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We study the Dirichlet boundary value problem −∆u = λf(x)
(1−u)2

on a bounded domain

Ω ⊂ RN . For 2 ≤ N ≤ 7, we characterize compactness for solutions sequence in terms
of spectral informations. As a by-product, we give an uniqueness result for λ close to 0
and λ∗ in the class of all solutions with finite Morse index, λ∗ being the extremal value
associated to the nonlinear eigenvalue problem.
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1. Introduction

Let us consider the following problem:

−∆u =

λf(x)
(1 − u)2

in Ω,

0 < u < 1 in Ω,

u = 0 on ∂Ω,

(1.1)

where λ ≥ 0, Ω ⊂ R
N is a bounded smooth domain and f ∈ C(Ω̄) is a nonnegative

function. We will say that u is a solution of (1.1) if u ∈ C1(Ω̄) ∩ W 2,2(Ω) satisfies
the equation a.e. in Ω with u = 0 on ∂Ω and 0 < u < 1 in Ω.

The equation models the stationary regime of a simple electrostatic Micro-
Electromechanical System (MEMS device), consisting of a thin dielectric elastic
membrane with boundary supported at 0 below a rigid plate located at +1 immersed
in an external electric field, where u is the (normalized) deflection of the elastic
membrane (see [7, 15] for a detailed discussion on MEMS devices). More generally,
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the model is described by a nonlinear parabolic problem which has been considered
by Ghoussoub and Guo in [9].

Problems as in (1.1) with smooth nonlinearities (for example of the form eu

or (1 + u)p for p > 1) have been largely studied in the last thirty years and
fine properties of the branch of minimal solutions have been established. We
refer to the seminal works [4, 11, 12] and to [3] for a complete account on the
topic.

In [8], Ghoussoub and Guo extended this analysis to problem (1.1) (see [10, 14]
for some interesting numerical results). Given λ∗ ∈ (0, +∞) the so-called extremal
value:

λ∗ = sup{λ > 0 : ∃u solution of (1.1)},
for any λ ∈ (0, λ∗), they proved the existence of the minimal solution uλ, namely:

uλ ≤ u for any solution u of (1.1).

The map λ → uλ is continuous and pointwise increasing for λ ∈ (0, λ∗). Moreover,
the minimal solution uλ is characterized as the unique semi-stable solution of (1.1)
(in the sense that the linearized operator is a positive operator, see also [13]).
Finally, they raised out the special role of dimension N = 7 for problem (1.1) by
means of some energy estimates: the minimal branch satisfies

sup
λ∈(0,λ∗)

‖uλ‖∞ < 1

for 1 ≤ N ≤ 7 and in general, this is not true anymore for N ≥ 8. For 1 ≤ N ≤ 7,
as λ → λ∗, the minimal branch uλ converges to u∗, the so-called extremal solution,
the unique solution of (1.1) with λ = λ∗. By [4], λ∗ is a turning point and a second
branch Uλ of solutions for (1.1) comes out from u∗ for λ close to λ∗ (Uλ is a
nondegenerate solution with Morse index 1).

Unless semi-stable solutions are concerned, it is in general very difficult to show
a priori bounds on the solutions energy and, for example, we were not able to
establish energy estimates along Uλ. In [5], we exploited that the Morse index is 1
along the second branch, by developing a different approach to face noncompactness
phenomena based on this spectral information. Since, in general, it is relatively
much easier to construct solutions satisfying good spectral information (for example,
by variational methods), assumption (1.3) below seems to be more natural than
energy bounds in the study of (1.1).

The approach in [5], based on some fine asymptotic analysis, provided compact-
ness along the second branch Uλ in the same low dimensions (compactness of the
minimal branch was also recovered).

The paper is a continuation and a strong improvement of the results in [5]. In
[5], the Morse index 1 of a solutions sequence un was used to ensure that blow up
at 1 can occur “essentially” only along the maximum points xn of un. Boundedness
on the Morse index allows the presence of multiple blow up points. By a careful
asymptotic analysis, we are able to overcome the related technical difficulties and,
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by a non existence result for singular solutions of (1.1), to show:

Theorem 1.1. Assume 2 ≤ N ≤ 7. Let f ∈ C(Ω̄) be such that :

f(x) =

(
k∏

i=1

|x − pi|αi

)
g(x), g(x) ≥ C > 0 in Ω, (1.2)

for some points pi ∈ Ω and exponents αi ≥ 0. Let {λn}n∈N be a sequence such that
λn → λ ∈ [0, λ∗] and let un be an associated solution such that :

sup
n∈N

m(un, λn) < +∞. (1.3)

Then,

sup
n∈N

‖un‖∞ < 1. (1.4)

Moreover, if in addition µ1,n := µ1,λn(un) < 0, then necessarily λ > 0.
Here and in the sequel, µk,λ(u) denotes the kth eigenvalue of Lu,λ = −∆− 2λf(x)

(1−u)3

with the convention that eigenvalues are repeated according to their multiplicities,
and the Morse index m(u, λ) is the number of negative eigenvalues of Lu,λ.

Estimate (1.4) will be sometimes referred to as a “compactness property” of the
solutions set of (1.1). Indeed, by elliptic regularity theory, for any k ∈ N the set
{u : u is a solution of (1.1), m(u, λ) ≤ k} is a compact set in Cm(Ω̄)-norm, where
m ≥ 1 depends on the regularity of f(x).

Let us do some comments. For 2 ≤ N ≤ 7 and f(x) = 1, Joseph and Lundgren
in [11] showed that the bifurcation diagram of (1.1) on the ball has exactly the
following form:

0
0

1
f(x) ≡ 1 and 2 ≤ N ≤ 7

||u||∞

λλ*λ

Fig. 1. Plots of ‖u‖∞ versus λ in the case f(x) = 1 on the unit ball and 2 ≤ N ≤ 7, where

λ∗ = 2(3N−4)
9
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Namely, there are infinitely many turning points oscillating around the value
λ∗ = 2(3N−4)

9 , the solutions number of (1.1) going to +∞ as λ approaches λ∗. For
2 ≤ N ≤ 7 and f(x) = |x|α, α ≥ 0, numerically the diagram above still holds on
the ball for λ∗ = (2+α)(3N+α−4)

9 (see the thorough discussion in [8]).
Problem (1.1) presents in general a rich structure of the solutions set. The

main goal now should be an existence theory for branches different from the first
two, with Morse index higher than 1. Compactness properties are in general useful
to establish existence results and Theorem 1.1 is a first step in the direction of an
existence theory. An hopeful approach could be based on the analysis directly along
the bifurcation diagram: any branch is characterized by a fixed Morse index and,
when an eigenvalue of the linearized operator along the branch crosses zero, we
have a “turning point” and the diagram turns into a new branch of higher Morse
index (by [4], this is the case for example of the first turning point λ∗).

In view of Theorem 1.1, we can show a posteriori the equivalence among energy
bounds and Morse index bounds. Indeed, we provide the following characterization
of blow up sequences un (in the sense of blow up of (1 − un)−1), to be compared
with [1, 2] in the context of polinomial subcritical nonlinearities:

Theorem 1.2. Assume 2 ≤ N ≤ 7. Let f ∈ C(Ω̄) be as in (1.2). Let {λn}n∈N be
a sequence such that λn → λ ∈ [0, λ∗] and let un be an associated solution. Then,

(1) max
Ω

un → 1 as n → +∞,

(2)
∫
Ω

(
f(x)

(1−un)3

)N
2 → +∞ as n → +∞,

(3) m(un, λn) → +∞ as n → +∞,

are equivalent.

As a direct consequence of Theorem 1.1, Theorems 1.3–1.4 below show that
some features of the bifurcation diagram on the ball hold for general domains. The
following uniqueness result was strongly expected to be true:

Theorem 1.3. Assume 2 ≤ N ≤ 7. Let f ∈ C(Ω̄) be as in (1.2). For any fixed
k ∈ N there exists δ > 0 small so that

(1) for λ ∈ (0, δ) the minimal solution uλ is the unique solution u of (1.1) with
m(u, λ) ≤ k;

(2) for λ ∈ (λ∗ − δ, λ∗) uλ and Uλ are the unique solutions u of (1.1) with
m(u, λ) ≤ k.

As far as point (1) in Theorem 1.3 is concerned, in [6], the authors show that
problem (1.1) on a two-dimensional annulus with f(x) = 1 has exactly two radial
solutions for any λ ∈ (0, λ∗). The second solution — the non minimal one — has
Morse index unbounded in a neighborhood of λ = 0.

Finally, based on a degree argument, we get the existence of a solutions sequence
un whose Morse index blows up (equivalently, by Theorem 1.2 the sequence blows
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up pointwise: maxΩ un → 1 as n → +∞):

Theorem 1.4. Assume 2 ≤ N ≤ 7. Let f ∈ C(Ω̄) be as in (1.2). There exist a
sequence {λn}n∈N and associated solution un of (1.1) so that

m(un, λn) → +∞ as n → +∞.
Let us point out that the equivalence among points (1) and (2) in Theorem

1.2 was already proven in [8] (even if it is not stated). Moreover, a weaker form of
Theorem 1.3, point (1), was already shown in [8] as uniqueness, for λ small, in the

class of solutions of bounded energy:
∫
Ω

( f(x)
(1−u)3

)N
2 ≤ k for some k > 0.

The paper is organized as follows. In [8], a regularity result for finite energy
solutions of (1.1) was proven. In Sec. 2, we extend it to discuss a nonhomoge-
neous Dirichlet version of (1.1), and to show a nonexistence result for solutions of
(1.1) with finite Morse index and finite singular set (where the solutions touch the
value 1). Improving the approach of [5] for the second branch, in Sec. 3, we describe
the asymptotic behavior of a general blowing up sequence un (i.e. maxΩ un → 1 as
n → +∞) to get a strong pointwise estimate on the right-hand side of (1.1). This
provides the uniform convergence of un in Ω to a limit singular solution u0 of (1.1)
having finite Morse index and finite singular set, which does not exist according to
the regularity statements of Sec. 2. In Sec. 4, we give proofs of Theorems 1.2–1.4.
For reader’s convenience, in Appendix A we briefly sketch the proof of some results
already proven in [5].

2. Regularity Properties

In this section, we establish some basic regularity results for the following boundary
value problem: 

−∆u =
f(x)

(1 − u)2
in Ω,

u = ū on ∂Ω,

(2.1)

where f ∈ C(Ω̄) satisfies (1.2) and ū ∈ C1(Ω̄) is such that 0 ≤ ū ≤ ‖ū‖∞ < 1.
Solutions u of (2.1) are to be considered in the following H1(Ω)-weak sense: u− ū ∈
H1

0 (Ω), f(x)
(1−u)2 ∈ H−1(Ω) and −∆u = f(x)

(1−u)2 in H−1(Ω), where H−1(Ω) is the dual
space of H1

0 (Ω).
The first regularity result we give is already contained in [8] for ū = 0. We

extend it to cover nonhomogeneous boundary values and we slightly improve the
original statement (for N = 2). The following holds:

Proposition 2.1. Let N ≥ 2. Let u be a H1(Ω)-weak solution of (2.1) so that

f

(1 − u)3
∈ L

N
2 (Ω). (2.2)

Then, u ∈ C1(Ω̄) and 0 < u ≤ ‖u‖∞ < 1.

Proof. First of all, by (2.2) the right-hand side of (2.1) is in L
3N
4 (Ω). Standard reg-

ularity theory implies that u ∈ C0, 2
3 (Ω̄). If u(x0) = 1 at some x0 ∈ Ω\{p1, . . . , pk},
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the Hölder continuity of u implies |1 − u(x)| = |u(x0) − u(x)| ≤ C|x − x0| 23 . Then,
for δ small (

inf
Bδ(x0)

f

)−N
2
∫

Bδ(x0)

∣∣∣∣ f

(1 − u)3

∣∣∣∣
N
2

≥
∫

Bδ(x0)

1

|1 − u| 3N
2

≥ 1
C

∫
Bδ(x0)

1
|x − x0|N = +∞,

in contradiction with (2.2). By continuity of u, ‖u‖∞ ≤ 1 and {x ∈ Ω : u(x) = 1} ⊂
{p1, . . . , pk}.

We want to show now that (2.2) implies:

(1 − u)−1 ∈ Lp(Ω) ∀ p > 1. (2.3)

Fix p > 1. Introduce Tku = min{u, 1−k}, the truncated function of u at level 1−k,
0 < k < 1.

Let us first discuss the case N = 2. For k small, take (1− Tku)−1 − (1− ū)−1 ∈
H1

0 (Ω) as a test function for (2.1):∫
Ω

|∇Tku|2
(1 − Tku)2

=
∫

Ω

∇u∇ū

(1 − ū)2
+
∫

Ω

f(x)
(1 − u)2

((1 − Tku)−1 − (1 − ū)−1)

≤
∫

Ω

∇u∇ū

(1 − ū)2
+
∫

Ω

f(x)
(1 − u)3

< +∞, (2.4)

because of (1 − Tku)−1 ≤ (1 − u)−1 for u ≤ 1 and (2.2). Classical consequence of
the Moser–Trudinger inequality is the following: there exists C > 0 so that∫

Ω

epv ≤ C exp
(

p2

16π
‖v‖2

H1
0(Ω)

)
∀ v ∈ H1

0 (Ω), p > 1. (2.5)

Since log
(

1−ū
1−Tku

) ∈ H1
0 (Ω) for k small, by (2.4) and (2.5) we get that for any p > 1:

∫
Ω

(1 − Tku)−p ≤ C

∫
Ω

(
1 − ū

1 − Tku

)p

≤ C exp

(
p2

16π

∫
Ω

∣∣∣∣∇ log
(

1 − ū

1 − Tku

)∣∣∣∣
2
)

≤ C,

where C denotes various positive constants depending only on p. Taking the limit
as k → 0, by u ≤ 1 we get the validity of (2.3).

The case N ≥ 3 is more involved. Since {u(x) = 1} is a finite set and u is
continuous, we get that |{1 − u ≤ ε}| → 0 as ε → 0+, and by (2.2):

∫
{1−u≤ε}

(
f(x)

(1 − u)3

)N
2

≤
(

p + 1
2p2

SN

)N
2

, (2.6)

for some ε > 0 small, where | · | stands for the Lebesgue measure and SN is the
Sobolev constant for the embedding of H1

0 (Ω) into L
2N

N−2 (Ω).
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For k small, take (1 − Tku)−p−1 − (1 − ū)−p−1 ∈ H1
0 (Ω) as a test function for

(2.1), and by (2.2) we get:

(p + 1)
∫

Ω

|∇Tku|2
(1 − Tku)p+2

= (p + 1)
∫

Ω

∇u∇ū

(1 − ū)p+2

+
∫

Ω

f(x)
(1 − u)2

((1 − Tku)−p−1 − (1 − ū)−p−1)

≤
∫

Ω

f(x)
(1 − u)3

(1 − Tku)−p + C. (2.7)

In view of (a + b)2 = a2 + b2 + 2ab ≤ (1 + δ)a2 + 1+δ
δ b2 for a, b ∈ R and δ > 0, we

deduce the following estimate:

(1 − Tku)−p ≤ (1 + δ)((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2

+
1 + δ

δ
(1 − ū)−p, δ > 0. (2.8)

Inserting (2.8) with δ = 1 into (2.7), we get:

(p + 1)
∫

Ω

|∇Tku|2
(1 − Tku)p+2

≤ 2
∫

Ω

f(x)
(1 − u)3

((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2 + C. (2.9)

By (2.9) we get that:∫
Ω

∣∣∇((1 − Tku)−
p
2 − (1 − ū)−

p
2 )
∣∣2

≤ 2
∫

Ω

∣∣∇((1 − Tku)−
p
2 )
∣∣2 + C =

p2

2

∫
Ω

|∇Tku|2
(1 − Tku)p+2

+ C

≤ p2

p + 1

∫
Ω

f(x)
(1 − u)3

((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2 + C

≤ p2

p + 1

∫
{1−u≤ε}

f(x)
(1 − u)3

((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2 + C,

where C denotes various positive constants depending only on ε and p. By Hölder
inequality, (2.6) and the Sobolev embedding on (1− Tku)−

p
2 − (1− ū)−

p
2 ∈ H1

0 (Ω),
finally we get that∫

Ω

∣∣∇((1 − Tku)−
p
2 − (1 − ū)−

p
2 )
∣∣2

≤ p2

p + 1

(∫
{1−u≤ε}

(
f(x)

(1 − u)3

)N
2
) 2

N

×
(∫

Ω

∣∣(1 − Tku)−
p
2 − (1 − ū)−

p
2
∣∣ 2N

N−2

)N−2
N

+ C

≤ 1
2

∫
Ω

∣∣∇((1 − Tku)−
p
2 − (1 − ū)−

p
2 )
∣∣2 + C.
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Hence, by Sobolev embedding:
(∫

Ω

|(1 − Tku)−
p
2 − (1 − ū)−

p
2 | 2N

N−2

)N−2
N

≤ S−1
N

∫
Ω

∣∣∇((1 − Tku)−
p
2 − (1 − ū)−

p
2 )
∣∣2 ≤ C,

and in turn ∫
Ω

(1 − Tku)−
pN

N−2 ≤ C,

where C > 0 does not depend on k. Taking the limit as k → 0, as before we get the
validity of (2.3).

Now property (2.3) implies ‖u‖∞ < 1. Indeed, if u(x0) = 1 for some x0 ∈ Ω,
then |1− u(x)| = |u(x0)− u(x)| ≤ C|x− x0| 23 , as already remarked. This is in con-
tradiction with (2.3) for p large. Since ‖u‖∞ < 1 implies that the right-hand side
of (2.1) is in Lp(Ω) for any p > 1, by elliptic regularity theory u ∈ C1(Ω̄) and then,
we can conclude by maximum principle (in a weak form) that 0 < u ≤ ‖u‖∞ < 1.

To cover nonhomogeneous boundary values, we adapt now the argument in [8]
to show energy estimates for semi-stable solutions of (2.1). Proposition 2.1 applies
to provide:

Proposition 2.2. Let 2 ≤ N ≤ 7. Let u be a H1(Ω)-weak solution of (2.1) so that
‖u‖∞ ≤ 1 and ∫

Ω

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2

)
≥ 0, ∀φ ∈ H1

0 (Ω). (2.10)

Then, u ∈ C1(Ω̄) and 0 < u ≤ ‖u‖∞ < 1.

Proof. We will show that (2.10) gives energy estimates sufficiently good for 2 ≤
N ≤ 7. First of all, let us remark that (2.1) on u − ū ∈ H1

0 (Ω) gives:∫
Ω

f(x)
(1 − u)2

≤ C

∫
Ω

f(x)
(1 − u)2

(1 − ū)

= C

(∫
Ω

∇u∇(u − ū) +
∫

Ω

f(x)
1 − u

)

≤ C

(
‖u‖H1

0
‖u − ū‖H1

0
+ ε

∫
Ω

f(x)
(1 − u)2

+
1
4ε

∫
Ω

f(x)
)

for any ε > 0, because of the inequality ab ≤ εa2 + 1
4εb

2. Hence, for ε = 1
2C we get:∫

Ω

f(x)
(1 − u)2

≤ 1
2

∫
Ω

f(x)
(1 − u)2

+ C′
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for some C′ > 0, and then,
∫
Ω

f(x)
(1−u)2 < +∞. Now, (2.10) on u − ū ∈ H1

0 (Ω)
gives that∫

Ω

f(x)
(1 − u)3

≤ 2C

∫
Ω

f(x)
(1 − u)3

(1 − ū)2

≤ C

(∫
Ω

|∇(u − ū)|2 +
∫

Ω

2f(x)
1 − u

+
∫

Ω

4f(x)
(1 − u)2

(u − ū)
)

= C

(∫
Ω

|∇(u − ū)|2 +
∫

Ω

2f(x)
1 − u

+ 4
∫

Ω

∇u∇(u − ū)
)

≤ C.

Fix 0 < p < 4 + 2
√

6 in order to have 2 − p2

4(p+1) > 0. Introduce, as in the previous
proof, Tku = min{u, 1 − k}, 0 < k < 1. For k small, taking (1 − Tku)−p−1−
(1 − ū)−p−1 ∈ H1

0 (Ω) as a test function in (2.1) we get:

(p + 1)
∫

Ω

( |∇Tku|2
(1 − Tku)p+2

− ∇u∇ū

(1 − ū)p+2

)

=
∫

Ω

f(x)
(1 − u)2

((1 − Tku)−p−1 − (1 − ū)−p−1). (2.11)

Moreover, by (2.10) and the simple inequality (a + b)2 ≤ (1 + δ)a2 + 1+δ
δ b2

we get:

2
∫

Ω

f(x)
(1 − u)3

((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2

≤
∫

Ω

∣∣∇((1 − Tku)−
p
2 − (1 − ū)−

p
2 )
∣∣2

≤ p2

4
(1 + δ)

∫
Ω

|∇Tku|2
(1 − Tku)p+2

+ C

≤ p2

4
(1 + δ)

∫
Ω

( |∇Tku|2
(1 − Tku)p+2

− ∇u∇ū

(1 − ū)p+2

)
+ C, (2.12)

for some C > 0 depending on p and δ > 0. Inserting (2.11) into (2.12) and using
(1 − Tku)−1 ≤ (1 − u)−1 for u ≤ 1, we get that

2
∫

Ω

f(x)
(1 − u)3

((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2

≤ p2(1 + δ)
4(p + 1)

∫
Ω

f(x)
(1 − u)2

((1 − Tku)−p−1 − (1 − ū)−p−1) + C

≤ p2(1 + δ)
4(p + 1)

∫
Ω

f(x)
(1 − u)3

(1 − Tku)−p + C

≤ p2(1 + δ)2

4(p + 1)

∫
Ω

f(x)
(1 − u)3

((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2 + C
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in view of (2.8), where C > 0 does not depend on k. Since p < 4+2
√

6, 2− p2(1+δ)2

4(p+1) >

0 for δ small and then,∫
Ω

f(x)
(1 − u)3

(1 − Tku)−p ≤ 2
∫

Ω

f(x)
(1 − u)3

((1 − Tku)−
p
2 − (1 − ū)−

p
2 )2 + C ≤ C

for some C > 0 not depending on k. Taking the limit as k → 0, we get that∫
Ω

f(x)
(1 − u)3+p

≤ C,

and then, f
(1−u)3 ∈ L

3+p
3 (Ω) for any 0 < p < 4+2

√
6. Since N

2 < 1
3

(
3 + (4 + 2

√
6)
)

for 2 ≤ N ≤ 7, we get the validity of (2.2) and hence, applying Proposition 2.1 the
proof is complete.

We conclude the section providing a non existence result for solutions of (2.1)
with finite Morse index and finite singular set. We have that:

Theorem 2.3. Let 2 ≤ N ≤ 7. Let u ∈ C(Ω̄) be a H1(Ω)-weak solution of (2.1)
so that ‖u‖∞ ≤ 1 and the singular set S = {x ∈ Ω : u(x) = 1} is a nonempty set.
Assume that u has finite Morse index : there exists a finite dimensional subspace
T ⊂ H1

0 (Ω) so that∫
Ω

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2

)
≥ 0,

for any φ ∈ T⊥ =
{

φ ∈ H1
0 (Ω) :

∫
Ω

∇φ∇ψ = 0 ∀ψ ∈ T

}
. (2.13)

Then, the singular set S has no isolated points.

Proof. Assume by contradiction that x0 ∈ S is an isolated point of S. Let δ0 be
such that B2δ0(x0) ∩ S = {x0}. We want to show that:∫

Bδ

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2

)
≥ 0, for any φ ∈ H1

0 (Bδ), (2.14)

for some 0 < δ ≤ δ0 small, where Bδ := Bδ(x0).
By contradiction, assume that (2.14) is false for any 0 < δ ≤ δ0. Then, there

exists φ0 ∈ C∞
0 (Bδ0) such that∫

Bδ0

(
|∇φ0|2 − 2f(x)

(1 − u)3
φ2

0

)
< 0. (2.15)

We can assume that φ0 = 0 in Bδ for some 0 < δ < δ0 small. Indeed, let us replace
φ0 with a truncated function φδ, δ > 0 small, so that (2.15) is still true while φδ = 0
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in Bδ. Set φδ = χδφ0, where χδ is a cut-off function defined as:

χδ(x) =




0 |x − x0| ≤ δ,

2
(

1 − log |x − x0|
log δ

)
δ ≤ |x − x0| ≤

√
δ,

1 |x − x0| ≥
√

δ.

By Fatou’s Lemma, we have:∫
Bδ0

2f(x)
(1 − u)3

φ2
0 ≤ lim inf

δ→0

∫
Bδ0

2f(x)
(1 − u)3

φ2
δ . (2.16)

For the gradient term, we have the expansion:∫
Bδ0

|∇φδ|2 =
∫

Bδ0

φ2
0|∇χδ|2 +

∫
Bδ0

χ2
δ|∇φ0|2 + 2

∫
Bδ0

χδφ0∇χδ∇φ0.

The following estimates hold:

0 ≤
∫

Bδ0

φ2
0|∇χδ|2 ≤ 4‖φ0‖2

∞

∫
δ≤|x−x0|≤

√
δ

1
|x − x0|2 log2 δ

≤ C

log 1
δ

and ∣∣∣∣∣2
∫

Bδ0

χδφ0∇χδ∇φ0

∣∣∣∣∣ ≤ 4‖φ0‖∞‖∇φ0‖∞
log 1

δ

∫
B1(0)

1
|x| ,

and provide by Lebesgue’s Theorem:∫
Bδ0

|∇φδ|2 →
∫

Bδ0

|∇φ0|2 as δ → 0. (2.17)

Combining (2.16) and (2.17), we get that:∫
Bδ0

(
|∇φδ|2 − 2f(x)

(1 − u)3
φ2

δ

)
< 0

for δ > 0 sufficiently small.
In this way, we find 0 < δ1 < δ0 small and φ0 ∈ C0(Bδ0\Bδ1) ∩ H1

0 (Ω) such
that (2.15) holds. Since by contradiction we are assuming that (2.14) is false for
any δ > 0, we can iterate now the argument to find a strictly decreasing sequence
δn and φn ∈ C0(Bδn\Bδn+1) ∩ H1

0 (Ω) such that:∫
Bδn

(
|∇φn|2 − 2f(x)

(1 − u)3
φ2

n

)
< 0.

Since {φn}n∈N are mutually ortogonal having disjoint supports, we have found an
infinite dimensional set M = Span{φn : n ∈ N} ⊂ H1

0 (Ω) so that∫
Ω

(
|∇φ|2 − 2f(x)

(1 − u)3
φ2

)
< 0 ∀φ ∈ M.

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
00

8.
10

:1
7-

45
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 R

O
M

A
 T

R
E

 U
N

IV
E

R
SI

T
Y

 B
IB

L
IO

T
E

C
A

 D
I 

A
R

E
A

 S
C

IE
N

T
IF

IC
O

-T
E

C
N

O
L

O
G

IC
A

 o
n 

10
/1

7/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 28, 2008 10:18 WSPC/152-CCM 00269

28 P. Esposito

Since M is an infinite dimensional subspace of H1
0 (Ω), we have that M ∩ T⊥ 
= ∅,

in contradiction with (2.13). Hence, (2.14) holds for some δ = δ(x0) ≤ δ0.
By elliptic regularity theory, we get that u ∈ C1

loc(B2δ0\{x0}). Since u ∈
C1(∂Bδ) and max∂Bδ

u < 1 in view of 0 < δ ≤ δ0, we extend it on Bδ as a
function ū ∈ C1(B̄δ) satisfying 0 ≤ ū ≤ ‖ū‖∞,Bδ

< 1. Since (2.14) holds on Bδ, we
can apply Proposition 2.2 to get that ‖u‖∞,Bδ

< 1, contradicting u(x0) = 1. Hence,
S has no isolated points.

3. Compactness Issues

In this section, we turn to the compactness result stated in Theorem 1.1. We follow
the approach developed in [5] to prove compactness of the second branch of solu-
tions. To deal with higher branches, we improve the argument to discuss multiple
blow up (for the second branch the blow up occurs only at the maximum point).

Let 2 ≤ N ≤ 7. Assume that f ∈ C(Ω̄) is in the form (1.2), and let (un)n

be a solutions sequence of (1.1) associated to λn → λ ∈ [0, λ∗]. Since we want to
show that supn∈N ‖un‖∞ < 1, by contradiction and up to a subsequence, we will
assume all along the section that un(xn) = maxΩ un → 1− as n → +∞, xn being
a maximum point of un.

3.1. A blow-up approach

Let yn ∈ Ω be a sequence of points so that un(yn) → 1− as n → +∞. Set µn =
1−un(yn). As we will see later, for our purposes it is not restrictive to assume that
µ3

nλ−1
n → 0 and yn → p ∈ Ω̄ as n → +∞. Depending on the location of p and the

rate of |yn−p|, the length scale to see around yn some nontrivial limit profile is the
following:

rn =




µ
3
2
n λ

− 1
2

n if p /∈ Z

µ
3
2
n λ

− 1
2

n |yn − pi|−
αi
2 if p = pi, µ−3

n λn|yn − pi|αi+2 → +∞ as n → +∞
µ

3
2+αi
n λ

− 1
2+αi

n if lim sup
n→+∞

µ−3
n λn|yn − pi|αi+2 < +∞,

(3.1)

where Z = {p1, . . . , pk} is the zero set of the potential f(x) and α1, . . . , αk are the
related multiplicities given by (1.2). Let us remark that µ3

nλ−1
n → 0 implies rn → 0

as n → +∞.
Only to give an idea, let us establish the following rough correspondence: the

first situation in the definition of rn corresponds to a blow up at some point outside
Z, the second one to a “slow” blow up at some pi ∈ Z, while the third one is a
“fast” blow at some pi ∈ Z. Let us now introduce the following rescaled function
around yn:

Un(y) =
1 − un(rny + yn)

µn
, y ∈ Ωn =

Ω − yn

rn
.
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Since Un(0) = 1 by construction, in order to get a limit profile equation we
should add a condition avoiding vanishing on compact sets of Ωn. Let us remark
that, for xn the maximum point of un and εn = 1−un(xn), the associated rescaled
function Un satisfies: Un ≥ Un(0) = 1 in Ωn.

Proposition 3.1. Assume that

µ3
nλ−1

n (dist(yn, ∂Ω))−2 → 0 as n → +∞ (3.2)

and

Un ≥ C > 0 in Ωn ∩ BRn(0), (3.3)

for some Rn → +∞ as n → +∞. Then, up to a subsequence, Un → U in C1
loc(R

N ),
where U is a solution of the equation:


∆U = s

|y + y0|γ
U2

in RN ,

U(y) ≥ C > 0 in R
N ,

(3.4)

for some s > 0, γ ∈ {0, α1, . . . , αk} and y0 ∈ R
N (depending on the type of blow

up). Moreover, there exists a function φn ∈ C∞
0 (Ω) such that :∫

Ω

(
|∇φn|2 − 2λnf(x)

(1 − un)3
φ2

n

)
< 0 (3.5)

and Supp φn ⊂ BMrn(yn) for some M > 0.

To establish property (3.5), it will be crucial the knowledge of the linear insta-
bility for solutions of (3.4) in low dimensions:

Theorem 3.2 ([5]). Assume either 1 ≤ N ≤ 7 or N ≥ 8, γ > 3N−14−4
√

6
4+2

√
6

. Let U

be a solution of 


∆U =
|y|γ
U2

in R
N ,

U(y) ≥ C > 0 in R
N .

(3.6)

Then,

µ1(U) = inf
{∫

RN

(
|∇φ|2 − 2|y|γ

U3
φ2

)
; φ ∈ C∞

0 (RN ) and
∫

RN

φ2 = 1
}

< 0. (3.7)

Moreover, if N ≥ 8 and 0 ≤ γ ≤ 3N−14−4
√

6
4+2

√
6

, then there exists at least a solution
U of (3.6) such that µ1(U) ≥ 0.

For the sake of completeness, we will sketch the proof of Theorem 3.2 in
Appendix A.
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Proof of Proposition 3.1. First of all, let us remark that (3.2) implies µ3
nλ−1

n →
0, and then rn → 0 as n → +∞. If p ∈ ∂Ω, we have that rn = µ

3
2
n λ

− 1
2

n and, by (3.2)

dist(0, ∂Ωn) =
dist(yn, ∂Ω)

rn
=
(
µ3

nλ−1
n (dist(yn, ∂Ω))−2

)− 1
2 → +∞

as n → +∞. Arguing in a simpler way if p ∈ Ω, we get that Ωn → R
N as n → +∞.

Introduce the following notation

fi(x) =


 k∏

j=1, j 	=i

|x − pj |αj


 g(x). (3.8)

The function Un satisfies ∆Un = fn(y)
U2

n
in Ωn, where fn(y) is given by:

fn =




f(rny + yn) if p /∈ Z
˛
˛
˛
˛

rn

|yn − pi|y +
yn − pi

|yn − pi|
˛
˛
˛
˛

αi

fi(rny + yn) if p = pi, µ−3
n λn|yn − pi|αi+2 → +∞

as n → +∞
˛
˛
˛
˛
y +

yn − pi

rn

˛
˛
˛
˛

αi

fi(rny + yn) if lim sup
n→+∞

µ−3
n λn|yn − pi|αi+2 < +∞,

(3.9)

and p = limn→+∞ yn. Only in the latter situation lim supn→+∞ µ−3
n λn|yn −

pi|αi+2 < +∞, up to a subsequence assume that

yn − pi

rn
→ y0 as n → +∞. (3.10)

Let R > 0. For n large, decompose Un = Un,1 + Un,2, where Un,2 satisfies:{
∆Un,2 = ∆Un in BR(0),
Un,2 = 0 on ∂BR(0).

Since (3.3) implies 0 ≤ ∆Un ≤ CR on BR(0), by elliptic regularity theory we get
that Un,2 is uniformly bounded in C1,β(BR(0)), β ∈ (0, 1). Since Un,1 = Un ≥ C on
∂BR(0), by harmonicity Un,1 ≥ C in BR(0). Since Un(0) = 1, by Harnack inequality
we get:

sup
BR/2(0)

Un,1 ≤ CR inf
BR/2(0)

Un,1 ≤ CRUn,1(0)

= CR (1 − Un,2(0)) ≤ CR

(
1 + sup

n∈N

|Un,2(0)|
)

< ∞.

Hence, Un,1 is uniformly bounded in C1,β(BR/4(0)), β ∈ (0, 1). Since Un = Un,1 +
Un,2 is uniformly bounded in C1,β(BR/4(0)) for any R > 0, by a diagonal process
and up to a subsequence, we get that Un → U in C1

loc(R
N ). According to the

three situations described in the definition (3.9) of fn, the function U ≥ C > 0
is a solution of (3.4) with: s = f(p), γ = 0 in the first case; s = fi(p), γ = 0

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
00

8.
10

:1
7-

45
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 R

O
M

A
 T

R
E

 U
N

IV
E

R
SI

T
Y

 B
IB

L
IO

T
E

C
A

 D
I 

A
R

E
A

 S
C

IE
N

T
IF

IC
O

-T
E

C
N

O
L

O
G

IC
A

 o
n 

10
/1

7/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 28, 2008 10:18 WSPC/152-CCM 00269

Compactness of a Nonlinear Eigenvalue Problem with a Singular Nonlinearity 31

in the second case; s = fi(p), γ = αi and y0 as in (3.10) in the third case. Set
f∞(y) := limn→+∞ fn(y) = s|y + y0|γ .

Since 2 ≤ N ≤ 7 and s > 0, by Theorem 3.2 we get that µ1(U) < 0 and then,
we find φ ∈ C∞

0 (RN ) so that:∫ (
|∇φ|2 − 2f∞(y)

U3
φ2

)
< 0.

Define now φn(x) = r
− N−2

2
n φ(x−yn

rn
). We have that:∫

Ω

(
|∇φn|2 − 2λnf(x)

(1 − un)3
φ2

n

)

=
∫ (

|∇φ|2 − 2fn(y)
U3

n

φ2

)
→
∫ (

|∇φ|2 − 2f∞(y)
U3

φ2

)
< 0

as n → +∞, since φ has compact support and Un → U in C1
loc(R).

Remark 3.1. In case of fast blow up at pi: lim supn→+∞ µ−3
n λn|yn−pi|αi+2 < +∞,

Proposition 3.1 is still true if, instead of condition (3.3), we assume:

Un ≥ C

∣∣∣∣y +
yn − pi

rn

∣∣∣∣
αi
3

in Ωn ∩ BRn(0), (3.11)

for some Rn → +∞ as n → +∞ and C > 0. Recall that in this situation rn =

µ
3

2+αi
n λ

− 1
2+αi

n . By (3.11), we get easily that on Ωn ∩ BRn(0):

0 ≤ ∆Un ≤ C

∣∣∣∣y +
yn − pi

rn

∣∣∣∣
αi
3

.

Given R > 0, then 0 ≤ ∆Un ≤ CR on BR(0) for n large. Arguing as in the proof
of Proposition 3.1, up to a subsequence, we get that Un → U in C1

loc(R
N ), where

U ∈ C1(RN ) ∩ C2(RN\{−y0}) is a solution of the equation


∆U = |y + y0|αi
fi(pi)
U2

in R
N\{−y0},

U(y) ≥ C|y + y0|
αi
3 in R

N .

By Hopf Lemma, we have that U(−y0) > 0. Indeed, let B some ball so that
−y0 ∈ ∂B and assume by contradiction that U(−y0) = 0. Since

−∆U + c(y)U = 0 in B, U ∈ C2(B) ∩ C(B̄), U(y) > U(−y0) in B,

and c(y) = fi(pi)
|y+y0|αi

U3 ≥ 0 is a bounded function, by Hopf Lemma we get
that ∂νU(−y0) < 0, where ν is the unit outward normal of B. Hence, along the
outward normal direction of B at −y0 U becomes negative in contradiction with
the positivity of U . Hence, U(−y0) > 0 and U(y) ≥ C := infRN U(y) > 0 in R

N .
The argument now goes as in the proof of Proposition 3.1.
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3.2. A pointwise estimate

Let us assume now the validity of (1.3), namely m(un, λn) ≤ k for any n ∈ N and
some k ∈ N. This information, combined with Proposition 3.1, will permit us to
control the blow up behavior of un. Indeed, the following pointwise estimate on un

is available:

Theorem 3.3. Assume 2 ≤ N ≤ 7. Let f ∈ C(Ω̄) be as in (1.2). Let un be a
solution of (1.1) associated to λn ∈ [0, λ∗]. Assume that λn → λ and un(xn) =
maxΩ un → 1 as n → +∞. Then, up to a subsequence, there exist constants C > 0,

N0 ∈ N and m-sequences x1
n, . . . , xm

n , m ≤ k, such that

1 − un(x) ≥ Cλ
1
3
n (d(x)α)

1
3 dn(x)

2
3 , ∀x ∈ Ω, ∀n ≥ N0, (3.12)

where d(x)α := min{|x − pi|αi : i = 1, . . . , k} is a “distance function” from Z and
dn(x) = min{|x − xi

n| : i = 1, . . . , m} is the distance function from {x1
n, . . . , xm

n }.
More precisely, letting ri

n be associated to xi
n by means of (3.1), for any i, j =

1, . . . , m, i 
= j, there holds:

(εi
n)3λ−1

n → 0, U i
n(y) =

1 − un(ri
ny + xi

n)
εi

n

→U i(y) in C1
loc(R

N ),
ri
n + rj

n

|xi
n − xj

n|
→ 0

(3.13)

as n → +∞, where εi
n := 1 − un(xi

n) and U i satisfies an equation of type (3.4). In
addition, there exist m-sequences of test functions φ1

n, . . . , φm
n ∈ C∞

0 (Ω) so that∫
Ω

(
|∇φi

n|2 −
2λnf(x)
(1 − un)3

(φi
n)2
)

< 0, Supp φi
n ⊂ BMri

n
(xi

n), ∀ i = 1, . . . , m,

(3.14)

for some M > 0 large.

Proof. Let εn = 1−un(xn), where xn is a maximum point of un. By the inequality

0 ≤ λnf(x)
(1 − un)2

≤ λn

ε2
n

‖f‖∞,

we get that:

ε3
nλ−1

n → 0 as n → +∞. (3.15)

By contradiction, if ε3
nλ−1

n ≥ δ > 0 along a subsequence, the right-hand side
of (1.1) would converge uniformly to zero as n → +∞ and, by elliptic regularity
theory, un → u in C1(Ω̄) (up to a further subsequence), where u is an harmonic
function so that u = 0 on ∂Ω, maxΩ u = 1. A contradiction. Hence, (3.15) must
hold.

As needed in Proposition 3.1, (3.15) now implies:

ε3
nλ−1

n (dist(xn, ∂Ω))−2 → 0 as n → +∞. (3.16)
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In order to prove it, we will use the following lemma and we refer to Appendix A
for the proof:

Lemma 3.4. Let An be a bounded domain in R
N so that An → T as n → +∞,

where T is an hyperspace so that 0 ∈ T and dist(0, ∂T ) = 1. Let hn be a function
on An and Wn be a solution of :


∆Wn =

hn(y)
W 2

n

in An,

Wn(y) ≥ C > 0 in An,

Wn(0) = 1,

(3.17)

for some C > 0. Assume that supn∈N
‖hn‖∞ < +∞ and ∂An ∩ B2(0) is smooth.

Then, either

min
∂An∩B2(0)

Wn ≤ C (3.18)

or

min
∂An∩B2(0)

∂νWn ≤ 0, (3.19)

where ν is the unit outward normal of An.

Assume by contradiction that (3.16) is false, namely, up to a subsequence,
ε3

nλ−1
n d−2

n → δ > 0 as n → +∞, where dn := dist(xn, ∂Ω). In view of (3.15),
we get dn → 0 as n → +∞. Introduce a rescaled function Wn:

Wn(y) =
1 − un(dny + xn)

εn
, y ∈ An =

Ω − xn

dn
.

Since dn → 0 and

dist(0, ∂Ωn) =
dist(xn, ∂Ω)

dn
= 1,

we get that An → T as n → +∞, where T is an hyperspace so that 0 ∈ T and
dist(0, ∂T ) = 1. The function Wn solves problem (3.17) with hn(y) = λnd2

n

ε3
n

f(dny +
xn) and C = Wn(0) = 1. We have that for n large:

‖hn‖∞ ≤ λnd2
n

ε3
n

‖f‖∞ ≤ 2
δ
‖f‖∞.

Since Wn = 1
εn

→ +∞ on ∂An, by Lemma 3.4 we get that (3.19) must hold. A
contradiction to Hopf Lemma applied to un. Hence, the validity of (3.16).

Let rn be associated to xn according to (3.1). Up to a subsequence, Proposition
3.1 gives:

1 − un(rny + xn)
εn

→ U(y) in C1
loc(R

N ) as n → +∞,

where U satisfies an equation of type (3.4), and provides the existence of φn ∈
C∞

0 (Ω) such that (3.5) holds with Supp φn ⊂ BMrn(xn), M > 0.
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Let now x1
n = xn, ε1

n = εn, r1
n = rn, U1 = U and φ1

n = φn. If (3.12) is true for
some subsequence of un with x1

n, we take m = 1 and the proof is done. Otherwise,
we proceed by an inductive method. Indeed, assume that, up to a subsequence, we
have already found l-sequences x1

n, . . . , xl
n, associated r1

n, . . . , rl
n (defined by (3.1))

and test functions φ1
n, . . . , φl

n ∈ C∞
0 (Ω) so that (3.13) and (3.14) hold at lth step.

If (3.12) holds for some subsequence of un with x1
n, . . . , xl

n, we take m = l and
the proof is done. Otherwise, up to a subsequence, we will show the existence of
xl+1

n , rl+1
n and φl+1

n so that (3.13) and (3.14) are still true at (l + 1)th step. Since
(3.13) and (3.14) at lth step imply that φ1

n, . . . , φl
n have mutually disjoint compact

supports, we get that m(un, λn) ≥ l. Then, by (1.3) the inductive process must
stop after a finite number of steps, say m steps, with m ≤ k, and (3.12) holds with
x1

n, . . . , xm
n .

In order to complete the proof, we need to show how the induction process
works. Assume that (3.13) and (3.14) hold at lth step and (3.12) is not true for any
subsequence of un with x1

n, . . . , xl
n. Let xl+1

n ∈ Ω be such that

λ
− 1

3
n

(
d(xl+1

n )α
)− 1

3 dn(xl+1
n )−

2
3 (1 − un(xl+1

n ))

= λ
− 1

3
n min

x∈Ω
((d(x)α)−

1
3 dn(x)−

2
3 (1 − un(x))) → 0 (3.20)

as n → +∞, where dn(x) is the distance function from {x1
n, . . . , xl

n}. Let εl+1
n :=

1 − un(xl+1
n ).

Formula (3.20) gives a lot of informations about the blow up around xl+1
n . First

of all, it can be rewritten in the more convenient form:

(εl+1
n )

3
2 λ

− 1
2

n

|xl+1
n − xi

n| |xl+1
n − pj |

αj
2

→ 0 as n → +∞, ∀ i = 1, . . . , l, j = 1, . . . , k. (3.21)

The inductive assumption gives ri
n+rj

n

|xi
n−xj

n| → 0 as n → +∞ for any i, j = 1, . . . , l,

i 
= j. Then, by definition of rj
n we get for |y| ≤ R and n ≥ nR:

λ
− 1

3
n (d(rj

ny + xj
n)α)−

1
3 dn(rj

ny + xj
n)−

2
3 (1 − un(rj

ny + xj
n))

=




(d(rj
ny + xj

n)α)−
1
3 |y|− 2

3 U j
n(y) if xj

n → p /∈ Z

∣∣∣ rj
n

|xj
n−pi|y + xj

n−pi

|xj
n−pi|

∣∣∣−αi
3 |y|− 2

3 U j
n(y) if xj

n → pi ∈ Z,

(εj
n)−3λn|xj

n − pi|αi+2 → +∞
|y + (rj

n)−1(xj
n − pi)|−

αi
3 |y|− 2

3 U j
n(y) if (εj

n)−3λn|xj
n − pi|αi+2 ≤ C

for any j = 1, . . . , l. By inductive assumption, we have that U j
n(y) =

1−un(rj
ny+xj

n)

εj
n

→ U j(y) in C1
loc(R

N ) as n → +∞ for any j = 1, . . . , l. Associating
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(eventually) to xj
n the limit point y0 as in (3.10), we get that:

λ
− 1

3
n

(
d(rj

ny + xj
n)α
)− 1

3 dn(rj
ny + xj

n)−
2
3(1 − un(rj

ny + xj
n))

→




(d(p)α)−
1
3 |y|− 2

3 U j(y) if xj
n → p /∈ Z

|y|− 2
3 U j(y) if xj

n → pi ∈ Z, (εj
n)−3λn|xj

n − pi|αi+2 → +∞
|y + y0|−

αi
3 |y|− 2

3 U j(y) if (εj
n)−3λn|xj

n − pi|αi+2 ≤ C

uniformly for |y| ≤ R as n → +∞. Since U j is bounded away from zero, then (3.20)
gives also that xl+1

n cannot asymptotically lie in balls centered at xi
n of radius ≈ ri

n,
i = 1, . . . , l, namely:

ri
n

|xl+1
n − xi

n|
→ 0 as n → +∞, ∀ i = 1, . . . , l. (3.22)

Finally, the choice of xl+1
n as a minimum point in (3.20) gives that:

1 − un(βny + xl+1
n )

εl+1
n

≥
(

d(βny + xl+1
n )α

d(xl+1
n )α

) 1
3
(

dn(βny + xl+1
n )

dn(xl+1
n )

) 2
3

, (3.23)

for any sequence βn. Indeed, by the following chain of estimates:

εl+1
n ≤ (d(xl+1

n )α)
1
3 dn(xl+1

n )
2
3 min

x∈Ω
((d(x)α)−

1
3 dn(x)−

2
3 (1 − un(x)))

≤ (d(xl+1
n )α)

1
3 dn(xl+1

n )
2
3 (d(βny + xl+1

n )α)−
1
3

× dn(βny + xl+1
n )−

2
3 (1 − un(βny + xl+1

n )),

the validity of (3.23) follows. Here and in the sequel of the proof, the crucial point
to establish the validity of (3.3) (or (3.11)) for suitable rescaled functions around
xl+1

n is exactly given by the validity of (3.23). By (3.21), we get that in particular
(εl+1

n )3λ−1
n → 0 as n → +∞. We need now to discuss all the possible types of blow

up at xl+1
n .

1st Case. Assume that xl+1
n → q /∈ Z. Then, |xl+1

n − pj| ≥ C > 0 for any j =
1, . . . , k which reduces (3.21) to:

(εl+1
n )

3
2 λ

− 1
2

n

|xl+1
n − xi

n|
→ 0 as n → +∞, ∀ i = 1, . . . , l. (3.24)

In order to apply Proposition 3.1 to xl+1
n , first of all we need to show that (3.2)

holds for xl+1
n :

(εl+1
n )3λ−1

n (dist(xl+1
n , ∂Ω))−2 → 0 as n → +∞.

We proceed exactly as in the proof of (3.16). By contradiction, up to a subsequence,
assume that (εl+1

n )3λ−1
n d−2

n → δ > 0 as n → +∞, where dn = dist(xl+1
n , ∂Ω) (do
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not confuse dn with dn(x)), and then by (3.24):

dn

|xl+1
n − xi

n|
=

dn

(εl+1
n )

3
2 λ

− 1
2

n

(εl+1
n )

3
2 λ

− 1
2

n

|xl+1
n − xi

n|

≤ 2√
δ

(εl+1
n )

3
2 λ

− 1
2

n

|xl+1
n − xi

n|
→ 0 as n → +∞, ∀ i = 1, . . . , l.

Let Mn =
(dn(xl+1

n )
dn

) 1
2 → +∞ as n → +∞. We introduce the rescaling Wn of un in

the form:

Wn(y) =
1 − un(dny + xl+1

n )
εl+1

n

for y ∈ An =
Ω − xl+1

n

dn
∩ BMn(0).

Since dn = dist(xl+1
n , ∂Ω) → 0 and Mn → +∞, we get that An → T as

n → +∞, where T is an hyperspace so that 0 ∈ T and dist(0, ∂T ) = 1. Since
{dny + xl+1

n : y ∈ An} is uniformly far away from Z = {p1, . . . , pk}, by (3.23) we
get for Wn (here, βn is exactly dn):

Wn(y) ≥ C0

(
1 − dnMn

dn(xl+1
n )

) 2
3

≥ C0

2

for any n large and y ∈ An. We have used here the following estimate:

dn(βny + xl+1
n )

dn(xl+1
n )

= min
{∣∣∣∣xl+1

n − xi
n

dn(xl+1
n )

+
βn

dn(xl+1
n )

y

∣∣∣∣ : i = 1, . . . , l

}

≥ 1 − βn

dn(xl+1
n )

|y|. (3.25)

Hence, the function Wn solves problem (3.17) with hn(y) = λnd2
n

(εl+1
n )3

f(dny+xl+1
n )

and C = C0
2 . Since

‖hn‖∞ ≤ λnd2
n

(εl+1
n )3

‖f‖∞ ≤ 2
δ
‖f‖∞

and Wn = 1

εl+1
n

→ +∞ on ∂An ∩B2(0), Lemma 3.4 provides that (3.19) must hold,

contradicting Hopf Lemma for un. Hence, (3.2) holds for xl+1
n .

Associated to xl+1
n , let rl+1

n = (εl+1
n )

3
2 λ

− 1
2

n be defined according to (3.1). By
(3.24) we get that

rl+1
n

|xl+1
n − xi

n|
→ 0 as n → +∞, ∀ i = 1, . . . , l, (3.26)

and then, Rn =
(dn(xl+1

n )

rl+1
n

) 1
2 → +∞ as n → +∞. Since {rl+1

n y + xl+1
n : |y| ≤ Rn} is

uniformly far away from Z, by (3.23) and (3.25) we get that:

U l+1
n (y) :=

1 − un(rl+1
n y + xl+1

n )
εl+1

n

≥ C0

(
1 − rl+1

n Rn

dn(xl+1
n )

) 2
3

≥ C0

2
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for n large and y ∈ Ω−xl+1
n

rl+1
n

∩BRn(0). Up to a subsequence, Proposition 3.1 provides

U l+1
n → U l+1 in C1

loc(R
N ) as n → +∞, U l+1 being a solution of an equation

of type (3.4), and some φl+1
n ∈ C∞

0 (Ω) such that (3.5) holds with Supp φl+1
n ⊂

BMrl+1
n

(xl+1
n ), M > 0. By (3.26), combined with (3.22), we get that (3.13) and

(3.14) are still true at (l + 1)th step, as needed.

2nd Case. Assume that xl+1
n → pj with the following rate:

(εl+1
n )−3λn|xl+1

n − pj |αj+2 → +∞ as n → +∞.

Let rl+1
n = (εl+1

n )
3
2 λ

− 1
2

n |xl+1
n − pj|−

αj
2 according to (3.1). By (3.21) we get that

(3.26) still holds and then, Rn =
(
min

{ |xl+1
n −pj |
rl+1

n
,

dn(xl+1
n )

rl+1
n

}) 1
2 → +∞ as n → +∞.

Since {rl+1
n y + xl+1

n : |y| ≤ Rn} is uniformly close to pj ∈ Z, estimates (3.23) and
(3.25) imply:

U l+1
n (y) :=

1 − un(rl+1
n y + xl+1

n )
εl+1

n

≥
(
|rl+1

n y + xl+1
n − pj |

|xl+1
n − pj |

)αj
3 (

dn(rl+1
n y + xl+1

n )
dn(xl+1

n )

) 2
3

≥
(

1 − rl+1
n Rn

|xl+1
n − pj|

)αj
3 (

1 − rl+1
n Rn

dn(xl+1
n )

) 2
3

≥ 1
2

for n large and |y| ≤ Rn. Up to a subsequence, Proposition 3.1 provides U l+1
n →

U l+1 in C1
loc(R

N ) as n → +∞, where U l+1 solves an equation of type (3.4), and
the existence of φl+1

n ∈ C∞
0 (Ω) such that (3.5) holds, Supp φl+1

n ⊂ BMrl+1
n

(xl+1
n )

for some M > 0. Finally, (3.22) with (3.26) gives that (3.13) and (3.14) are still
true at (l + 1)th step, also in this second case.

3rd Case. Assume that xl+1
n → pj and

(εl+1
n )−3λn|xl+1

n − pj|αj+2 ≤ C.

By (3.21) xl+1
n 
= pj and for any i = 1, . . . , l there holds:

|xl+1
n − pj |

|xl+1
n − xi

n|
=

(εl+1
n )

3
2 λ

− 1
2

n

|xl+1
n − xi

n| |xl+1
n − pj |

αj
2

× ((εl+1
n )−3λn|xl+1

n − pj |αj+2)
1
2 → 0 as n → +∞. (3.27)

Let rl+1
n = (εl+1

n )
3

2+αj λ
− 1

2+αj
n according to (3.1). By (3.21) and (3.27) we get that

for any i = 1, . . . , l:

rl+1
n

|xl+1
n − xi

n|
=

(
(εl+1

n )
3
2 λ

− 1
2

n

|xl+1
n − xi

n| |xl+1
n − pj |

αj
2

) 2
2+αj

×
( |xl+1

n − pj|
|xl+1

n − xi
n|

) αj
2+αj

→ 0 as n → +∞, (3.28)
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providing the validity of (3.26). Let Rn = (dn(xl+1
n )

rl+1
n

)
1
2 → +∞ as n → +∞. Since

{rl+1
n y + xl+1

n : |y| ≤ Rn} is uniformly close to pj ∈ Z, by (3.23) and (3.25) we get:

U l+1
n (y) :=

1 − un(rl+1
n y + xl+1

n )
εl+1

n

≥
(
|rl+1

n y + xl+1
n − pj |

|xl+1
n − pj |

)αj
3 (

1 − rl+1
n Rn

dn(xl+1
n )

) 2
3

≥ 1
2

( |xl+1
n − pj|
rl+1
n

)−αj
3
∣∣∣∣y +

xl+1
n − pj

rl+1
n

∣∣∣∣
αj
3

≥ C

∣∣∣∣y +
xl+1

n − pj

rl+1
n

∣∣∣∣
αj
3

for n large and |y| ≤ Rn, where C > 0 is a constant. We have used that
|xl+1

n −pj |
rl+1

n
≤ C, which is true for assumption in this case. We use now Proposition

3.1 in combination with Remark 3.1 to get that, up to a subsequence, U l+1
n → U l+1

in C1
loc(R

N ) as n → +∞ and U l+1 is a solution of an equation of type (3.4).
Moreover, we find φl+1

n ∈ C∞
0 (Ω) such that (3.5) holds and Supp φl+1

n ⊂
BMrl+1

n
(xl+1

n ), M > 0. Since (3.22) together with (3.28) gives the validity of (3.13)
and (3.14) at (l + 1)th step, the induction scheme also works in this last case and
the proof of Theorem 3.3 is complete.

3.3. Compactness of unstable branches

We are now in position to give the proof of Theorem 1.1. The essential ingredient
will be the pointwise estimate of Theorem 3.3. The contradiction will come out
from the non existence result of Theorem 2.3.

Proof of Theorem 1.1. By contradiction, up to a subsequence, let us assume
that maxΩ un → 1 as n → +∞. Up to a further subsequence, Theorem 3.3 gives
the existence of m-sequences x1

n, . . . , xm
n so that xi

n → xi ∈ Ω̄ as n → +∞ and the
following pointwise estimate holds:

1 − un(x) ≥ Cλ
1
3
n (d(x)α)

1
3 dn(x)

2
3 (3.29)

for any x ∈ Ω and n ≥ N0, for some C > 0 and N0 ∈ N large, where d(x)α =
min{|x− pi|αi : i = 1, . . . , k} and dn(x) = min{|x− xi

n| : i = 1, . . . , m}. Therefore,
we get the following bounds in Ω:

0 ≤ λnf(x)
(1 − un)2

≤ C
f(x)

(d(x)α)
2
3

λ
1
3
n

dn(x)
4
3
, (3.30)

for some C > 0. Since by (1.2)∣∣∣∣ f(x)
(d(x)α)

2
3

∣∣∣∣ ≤ |x − pi|
αi
3 ‖fi‖∞ ≤ C

for |x − pi| ≤ δ and fi as in (3.8), we get that f(x)

(d(x)α)
2
3

is a bounded function on

Ω. Hence, by (3.30) λnf(x)
(1−un)2 is uniformly bounded in Ls(Ω), for any 1 < s < 3N

4 .
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By elliptic regularity theory and Sobolev embeddings, up to a subsequence, we
get that un converges weakly in H1

0 (Ω) and strongly in C(Ω̄) to a limit function
u0 ∈ C(Ω̄)∩H1

0 (Ω) as n → +∞. In particular, it holds that supΩ u0 = 1, by means
of the uniform convergence of un to u0. Since u0 = 0 on ∂Ω, the maximum value 1
of u0 is achieved in Ω and then, S = {x ∈ Ω : u0(x) = 1} is a non empty set.

If λ = limn→+∞ λn = 0, by (3.30) λnf(x)
(1−un)2 → 0 in Ls(Ω) as n → +∞, for any

1 < s < 3N
4 . So, u0 ∈ H1

0 (Ω) is a weak harmonic function and then, it should vanish
identically, in contradiction to maxΩ u0 = 1.

Hence, we have that λ = limn→+∞ λn > 0, and by (3.29) we get that
u0 < 1 in Ω\{x1, . . . , xm, p1, . . . , pk}. In particular, the set S is finite because
S ⊂ {x1, . . . , xm, p1, . . . , pk}.

Since λnf(x)
(1−un)2 is uniformly bounded in Ls(Ω) for any 1 < s < 3N

4 and λnf(x)
(1−un)2 →

λf(x)
(1−u0)2 uniformly on compact sets in Ω̄\{x1, . . . , xm, p1, . . . , pk}, we get that

λnf(x)
(1 − un)2

→ λf(x)
(1 − u0)2

weakly in Ls(Ω), 1 < s <
3N

4
. (3.31)

Taking now the limit of the equation satisfied by un, by (3.31) we get that
u0 ∈ C(Ω̄) is a H1(Ω)-weak solution of:

−∆u0 =
λf(x)

(1 − u0)2
in Ω,

u0 = 0 on ∂Ω.
(3.32)

Since ∫
Ω

(
|∇φ|2 − 2λnf(x)

(1 − un)3
φ2

)
→
∫

Ω

(
|∇φ|2 − 2λf(x)

(1 − u0)3
φ2

)

for any φ ∈ C∞
0 (Ω) in view of (3.31), by (1.3) we get that u0 has a finite Morse

index according to definition (2.13). Since the set S = {x ∈ Ω : u0(x) = 1} is a
nonempty finite set, by Theorem 2.3 such a solution u0 cannot exist and we reach
a contradiction. Hence, (1.4) holds.

If we also assume that µ1,n < 0, then λ > 0. Indeed, if λn → 0, then by compactness
and elliptic regularity theory, we would get un → u0 in C1(Ω̄), where u0 is an
harmonic function so that u0 = 0 on ∂Ω. Then, u0 = 0 and un → 0 in C1(Ω̄).
Hence, µ1,n = µ1,λn(un) → µ1,0(0) > 0 as n → +∞. A contradiction.

4. Some Consequences

In the last section, we derive some consequences of Theorem 1.1. First, let us prove
the characterization of blow up stated in Theorem 1.2.

Proof of Theorem 1.2. (1) ⇒ (2). Assume that maxΩ un → 1 as n → +∞. If∫
Ω

( f(x)
(1−un)3

)N
2 ≤ C < ∞ along a subsequence, the right-hand side of (1.1) would be

uniformly bounded in L
3N
4 . By elliptic regularity theory and Sobolev embeddings,
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un → u0 weakly in H1
0 (Ω) and strongly in C(Ω̄), where u0 is a H1(Ω)-weak solution

of (1.1) with λ = limn→+∞ λn so that
∫
Ω

( f(x)
(1−u0)3

)N
2 < ∞ and 0 ≤ u0 ≤ 1.

By Proposition 2.1, we get ‖u0‖∞ < 1 and, by uniform convergence, ‖un‖∞ →
‖u0‖∞ < 1 as n → +∞. A contradiction. Hence, necesssarily

∫
Ω

( f(x)
(1−un)3

)N
2 → +∞

as n → +∞.

(2) ⇒ (1). The vice versa is trivial as it follows by the following inequality:

∫
Ω

(
f(x)

(1 − un)3

)N
2

≤ ‖f‖N
2∞

(1 − ‖un‖∞)
3N
2
|Ω|,

where | · | stands for the Lebesgue measure.

(1) ⇒ (3). Assume that maxΩ un → 1 as n → +∞. By Theorem 1.1 m(un, λn) →
+∞ as n → +∞.

(3) ⇒ (1). Since as before f(x)
(1−un)3 ≤ ‖f‖∞

(1−‖un‖∞)3 , by the variational characteriza-
tion of the eigenvalues we get that

µk,λn(un) ≥ µk(Ln), Ln := −∆ − 2λn‖f‖∞
(1 − ‖un‖∞)3

,

where µk(Ln) stands for the kth eigenvalue of the operator Ln. Indeed, for operator
L in the form L = −∆ − c(x), c(x) ∈ Ls(Ω) for some s > N

2 , let us recall that:

µ1(L) = inf
φ∈H1

0 (Ω), φ 	=0

〈Lφ, φ〉∫
Ω φ2

,

µk(L) = sup
{

inf
φ∈M⊥, φ 	=0

〈Lφ, φ〉∫
Ω

φ2
: M ⊂ H1

0 (Ω) linear, dim(M) = k − 1
}

∀ k ≥ 2,

where 〈·, ·〉 is the standard inner product in H1
0 (Ω) and M⊥ is the ortogonal space

of M in H1
0 (Ω) with respect to this inner product.

Therefore, point (3) implies that the Morse index of Ln, the number of negative
eigenvalues of Ln, blows up as n → +∞. Hence, the constant function 2λn‖f‖∞

(1−‖un‖∞)3 →
+∞ as n → +∞ and then, the validity of point (1) is established.

Now, we establish the uniqueness result contained in Theorem 1.3.

Proof of Theorem 1.3. (1) Let λn → 0 as n → +∞ and associated solutions
un of (1.1) so that m(un, λn) ≤ k, k ∈ N. Theorem 1.1 implies that µ1,n ≥ 0
for n large. By the characterization of the minimal solution uλ as the only
semi-stable solution, we get that un = uλn for n large. Hence, necessarily there
exists δ = δk > 0 so that uλ is the unique solution u of (1.1) with m(u, λ) ≤ k

for any λ ∈ (0, δ).
(2) Let λn → λ∗ as n → +∞ and associated solutions un with m(un, λn) ≤ k,

for some k ∈ N. By Theorem 1.1 we get that supn∈N ‖un‖∞ < 1. By elliptic
regularity theory, un is uniformly bounded in C1,β(Ω̄) for any β ∈ (0, 1). Up to
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a subsequence, un → u0 in C1(Ω̄) as n → +∞, where u0 is a C1(Ω̄)-solution
of (1.1) with λ = λ∗ so that maxΩ u0 < 1. In [8] it is proven that Eq. (1.1)
admits for λ = λ∗ an unique solution, the extremal solution u∗. Then, un → u∗

in C1(Ω̄) as n → +∞. By [4], in a C1-small neighborhood of u∗ problem (1.1)
has only the two solutions uλ, Uλ for λ close to λ∗. Hence, either un = uλn or
un = Uλn and the uniqueness result follows.

Finally, we conclude this section by showing the existence of a solutions sequence
whose Morse index blows up.

Proof of Theorem 1.4. Let us define the solution set V as

V = {(λ, u) ∈ [0, +∞) × E : u is a solution of (1.1)},
where E = {u ∈ C1(Ω̄) : u = 0 on ∂Ω} is endowed with the standard norm. By
contradiction and in view of the equivalence of Theorem 1.2, let us assume that

sup
(λ,u)∈V

max
Ω

u ≤ 1 − 2δ, (4.1)

for some δ ∈ (0, 1
2 ). Hence, V is a compact set in [0, +∞)× E. By Theorem 1.3 we

can fix λ1, λ2 ∈ (0, λ∗), λ1 < λ2, so that (1.1) possesses:

• for λ1 only the (non degenerate) minimal solution uλ1 with m(uλ1 , λ1) = 0;
• for λ2 has only the two (non degenerate) solutions uλ2 , Uλ2 with m(uλ2 , λ2) = 0,

m(Uλ2 , λ2) = 1.

Let us define the projection of V onto E:

U = {u ∈ E : ∃λ so that (λ, u) ∈ U},
and let us consider a δ-neighborhood of U in E:

Uδ = {u ∈ E : distE(u,U) ≤ δ}.
Let us remark that by (4.1) we get:

sup
u∈Uδ

max
Ω

u ≤ 1 − δ.

Let us regularize the nonlinearity (1 − u)−2 in the following way:

gδ(u) =
{

(1 − u)−2 if u ≤ 1 − δ

δ−2 if u ≥ 1 − δ,

in such a way that, for any fixed λ, problem (1.1) in Uδ is equivalent to find a zero of
the map Tλ = Id − Kλ : E → E, where Kλ(u) = −∆−1 (λf(x)gδ(u)) is a compact
operator and ∆−1 is the laplacian resolvent with homogeneous Dirichlet boundary
condition. We can define the Leray–Schauder degree dλ of Tλ on Uδ with respect
to zero, since by definition of U (the set of all solutions) ∂Uδ does not contain any
solution of (1.1) for any value of λ. Since dλ is well defined for any λ ∈ [0, λ∗], by
omotopy dλ1 = dλ2 .
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To get a contradiction, let us now compute dλ1 , dλ2 . Since the only zero of Tλ1

in Uδ is uλ1 with Morse index zero, we have that dλ1 = 1. While, Tλ2 has in Uδ

exactly two zeroes uλ2 , Uλ2 with Morse index zero, one respectively, and hence,
dλ2 = 1 − 1 = 0. This contradicts dλ1 = dλ2 . The proof is complete.

Appendix A

First of all, we give a sketch of proof of Theorem 3.2 and we refer to [5] for the
details.

Proof of Theorem 3.2. By contradiction, we assume µ1(U) ≥ 0 and then,∫
|∇φ|2 ≥ 2

∫ |y|γ
U3

φ2 , ∀φ ∈ D1,2(RN ). (A.1)

In particular, by (A.1) we get that∫ |y|γ
(1 + |y|2)N−2

2 +δU3
≤ C

∫
1

(1 + |y|2)N
2 +δ

< +∞ , (A.2)

for any δ > 0.

Step 1. We want to show that (A.1) allows us to perform the following Moser-type
iteration scheme: for any 0 < q < 4 + 2

√
6 and β there holds∫

1
(1 + |y|2)β−1− γ

2 U q+3
≤ Cq

(
1 +

∫
1

(1 + |y|2)βU q

)
(A.3)

(provided the second integral is finite).
Indeed, let R > 0 and consider a smooth radial cut-off function η so that: 0 ≤

η ≤ 1, η = 1 in BR(0), η = 0 in R
N\B2R(0). Multiplying (3.6) by η2

(1+|y|2)β−1Uq+1 ,
q > 0, integrating by parts and using (A.2) we get:∫ |y|γη2

(1 + |y|2)β−1U q+3
≥ 8(q + 1)

q2

∫ |y|γη2

(1 + |y|2)β−1U q+3

− 2
q

∫
1

U q

∣∣∣∣∣∇
(

η

(1 + |y|2)β−1
2

)∣∣∣∣∣
2

+
2(q + 2)

q2

∫
1

U q

η

(1 + |y|2)β−1
2

∆

(
η

(1 + |y|2)β−1
2

)
.

Since 8q + 8 − q2 > 0 for any 0 < q < q+, assuming that R|∇η| + R2|∆η| ≤ C

we get that: ∫ |y|γη2

(1 + |y|2)β−1U q+3
≤ Cq

∫
1

(1 + |y|2)βU q
,

where Cq does not depend on R > 0. Taking the limit as R → +∞, we get the
validity of (A.3).
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Step 2. Let now 1 ≤ N ≤ 7 or N ≥ 8, γ > 3N−14−4
√

6
4+2

√
6

. We want to show that∫
1

(1 + |y|2)U q
< +∞ (A.4)

for some 0 < q < q+ = 4 + 2
√

6.
Given δ > 0, set βi = β0 − i(1 + γ

2 ) and qi = q0 + 3i, i ∈ N. By (A.2) and
iterating Step 1 two times in view of q0 < q1 < q+ = 4 + 2

√
6 < q2, we get that:∫

1
(1 + |y|2)β2U q2

< +∞ (A.5)

where β2 = N−6−3γ
2 + δ, q2 = 9. Fix now q: 0 < q < q+ = 4 + 2

√
6 < 9. By (A.5)

and Hölder inequality we get that
∫

1
(1+|y|2)Uq < +∞ provided − 2q

9−qβ2 + 18
9−q > N

or equivalently

q >
9N − 18

6 − 2δ + 3γ
. (A.6)

To have (A.6) for some δ > 0 small and q<q+ at the same time, we need to require
3N−6
2+γ < q+ or equivalently 1 ≤ N ≤ 7 or N ≥ 8, γ > 3N−14−4

√
6

4+2
√

6
. Our assumptions

then provide the existence of some 0 < q < q+ = 4 + 2
√

6 such that (A.4) holds.

Step 3. To obtain a contradiction, fix 0 < q < 4 + 2
√

6 such that (A.4) holds.
Letting η as before, using equation (3.6) we compute:∫ ∣∣∣∣∇

(
η

U
q
2

)∣∣∣∣
2

−
∫

2|y|γ
U3

(
η

U
q
2

)
= −8q + 8 − q2

4(q + 1)

∫ |y|γη2

U q+3
+
∫ |∇η|2

U q

− q + 2
4(q + 1)

∫
∆η2

U q
.

Since 8q + 8 − q2 > 0, by (A.4) we get that:∫ ∣∣∣∇( η

U q/2

)∣∣∣2 − ∫ 2|y|γ
U3

( η

U q/2

)2

≤ −8q + 8 − q2

4(q + 1)

∫
B1(0)

|y|γ
U q+3

+ O

(∫
|y|≥R

1
(1 + |y|2)U q

)
< 0

for R large, contradicting (A.1). To complete the proof, in [5] it is proven that
λ∗ = (2+γ)(3N+γ−4)

9 and u∗(x) = 1 − |x| 2+γ
3 are the extremal value and solution,

respectively, of (1.1) on the unit ball with f(x) = |x|γ and N ≥ 8, 0 ≤ γ ≤
3N−14−4

√
6

4+2
√

6
. The second part of Theorem 3.2 follows by considering the limit profile

function around zero as λ → λ∗ for the minimal solution uλ for (1.1) on the unit
ball with f(x) = |x|γ .

Finally, we prove Lemma 3.4:

Proof of Lemma 3.4. Assume that ∂νWn > 0 on ∂An ∩ B2(0). Let G(y) be
the Green function at 0 of the operator −∆ in B2(0) with homogeneous Dirichlet
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boundary condition. Since ∂νG < 0 on ∂T ∩ B2(0) and ∂An → ∂T , we get that
∂νG < 0 on ∂An∩B2(0) for n large and

∫
∂An∩B2(0)

∂νGdσ → ∫
∂T∩B2(0)

∂νGdσ < 0.
Since G > 0 in B2(0), ∂νG < 0 on ∂B2(0) and the assumptions on Wn, by the
representation formula we get:

1 = Wn(0) ≥ −
∫

An∩B2(0)

hn(y)
W 2

n

G −
(

min
∂An∩B2(0)

Wn

)∫
∂An∩B2(0)

∂νGdσ.

But
∣∣∫

An∩B2(0)
hn(y)
W 2

n
G
∣∣ ≤ C, and then, 1 ≥ −C + C−1(min∂An∩B2(0) Wn) for some

C > 0 large enough. Hence, min∂An∩B2(0) Wn is uniformly bounded providing the
validity of (3.18). The proof is complete.
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