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a b s t r a c t

We continue and completely set up the spectral theory initiated in Castorina et al. (2009)
[5] for the linearized operator arising from ∆pu + f (u) = 0. We establish existence
and variational characterization of all the eigenvalues, and by a weak Harnack inequality
we deduce Hölder continuity for the corresponding eigenfunctions, this regularity being
sharp. The Morse index of a positive solution can be now defined in the classical way,
and we will illustrate some qualitative consequences one should expect to deduce from
such information. In particular, we show that zero Morse index (or more generally, non-
degenerate) solutions on the annulus are radial.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let u ∈ C1,α(Ω) be a weak solution of the problem
−∆pu = f (u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded smooth domain in RN ,N ⩾ 2, ∆pu = div(|Du|p−2Du) is the p-Laplace operator, and f is a positive
(f (s) > 0 for s > 0) locally Lipschitz continuous nonlinearity. The Hölder continuity of ∇u is in general optimal [1–3] and
Eq. (1.1) is always meant in a weak sense.
The linearized operator Lu associated to (1.1) at a given solution u is defined by duality as Lu : v ∈ H0 → Lu(v) ∈ H ′

0, where
Lu(v) : ϕ ∈ H0 → Lu(v, ϕ) and

Lu(v, ϕ) :=

∫
Ω

|∇u|p−2(∇v, ∇ϕ) + (p − 2)
∫

Ω

|∇u|p−4(∇u, ∇v)(∇u, ∇ϕ) −

∫
Ω

f ′(u)vϕ. (1.2)

The Hilbert space H0 will be rigorously introduced in Section 2 according to [4] and is roughly composed by functions v
vanishing on the boundary so that


Ω

|∇u|p−2
|∇v|

2 < ∞. In this way, the operator Lu is well defined, and in [5] it is shown
that the first eigenvalue of Lu

µ1 = inf
v∈H0, v≠0

Lu(v, v)
Ω

v2

is simple and attained at a nonnegative first eigenfunction v1. The study in [5] can be pushed further to set up a complete
spectral theory for Lu as summarized in the following.
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Theorem 1.1. The eigenvalues of Lu have finite multiplicity and form a sequence

µ1 < µ2 ≤ µ3 ≤ · · ·

(with repetitions according to the multiplicity) so that µj → +∞ as j → ∞. Moreover, the µj’s can be characterized variation-
ally as

µj = min
V⊂H0

dim V=j

max
v∈V , v≠0

Lu(v, v)
Ω

v2
= min

V⊂H0
dim V=j−1

min
v∈V⊥, v≠0

Lu(v, v)
Ω

v2
, (1.3)

where the orthogonal space V⊥ is meant in the L2(Ω)-sense. The corresponding eigenfunctions vj ∈ H0 solve the equation

Lu(vj, ϕ) = µj

∫
Ω

vjϕ ∀ ϕ ∈ H0

and form an orthonormal basis in L2(Ω). Moreover, vj belongs to C0,α(Ω) for some α ∈ (0, 1) provided p > 2N+2
N+2 .

The existence of µj’s is based on the Fredholm alternative and makes a crucial use of the compact embedding H0 ↩→ L2(Ω)
as established in [5]. The Hölder regularity of vj follows by a weak Harnack inequality and is essentially optimal. Indeed, the
derivatives of u are in the kernel of the linearized operator (but they do not fulfill the zero boundary condition) and are in
general just Hölder continuous.
Once the spectral theory for Lu is available, one can classically define the notion of Morse index m(u) and non-degeneracy
for a solution u of (1.1). We believe that an information on m(u) should carry relevant properties on u. From a qualitative
viewpoint, this is well explained by the following.

Theorem 1.2. Let Ω be a bounded radially symmetric domain and u be a solution of (1.1). Assume that either m(u) = 0 or u is
a non-degenerate solution. Then, u is radially symmetric.

The assumption m(u) = 0 is simply equivalent to the semi-stability of u: Lu(v, v) ⩾ 0 for all v ∈ H0. The latter condition
has been used (for v in a suitable space of test functions) as a definition of semi-stability in cases where a spectral theory
was not available or not attainable (see [6,7] and references therein). When Ω is a ball, the radial symmetry of u follows by
the moving plane method in [4] and the difficult case concerns the annulus.

Notice that any local minimum point u of the corresponding energy functional actually satisfies m(u) = 0, since the
bilinear form Lu represents the second derivative of the energy functional. Noticing that in general H0 ≠ W 1,p

0 (Ω) and that
the energy functional is not C2 even inW 1,p

0 (Ω) when p < 2, the computation of such a second derivative is a very delicate
issue which has been established to hold exactly in H0 (see [5]).

When f (u) is replaced by λf (u), the corresponding nonlinear eigenvalue problem admits, in several situations, a branch
uλ of minimal solutions – for λ in a natural range – with m(uλ) = 0 (see [6,5] and references therein). For p = 2 and non-
decreasing convex nonlinearities f (u), it is well known that uλ is the unique zero Morse index solution, which is also radial
when Ω is an annulus. In this respect, Theorem 1.2 is still already known on the annulus when p = 2. However, for p ≠ 2 it
is not known that zero Morse index solutions need to be unique and Theorem 1.2 is no longer obvious. Such an uniqueness
has been shown [8] to hold for radial solutions on the ball and 1 < p ≤ 2.

Let us provide a last example. For a subcritical exponent q (p−1 < q <
N(p−1)+p

N−p when p < N and p−1 < q < ∞ when

p ≥ N), the compact embeddingW 1,p
0 (Ω) ↩→ Lq+1(Ω) yields to a minimizer u > 0 of

mq = inf
u∈W1,p

0 (Ω), u≠0


Ω

|∇u|p
Ω

|u|q+1
 p

q+1
.

The function u can be normalized to give a solution of (1.1) with f (u) = mquq corresponding to a Mountain Pass solution
and m(u) = 1. Indeed, since u ∈ H0 and


Ω

|u|q+1
= 1 we can easily compute Lu(u, u) = mq(p − 1 − q) < 0 so as to have

µ1 < 0. On the other hand, we can fix v ∈ H0 and compute

d2

dt2


Ω

|∇(u + tv)|p
Ω

|u + tv|q+1
 p

q+1
= pLu(v, v) + pmq(q − p + 1)

∫
Ω

uqv

2

.

Since u is a minimizer, we get that Lu(v, v) ≥ 0 for every v ∈ V =

v ∈ H0 :


Ω
uqv = 0


and by Theorem 1.1 we deduce

µ2 ≥ 0 so as to establishm(u) = 1.
Starting from [9–11], there has been an intensive study of the nonlinear eigenvalues λj’s of−∆p but still very little is known.
They have been used to obtain, by non-standard variational methods, solutions of −∆pu− λ|u|p−2u = f (u). There is a large
literature on this topic. We refer the reader in particular to [12] and to [13,14](see also the references therein).

The linear eigenvalues µj’s play the same role here as the eigenvalues of −∆ − f ′(u) but the picture is more complicate
due to the degenerate and nonlinear nature of−∆p. First, onemight wonder if the non-degeneracy of a solution u allows for
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a local analysis in the spirit of the Implicit Function Theorem. Recall that here the energy functional is not C2 and the space
H0 depends on the solution itself. Secondly, regularity and compactness results for finite Morse index solutions should be
in order in low dimensions (depending on the nonlinearity), as it has been already established for p = 2 [15–18]. Finally,
it would be really of interest, the study of symmetry properties for finite Morse index solutions as in the case p = 2 [19], a
flavor of it having been given in Theorem 1.2.

2. Spectral theory for Lu

Given a solution u of (1.1), for p ≥ 2 we define the Hilbert space H = H1,2
ρ (Ω), ρ = |∇u|p−2, where (as in [4]) H1,2

ρ (Ω)
is the completion of C∞(Ω) w.r.t. the norm

‖v‖
2
H =

∫
Ω

v2
+

∫
Ω

|∇u|p−2
|∇v|

2. (2.4)

Since Ω is smooth, H is equivalently composed by the functions v which have distributional derivative and satisfy ‖v‖H <
∞. The space H0 is defined as the completion of C∞

0 (Ω) w.r.t. the norm ‖ · ‖H . Letting ‖v‖
2
H0

=


Ω
|∇u|p−2

|∇v|
2 for every

v ∈ H0, the following Sobolev inequality does hold [4]:

‖v‖Lq(Ω) ≤ Sq‖v‖H0 ∀ v ∈ H0, (2.5)

where 1 ⩽ q <
2N(p−1)
N(p−1)−2 and Sq > 0 is a positive constant. In particular, for q = 2 (2.5) provides a Poincaré inequality which

implies the equivalence in H0 of the two norms ‖ · ‖H and ‖ · ‖H0 . Moreover, the embedding H0 ↩→ Lq(Ω) is compact for any
1 ≤ q <

2N(p−1)
N(p−1)−2 , (see [5]). Since C∞

0 (Ω) ⊂ H0, we also have that H0 is dense in L2(Ω).
For 1 < p < 2, we define H0 simply as

H0 = {v ∈ H1
0 (Ω) : ‖v‖H0 < ∞}.

Since ‖v‖H1
0

⩽ ‖∇u‖
2−p
2

∞ ‖v‖H0 , it follows that H0 is compactly embedded in Lq(Ω), for any 1 ≤ q < 2N
N−2 . Since Zu =

{x ∈ Ω̄ : ∇u(x) = 0} ⊂ Ω has zero Lebesgue measure [4], we can always approximate a function v ∈ L2(Ω) by a sequence
vn ∈ C0(Ω \Zu)∩H1(Ω) ⊂ H0 so as to provide the density of H0 in L2(Ω). In conclusion, H0 is dense and embeds compactly
in L2(Ω) for every p > 1.
To develop the linear theory for Lu as contained in Theorem 1.1, we exploit a standard procedure which may be found for
example in [20].

First, for Λ ∈ R we let

aΛ(v, w) := Lu(v, w) + Λ

∫
Ω

vw ∀v, w ∈ H0.

Through the Hölder and the (weighted) Poincaré inequalities, it is easy to see that aΛ is continuous: |aΛ(v, w)| ≤

C‖v‖H0‖w‖H0 . Furthermore, if we set C1 = min{p − 1, 1} and C2 = max{p − 1, 1}, since

C1|∇u|p−2
|∇v|

2
≤ |∇u|p−2

|∇v|
2
+ (p − 2)|∇u|p−4(∇u, ∇v)2 ≤ C2|∇u|p−2

|∇v|
2,

we can achieve the coercivity of aΛ: aΛ(v, v) ≥ C0‖v‖
2
H0

for C0 > 0, wheneverΛ ≥ ‖f ′(u)‖∞. By the Lax–Milgram theorem,
we can then define the resolvent operator G : f ∈ L2(Ω) → Gf ∈ H0, where Gf is the unique solution of

aΛ(Gf , w) =

∫
Ω

fw ∀ w ∈ H0.

Now G : L2(Ω) → L2(Ω) is clearly a self-adjoint operator by the symmetry of aΛ, whereas its compactness follows by the
estimate

C0‖Gf ‖
2
H0

≤ aΛ(Gf ,Gf ) =

∫
Ω

fGf ≤ S2‖f ‖L2‖Gf ‖H0

and the compact embedding H0 ↩→ L2(Ω).
By the Riesz–Fredholm theory, the eigenvalues βj’s of G have finite multiplicity and form a sequence of positive numbers

which converges to zero. It is clear that (β, v) is an eigenpair of G if and only if aΛ(v, ϕ) = β−1


Ω
vϕ does hold for every

ϕ ∈ H0. Hence, the linearized operator Lu has a sequence of eigenvalues µj = β−1
j − Λ → +∞ of finite multiplicity:

µ1 < µ2 ⩽ µ3 ⩽ · · ·

(with repetitions according to the multiplicity). The corresponding eigenfunction vj ∈ H0 satisfies Lu(vj, ϕ) = µj


Ω
vjϕ for

all ϕ ∈ H0. By the self-adjointness of G the vj’s can be normalized so as to form an orthonormal basis in L2(Ω). The operator
G can be also seen as acting from H0 into itself, and is still a compact self-adjoint operator whenever H0 is endowed with
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the equivalent norm |v|
2

= aΛ(v, v). Since vj ∈ H0, also in this case G has the βj’s as eigenvalues and the renormalization

ṽj = β
1
2
j vj form an orthonormal basis in H0 in view of

aΛ(ṽj, ṽk) = β
1
2
k β

−
1
2

j

∫
Ω

vjvk = δjk.

Recall that µ1 is simple and satisfies (1.3) in view of

µ1 = min
v∈H0, v≠0

Lu(v, v)
Ω

v2
,

and the associated eigenspace is one-dimensional, generated by a first nonnegative eigenfunction v1. Setting

R(v) =
Lu(v, v)

Ω
v2

,

we can compute

R(v) =

j∑
k=1

α2
kµk

j∑
k=1

α2
k

≤ µj

for every v =
∑j

k=1 αkvk ∈ Span{v1, . . . , vj}, v ≠ 0. Since the equality holds when α1 = · · · = αj−1 = 0 and αj = 1, we
get that

µj = max
v∈Span{v1,...,vj}\{0}

R(v). (2.6)

Given v ⊥ v1, . . . , vj−1 in L2(Ω), we have that

v =

∞−
k=j

αkvk, αk =

∫
Ω

vvk

in L2(Ω), so as to get∫
Ω

v2
=

∞−
k=j

α2
k .

Since

aΛ(ṽk, v) = β
−

1
2

k

∫
Ω

vvk ∀ k ∈ N,

similarly we have that

v =

∞−
k=j

α̃kṽk, α̃k = β
−

1
2

k αk

in (H0, | · |), and then

aΛ(v, v) =

−
k=j

β−1
k α2

k =

−
k=j

(µk + Λ)α2
k .

Hence, we deduce that

R(v) =

∞∑
k=j

µkα
2
k

∞∑
k=j

α2
k

≥ µj,

and in turn

µj = min
v⊥v1,...,vj−1

R(v). (2.7)

Given V with dim V = j, we can always find v̄ ∈ V , v̄ ≠ 0, such that v̄ ⊥ v1 . . . , vj−1, and by (2.7) we get that

max
v∈V , v≠0

R(v) ⩾ µj,
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and in turn

µj = min
V⊂H0

dim V=j

max
v∈V , v≠0

R(v)

does hold since by (2.6) the minimum is achieved exactly at V = Span{v1, . . . , vj}. The first relation in (1.3) has been
established. As far as the second one, similarly, we can deduce by (2.6) that

min
v∈V⊥, v≠0

R(v) ⩽ µj,

for every V such that dim V = j − 1. Hence, there holds

µj = max
V⊂H0

dim V=j−1

min
v∈V⊥, v≠0

R(v)

since by (2.7) themaximum is achieved exactly at V = Span{v1, . . . , vj−1}. The first part of Theorem1.1 has been completely
established.

3. C0,α-regularity of the eigenfunctions

We prove here that any eigenfunction of the linearized operator Lu is Hölder continuous. To this aim, we prove a Harnack
inequality for an operator slightly more general than Lu, i.e.

L(v, ϕ) =

∫
Ω

|∇u|p−2(∇v, ∇ϕ) + (p − 2)
∫

Ω

|∇u|p−4(∇u, ∇v)(∇u, ∇ϕ) −

∫
Ω

cvϕ −

∫
Ω

gϕ (3.8)

for v, ϕ ∈ H0, where c, g ∈ L∞(Ω).
We can prove the following weak Harnack inequality for L:

Theorem 3.1. Let v ∈ H ∩ L∞(Ω) be a nonnegative weak supersolution of (3.8). For p > 2, consider s so that 0 < s <
N(p−1)

(N−2)(p−1)+2(p−2) and x0 ∈ Ω so that B(x0, 5R) ⊂ Ω . Then we find a constant C > 0 such that

R−
n
s ‖v‖Ls(B(x0,2R)) ≤ C


inf

B(x0,R)
v + Rp

‖g‖L∞


. (3.9)

If 2N+2
N+2 < p < 2 the same result holds for 0 < s < 2∗

s♯ , with 2
s♯ = 1 −

1
s and s <

p−1
2−p .

Proof. The function v solves L(v, ϕ) ≥ 0 for any 0 ≤ ϕ ∈ H0. Remark that we may always assume v ≥ τ > 0. Otherwise,
we can consider v + τ , replace g by g + τ c and let τ → 0. Rescaling (3.8) with y =

x−x0
R we get∫

Ω ′

[|∇u′
|
p−2(∇v′, ∇ϕ) + (p − 2)|∇u′

|
p−4(∇u′, ∇v′)(∇u′, ∇ϕ) − c̃v′ϕ − g̃ϕ] ≥ 0, (3.10)

where Ω ′
=

Ω−x0
R , w′(y) = w(x0 + Ry) for every function w in Ω, c̃ = Rpc ′ and g̃ = Rpg ′. Inequality (3.10) does hold for

every φ ∈ H ′

0, where H ′

0 is defined as H0 with Ω, u replaced by Ω ′, u′. Consider the function ṽ defined by ṽ = v′
+ ‖g̃‖∞.

Taking into account (3.10) it follows that ṽ fulfills∫
Ω ′

[|∇u′
|
p−2(∇ṽ, ∇ϕ) + (p − 2)|∇u′

|
p−4(∇u′, ∇ṽ)(∇u′, ∇ϕ) − c̄ṽϕ] ≥ 0 (3.11)

for all ϕ ∈ H ′

0, with c̄ = (c̃v′
+ g̃)ṽ−1. Since the zero order coefficient is bounded:

|c̄(y)| ≤

 c̃(y)v′(y)
v′(y) + ‖g̃‖∞

 +

 g̃
v′(y) + ‖g̃‖∞

 ≤ ‖c̃‖∞ + 1 < ∞,

we can develop an iterativeMoser-type scheme [21] to prove aweak Harnack inequality for ṽ. For all the details of the proof,
we refer the readers to the Appendix of [22], where the iterative Moser-type technique was developed in a similar setting
in the spirit of [23]. Here we only start the procedure taking care of the fact that the operator we are considering is more
general than the one in [22].

We define

φ ≡ η2ṽβ , β < 0,
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with 0 ≤ η ∈ C1
0 (B(0, 5)). Since ∇φ = 2ηṽβ

∇η +βη2ṽβ−1
∇ṽ, we have that φ ∈ H ′

0 and then can be used as a test function
in (3.11) so as to get∫

Ω ′

[βρ ′
|∇ṽ|

2η2ṽβ−1
+ β(p − 2)|∇u′

|
p−4(∇u′, ∇ṽ)2η2ṽβ−1

]

+

∫
Ω ′

[2ηṽβρ ′(∇ṽ, ∇η) + 2η(p − 2)ṽβ
|∇u′

|
p−4(∇u′, ∇η)(∇u′, ∇ṽ)]

⩾

∫
Ω ′

c̄η2ṽβ+1,

where ρ ′
= |∇u′

|
p−2. Note that the weight that appears in [4] is ρ = |∇u|p−2, and the properties of this weight are crucial.

Our rescaled weight has the same summability properties and everything works.
Since β < 0, for p > 2 the term β(p − 2)|∇u′

|
p−4(∇u′, ∇ṽ)2η2ṽβ−1 is negative and we have

βρ ′
|∇ṽ|

2η2ṽβ−1
+ β(p − 2)|∇u′

|
p−4(∇u′, ∇ṽ)2η2ṽβ−1

≤ βρ ′
|∇ṽ|

2η2ṽβ−1.

For 1 < p < 2 we can use the fact that β(p − 2) > 0 to show

βρ ′
|∇ṽ|

2η2ṽβ−1
+ β(p − 2)|∇u′

|
p−4(∇u′, ∇ṽ)2η2ṽβ−1

≤ (p − 1)βρ ′
|∇ṽ|

2η2ṽβ−1.

In conclusion, for every p > 1 we get that

min{1, p − 1}|β|

∫
Ω ′

ρ ′
|∇ṽ|

2η2ṽβ−1 ⩽ 2(p − 1)
∫

Ω ′

ρ ′ηṽβ
|∇ṽ| |∇η| +

∫
Ω ′

|c̄|η2ṽβ+1.

By the Young’s inequality 2(p − 1)ab ⩽ min{1, p − 1}|β|a2 \ 2 + 2(p − 1)2b2 \ |β|min{1, p − 1} we obtain

min{1, p − 1}
|β|

2

∫
Ω ′

ρ ′
|∇ṽ|

2η2ṽβ−1 ⩽
C2

|β|

∫
Ω ′

ρ ′ṽβ+1
|∇η|

2
+

∫
Ω ′

|c̄|η2ṽβ+1,

and by ‖c̄‖∞ < ∞∫
Ω ′

ρ ′
|∇ṽ|

2η2ṽβ−1 ⩽
C
|β|


1 +

1
|β|

 ∫
Ω ′

ṽβ+1
[η2

+ ρ ′
|∇η|

2
]. (3.12)

Let us now define

w ≡


ṽ

β+1
2 if β ≠ −1

log(ṽ) if β = −1

and set r ≡ β + 1. With these definitions we can write (3.12) as follows

∫
Ω ′

ρ ′η2
|∇w|

2 ⩽


C


1 +

1
|β|

2 ∫
Ω ′

w2
[η2

+ ρ ′
|∇η|

2
] β ≠ −1

C0

∫
Ω ′

[η2
+ ρ ′

|∇η|
2
] β = −1.

(3.13)

We have now that (3.13) is exactly (A.9) in [22]. We can therefore use the proof in [22] (from (A.9) to the end of the proof of
Theorem 3.1) and get that there exists C > 0 such that

‖ṽ‖Ls(B(0,2)) ≤ C inf
B(0,1)

ṽ.

Finally, scaling back to the coordinates x = x0 + Ry and recalling that ṽ = v′
+ ‖g̃‖∞ = v′

+ Rp
‖g‖∞ we get exactly

Eq. (3.9). �

Theorem 3.2. Let u be a solution of (1.1) and vi ∈ H0 be any eigenfunction of the linearized operator Lu. Assume that
2N+2
N+2 < p < ∞. There exists α ∈ (0, 1) such that vi ∈ C0,α

loc (Ω).

Proof. The eigenfunction v = vi solves∫
Ω

[|∇u|p−2(∇vi, ∇ϕ) + (p − 2)|∇u|p−4(∇u, ∇vi)(∇u, ∇ϕ) − (f ′(u) + µi)viϕ] = 0

for all ϕ ∈ H0. Define Mk ≡ supB(x0,kR) v and mk ≡ infB(x0,kR) v. Considering the functions M4 − v and v − m4, we see that
they are nonnegative supersolutions of (3.8) with c(x) = −f ′(u) − µi (resp. c(x) = f ′(u) + µi) and g(x) = M4(f ′(u) + µi)
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(resp. g(x) = m4(f ′(u) + µi)), which are both bounded. Hence by Theorem 3.1 they satisfy (3.9) for any 0 < s < χ , with
χ > 1. Now, applying Eq. (3.9) with s = 1 and adding up we can estimate

M4 − m4 = cnR−n
∫
B(x0,2R)

(M4 − v) + (v − m4) dx

≤ C

[(M4 − M1) + (m1 − m4)] + (M4 + m4)(‖f ′(u)‖∞ + |µi|)Rp.

Thus, if we set ω(kR) = Mk − mk and k(R) = 2M4(‖f ′(u)‖∞ + |µi|)Rp, we finally get the existence of γ > 0 such that

ω(R) ≤ γω(4R) + k(R). (3.14)

Since k(R) is non-decreasing for any R > 0, by (3.14) we can apply Lemma 8.23 page 201 of [24] to obtain that there exists
α ∈ (0, 1) such that

ω(R) ≤ CRα.

This yields to the desired Hölder regularity and concludes the proof. �

4. An application

We are now in position to follow the literature for the non-degenerate case and give the following

Definition 4.1. Let u be any solution of (1.1). We define the Morse index m(u) of u as the number of negative eigenvalues
of Lu in H0, i.e. m(u) = j iff µj(Lu) < 0 and µj+1(Lu) ≥ 0. We say that u is non-degenerate if 0 is not an eigenvalue of Lu,
i.e. µj(Lu) ≠ 0 for any j.

According to Theorem 1.1 theMorse index m(u) of u defined as above is exactly the maximal dimension of a subspace of
H0 where Lu is defined to be negative, the latter being a definition also used in a setting where a complete spectral theory is
not available (see for example [18]).

We can then prove the following

Proposition 4.2. Let u be a solution of (1.1) and Ω ⊂ RN be an annulus, N ≥ 2. Assume that either m(u) = 0 or u is non-
degenerate. Then, u is radially symmetric.

Proof. For simplicity, let us start considering the case N = 2. Taking into account the radial symmetry ofΩ , it is convenient
to write u = u(r, θ) in polar coordinates, where r = |x| and θ is the angular variable. Notice that, if u is not radial, uθ

necessarily changes sign in Ω . An explicit computation shows that there exists C = C(Ω,N) > 0 such that∫
Ω

|∇u|p−2
|∇uθ |

2
≤ C

∫
Ω

|∇u|p−2
|D2u|2, (4.15)

where uθ is considered as a function of the variables (x1, x2) ∈ R2. By [4] we know that uxi ∈ H for any i = 1, . . . ,N , so as
to provide the finiteness of the quantities in (4.15). Moreover, by the boundary conditions we see that uθ = 0 on ∂Ω .

This means that uθ ∈ H0, so that we can plug it into the linearized equation (1.2). Moreover, integrating by parts in polar
coordinates as in [4] (see Lemma 2.1), we have that

Lu(uθ , ϕ) = 0 ∀ ϕ ∈ H0. (4.16)

That is, uθ is an eigenfunction of the linearized operator with eigenvalue 0. In this way, either uθ = 0 in Ω or uθ is the first
eigenfunction of Lu and has constant sign in Ω . This necessarily implies that u is radially symmetric.

For N > 2, we can still write the solution u = u(r, θ) in polar coordinates, where r = |x| and θ = (θ1, . . . , θn−1) are
the n − 1 angular variables. Notice that, also in this case, if u is not radial, then uθi ≠ 0 and uθi changes sign, for some
i ∈ {1, . . . , n − 1}. We can repeat the argument above for uθi so as to show that necessarily u is radial. This concludes the
proof. �
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