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Abstract. For the Dirichlet problem −∆u+λV (x)u = up in Ω ⊂ RN , N ≥ 3,

in the regime λ→ +∞ we aim to give a description of the blow-up mechanism.

For solutions with symmetries an uniform bound on the “invariant” Morse
index provides a localization of the blow-up orbits in terms of c.p.’s of a suitable

modified potential. The main difficulty here is related to the presence of fixed

points for the underlying group action.

1. Introduction. We study the Dirichlet problem −∆u+ λV u = up in Ω
u > 0 in Ω
u = 0 on ∂Ω

(1.1)

where Ω ⊂ RN is a bounded domain, N ≥ 2, p > 1, V is a positive potential and λ
is a large parameter.

Under the transformation u(x) → λ−
1
p−1u(x), λ → ε = 1√

λ
, notice that prob-

lem (1.1) reads equivalently as a singularly perturbed Dirichlet equation. Both
with Dirichlet and Neumann boundary condition, singularly perturbed problems
have been widely investigated in literature, as they arise as steady state equation
in several biological and physical models, such as population dynamics, pattern
formation theories and chemical reactor theory.

The main feature of problem (1.1) is the intrinsic non-compactness as λ→ +∞.
To be more precise, it is well known that

‖un‖∞ →∞ as n→ +∞,
where un is a sequence of solutions of (1.1) with λn → +∞ as n → ∞ (see for
example [16]). An energy or a Morse index bound forces the blow-up set to be finite,
and an accurate description of the asymptotic behavior for ground-state solutions
is available in the Dirichlet [31, 38] and the Neumann [29, 30] case. More generally,
in the Dirichlet case energy and Morse index bounds give an equivalent asymptotic
information [16], and as a by-product a non-degeneracy result can be obtained. The
construction of solutions with pointwise blow-up – the so-called spike-layers– has
been subject of an extensive investigation in the past [5, 6, 8, 9, 11, 13, 19, 21, 34,
36, 37, 38].
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Higher dimensional blow-up (on curves, surfaces,...) had been conjectured by
Wei Ming Ni [28] (in the case of Neumann boundary condition): for every k =
1, . . . , N − 1 there exist solutions that blow-up at a suitable k−dimensional subset
of Ω. For domains with symmetries positive constructive results were available
[1, 2, 3, 4, 10, 12, 26, 27]. The general case has been recently proved [22], while the
case k = N − 1 and k = 1 with N = 3 were treated previously in [24, 25] and [23],
respectively.

For radial solutions (on the annulus and the ball) an interesting result –due to
A. Ambrosetti, A. Malchiodi and W.-M. Ni [1]– identifies the crucial role played by
the modified potential M(r) = rN−1V θ(r), θ = p+1

p−1 −
1
2 : they construct families of

radial solutions which blow-up on spheres whose radii are non-degenerate c.p.’s of
M . From the asymptotical point of view very few is known. In the Dirichlet case
on an annulus, an asymptotic analysis has been firstly performed by E.N. Dancer
[7] by means of ODE techniques, showing that, for V ≡ 1 and p sub-critical, the
only positive radial solution is the radial ground state with its unique maximum on
a sphere whose radius goes to 1 as λ → +∞. Notice that the radial ground state
solution has both energy and Morse index very large, and the asymptotic techniques
based on a bound for the energy (see for example [14]) do not work. An alternative
asymptotic approach has been developed [15] by the first author in collaboration
with G. Mancini, S. Santra and P.N. Srikanth so to deal with radial solutions of
uniformly bounded radial Morse indices and general V ′s and to rigorously establish
the correspondence between c.p.’s of M and blow-up radii.

The aim of the paper is to continue the analysis of [15] and exploit partial sym-
metries in describing the asymptotic behavior of solutions to (1.1). To be more
precise, given a k−dimensional subgroup G ⊂ O(N), let Ω be a G−invariant set
and V a G−invariant function: for every x ∈ Ω and g ∈ G there holds gx ∈ Ω
and V (gx) = V (x). We deal with G−invariant solutions u of problem (1.1) and
look for a localization of the blow-up set. As we will discuss, the presence of a
non-trivial G0 = {x ∈ Ω : gx = x} –the set of fixed points under the action of G–
is generally responsible for a degeneration of the blow-up G−orbits onto points of
G0. To establish high dimensional blow-up, in [35] the authors explicitly construct
in R4 a 1−parameter group action with G0 = ∅, and then carry over an asymptotic
analysis for ground-state solutions on an annulus with V = 1 which are invariant
under this action.

The main point here is to allow general groups G (possibly with G0 6= ∅), general
dimensions N and solutions which are not ground states. Since every smooth action
on a sphere of even dimension has fixed points, notice that in odd dimensions N we
always have G0 6= ∅. We will consider the group G as generated by the rotations
in the planes {x1, xk+1}, . . . , {xk, x2k}. Letting s = (x2k+1, . . . , xN ) ∈ RN−2k (with
the agreement that N ≥ 2k and s is disregarded when N = 2k), we have that Ω
and G0 are generated by Ω0 = {(r, s) ∈ [0,+∞)k × RN−2k : (r, 0, s) ∈ Ω} and
Ω0 ∩ {r = 0} under the action of G, respectively. The main tool in the asymptotic
approach we propose is given by uniform bounds on the reduced Morse index mG(u)
for a G−invariant solution u of (1.1). Let us define

HG = {u ∈ H1
0 (Ω) : u is G-invariant a.e.},

and let mG(u) be the maximal dimension of subspaces W ⊂ HG for which the
quadratic form associated to −∆ + λV − pup−1 is strictly negative in W \ {0}.
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Introduce the Sobolev exponent

pS(N) =

{
+∞ if N = 2
N+2
N−2 if N ≥ 3

and the Joseph-Lundgren exponent

pJL(N) =

{
+∞ if N ≤ 10
(N−2)2−4N+8

√
N−1

(N−2)(N−10) if N ≥ 11.

By an asymptotic approach based on the assumption sup
n∈N

mG(un) < ∞, we have

the following description of the blow-up mechanism along un (see Theorem 2.2 for
a more refined statement):

Theorem 1.1. Let 1 < p < pJL(N) with p /∈ {pS(j) : j = 3, . . . , N}. Let un
be a positive G−invariant solution of (1.1) with λ = λn → +∞ as n → +∞ and
sup
n
mG(un) < +∞. Up to a sub-sequence, there exist (r1

n, s
1
n), . . . , (rhn, s

h
n) ∈ Ω0,

h ≤ sup
n
mG(un), so that for all i, j = 1, . . . , h,, i 6= j,

λn|P in−P jn|2 → +∞ , λn d(P in, ∂Ω)2 → +∞ , λnV (P in) ∼ up−1
n (P in) as n→ +∞,

and
un(P in) = (1 + on(1)) max

Ω∩B
Rnλ

− 1
2

n

(P in)
un

for some Rn → +∞ and on(1) → 0 as n → +∞, where P in = (rin, 0, s
i
n) ∈ Ω.

Moreover, there holds

un(r, 0, s) ≤ C(λn)
1
p−1

h∑
i=1

e−γ λ
1
2
n |(r,0,s)−P in| ∀ (r, s) ∈ Ω0, n ∈ N

for some C, γ > 0.

Just to comment the assumption on p in Theorem 1.1, let us recall that [17] finite
Morse index solutions of −∆U = Up do not exist nor in Rj neither in the half-space
as long as 1 < p < pJL(j), p 6= pS(j). Even though the G-invariant problem (1.1)
might be studied as an equation in Ω0 with the operator ∆ re-written in cylindrical
coordinates, we will not pursue this approach so to better exploit the information
on mG(u) which, in our opinion, seems more readable in Ω.

A careful expansion of Pohozaev-type identities now provides a localization of
the blow-up set.

Main Theorem. Let un be a positive G−invariant solution of (1.1) with λ =
λn → +∞ as n → +∞ and sup

n
mG(un) < +∞. Assume that x · ν(x) 6= 0 for

all x ∈ ∂Ω. Letting P in, i = 1, . . . , h, be the points given by Theorem 1.1, set
P i = lim

n→+∞
P in (up to a sub-sequence). Letting ν = (νr, 0, νs) be the unit outward

normal at (r, 0, s) ∈ ∂Ω and V (r, s) := V (r, 0, s), we have that

• if P i ∈ Ω, then ∇sV (P i) = 0 and k∑
j=1

rj∂rjV + ΘiV

 (P i) = 0,

where Θi = Θ(P i) is given by (3.3);
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• if P i ∈ ∂Ω, then there exists µi ≥ 0 so that ∇sV (P i) = −µiνs(P i) and k∑
j=1

rj∂rjV + µ
′

ir · νr + ΘiV

 (P i) = 0

where

µ
′

i =

{
µi if νs(P

i) 6= 0
≥ 0 if νs(P

i) = 0.

The paper rises from partial results contained, among other things, in [32]. Sec-
tion 2 will be devoted to give a global asymptotic description for a blowing-up
sequence un provided sup

n
mG(un) < +∞ does hold. In Section 3 an expansion

of some Pohozev identities will follow from all the previous analysis, providing the
localization of the blow-up set S = {P i : i = 1, . . . , h} as given in Theorem 1.

2. Asymptotic analysis and blow-up profile. Let un be a positive G−invariant
solution of {

−∆un + λnV un = upn in Ω
un = 0 on ∂Ω,

(2.1)

where λn → +∞. Assuming that sup
n
mG(un) < +∞, we aim to obtain a global

description of the asymptotic behavior of un as n→ +∞. By a blow-up procedure,
the first step is to study the local asymptotic profile of un around local maximum
points Qn, usually described in terms of an entire solution (in the whole space or the
half-space) of a limiting equation. Depending on the distance of Qn from G0 w.r.t.
the blow-up rate, the asymptotic profile keeps k−k0 of the original symmetries and
becomes constant in k0 directions. The main difficulty is to describe correctly the
different situations.

Recalling the definiton of the Sobolev exponent

pS(N) =

{
+∞ if N = 2
N+2
N−2 if N ≥ 3

and the Joseph-Lundgren exponent

pJL(N) =

{
+∞ if N ≤ 10
(N−2)2−4N+8

√
N−1

(N−2)(N−10) if N ≥ 11,

let us notice that pS(N) < pJL(N) for N ≥ 3 and pS(N), pJL(N) are strictly
decreasing in N for N ≥ 3, N ≥ 11, respectively. The result we have is:

Theorem 2.1. Let p > 1 and un be a positive G−invariant solution of (2.1) with
sup
n
mG(un) < +∞. Let Qn = (r̃n, 0, sn) ∈ Ω, (r̃n, sn) ∈ Ω0, be so that for some

Rn → +∞
un(Qn) = max

Ω∩BRn µn (Qn)
un → +∞

as n→ +∞, where µn = un(Qn)−
p−1

2 . Letting

J =
{
j = 1, . . . , k :

r̃n,j
µn
→ +∞ as n→ +∞

}
, J̄ = {1, . . . , k} \ J,

we define k0 = card J , GJ̄ = Span {rotation in xj , xk+j : j ∈ J̄} and rn as

rn,j =

{
r̃n,j if j ∈ J
0 otherwise.
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Assume that 1 < p < pJL(N − k0) and p 6= pS(N − k0). Setting Pn = (rn, 0, sn)

and εn = λ
− 1

2
n V (Pn)−

1
2 , we introduce Un(y) = ε

2
p−1
n un(εny + Pn) in Ωn := Ω−Pn

εn
.

Up to a sub-sequence, then we have that 1 < p < pS(N − k0) and

• λnd2(Pn, ∂Ω)→ +∞ as n→ +∞;
• λn|Pn −Qn|2 → 0 as n→ +∞;
• un(Pn) = (1 + on(1)) max

Ω∩BRn εn (Pn)
un for some Rn → +∞ and on(1) → 0 as

n→ +∞;
• λnV (Pn)un(Pn)−(p−1) → λ̃ ∈ (0,+∞) as n→ +∞;
• Un → U0 in C1

loc(RN ), where U0 is constant in yk+j, j ∈ J , and in the
remaining variables coincides with the unique radial solution of

−∆U0 + U0 = Up0 in RN−k0 . (2.2)

Moreover, there exists a G−invariant function φn ∈ C1
0 (Ω) with suppφn ⊂ ARεn(Pn),

where for R > 0

ARεn(Pn) :=
{
x ∈ RN :

k∑
j=1

(√
|xj |2+|xk+j |2−rn,j

)2

+|(x2k+1, . . . , xN )−sn|2 ≤ R2ε2
n

}
,

so that ∫
Ω

|∇φn|2 + (λn V − pup−1
n )φ2

n < 0 (2.3)

for all n large.

Proof. By a blow-up procedure, we aim to describe the asymptotic profile of un
around Qn (at distance µn from Qn) in terms of non-trivial entire solutions for a
limiting equation. When the point Qn is sufficiently close to the fixed points set of
GJ̄ , we expect that, up to a translation, the limiting profile is a GJ̄ -invariant entire
solution. In order to re-absorb this translation, we replace Qn with Pn, and for the

blow-up argument it is crucial to have a-priori µn ∼ ε̃n := un(Pn)−
p−1

2 . Since as
we will see ε̃n ∼ εn, it is more convenient to replace ε̃n with εn in order to get a
unified form for the limiting equation (2.2). For simplicity in the notations, assume
that J̄ = {1, . . . , k − k0}.

Let d̂n denote d(Qn, ∂Ω). Up to a sub-sequence, suppose that µn
d̂n
→ L ∈ [0,+∞]

as n → +∞. Then Ω̂n = Ω−Qn
µn

→ H, with H an half-space so that 0 ∈ H and

d(0, ∂H) = 1
L . The function Wn(y) = µ

p−1
2

n un(µny +Qn) satisfies
−∆Wn + λnµ

2
nV (µny +Qn)Wn = W p

n in Ω̂n
0 < Wn ≤Wn(0) = 1 in Ω̂n ∩BRn(0)

Wn = 0 on ∂Ω̂n.

Since Qn is a point of local maximum of un, we have

0 ≤ −∆Wn(0) = 1− λn µ2
n V (Qn),

and then, up to a sub-sequence,

λnµ
2
n V (Qn)→ λ̂ ∈ [0, 1]

as n → +∞. Since W p
n − λn µ2

n V (µny + Qn)Wn is uniformly bounded in Ω̂n ∩
BRn(0), up to a further sub-sequence, by elliptic regularity theory [18] we get that
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Wn →W in C1
loc(H) as n→ +∞, where W solves −∆W + λ̂W = W p in H

0 < W ≤W (0) = 1 in H
W = 0 on ∂H.

Since W (0) = 1 and W = 0 on ∂H, we deduce that 0 ∈ H and L < +∞.
Given J = {k−k0 +1, . . . , k}, we want to show now that H contains all the lines

yk+j = t, j ∈ J , passing through points in H : yt = (y1, . . . , yk+j−1, t, yk+j+1, . . . , yN )

∈ H for all y ∈ H, t ∈ R and j ∈ J . For n large, we have that y ∈ Ω̂n, and then
µny + Qn ∈ Ω. Since Ω is invariant under rotation in the {xj , xk+j}−plane, we
have that

µny+Qn+(0, . . . , 0, Rn cos θ−(µnyj+r̃n,j), 0, . . . , 0, Rn sin θ − µnyk+j , 0, . . . , 0) ∈ Ω

for all θ ∈ R and n large, where Rn =
√

(µnyj + r̃n,j)2 + µ2
ny

2
k+j . Going back to

Ω̂n, we have that

Pθ := y+
(
0, . . . , 0,

Rn
µn

(cos θ−1)−yj+
Rn−r̃n,j

µn
, 0, . . . , 0,

Rn
µn

sin θ−yk+j , 0, . . . , 0
)
∈ Ω̂n

for all θ ∈ R and n large. For j ∈ J we have that
r̃n,j
µn
→ +∞ and then

Rn−r̃n,j
µn

→ yj
as n→ +∞. Choosing θ = θn := µn

Rn
t for a given t ∈ R, we get that

lim
n→∞

Pθn = yt ∈ H̄

in view of θn → 0 as n → +∞. Since H is an half-space, a straight line in H̄ lies
either in H or ∂H. Since y ∈ H, then yt ∈ H for all t ∈ R, as claimed. Since Pθ
and y are connected through a rotation in the original variables {xj , xk+j}, we have
that Wn(Pθn) = Wn(y) for n large, and then as n→ +∞

W (yt) = W (y)

for all t ∈ R. Since W does not depend on yk+j for all j ∈ J , W is a solution of −∆W + λ̂W = W p in H ′

0 < W ≤W (0) = 1 in H ′

W = 0 on ∂H ′,

where H ′ = H ∩ {yk+j = 0 : ∀ j ∈ J} is either an half-space or RN−k0 . Since W is

non-trivial, in case H is an half-space by Theorem 12-[17] we have λ̂ > 0 as long as
1 < p < pJL(N − k0 − 1), and this is a contradiction in view of Theorem 1.1-[16].
Since we assume 1 < p < pJL(N − k0), we necessarily have that H ′ = RN−k0 and
H = RN (i.e. L = 0).

Since

|Pn −Qn| =

∑
j∈J̄

(r̃n)2
j

 1
2

= O(µn),

up to a sub-sequence we get that Pn−Qn
µn

→ Z, and then

un(Pn)

un(Qn)
= Wn

(Pn −Qn
µn

)
→W (Z) > 0

as n→ +∞, in view of Wn →W in C1
loc(RN ). In particular, we have shown that

µn
ε̃n
≥ δ0 > 0. (2.4)
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Since d(Qn, ∂Ω) >> µn as n→ +∞ in view of L = 0, by (2.4) we get that

d(Pn, ∂Ω)

ε̃n
≥ δ0

d(Qn, ∂Ω)− |Pn −Qn|
µn

→ +∞ (2.5)

as n→ +∞.
We are now in position to replace Qn, µn with Pn, ε̃n. Since (up to a sub-

sequence) λnε̃
2
nV (Pn) → λ̃ ∈ [0,+∞) in view of (2.4), by (2.5) we have that

Ω̃n = Ω−Pn
ε̃n

→ RN , and Ũn(y) = ε̃
p−1

2
n un(ε̃ny + Pn) converges in C1

loc(RN ) to a

GJ̄−invariant solution Ũ of{
−∆Ũ + λ̃Ũ = Ũp in RN
0 < Ũ ≤ Ũ(Z̃) in RN ,

(2.6)

where Z̃ = −ZW
p−1

2 (Z). Arguing as before, the function Ũ does not depend on
yk+j for all j ∈ J and does solve (2.6) in RN−k0 . As we will see in the next

Proposition, we have that mGJ̄ (Ũ) < +∞. The argument in [17] for the case

m(Ũ) < +∞ still works in our context: notice that the test functions ηŨq with η
a radial cut-off function, used in [17] to get estimates, are GJ̄−invariant as long as

Ũ is (see [32] for the details). In this way we see that λ̃ > 0 whenever 1 < p <

pJL(N − k0), p 6= pS(N − k0), i.e. ε̃n ∼ εn := λ
− 1

2
n V −

1
2 (Pn). In particular, by (2.5)

we deduce that

λnd
2(Pn, ∂Ω)→ +∞ as n→ +∞.

Finally, let us replace ε̃n with εn. The function Un(y) = ε
p−1

2
n un(εny + Pn),

y ∈ Ωn = Ω−Pn
εn

, converges in C1
loc(RN ) to a GJ̄−invariant solution U of{

−∆U + U = Up in RN−k0

0 < U ≤ U(Z0) in RN−k0
(2.7)

where Z0 = −Zλ̃ 1
2W

p−1
2 (Z) (U is constant in yk+j for all j ∈ J). As already

explained for [17], the argument in [16, 33] for the case m(U) < +∞ works as well
when mGJ̄ (U) <∞ (see also [32]). Since mGJ̄ (U) < +∞ as we will see in the next
Proposition, by [33] we get that 1 < p < pS(N − k0), and by [16] we conclude that
U coincides with the unique radial solution U0 of (2.7), according to [20]. Since U0

achieves its maximum at 0, we get that Z0 = 0, i.e.

lim
n→+∞

λn|Pn −Qn|2 = lim
n→+∞

|Pn −Qn|2

ε2n
= Z = 0.

Since

lim
n→+∞

un(Pn)

un(Qn)
= W (0) = 1,

we get that

un(Pn) = (1 + on(1))un(Qn) = (1 + on(1)) max
Ω∩BδRn εn (Pn)

un

where on(1)→ 0 as n→ +∞, in view of BδRn εn(Pn) ⊂ BRn µn(Qn) for some δ > 0
small.

The last part of Theorem 2.1 follows now by
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Proposition 1. Under the assumptions of Theorem 2.1, there exists a G−invariant
function φn ∈ C1

0 (Ω) so that suppφn ⊂ ARεn(Pn), for some R > 0 large, and∫
Ω

|∇φn|2 + (λn V − p up−1
n )φ2

ndx < 0

for n large.

Proof. Assume for simplicity that J̄ = {1, . . . , k − k0}. We have established that
Un → U in C1

loc(RN−k0), where U is a GJ̄−invariant solution of (2.7) in RN−k0 .
Let Φ be a GJ̄−invariant function in RN−k0 so that supp Φ ⊂ BR(0) and∫

RN−k0

|∇Φ|2 +

∫
RN−k0

Φ2 − p
∫
RN−k0

Up−1Φ2 < 0 (2.8)

does hold. Setting rj =
√
x2
j + x2

k+j , define φn as

φn(x)

=(
ε
−(N−k0−2)
n∏
j∈J rn,j

)
1
2 Φ

(
r1−rn,1
εn

, . . . ,
rk−rn,k
εn

, 0, . . . , 0,
x2k+1−sn,1

εn
, . . . ,

xN−sn,N−2k

εn

)
.

Since supp Φ ⊂ BR(0), we get that φn is G−invariant function such that supp φn ⊂
ARεn(Pn), where ARεn(Pn) ⊂ Ω for n large in view of d(Pn, ∂Ω) >> εn. Let us
stress that φn is a smooth function: for j ∈ J̄ the quantity rj − rn,j reduces to

rj =
√
x2
j + x2

k+j and Φ(. . . ,
rj
εn
, . . . , 0, . . . ) = Φ(. . . ,

xj
εn
, . . . ,

xk+j

εn
, . . . ) is smooth in

xj , xk+j by the GJ̄−invariance of Φ; for j ∈ J the set ARεn(Pn) does not touch
{rj = 0} (where φn might be singular), in view of

rn,j
εn
→ +∞ as n → +∞, and

then φn is smooth also in xj , xk+j . Since Φ is GJ̄−invariant, for j ∈ J̄ and h 6= j
let us remark that

Φ(. . . , yj , . . . , yk+j , . . . ) = Φ(. . . ,
√
y2
j + y2

k+j , . . . , 0, . . . )

∂yhΦ(. . . , yj , . . . , yk+j , . . . ) = ∂yhΦ(. . . ,
√
y2
j + y2

k+j , . . . , 0, . . . ) (2.9)

(∂yjΦ)2 + (∂yk+j
Φ)2](. . . , yj , . . . , yk+j , . . . ) = (∂yjΦ)2(. . . ,

√
y2
j + y2

k+j , . . . , 0, . . . ).

Since Φ has compact support, through cylindrical coordinates and the change of
variables (r, s)→ (rn + εnr, sn + εns) we have that∫

Ω

|∇φn|2 + (λn V − p up−1
n )φ2

n = (2π)k
ε
−(N−k0)
n∏
j∈J rn,j

×

×
∫
{|(r−rn,s−sn)|≤Rεn, r∈[0,+∞)k}

k∏
j=1

rj

[
(

k∑
h=1

+

N∑
h=2k+1

)(∂yhΦ)2(
r − rn
εn

, 0̂,
s− sn
εn

)

+

(
V (r, 0, s)

V (Pn)
− pε2nup−1

n (r, 0, s)

)
Φ2(

r − rn
εn

, 0̂,
s− sn
εn

)

]
drds

=(2π)k
∫
{|(r,s)|≤R,rj≥−

rn,j
εn
∀j=1,...,k}

∏
j∈J̄

rj
∏
j∈J

(
εn
rn,j

rj+1)

[
(

k∑
h=1

+

N∑
h=2k+1

)(∂yhΦ)2(r, 0̂, s)

+

(
V (εn(r, 0, s) + Pn)

V (Pn)
− pUp−1

n (r, 0, s)

)
Φ2(r, 0̂, s)

]
drds
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converges to

(2π)k
∫
{|(r,s)|≤R, rj≥0 ∀ j∈J̄}

∏
j∈J̄

rj

[
(

k∑
h=1

+

N∑
h=2k+1

)(∂yhΦ)2(r, 0̂, s)

+
(
1− pUp−1(r, 0, s)

)
Φ2(r, 0̂, s)

]
drds

as n → +∞ in view of εn
rn,j
→ 0 for all j ∈ J . We use the notation 0, 0̂ to denote

the origin in Rk, Rk−k0 , respectively. Since U is GJ̄−invariant and is constant in
yj for j = 2k − k0 + 1, . . . , 2k, by (2.9) we deduce that

(2π)k
∫
{|(r,s)|≤R, rj≥0 ∀ j∈J̄}

∏
j∈J̄

rj

[
(

k∑
h=1

+

N∑
h=2k+1

)(∂yhΦ)2(r, 0̂, s)

+
(
1− pUp−1(r, 0, s)

)
Φ2(r, 0̂, s)

]
drds

=(2π)k
∫
{|(r,0̂,s)|≤R, (r,0̂,s)∈RN−k0 , rj≥0 ∀ j∈J̄}

∏
j∈J̄

rj

[
(

k∑
h=1

+

N∑
h=2k+1

)(∂yhΦ)2(r, 0̂, s)

+
(
1− pUp−1(r, 0̂, s)

)
Φ2(r, 0̂, s)

]
drds

=(2π)k0

∫
RN−k0

[
|∇Φ|2 + (1− pUp−1)Φ2

]
< 0

in view of supp Φ ⊂ BR(0). If Φ1, Φ2 are GJ̄−invariant functions with compact
support so that (2.8) does hold and

∫
RN−k0

Φ1Φ2 = 0, then the corresponding φ1,n,
φ2,n satisfy∫

Ω

φ1,n

(
∫

Ω
φ2

1,n)
1
2

φ2,n

(
∫

Ω
φ2

2,n)
1
2

→
∫
RN−k0

Φ1

(
∫
RN−k0

Φ2
1)

1
2

Φ2

(
∫
RN−k0

Φ2
2)

1
2

= 0

as n → +∞. In this way, we show, as already claimed in the previous proof, that
mGJ̄ (U) ≤ sup

n∈N
mG(un). Since the same does hold for the solution Ũ , the arguments

here fill the missing points in the previous proof.
Then, we have that 1 < p < pS(N − k0) and Un → U0 in C1

loc(RN ), where U0 is
the radial solution of (2.7) in RN−k0 . Since U0 decays exponentially fast at infinity,
we have that U0 satisfies∫

RN−k0

|∇U0|2 +

∫
RN−k0

U2
0 − p

∫
RN−k0

Up+1
0 = −(p− 1)

∫
RN−k0

Up+1
0 < 0.

Through a radial cut-off function χ so that χ = 1 in BR
2

(0) and χ = 0 outside

BR(0), we have that Φ = χU0 is radial and satisfies∫
RN−k0

|∇Φ|2 +

∫
RN−k0

Φ2 − p
∫
RN−k0

Up−1
0 Φ2 < 0

for R large. From Φ we can construct a function φn which satisfies (2.3), as desired.

Once the limiting problem has been identified and the local behavior has been
described, we can control the global behavior.

Theorem 2.2. Let 1 < p < pJL(N) with p /∈ {pS(j) : j = 3, . . . , N} and un be
a positive G−invariant solution of (2.1) with sup

n
mG(un) < +∞. Up to a sub-

sequence, there exist P 1
n = (r1

n, 0, s
1
n), . . . , Phn = (rhn, 0, s

h
n), h ≤ sup

n
mG(un), with
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(rin, s
i
n) ∈ Ω0 for i = 1, . . . , h, so that for all i, j = 1, . . . , h with i 6= j as n→ +∞:

λn|P in − P jn|2 → +∞ , λn d(P in, ∂Ω)2 → +∞ ,
λnV (P in)

un(P in)(p−1)
→ λi > 0, (2.10)

un(P in) = (1 + on(1)) max
Ω∩B

Rnλ
− 1

2
n

(P in)
un (2.11)

for some Rn → +∞ and on(1) → 0 as n → +∞, and there exists Ji ⊂ {1, . . . , k}
so that

U in(y) := λ
− 1
p−1

n V −
1
p−1 (P in)un(λ

− 1
2

n V −
1
2 (P in)y+Pn)→ U0,i(y) in C1

loc(RN ) (2.12)

where U0,i is constant in yk+j, j ∈ Ji, and in the remaining variables coincides with
the unique radial solution of (2.2) in RN−ki , ki = card Ji. Moreover, there holds

un(r, 0, s) ≤ C(λn)
1
p−1

h∑
i=1

e−γ λ
1
2
n |(r,0,s)−P in| ∀ (r, s) ∈ Ω0 , n ∈ N (2.13)

for some C, γ > 0.

Proof. The proof is by now rather standard (see for example [15, 16]) and proceeds
in two steps. In the sequel, the notation (r, 0, s) implicitly means that (r, s) ∈ Ω0.

1st Step There exist sequences P 1
n = (r1

n, 0, s
1
n), . . . , Phn = (rhn, 0, s

h
n), h ≤

sup
n
mG(un), satisfying (2.10)-(2.12) so that

lim
R→+∞

(
lim sup
n→+∞

[
λ
− 1
p−1

n max
{dn(r,s)≥Rλ

− 1
2

n }
un(r, 0, s)

])
= 0 (2.14)

where dn(r, s) = min{|(r, s)− (rin, s
i
n)| : i = 1, . . . , h} is the distance function in Ω0

from {(r1
n, s

1
n), . . . , (rhn, s

h
n)}.

Let Q1
n = (r̃1

n, 0, s
1
n) be a point of global maximum of un: un(Q1

n) = max
Ω

un.

By Theorem 2.1 the second and third in (2.10), (2.11) and (2.12) do hold for the
corresponding P 1

n = (r1
n, 0, s

1
n). In particular, we also have that

λnV (P 1
n)(max

Ω
un)−(p−1) → λ1 > 0 as n→ +∞. (2.15)

If (2.14) does hold too, then we take h = 1 and the Claim is proved. In order to
apply Theorem 2.1, notice that 1 < p < pJL(N) ≤ pJL(N−k1) and p 6= pS(N−k1).

If (2.14) does not hold, set ε1n = λ
− 1

2
n V (P 1

n)−
1
2 and suppose by contradiction that

lim sup
R→+∞

(
lim sup
n→+∞

[(ε1
n)

2
p−1 max
{|(r,0,s)−P 1

n|≥Rε1n}
un(r, 0, s)]

)
= 4δ > 0.

By (2.12) we have that U0,1 is constant in yk+j , j ∈ J1, and in the remaining
variables y′ coincides with the unique radial solution of (2.2) in RN−k1 , k1 = card J1.
Since U0,1(y′)→ 0 as |y′| → ∞ we can find R large so that

U0,1(y) ≤ δ ∀ y : |y| ≥ R, (2.16)

and, up to a sub-sequence, we can assume that

(ε1
n)

2
p−1 max
{|(r,0,s)−P 1

n|≥Rε1n}
un(r, 0, s) ≥ 2δ. (2.17)
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Since un = 0 on ∂Ω, then we have that there exists Q2
n = (r̃2

n, 0, s
2
n) ∈ {|(r, 0, s) −

P 1
n | ≥ Rε1

n} ∩ Ω so that

un(Q2
n) = max

{|(r,0,s)−P 1
n|≥Rε1n}

un(r, 0, s).

By (2.12) and (2.16) we have that
|Q2
n−P

1
n|

ε1n
→ +∞. Indeed, if

Q2
n−P

1
n

ε1n
→ Z, |Z| ≥ R,

were true along a sub-sequence, we would get

(ε1
n)

2
p−1 un(Q2

n) = U1
n

(Q2
n − P 1

n

ε1
n

)
→ U0,1(Z) ≤ δ,

in contradiction with (2.17). Setting now µ2
n = un(Q2

n)−
p−1

2 and R2
n = 1

2
|Q2
n−P

1
n|

µ2
n

,

by (2.17) we get

µ2
n ≤ (2 δ)−

p−1
2 ε1

n

and then

R2
n ≥

(2 δ)
p−1

2

2

|Q2
n − P 1

n |
ε1
n

→ +∞ as n→ +∞.

For x ∈ Ω ∩BR2
n µ

2
n
(Q2

n) we have that un(x) = un(rx, 0, sx), where

(rx, 0, sx) :=
(√

x2
1 + x2

k+1, . . . ,
√
x2
k + x2

2k, 0, . . . , 0, x2k+1, . . . , xN

)
belongs to the set {|(r, 0, s)−Q2

n| ≤ R2
nµ

2
n}, and then

un(Q2
n) ≤ max

Ω∩BR2
n µ

2
n

(Q2
n)
un ≤ max

{|(r,0,s)−Q2
n|≤R2

nµ
2
n}
un.

Since ε1
n << |Q2

n − P 1
n |, for all (r, 0, s) ∈ {|(r, 0, s)−Q2

n| ≤ R2
nµ

2
n} we have

|(r, 0, s)− P 1
n | ≥ |Q2

n − P 1
n | − |(r, 0, s)−Q2

n| ≥
1

2
|Q2

n − P 1
n | ≥ Rε1

n.

The inclusion {|(r, 0, s)−Q2
n| ≤ R2

nµ
2
n} ⊂ {|(r, 0, s)− P 1

n | ≥ Rε1
n} leads to

un(Q2
n) ≤ max

Ω∩BR2
n µ

2
n

(Q2
n)
un ≤ max

{|(r,0,s)−Q2
n|≤R2

nµ
2
n}
un ≤ max

{|(r,0,s)−P 1
n|≥Rε1n}

un = un(Q2
n),

implying that

un(Q2
n) = max

Ω∩BR2
n µ

2
n

(Q2
n)
un.

Let associate the set J2 to Q2
n according to Theorem 2.1 and set k2 = card J2.

Since R2
n → +∞ as n → +∞ and 1 < p < pJL(N − k2) with p 6= pS(N − k2), by

Theorem 2.1 we can replace Q2
n with P 2

n = (r2
n, 0, s

2
n) so that the second and third

in (2.10), (2.11) and (2.12) do hold for P 2
n . Moreover, the first in (2.10) does hold

too for {P 1
n , P

2
n } as it follows by

λ
1
2
n |P 1

n − P 2
n | ≥ λ

1
2
n |P 1

n −Q2
n|+ λ

1
2
n |Q2

n − P 2
n | → +∞

as n → +∞, in view of
|Q2

n − P 1
n |

ε1
n

→ +∞ and λn|P 2
n − Q2

n|2 → 0 as n → +∞. If

(2.14) does hold for {P 1
n , P

2
n } we are done.

Otherwise, we iterate the above argument: let P 1
n = (r1

n, 0, s
1
n), . . . , P sn = (rsn, 0, s

s
n)

sequences so that (2.10)-(2.12) do hold true, but (2.14) is not satisfied. As before,
we can find R > 0 large and a sub-sequence so that

(ε1
n)

2
p−1 max
{ dn(r,s)≥Rε1n }

un(r, 0, s) ≥ 2 δ,
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where dn(r, s) = min{ |(r, s)−(rin, s
i
n)| : i = 1, . . . , s }. Up to a further sub-sequence,

for all i = 1, . . . , s we can assume that

ε1
n

εin
=
(V (P in)

V (P 1
n)

) 1
2 → θi ∈ (0,+∞) as n→ +∞, (2.18)

so that by (2.12) we find that

(ε1
n)

2
p−1un( ε1

ny + P in) =
(ε1

n

εin

) 2
p−1

U in

(ε1
n

εin
y
)
→ θ

2
p−1

i U0,i(θi y)

in C1
loc(RN ) as n → +∞. The function U0,i is constant in yk+j , j ∈ Ji, and

in the remaining variables y′ coincides with the unique radial solution of (2.2) in
RN−ki , ki = card Ji. Since U0,i(y

′) → 0 as |y′| → +∞, we can find R large so

that θ
2
p−1

i U0,i(θi y) ≤ δ for |y| ≥ R and all i = 1, . . . , s. As before, let Qs+1
n =

(r̃s+1
n , 0, ss+1

n ) be so that

un(Qs+1
n ) = max

{dn(r,s)≥Rε1n}
un ≥ 2 δ (ε1

n)−
2
p−1 . (2.19)

By (2.18) and θ
2
p−1

i U0,i(θiy) ≤ δ for |y| ≥ R, we deduce as before that
|Qs+1
n −P in|
ε1n

→
+∞ as n → +∞ for all i = 1, . . . , s. Setting µs+1

n = un(Qs+1
n )−

p−1
2 and Rs+1

n =
1
2
dn(r̃s+1

n ,ss+1
n )

µs+1
n

, we still have by (2.19)

µs+1
n ≤ (2 δ)−

p−1
2 ε1

n,

and then Rs+1
n → +∞ as n→ +∞. Since as before

un(Qs+1
n ) = max

Ω∩B
R
s+1
n µ

s+1
n

(Qs+1
n )

un

with Rs+1
n → +∞ as n → +∞, by Theorem 2.1 we replace Qs+1

n with P s+1
n =

(rs+1
n , 0, ss+1

n ) so that (2.10)-(2.12) do hold for {P 1
n , . . . , P

s+1
n }.

For P in, i = 1, . . . , s + 1, Theorem 2.1 also provides a G−invariant function
φin ∈ C∞0 (Ω) with suppφin ⊂ A

Rλ
− 1

2
n

(P in), R > 0, which satisfies (2.3). By (2.10)

the functions φin, i = 1, . . . , s+1, have disjoint compact supports for n large yielding
to s + 1 ≤ sup

n
mG(un). Then the iterative procedure must stop after h steps,

h ≤ sup
n
mG(un), providing sequences P 1

n , . . . , P
h
n so that (2.10)-(2.12) and (2.14)

do hold.
2nd Step There exists γ, C > 0 so that

un(r, 0, s) ≤ C λ
1
p−1
n

h∑
i=1

e−γ λ
1
2
n |(r,0,s)−P in| ∀ (r, s) ∈ Ω0, n ∈ N.

By (2.14) for R > 0 large and n ≥ n(R), there holds

(λn)−
1
p−1 max
{ dn(r,s)≥Rλ

− 1
2

n }
un(r, 0, s) ≤

( 1

2 p
inf
Ω
V
) 1
p−1

.

Hence in {dn(r, s) ≥ Rλ−
1
2

n } for n ≥ n(R) we have

λn V − p up−1
n ≥ λn

2
inf
Ω
V.
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Recalling the notation

(rx, 0, sx) :=
(√

x2
1 + x2

k+1, . . . ,
√
x2
k + x2

2k, 0, . . . , 0, x2k+1, . . . , xN

)
for every x ∈ Ω, we would like to use λ

1
p−1
n

h∑
i=1

e−γ λ
1
2
n |(rx,0,sx)−P in| as a barrier

function in Ω. However, the function is singular on the set {rj = 0} whenever

j ∈ ∪hi=1Ji (i.e. when (rin)j 6= 0 for some i = 1, . . . , h). To explain how to overcome
the problem, we can think (2.1) as a differential problem in Ω0 with ∆ replaced by

∆(r,s)+

k∑
j=1

1

rj
∂rj . On ∂Ω0 we have a mixed Neumann-Dirichlet boundary condition:

∂rju = 0 on ∂Ω0 ∩ {rj = 0} for all j = 1, . . . , k, and u = 0 on ∂Ω0 ∩ {rj > 0 : ∀ j =
1, . . . , k}. Inspired by [14], in order to deal with the Neumann b.c. we use a very
simple idea. When (rn, sn) is a blow-up sequence of un, the Neumann boundary
condition on {rj = 0!} creates a sort of additional mirror blow-up sequence given
by the reflection of (rn, sn) w.r.t. to {rj = 0}. For an asymptotic control of un we
have to consider both rn and its reflection (simply obtained by reversing the sign
of rn,j), and then pull back this idea onto the original problem in Ω.

To this aim, for j = 1, . . . , k let

Σ = {σ : {1, . . . , k} → {+1,−1}}, Σj = {σ ∈ Σ s.t. σ(j) = +1},

and, for r = (r1, . . . , rk) ∈ [0,+∞)k and σ ∈ Σ, define rσ = (σ(1)r1, . . . , σ(k)rk). If

P in = (rin, 0, s
i
n), define ψin =

∑
σ∈Σ

ψi,σn , where

ψi,σn (x) = e−γ λ
1
2
n |(rx−(rin)σ,sx−sin)|.

For the first derivatives we have that

∂xjψ
i
n = −γ λ

1
2
n

∑
σ∈Σ

ψi,σn
(rx − (rin)σ)j

|(rx − (rin)σ, sx − sin)|
xj√

x2
j + x2

k+j

for j = 1, . . . , k, and a similar formula does hold for the derivative in xk+j with the
numerator xj replaced by xk+j . Since for all σ ∈ Σj there exists a unique σ̂ so that
σ̂(l) = σ(l) for l 6= j and σ̂(j) = −1, when rj = 0 we have that ψi,σn = ψi,σ̂n , and
then

lim
rj→0

∂xjψ
i
n

= lim
rj→0

∑
σ∈Σj

∂xj [ψ
i,σ
n + ψi,σ̂n ]

=− γ λ
1
2
n

∑
σ∈Σj

ψi,σn
|(rx − (rin)σ, sx − sin)|

∣∣∣
rj=0

lim
rj→0

xj [(rx − (rin)σ)j + (rx − (rin)σ̂)j ]√
x2
j + x2

k+j

=− 2γ λ
1
2
n

∑
σ∈Σj

ψi,σn
|(rx − (rin)σ, sx − sin)|

∣∣∣
rj=0

lim
rj→0

xj = 0.

Hence, the first derivatives of ψin are continuous in Ω \ {P in} with ∂xjψ
i
n

∣∣∣
rj=0

=

∂xk+j
ψin

∣∣∣
rj=0

= 0 for all j = 1, . . . , k. Compute now the second derivatives for
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j = 1, . . . , k:

∂xjxjψ
i
n + ∂xk+jxk+j

ψin = γ2 λn
∑
σ∈Σ

ψi,σn

{
(rx − (rin)σ)2

j

|(rx − (rin)σ, sx − sin)|2

− 1

γλ
1
2
n

[
1

|(rx − (rin)σ, sx − sin)|
−

(rx − (rin)σ)2
j

|(rx − (rin)σ, sx − sin)|3

+
(rx − (rin)σ)j

|(rx − (rin)σ, sx − sin)|
1√

x2
j + x2

k+j

 ,

and then

∆ψin = γ2 λn
∑
σ∈Σ

ψi,σn

[
1− 1

γλ
1
2
n

N − k − 1

|(rx − (rin)σ, sx − sin)|

]

−γλ
1
2
n

k∑
j=1

∑
σ∈Σ

ψi,σn
(rx − (rin)σ)j

|(rx − (rin)σ, sx − sin)|
1√

x2
j + x2

k+j

.

Arguing as before, we can show that ∆ψin is a continuous function in Ω \ {P in}, and

then by elliptic regularity theory [18] we have that ψin ∈W
2,q
loc (Ω \ {P in})∩C1

loc(Ω̄ \
{P in}) for all q > 1. Let us stress that in general ψin is not a C2−function.

We aim to show now uniform (in n) bounds for ∆ψin. Since (rin)j , (rx)j ≥ 0 for
all j = 1, . . . , k, notice that

|(rx − (rin)σ, sx − sin)| ≥ |(rx − rin, sx − sin)| ∀ σ ∈ Σ. (2.20)

For j ∈ J̄i, we have that (rin)j = 0, and then by (2.20)

(rx − (rin)σ)j
|(rx − (rin)σ, sx − sin)|

1√
x2
j + x2

k+j

≤ 1

|(rx − rin, sx − sin)|
= O(λ

1
2
n )

in {dn(r, s) ≥ Rλ
− 1

2
n }. Given j ∈ Ji and σ ∈ Σj , let us focus now on estimating

the term

h :=
1√

x2
j + x2

k+j

[
ψi,σn

(rx − (rin)σ)j
|(rx − (rin)σ, sx − sin)|

+ ψi,σ̂n
(rx − (rin)σ̂)j

|(rx − (rin)σ̂, sx − sin)|

]
.

When (rx)j ≥ 1
2 (rin)j we have that

h ≤ 2

(rin)j

[
ψi,σn + ψi,σ̂n

]
= O(λ

1
2
n )
(
ψi,σn + ψi,σ̂n

)
as n→ +∞ in view of λ

1
2
n (rin)j → +∞. When (rx)j ≤ 1

2 (rin)j , we can use

|(rx − (rin)σ̂, sx − sin)| ≥ |(rx − (rin)σ, sx − sin)| ≥ |(rx)j − (rin)j | ≥
1

2
(rin)j
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to obtain the two estimates:

1

|(rx − (rin)σ̂, sx − sin)|
− 1

|(rx − (rin)σ, sx − sin)|

=
|(rx−(rin)σ, sx−sin)|2−|(rx−(rin)σ̂, sx−sin)|2

|(rx−(rin)σ, sx−sin)||(rx−(rin)σ̂, sx−sin)|[|(rx−(rin)σ, sx−sin)|+|(rx−(rin)σ̂, sx−sin)|]

= O
( (rx)j
(rin)

2
j

)
and∣∣∣1− ψi,σ̂n

ψi,σn

∣∣∣ =1− exp
[
−γ λ

1
2
n

(
|(rx − (rin)σ̂, sx − sin)| − |(rx − (rin)σ, sx − sin)|

)]
≤γ λ

1
2
n
|(rx − (rin)σ̂, sx − sin)|2 − |(rx − (rin)σ, sx − sin)|2

|(rx − (rin)σ, sx − sin)|+ |(rx − (rin)σ̂, sx − sin)|

≤4γ λ
1
2
n (rx)j .

When (rx)j ≤ 1
2 (rin)j the two estimates above then yield to

h =
1√

x2
j + x2

k+j

ψi,σn
|(rx − (rin)σ, sx − sin)|

[
(rx − (rin)σ)j + (rx − (rin)σ̂)j

]
+O
( 1

(rin)j
+ γλ

1
2
n

)
ψi,σn

= 2
ψi,σn

|(rx − (rin)σ, sx − sin)|
+ [o(1) +O(γ)]λ

1
2
nψ

i,σ
n = O(λ

1
2
n )ψi,σn

in {dn(r, s) ≥ Rλ−
1
2

n }, in view of (2.20) and λ
1
2
n (rin)j → +∞ as n→ +∞. Resuming

the two cases above, we have shown that

γλ
1
2
n

k∑
j=1

∑
σ∈Σ

ψi,σn
(rx − (rin)σ)j

|(rx − (rin)σ, sx − sin)|
1√

x2
j + x2

k+j

= O(γ)λn
∑
σ∈Σ

ψi,σn

in {dn(r, s) ≥ Rλ
− 1

2
n }. Since λn V − p up−1

n ≥ λn
2 inf

Ω
V , the linear operator Ln :=

−∆ + (λn V − p up−1
n ) on ψin gives in { dn(r, s) ≥ Rλ−

1
2

n }:

Lnψ
i
n ≥ λn

∑
σ∈Σ

ψi,σn

[
O(γ2 + γ) +

1

2
inf
Ω
V
]
≥ 0

for n large, provided γ > 0 is small. By (2.12) the function ψn = eγR
h∑
i=1

ψin satisfies

for R large(
ψn(x)− λ−

1
p−1

n un(x)
)
|∂A

Rλ
− 1

2
n

(P in)

≥
(
eγR−γ λ

1
2
n |(r−rin,s−s

i
n)| − λ−

1
p−1

n un(r, 0, s)
)
|
{|(r,s)−(rin,s

i
n)|=Rλ

− 1
2

n }

→ 1− s
2
p−1

i U0,i(r, 0, s)
∣∣∣
{|(r,0,s)|=Rsi}

> 0



16 PIERPAOLO ESPOSITO AND MARISTELLA PETRALLA

as n→ +∞, where si = lim
n→+∞

V (P in)
1
2 . Since by (2.10)

∂{dn(r, s) ≥ Rλ−
1
2

n } = ∪hi=1∂A
Rλ
− 1

2
n

(P in) ∪ ∂Ω

and Ln(ψn − λ
− 1
p−1

n un) = Lnψn ≥ 0 in {dn(r, s) ≥ Rλ−
1
2

n }, by the weak maximum
principle (recall that ψn is C1 ∩W 2,2 in this set) we get that

un ≤ λ
1
p−1
n ψn ≤ cardΣ eγ R(λn)

1
p−1

k∑
i=1

e−γ λ
1
2
n |(r,0,s)−P in|

in {dn(r, s) ≥ R λ
− 1

2
n }, if R is large, γ small and n ≥ n(R), in view of (2.20). Since

by (2.15)

un ≤ max
Ω

un ≤ Cλ
1
p−1
n ≤ C eγ R λ

1
p−1
n

h∑
i=1

e−γ λ
1
2
n |(r,0,s)−P in|

for some C > 0 if dn(r, s) ≤ Rλ
− 1

2
n , we have that (2.13) holds true in Ω for a

suitable constant CR and n ≥ n(R). Up to take a larger constant C, we have the
validity of (2.13) in Ω for every n ∈ N.

3. Classification of blow-up points. Let un be a positive G−invariant solution
of (2.1) with sup

n
mG(un) < +∞. According to the notations of Theorem 2.2 and

up to a sub-sequence, let us define the blow-up set S as S = { lim
n→+∞

P in}, and for

a given P0 = (r0, 0, s0) ∈ S let us set L = {i = 1, . . . , h : P in → P0 as n → +∞}.
Introduce the notation

Aδ(P0) = {x ∈ RN : |(rx − r0, sx − s0)| ≤ δ },

and fix δ > 0 small so that Iδ := Aδ(P0) ∩ Ω satisfies I2δ ∩ S = {P0}.
We have the following integral expansion:

Lemma 3.1. Let P0 ∈ S and g be a continuous G−invariant function in Ω̄. Assume
that 1 < p < pJL(N) with p /∈ {pS(j) : j = 3, . . . , N}. For every q > 1 there holds

∫
Iδ

g uqn = g(P0)
∑
i∈L

(1 + on(1))

(2π)ki(εin)N−ki−2 q
p−1

∏
j∈Ji

(rin)j

∫
RN−ki

Uq0,i

 ,
where on(1)→ 0 as n→ +∞, εin = λ

− 1
2

n V −
1
2 (P in) and U0,i are given by (2.12).
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Proof. Given i ∈ L, through cylindrical coordinates and the change of variables
(r, s)→ (rin + εinr, s

i
n + εins) we have that∫

ARεin
(P in)

guqn = (2π)k
∫
{|(r−rin,s−sin)|≤Rεin, r∈[0,+∞)k}

k∏
j=1

rj g(r, s)uqn(r, 0, s)drds

=(2π)k(εin)N−k−
2q
p−1×

×
∫
{|(r,s)|≤R,rj≥−

(rin)j

εin
∀j=1,...,k}

k∏
j=1

(rin+εinr)jg(rin+εinr, s
i
n+εins)(U

i
n)q(r, 0, s)drds

=(2π)kg(P0)(1 + on(1))(εin)N−ki−
2q
p−1×

×
∫
{|(r,s)|≤R, rj≥−

(rin)j

εin
∀ j=1,...,k}

∏
j∈J̄i

rj
∏
j∈Ji

(rin + εinr)j U
q
0,i(r, 0, s)drds

=(2π)kg(P0)(1 + on(1))(εin)N−ki−
2q
p−1

∏
j∈Ji

(rin)j×

×
∫
{|(r,s)|≤R, ri≥0 ∀j∈J̄i}

∏
j∈J̄i

rj U
q
0,i(r, 0, s)drds

in view of (2.12), (rin)j = 0 for j ∈ J̄i and
(rin)j
εin
→ +∞ as n → +∞ for all j ∈ Ji.

Recall that U0,i is constant in yk+j , j ∈ Ji, and in the remaining variables coincides
with the unique radial solution of (2.2) in RN−ki , ki = card Ji. Since in particular
U0,i is invariant by the rotations in the planes {yj , yk+j} for all j ∈ Ji, we get that∫
ARεin

(P in)

guqn = (2π)kig(P0)(1 + on(1))(εin)N−ki−
2q
p−1

∏
j∈Ji

(rin)j ×

×
∫
{y∈RN−ki : |y|≤R}

Uq0,i(y)dy

= (2π)kig(P0)(1 + on,R(1))(εin)N−ki−
2q
p−1

∏
j∈Ji

(rin)j

∫
RN−ki

Uq0,i,

where on,R(1) is small when R is large and n ≥ n(R) is large. In view of (2.10) we
have that ARεin(P in), i ∈ L, are disjoint sets included in Ω. Since by Theorem 2.2

uqn(r, 0, s) ≤ C(λn)
q
p−1

h∑
i=1

e−q γ λ
1
2
n |(r,0,s)−P in|

for all (r, s) ∈ Ω0, by the previous expansions on ARεin(P in), i ∈ L, we can then
write∫
Iδ

g uqn =
∑
i∈L

∫
ARεin

(P in)

g uqn +

∫
Iδ\∪i∈LARεin (P in)

g uqn

=g(P0)
∑
i∈L

(1 + on,R(1))

(2π)ki(εin)N−ki−2 q
p−1

∏
j∈Ji

(rin)j

∫
RN−ki

Uq0,i


+O

(
(λn)

q
p−1

∫
A2δ(P in)\ARεin (P in)

e−qγλ
1
2
n |(r,0,s)−P in|

)]
+O

(
(λn)

q
p−1 e−γ

′λ
1
2
n

)
.
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Since λ
1
2
n (rin)j → +∞ as n→ +∞ for all j ∈ Ji, we deduce that

(λn)
q
p−1 e−γ

′λ
1
2
n = on

∑
i∈L

(εin)N−ki−2 q
p−1

∏
j∈Ji

(rin)j


as n→ +∞. Moreover, arguing as before, for δ > 0 small we get that

(λn)
q
p−1

∫
A2δ(P in)\ARεin (P in)

e−q γ λ
1
2
n |(r,0,s)−P in|

= O
(

(εin)N−ki−2 q
p−1

∏
j∈Ji

(rin)j

)∫
RN−ki\BδR(0)

e−qγ|y|

= oR

(
(εin)N−ki−2 q

p−1

∏
j∈Ji

(rin)j

)
as R → +∞. In conclusion, taking first R large and then n large (depending on
R), we show that on(1), oR(1) and on,R are small quantities for n large, and the
validity of the Lemma follows.

Far away from the the G−orbits emanating from the blow-up set S we have a
very strong decay:

Lemma 3.2. For every K > 0 there exists CK > 0 so that

un + |∇un| = O(λ−Kn )

on ∂Iδ ∩ Ω.

Proof. In I2 δ \ I δ
2

we decompose un as un = un,1 + un,2, where un,2 is an harmonic

function in I2 δ \ I δ
2

so that un,2 = un on ∂(I2 δ \ I δ
2
). By (2.13) we have that

un,2 = O(λ−K−1
n ) uniformly on ∂(I2 δ \ I δ

2
), and by the mean value theorem we

deduce that un,2 + |∇un,2| = O(λ−K−1
n ) in I 3

2 δ
\ I 3

4 δ
.

As far as un,1, by (2.13) we have that −∆un,1 = upn − λnV un = O(λ−Kn ) in

I2 δ \ I δ
2
. By elliptic regularity theory, we then have that un,1 + |∇un,1| = O(λ−Kn )

in I2 δ \ I δ
2
. The result then follows.

The asymptotic analysis we have developed so far can be used to study the
behavior of a G−invariant ground-state solution uλ as λ → +∞. Given 1 < p <
pS(N), uλ is found as the positive minimizer of the corresponding Rayleigh quotient
Iλ in HG \ {0}, where Iλ(u) is given by

Iλ(u) =

∫
Ω
|∇u|2 + λ

∫
Ω
V u2

(
∫

Ω
|u|p+1)

2
p+1

, u ∈ HG.

Since uλ solves (1.1) (up to a scaling factor to re-absorb the Lagrange multiplier),
we have that

Iλ(uλ) = (

∫
Ω

up+1
λ )

p−1
p+1 = inf

u∈HG\{0}
Iλ(u).

Since it is easy to see that mG(uλ) = 1, by Theorem 2.2 we see that uλ has just one
blow-up sequence Qλ = (r̃λ, 0, sλ) given by the maximum point of uλ: uλ(Qλ) =

sup
Ω
uλ. In order to make Iλ(uλ) = (

∫
Ω
up+1
λ )

p−1
p+1 as small as possible, by Lemma 3.1

we see that Qλ prefers to converge very fast to G0 because (ελ)N−k−2 p+1
p−1

∏
j∈J(rλ)j
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is asymptotically bigger than (ελ)N−2 p+1
p−1 (here k = card J). The argument can be

made rigorous so to show that λdist (Qλ, G0)→ 0 as λ→ +∞ or, equivalently, the
corresponding Pλ ∈ G0. A better localization in G0 of the limiting point of Pλ as
λ→ +∞ follows as a by-product of the next Theorem, where a classification is also
provided for the blow-up points outside G0 (which do not arise for the G−invariant
ground-state solution uλ but might possibly arise for other solutions).

We have the following localization for P0.

Theorem 3.3. Assume that x · ν(x) 6= 0 for all x ∈ ∂Ω. The blow-up point
P0 = (r0, 0, s0) ∈ S satisfies

• if P0 ∈ Ω, then ∇sV (P0) = 0 and k∑
j=1

rj∂rjV + Θ0V

 (P0) = 0,

where Θ0 is given by (3.3);
• if P0 ∈ ∂Ω, then there exists µ ≥ 0 so that ∇sV (P0) = −µνs(P0) and k∑

j=1

rj∂rjV + µ′r · νr + Θ0V

 (P0) = 0

where

µ′ =

{
µ if νs(P0) 6= 0
≥ 0 if νs(P0) = 0.

Proof. Multiplying (2.1) by ∂smun and integrating by parts in Iδ we get that

λn
2

∫
Iδ

∂smV u
2
n =

∫
∂Iδ∩Ω

[λn
2
V u2

n −
1

p+ 1
up+1
n

]
νsm (3.1)

+

∫
∂Iδ

[1

2
|∇un|2νsm − ∂νun∂smun

]
,

where νsm is the (2k+m)−th component of the unit outward normal vector ν. By
Lemma 3.2 and (3.1) we then deduce that

λn
2

∫
Iδ

∂smV u
2
n = O(λ−Kn )− 1

2

∫
Iδ∩∂Ω

(∂νun)2νsm

for all K > 0. When P0 ∈ Ω we have that Iδ ∩ ∂Ω = ∅ for δ > 0 small. Since ∂smV
is a G−invariant function, by Lemma 3.1 we deduce that

∂smV (P0)
∑
i∈L

(1+on(1))

(2π)ki(V (P0))
2
p−1−

N−ki
2 (λn)

p+1
p−1−

N−ki
2

∏
j∈Ji

(rin)j

∫
RN−ki

U2
0,i


=O(λ−Kn )

for all K > 0. Since λ
1
2
n (rin)j → +∞ as n → +∞ for all j ∈ Ji, we divide by

max
i∈L, j∈Ji

{
(λn)

p+1
p−1−

N−ki
2

∏
j∈Ji

(rin)j

}
, and letting n→ +∞ we get that ∇sV (P0) = 0

(for K sufficiently large).
When P0 ∈ ∂Ω, if νsm(P0) 6= 0 we just obtain an inequality in the form

∂smV (P0)νsm(P0) ≤ 0. Let us stress that it clearly holds also when νsm(P0) = 0.
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Given Q = (0, 0, ŝ), multiplying (2.1) by (x−Q) · ∇un and integrating by parts
in Iδ we get that

λn
2

∫
Iδ

(x−Q) · ∇V u2
n +

(N − 2

2
− N

p+ 1

)∫
Iδ

up+1
n + λn

∫
Iδ

V u2
n

=

∫
∂Iδ∩Ω

(x−Q) · ν
[λn

2
V u2

n −
up+1
n

p+ 1

]
− N − 2

2

∫
∂Iδ∩Ω

un∂νun

+

∫
∂Iδ

[1

2
(x−Q) · ν|∇un|2 − (x−Q) · ∇un∂νun

]
.

By Lemma 3.2 we then deduce that

λn
2

∫
Iδ

(x−Q) · ∇V u2
n +

(N − 2

2
− N

p+ 1

)∫
Iδ

up+1
n + λn

∫
Iδ

V u2
n (3.2)

= O(λ−Kn )− 1

2

∫
Iδ∩∂Ω

(x−Q) · ν(∂νun)2.

As before, when P0 ∈ Ω let su fix δ > 0 small so that Iδ ∩ ∂Ω = ∅. Since V is a
G−invariant function, let us notice that

(x−Q) · ∇V (x) =

k∑
j=1

rj∂rjV +

N−2k∑
j=1

(sj − ŝj)∂sjV

is a G−invariant function too. We can then use Lemma 3.1 to deduce by (3.2) that∑
i∈L

(1 + on(1)) (2π)ki(λn)
p+1
p−1−

N−ki
2 (V (P0))

p+1
p−1−

N−ki
2

∏
j∈Ji

(rin)j

∫
RN−ki

U2
0,i ×

×

[
(P0 −Q) · ∇V (P0)

2V (P0)
+
(N − 2

2
− N

p+ 1

)∫
RN−ki U

p+1
0,i∫

RN−ki U
2
0,i

+ 1

]
= O(λ−Kn ).

Since U0,i solves (2.2) in RN−ki and decays exponentially fast at infinity, we can
multiply by y · ∇U0,i and get by integration by parts that(N − ki

p+ 1
− N − ki − 2

2

)∫
RN−ki

Up+1
0,i =

∫
RN−ki

U2
0,i.

Up to a sub-sequence, we can let

λi := lim
n→+∞

(λn)
p+1
p−1−

N−ki
2
∏
j∈Ji(r

i
n)j

maxh∈L, j∈Jh(λn)
p+1
p−1−

N−kh
2
∏
j∈Jh(rhn)j

and L0 = {i ∈ L : λi > 0} 6= ∅, and get by (3.2) that∑
i∈L0

λi(2π)ki(V (P0))
ki
2

∫
RN−ki

U2
0,i

[
(P0 −Q) · ∇V (P0)

2V (P0)

+
(N − 2

2
− N

p+ 1

)(N − ki
p+ 1

− N − ki − 2

2

)−1

+ 1

]
= 0

as n→ +∞, in view of λ
1
2
n (rin)j → +∞ as n→ +∞ for all j ∈ Ji. Setting

Θ0 = Θ(P0) (3.3)

:=

∑
i∈L0

λi(2π)ki(V (P0))
ki
2

∫
RN−ki U

2
0,i

[
(N−2−2 N

p+1 )(N−kip+1 −
N−ki−2

2 )−1 + 2
]

∑
i∈L0

λi(2π)ki(V (P0))
ki
2

∫
RN−ki U

2
0,i

,
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we deduce that

(P0 −Q) · ∇V (P0) + Θ0V (P0) =

 k∑
j=1

rj∂rjV + Θ0V

 (P0) = 0

in view of ∇sV (P0) = 0. Notice that Θ0 > 0 unless ki = 0 for all i ∈ L0.
If P0 ∈ ∂Ω, we have to distinguish whether r0 · νr(P0) = 0 or not. When

r0 · νr(P0) 6= 0, we can take ŝ = s0 − tτ , where τ is orthogonal to νs(P0). For |t|
large, we can find δ > 0 sufficiently small so that (x − Q) · ν has the same sign of
r0 · νr(P0) in Iδ ∩ ∂Ω. By (3.2) we then get that k∑

j=1

rj∂rjV +(s0−ŝ) · ∇sV +Θ0V

 (P0) =

 k∑
j=1

rj∂rjV +tτ · ∇sV +Θ0V

 (P0)

has a given sign (the opposite one of r0 · νr(P0)). Since this this is true for all
t large, we get that τ · ∇sV (P0) = 0 for all τ so that τ · νs(P0), i.e. ∇sV (P0)
and νs(P0) are proportional. Since ∂smV (P0)νsm(P0) ≤ 0 for all m, we have that
∇sV (p0) = −µνs(P0) for some µ ≥ 0.

If νs(P0) 6= 0, for ŝ = s0 − tνs(P0) as t → t±0 , t0 := − r0·νr(P0)
|νs(P0)|2 , by (3.2) we get

that k∑
j=1

rj∂rjV + t0νs · ∇sV + Θ0V

 (P0) =

 k∑
j=1

rj∂rjV + µr · νr + Θ0V

 (P0)

has to be non-positive and non-negative, respectively, yielding to k∑
j=1

rj∂rjV + Θ0V

 (P0) = −µr0 · νr(P0). (3.4)

When νs(P0) = 0, we have that ∇sV (P0) = 0, and then the L.H.S. in (3.4) has the
opposite sign w.r.t r0 · νr(P0), yielding to (3.4) with µ replaced by µ′ ≥ 0. We are
left with the case r0 · νr(P0) = 0. Since we assume x · ν(x) 6= 0 for all x ∈ ∂Ω, we
have that

P0 · ν(P0) = (r0, 0, s0) · (νr(P0), 0, νs(P0)) = s0 · νs(P0) 6= 0

implies νs(P0) 6= 0. Given τ so that τ · νs(P0) > 0, the choice ŝ = s0 − tτ for
t → +∞ gives that τ · ∇sV (P0) ≤ 0. Letting τ approach the orthogonal space of
νs(P0), we deduce that τ · ∇sV (P0) ≤ 0 for all τ with τ · νs(P0) = 0. Applying
it for τ and −τ , we still get that τ · ∇sV (P0) = 0 for all τ so that τ · νs(P0), i.e.
∇sV (p0) = −µνs(P0) for some µ ≥ 0. With always the same choice of τ , as t→ 0±

the inequalities ≤ and ≥, respectively, have to hold for k∑
j=1

rj∂rjV + Θ0V

 (P0),

yielding to the validity of (3.4) also in this case.
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