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Abstract. Given (M, g) a smooth compact Riemannian manifold of dimensionn ≥ 5,
we study fourth order equations involving Paneitz-Branson type operators and the critical
Sobolev exponent.
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1 Introduction and statement of the results

In 1983, Paneitz [14] introduced a conformally fourth order operator defined on
4-dimensional Riemannian manifolds. Branson [3] generalized the definition to
n-dimensional Riemannian manifolds. We let(M, g) be a smooth compact Rie-
mannian manifold of dimensionn ≥ 5, and denote byRicg andSg the Ricci and
scalar curvature ofg. Foru ∈ C∞(M), the Paneitz-Branson operator is given by

Pn
g u = ∆2

gu− divg
[
(anSgg + bnRicg)#du

]
+
n− 4

2
Qn
gu,

where∆gu = −divg(∇u) is the Laplace-Beltrami operator,

an =
(n− 2)2 + 4

2(n− 1)(n− 2)
, bn = − 4

n− 2
,

the symbol# stands for the musical isomorphism (index are raised with the metric),
and

Qn
g =

1
2(n− 1)

∆gSg +
n3 − 4n2 + 16n− 16
8(n− 1)2(n− 2)2

S2
g − 2

(n− 2)2
|Ricg|2g.
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The Paneitz-Branson operator is conformally invariant in the following sense: if
g̃ = ϕ4/(n−4)g is a metric conformal tog, then for allu ∈ C∞(M),

Pn
g (uϕ) = ϕ

n+4
n−4Pn

g̃ (u).

Takingu ≡ 1, we then find that

Pn
g ϕ =

n− 4
2

Qn
g̃ϕ

n+4
n−4 .

In particular, the Paneitz-Branson operator possesses conformal properties that are
very similar to the ones satisfied by the conformal laplacian. We are then naturally
led to study extensions to this operator of some classical problems.

The geometric Paneitz-Branson operator falls into two types of operators, de-
pending on the manifold we consider. GivenA ∈ Λ∞

(2,0)(M) a smooth symmetric
(2, 0)-tensor field, anda ∈ C∞(M), we refer to a Paneitz-Branson type operator
with general coefficients as an operator of the form

Pgu = ∆2
gu− divg

[
A#du

]
+ au. (1)

Givenα, a ∈ R, we refer to a Paneitz-Branson type operator with constant coeffi-
cients as an operator of the form

Pgu = ∆2
gu+ α∆gu+ au. (2)

With such a terminology, introduced by Hebey, it is easily seen that the Paneitz-
Branson type operator with constant coefficients given by (2) is the Paneitz-Branson
type operator with general coefficients (1) whenA = αg, andα, a ∈ R. Moreover,
whatever(M, g) is, the geometric Paneitz-Branson operatorPn

g is of the type (1),
and when(M, g) is Einstein, the geometric Paneitz-Branson operatorPn

g is of the
type (2). We indeed do find that

Pn
g u = ∆2

gu+
n2 − 2n− 4
2n(n− 1)

Sg∆gu+
(n− 4)(n2 − 4)
16n(n− 1)2

S2
gu (3)

when(M, g) is Einstein. In particular, when(M, g) = (Sn, h) is the unitn-sphere,

Pn
h u = ∆2

gu+ cn∆gu+ dnu (4)

wherecn = n2−2n−4
2 and dn = (n−4)n(n2−4)

16 . In what follows we refer to a
Paneitz-Branson type operator as an operator given either by (1), or (2).

We letH2
2 (M) be the standard Sobolev space consisting of functions inL2(M)

whose derivatives up to the order 2 are inL2(M), and let2� be the critical exponent
given by2� = 2n

n−4 . The Sobolev embedding theorem asserts thatH2
2 (M) is conti-

nuously embedded inLq(M) for 1 < q ≤ 2�, with the property that this embedding
is compact whenq < 2�. We now defineK0 > 0 to be the sharp constant in the
Euclidean Sobolev inequality‖u‖2

2� ≤ K‖∆u‖2
2. We know from the work of [12],

[13] and [9], that

1
K0

=
n(n2 − 4)(n− 4)ω

4
n
n

16
,
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where fork ∈ N
�, ωk denotes the volume of the unitk−sphere(Sk, h). Moreover,

the extremals for the sharp Euclidean Sobolev inequality are precisely the functions

u(x) = µ

(
λ

1 + λ2|x− x0|2
)n−4

2

(5)

whereλ > 0, µ ∈ R
∗ andx0 ∈ R

n.

Given(M, g) a smooth compact Riemannian manifold of dimensionn ≥ 5, f ,
h two continuous functions onM , andq ∈ (1, 2� − 1), the goal in this paper is to
study equations like

Pgu = f |u|2�−2u+ h|u|q−1u (6)

wherePg is a Paneitz-Branson type operator, namely either with general coefficients
as in (1), or with constant coefficients as in (2). Solutions of (6) can be seen as critical
points of the functional

E(u) =
1
2

∫
M

(Pgu)u dvg − 1
2�

∫
M

f |u|2�

dvg − 1
q + 1

∫
M

h|u|q+1 dvg. (7)

Because of the failure (in general) of the maximum principle, getting positive
solutions to (6) is still an open problem whenPg is with general coefficients. When
Pg is with constant coefficients, there are particular cases (see below) where a
maximum principle is available and the positivity of the solutions can be obtained.
This includes the geometric Paneitz-Branson operatorPn

g when(M, g) is Einstein
of positive scalar curvature. Equation (6) whenh ≡ 0, with a special emphasis on the
case of the unit sphere, was studied by Djadli-Hebey-Ledoux [6]. An equivalent
problem when the fourth order Paneitz-Branson type operator is replaced by a
second order Laplacian type operator was studied by Brézis-Nirenberg [4] in the
Euclidean case, and then by Djadli [5] in the Riemannian context.

We assume in what follows thatPg is coercive in the sense that there exists
c > 0 such that for allu ∈ H2

2 (M),∫
M

(Pgu)u dvg ≥ c

∫
M

u2 dvg .

Necessary and sufficient conditions forPg to be coercive are in Hebey-Robert [10]
whenPg is with constant coefficients. These necessary and sufficient conditions
imply sufficient conditions forPg to be coercive whenPg is with general coeffi-
cients.

Our first result is the following. The main tool there is the Mountain-Pass
Lemma of Ambrosetti and Rabinowitz [1].

Theorem 1 Let (M, g) be a compact Riemanniann-manifold,n ≥ 5, f, h be two
functions inCη(M), 0 < η < 1, q ∈ (1, 2� − 1), andPg be a Paneitz-Branson
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type operator. We assume thatPg is coercive, thatf is positive and that there exists
v0 ∈ H2

2 (M) such that

sup
t≥0

E(tv0) <
2

nK
n
4
0 (supM f)

n−4
4

(8)

whereE is as in (7). Then the equation

Pgu = f |u|2�−2u+ h|u|q−1u

possesses a nontrivial solutionu ∈ C4,η(M). Moreover, the solution can be as-
sumed to be positive ifPg has constant coefficents,h is nonnegative,α, a > 0, and
a ≤ α2/4, whereα anda are as in (2).

With such a theorem we are left with finding conditions onA, a, f, h such that
(8) is satisfied. For this purpose, we compute the left-hand-side of (8) for some
suitable functionv0 ∈ H2

2 (M), essentially given by (5). We denote byMaxf the
set consisting of the points inM wheref is maximum. Our first application of
Theorem 1 is the following:

Theorem 2 Let (M, g) be a compact Riemanniann-manifold,n ≥ 6, f, h be
two smooth functions onM , q ∈ ( n

n−4 ,
n+4
n−4 ), andPg be a Paneitz-Branson type

operator. We assume thatPg is coercive, thatf is positive and that there exists
x0 ∈ Maxf such thath(x0) > 0. Then the equation

Pgu = f |u|2�−2u+ h|u|q−1u

possesses a nontrivial solutionu ∈ C4,η(M), 0 < η < 1. Moreover, the solution
can be assumed to be positive ifPg has constant coefficents,h is nonnegative,
α, a > 0, anda ≤ α2/4, whereα anda are as in (2).

ForA as in (1), we lettrg(A) be the trace ofA given in local coordinates by
trg(A) = Aijg

ij . Forx in M we also letF be the function given by

F (x) = 8(n− 1)trg(A)(x) − 4(n2 − 2n− 4)Sg(x)

+(n+ 2)(n− 4)(n− 6)
∆gf

f
(x) . (9)

The limit case of Theorem 2 whereh(x0) = 0 is treated in the following theorem:

Theorem 3 Let (M, g) be a compact Riemanniann-manifold,n ≥ 6, f, h be
two smooth functions onM , q ∈ ( n

n−4 ,
n+4
n−4 ), andPg be a Paneitz-Branson type

operator. We assume thatPg is coercive, thatf is positive, and that for some
x0 ∈ Maxf , h(x0) = 0 andF (x0) < 0, whereF is as in (9). Then the equation

Pgu = f |u|2�−2u+ h|u|q−1u

possesses a nontrivial solutionu ∈ C4,η(M), 0 < η < 1. The same conclusion
holds ifn ≥ 8 and for somex0 ∈ Maxf , h(x0) = 0,F (x0) = 0, and∆gh(x0) <
0. Moreover, in both cases, the solution can be assumed to be positive ifPg has
constant coefficents,h is nonnegative,α, a > 0, anda ≤ α2/4, whereα anda are
as in (2).
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ForA as in (1), andx ∈ M , we letG be the function given by

G(x) = F (x) − 8n(n− 1)(n+ 2)(n− 6)√
n(n− 4)(n2 − 4)

h√
f
(x) . (10)

Theorems 2 and 3 deal with the caseq ∈ ( n
n−4 ,

n+4
n−4 ). Whenq = n

n−4 , we get that
the following theorem holds:

Theorem 4 Let (M, g) be a compact Riemanniann-manifold,n ≥ 6, f, h be two
smooth functions onM , q = n

n−4 , andPg be a Paneitz-Branson type operator.
We assume thatPg is coercive, thatf is positive, and that for somex0 ∈ Maxf ,
G(x0) < 0, whereG is as in (10). Then the equation

Pgu = f |u|2�−2u+ h|u|q−1u

possesses a nontrivial solutionu ∈ C4,η(M), 0 < η < 1. Moreover, the solution
can be assumed to be positive ifPg has constant coefficents,h is nonnegative,
α, a > 0, anda ≤ α2/4, whereα anda are as in (2).

With Theorems 2, 3, 4 we are left with the case whereq ∈ (1, n
n−4 ). This is the

subject of the following theorem:

Theorem 5 Let (M, g) be a compact Riemanniann-manifold,n ≥ 8, f, h be two
smooth functions inM , q < n

n−4 , andPg be a Paneitz-Branson type operator. We
assume thatPg is coercive, thatf is positive, and that for somex0 ∈ Maxf , either
F (x0) < 0, or F (x0) = 0 andh(x0) > 0, whereF is as in (9). Then the equation

Pgu = f |u|2�−2u+ h|u|q−1u

possesses a nontrivial solutionu ∈ C4,η(M), 0 < η < 1. Moreover, the solution
can be assumed to be positive ifPg has constant coefficents,h is nonnegative,
α, a > 0, anda ≤ α2/4, whereα anda are as in (2).

Our last theorem deals with the geometric case and the geometric Paneitz-
Branson operatorPn

g . In such a case,h ≡ 0 andPg = Pn
g . Then,

A = anSgg + bnRicg

and it is easily seen that8(n − 1)trg(A) − 4(n2 − 2n − 4)Sg ≡ 0. In particular,
Theorems 2-5 do not apply to such a case since ifx0 ∈ Maxf , ∆gf(x0) ≥ 0.
Independently, when(M, g) is Einstein, thenPn

g is with constant coefficientsα
anda where, thanks to (3),

α =
n2 − 2n− 4
2n(n− 1)

Sg and a =
(n− 4)(n2 − 4)
16n(n− 1)2

S2
g .
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In particular,a+ S2
g/(n

2(n− 1)2) = α2/4 so thata ≤ α2/4. If in additionSg is
positive,Pn

g is coercive (see [10]) and, as above, we can get the positivity of the
solutions of the equation we consider. Forx ∈ M we let

H(x) =
4(n2 − 4n− 4)

3(n+ 2)
|Weylg|2g(x) + (n− 6)(n− 8)

∆2
gf

f
(x)

+2(n− 6)(n− 8)

(∇2f,Ricg
)
g

f
(x) (11)

where(., .)g stands for the pointwise scalar product with respect tog, andWeylg
stands for the Weyl curvature tensor ofg. In local coordinates,

(∇2f)ij = ∂2
ijf − Γ k

ij∂kf

where theΓ k
ij ’s are the Christoffel symbols of the Levi-Civita connexion, and(∇2f,Ricg
)
g

= Rij(∇2f)ij where an index is raised with the metric. Our last
theorem is as follows:

Theorem 6 (Thegeometric case)Let(M, g)beacompactRiemanniann-manifold,
n ≥ 8, f be a smooth positive function onM , andPn

g be the geometric Paneitz-
Branson operator.We assume thatPn

g is coercive, and that there existsx0 ∈ Maxf
such that∆gf(x0) = 0 andH(x0) > 0, whereH is given by (11). Then the equa-
tion

Pn
g u = f |u|2�−2u

possesses a nontrivial solutionu ∈ C4,η(M), 0 < η < 1. When(M, g) is Einstein
with positive scalar curvature, this solution can be assumed to be smooth and
positive. Then there exists̃g conformal tog such thatn−4

2 Qn
g̃ = f .

The paper is divided as follows. In Sect. 2, we apply the Mountain-Pass Lemma
to the functionalE and study the associated Palais-Smale sequences. We deal with
the regularity of solutions to the type of fourth-order equations we consider in
Sect. 3. Section 4 to 6 are devoted to fairly general test-function computations.
These computations have their analogue in [2] when dealing with the conformal
Laplacian. We prove Theorems 2-6 in Sect. 7.

2 Mountain-Pass lemma and Palais-Smale sequences

As already mentioned, the main tool in this section is the Mountain-Pass lemma of
Ambrosetti-Rabinowitz [1]. We use the following statement of the lemma:

Proposition 1 Let F ∈ C1(V,R) where(V, ||.||) is a Banach space. We assume
that:

(i) F (0) = 0,
(ii) ∃λ,R > 0 such thatF (u) ≥ λ for all u ∈ V such that||u|| = R,
(iii) ∃v0 ∈ V such thatlim supt→+∞ F (tv0) < 0.
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We let t0 > 0 large be such that||t0v0|| > R and F (t0v0) < 0, and β =
infγ∈Γ sup F (γ(t)), whereΓ = {γ : [0, 1] → V s.t.γ(0) = 0, γ(1) = t0v0}.
Then there exists a sequence(un) in V such that

F (un) → β , F ′(un) → 0 strongly inV ′.

Moreover, we have thatβ ≤ supt≥0 F (tv0).

We say that a sequence(un) in H2
2 (M) is a Palais-Smale (P-S) sequence forE

if there existsβ ∈ R such thatE(un) → β andE′(un) → 0 strongly inH2
2 (M)′.

Letβ ∈ R. We say thatE satisfies the (P-S) condition at the levelβ if for any (un) a
(P-S) sequence forE in H2

2 (M) such thatE(un) → β, there exists a subsequence
(un) of (un) such that(un) converges strongly inH2

2 (M). As easily checked,
this limit is then a critical point forE. The lack of compactness for Palais-Smale
sequence in the case whereh ≡ 0 was described in Hebey-Robert [10]. We prove
here the following result:

Proposition 2 Let (M, g) be a compact Riemanniann-manifold,n ≥ 5, f, h be
two functions inCη(M), 0 < η < 1, q ∈ (1, 2� − 1), andPg be a Paneitz-Branson
type operator. We assume thatPg is coercive, and thatf is positive. For any

β <
2

nK
n
4
0 (max f)

n−4
4

,

the functionalE satisfies the (P-S) condition at the levelβ.

Proof. From the coercivity ofPg, there existsc > 0 such that

c||u||2H2
2 (M) ≤

∫
M

(∆gu)2dvg +
∫
M

A#(du, du)dvg +
∫
M

au2dvg . (12)

We take any sequence{un}n∈N ⊆ H2
2 (M) such thatE(un) → β for someβ <

2
nK

− n
4

0 (max f)− n−4
4 andE′(un) → 0. We prove that this sequence is relatively

compact inH2
2 (M). A first claim is that(un) is bounded inH2

2 (M). Standard
computations lead to

O(1) + o(||un||) = 2E(un) − 〈E′(un), un)〉
=

4
n

∫
M

f |un|2�

dvg +
q − 1
q + 1

∫
M

h|un|q+1dvg.

With (12), it comes that

c||un||2H2
2 (M) ≤ 2E(un) +

2
2�

∫
M

f |un|2�

dvg +
2

q + 1

∫
M

h|un|q+1dvg

= O(1) + o(||un||) .
As easily checked, for allε > 0, there existsKε > 0 such thattq+1 ≤ εt2

�

+Kε

for all t ≥ 0. As a consequence,∣∣∣∣
∫
M

h|u|q+1dvg

∣∣∣∣ ≤ Kε||h||∞V olg(M) + ε
||h||∞

minM f

∫
M

f |u|2�

dvg
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whereV olg(M) is the volume ofM with respect tog. Then||un||H2
2 (M) is bounded,

and this proves the claim. In particular, up to the extraction of a subsequence, we can
assume thatun ⇀ u weakly inH2

2 (M). With the compactness of the embedding
H2

2 (M) ↪→ Lp(M) for all 1 ≤ p < 2� we can also assume thatun → u for all
1 ≤ p < 2�. By standard variational arguments, we infer thatu is a distributional
solution inH2

2 (M) of our equation. For allϕ ∈ H2
2 (M), we get that∫

M

∆gu∆gϕdvg +
∫
M

A#(du, dϕ)dvg +
∫
M

auϕdvg

=
∫
M

f |u|2�−2uϕdvg +
∫
M

h|u|q−1uϕdvg .

Takingϕ = u yields the following expression forE(u):

E(u) =
q − 1

2(q + 1)

[∫
M

(∆gu)2dvg +
∫
M

A#(du, du)dvg +
∫
M

au2dvg

]

+
(

1
q + 1

− 1
2�

)∫
M

f |u|2�

dvg ≥ 0 .

We compare the energy ofun andu. Taking into account the weak convergence of
un to u, we obtain

E(un) − E(u) =
1
2

∫
M

(∆g(un − u))2 dvg

− 1
2�

∫
M

f
(
|un|2� − |u|2�

)
dvg + o(1) . (13)

By standard integration theory∫
M

f
(
|un|2� − |un − u|2�

)
dvg =

∫
M

f |u|2�

dvg + o(1) . (14)

TestingE′(un) onun − u ⇀ 0 in H2
2 (M) and using (14), we get

o(1) = 〈un − u,E′(un)〉
= 〈un − u,E′(un) − E′(u)〉
=
∫
M

(∆g(un − u))2 dvg −
∫
M

f |un − u|2�

dvg + o(1) . (15)

From (13) and (15), we get

1
2

∫
M

(∆g(un − u))2 dvg − 1
2�

∫
M

f |un − u|2�

dvg

=
2
n

∫
M

(∆g(un − u))2 dvg + o(1)

= E(un) − E(u) + o(1) ≤ E(un) + o(1) → β (16)



Mountain pass critical points for Paneitz-Branson operators 501

with the coercivity ofPg. As stated in [6], for allε > 0, there existsBε > 0 such
that for allu ∈ H2

2 (M),(∫
M

|u|2�

dvg

) 2
2�

≤ (1 + ε)K0

∫
M

[
(∆gu)2 + |∇u|2g

]
dvg +Bε

∫
M

u2dvg .

Testing onun − u, we obtain that

∫
M

f |un−u|2�

dvg ≤ (max
M

f)K
2�

2
0 (1+ε)

2�

2

[∫
M

(∆g(un − u))2 dvg

] 2�

2

+o(1).

At last, from(15), for ε > 0 small enough

o(1) =
∫
M

(∆g(un − u))2 dvg −
∫
M

f |un − u|2�

dvg

≥
[∫

M

(∆g(un − u))2 dvg

]

×

1 − (max

M
f)K

2�

2
0 (1 + ε)

2�

2

[∫
M

(∆g(un − u))2 dvg

] 2�−2
2


 .

With (16), it comes that∫
M

(∆g(un − u))2 dvg ≤ n

2
β + o(1).

Using thatβ < 2

nK
n
4
0 (maxM f)

n−4
4

, it comes that there existsC > 0 such that

o(1) ≥ C

∫
M

(∆g(un − u))2 dvg + o(1).

Henceun → u in H2
2 (M). This ends the proof of the proposition.

Up to the regularity of the solution, that we prove in the following section, it is
clear that the first part of Theorem 1 follows from Propositions 1 and 2. Concerning
the second part, whenPg has constant coefficients, we can proceed as follows. We
apply the mountain pass lemma to the functional

E+(u) =
1
2

∫
M

(Pgu)udvg − 1
2�

∫
M

fu2�

+ dvg − 1
q + 1

∫
M

huq+1
+ dvg,

whereu+ = max(0, u). Critical points ofE+ are weak solutions of

∆2
gu+ α∆gu+ au =

(
fu2�−2

+ + huq−1
+

)
u .

Similar arguments to the ones we used to prove the first part of Theorem 1 give
thatE+ has a critical pointu. It is then easily seen, mimicking what we do in
Proposition 3 below, thatu ∈ C4,η(M), η ∈ (0, 1). We let

β1 =
α+

√
α2 − 4a
2

, β2 =
α− √

α2 − 4a
2

.
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Then,β1, β2 > 0 and

(∆g + β1) ◦ (∆g + β2)u = ∆2
gu+ α∆gu+ au ≥ 0.

Applying the maximum principle twice, it comes thatu > 0. Henceu is aC4-
positive solution of

∆2
gu+ α∆gu+ au = fu2�−1 + huq+1.

Standard regularity results then give thatu is smooth, and the second part of
Theorem 1 is proved.

3 Regularity results

We are here concerned with the regularity of critical points forE. We claim that
the following regularity result holds:

Proposition 3 Let (M, g) be a compact Riemanniann-manifold,n ≥ 5, f, h be
two functions inCη(M), 0 < η < 1, q ∈ (1, 2� − 1), andPg be a Paneitz-Branson
type operator. Ifu ∈ H2

2 (M) is a weak solution of

Pgu = f |u|2�−2u+ h|u|q−1u (17)

thenu ∈ C4,η(M) andu is a strong solution of the equation. Moreover, iff andh
are smooth, andu is positive, thenu is also smooth.

Proof. Letu ∈ H2
2 (M) be a weak solution of (17). From the work of [17] and [6],

u satisfies

(∆g + 1)2u = divg
(
A#du

)
+ (1 − a)u+ 2∆gu+ f |u|2�−2u+ h|u|q−1u

= b+ qεu+ fε (18)

whereb = divg
(
A#du

)
+ (1 − a)u + 2∆gu ∈ L2(M), qε ∈ L

n
4 (M) satisfies

||qε||n
4

≤ ε, andfε ∈ L∞(M). We now follow [6]. Fors > 1, we can define the
operator

Hε : v ∈ Ls(M) → (∆g + 1)−2(qεv) ∈ Ls(M)

with

||Hεv||Ls = O(||(∆g + 1)−2(qεv)||
H

ns
n+4s
4

) = O(||qεv||L ns
n+4s

)

= O(||qε||Ln
4
||v||Ls) ≤ Cε||v||Ls .

It follows from the Sobolev theorem and classical regularity results that for any
f ∈ Lp(M) with p > 1, there exists a unique functionu ∈ Hp

2 (M) such that
(∆g + 1)u = f with ||u||Hp

2
≤ C||f ||Lp . Hence, forε > 0 small enough,

||Hε||Ls→Ls ≤ Cε <
1
2
.
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We rewrite (18) in the form

(Id−Hε)u = (∆g + 1)−2(b+ fε)

where fors > 1, Id − Hε : Ls → Ls is an invertible operator. We haveb + fε ∈
L2(M) and then(∆g + 1)−2(b + fε) ∈ H2

4 (M). By the Sobolev theorem, we

obtain that, ifn ≤ 8, u ∈ Lp(M) for all p > 1 and, ifn > 8, u ∈ L
2n

n−8 (M). Since
for n > 8 there holds 2n(n−4)

(n+4)(n−8) > 2, we get that

(∆g + 1)2u ∈ L2(M) .

We now use a bootstrap argument. We construct a non-decreasing sequencesk ∈
R ∪ {+∞} such thatu ∈ Hsk

4 (M) for all k ∈ N. We definesk by induction. We
let s0 = 2. For allk ≥ 0 such thatu ∈ Hsk

4 (M), the Sobolev theorem asserts that

divg
(
A#du

)
+ (1 − a)u+ 2∆gu ∈ L

nsk
n−2sk (M),

with the convention that nsk

n−2sk
= +∞ if sk ≥ n

2 , and

f |u|2�−2u+ h|u|q−1u ∈ L
(nsk)(n−4)

(n−4sk)(n+4) (M),

with the convention thatnsk

n−4sk
= +∞ if sk ≥ n

4 . Then(∆g +1)2u ∈ Lsk+1(M),
where

sk+1 = min
{

nsk
n− 2sk

,
(nsk)(n− 4)

(n− 4sk)(n+ 4)

}
≥ sk.

By standard elliptic arguments,u ∈ H
sk+1
4 (M). The sequence(sk) is then well-

defined. We assume now that(sk) is bounded. Then it goes to a limitL ≥ 2 such
that

L = min
{

nL

n− 2L
,

nL(n− 4)
(n+ 4)(n− 4L)

}

if L < n
4 . A contradiction. IfL ≥ n

4 , the same kind of arguments lead also to a
contradiction. Hencesk → +∞, andu ∈ Hs

4(M) for all s > 1. From the Sobolev
theorem, it comes thatu ∈ C3,ν(M) for all 0 < ν < 1. Plugging this result in
(18), it comes thatu ∈ C4,η(M). This proves the first part of the proposition. Now
if a, f, h, α are smooth andu > 0, we note thatfu2�−1 + huq ∈ C4(M) and
standard bootstrap arguments show thatu ∈ C∞(M). This ends the proof of the
proposition.

For the sake of completeness, we mention that the same method leads to the
following bounds:

Proposition 4 Assume thatα anda are smooth. Letu ∈ Hs
2(M) andΦ ∈ Ls(M),

s > 1, such thatPgu = Φ in the weak sense. Thenu ∈ Hs
4(M) and there exists

C(s) > 0 depending only on(M, g), s anda, α such that

||u||Hs
4 (M) ≤ C(s)

(||Φ||s + ||u||Ls(M)
)
.
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Moreover, ifΦ ∈ Hs
k(M) with k ∈ N, thenu ∈ Hs

k+4(M) and there exists
C(s, k) > 0 depending only on(M, g), s, k, a andα such that

||u||Hs
k+4(M) ≤ C(s)

(
||Φ||Hs

k(M) + ||u||Ls(M)

)
.

We are now left with finding conditions for (8) to be true. This is the purpose
of the following sections.

4 First order estimates for Paneitz-Branson type operators

We letδ ∈ (0, ig(M)
2 ), whereig(M) is the injectivity radius, andx0 ∈ M . We let

alsoη ∈ C∞(M) be such thatη(x) = 1 for all x ∈ Bg(x0, δ) andη(x) = 0 for
all x ∈ M −Bg(x0, 2δ). Forε > 0, we define the functionuε ∈ C∞(M) by

uε(x) =
η(x)

(ε2 + dg(x, x0)2)
n−4

2

.

Given Pg a Paneitz-Branson type operator,q ∈ (1, 2� − 1), and f, h smooth
functions onM , the aim of this section is to compute expansions of∫

M

Pguεuε dvg ,

∫
M

fu2�

ε dvg ,

∫
M

huq+1
ε dvg.

We compute the different terms separately. We start with the leading term∫
M

(∆guε)
2
dvg. The functionuε is radially symmetrical. Computing in the expo-

nential chart, it comes that

∆guε = − 1
rn−1

√|g|∂r
(
rn−1

√
|g|∂ruε

)

= ∆ξuε − ∂r

(
ln
√

|g|
)
∂ruε,

wherer = dg(x, x0), and|g| is the determinant of the components ofg in the chart.
We let

θε =
1

εn−8 if n ≥ 9 , θε = | ln ε| if n = 8 , θε = 1 if n = 6, 7 .

We first assume thatn ≥ 7. Then,∫
M

(∆guε)
2
dvg =

∫
Bξ(0,δ)

(∆ξuε)
2
dvg

−2
∫
Bξ(0,δ)

∆ξuε∂ruε∂r

(
ln
√

|g|
)
dvg +O(θε).

We write now, thanks to the Cartan expansion of the metric, that

√
|g|(x) = 1 − 1

6
Rijx

ixj − 1
12

∇kRijx
ixjxk +O(|x|4), (19)
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where theRij ’s are the components of the Ricci tensor in the exponential chart.
With (19), it comes that∫

M

(∆guε)
2
dvg =

∫
Bξ(0,δ)

(∆ξuε)
2
dx− 1

6
Rij

∫
Bξ(0,δ)

xixj (∆ξuε)
2
dx

−2
∫
Bξ(0,δ)

∆ξuε∂ruε∂r

(
ln
√

|g|
)
dx+O(θε).

It is easily seen that,∫
Bξ(0,δ)

(∆ξuε)
2
dx =

n(n− 4)(n2 − 4)ωn
2nεn−4 +O(1)

and that

Rij

∫
Bξ(0,δ)

xixj (∆ξuε)
2
dx =

(n− 4)2ωn−1Sg(x0)
nεn−6

∫ δ
ε

0

sn+1(n+ 2s2)2 ds
(1 + s2)n

.

In the same order of ideas, thanks to (19), we get that∫
Bξ(0,δ)

∆ξuε∂ruε∂r

(
ln
√

|g|
)
dx

=
(n− 4)2ωn−1Sg(x0)

3nεn−6

∫ δ
ε

0

(n+ 2s2)sn+1 ds

(1 + s2)n−1 +O(θε).

Then, whenn ≥ 7,∫
M

(∆guε)
2
dvg =

n(n− 4)(n2 − 4)ωn
2nεn−4

−n(n2 + 4n− 20)(n− 4)ωn
6(n− 6)2n

Sg(x0)
1

εn−6 +O(θε).

Similarly, whenn = 6, we find that∫
M

(∆guε)
2
dvg =

n(n− 4)(n2 − 4)ωn
2nεn−4

−2(n− 4)2ωn−1

n
Sg(x0)| ln ε| +O(1).

We let A ∈ Λ∞
(2,0)(M) be a smooth symmetric(2, 0)-tensor field, and we let

a ∈ C∞(M). Then, with similar computations to the ones we just developed, we
get that ∫

M

au2
ε dvg = O(θε)

whenn ≥ 6, and that∫
M

A#(duε, duε) dvg =
4(n− 1)(n− 4)ωn

2n(n− 6)
TrgA(x0)
εn−6 +O(θε) if n ≥ 7,∫

M

A#(duε, duε) dvg =
(n− 4)2ωn−1

n
TrgA(x0)| ln ε| +O(1) if n = 6.
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Hence,∫
M

Pguεuε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4

+
(n− 4)ωn
(n− 6)2n

(
4(n− 1)TrgA(x0) − n(n2 + 4n− 20)

6
Sg(x0)

)
1

εn−6

+O(θε),

whenn ≥ 7, and∫
M

Pguεuε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4

+
(n− 4)2ωn−1

n
(TrgA(x0) − 2Sg(x0)) | ln ε| +O(1)

whenn = 6. We now compute
∫
M
fu2�

ε dvg. Clearly∫
M

fu2�

ε dvg =
∫
Bg(x0,δ)

f(x)
(ε2 + dg(x, x0)2)

n dvg +O(1)

=
∫
B(0,δ)

f̃(x)
√|g|(x)

(ε2 + |x|2)n dx+O(1),

wheref̃ = f ◦ expx0g. Thanks to (19), it follows that forn ≥ 5,∫
M

fu2�

ε dvg =
f(x0)ωn
2nεn

− ωn
6(n− 2)2n

(Sg(x0)f(x0) + 3∆gf(x0))
1

εn−2 +O

(
1

εn−4

)
.

At last we compute an expansion of
∫
M
huq+1

ε dvg. It easily comes that∫
M

huq+1
ε dvg =

ωn−1h(x0)
ε(q+1)(n−4)−n

∫ +∞

0

sn−1 ds

(1 + s2)(q+1) n−4
2

+ o

(
1

ε(q+1)(n−4)−n

)

if q + 1 > n
n−4 , that∫

M

huq+1
ε dvg = ωn−1h(x0)| ln ε| + o (| ln ε|)

if q + 1 = n
n−4 , and that ∫

M

huq+1
ε dvg = O(1)

if q + 1 < n
n−4 . Moreover, whenh(x0) = 0, then we can write that∫

M

huq+1
ε dvg = −Λωn−1

2n
∆gh(x0)ε2+n−(n−4)(q+1) + o

(
ε2+n−(n−4)(q+1)

)

whereΛ =
∫ +∞
0

sn+1 ds

(1+s2)
n−4

2 (q+1)
andq + 1 > n+2

n−4 .
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5 Second order estimates
for the geometric Paneitz-Branson operator

Letx0 ∈ M . Up to changing conformally the metric, see [11], we may assume that

Ricg(x0) = 0, Sg(x0) = 0, ∇Sg(x0) = 0,

∆gSg(x0) =
1
6
|Weylg(x0)|2g, and (20)

dvg = dvξ(1 +O(rN ))

whereN is arbitrarily large. We let0 < δ <
ig(M)

2 andη ∈ C∞(M) be a radially
symmetrical function such thatη ≡ 1 in Bg(x0, δ) andη ≡ 0 in M −Bg(x0, 2δ),
whereBg(x, r) denotes the geodesic ball of centerx ∈ M and radiusr > 0. We
let alsouε ∈ C∞(M) be the function given by

uε(x) =
η(x)

(ε2 + dg(x, x0)2)
n−4

2

.

Our aim in this section is to estimate∫
M

Pguεuε dvg and
∫
M

fu2�

ε dvg .

We compute the different terms separately. We start with

I1 =
∫
M

(∆guε)2 dvg .

We have that ∫
M

(∆guε)2 dvg =
∫
Bg(x0,δ)

(∆guε)2 dvg +O(1).

Sinceuε is radially symmetrical onBg(x0, δ), we have that

∆guε = − 1
rn−1

√|g|∂r
(
rn−1

√
|g|∂r

(
1

ε2 + |x|2
)n−4

2
)
,

where
√|g| =√det(gij) and thegij ’s are the components ofg in the exponential

chart atx0. We have
√|g| = 1 +O(rN ). Then, withN large enough,

(∆guε)2 =

(
∆ξ

1

(ε2 + r2)
n−4

2

)2

+O(1),

wherer = dg(x, x0) < δ, and

∫
M

(∆guε)2 dvg =
∫
Bξ(0,δ)

(
∆ξ

1

(ε2 + r2)
n−4

2

)2

dvξ +O(1)

=
1

εn−4

∫
Rn

(∆ξu0)2 dvξ +O(1) .
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Considering thatu0 is an extremal function for the sharp Euclidean Sobolev
inequality, we obtain that∫

M

(∆guε)2 dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4 +O(1).

We now compute

I2 =
∫
M

Qn
gu

2
ε dvg .

We write thatQn
g (x) = Qn

g (x0) +O(dg(x, x0)). Then,∫
M

Qn
gu

2
ε dvg = Qn

g (x0)
∫
Bξ(0,δ)

dx

(ε2 + |x|2)n−4

+O

(∫
Bξ(0,δ)

|x|dx
(ε2 + |x|2)n−4

)

=
Qn
g (x0)ωn−1

εn−8

∫ δ
ε

0

sn−1 ds

(1 + s2)n−4

+O

(
ε

εn−8

∫ δ
ε

0

sn ds

(1 + s2)n−4

)
.

Here, we have used a polar change of coordinates and the change of variabler = εs.
Since

Qn
g (x0) =

1
2(n− 1)

∆gSg(x0) =
1

12(n− 1)
|Weylg(x0)|2g,

it follows that

I2 =
(n− 3)ωn

2n−23(n− 6)(n− 8)
|Weylg(x0)|2g

1
εn−8 + o

(
1

εn−8

)
if n ≥ 9 ,

=
ωn−1

12(n− 1)
|Weylg(x0)|2g| ln ε| + o (ln ε) if n = 8 , and

= O(1) if 5 ≤ n ≤ 7 .

Going on with these estimates, we compute

I3 =
∫
M

Sg|∇uε|2g dvg .

We have that∫
M

Sg|∇uε|2g dvg =
∫
Bg(x0,δ)

Sg|∇uε|2g dvg +O(1) .

Moreover,uε is radially symmetrical and

|∇uε|2g(x) = (n− 4)2
r2

(ε2 + r2)n−2 ,
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wherer = dg(x, x0). SinceSg(x0) = 0, we obtain that

∫
M

Sg|∇uε|2g dvg =
1
2
∂ijSg(x0)

∫
Bξ(0,δ)

(n− 4)2
xixjr2 dx

(ε2 + r2)n−2

+O

(∫
Bξ(0,δ)

|x|5 dx
(ε2 + |x|2)n−2

)
.

A polar change of coordinates and the change of variabler = εs, gives that

∫
Bξ(0,δ)

xixjr2 dx

(ε2 + r2)n−2 =
∫

Sn−1
xixj dσ

∫ δ

0

rn+3 dr

(ε2 + r2)n−2

=
δijωn−1

n

1
εn−8

∫ δ
ε

0

sn+3 ds

(1 + s2)n−2

wheredσ denotes the surface element of the standard unit sphereS
n−1. Noting that

in geodesic coordinates,∆gSg(x0) = −∂iiSg(x0), (20) gives that

I3

= −ωn(n+ 2)(n− 1)(n− 4)
2n3(n− 6)(n− 8)

|Weylg(x0)|2g
1

εn−8 + o

(
1

εn−8

)
if n ≥ 9 ,

= − (n− 4)2ωn−1

12n
|Weylg(x0)|2g| ln ε| + o (| ln ε|) if n = 8 , and

= O(1) if 5 ≤ n ≤ 7 .

At last, we compute

I4 =
∫
M

Ric#g (duε, duε) dvg .

We have that

I4 =
∫
Bg(x0,δ)

Ric#g (duε, duε) dvg +O(1)

=
∫
Bξ(0,δ)

Rij∂iuε∂juε dx+O(1)

= (n− 4)2
∫
Bξ(0,δ)

ψ(x)
(ε2 + r2)n−2 dx+O(1)

whereψ(x) = Rij(x)xixj . We write that

ψ(x) =
1
2
D2ψ0(x2) +

1
3!
D3ψ0(x3) +

1
4!
D4ψ0(x4) +O(|x|5).
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For parity reasons, it follows that

I4 =
(n− 4)2

2

∫
Sn−1

D2ψ0(x2) dσ
∫ δ

0

rn+1 dr

(ε2 + r2)n−2

+
(n− 4)2

4!

∫
Sn−1

D4ψ0(x4) dσ
∫ δ

0

rn+3 dr

(ε2 + r2)n−2

+O

(∫ δ

0

rn+4 dr

(ε2 + r2)n−2

)
.

We have here, see [7], that

1
2

∫
Sn−1

D2ψ0(x2) dσ = −ωn−1

2n
∆ξψ(0) , and

1
4!

∫
Sn−1

D4ψ0(x4) dσ =
ωn−1

8n(n+ 2)
∆2

ξψ(0) .

Noting that we use a normal chart atx0 and thatRicg(x0) = 0, we get that

∆ξψ(0) = 0 , and

∆2
ξψ(0) = 4(∂iiRjj + 2∂ijRij).

The Bianchi identity andRicg(x0) = 0 lead to

∑
i,j

2∂ijRij(x0) =
∑
i,j

∂iiRjj(x0) = −∆gSg(x0).

Then, with (20) and the change of variabler = εs, it comes that

I4 = − (n− 4)2ωn−1

6n(n+ 2)

∫ δ
ε

0

sn+3 ds

(1 + s2)n−2

|Weylg(x0)|2g
εn−8

+O

(
ε

εn−8

∫ δ
ε

0

sn+4 ds

(1 + s2)n−2

)
.

Consequently,

I4 = − 3ωn(n− 1)(n− 4)
2n−1(n− 6)(n− 8)

|Weylg(x0)|2g
1

εn−8 + o

(
1

εn−8

)
if n ≥ 9 ,

= − (n− 4)2ωn−1

6n(n+ 2)
|Weylg(x0)|2g| ln ε| + o (| ln ε|) if n = 8 , and

= O(1) if 5 ≤ n ≤ 7 .
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In particluar, thanks to the previous estimates, we get that

∫
M

Pguεuε dvg

=
n(n− 4)(n2 − 4)ωn

2nεn−4

− (n− 4)(n2 − 4n− 4)ωn
2n+13(n− 6)(n− 8)

|Weylg(x0)|2g
εn−8 + o

(
1

εn−8

)
if n ≥ 9 ,

=
15ω8

2ε4
− ω7

30
|Weylg(x0)|2g| ln ε| + o (| ln ε|) if n = 8 , and

=
n(n− 4)(n2 − 4)ωn

2nεn−4 +O(1) if 5 ≤ n ≤ 7 . (21)

Similarly we now compute

I5 =
∫
M

fu2�

ε dvg .

Sincedvg = dvξ(1 +O(rN )) with N large enough, we can write that

I5 =
∫
Bξ(0,δ)

f ◦ expx0

(ε2 + |x|2)n dx+O(1).

With the same techniques as before, we easily find that, forn ≥ 5,

I5 = ωn−1

∫ +∞

0

sn−1 ds

(1 + s2)n
f(x0)
εn

−
ωn−1

∫ +∞
0

sn+1 ds
(1+s2)n

2n
∆ξf(x0)
εn−2 +

+
ωn−1

∫ +∞
0

sn+3 ds
(1+s2)n

8n(n+ 2)
∆2

ξf(x0)
εn−4 + o

(
1

εn−4

)
.

Since we are in a normal coordinate chart, and sinceRicg(x0) = 0 and∇Sg(x0) =
0, we obtain that∆gf(x0) = ∆ξf(x0) and∆2

gf(x0) = ∆2
ξf(x0). As a conse-

quence,

∫
M

fu2�

ε dvg =
ωnf(x0)
2nεn

− ωn
2n+1(n− 2)

∆gf(x0)
εn−2

+
ωn

2n+3(n− 2)(n− 4)
∆2

gf(x0)
εn−4 + o

(
1

εn−4

)
(22)

whenn ≥ 5.
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6 General estimates for Paneitz-Branson type operators

We letx0 ∈ M andN ∈ N
�. Then, see [11], there exists̃g = ϕ

4
n−4 g, ϕ > 0 is a

smooth function onM , such that

Ricg̃(x0) = 0 , ∇Sg̃(x0) = 0,

∆g̃Sg̃(x0) =
1
6
|Weylg(x0)|2g, and

dvg̃ = dvξ(1 +O(rN )) .

We letδ ∈ (0, ig̃(M)
2 ), whereig̃(M) is the injectivity radius of̃g, andη ∈ C∞(M)

be such thatη(x) = 1 for all x ∈ Bg̃(x0, δ) andη(x) = 0 for all x ∈ M −
Bg̃(x0, 2δ). Forε > 0, we define the functioñuε ∈ C∞(M) by

ũε(x) =
η(x)ϕ(x)

(ε2 + dg̃(x, x0)2)
n−4

2

.

We let alsoPg be a Paneitz-Branson type operator, andf be a smooth function on
M . For the sake of completeness, we quote in this section results concerning the
expansions of

I =
∫
M

Pgũεũε dvg and J =
∫
M

fũ2�

ε dvg.

Such expansions are not required to prove our theorems. Nevertheless, they can be
useful in another context. Details on these expansions can be found in Esposito-
Robert [8]. Writing that

Pg = ∆2
gu− divg

[
A#du

]
+ au,

we set

Ã = A− anSgg − bnRicg , and

ã = a− n− 4
2

Qn
g .

We defineΦ

Φ = − n2 − 4n− 4
96(n− 1)(n− 3)

|Weylg|2g

+
gijgkl(∇2Ã)ijkl + 2gikgjl(∇2Ã)ijkl

8(n− 3)
− (n− 4)(Ricg, Ã)g

4(n− 2)(n− 3)

− nSgtrg(Ã)
8(n− 1)(n− 2)(n− 3)

+
1

n− 4

(
a− n− 4

2
Qn
g

)
,

where(·, ·)g is the scalar product with respect tog. We let also

Θ = ∆2
gf +

2Sg
n− 1

∆gf + 2
(∇2f,Ricg

)
g
+

n− 2
2(n− 1)

(∇f,∇Sg)g .
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We then find that the following holds. ConcerningI, we find that∫
M

Pgũεũε dvg

=
n(n− 4)(n2 − 4)ωn

2nεn−4 +
ωn(n− 1)(n− 4)trg(Ã)(x0)

2n−2(n− 6)εn−6

+
ωn(n− 1)(n− 3)(n− 4)Φ(x0)

2n−4(n− 6)(n− 8)εn−8 + o

(
1

εn−8

)
if n ≥ 9 , and

=
n(n− 4)(n2 − 4)ωn

2nεn−4 +
ωn(n− 1)(n− 4)trg(Ã)(x0)

2n−2(n− 6)εn−6

+(n− 4)ωn−1Φ(x0)| ln ε| + o (ln ε) if n = 8.

Similarly,∫
M

Pgũεũε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4 +
4ωn(n− 1)(n− 4)trg(Ã)(x0)

2n(n− 6)εn−6

+o
(

1
εn−6

)
if n = 7 , and

=
n(n− 4)(n2 − 4)ωn

2nεn−4 +
(n− 4)2ωn−1trg(Ã)(x0)

n
| ln ε|

+o (| ln ε|) if n = 6.

Whenn = 5, we just find that∫
M

Pgũεũε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4 +O(1).

ConcerningJ , we find that forn ≥ 5,∫
M

fũ2�

ε dvg =
ωnf(x0)
2nεn

− ωn
2n+1(n− 2)

∆gf(x0)
εn−2

+
ωnΘ(x0)

2n+3(n− 2)(n− 4)εn−4 + o

(
1

εn−4

)
.

7 Proof of the Theorems 2–6

We prove Theorems 2-6 using Theorem 1 and the expansions we got in Sects. 4
and 5. We letx0 ∈ M and consider the pathsγε’s given by

γε(t) = t
uε

||uε||2�

.

Thanks to Theorem 1, it suffices to prove Theorems 2-6 to show that there exists
ε > 0 such that

sup
t≥0

E(γε(t)) <
2

nK
n
4
0 (maxM f)

n−4
4

(23)
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where, in its general form,

E(γε(t)) =
t2

2||uε||22�

∫
M

Pguεuε dvg − t2
�

2�||uε||2�

2�

∫
M

fu2�

ε dvg

− tq+1

(q + 1)||uε||q+1
2�

∫
M

huq+1
ε dvg

=
t2

2
Aε − t2

�

2�
Bε − tq+1

q + 1
Cε .

Thanks to the results of Sect. 4,||ũε||2� ∼ (ωn

2n

)n−4
2n ε− n−4

2 , and

Aε → 1
K0

, Bε → f(x0) , Cε → 0 .

Then, it is easily checked that

sup
t≥0

E(γε(t)) =
2
n

· A
n
4
ε

B
n−4

4
ε

− T q+1
0

q + 1
Cε + o(Cε) (24)

whereT0 = (K0f(x0))
− n−4

8 . We let

K =
2

n(q+1)
2�

∫ +∞
0

sn−1 ds

(1+s2)
(n−4)(q+1)

2

(q + 1)(K0f(x0))
(n−4)(q+1)

8 ω
q+1
2�
n

.

Using the estimates we got in Sect. 4, and (24), the following expansions hold. We
assume first thatq > n

n−4 . Then we get that

sup
t≥0

E

(
t

uε
||uε||2�

)
=

2

nK
n
4
0 f(x0)

n−4
4

−Kωn−1h(x0)ε
n−4

2 (2�−1−q) + o
(
ε

n−4
2 (2�−1−q)

)
whenn ≥ 6, and ifh(x0) = 0, we get that

sup
t≥0

E

(
t

uε
||uε||2�

)
=

2

nK
n
4
0 f(x0)

n−4
4

+
2n(n− 4)ωn−1(TrgA− 2Sg)(x0)

2n2(n2 − 4)ωnK
n
4
0 f(x0)

n−4
4

ε2| ln ε|

+o
(
ε2| ln ε|)

whenn = 6, and whenn ≥ 7,

sup
t≥0

E

(
t

uε
||uε||2�

)
=

2

nK
n
4
0 f(x0)

n−4
4

+
F (x0)

4n(n2 − 4)(n− 6)K
n
4
0 f(x0)

n−4
4

ε2 + o(ε2)
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whereF is as in the introduction. Theorem 2 and the first part of Theorem 3 easily
follow from these expansions and Theorem 1, since, under the assumptions we
made in these theorems, (23) holds true. Moreover, still whenq > n

n−4 , we find
with the estimates of Sect. 4 that ifh(x0) = F (x0) = 0, andn ≥ 8, then

sup
t≥0

E

(
t

uε
||uε||2�

)
=

2

nK
n
4
0 f(x0)

n−4
4

+
Kωn−1

2 ((q + 1)(n− 4) − (n+ 2))
(∆gh(x0)) εn+2−(q+1) n−4

2

+o
(
εn+2−(q+1) n−4

2

)
.

Thanks to Theorem 1, this implies the second part of Theorem 3. We assume now
thatq = n

n−4 . Then, whenn = 6, we get that

sup
t≥0

E

(
t

uε
||uε||2�

)

=
2

nK
n/4
0 f(x0)

n−4
4

(
1 +

2n(n− 4)ωn−1(TrgA− 2Sg)(x0)
4n(n2 − 4)ωn

ε2| ln ε|
)

+o(ε2| ln ε|)
and whenn ≥ 7, we get that

sup
t≥0

E

(
t

uε
||uε||2�

)
=

2

nK
n
4
0 f(x0)

n−4
4

+
G(x0)

4n(n2 − 4)(n− 6)K
n
4
0 f(x0)

n−4
4

ε2 + o(ε2)

whereG is as in the introduction. Theorem 4 easily follows from these expansions
and Theorem 1, since, under the assumptions we made in this theorem, (23) holds
true. At last we assume thatq < n

n−4 . Then, whenn ≥ 8, we get that

sup
t≥0

E

(
t

uε
||uε||2�

)
=

2

nK
n
4
0 f(x0)

n−4
4

+
F (x0)

4n(n2 − 4)(n− 6)K
n
4
0 f(x0)

n−4
4

ε2

−Kωn−1h(x0)ε
n−4

2 (2�−1−q)

+o
(
ε

n−4
2 (2�−1−q)

)
,

and Theorems 5 easily follows from this expansion and Theorem 1, since, under
the assumptions we made in this theorem, (23) holds true. We are now left with
the proof of Theorem 6. We use here the estimates we got in Sect. 5. We letg̃
be a conformal metric tog which satisfies (20), and denote byũε the functions
we introduced in Sect. 5 which we consider now with respect tog̃. Assuming that
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∆gf(x0) = 0, we also have that∆g̃f(x0) = 0. Then, thanks to the estimates of
Sect. 5, we get that whenn ≥ 9,

sup
t≥0

E

(
t

ũε
||ũε||2�

)
=

2

nK
n
4
0 f(x0)

n−4
4

(
1 − H̃(x0)

C(n)
ε4 + o(ε4)

)

whereE is with respect tõg, C(n) = 32(n− 2)(n− 6)(n− 8), and

H̃(x0) =
4(n2 − 4n− 4)

3(n+ 2)
|Weylg̃(x0)|2g̃ + (n− 6)(n− 8)

∆2
g̃f

f
(x0).

Writing that g̃ = ϕ4/(n−2)g, see [11], we do have thatϕ(x0) = 1, ∇ϕ(x0) = 0,
and

∇2ϕ(x0) =
n− 4

2(n− 2)

(
Ricg − Sg

2(n− 1)
g

)
(x0) .

Then, sincex0 ∈ Maxf and∆gf(x0) = 0, we get that

∆2
g̃f(x0) = ∆2

gf(x0) + 2
(∇2f,Ricg

)
g
(x0) .

Hence, thanks to the conformal invariance of the Weyl tensor,H̃(x0) > 0 if and
only if H(x0) > 0, whereH is as in the introduction. Similarly, whenn = 8,

sup
t≥0

E

(
t

ũε
||ũε||2�

)
=

1
4K2

0f(x0)

(
1 − 2ω7|Weylg̃(x0)|2g̃

225ω8
ε4| ln ε| + o(ε4| ln ε|)

)
.

Thanks to Theorem 1, and the conformal invariance of the geometric Paneitz-
Branson operator, Theorem 6 follows from the above estimates. Under the as-
sumptions we made in this theorem, we indeed do have that (23) with respect to
g̃ holds true. Hence, our equation with respect tog̃ has a solutionu. Writing that
g̃ = ϕ4/(n−4)g, the conformal invariance then gives thatuϕ is a solution of our
equation with respect tog. This proves Theorem 6.
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courbure scalaire. J. Math. Pures Appl.55, (1976), 269–296

3. Branson, T.P. Group representations arising from Lorentz conformal geometry. J. Funct.
Anal.74, (1987), 199–291
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