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Abstract. Given (M, g) a smooth compact Riemannian manifold of dimension> 5,
we study fourth order equations involving Paneitz-Branson type operators and the critical
Sobolev exponent.
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1 Introduction and statement of the results

In 1983, Paneitz [14] introduced a conformally fourth order operator defined on
4-dimensional Riemannian manifolds. Branson [3] generalized the definition to
n-dimensional Riemannian manifolds. We [8/, g) be a smooth compact Rie-
mannian manifold of dimension > 5, and denote byRic, andS, the Ricci and
scalar curvature of. Foru € C*°(M), the Paneitz-Branson operator is given by

-4
Plu = Alu — divg [(anSgg + bpRicg) ¥ du] + HTQZU,

whereA u = —divy(Vu) is the Laplace-Beltrami operator,
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the symbol# stands for the musical isomorphism (index are raised with the metric),
and
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The Paneitz-Branson operator is conformally invariant in the following sense: if
g = ¢* (=Yg is a metric conformal tg, then for allu € C> (M),

n _ % n
P (up) = =1 Py (u).
Takingu = 1, we then find that

n n—4 n ntd
Poo=—5—Qh0"

In particular, the Paneitz-Branson operator possesses conformal properties that are
very similar to the ones satisfied by the conformal laplacian. We are then naturally
led to study extensions to this operator of some classical problems.

The geometric Paneitz-Branson operator falls into two types of operators, de-
pending on the manifold we consider. Givdne A?; O)(M) a smooth symmetric
(2,0)-tensor field, and. € C>° (M), we refer to a Paneitz-Branson type operator

with general coefficients as an operator of the form
Pyju= Aiu — divg [A#du] + au. @

Givena,a € R, we refer to a Paneitz-Branson type operator with constant coeffi-
cients as an operator of the form

Pyu= Azu + aAgu + au. 2)

With such a terminology, introduced by Hebey, it is easily seen that the Paneitz-
Branson type operator with constant coefficients given by (2) is the Paneitz-Branson
type operator with general coefficients (1) whér= ag, anda, a € R. Moreover,
whatever(), g) is, the geometric Paneitz-Branson operd®ris of the type (1),

and when(1M, g) is Einstein, the geometric Paneitz-Branson oper&fois of the

type (2). We indeed do find that

(n—4)(n*—4)
Ton(n =12 0" @)

when(M, g) is Einstein. In particular, whefi/, g) = (S™, h) is the unitn-sphere,

2 _9n—4
b oS, Agu+

Plu=A2u+ ———
gt o't 2n(n —1)

Plu = Af]u + cnAgu+dpu 4)

wheree,, = "Q‘% andd, = %. In what follows we refer to a
Paneitz-Branson type operator as an operator given either by (1), or (2).

We letHZ (M) be the standard Sobolev space consisting of functiohd (/)
whose derivatives up to the order 2 ard.f( M), and let2* be the critical exponent
given by2f = %. The Sobolev embedding theorem asserts -t/ ) is conti-
nuously embedded ih? (M) for 1 < ¢ < 2%, with the property that this embedding
is compact whery < 2¢. We now definei{, > 0 to be the sharp constant in the
Euclidean Sobolev inequalitju|5, < K| Aul|3. We know from the work of [12],
[13] and [9], that
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where fork € N*, w;, denotes the volume of the urit-spherg(S*, h). Moreover,
the extremals for the sharp Euclidean Sobolev inequality are precisely the functions

n—4

ulw) = p (A) N 5)

14+ A2|x — zo)?
whereX > 0, p € R* andxg € R"™.

Given (M, g) a smooth compact Riemannian manifold of dimension 5, f,
h two continuous functions of/, andg € (1,2f — 1), the goal in this paper is to
study equations like

Pyu = flul* 2+ hjul9 u (6)

whereP, is a Paneitz-Branson type operator, namely either with general coefficients
asin (1), orwith constant coefficients asin (2). Solutions of (6) can be seen as critical
points of the functional

1 1 ; 1 (
E(u) = 3 /M(Pgu)u dvg — o /M flul* dv, — ] /M hlu|?™ dv,.  (7)

Because of the failure (in general) of the maximum principle, getting positive
solutions to (6) is still an open problem whéy is with general coefficients. When

P, is with constant coefficients, there are particular cases (see below) where a
maximum principle is available and the positivity of the solutions can be obtained.
This includes the geometric Paneitz-Branson opet@fowhen(1, g) is Einstein

of positive scalar curvature. Equation (6) whes 0, with a special emphasis on the
case of the unit sphere, was studied by Djadli-Hebey-Ledoux [6]. An equivalent
problem when the fourth order Paneitz-Branson type operator is replaced by a
second order Laplacian type operator was studied l@ziBfNirenberg [4] in the
Euclidean case, and then by Djadli [5] in the Riemannian context.

We assume in what follows thdt, is coercive in the sense that there exists
¢ > 0 such that for alk, € H3(M),

/ (Pyu)udvg > c/ u? dv, .
M M

Necessary and sufficient conditions féy to be coercive are in Hebey-Robert [10]
when P, is with constant coefficients. These necessary and sufficient conditions
imply sufficient conditions forP; to be coercive whetP; is with general coeffi-
cients.

Our first result is the following. The main tool there is the Mountain-Pass
Lemma of Ambrosetti and Rabinowitz [1].

Theorem 1 Let (M, g) be a compact Riemanniarrmanifold,n > 5, f, h be two
functions inC"(M), 0 < n < 1, ¢ € (1,2* — 1), and P, be a Paneitz-Branson
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type operator. We assume ttf3f is coercive, thaff is positive and that there exists
vy € H3(M) such that

2
supF(tvg) < = — (8)
t>0 nKy (supy; f) 2

whereF is as in (7). Then the equation

Pyu = flul®~2u+ hlu|"'u

possesses a nontrivial solutieane C*"(M). Moreover, the solution can be as-
sumed to be positive i, has constant coefficentsjs nonnegativey, a > 0, and
a < o?/4, wherea anda are as in (2).

With such a theorem we are left with finding conditions4u, f, h such that
(8) is satisfied. For this purpose, we compute the left-hand-side of (8) for some
suitable functionyy € H2 (M), essentially given by (5). We denote Byaz f the
set consisting of the points if/ where f is maximum. Our first application of
Theorem 1 is the following:

Theorem 2 Let (M, g) be a compact Riemanniammanifold,n > 6, f,h be
two smooth functions of/, ¢ € (%5, ij), and P, be a Paneitz-Branson type

operator. We assume th&t, is coercive, thatf is positive and that there exists
xo € Max f such thath(z¢) > 0. Then the equation

Py = f|u\2u_2u + hlu|?

possesses a nontrivial solutienc C*"(M), 0 < 1 < 1. Moreover, the solution
can be assumed to be positiveHj has constant coefficents,is nonnegative,
a,a > 0,anda < o?/4, wherea anda are as in (2).

For A as in (1), we letr,(A) be the trace ofd given in local coordinates by
trq(A) = A;;9%. Forz in M we also letF’ be the function given by

F(z) = 8(n — 1)try(A)(z) — 4(n* — 2n — 4)S,(x)

A;f (x) ©)

The limit case of Theorem 2 whetgz,) = 0 is treated in the following theorem:

+(n+2)(n—4)(n—6)

Theorem 3 Let (M, g) be a compact Riemanniammanifold,n > 6, f,h be

two smooth functions o/, ¢ € (-2, ;”jj), and P, be a Paneitz-Branson type

operator. We assume thd, is coercive, thatf is positive, and that for some
xg € Mazf, h(zg) = 0andF(zg) < 0, whereF is as in (9). Then the equation

Py = f|u\2u*2u + hlu|?

possesses a nontrivial solutiene C*7(M), 0 < n < 1. The same conclusion
holds ifn > 8 and for somery € Max f, h(zg) =0, F(z0) = 0, andA h(x) <
0. Moreover, in both cases, the solution can be assumed to be posiftehiis
constant coefficents,is nonnegativeg, a > 0, anda < o?/4, wherea anda are
asin (2).
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For A asin (1), andr € M, we letG be the function given by

Gw) = Fiw) - IO BD T 0). 10)

Theorems 2 and 3 deal with the case (-, Z—ji). Wheng = =, we get that
the following theorem holds:

Theorem 4 Let (M, g) be a compact Riemannianrmanifold,n > 6, f, h be two
smooth functions o/, ¢ = -, and P, be a Paneitz-Branson type operator.
We assume tha®, is coercive, thaif is positive, and that for some, € Max f,
G(zo) < 0, whereG is as in (10). Then the equation

Pyu = f|u\2ﬁ_2u + hlu|?

possesses a nontrivial solutianc C*"(M), 0 < 1 < 1. Moreover, the solution
can be assumed to be positiveHj has constant coefficents,is nonnegative,
a,a > 0,anda < o?/4, wherea anda are as in (2).

With Theorems 2, 3, 4 we are left with the case wheee(1, -2 ). Thisis the
subject of the following theorem:

Theorem 5 Let (M, g) be a compact Riemanniarrmanifold,n > 8, f, h be two
smooth functions id/, ¢ < -, and P, be a Paneitz-Branson type operator. We
assume thaP, is coercive, thaf is positive, and that for someg, € Mazx f, either
F(xo) <0,0r F(xzg) =0andh(xq) > 0, whereF is as in (9). Then the equation

Py = f|u\2u72u + hlu|?

possesses a nontrivial solutiane C*4"(M), 0 < < 1. Moreover, the solution
can be assumed to be positiveHj has constant coefficents, is nonnegative,
a,a > 0, anda < o?/4, wherea anda are as in (2).

Our last theorem deals with the geometric case and the geometric Paneitz-
Branson operataF;'. In such acaséy = 0andpP, = Py Then,

A= anSyg + by Ricy

and it is easily seen th&{n — 1)tr,(A) — 4(n* — 2n — 4)S, = 0. In particular,
Theorems 2-5 do not apply to such a case sineg it Mazf, A, f(zo) > 0.
Independently, wheii), g) is Einstein, thenP;' is with constant coefficients
anda where, thanks to (3),

2_92n—4
a:usg and a =

(=D = 1)
2n(n —1) S -

16n(n—1)2 9
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In particular,a + S2/(n*(n — 1)?) = /4 so thata < /4. If in addition S, is
positive, P} is coercive (see [10]) and, as above, we can get the positivity of the
solutions of the equation we consider. koe M we let

4(n? —4n —4)

H(z) = 3(n+2)

2
Wealy[5a) + (0~ 6)n — ) =2 0
(V2, Ricg)g
7']0 x

where(.,.), stands for the pointwise scalar product with respegt, mndWeyl,
stands for the Weyl curvature tensorgofin local coordinates,

(V2f)ij = 05 f — Is0nf

+2(n —6)(n — 8) (11)

where theFi’j.’s are the Christoffel symbols of the Levi-Civita connexion, and
(V2f, Ricg)q = R¥(V2f);; where an index is raised with the metric. Our last
theorem is as follows:

Theorem 6 (The geometric casd)et(M, g) be acompact Riemannianmanifold,
n > 8, f be a smooth positive function di, and P be the geometric Paneitz-
Branson operator. We assume tt#t is coercive, and that there exists € Max f
such thatA, f(zo) = 0 and H (x() > 0, whereH is given by (11). Then the equa-
tion

Plu= f|u|2ﬁ_2u

possesses a nontrivial solutiance C*7(M), 0 < n < 1. When(M, g) is Einstein
with positive scalar curvature, this solution can be assumed to be smooth and
positive. Then there exisjsconformal tog such that”T*‘ng =f.

The paper is divided as follows. In Sect. 2, we apply the Mountain-Pass Lemma
to the functionalE’ and study the associated Palais-Smale sequences. We deal with
the regularity of solutions to the type of fourth-order equations we consider in
Sect. 3. Section 4 to 6 are devoted to fairly general test-function computations.
These computations have their analogue in [2] when dealing with the conformal
Laplacian. We prove Theorems 2-6 in Sect. 7.

2 Mountain-Pass lemma and Palais-Smale sequences

As already mentioned, the main tool in this section is the Mountain-Pass lemma of
Ambrosetti-Rabinowitz [1]. We use the following statement of the lemma:

Proposition 1 Let F' € C*(V,R) where(V, |.|) is a Banach space. We assume
that:

(i) F(0)=0,
(i) 3N, R > 0 such thatF'(u) > Aforall uw € V such thatju| = R,
(i) Jvo € V such thatim sup,_, , ., F(tvy) < 0.
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We lett, > 0 large be such thaftovg| > R and F(tovy) < 0, and g =
inf,ersup F(vy(t)), whereI’ = { : [0,1] — V s.t.7(0) = 0, v(1) = tovo}.
Then there exists a sequer(es,) in V' such that

F(up) =8 , F'(u,)— 0stronglyinV’.
Moreover, we have that < sup, F(tvg).

We say that a sequence,, ) in H2 (M) is a Palais-Smale (P-S) sequenceffor
if there exists? € R such thatF(u,,) — B andE’(u,,) — 0 strongly inH3 (M)'.
Let3 € R. We say thaF satisfies the (P-S) condition at the leyaf for any (u,,) a
(P-S) sequence fdr in H3 (M) such thatt(u,,) — 3, there exists a subsequence
(un) of (u,) such that(u,) converges strongly ifiZ(M). As easily checked,
this limit is then a critical point fol®. The lack of compactness for Palais-Smale
sequence in the case whére= 0 was described in Hebey-Robert [10]. We prove
here the following result:

Proposition 2 Let (M, g) be a compact Riemannianrmanifold,n > 5, f, h be
two functions irC"(M),0 < n < 1,q € (1,2¢ — 1), and P, be a Paneitz-Branson
type operator. We assume thj is coercive, and thaf is positive. For any

2

ﬁ < Q m—a
nKy (max f) T

the functionalF satisfies the (P-S) condition at the ley&l

Proof. From the coercivity ofP;, there existg > 0 such that
c|\u||?{§(M) < / (Agu)idv, + | A#(du,du)dv, + / au?dv, . (12)
M M

We take any sequen({etn}neN C H3(M) such thatF(u,,) — (3 for somes3 <

ZK (max i andE’(un) — 0. We prove that this sequence is relatively
compact |nH2(M). A first claim is that(u,,) is bounded inH3(M). Standard
computations lead to

O(1) + o([un|) = 2E(un) — <E,(Un) Un)>

/f| WP dvg + /h|un|q+1dv
With (12), it comes that

2 ¢ 2
chunlizzary < 2B(un) + 5 /M Tlun P dvg + /M Bl dv,
=0(1) + o(Junl) -

As easily checked, for al > 0, there existsk. > 0 such that?*! < et2* + K.
forall t > 0. As a consequence,

‘/ h|u|?tt dv,
M

e hloe
mlnM f

8
f|u\2 dvg

< Ke|hlooVolg (M) +
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whereV ol (M) is the volume of\/ with respect tg. Then|u, | 2 (ar) is bounded,

and this proves the claim. In particular, up to the extraction of a subsequence, we can
assume that,, — u weakly in H3(M). With the compactness of the embedding
HZ(M) — Lr(M) forall 1 < p < 2f we can also assume that — « for all

1 < p < 2*. By standard variational arguments, we infer thas a distributional
solution inH3 (M) of our equation. For alp € H3Z(M), we get that

/AguAggodvg—i—/ A#(du7d<p)dvg+/ aupdv,
M M M
:/ f|u|2n_2u<pdvg+/ hlu|? tup do, .
M M

Takingy = w yields the following expression fat(u):

E(u) = 2(‘1(];11) [ /A [(Agu)deg = /N ) A* (du, du)dv, + /M aquvg}

]. 1 211
— = dvy > 0.
+<q+1 2lj)/Mf|u vg >0

We compare the energy aof, andu. Taking into account the weak convergence of
u,, t0u, we obtain

B(w) = E@) = 5 [ (Ayfun— w)?d,
2 M
1 # #
— Mf(|u7,,|2 ) vy + o). (13)
By standard integration theory
[ (P = o =) oy = [ i, o). )
M M

TestingE’ (u,,) onu, —u — 0in H3(M) and using (14), we get

O(].) = <un —u, E/(u’ﬂ)>
= (un — u, ' (un) — E'(u))

= / (Ag(uy — u))2 dvg — / flun — u|2ndvg +o(1) . (15)
M M

From (13) and (15), we get

1 1
! / (Ay(tn — ) dvy — ~ / Fluun — uf? do,
2 M 2ﬁ M

2 2
:7/M (Ag(tn — u))? dvg + 0(1)

= B(uy) — E(u) + o(1) < E(un) + (1) = (16)
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with the coercivity ofP,. As stated in [6], for alk > 0, there exists3. > 0 such
that for allu € HQZ(M),

(/ |u|2“dvg) <(1+ e)Ko/ [(Agu)® + |Vul?] dvg + BE/ u*dvy .
M M

Testing onu,, — u, we obtain that

#

B
w""

24 2
2

; (1+0% UM (A, (un — u))deg} +o(1),

At last, from(15), for e > 0 small enough

o(1) = /M (A (un — u))? dv, — /M Flun —ul?dv,

> | [yt =0 av,|

Q1= gD @0 | [ (a0 - w)as,

f\un—u| dvq < (mj\%xf)

2f 2
2

With (16), it comes that

| (Agfun =)oy < 55+ o)
M

Using that3 < ﬁ it comes that there exists > 0 such that
nK .+ (maxps
) > C/ u))? dvg + o(1).

Henceu,, — w in H3(M). This ends the proof of the proposition.

Up to the regularity of the solution, that we prove in the following section, it is
clear that the first part of Theorem 1 follows from Propositions 1 and 2. Concerning
the second part, wheR, has constant coefficients, we can proceed as follows. We
apply the mountain pass lemma to the functional

1 1 )
2/M(P w)udvg — 2ﬁ/ fu? dvg +1/Mhui+ dvg,

whereu, = max(0,u). Critical points of ;. are weak solutions of

Ey(u) =

Agu + adAgu+au = (fu2 24 fl) u .

Similar arguments to the ones we used to prove the first part of Theorem 1 give
that F, has a critical point.. It is then easily seen, mimicking what we do in
Proposition 3 below, that € C*7(M), n € (0,1). We let

a+ Va2 —4a 3 a—vVa?—4a
y M2 = .
2 2

P =
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Then,5;, 82 > 0 and
(Ag + B1) o (Ag + Ba)u = AZu+ algu + au > 0.

Applying the maximum principle twice, it comes that> 0. Henceu is a C*-
positive solution of

Agu +adgu+au = quLl + hudtl,
Standard regularity results then give thats smooth, and the second part of

Theorem 1 is proved.

3 Regularity results

We are here concerned with the regularity of critical pointsfoMe claim that
the following regularity result holds:

Proposition 3 Let (M, g) be a compact Riemannianrmanifold,n > 5, f, h be
two functions irC"(M),0 < n < 1,q € (1,2% — 1), and P, be a Paneitz-Branson
type operator. Ifu € H3(M) is a weak solution of

Pyu = f|u|2u*2u + hlu|? a7)

thenu € C*"(M) andw is a strong solution of the equation. Moreoverf iéndh
are smooth, and is positive, then is also smooth.

Proof. Letu € H2(M) be a weak solution of (17). From the work of [17] and [6],
u satisfies

(A, +1)%u = div, (A#du) + (1 -a)u+245u+ f\u|2ﬁ_2u + hlu|?
=b+qu+ fe (18)
whereb = divy (A#du) + (1 — a)u + 2A,u € L?*(M), q. € L (M) satisfies

lgel» < e, andf. € L>(M). We now follow [6]. Fors > 1, we can define the
operator

H.:ve L (M) — (A, +1)"%(gev) € L¥(M)

with
[Hevlz: = O(I(Ag +1)"*(qev)
= O(llgel 3

It follows from the Sobolev theorem and classical regularity results that for any
f € LP(M) with p > 1, there exists a unique functian € HY (M) such that
(Ag + Du = fwith |u| gz < C|f]rr. Hence, for: > 0 small enough,

||H4n135 ) =O(lgev] | 257)

Ls) S Cé‘”’U

v Ls.

1
|Helsors < Ce < ok
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We rewrite (18) in the form
(Id— H)u= (Ay +1)2(b+ f.)
where fors > 1, Id — H. : L® — L* is an invertible operator. We havet f. €
L*(M) and then(4A, + 1)=2(b + f.) € H3(M). By the Sobolev theorem, we
obtain that, ifr < 8,u € LP(M)forallp > 1and, ifn > 8,u € anf"s(M). Since
2n(n—4)

for n > 8 there holds =7 =5 > 2, we get that

(Ay +1)2ue LA(M) .

We now use a bootstrap argument. We construct a non-decreasing segence
R U {+o0} such that, € Hj* (M) for all k¥ € N. We defines;, by induction. We
let sp = 2. For allk > 0 such that, € H;* (M), the Sobolev theorem asserts that

nsp

divg (A#du) + (1 — a)u + 2A,u € L7=2% (M),

with the convention that™3:— = +oo if 5, > 7, and

Mm—28k

nsy)(n—4)

(
Flul®=2u + hlul~ 'y € L5000 (M),
with the convention that"s:— = +ocoif s, > 2. Then(A, + 1)%u € L+ (M),

Mn—4Sk
where
NSk (nsg)(n —4) .
n—2s; (n—4dsp)(n+4)) — m

Skp+1 = min {

By standard elliptic arguments, € H;**' (M). The sequenceés;,) is then well-
defined. We assume now th@; ) is bounded. Then it goes to a limit > 2 such
that

L:min{ nL nL(n — 4) }

n—2L" (n+4)(n—4L)

if L < %. A contradiction. IfL > %, the same kind of arguments lead also to a
contradiction. Hence;,, — +o0, andu € Hj (M) for all s > 1. From the Sobolev
theorem, it comes that € C3¥(M) for all 0 < v < 1. Plugging this result in
(18), it comes that. € C*"(M). This proves the first part of the proposition. Now
if a, f,h,a are smooth and. > 0, we note thatfu® 1 + hu? € C*(M) and
standard bootstrap arguments show tha C>°(M). This ends the proof of the
proposition.

For the sake of completeness, we mention that the same method leads to the

following bounds:

Proposition 4 Assume that anda are smooth. Let € H5(M) and® € L*(M),
s > 1, such thatP,u = @ in the weak sense. Thenc Hj; (M) and there exists
C(s) > 0 depending only oiM, g), s anda, « such that

lul iz a0y < C(s) (19]1s + [

Le(M)) -
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Moreover, if¢ € Hj(M) with k& € N, thenu € H} ,(M) and there exists
C(s, k) > 0 depending only oM, g), s, k, a and« such that

b, o) < CC5) (101g any + Tl an) ) -
We are now left with finding conditions for (8) to be true. This is the purpose
of the following sections.

4 First order estimates for Paneitz-Branson type operators

We letd € (0, w) wherei, (M) is the injectivity radius, and, € M. We let

alson € C*°(M) be such thaty(z) = 1 for all z € B,(x¢,d) andn(z) = 0 for
all z € M — B,(z0,20). Fore > 0, we define the function. € C>(M) by

ue(r) = n(z) -

(€2 + dy (@, 20)2) 2

Given P, a Paneitz-Branson type operater,c (1,2¢ — 1), and f, h smooth
functions onM, the aim of this section is to compute expansions of

2f +1
Pyucue dvg / fuZ dvg / hul™ dvg.
M M M

We compute the different terms separately. We start with the leading term
Jur (Ague)2 dvg. The functionu, is radially symmetrical. Computing in the expo-
nential chart, it comes that

Ague =

g (7 Vsl
= Acuc — 0, <ln \/H) Ore,

wherer = dy(x, zo), and|g| is the determinant of the componentsjafi the chart.
We let

1 . . .
0: = ——5 ifn>9,0.=|lne| ifn=8,0.=1ifn=6,7.
EI'L—

We first assume that > 7. Then,

/ (Agug)2 dvg = / (Ague)2 dvg
M Be(0,5)
_2/ AeucOpu Oy (ln \/ |g\) dvg + O(0;).
B¢(0,6)

We write now, thanks to the Cartan expansion of the metric, that

1 o 1 o
Viglz) =1- éRijxlx] - Ekaiszzjxk + O(|:c\4), (19)
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where theR;;'s are the components of the Ricci tensor in the exponential chart.
With (19), it comes that
2 2 1 P 2
/ (Ague)” dvg = / (Ague)” do — —R;; z'a? (Ague)” dx
M Be(0,6) 6 " JBe(0.9)

72/ AgueOruOy (ln \/E) dx + O(6,).
B¢(0,6)

It is easily seen that,

[ (A a= n(n =D’ —den | o)
Be(0,0)

271571—4
and that

s
€

o _427175 n+1 262)2 4
Rij/ v'a) (Ague)® du = (n = 4] = g(a?o)/ " (nt - )* ds
B¢(0,6) nen o (1+ s2)"

In the same order of ideas, thanks to (19), we get that

/ AcueOrueOr (ln \/H) dx
B¢(0,9)

3
e

(n+2s%)s" Tt ds

- (n — 4)2W7L—1Sg(x0) /
B 3nen—6 o (142t +O(0:).
Then, whem > 7,
n(n —4)(n? — 4)w,
/M (Agu5)2 dUg = 2n€n—4

n(n? +4n — 20)(n — Hw,, 1

Similarly, whenn = 6, we find that

— 2 _
/ (Ague)2 dvg = nln 4)(71 4 Len
M 2I'L€VL—
2(n — 4)%w,_
—W@(m)\ Ine| + O(1).
We let A € A%, (M) be a smooth symmetri2, 0)-tensor field, and we let

a € C*(M). Then, with similar computations to the ones we just developed, we
get that

/ au? dvy = O(0.)
M

whenn > 6, and that

4(n—1)(n — 4wy, TryA(xo) .
A# - ! € f >
/M (due, du) dv, 7 —6) o +0(,) ifn>T1,

(n —4)%w, 1

/ A* (due, du,) dv, = TryA(zo)|Ine| +O(1) if n=6.
M
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Hence,
n(n —4)(n? — 4w,
/ Pyucue dvg = ngn 1
4wy, B n(n? + 4n — 20) 1
g (4= 7y Alan) - MR s ) )
+0(0:),
whenn > 7, and
n(n —4)(n? — 4)w,
/M Pyucue dvg = non
n—4)2w,_
+% (TryA(zo) — 25,(x0)) | Ine| + O(1)

whenn = 6. We now computf, , fufn dvg. Clearly

2t _ f(z) »
/M f’Uze d'Ug - /Bg(xU,é) (52 +d (.2? .130)2)n d g +O(1)
(R - P,
B(0,) (

e+ [a|?)"

wheref = f o exp,,g. Thanks to (19), it follows that fon > 5,

/f fu? 2 dv, (xO)wn

2negn

m(s( 0)f(x0) + 34, f(x0)) n12 +O(5nl—4)'

At last we compute an expansion fif; hud™! dv,,. It easily comes that

+oo n—1
g+ _ wp_1h(x0) s"lds 1
M s = ey (1 et O\

if ¢g+1> -2, that

M

/ hug—H dvy = Wn—1h(.%'())‘ Ine|+o(] lne\)
M

if g+ 1= -2, and that

/ hu™t dv, = O(1)
M

if ¢ +1 < 5. Moreover, wherh(zo) = 0, then we can write that

/ hud*tt dv, = Awn L Agh(zg)e2 = (n=Ha+1) +O(52+n—(n—4)(q+1>)

_ oo s"tlds n+2
whereA = fo e S andg + 1 > 242,
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5 Second order estimates

for the geometric Paneitz-Branson operator

Letxo € M. Up to changing conformally the metric, see [11], we may assume that
Ricg(z9) =0, Sg(zo) =0, VSy(zo) =0,
A Sy(z0) = é|W€ylg(:L'0)|§, and (20)
dvy = dvg(1 + O(TN))

whereN is arbitrarily large. We led < § < * M) andn € C°°(M) be a radially
symmetrical function such thgt= 1in B (:co, §)andn = 0in M — By(zo,29),
whereB,(z,r) denotes the geodesic baII of centee M and radiusr > 0. We
let alsou. € C>°(M) be the function given by

() = n(x) _

(€% + dy(,20)%) 2

Our aim in this section is to estimate

/Puuedvg and /fu dvg .
M

We compute the different terms separately. We start with

I :/ (Ague)? dv,
M

We have that
/ (Ayu)? dvy = / (Aguc)? dvg + O(1).
M BQ(ID,5)

Sinceu,. is radially symmetrical oB, (z, J), we have that

A 1 8 n—1 | |8 ( 1 > ";4
Ue = ————F—=0, T r )
gl I\ TP

wherey/|g| = \/det(g;;) and theg;,;’s are the components gfin the exponential
chart atzy. We have,/|g| = 1 + O(r"). Then, withN large enough,

(Agu? = [2e—— ) +oq),
(e247r2) %

wherer = d,(z,z9) < ¢, and

2
1

/ (Ague)? dvg :/ <A£n4> dve + O(1)

M BE(O#(;) (62 +T2) 2

1
- = /Rn(Aguo)?du& +Loq).
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Considering thatu, is an extremal function for the sharp Euclidean Sobolev
inequality, we obtain that

] (g an, = HE=DE D o),

I, = / Zuf dvg .
M

We write thatQy (z) = Qf (v0) + O(dy(x, 0)). Then,

We now compute

dx
Qrul dvy = Q7 (x / @
/ s = Qy(a0) Be(0,6) (€% + [z[*)n—*

|| dx
vo [ e
< Be(0,6) (82 4 [a[) 4

Qg (wo)wn—1 /g s"1ds
- o (1 + SZ)n—4

s
€ B s"ds
+O <En—8/0 (1+82)n—4> :

Here, we have used a polar change of coordinates and the change of vasable
Since

En—8

Qg (.To) = 2(n — 1) AgSg(xO) - 12(n — 1) |W€ylg(x0)|gv
it follows that
(n—3)wn 1 .
I, = f n>
= TG Gy e o () 1 29,
Wn—1 .
= m|W€ylg(xo)|g|lnE|+0(ln€) |f n=8, and

—01) if 5<n<T.

Going on with these estimates, we compute
I; = / SglVuel? dvg .
M
We have that

/ Sg|Vu€|3 dvg = / Sg|Vu€|3 dvg +0O(1) .
M %0,6)

Moreover,u, is radially symmetrical and

7‘2

Vuelj(@) = (0 =4 s
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wherer = d,(z, zo). SinceS,(zy) = 0, we obtain that

o r'wirtdx

1
S| Vue|? dv, = =0;:5,(x / n—4) —————
/M ol Visely dvg = 50055y (o) 35(0,5)( ) (€2 +r2)n—2

|z|° dz
vo [ ).
( Be(0,8) (€% +[z[?)" 2

A polar change of coordinates and the change of variabless, gives that

/ ixir? dr / i g /5 F3
g = 22ide [ —/————
Be(0,0) (€2 +72)" 72 Jgn o (24722

- (51‘]‘0.)7,_1 1 /g S"+3 ds
o (

n €n78 1+ 82)7172

wheredo denotes the surface element of the standard unit sgttere Noting that
in geodesic coordinates), S, (xo) = —0;:.54(xo), (20) gives that

I3
~wp(n+2)(n—1)(n—4)
273(n — 6)(n — 8)
(n—4)%w, 1

= —T|Weylg(xo)|§|lne\ +o(|lne|) if n=8, and

—0(1) if 5<n<T.

1 1 .
W[/eylg(avo)\3Eﬂ—f8 +o (€n8> if n>9,

At last, we compute
1y :/ Ric#(due,due) dvg .
M
We have that
I, = / Ricj&(due,due) dvg + O(1)
By (x0,9)
- / Rijaiueajue dx + O(1)
BE(Ov‘S)

— (n —4)2 Y(x) -
=(n-—4) /Bg(o,é) D — dz + O(1)

52 + T2)n
wherey)(z) = RY (z)x;z;. We write that

0w) = 5D%0(a) + 3 D*o(a®) + 3 D*ola*) + Oal?).



510 P. Esposito, F. Robert

For parity reasons, it follows that

— 2 4 n+1
n=U [ v [
Sn—l

2 0 (52 + r2)n—2
(n —4)?
T S

4 n+4
r dr
+O (A (52 + T2)n—2> :

We have here, see [7], that

+

) n+3
D41/}0(5B4) dO’/ ( r dr
0

g2 + TQ)YL—2

1 2 2 _ Wn-1

5 - D ¢0($C )dO’ = o Afl/J(O) , and
1 Wn—

— D4 4 — _“ntl A2 )
4! Jon—a Yola®) do 8n(n + 2) e¥(0)

Noting that we use a normal chartaf and thatRic, (zo) = 0, we get that

Ae(0) =0, and
Ag@b(@) = 4(8“‘Rjj + 281JR1J)

The Bianchi identity andRic,(zo) = 0 lead to

> 205 Rij(w0) = D 0iRyj(w0) = —Ag S (o).
i

(2]

Then, with (20) and the change of variable- s, it comes that

(n —4)%w,_1 /(ES s"t3ds  [Weyly(wo)l;
o (

Iy = —
! 6n(n + 2) 14 s2)72 gn—8
L0 ( 578 /g s”+42ds2> .
Consequently,
3wp(n—1)(n —4) 5 1 1 .
Iy =— Weyl — fn>9
1= i) os)  Wellmm o mm ) T 29,
(n—4)%w, 4

2 .
= —W\Weylg(xo)\g\lnd—|—0(|ln5\) if TL:8, and

—0(1) if 5<n<7.
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In particluar, thanks to the previous estimates, we get that

/ Pyucue dvg

M

~n(n—4)(n? — 4w,
- 2n€n—4

(n —4)(n* — 4n — 4)w,, [Weyly(zo)|2 1 _
f n>
27 +13(n — 6)(n — 8) s To\lms) Tnz9,

15w .

- %f——ﬁW@l@med+oﬂmd)ﬁn:8,md
_ 2 _

_nin 2g44)"+mnﬁ5§n§7. (21)

Similarly we now compute
15 :/ fuf11 dvg .
M

Sincedv, = dv¢(1+ O(r™)) with N large enough, we can write that

foexp,
g:/ S 2MPr0_ g0 1 0(1).
Be(0,0) (8% + [z[*)" )

With the same techniques as before, we easily find that; for5,

%) _ +oo gntl gs
I —o /+ s"1ds f(xo) B Wn-1 Jo a+s2)™ Agf(wo) i
P (s en 2n gn—2
+oo gnt3 s
Wp—1 0 (1+52)n Agf(zo) 1
8n(n + 2) gn—4 gn—4 J”

(o) = 0@andVSy(zo) =

Since we are in a normal coordinate chart, and siieg («
AZf(xo). As a conse-

0, we obtain thatd, f(xo) = Aef(z0) and A2 f(xo)

quence,
ot _ waf(20) _ Wn, Ay f(20)
/M qu d’l)g - onen 2n+1(n _ 2) en—2
Wn A?]f(llio) 1
22
+2”+3(n—2)(n—4) gn—4 +0<5”4) (22)

whenn > 5.
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6 General estimates for Paneitz-Branson type operators

We letxg € M andN € N*. Then, see [11], there exisjs= goﬁg, p>0isa
smooth function on/, such that

Rng(J)o) =0 5 VSg(Jfo) = 0,
1
A5Sg(xo) = 5|W€ylg(xo)|§, and
d’l)g = dU§(1 + O(TN)) .
We lets € (0, iﬂ"(QM)), whereiz (M) is the injectivity radius ofj, andn € C>°(M)

be such thay(z) = 1 for all z € Bj(zo,0) andn(z) = 0 forall z € M —
Bj(z0,208). Fore > 0, we define the functiod, € C>° (M) by

n(@)e(x)
n—4
(€2 + dg(z,20)%) >
We let alsoP, be a Paneitz-Branson type operator, grue a smooth function on

M. For the sake of completeness, we quote in this section results concerning the
expansions of

Ue(z) =

I= [ Pi.i.dv, and J = / fiZ dv,.
M M

Such expansions are not required to prove our theorems. Nevertheless, they can be
useful in another context. Details on these expansions can be found in Esposito-
Robert [8]. Writing that

P, = Agu — divg [A#du] + au,

we set
A=A— anSy9 — by Ricy , and
- n—4
a=a-— Qy-
We defined
n%—4dn—4
b= (Weyl,|?

T 96(n—1)(n —3)
999" (V2 A)iju + 29" g7 (V2 A)ijrr (n — 4)(Ricy, A)g

+ 8(n—3) T A —2)(n—3)
B nS,tr,(A) 1 a_L_Zl n
8(n1)(n2)(n3)+n4< 2 Qg)’

where(-, )4 is the scalar product with respectgoWe let also

e 259 2 . n—2
0 =A%+ mAgf+2 (V2 chg)g + m(vfavsg)g '
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We then find that the following holds. Concernihgwe find that

j/ Pyiizii. dvg
M ~
_ n(n —4)(n? — 4)w, n wnp(n —1)(n —4)try(A)(zo)
nen—4 2n—2(n _ 6)671—6

wp(n —1)(n —3)(n —4)®(x 1 )
(2n4(T)L( 6)(71( 8)512 0) +o0 (6718) if n>9, and

_ n(n —4)(n? — 4)w, n wp(n —1)(n —4)try(A)(zo)
nen—4a 2n—2(n _ 6)817,—6
+(n — 4)wnp—1P(xo)| Ine| + o (lne) if n=8.

Similarly,
o n(n—4)(n? — Dw, 4w, (n —1)(n — 4)try(A)(zo)
/ Pylcte dvg = onen—4 + 27 (n — 6)En—g6
M
1 .
—|—0< 6) ifn=7, and
en—

n(n—4)(n? — 4w, (0 —4)%w,_1try(A)(zo)
= — +
2’”5’” n
+o(|Ine|) if n=6.

[Ine|

Whenn = 5, we just find that

—4)(n? -4
/fwmw%zmn %14)%+0m.
M 2ne

Concerning/, we find that forn > 5,

wn f(2o) - Wn Ay f (o)
onen 2n+1(n _ 2) 5n—2

+ wnO(20) + 0( ! ) .

9n+3 (5 — 2)(n — 4)en—a en—i

~of o
fuz dvg =
M

7 Proof of the Theorems 2—6
We prove Theorems 2-6 using Theorem 1 and the expansions we got in Sects. 4
and 5. We let;y € M and consider the paths’s given by

Ue

 fuel

Ye(t)

Thanks to Theorem 1, it suffices to prove Theorems 2-6 to show that there exists
€ > 0 such that

2
supE (7 (1)) < i n 4
t>0 nKy (maxpy f) 1T

(23)
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where, in its general form,

t2 8
B0 = grae [, vt~ L
62 E

tat!
/ hud™ dv,

g+ Dfud it
12 12 tatl
-4 - .
9 e of ¢ g+ 1 €

n—4 n—
Thanks to the results of Sect. [ |,: ~ (&2) " e~ 7",

1
Ac - — , B.— f(zg) , Cc.—0.
Ko

Then, it is easily checked that

2 AE% Tg‘H
E(v(t) =2 2 -0 4 0(C. 24
sup (7e(1)) R o(Ce) (24)

whereT, = (Kof(xo))’%. We let

nlatl) 4o s 1 s
27 (7o) D
K= (Snf4><q+1> atl
(¢ +D(Eof(xo)) = wi®
Using the estimates we got in Sect. 4, and (24), the following expansions hold. We
assume first that > ;. Then we get that

2
supF <t Ue ) = 7w wa
>0 e 20 nKy f(zg) 1

—Kwn,lh(xo)angzl(ﬂ_l_‘” +o (En

—1—q))

whenn > 6, and ifh(z¢) = 0, we get that

2
t>0 e 2z nKy f(zo) 3

2"(n — 4wy 1(Tr,A —2
+ (TL )w 1( /rg2 Si),(:t()) €2| lne\
2n2(n? — Dw, K f(xo) 2
+o (£°|Inel)
whenn = 6, and whem > 7,
2
suplE ( te ) = ™ na
>0 e 2z nKg f(xo) T
F
+ (.’IJQ) 82 +0(52)

An(n? — 4)(n — 6) K f(x0)" T
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whereF' is as in the introduction. Theorem 2 and the first part of Theorem 3 easily
follow from these expansions and Theorem 1, since, under the assumptions we
made in these theorems, (23) holds true. Moreover, still when -, we find

with the estimates of Sect. 4 thatiifzy) = F'(z¢) = 0, andn > 8, then

Ue 2
supk (t ) _ _ _
t>0 ”ue”g: nK04 f(xo)T
Kwp_y )
" Agh n+2—(g+1)
+2(((J+1)(n—4)—(n+2))( gh(z0)) e

+o (5”’+2_(‘1+1) e ) .

n—4
2

Thanks to Theorem 1, this implies the second part of Theorem 3. We assume now
thatq = -2—. Then, whem = 6, we get that

n—4"
supE (tu€>
t>0 e 26
2 2" (n — dwp_1(Tr, A —2
_ 7 — <1+ (n )w 12( TQ Sg)(x0)€21n€|)
nK,"" f(zo) 1 4n(n? — 4wy,

+o(e?|Inel)

and whem > 7, we get that

Ue 2
supE (t ) = i —
>0 e ¢ nKy f(zo) 1
G(JUO) 2

n—4

An(n? — 4)(n — 6) K f(z0)"3

+ 0(£?)

whereG is as in the introduction. Theorem 4 easily follows from these expansions
and Theorem 1, since, under the assumptions we made in this theorem, (23) holds

true. At last we assume that< . Then, whem > 8, we get that

Ue 2
supk |t = n n—4
>0 Juelas nKy f(xg) 3
F
(o) 22

n—4

+ 7
4n(n? —4)(n — 6)K; f(zo) "7
—Kwn_lh(xo)e% (2“—1—(1)

+o (5%4(%*1*‘1)) ;

and Theorems 5 easily follows from this expansion and Theorem 1, since, under
the assumptions we made in this theorem, (23) holds true. We are now left with
the proof of Theorem 6. We use here the estimates we got in Sect. 5. \We let
be a conformal metric tg which satisfies (20), and denote by the functions

we introduced in Sect. 5 which we consider now with respegt tsssuming that
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Agf(xzo) = 0, we also have that; f(xo) = 0. Then, thanks to the estimates of
Sect. 5, we get that when> 9,

5 u): 2 _ H(xo) 4 .
o (1 WK (o) <1 ) © T

whereF is with respect t@j, C(n) = 32(n — 2)(n — 6)(n — 8), and
f

~ n2 —4n — A
(o) = 2 Wty + (0 - 0)(0 - )=

Writing thatg = ¢*/("=2)g, see [11], we do have that(z¢) = 1, Vi(zo) = 0,
and

Q@i

(o)

s (3 e) )

Then, sincery € Maxf andA, f(x¢) = 0, we get that

A2 f(wo) = A7 f(wo) +2 (V3 Ricg)g (zo) -

VZp(zo) =

Hence, thanks to the conformal invariance of the Weyl terir;,) > 0 if and
only if H(zo) > 0, whereH is as in the introduction. Similarly, when= 8,

e 1 2wr|Weyly(zo)|Z 4
supF | t— = 1-— e*llnel +o(e*|Ine .
we (1) = e ( 2wy EIToEnED

Thanks to Theorem 1, and the conformal invariance of the geometric Paneitz-
Branson operator, Theorem 6 follows from the above estimates. Under the as-
sumptions we made in this theorem, we indeed do have that (23) with respect to
g holds true. Hence, our equation with respec§ toas a solution:. Writing that

g = ¢* (=Yg the conformal invariance then gives that is a solution of our
equation with respect tg. This proves Theorem 6.

AcknowledgementsThe authors are indebted to Olivier Druet, Emmanuel Hebey, and
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