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Perturbations of Paneitz-Branson operators on S".

P1ERPAOLO ESPOSITO (¥)

ABSTRACT - We prove the existence of solutions on the standard unit sphere
(S", h) for the equation Pju=d, |u|%u + (eK + 0(e)) |u|?" 1w, ¢ small,
and 1<¢< 7”;1 , where P is the fourth order conformally invariant
Paneitz-Branson operator. We will approach this problem via a finite dimen-
sional reduction which lead us to consider the «stable» critical points of the

. . . +4 .
«Melnikov function»: in the case ¢ = rre " a more subtle analysis will be car-
n—

ried out by means of a Morse relation for functions on manifolds with boun-
dary which are quite degenerate on the boundary.

1. Introduction and main results.

Given (M, g) a smooth compact Riemannian manifold of dimension
n =5, let S, be the scalar curvature of g and let Rc, be the Ricci curva-
ture of g.

The Paneitz-Branson operator P, introduced by Branson in [Bra] as
the n-dimensional generalization of the Paneitz operator on 4-manifolds
(see [Pan]), is the fourth-order operator defined by

—4
PJw= A%~ div,[(0, 8,9 + b,Re,), du*)]+ = g Y
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where 4, = div,(V) is the Laplace-Beltrami operator and

1 n®—4n*+16n—-16 _, 2

= ———4,5,+ Sz Re. |2
o 2n-1" " 8m—-1Pm—-27 7 (n—2)2| “ls
(n—272+4 4
Q= ———— = .
2(n—1)(n—2) n—2

For we C'(M), we denote by du* the vector field Cig ' ® Vu.
The operator P, is conformally invariant in the sense that if
g=u*""Yg is a conformal metric to g, then for all ¢ € C* (M)

n+4

Py (ugp) = umPg"(p .

In particular, by taking ¢ =1

n+4

n—4
2 Qg’nun—4.

Pju=
On the standard unit sphere (S”, k) with n =5, the expression of P}’ re-
duces to
Plu=A%u—c,A,u+d,u
where

n—4

n?-2n-4) d,= nn?-4).

Do | =

Cp =

In this paper we study perturbations on (S", k) of the equation

n+4

Q) A2u—c,A,u+d,u=d,ur*.

We consider perturbations of the form g, |«|?” 'u with g e [1, ntd ] and
g. = eK + o(e). -4

The special case of linear perturbations, e.g. the case ¢ =1, was con-
sidered in [Esp] for the conformal Laplacian on the sphere, motivated by
uniqueness result in case of constant negative perturbations (see
[BVV])).

Even if we don’t know whether a similar phenomenon occurs also for
the fourth order conformally invariant Paneitz-Branson operator, we
extend our previous multiplicity result to the present situation.
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THEOREM 1.1. Let g.€ C(S™) be a function of the form g, = eK +
+ o(e) where o(e) is in the uniform norm of C(S™) and let q be an exponent

. +4
m [1,” ),n25.
n—4

Then, for ¢ small, the equation

n+4

2) Aiu—c,A,u+d,u=d,u"*+g,ul
admits two smooth positive solutions if either K changes sign and q =

4 4
=" orq<—— and [K=0.
n—4 n—4 S

n+4 .
The case q= — corresponds to a «prescribed scalar curvature
"

problem» for the Paneitz-Branson operator.

It is of special interest because of obstructions similar to the Kazdan-
Warner obstructions for the Nirenberg problem (see [DHL]).

As for the «scalar curvature type equation» we prove an existence re-
sult under a Bahri-Coron index count condition (see [CY1], [BaCo],
[CY2], [CGY] and [AAP]).

THEOREM 1.2. Let n=5, let K be a smooth Morse function on S"
such that A, K(x) #0 for all x e Crit (K) and let g. as above.
Let m(K, x) be the Morse index of K in x e Crit(K) on S".

If > (—1)"EP) = (—1)", then for e small there exists a
peCritK, 4, K(p) <0 .
smooth positive solution of the equation

n+4

3) A3u—c,A,u+d,u=(d,+g,) "+

The proofs rely on a finite dimensional reduction (see [AmBa]), exploit-
ing the «non degeneracy» of the manifold of solutions of the unper-
turbed equation (1): we will describe this approach in the section 3.

The second result is obtained by means of a Morse relation for the
«Melnikov function» associated to (3).

Morse theory has been used in [Mal] to solve the scalar curvature
equation on the sphere, in the perturbative case.

The main novelty here is the use of Morse theory for functions, on
compact manifolds with boundary, which are «degenerate» on boundary
points.

Usual Morse theory on manifolds with boundary does not apply in
this case and, since we didn’t find in the literature the result we need, we
will give a proof in the next section.
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For convenience, we state here the Morse relation we will use in the
proof of Theorem 1.2.

LEMMA 1.3. Let WeC?*B"'Y R) be a Morse function such that

E;—W =00n 0B" " and W= ¥|spn+1 be the trace of ¥ on the boundary of

Bngl.
Then

@ 1=xB"hH= > (—1)y™¥» 4

peCritwnB"*1

+ ) (1o,

2y
peCritWonaB" 1, 22 (p) >0
de

REMARK 1.4. We have learned from Prof. Hebey that the above re-
sult, concerning the «prescribed scalar curvature» problem for the
Paneitz-Branson operator, has been recently obtained with a somehow
different approach by Ahmedou, Djadli and Malchiodi.

While submitting the paper, we got to know a preprint by Felli,
where, among other things, similar results are proved.

We wish to thank Prof. Hebey for introducing us to the study of the
Paneitz-Branson operator.

2. A Morse relation.

In this section we give a proof of Lemma 1.3 as stated in the
introduction.

Proor. (Lemma 1.3).

We consider B"*! with the standard metric 0 of R” and, in a neigh-
borhood of the boundary, we can define the following local coordinates
system

1 x
2o welreR" L 5 < |z| <1, — #o;—

||

g -3
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and similarly z_, via stereographic projection through the pole —o.
In these local coordinates systems the metric 6 decomposes in such a
way that

gn+1j:0 ijl,...,% g?z+111+1:1'

If the functional F is such that, for every point p e dB"*! %(p) =0,

then it is always possible to define the flow ¢,(q) associated to dF # =
=Clg '®VF, where ¢,(q) is the unique solution of

3
%@ = —dF*(p,(q)) for all t=0
po(q) =¢q
since
oF
(dF#)n+1: _gn+1n+1 taip— )}
do

on 8B"*! with respect to z, or z_,.

We define M§ :=F ~'(— o, ¢] and, following exactly the proof of the
same result in Milnor [Mil], we have that V¢, ¢ > 0 Mz~ ¢ is a deformation
retract of Mg*¢if F "'[c — &, ¢ + €] contains no critical points of F, since
we can construct deformations along gradient lines of F'.

Now, we proceed in the following way.

STEP 1) We prove a Morse lemma for critical point on the boundary
(see [Mil]): given pe dB™*! a non degenerate critical point for ¥ and

. . ow .
z:=2z_, alocal coordinates system, using - = 0 on 3B"*!, we will con-

struct a local coordinates system y = (yq, ..., ¥,+1) in a small neighbor-
hood U of p in B"*! such that UN8B"*'={y,,, =0} and

Y(q) = W(p) — (g () — ... = (g, () +

2 2 : azl]/ 2
F Wy @P + o+ (W0 +s1gn( o <p))<yn+1<q>)

holds true for all ¢ e U, where n = m(¥,, p).
In particular, we will get that y; does not depend on z,,,; =1 — o and
Yn+1(q) = a(q)(1 — o) for some a>0.
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STtEP 2) Following [Mil], we construct a functional F, which is a
small perturbation of ¥ in a neighborhood of p, such that for ¢ small
F[c—¢€, c+e] contains no critical points, the sublevels of F verify

MgEre=M5 * and M§E *cMg™° and there holds Z—F =0 on dB"*"!,
where ¢ = ¥(p). . ©
For the third statement we will use - = 0 on 8B" ! and the link be-
(o

tween the local coordinates systems y and z.

STEP 3) We can choose, modulo rearrangement, the local coordinates
system (¥, ..., Yn+1) in the neighborhood U of p such that for all
qeU

(@) =¥P) =1 (P — .. — (@ + Y1 (@ + oo+ Y1 (@)
where
2
W
[m(lPO,p) if > (p)>0
do
l:
2y
m(¥y, p)+1 if (p) <0

do*®

and 8B"*'NU = {y;=0} for some ie {1, ...,n+1}.

We denote e*={qeB" "y (¢ + ...+, (@ <&,y 1(Q) =...=
=Yu+1(q) =0} and & = {geB" iy (P + ... Ty (@ =€, Y. 1(q) =
=...=¥.+1(@Q) =0}

Then, using the deformations induced by F,

M&/+£:M§+s: ;‘_E:MIEI_EUH

where H = M§ *\Mj ¢ and = denotes omotopy equivalence.

We denote by M{ ¢Ue* the attachement of e’ to M ¢ along
=etNM e,

We can deform H onto e” in a similar way as Milnor [Mil], taking into
account that the deformations map {y; =0} in itself, and we get

Mt =M§  UH=Mj *Ue’,

2
We note that if aa—il(p) <0, ¥ increases along the direction y; and e* is

homeomorphic to an half ball and in M ¢ U e* it is attached just for an
half sphere to My °.
Hence M§ “=M§"*.
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B"*! entirely attached to My~
Hence M§~ ~Mc+“' U e’ where A =m(¥,, p).

STEP 4) More generally suppose that there are k non degenerate
critical points py, ..., p; in ¥~ 1(c) and suppose that

2

R
{p1, ---,ps}=[10ieaB”“: —2(pi)>0], {Des1s ooy Pu} ={pieB""'}

and
m(¥,, p;) ifi=1,...,s
{m('lf,pi) ifi=s+1,...,m'
We remark that for points not on the boundary, the classical Morse

theory is true, provided we can define deformations along gradient lines
of F.

Then
Myt e=MG cUe1U...Uetn,
Hence
1=4B"h= > (=14 D (—1)"Po ),

peCritwnB"*! e Crit womaBn+l,i;’(p)>0
9
For the first step, we sketch the proof of this special version of Morse
lemma, just explaining the differences with [Mil].
We will denote ai as the derivative with respect to z; for all 1= M.
We choose U, such that 2(U;) is convex and, by letting z(q)

=(z1(q),.--,2,(q)), we can write, since Z—W=0 on 9B"*1, for all geU,
o

1 1
L oV ov
W)~ ) = 2 2 [ T2, 0 dt - (1-0) [ <G 1~ o)) dt -
i=1 . 9o . o

2

7

[0, 1%

(tsz, 0) +

1 OiaO’j

orY
+(1-p) J tdtds
0 %07

to, 17

®, ts(1 — p)) =: Zziszij(z)
1]
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where
2y
[ 5 (P) 0
1, 1 9o
H(p)=(H;(p))=—-D*¥(p) = — .
2 2 0 3211/( |
30® pJ

Following Milnor [Mil], from the non degeneracy of the critical point
p for ¥, it is always possible to find a neighborhood U,c U; of p and a
local coordinates system (yi, ..., ¥,,(1 —90)) such that y; does not
depend on o for all i=1, ..., n and

n

Y(q) — ()= 2 +y(@F + (1= 0P Hy s 1011y -5 Y (1= 0)).

=1

This can be done essentially for the fact that H;; does not depend on o for

all ,7=1,...m and H;,,1=0 for all 1 <n +1.
. 182y

Since Hn+1n+1(p) = E an
Uc U, of p in which it is possible to define

(p) #0, we can find a neighborhood

Yn+1= (1 _Q)VlHn+ln+1(y1’ [ERS) yn’(l _Q)) | .

The local coordinates system (v, ..., ¥, 1) in U is what we are looking
for.
For the second step, we remark that in UNdB"*'={y,,, =0}

az?z+1 _

dF* (dy, 1) = 2 dF *(dz))
J Yj

1 oF 1 v

V |Hn+1n+1| aQ \% |Hn+1n+1| aQ

since F' differs from ¥ for a function depending on the square of the local
coordinates y; for all j, while outside U we have F = V.

REMARK 2.1. [t is possible to extend this result to any manifold
(M, g) with boundary OM whenever there exist local coordinates
systems on the boundary for which the normal derivative of ¥ vanishes
on OM and the temsor metric g splits between the mormal and the
boundary directions on M, i.e. g,,1;=0 on M.
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3. Proof of Theorems 1.1 and 1.2.

Weak solutions of (2) and (3) are critical points of the energy
functional

E.(u):=Ey(u) +G(e,w), ueHF(S")

where

1
Ey(u) = > J(A W )2 dvy, +
S?l

c d n—4 2
+—”f|w|2dvh+ —"fu2dvh—dn—f|u|mdvh
2371 2S’l 27/1/ Sn

1
G(€7 ?/L) =T fg& |u|q+1dvh-
q+lsn

The homoteties y —ty, through stereographic projection from oceS",
induce conformal diffeomorphisms ¢, , on the sphere and
isomorphisms

n—4
Ty ou(y) i= (uo@, )y |detdo, (y) | =, wueHFS™).
For conformal invariance of F,, we have that
2
Z:= {To,(l—g)*ll = |det dg, q-p1(y)] > : QOEB"+1}
is a critical manifold for E, at the fixed energy level b= Ey(1) =

_ (n=H(n*-4)

2 w, #0, which is the image through the map

5) @:00eB" ' =T, 1_p11.

The kernel of the linearized operator at w =1 is the set S of u such
that

+4 2 2
A%u—anhuﬂLdnu:dnn u@(—Ath&)u:(nJr&)u.
n—4 2 2
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By choosing ped; :={u: —Ad,u=21,u} as a test function, where
0=4p<A;<..<1p<...<+ o is the ordered sequence of the
eigenvalues of —A4, on S", we get

cn \? cn \?
n+ —| |up= A+ = | u=
( 2)J¢SJ¢( : 2)

S’?L
C, |\ cnzj
= |ul-4d,+— =|Ap+t =] |up.
j( ' 2)¢ (" 2) 4

Sn Sn

Since A, = n for all k=1, we get [u@ =0 for K#1: hence ueA,=
:(k@l/lk)L and ScA;. 8"

Since A;¢S by direct computations, we see that S =A1.

The eigenspace of the Laplace-Beltrami operator corresponding to
the first eigenvalue A;=mn has dimension n+1 (see [Ber]) and by
conformal invariance

ker (D2Ey(T, 1)) = T, ;ker (D*Ey(1)).

Hence the manifold Z satisfies the non degeneracy assumption 7,7 =
= ker (D?E(z))forallz € Z,being dim ker (D*E((T, ;1)) =n + 1and the
inclusion T,Z c ker (D?E,(z)) always true.

So, a finite dimensional reduction can be performed (see [AmBa]) and

forallqe[l, ntd

n—4
the «Melnikov» function

] we are lead to consider the «stable» critical points of

G(e, P(00)) _

6) I(po) :=lim
e—0 e
1 (n—4)q+1)
———— [Kldetdg,q o | = dv.
q+ ls"

In this context, it is true that |jw|| and ||3;2] go to zero as e — 0 uniformly
on compact subsets, 'e C2(B"*!) and

M VIE.(z +w(e, 2))1(z) = eVI(2) + o(e)

where for ¢ small w(e, -): B""1—HZ(S") is a suitable map and there
holds the following result (see [AmBa]).
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THEOREM 3.3. Suppose that there exist zZeZ and U open

neighborhood im Z of z such that either ng%]n I(z) >IZ) or rréax Iz) <
<I).

Then, for & small enough, the functional E, has a critical point u, =
=z, +w(e, z,) with z,eU.

Now we need an expansion around boundary points of the function I,
see the Appendix for the proof.

Lemma 3.2. Let q be in (0, n—f] and n=5.
"

It results that as o —1 uniformly in oeS™:

4
> I(po) =
q _4) 0
n o d
= - (1) TV K(~0) S+ o(1)
g+1 @ (At ey T @y
4 n—4_, i
q=— I(o0) = ——2"w,_1(1=0)* In(1-0)[K(-0)+0(1)]
n—4 n
4
< I(po) =
q _4) 0
%((1+1) n—4 K(y)
== " o dy o) |-
q+1 o (1+cosd(o,y) = "
Now, we can prove the existence result im the subcritical case
< n+4
1 q<n_4.

Proor. (Theorem 1.1).

We see from Lemma 3.2 that I’ vanishes at 9B"*"! since
n+4

< .
q n—4
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Moreover, I" changes sign near the boundary if either ¢ = % and K
n—

. 4 .
changes sign or g < — and [ K =0 since
n — Sﬂ

K(y) ~
fdo J ”;‘wmdy B
g s» (1 +cosd(o,y)) 2

K(y)( [ do__

o | =0
sn (1+cosd(o, ¥y)) !

= n
Sn 2

do

for the independence on y of [ — .
. ~?” (1 + cosd(o, y))T.(q+1> o )
Then I’ has a positive maximum and a negative minimum and satis-

fies in these points the assumptions of Theorem 3.1 for U with
dist (U, 8B"*1) =5 > 0.

Hence, from Theorem 3.1, for ¢ small we find two weak solutions of
the equation

8
Au—c, Adyu+d,u=d,|ul"Tu+g, |u|!" u

which are of the form u, = ®(&,) + w(e, @(&,)) with £€,e U and @ as
in (5).

These functions are smooths, following the regularity result Lemma
2.1 in [DHL] based on ideas in [VDV].

We want to show that for e small the functions %, must be
positive.

Let us set z, = @(&,).

First, we remark that there exist 6 and M positive constant such that
0<z.(x)<M for all xe S" and & small, because for dist(&,, 3B""!)=9y>0
the functions z, are uniformly far from the infinite concentration
corresponding to the boundary 8B"*1.

Moreover, by uniform convergence on compact subsets of B"*! we
have

||’M)(€, ze)HHZZ_)O .
We need to show that the convergence to zero in the HZ(S™)-norm of

w(e, z,) implies the convergence to zero in the uniform norm: this will
prove that the functions u, are positive.
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By using the equation for u, and z,eZ, we can get for w,=
=w(e, z.)

(8) A%ws_crzA}Lwe+d7lw£:

n+4

8
=dn(|z£+we et (2, W) — 24 ) + 0. |2 Fw |7 Nz A w,).

We follow the ideas developed in [VDV] and [DHL] to get a sort of
bootstrap for w,.
We write

Pizlwe:(_Ah+a1)O(_Ah+a2)we:a£we+be

2
Ve, — 4dn
2

©) [be | = OCe)

where a,; ,= , be=g. |2 +w, | (2, +w,) with

for some p > 2" and
n+4
1
agzdnj|zs+tws| Tdte LT(S").
0

We define K,={rxeS": |w.(x)| < V\/|w.lzz}, ¢.=a.xsng and f,=
:a/swsXKE'
We remark that

(10) |c£|L%=O( J(1+|ws|ﬂ)dac) =

S”’\KE

= 0 (vol (S"\K,)" + |w,

8
2 ) =0
because

vol S"\E) VIwllg < | |we] < Clow [l

S n \K(‘
while clearly
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We rewrite (8) in the form
(12) (Id—H,) w,= P (f,)+ (P (b,)

where H,(v) = (P}") (¢, v).
Let us remark that for any fe L*(M) and s > 1, there exists one and
only one ue H;(M) such that P, u =f.

Then, from elliptic theory, for any s = 2—”4 and ve L*(S™) there
holds "

L= (P e v)

s=0(cv|p) =0(c, |5 |v

|H, v L)

ns
n+4s
Hence H,: L°(S")—L*(S"™) is an operator with norm |H,| =
=0(]|c.|7)—0 because of (10) and then for ¢ small the operator /d —
—H,: L*(8S")—L*(S") is invertible.
From (12), (11) and (9), we obtain

where h =

(18)  |w,|Ls < C|(P L)+ (PP Hb) |5 < C( |fil=+¢e)—0

np 2n
> .
n—4p n—4 on
We remark that for b, e L?(S™) with p > — the standard elliptic
n
estimates give estimates for (P;*)"1(b,) in L*(S™).
From (8) and standard bootstrap arguments, the estimate (13) gives
for all s=1

where s =

|?/U‘9 L“‘_>O .

Then we infer that
Plw,=a,w,+b,eL*(S™)

for all s=1 with |a,w, +0b.|,-—0.

Then w,—0 in H{(S™) for all s=1 which implies that w, tends to
zero in the uniform norm.

This ends the proof of Theorem 1.1.

To prove Theorem 1.2 we need to know the behaviour the derivatives
of I up to the boundary: this is performed in Lemma 3.3 below, see the
Appendix for the proof. We will extend I"on B"*! to have a C* functional
for which we will find critical points via Morse theory.
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LEMMA 33. Let n=5 and K a smooth function on S™. Then as
o—1

or or —4 oK o%r
Z(00)—=0; —(00) = ——2" "¢y = (~0); (00)—0;
do oF n do; 90 ;90
?r —4 2K
(00)— — =2 1¢ (—o);
30i30]- n aaiaO’j

o:r -4

°(0o)—> - L 2one A, K(~0)

d0? n

wniformly —in  oeS", where cy= [ da and ¢ =

rr (14 |z]?)"
dx are positive constants.

_ 4_ 2
_ f|90|2(n D|x| 2(n+.2)|a?| +nm+1)
R” (1+ |x|2)n+2
The derivatives im o; of I' in o0 and K itn —o are respectively
evaluated in z_, and stereographic projection through o.

n+4
n—4

Now, we can deal with the critical case ¢=

ProoOF. (Theorem 1.2).
We want to show that there exists &, such that for all ¢ with
le| <eg

(14) ', (z):=E,(z+w(e, 2) =b+el(z) +o(e)

possesses a critical point, where

1
Ey(u) := > J(A W W2 dvy, +
Sﬂ

c d n—4 2
+if|Vu|2dvh+l u2dvh—dn—J'u+n-4 dvy,
2S77r 2 n zn Sﬂ

2n

s
-4 2

G(e,u) = — r-c J’gguﬂ"‘ dvy,.
2n o

The critical points of I', will produce free critical points of E,: see
[AmBa] for this property and for the expansion (14).
We consider I" as a C*functional on B""!, since Z is the image
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of B"*! through @ and by Lemma 3.3 I" can be smoothly extented
up to the boundary by setting I'|;p»+1(0) = —EZ7L_ICOK(—O).
n

Arguing by contradiction, we suppose that there exists a sequence
r,—b
&

e—0 such that I', and equivalently @, :=
critical points in B" "1,

Since I" on dB™*! has the same critical points of K, py, ...p;, non
degenerates and then isolated, we can choose ¢ small such that I" has no
critical points in B""'\B, 35 and |VI|=7>0 in B, _,\B; _3s, where
B,={xeR"*': |x| <7}

We can take a cut-off function 7€ Cy* (B;_s) with0<np<landy=1
in B, _,; and we can define ¥,=y®,+ (1—5) '=T+0o(1).

Since V¥, =VI'+ 0o(1) by (7), the functional ¥, has critical points
just on the boundary for ¢ small enough.

=TI+ o0(1) possess no

Then
X(BnJrl):l: 2 (_l)m(l",p):
pecmmaB"”,g_zr(p»o
S
— E (_l)anK,p).
peCritK, 4,K(p) <0
Then

(—1)"E P = (1)
peCritK, 4,K(p) <0
which is in contradiction with our assumption.

So, for ¢ small we find u, critical point of £, constrained on Z, and
therefore free critical point.

From a regularity result as Lemma 2.1 in [DHL] based on [VDV], it
follows that u, is a smooth function and, since (d, + eK) u -+ =0 for ¢
small, from a double application of the maximum principle to P;' =
¢, = Vel —4d,

=(_Ah+a1)0(_Ah+a2) Wlth a1,2= 2

positive

constants, we obtain u, > 0 positive solution of (3).

Appendix B.

Proor. (Lemma 3.2).
It’s an easy generalization of Lemma 3.1 in [Esp] and we refer to that



Perturbations of Paneitz-Branson operators on S” 181

paper for the details. Using

n—4
n— 2 _—
|det dg .| 7 () = tM) :

1+t2|m,(y) |?

and integrating in stereographic coordinates, if ¢ > %4, by dominated
convergence, as t=(1—0) '— + » we get "

n—4
I:i= JK|detd(p0,t|7”*“dvh=

s
2" d
- |K(-0) xH( — +o(1)
grT e w L+ e’
If q= 4 T it is enough to split I into two integrals: the former on
"
B(0, 6t) behaves as 2"160”,11{(—0)% for 6 small and ¢ = #(0) large
while the latter on R"\B(0, ot) as t2.
If ¢< , the function |x| ™~ #“*D ig locally integrable and,
"
recalling that n;l(i‘) =g L) and 1+ |7 _,(y)|*= ;,We
|z 1+ cosd(a, y)
get
R K@)
1= 2(4—1) J’ E(+1)dy+0(1) ’
t2 gn (IL+cosd(o, y)) 2 1

Proor. (Lemma 3.3).
We set t = (1—)"!. For the first derivative in o, we get

or 1— [x|2
 (00) = —(n—4)2”-1th(n;1f)¢dm—>o
30 3 t] 1+ 2Py

because of Taylor expansion of K at the second order, oddness
1—|z|?

roperties and | —————— =0.
p p R{ (1+ |m|2)n+1
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For the first derivative in o;, evaluated with respect to z_, in a
neighborhood of the boundary, we remark that

:_zzﬁ(nlﬁ)xf”f_%(ﬂlﬁ)w
i=ido;\ 7 t)] t? do;\ 7t t?

where 7 = 7w ~L(r), since the relation
mst i =A 1 om ! ki
t t
for A;e O(n + 1) choosen as the shorter rotation in the plane {(e;, e, ;)
which maps 5 = 7 -1 (se¢;) in 0, lead us to compute exactly the derivative

. . _ 1
in s of the expression 7, A, 10.71701?.
Hence

Koﬂ__lf
t

dx

or -4 0
o ="t 2 e
; n r=0 (14 |®]%)"

o 7

-4 oK
2 2"~ 1e, (—0).
n (oF]
Similarly, for the second derivatives we have
az
(00) =0
90390
and
h - 2K
(00) = — PA (—o0)
90,90 n 90,90

because

1— x| 1 |x|®
J 2yn+1 m:ij 2n+1dac:0
(1+ |x|%) (1+ |x|?)

R” R"
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Finally, the second derivative in o gives

183

o:r n—4 32K n—4
~ (00) > — 2"201(2 (—0)) = "9 A,K(-0)
do n i 0 7

2
)

because

jtnu 1-t%|x|® —OVt:>J’ (m—1)|x|*—2n+2)| |+ n+1)
2 2yn+1
1+t x]*) o

- (1 + | x|2)n+2
The constant c¢;, defined as in statement of Lemma 3.3, verifies

B 8n+1) |90|2
n(n—Z)Rn (1+ |x|®) !

and then is positive.

REFERENCES

dx=0.

[AAP] A. AMBROSETTI - J. G. AZORERO - I. PERAL, Perturbation of Au +
2

n+

+u 2 =0, the scalar curvature problem in R™ and velated topics, J.

Funct. Anal., 165 (1999), pp. 117-149.

[AmBa] A. AMBROSETTI - M. BADIALE, Variational perturbative methods and
bifurcation of bound states from the essential spectrum, Proc. Royal

Soc. Edinburgh, 128A (1998), pp. 1131-1161.

[BaCo] A. BAHRI - J. M. CoroN, The scalar curvature problem on the standard

three-dimensional sphere, J. Funct. Anal., 95 (1991), pp. 106-172.

[Ber] M. BERGER - P. GAUDUCHON - E. MAZET, Le spectre d’une variété

Riemannienne, Lecture Note in Mathematics, 194,
Springer-Verlag, New-York/Berlin.

1971,

[BVV] M. BIDAUT-VERON - L. VERON, Nonlinear elliptic equations on compact
Riemannian manifolds and asymptotics of Emden equations,

Inventiones Mathematicae, 106 (1991), pp. 489-539.

[Bra] T. P. BRANSON, Group representations arising from Lorentz conformal

geometry, J. Funct. Anal., 74 (1987), pp. 199-291.

[CGY] S. A. CHANG - M. J. GURSKY - P. YANG, The scalar curvature equation

on 2 — and 3-spheres, Cale. Var., 1 (1993), pp. 205-229.

[CY1] S. A. CHANG - P. YANG, A perturbation result in prescribing scalar

curvature on S™, Duke Math. Journal, 1/64 (1991), pp. 27-69.

[CY2] S. A. CHANG - P. YANG, Prescribing Gaussian curvature on S2, Acta

Math., 159 (1987), pp. 215-259.

[DHL] Z. Diapir - E. HEBEY - M. LEDOUX, Paneitz-type operators and

applications, Duke Math. Journal, 1/104 (2000), pp. 129-169.



184
[Esp]
[Mal]
[Mil]

[Pan]

[VDV]

Pierpaolo Esposito

P. Esposito, Uniqueness and multiplicity for perturbations of Yamabe
problem on S", Rend. Istit. Mat. Univ. Trieste, 32 (2000), pp.
139-146.

A. MALCHIODI, Some existence results for the scalar curvature problem
via Morse theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.
Rend. Lincei (9) Mat. Appl., 10, no. 4 (1999), pp. 267-270.

J. MILNOR, Morse theory, Princeton University Press, 1963.

S. PANEITZ, A quartic conformally covariant differential operator for
arbitrary pseudo-Riemannion manifolds, preprint, 1983.

R. C. A. M. VAN DER VORST Best constants for the embedding of the

space H? N H () into L 51 (), Differential Integral Equations, 6
(1993), pp. 259-276.




