–(23). If (24) holds true, we

have done.
Otherwise, there exists a sequence yn ∈ B1(0) such that

dj (yn)
N−2

2 un(yn) = max
x∈B1(0)

dj (x)
N−2

2 un(x) → +∞ as n → +∞. (27)

Since un → u0 away from 0, by (27) we have that yn → 0 and, for μn = un(yn)
− 2

N−2 , property (27) reads equivalently
as:

μn

dj (yn)
→ 0 as n → +∞. (28)

Since (21)–(23) imply dj (x)
N−2

2 un(x) � 1 for |x − xi
n| � Rεi

n, i = 1, . . . , j , and n � N = N(R), we deduce that yn

must be outside this region, i.e.

εi
n

|yn − xi
n|

→ 0 as n → +∞, ∀i = 1, . . . , j. (29)

Introduce the function Un(y) = μ
N−2

2
n un(μny + yn) for y ∈ Bn, where the balls Bn = {y ∈ R

N : |y| � dj (yn)

2μn
} expand

to R
N as n → +∞ in view of (28). Moreover, since∣∣μny + yn − xi

n

∣∣ �
∣∣yn − xi

n

∣∣ − μn|y| � 1 ∣∣yn − xi
n

∣∣

2
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for any y ∈ Bn and i = 1, . . . , j , we have the following estimate:

Un(y) =
(

dj (yn)

dj (μny + yn)

)N−2
2 dj (μny + yn)

N−2
2 un(μny + yn)

dj (yn)
N−2

2 un(yn)
� 2

N−2
2

for any y ∈ Bn, in view of the maximality property in the definition (27) of yn. Hence, by standard elliptic estimates
and a diagonal process, (up to a subsequence) we get that Un → U in C2

loc(R
N), where U is a solution of{

−�U = N(N − 2)U
N+2
N−2 in R

N,

0 < U(y) � 2
N−2

2 , U(0) = 1.

By the classification in [5], the function U satisfies:

U(y) = μ
N−2

2

(μ2 + |y − y0|2)N−2
2

,

for some μ > 0 and y0 ∈ R
N . Since U(y) has a nondegenerate maximum point at y = y0, for n large Un(y) has a

unique maximum point zn close to y0. Hence, for the original sequence, the point x
j+1
n := μnzn + yn is a maximum

point of un on B2μn(x
j+1
n ) for n large. Since 2

N−2
2 � Un(zn) = μ

N−2
2

n un(x
j+1
n ) � Un(0) = 1, we get that, for ε

j+1
n =

un(x
j+1
n )−

2
N−2 , there holds:

ε
j+1
n

μn

→ U(y0)
− 2

N−2 = μ ∈
[

1

2
,1

]
.

By (28), (29) we get that

∣∣xj+1
n − xi

n

∣∣ �
∣∣yn − xi

n

∣∣ − ∣∣yn − x
j+1
n

∣∣ = ∣∣yn − xi
n

∣∣ − μn|zn| �
{

2μn � ε
j+1
n ,

εi
n

for any i = 1, . . . , j and hence (21), (22) hold. Moreover, there holds:

(
ε
j+1
n

)N−2
2 un

(
ε
j+1
n y + x

j+1
n

) =
(

ε
j+1
n

μn

)N−2
2

Un

(
ε
j+1
n

μn

y + zn

)
→ μ

N−2
2 U(μy + y0) = 1

(1 + |y|2)N−2
2

in C2
loc(R

N) and, so (23) holds. So, the inductive step holds for j + 1. By (21) there holds

∫
B1(0)

u
2N

N−2
n �

j+1∑
i=1

∫
B

Rεin
(xi

n)

u
2N

N−2
n +

∫
B1(0)\Bδ(0)

u
2N

N−2
n =

j+1∑
i=1

∫
BR(0)

(Ui
n)

2N
N−2 +

∫
B1(0)\Bδ(0)

u
2N

N−2
n

for δ, R > 0 and n � N = N(δ,R), and hence, by (23) we deduce that

lim inf
n→+∞

∫
B1(0)

u
2N

N−2
n � (j + 1)

∫
RN

dy

(1 + |y|2)N +
∫

B1(0)

u
2N

N−2
0

= (j + 1)

(
SN

N(N − 2)

)N
2 +

∫
B1(0)

u
2N

N−2
0 . (30)

Since supn∈N

∫
B1(0)

u
2N

N−2
n < +∞, by (30) the induction process has to stop after s steps giving that also (24) holds for

the sequences x1
n, . . . , xs

n. Further, there holds (25) by means of the validity of (30) for s = j + 1. �
Now, in the spirit of the blow-up techniques developed by Druet, Hebey and Robert in [10,11], we can perform a

finer analysis. Proposition A.2 below has already been showed in [10] for compact Riemannian manifolds. A careful



P. Esposito / Ann. I. H. Poincaré – AN 24 (2007) 629–644 641
reader could observe that, in fact, their analysis is quite local and does not use any geometric features and/or com-
pactness of the underlying space, and therefore it extends directly to our situation. For the sake of completeness, we
re-write their proof in the simpler context of an Euclidean domain:

Proposition A.2. Up to a subsequence of un, there exist k ∈ N, k � s, sequences xs+1
n , . . . , xk

n → 0, εs+1
n , . . . , εk

n → 0
and points xs+1, . . . , xk ∈ R

N such that for any i = s + 1, . . . , k, 1 � j < i, we have:

ε
j
n

|xi
n − x

j
n |

→ 0,
ε
j
n

εi
n

→ 0 as n → +∞, (31)

Ui
n(y) = (

εi
n

)N−2
2 un

(
εi
ny + xi

n

) → 1

(1 + |y − xi |2)N−2
2

in C2
loc

(
R

N \ Si

)
as n → +∞, (32)

lim
R→+∞ lim sup

n→+∞
max
x∈Bn

R

(
dk(x)

N−2
2

∣∣un(x) − u0(x)
∣∣) = 0, (33)

where x1
n, . . . , xs

n are given in Proposition A.1, dk(x) = min{|x − xi
n|: i = 1, . . . , k}, Bn

R = {|x| < 1: |x − xi
n| �

Rεi
n ∀i = 1, . . . , k} and

Si =
{
yj = lim

n→+∞
x

j
n − xi

n

εi
n

: j < i s.t.
|xj

n − xi
n|

εi
n

= O(1)

}
is a nonempty set. In particular, there holds

lim inf
n→+∞

∫
B1(0)

u
2N

N−2
n � k

(
SN

N(N − 2)

)N
2 +

∫
B1(0)

u
2N

N−2
0 . (34)

Proof. If (33) holds already true for x1
n, . . . , xs

n, we take k = s and the proof is complete. Moreover, since∫⋃s
i=1 B

Rεin
(xi

n)
u

2N
N−2
n = ∑s

i=1

∫
BR(0)

(Ui
n)

2N
N−2 for R > 0 and n � N = N(R), by (23) we deduce that

lim inf
n→+∞

∫
⋃s

i=1 B
Rεin

(xi
n)

u
2N

N−2
n � s

∫
BR(0)

dy

(1 + |y|2)N

for any R > 0. In particular, we get that

lim inf
n→+∞

∫
B1(0)

u
2N

N−2
n � s

∫
BR(0)

dy

(1 + |y|2)N +
∫

B1(0)\Bδ(0)

u
2N

N−2
0

for any δ, R > 0, and hence (34) holds.
Otherwise, by induction assume that there exist j − s sequences xs+1

n , . . . , x
j
n → 0, εs+1

n , . . . , εk
n → 0 as n → +∞

such that (31), (32) hold and

lim inf
n→+∞

∫
⋃j

i=1 B
Rεin

(xi
n)

u
2N

N−2
n �

j∑
i=1

∫
BR(0)

dy

(1 + |y − xi |2)N , (35)

where we take xi = 0 if i = 1, . . . , s. If (33) holds true, we take k = j and, as before, (35) implies the validity of (34).
Otherwise, (up to a subsequence) there exist Rn → +∞ and yn ∈ Bn

Rn
such that

dj (yn)
N−2

2
∣∣un(yn) − u0(yn)

∣∣ = max
x∈Bn

Rn

(
dj (x)

N−2
2

∣∣un(x) − u0(x)
∣∣) � (4δ0)

N−2
2 (36)

for some δ0 > 0, where Bn
Rn

= {|x| < 1: |x − xi
n| � Rnε

i
n ∀i = 1, . . . , j}. Since un → u0 away from 0, by (36) we

have that yn → 0 and dj (yn)
N−2

2 un(yn) � (2δ0)
N−2

2 for n large. Hence, there exists a sequence x
j+1
n ∈ Bn so that
Rn
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dj

(
x

j+1
n

)N−2
2 un

(
x

j+1
n

) = max
x∈Bn

Rn

(
dj (x)

N−2
2 un(x)

)
� (2δ0)

N−2
2 .

For ε
j+1
n = un(x

j+1
n )−

2
N−2 there holds:

|xj+1
n − xi

n|
ε
j+1
n

� 2δ0,
εi
n

|xj+1
n − xi

n|
→ 0 as n → +∞ (37)

for any i = 1, . . . , j . In particular, ε
j+1
n → 0 as n → +∞. Moreover, observing that property (24) is still true if we

add the points xs+1
n , . . . , x

j
n :

dj (x)
N−2

2 un(x) � C, |x| < 1, n ∈ N, (38)

we have that |xj+1
n − xi

n|/εj+1
n � C

2
N−2 for some i = 1, . . . , j (up to a subsequence) and so, Sj+1 �= ∅ and (31) is

satisfied. Up to a subsequence, assume that the limits yi = limn→+∞ xi
n − x

j+1
n /ε

j+1
n exist for any i = 1, . . . , j so

that |xi
n − x

j+1
n |/εj+1

n = O(1). Introduce the set Sj+1 = {yi : i � j} and remark that by (37) we have that Sj+1 ∩
Bδ0(0) = ∅.

Consider the function Un(y) = (ε
j+1
n )

N−2
2 un(ε

j+1
n y+x

j+1
n ) for y ∈ Bn, where the balls Bn = {y ∈ R

N : |y| � 1
ε
j+1
n

}
expand to R

N as n → +∞. We want to show that Un is uniformly bounded in C0
loc(R

N \ Sj+1). Let y ∈ BR(0) be so
that |y − yi | � 1

R
for any yi ∈ Sj+1. Since for any i = 1, . . . , j :

∣∣εj+1
n y + x

j+1
n − xi

n

∣∣ = ε
j+1
n

∣∣∣∣y − xi
n − x

j+1
n

ε
j+1
n

∣∣∣∣ �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε
j+1
n

(
|y − yi | −

∣∣∣∣yi − xi
n − x

j+1
n

ε
j+1
n

∣∣∣∣
)

� ε
j+1
n

2R
if yi ∈ Sj+1,

ε
j+1
n

(∣∣∣∣xi
n − x

j+1
n

ε
j+1
n

∣∣∣∣ − |y|
)

� ε
j+1
n

2R
otherwise

for n � N = N(R), we get that dj (ε
j+1
n y + x

j+1
n ) � ε

j+1
n /(2R) and by (38) we get that

Un(y) = (
ε
j+1
n

)N−2
2 un

(
ε
j+1
n y + x

j+1
n

)
� (2R)

N−2
2 dj

(
ε
j+1
n y + x

j+1
n

)N−2
2 un

(
ε
j+1
n y + x

j+1
n

)
� C(2R)

N−2
2

for n � N = N(R). By standard elliptic estimates and a diagonal process, (up to a subsequence) we get that Un → U

in C2
loc(R

N \ Sj+1), where U is a nonnegative solution of{
−�U = N(N − 2)U

N+2
N−2 in R

N \ Sj+1,

U(0) = 1,

since Bδ0(0) ⊂ R
N \ Sj+1. By the result of Caffarelli, Gidas and Spruck [5], we have that:

U(y) = μ
N−2

2

(μ2 + |y − xi |2)N−2
2

,

for some μ > 0 and xi ∈ R
N . Since

(
με

j+1
n

)N−2
2 un

(
με

j+1
n y + x

j+1
n

) = μ
N−2

2 Un(μy) → μ
N−2

2 U(μy) = 1

(1 + |y − μ−1xi |2)N−2
2

,

we can replace ε
j+1
n with με

j+1
n , xi with μ−1xi and Sj+1 with respect to ε

j+1
n with Sj+1 with respect to με

j+1
n

to obtain the validity of (32). Now, we want to show the validity of (35) with j replaced by j + 1. Let I =
{i = 1, . . . , j : yi ∈ Sj+1} and let C > 0 be such that |xi

n − x
j+1
n | � Cε

j+1
n for any i ∈ I . Clearly, we have that⋃

i∈I

B
δε

j+1
n

(
xi
n

) ⊂ B
(C+δ)ε

j+1
n

(
x

j+1
n

)
for any δ > 0, and by (31) we also deduce that
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⋃
i∈I

BRεi
n

(
xi
n

) ⊂ B
2Cε

j+1
n

(
x

j+1
n

)
for n � N = N(R). Similarly, there holds( ⋃

i=1,...,j, i /∈I

BRεi
n

(
xi
n

)) ∩ B
Rε

j+1
n

(
x

j+1
n

) = ∅

for n � N = N(R). Hence, we have that for R � 2C and 0 < δ < C

j+1⋃
i=1

BRεi
n

(
xi
n

) = B
Rε

j+1
n

(
x

j+1
n

) ⊕
⋃

i=1,...,j, i /∈I

BRεi
n

(
xi
n

)

=
(

B
Rε

j+1
n

(
x

j+1
n

)∖⋃
i∈I

B
δε

j+1
n

(
xi
n

)) ⊕
⋃
i∈I

B
δε

j+1
n

(
xi
n

) ⊕
⋃

i=1,...,j, i /∈I

BRεi
n

(
xi
n

)

⊃
(

B
Rε

j+1
n

(
x

j+1
n

)∖⋃
i∈I

B
δε

j+1
n

(
xi
n

)) ⊕
j⋃

i=1

BRεi
n

(
xi
n

)
for n � N = N(δ,R) in view of (31), where ⊕ stands for the union of disjoint sets. Hence, we can write∫

⋃j+1
i=1 B

Rεin
(xi

n)

u
2N

N−2
n �

∫
B

Rε
j+1
n

(x
j+1
n )\⋃i∈I B

δε
j+1
n

(xi
n)

u
2N

N−2
n +

∫
⋃j

i=1 B
Rεin

(xi
n)

u
2N

N−2
n

=
∫

BR(0)\⋃i∈I Bδ(
xi
n−x

j+1
n

ε
j+1
n

)

(
U

j+1
n

) 2N
N−2 +

∫
⋃j

i=1 B
Rεin

(xi
n)

u
2N

N−2
n

for n � N = N(δ,R). Passing to the liminf as n → +∞, by the validity of (35), (32) for j +1 and (xi
n − x

j+1
n )/ε

j+1
n →

yi ∈ Sj+1 as n → +∞ for any i ∈ I , we get that

lim inf
n→+∞

∫
⋃j+1

i=1 B
Rεin

(xi
n)

u
2N

N−2
n �

∫
BR(0)\⋃i∈I Bδ(yi )

dy

(1 + |y − xj+1|2)N +
j∑

i=1

∫
BR(0)

dy

(1 + |y − xi |2)N

for any R large and δ small. Letting δ → 0+, we obtain that

lim inf
n→+∞

∫
⋃j+1

i=1 B
Rεin

(xi
n)

u
2N

N−2
n �

j+1∑
i=1

∫
BR(0)

dy

(1 + |y − xi |2)N . (39)

So, the inductive step holds for j + 1. Since supn∈N

∫
B1(0)

u
2N

N−2
n < +∞, by (39) the induction process has to stop

after k − s steps giving that also (33) holds for the sequences x1
n, . . . , xs

n, x
s+1
n , . . . , xk

n . Moreover, arguing as before,
(39) for k = j + 1 implies the validity of

lim inf
n→+∞

∫
B1(0)

u
2N

N−2
n �

k∑
i=1

∫
BR(0)

dy

(1 + |y − xi |2)N +
∫

B1(0)\Bδ(0)

u
2N

N−2
0

for any δ, R > 0, and hence, taking δ → 0 and R → +∞,

lim inf
n→+∞

∫
B1(0)

u
2N

N−2
n � k

(
SN

N(N − 2)

)N
2 +

∫
B1(0)

u
2N

N−2
0 .

Hence, (34) holds and the proof is complete. �
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