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Perturbations of Paneitz-Branson operators on S n.

PIERPAOLO ESPOSITO (*)

ABSTRACT - We prove the existence of solutions on the standard unit sphere

(S n , h) for the equation Ph
n u4dn NuN

8

n24) u1 (eK1o(e) )NuNq21 u , e small,

and 1 GqG
n14

n24
, where Pg

n is the fourth order conformally invariant

Paneitz-Branson operator. We will approach this problem via a finite dimen-
sional reduction which lead us to consider the «stable» critical points of the

«Melnikov function»: in the case q4
n14

n24
a more subtle analysis will be car-

ried out by means of a Morse relation for functions on manifolds with boun-
dary which are quite degenerate on the boundary.

1. Introduction and main results.

Given (M , g) a smooth compact Riemannian manifold of dimension
nF5, let Sg be the scalar curvature of g and let Rcg be the Ricci curva-
ture of g .

The Paneitz-Branson operator Pg
n , introduced by Branson in [Bra] as

the n-dimensional generalization of the Paneitz operator on 4-manifolds
(see [Pan]), is the fourth-order operator defined by

Pg
n u4D g

2 u2divg [ (an Sg g1bn Rcg )(Q , du J ) ]1
n24

2
Qg

n u
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where D g 4divg (˜) is the Laplace-Beltrami operator and

Qg
n 42

1

2(n21)
D g Sg 1

n 3 24n 2 116n216

8(n21)2 (n22)2
Sg

2 2
2

(n22)2
NRcgNg

2

an 4
(n22)2 14

2(n21)(n22)
bn 42

4

n22
.

For u�C 1 (M), we denote by du J the vector field C1
1 g 21 7˜u .

The operator Pg
n is conformally invariant in the sense that if

gA 4u 4/(n24) g is a conformal metric to g , then for all W�C Q (M)

Pg
n (uW) 4u

n14

n24 PgA
n W .

In particular, by taking Wf1

Pg
n u4

n24

2
QgA

n u
n14

n24 .

On the standard unit sphere (S n , h) with nF5, the expression of Ph
n re-

duces to

Ph
n u4D h

2 u2cn D h u1dn u

where

cn 4
1

2
(n 2 22n24) dn 4

n24

16
n(n 2 24) .

In this paper we study perturbations on (S n , h) of the equation

D h
2 u2cn D h u1dn u4dn u

n14

n24 .(1)

We consider perturbations of the form ge NuNq21 u with q� k1, n14

n24
l and

ge4eK1o(e).
The special case of linear perturbations, e.g. the case q41, was con-

sidered in [Esp] for the conformal Laplacian on the sphere, motivated by
uniqueness result in case of constant negative perturbations (see
[BVV]).

Even if we don’t know whether a similar phenomenon occurs also for
the fourth order conformally invariant Paneitz-Branson operator, we
extend our previous multiplicity result to the present situation.
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THEOREM 1.1. Let ge�C(S n ) be a function of the form ge4eK1

1o(e) where o(e) is in the uniform norm of C(S n ) and let q be an exponent

in k1, n14

n24
h , nF5.

Then, for e small, the equation

D h
2 u2cn D h u1dn u4dn u

n14

n24 1ge u q(2)

admits two smooth positive solutions if either K changes sign and qF

F
4

n24
or qE

4

n24
and s

S n
K40.

The case q4
n14

n24
corresponds to a «prescribed scalar curvature

problem» for the Paneitz-Branson operator.
It is of special interest because of obstructions similar to the Kazdan-

Warner obstructions for the Nirenberg problem (see [DHL]).
As for the «scalar curvature type equation» we prove an existence re-

sult under a Bahri-Coron index count condition (see [CY1], [BaCo],
[CY2], [CGY] and [AAP]).

THEOREM 1.2. Let nF5, let K be a smooth Morse function on S n

such that D h K(x) c0 for all x� Crit (K) and let ge as above.
Let m(K , x) be the Morse index of K in x� Crit (K) on S n .
If !

p� Crit K , D h K(p) E0
(21)m(K , p)

c (21)n , then for e small there exists a

smooth positive solution of the equation

D h
2 u2cn D h u1dn u4 (dn 1ge )

n14

n24(3)

The proofs rely on a finite dimensional reduction (see [AmBa]), exploit-
ing the «non degeneracy» of the manifold of solutions of the unper-
turbed equation (1): we will describe this approach in the section 3.

The second result is obtained by means of a Morse relation for the
«Melnikov function» associated to (3).

Morse theory has been used in [Mal] to solve the scalar curvature
equation on the sphere, in the perturbative case.

The main novelty here is the use of Morse theory for functions, on
compact manifolds with boundary, which are «degenerate» on boundary
points.

Usual Morse theory on manifolds with boundary does not apply in
this case and, since we didn’t find in the literature the result we need, we
will give a proof in the next section.
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For convenience, we state here the Morse relation we will use in the
proof of Theorem 1.2.

LEMMA 1.3. Let C�C 2 (B n11, R) be a Morse function such that
¯C

¯r
40 on ¯B n11 and C 0 4CN¯B n11 be the trace of C on the boundary of

B n11 .
Then

(4) 1 4x(B n11) 4 !
p� Crit COB n11

(21)m(C , p) 1

1 !
p� Crit C 0O¯B n11 , ¯

2 C

¯r2
(p) D0

(21)m(C 0 , p) .

REMARK 1.4. We have learned from Prof. Hebey that the above re-
sult, concerning the «prescribed scalar curvature» problem for the
Paneitz-Branson operator, has been recently obtained with a somehow
different approach by Ahmedou, Djadli and Malchiodi.

While submitting the paper, we got to know a preprint by Felli,
where, among other things, similar results are proved.

We wish to thank Prof. Hebey for introducing us to the study of the
Paneitz-Branson operator.

2. A Morse relation.

In this section we give a proof of Lemma 1.3 as stated in the
introduction.

PROOF. (Lemma 1.3).
We consider B n11 with the standard metric d of Rn and, in a neigh-

borhood of the boundary, we can define the following local coordinates
system

zs : x� mx�Rn11 :
1

2
ENxNG1,

x

NxN
csnK

gp sg x

NxN
h, 12NxNh�Rn 3 k0,

1

2
h
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and similarly z2s via stereographic projection through the pole 2s .
In these local coordinates systems the metric d decomposes in such a

way that

gn11 j 40 (j41, R , n gn11n11 41 .

If the functional F is such that, for every point p�¯B n11 ¯F

¯r
(p) 40,

then it is always possible to define the flow W t (q) associated to dF J4

4C1
1 g 21 7˜F , where W t (q) is the unique solution of

.
/
´

¯W t (q)

¯t
42dF J (W t (q) )

W 0 (q) 4q

for all tF0

since

(dF J )n11 42g n11n11 ¯F

¯r
40

on ¯B n11 with respect to zs or z2s .
We define MF

c »4F 21 (2Q , c] and, following exactly the proof of the
same result in Milnor [Mil], we have that (c , eD0 MF

c2e is a deformation
retract of MF

c1e if F 21 [c2e , c1e] contains no critical points of F , since
we can construct deformations along gradient lines of F .

Now, we proceed in the following way.

STEP 1) We prove a Morse lemma for critical point on the boundary
(see [Mil]): given p�¯B n11 a non degenerate critical point for C and

z»4z2p a local coordinates system, using ¯C

¯r
40 on ¯B n11 , we will con-

struct a local coordinates system y4 (y1 , R , yn11 ) in a small neighbor-
hood U of p in B n11 such that UO¯B n11 4 ]yn11 40( and

C(q) 4C(p)2 (y1 (q) )2 2R2 (yh (q) )2 1

1(yh11 (q) )2 1R1 (yn (q) )2 1sign g ¯ 2 C

¯r 2
(p)h (yn11 (q) )2

holds true for all q�U , where h4m(C 0 , p).
In particular, we will get that yi does not depend on zn11 412r and

yn11 (q) 4a(q)(12r) for some aD0.
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STEP 2) Following [Mil], we construct a functional F , which is a
small perturbation of C in a neighborhood of p , such that for e small
F 21 [c2e , c1e] contains no critical points, the sublevels of F verify

MF
c1e4MC

c1e and MC
c2e’MF

c2e and there holds ¯F

¯r
40 on ¯B n11 ,

where c4C(p).
For the third statement we will use ¯C

¯r
40 on ¯B n11 and the link be-

tween the local coordinates systems y and z .

STEP 3) We can choose, modulo rearrangement, the local coordinates
system (y1 , R , yn11 ) in the neighborhood U of p such that for all
q�U

C(q) 4C(p)2y1 (q)2 2R2yl (q)2 1yl11 (q)2 1R1yn11 (q)2

where

l4

.
/
´

m(C 0 , p)

m(C 0 , p)11

if
¯ 2 C

¯r 2
(p) D0

if
¯ 2 C

¯r 2
(p) E0

and ¯B n11 OU4 ]yi 40( for some i� ]1, R , n11(.
We denote e l4 ]q�B n11 : y1 (q)2 1R1yl (q)2 Ge , yl11 (q) 4R4

4yn11 (q) 40( and e
.l4 ]q�B n11 : y1 (q)2 1R1yl (q)2 4e , yl11 (q) 4

4R4yn11 (q) 40(.
Then, using the deformations induced by F ,

MC
c1e4MF

c1eCMF
c2e4MC

c2eNH

where H4 MF
c2e 0MC

c2e and C denotes omotopy equivalence.
We denote by MC

c2eNe l the attachement of e l to MC
c2e along

e
.l4e lOMC

c2e .
We can deform H onto e l in a similar way as Milnor [Mil], taking into

account that the deformations map ]yi F0( in itself, and we get

MC
c1eCMC

c2eNHCMC
c2eNe l .

We note that if ¯ 2 C

¯r 2
(p) E0, C increases along the direction yi and e l is

homeomorphic to an half ball and in MC
c2eNe l it is attached just for an

half sphere to MC
c2e .

Hence MC
c2eCMC

c1e .
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If ¯ 2C

¯r2
(p)D0, then e l is a full ball in ¯B n11 entirely attached to MC

c2e.

Hence MC
c2eCMC

c1eNe l where l4m(C 0 , p).

STEP 4) More generally suppose that there are k non degenerate
critical points p1 , R , pk in C21 (c) and suppose that

]p1 , R , ps (4{pi �¯B n11 :
¯ 2 C

¯r 2
(pi )D0} , ]ps11 , R , pm (4]pi�B n11 (

and

l i 4
.
/
´

m(C 0 , pi )

m(C , pi )

if i41, R , s

if i4s11, R , m
.

We remark that for points not on the boundary, the classical Morse
theory is true, provided we can define deformations along gradient lines
of F .

Then

MC
c1eCMC

c2eNe l 1 NRNe l m .

Hence

14x(B n11)4 !
p�Crit COB n11

(21)m(C , p)1 !
p� Crit C 0O¯B n11 , ¯

2 C

¯r2
(p)D0

(21)m(C 0 , p) .

For the first step, we sketch the proof of this special version of Morse
lemma, just explaining the differences with [Mil].

We will denote ¯

¯s i

as the derivative with respect to zi for all i41, R , n .

We choose U1 such that z(U1 ) is convex and, by letting z(q) 4

4(z1(q), R, zn(q)), we can write, since ¯C

¯r
40 on ¯B n11 , for all q�U1

C(q)2C(p) 4 !
i41

n

zi�
0

1
¯C

¯s i

(tz, 0 ) dt2 (12r)�
0

1
¯C

¯r
(z, t(12r) ) dt4

4 !
i , j41

n

zi zj �
[0 , 1 ]2

tdtds
¯ 2 C

¯s i ¯s j

(tsz, 0 )1

1(12r)2 �
[0 , 1 ]2

tdtds
¯ 2 C

¯r 2
(z, ts(12r) ) 4: !

i , j
zi zj Hij (z)
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where

H(p) 4 (Hij (p) )4
1

2
D 2 C(p) 4

1

2

.
`
´

¯ 2 C

¯s 2
(p)

0

0

¯ 2 C

¯r 2
(p)

ˆ
`
˜

.

Following Milnor [Mil], from the non degeneracy of the critical point
p for C , it is always possible to find a neighborhood U2 ’U1 of p and a
local coordinates system (y1 , R , yn , (12r) ) such that yi does not
depend on r for all i41, R , n and

C(q)2C(p) 4 !
i41

n

6yi (q)2 1 (12r)2 Hn11n11 (y1 , R , yn , (12r) ) .

This can be done essentially for the fact that Hij does not depend on r for
all i , j41, Rn and Hin11 f0 for all iEn11.

Since Hn11n11 (p) 4
1

2

¯ 2 C

¯r 2
(p) c0, we can find a neighborhood

U’U1 of p in which it is possible to define

yn11 4 (12r)kNHn11n11 (y1 , R , yn , (12r) )N .

The local coordinates system (y1 , R , yn11 ) in U is what we are looking
for.

For the second step, we remark that in UO¯B n11 4 ]yn11 40(

dF J (dyn11 ) 4!
j

dF J (dzj )
¯zn11

¯yj

4

42
1

kNHn11n11N

¯F

¯r
42

1

kNHn11n11N

¯C

¯r
40

since F differs from C for a function depending on the square of the local
coordinates yj for all j , while outside U we have FfC .

REMARK 2.1. It is possible to extend this result to any manifold
(M , g) with boundary ¯M whenever there exist local coordinates
systems on the boundary for which the normal derivative of C vanishes
on ¯M and the tensor metric g splits between the normal and the
boundary directions on ¯M , i.e. gn11 j 40 on ¯M .
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3. Proof of Theorems 1.1 and 1.2.

Weak solutions of (2) and (3) are critical points of the energy
functional

Ee (u) »4E0 (u)1G(e , u) , u�H2
2 (S n )

where

E0 (u) »4
1

2
�

S n

(D h u)2 dvh 1

1
cn

2
�

S n

N˜uN2 dvh 1
dn

2
�

S n

u 2 dvh 2dn
n24

2n
�

S n

NuN
2n

n24 dvh

G(e , u) »42
1

q11
�

S n

ge NuNq11 dvh .

The homoteties yK ty , through stereographic projection from s�S n ,
induce conformal diffeomorphisms W s , t on the sphere and
isomorphisms

Ts , t u(y) »4 (u i W s , t )(y)Ndet dW s , t (y)N
n24

2n , u�H2
2 (S n ) .

For conformal invariance of E0 , we have that

Z»4 mTs , (12r)21 1 4Ndet dW s , (12r)21 (y)N
n24

2n : rs�B n11n

is a critical manifold for E0 at the fixed energy level b4E0 (1) 4

4
(n24)(n 2 24)

8
v n c0, which is the image through the map

F : rs�B n11 KTs , (12r)21 1 .(5)

The kernel of the linearized operator at u f1 is the set S of u such
that

D h
2 u2cn D h u1dn u4dn

n14

n24
u ` g2D h 1

cn

2
h2

u4 gn1
cn

2
h2

u .
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By choosing W�L k »4 ]u : 2D h u4l k u( as a test function, where
0 4l 0 El 1 EREl k ERE1Q is the ordered sequence of the
eigenvalues of 2D h on S n , we get

gn1
cn

2
h2

�
S n

uW4�
S n

W g2D h 1
cn

2
h2

u4

4�
S n

u g2D h 1
cn

2
h2

W4 gl k 1
cn

2
h2

�
S n

uW .

Since l k cn for all kc1, we get s
S n

uW40 for Kc1: hence u�L 1 4

4 g5
kc1

L kh»
and S’L 1 .

Since L 1 ’S by direct computations, we see that S4L 1 .
The eigenspace of the Laplace-Beltrami operator corresponding to

the first eigenvalue l 1 4n has dimension n11 (see [Ber]) and by
conformal invariance

ker (D 2 E0 (Ts , t 1) ) 4Ts , t ker (D 2 E0 (1) ) .

Hence the manifold Z satisfies the non degeneracy assumption Tz Z4

4 ker (D 2 E0 (z) ) for all z�Z , being dim ker (D 2 E0 (Ts , t 1) ) 4n11 and the
inclusion Tz Z’ ker (D 2 E0 (z) ) always true.

So, a finite dimensional reduction can be performed (see [AmBa]) and

for all q� k1, n14

n24
l we are lead to consider the «stable» critical points of

the «Melnikov» function

(6) G(rs) »4 lim
eK0

G(e , F(rs) )

e
4

42
1

q11
�

S n

KNdet dW s , (12r)21 N
(n24)(q11)

2n dvh .

In this context, it is true that VwV and V¯i wV go to zero as eK0 uniformly
on compact subsets, G�C 2 (B n11 ) and

˜[Ee (z1w(e , z) ) ](z) 4e˜G(z)1o(e)(7)

where for e small w(e , Q) : B n11 KH2
2 (S n ) is a suitable map and there

holds the following result (see [AmBa]).
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THEOREM 3.3. Suppose that there exist z �Z and U open
neighborhood in Z of z such that either min

¯U
G(z) DG(z) or max

¯U
G(z) E

EG(z).

Then, for e small enough, the functional Ee has a critical point ue4

4ze1w(e , ze ) with ze�U .

Now we need an expansion around boundary points of the function G ,
see the Appendix for the proof.

LEMMA 3.2. Let q be in g0, n14

n24
l and nF5.

It results that as rK1 uniformly in s�S n :

qD
4

n24
h G(rs) 4

42
2n

q11
(12r)n2

n24

2
(q11)yK(2s)�

Rn

dx

(11NxN2 )
n24

2
(q11)

1o(1)z

q4
4

n24
h G(rs)4

n24

n
2n v n21 (12r)

n

2 ln (12r)[K(2s)1o(1) ]

qE
4

n24
h G(rs) 4

42
2

n24

2
(q11)

q11
(12r)

n24

2
(q11)y �

S n

K(y)

(11cos d(s , y) )
n24

2
(q11)

dy1o(1)z .

Now, we can prove the existence result in the subcritical case

1 GqE
n14

n24
.

PROOF. (Theorem 1.1).
We see from Lemma 3.2 that G vanishes at ¯B n11 since

qE
n14

n24
.
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Moreover, G changes sign near the boundary if either qF
4

n24
and K

changes sign or qE
4

n24
and s

S n
K40 since

�
S n

ds u �
S n

K(y)

(11cos d(s , y) )
n24

2
(q11)

dyv4

4�
S n

K(y) u �
S n

ds

(11cos d(s , y) )
n24

2
(q11)

vdy40

for the independence on y of s
S n

ds

(11cos d(s , y) )
n24

2
(q11)

.

Then G has a positive maximum and a negative minimum and satis-
fies in these points the assumptions of Theorem 3.1 for U with
dist (U , ¯B n11 ) 4hD0.

Hence, from Theorem 3.1, for e small we find two weak solutions of
the equation

D h
2 u2cn D h u1dn u4dn NuN

8

n24 u1ge NuNq21 u

which are of the form ue4F(j e )1w(e , F(j e ) ) with j e�U and F as
in (5).

These functions are smooths, following the regularity result Lemma
2.1 in [DHL] based on ideas in [VDV].

We want to show that for e small the functions ue must be
positive.

Let us set ze4F(j e ).
First, we remark that there exist d and M positive constant such that

dGze(x)GM for all x�S n and e small, because for dist (j e , ¯B n11 )FhD0
the functions ze are uniformly far from the infinite concentration
corresponding to the boundary ¯B n11 .

Moreover, by uniform convergence on compact subsets of B n11 we
have

Vw(e , ze )VH2
2 K0 .

We need to show that the convergence to zero in the H2
2 (S n )-norm of

w(e , ze ) implies the convergence to zero in the uniform norm: this will
prove that the functions ue are positive.
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By using the equation for ue and ze�Z , we can get for we4

4w(e , ze )

(8) D h
2 we2cn D h we1dn we4

4dngNze1weN
8

n24 (ze1we )2ze

n14

n24 h1ge Nze1weN
q21 (ze1we ) .

We follow the ideas developed in [VDV] and [DHL] to get a sort of
bootstrap for we .

We write

Ph
n we4 (2D h 1a 1 ) i (2D h 1a 2 ) we4ae we1be

where a 1, 2 4
cn 6kcn

2 24dn

2
, be4ge Nze1weN

q21 (ze1we ) with

NbeNL p 4O(e)(9)

for some pD
2n

n14
and

ae4dn�
0

1

Nze1 tweN
8

n24 dt�L
n

4 (S n ) .

We define Ke4 ]x�S n : Nwe (x)NGkVwe VH2
2(, ce4ae x S n 0Ke

and fe4

4ae we x Ke
.

We remark that

(10) NceNL
n

4 4O u �
S n0Ke

(11NweN
2n

n24 ) dxv
4

n

4

4O gvol (S n 0Ke )
4

n 1Vwe V

H2
2

8

n24 hK0

because

vol (S n 0Ke ) kVwe VH2
2 G �

S n 0Ke

NweNGCVwe VH2
2

while clearly

NfeNL Q K0 .(11)
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We rewrite (8) in the form

(Id2He ) we4 (Ph
n )21 ( fe )1 (Ph

n )21 (be )(12)

where He (v) 4 (Ph
n )21 (ce v).

Let us remark that for any f�L s (M) and sD1, there exists one and
only one u�H4

s (M) such that Ph
n u4 f .

Then, from elliptic theory, for any sF
2n

n24
and v�L s (S n ) there

holds

NHe vNL s 4N(Ph
n )21 (ce v)NL s 4O(Nce vNL h ) 4O(NceNL

n

4 NvNL s )

where h4
ns

n14s
.

Hence He : L s (S n ) KL s (S n ) is an operator with norm VHe V4

4O(NceNL
n

4 ) K0 because of (10) and then for e small the operator Id2

2He : L s (S n ) KL s (S n ) is invertible.
From (12), (11) and (9), we obtain

NweNL s GCN(Ph
n )21 ( fe )1 (Ph

n )21 (be )NL s G CA(NfeNL Q 1e) K0(13)

where s 4
np

n24p
D

2n

n24
.

We remark that for be�L p (S n ) with pD
2n

n14
, the standard elliptic

estimates give estimates for (Ph
n )21 (be ) in L s (S n ).

From (8) and standard bootstrap arguments, the estimate (13) gives
for all sF1

NweNL s K0 .

Then we infer that

Ph
n we4ae we1be�L s (S n )

for all sF1 with Nae we1beNL s K0.
Then weK0 in H4

s (S n ) for all sF1 which implies that we tends to
zero in the uniform norm.

This ends the proof of Theorem 1.1.
To prove Theorem 1.2 we need to know the behaviour the derivatives

of G up to the boundary: this is performed in Lemma 3.3 below, see the
Appendix for the proof. We will extend G on B n11 to have a C 2 functional
for which we will find critical points via Morse theory.
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LEMMA 3.3. Let nF5 and K a smooth function on S n . Then as
rK1

¯G

¯r
(rs) K0 ;

¯G

¯s i

(rs) K
n24

n
2n21 c0

¯K

¯s i

(2s);
¯ 2 G

¯s i ¯r
(rs) K0;

¯ 2 G

¯s i ¯s j

(rs) K2
n24

n
2n21 c0

¯ 2 K

¯s i ¯s j

(2s);

¯ 2 G

¯r 2
(rs) K2

n24

n
2n c1 D h K(2s)

uniformly in s�S n , where c0 4 s
Rn

dx

(11NxN2 )n
and c14

4 s
Rn

NxN2 (n21)NxN422(n12)NxN21(n11)

(11NxN2)n12
dx are positive constants.

The derivatives in s i of G in s and K in 2s are respectively
evaluated in z2s and stereographic projection through s .

Now, we can deal with the critical case q4
n14

n24
.

PROOF. (Theorem 1.2).
We want to show that there exists e 0 such that for all e with

NeNGe 0

G e (z) »4Ee (z1w(e , z) ) 4b1eG(z)1o(e)(14)

possesses a critical point, where

E0 (u) »4
1

2
�

S n

(D h u)2 dvh 1

1
cn

2
�

S n

N˜uN2 dvh 1
dn

2
�

S n

u 2 dvh 2dn
n24

2n
�

S n

u1

2n

n24 dvh

G(e , u) 42
n24

2n
�

S n

ge u1

2n

n24 dvh .

The critical points of G e will produce free critical points of Ee : see
[AmBa] for this property and for the expansion (14).

We consider G as a C 2-functional on B n11, since Z is the image
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of B n11 through F and by Lemma 3.3 G can be smoothly extented

up to the boundary by setting GN¯B n11 (s) 42
n24

n
2n21 c0 K(2s).

Arguing by contradiction, we suppose that there exists a sequence

eK0 such that G e and equivalently F e »4
G e2b

e
4G1o(1) possess no

critical points in B n11 .
Since G on ¯B n11 has the same critical points of K , p1 , Rpk , non

degenerates and then isolated, we can choose d small such that G has no
critical points in B n11 0B122d and N˜GNFtD0 in B12d0B122d , where
Br 4 ]x�Rn11 : NxNEr(.

We can take a cut-off function h�C0
Q (B12d) with 0 GhG1 and hf1

in B122d and we can define C e4hF e1 (12h) G4G1o(1).
Since ˜C e4˜G1o(1) by (7), the functional C e has critical points

just on the boundary for e small enough.
Then

x(B n11) 41 4 !
p� Crit GO¯B n11 , ¯

2

¯r2
G(p) D0

(21)m(G , p) 4

4 !
p� Crit K , D h K(p) E0

(21)n2m(K , p) .

Then

!
p� Crit K , D h K(p) E0

(21)m(K , p) 4 (21)n

which is in contradiction with our assumption.
So, for e small we find ue critical point of Ee constrained on Ze and

therefore free critical point.
From a regularity result as Lemma 2.1 in [DHL] based on [VDV], it

follows that ue is a smooth function and, since (dn 1eK) u1

n14

n24 F0 for e
small, from a double application of the maximum principle to Ph

n 4

4 (2D h 1a 1 ) i (2D h 1a 2 ) with a 1, 2 4
cn 6kcn

2 24dn

2
positive

constants, we obtain ueD0 positive solution of (3).

Appendix B.

PROOF. (Lemma 3.2).
It’s an easy generalization of Lemma 3.1 in [Esp] and we refer to that
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paper for the details. Using

Ndet dW s , tN
n24

2n (y) 4 gt
11Np s (y)N2

11 t 2 Np s (y)N2 h
n24

2

and integrating in stereographic coordinates, if qD
4

n24
, by dominated

convergence, as t4 (12r)21 K1Q we get

I»4�
S n

KNdet dW s , t N
n24

2n
(q11)

dvh 4

4
2n

t n2
n24

2
(q11)

yK(2s)�
Rn

dx

(11NxN2 )
n24

2
(q11)

1o(1)z .

If q4
4

n24
, it is enough to split I into two integrals: the former on

B(0 , dt) behaves as 2n v n21 K(2s) ln t

t n/2
for d small and tF t(d) large

while the latter on Rn 0B(0 , dt) as t 2 .

If qE
4

n24
, the function NxN2(n24)(q11) is locally integrable and,

recalling that p s
21g z

NzN2 h4p 2s
21 (z) and 11Np 2s (y)N2 4

2

11cos d(s , y)
, we

get

I4
2

n24

2
(q11)

t
n24

2
(q11) y �

S n

K(y)

(11cos d(s , y) )
n24

2
(q11)

dy1o(1)z .

PROOF. (Lemma 3.3).
We set t4 (12r)21 . For the first derivative in r , we get

¯G

¯r
(rs) 42(n24) 2n21 t�

Rn

K gp s
21 x

t
h 12NxN2

(11NxN2 )n11
dxK0

because of Taylor expansion of K at the second order, oddness

properties and s
Rn

12NxN2

(11NxN2 )n11
40.
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For the first derivative in s i , evaluated with respect to z2s in a
neighborhood of the boundary, we remark that

¯

¯ri
gK i p r

21 x

t
hN

r40
4

422 !
jc i

¯K

¯s j
gp s

21 x

t
h xi xj

t 2
2

¯K

¯s i
gp s

21 x

t
h t 2 12xi

2 2NxN2

t 2

where r 4p 2s
21 (r), since the relation

p s
21 x

t
4As

21
i p s

21 x

t

for As �O(n11) choosen as the shorter rotation in the plane aei , en11 b
which maps s 4p 2s

21 (sei ) in s , lead us to compute exactly the derivative

in s of the expression p s i As
21

i p s
21 x

t
.

Hence

¯G

¯s i

(rs) 42
n24

n
2n21�

Rn

¯

¯ri
kK i p r

21 x

t
lN

r40

dx

(11NxN2 )n
K

K
n24

n
2n21 c0

¯K

¯s i

(2s) .

Similarly, for the second derivatives we have

¯ 2 G

¯r¯s i

(rs) K0

and

¯ 2 G

¯s i ¯s j

(rs) K2
n24

n
2n21 ¯ 2 K

¯s i ¯s j

(2s)

because

�
Rn

12NxN2

(11NxN2 )n11
dx4�

Rn

xj
12NxN2

(11NxN2 )n11
dx40 .
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Finally, the second derivative in r gives

¯ 2 G

¯r 2
(rs) K2

n24

n
2n22 c1g!

i

¯ 2 K

¯s i
2

(2s)h42
n24

n
2n c1 D h K(2s)

because

�
Rn

t n11 12t 2NxN2

(11t 2NxN2)n11
40 (t ¨�

Rn

(n21)NxN422(n12)NxN21(n11)

(11NxN2)n12
dx40 .

The constant c1 , defined as in statement of Lemma 3.3, verifies

c1 4
8(n11)

n(n22)
�

Rn

NxN2

(11NxN2 )n11
dx

and then is positive.
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