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via della Ricerca Scientifica, Roma 00133, Italy

Giuseppe Riey
Dipartimento di Matematica, Università di Roma Tor Vergata,
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1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a C1,1 bounded open set. For any point σ ∈ ∂Ω, we denote by n(σ)
the unit outer normal to ∂Ω. We cover externally the boundary of the region Ω by a thin
layer Σε of material of small conductivity δ > 0 as follows. For any h ∈ C0 (∂Ω, [0,+∞[),
we define

Σε = Σε(h) := {x ∈ Rn : x = σ + th(σ)n(σ), σ ∈ ∂Ω, t ∈ (0, ε)} ,

where ε ∈ R+ is small enough in a way to obtain Σε ∩ Ω = ∂Ω. Set

Ωε := Ω ∪ Σε

and let aε,δ : Ωε → R be the function representing the conductivity of Ωε, defined as

aε,δ(x) :=

{

1 if x ∈ Ω
δ if x ∈ Σε .

Denoting by u(x) the temperature at the point x (which is supposed to be identically
equal to 0 out of Ωε), then u(x) satisfies the nonhomogeneous equation

{

u ∈ H1
0 (Ωε)

−div(aε,δ∇u) = f in D′
(Ωε)

(1)

where f ∈ Lp(Ω), p > 2n
n+2

, represents a given heat source (f is extended to 0 out of Ω).
Equivalently, u is a critical point of the functional Fε,δ : L

1(Rn) → R∪{+∞} defined by:

Fε,δ(u) :=







1

2

∫

Ω

|∇u|2 + δ

2

∫

Σε

|∇u|2 −
∫

Ω

f u if u ∈ H1
0 (Ωε)

+∞ elsewhere.
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Let us recall what it is known on the asymptotic behaviour of problem (1) as (ε, δ) →
(0, 0). It is intuitively clear that, if ε << δ, we may neglect the insulator and thus we
expect to obtain in the limit the usual Dirichlet problem. If instead δ << ε, we expect
to have not heat transmission through ∂Ω and thus to obtain the Neumann problem.

The most interesting case is when ε ≈ δ, that is ε = kδ. Up to a renormalization we can
assume k = 1 and set Fε := Fε,ε. Results due to Acerbi and Buttazzo ([1],[7]) imply the
following theorem (see also [3], [4], [6] and [8]), which is the starting point of our work.

Theorem 1.1. For any h ∈ C0(∂Ω; [0,+∞[), the sequence {Fε} Γ-converges with respect
to the L1(Rn)-topology to the functional F (h, ·) : L1(Rn) → [0,+∞] defined by:

F (h, u) :=







1

2

∫

Ω

|∇u|2 + 1

2

∫

∂Ω

u2

h
−
∫

Ω

f u if u ∈ H1(Ω)

+∞ elsewhere.
(2)

Let m > 0; define Ξm as the set of all measurable functions h : ∂Ω → [0,+∞[ such
that

∫

∂Ω
h = m. In the sequel of the paper, the functional F (h, u) will have the same

expression also for functions h ∈ Ξm which are not continuous in general.

Let (hm, um) denote the pair which minimizes F in Ξm ×H1(Ω) and set hm := hm

m
. The

purpose of the present paper is to study, by means of Γ−convergence, the asympotic
behaviour of hm as m goes to 0.

Let us suppose from now on p > n. For fixed h ∈ Ξm, F (h, u) is strictly convex in u and
therefore it admits a unique minimizer uh ∈ H1(Ω), which satisfies the following equation:

{

−4uh(x) = f(x) x ∈ Ω

h∂uh

∂n
(x) + uh(x) = 0 x ∈ ∂Ω .

(3)

The aim now is to maximize the weighted average of the temperature
∫

Ω
f u. If f ≥ 0,

this means to disperse heat as less as possible. This can be seen as a problem of optimal
control (where h represents the control variable). A direct computation shows that

F (h, uh) = −1

2

∫

Ω

f uh

and so we are led to consider the following problem:

min
h∈Ξm

min
u∈H1(Ω)

F (h, u) . (4)

It can be seen (see Section 3) that um is the unique solution of the problem

min
u∈H1(Ω)

{

1

2

∫

Ω

| ∇u |2 + 1

2m

(∫

∂Ω

| u |
)2

−
∫

Ω

fu

}

and

hm =
| um |

∫

∂Ω
| um |

.
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Before stating our main result, we first recall that, from classical elliptic theory and
Sobolev embeddings (see for instance [5]), there exists an unique solution u ∈ C1,1−n

p (Ω)∩
W 2,p(Ω) of the following equation:

{

−4u(x) = f(x) x ∈ Ω
u(x) = 0 x ∈ ∂Ω .

(5)

We remark that the function u can be regarded as the temperature in case of no insulation.
Let us denote

M = max
∂Ω

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

, K± := {x ∈ ∂Ω :
∂u

∂n
(x) = ±M} (6)

and define

vm :=
um − u

m
.

Our main result is stated in the following

Theorem 1.2. Up to a subsequence,
{

vm
∫

∂Ω |vm|

}

weakly* converges in M(∂Ω) (see Defi-

nition 2.1) as m goes to 0 to a measure λ which satisfies

sptλ ⊆ K+ ∪K− (7)

λ is positive (resp. negative) in K− (resp. K+) (8)
∫

∂Ω

∂u

∂n
dλ = −M. (9)

Moreover

lim
m→0

∫

∂Ω

|vm| = |λ|(∂Ω) = M,

where |λ| denotes the total variation of λ.

Theorem 1.2 and the fact that hm = |vm|
∫

∂Ω |vm| (see (11) below) imply the following result.

Theorem 1.3. The sequence {hm} weakly* converges in M(∂Ω) as m goes to 0 to the
total variation of λ.

Theorem 1.3 states that {hm} converges to a measure concentrated onK+∪K−; physically
this means that, when m is infinitesimal, the insulator has to be put in the points where
the dispersion is maximal.

2. Notation and preliminaries

We first introduce some notation and briefly recall some basic results about Γ-convergence
and Measure Theory.
Let Y be a metric space locally compact and separable. We denote by M(Y ) the space
of all finite and real Radon measures on Y and for any µ ∈ M(Y ) we denote by |µ| the
total variation of µ.
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Definition 2.1 (Weakly* convergence). Let µ ∈ M(Y ) and let {µn} ⊂ M(Y ). We
say that {µn} weakly* converges to µ if

lim
n→+∞

∫

Y

u dµn =

∫

Y

u dµ for every u ∈ C0(Y ).

Theorem 2.2. Let {µn} ⊂ M(Y ) be a sequence such that sup
n

|µn|(Y ) < +∞. Then

{µn} has a weakly* converging subsequence. Moreover the map µ 7→ |µ|(Y ) is lower
semicontinuous with respect to the weak* convergence.

Remark 2.3. The topology induced by the weak* convergence defined above is metriz-
able on the bounded sets of M(Y ).

For more details about this topic see for instance [2].

Definition 2.4. Let X be a topological space and let Fn, F : X → R ∪ {+∞}. Define
the Γ- lim inf and the Γ- lim sup of Fn as:

Γ- lim infFn(x) := inf
{

lim inf
n→∞

Fn(xn) : xn → x
}

Γ- lim supFn(x) := inf

{

lim sup
n→∞

Fn(xn) : xn → x

}

.

We say that Fn Γ-converges to F if for all x ∈ X we have:

Γ- lim inf
n→∞

Fn(x) = Γ- lim sup
n→∞

Fn(x) = F (x).

Definition 2.5. A sequence of functionals Fn : X → R ∪ {+∞} is said to be sequen-
tially equicoercive if, for any sequence {xn} such that supn Fn(xn) < +∞, there exists a
convergent subsequence.

Theorem 2.6. Let {Fn} be a sequence of sequentially equicoercive functionals defined on
X and Γ-converging to F . Then there exists min

X
F and min

X
F = lim

n→∞
inf
X

Fn. Moreover, if

xn is a minimizer of Fn, then every limit of a subsequence {xnk
} of {xn} is a minimizer

of F .

For more details about this topic see for instance [9].

In the sequel we identify any f ∈ L1(Ω) (resp. f ∈ L1(∂Ω)) with the measure f dx (resp.
f dσ).

3. Main results

In order to study min
h∈Ξm

min
u∈H1(Ω)

F (h, u), according to [7], we consider the equivalent problem:

min
u∈H1(Ω)

min
h∈Ξm

F (h, u). (10)

Denoting by hm(u) ∈ Ξm the unique solution of the problem

min
h∈Ξm

F (h, u),
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it is possible to see that

hm(u) = m
|u|

∫

∂Ω
|u|

. (11)

Thus, setting

Em(u) := F
(

hm(u), u
)

=
1

2

∫

Ω

|∇u|2 + 1

2m

(∫

∂Ω

|u|
)2

−
∫

Ω

f u,

problem (10) becomes:

min
u∈H1(Ω)

Em(u). (12)

It is possible to prove (see [7]) that Em(u) is strictly convex, coercive and lower semicon-
tinuous with respect to the weak topology of H1(Ω).
Hence it immediately follows:

Theorem 3.1. Problem (12) admits a unique solution um ∈ H1(Ω), which satisfies















−4u(x) = f(x) x ∈ Ω

∂u
∂n
(x) + 1

m
sign(u(x))

∫

∂Ω

|u| 3 0 x ∈ ∂Ω .
(13)

In (13) the map sign is defined as sign(t) := ±1 if t ≷ 0 and sign(0) = [−1, 1].

Corollary 3.2. Let hm(u) be defined as in (11) and let um be given by Theorem 3.1.
Then the pair (hm(um), um) solves the minimization problem (10) or equivalently (4).

Defining hm :=
hm(um)

m
and recalling (11), we have

∫

∂Ω

hm = 1 and hm ≥ 0. Hence by

Theorem 2.2 the sequence {hm} admits a subsequence weakly* converging in M(∂Ω) as
m → 0.

In the case of Ω an annular region in R2 and f ≡ 1, solving explicitly equation (13) in
polar coordinates, it turns out that the optimal way to insulate Ω is achieved by putting
the insulator on the inner circle, the set of boundary points with negative mean curvature,
see [7] for details. This could suggest that hm tends, as m → 0, to a measure concentrated
where the mean curvature of ∂Ω relative to Ω is minimal.
Nevertheless, this is false, as it follows from the following example.

Example 3.3. Let f ≡ 1 and Ω =
(

BR(0) \Br(0)
)

∪ Bρ(p) ⊂ R2 for R > r > 0, ρ > 0

and |p| > R + ρ. We define um as

um(x) =











−1
4
(|x|2 − r2) + (R2−r2)

4 log R
r

log |x|
r

if x ∈ BR(0) \ Br(0)

m
4π

+ ρ2−|x−p|2
4

if x ∈ Bρ(p).
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It can be seen that um |∂Br(0)= um |∂BR(0)≡ 0, um |∂Bρ(p)≡ m
4π

and

∂um

∂n
(x) =











1
2
r − R2−r2

4r log R
r

if x ∈ ∂Br(0)

−1
2
R + R2−r2

4R log R
r

if x ∈ ∂BR(0)

−1
2
ρ if x ∈ ∂Bρ(p).

Hence
∫

∂Ω
|um| = m

2
ρ and

0 ∈ ∂um

∂n
(x) +

1

m
sign(u(x))

∫

∂Ω

|um|

if and only if ρ ≥ ρ0 = ρ0(R, r) = max
{∣

∣

∣R− R2−r2

2R log R
r

∣

∣

∣ ,
∣

∣

∣r − R2−r2

2r log R
r

∣

∣

∣

}

.

For fixed r, R, ρ ≥ ρ0, we can choose a point p so that |p| > R+ ρ: so um turns out to be

the unique solution of equation (13) and hm = |um|
∫

∂Ω |um| ∈ Ξm satisfies spthm = ∂Bρ(p) for

any m > 0.
The set of boundary points with minimal mean curvature is Br(0) and it is different from
spthm. According to Theorems 1.2 and 1.3, it is easy to check that ∂Bρ(p) ⊆ K+ ∪K−

and the equality holds if ρ > ρ0.

We observe that, if we write u ∈ H1(Ω) in the form

u = u+m v, u the solution of (5), v ∈ H1(Ω)

and if I, ˜Jm : H1(Ω) → [0,+∞[ are the functionals defined as















I(u) :=
1

2

∫

Ω

|∇u|2 −
∫

Ω

f u

˜Jm(v) :=
m

2

∫

Ω

|∇v|2 + 1

2

(∫

∂Ω

|v|
)2

+

∫

∂Ω

∂u

∂n
v,

(14)

then we have:
Em(u+m v) = I(u) +mJ̃m(v). (15)

In particular we can write the function um of Theorem 3.1 in the form

um = u+mvm,

where vm is the unique minimizer of J̃m and satisfies:







4vm(x) = 0 x ∈ Ω

sign(vm(x))

∫

∂Ω

|vm(x)|+m
∂vm(x)

∂n
+

∂u(x)

∂n
3 0 x ∈ ∂Ω .

(16)

Since u vanishes on ∂Ω we have

hm =
|um|

∫

∂Ω
|um|

=
|vm|

∫

∂Ω
|vm|

.
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We now focus the attention on the asymptotic behaviour of the functions vm.

For any ϕ ∈ H
1
2 (∂Ω), there exists a unique function vϕ ∈ H1(Ω) such that:

∫

Ω

|∇vϕ|2 = inf
{w∈H1(Ω),w|∂Ω=ϕ}

∫

Ω

|∇w|2. (17)

So we can define a new functional Jm : M(∂Ω) → R as:

Jm(ϕ) :=















m

2

∫

Ω

|∇vϕ|2 +
1

2

(∫

∂Ω

|ϕ|
)2

+

∫

∂Ω

∂u

∂n
ϕ if ϕ ∈ H

1
2 (∂Ω)

+∞ elsewhere.

Notice that vm|∂Ω is the unique minimizer of Jm. We now give a result of compactness
and Γ-convergence for the functionals Jm.

Theorem 3.4 (Compactness for Jm). Let {ϕm} ⊂ H
1
2 (∂Ω) be such that supm Jm(ϕm)

< +∞. Then there exist µ ∈ M(∂Ω) and a subsequence of {ϕm} weakly* converging to
µ in M(∂Ω) as m → 0.

Proof. Setting M := max
x∈∂Ω

∣

∣

∣

∣

∂u

∂n
(x)

∣

∣

∣

∣

and T := sup
m

Jm(ϕm) < +∞, we have:

M

∫

∂Ω

|ϕm| − 2M2 ≤ 1

2

(∫

∂Ω

|ϕm|
)2

−M

∫

∂Ω

|ϕm| ≤ T

and hence

∫

∂Ω

|ϕm| ≤
T

M
+ 2M . The thesis now follows from Theorem 2.2.

Theorem 3.5 (Γ-convergence for Jm). The sequence {Jm} Γ-converges, with respect
to the weak* convergence on M(∂Ω), as m → 0, to the functional J : M(∂Ω) → R
defined as

J(µ) :=
1

2
(|µ|(∂Ω))2 +

∫

∂Ω

∂u

∂n
dµ.

Proof. The Γ- lim inf inequality follows from the lower semicontinuity of the total varia-
tion with respect to the weak* convergence in M(∂Ω).
To prove the Γ- lim sup inequality, it is enough to find, for any µ ∈ M(∂Ω), a se-
quence wm ∈ H1(Ω) such that ϕm := wm|∂Ω weakly* converges to µ in M(∂Ω) and
lim sup
m→0

J̃m(wm) ≤ J(µ), because, in view of (17),

Jm(ϕm) = ˜Jm(vϕm) ≤ ˜Jm(wm) ∀ m.

To this aim we make the following construction. Set D := {x ∈ Rn−1 : |x| < 1}, let
{Si, ri : D → Si}i=1,...,N be a local coordinates system and let {ψi}i=1,...,N be a unit
partition subordinate to the family {Si}. Let µi ∈ M(D) be defined as the push-forward
of ψiµ through the map r−1

i , µi := (r−1
i )#[ψiµ].

Since sptµi ⊂ D, by Theorem 2.2 in [2] there exists a sequence {µ̃ε
i} ⊂ C∞

0 (D) such that:

µ̃ε
i weakly* converges to µi (18)
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|µ̃ε
i |(D) → |µi|(D) (19)

|µ̃ε
i | = O

(

1

εn−1

)

, |∇µ̃ε
i | = O

(

1

εn

)

. (20)

Let µε
i ∈ M(∂Ω) be defined as the push-forward of µ̃ε

i through the map ri and let us

identify the measure µε
i with the function µε

i := µ̃ε
i ◦ r−1

i ∈ C∞
0 (Si). Set µε :=

N
∑

i=1

µε
i .

By construction we get that, as ε → 0,

µε weakly* converges to µ in M(∂Ω) (21)

and
|µε|(∂Ω) → |µ|(∂Ω). (22)

We now want to extend µε in the interior of Ω. Set d(x) := dist(x, ∂Ω) and for α > 0

define U := {x ∈ Ω : d(x) < α} and ˜U := {x ∈ U : d(x) ∈ (0, α
2
)}. For α small enough,

the orthogonal projection on ∂Ω, π : U → ∂Ω is well defined and let γε : [0, α]× ∂Ω → R
be the function defined as:

γε(t, y) :=







µε(y) if t ∈ [0, α
2
]

2(α−t)
α

µε(y) if t ∈
(

α
2
, α

]

.

Setting

wm(x) :=







γm1/(4n)(d(x), π(x)) x ∈ U

0 x ∈ Ω\U,

it is easy to check that wm ∈ H1(Ω). Moreover, using (20), the lipschitz property of the
map π and the fact that |∇d(x)| = 1 a.e., we infer the following estimate:

|∇wm1/(4n)(x)| ≤
∣

∣

∣

∣

∂γm1/(4n)

∂t
(d(x), π(x))

∣

∣

∣

∣

|∇d(x)|

+

∣

∣

∣

∣

∂γm1/(4n)

∂y
(d(x), π(x))

∣

∣

∣

∣

|∇π(x)|

≤ C

[∣

∣

∣

∣

∂γm1/(4n)

∂t
(d(x), π(x))

∣

∣

∣

∣

+

∣

∣

∣

∣

∂γm1/(4n)

∂y
(d(x), π(x))

∣

∣

∣

∣

]

=











C |∇τµm1/(4n)(π(x))| x ∈ ˜U

C
∣

∣

∣− 2
α
µm1/(4n)(π(x)) +

2(α−d(x))
α

∇τµm1/(4n)(π(x))
∣

∣

∣ x ∈ U\˜U

= O

(

1

m1/4

)

for suitable C > 0. Therefore we get

m

∫

Ω

|∇wm1/(4n)|2 ≤ ˜C
√
m → 0 as m → 0
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for some ˜C > 0.
This conclude the proof of the Γ-limsup inequality.

In order to characterize the properties of minimizers of J , we write it in a slightly different
way. Set M1(∂Ω) := {µ ∈ M(∂Ω) : |µ|(∂Ω) = 1} and consider ˜J : [0,+∞)×M1(∂Ω) →
R defined as:

˜J(t, λ) := J(tλ) =
1

2
t2 + t

∫

∂Ω

∂u

∂n
dλ. (23)

We have:
min

µ∈M(∂Ω)
J(µ) = min

λ∈M1(∂Ω)
min
t≥0

J̃(t, λ). (24)

An easy computation shows that

min
t≥0

˜J(t, λ) =























0 if

∫

∂Ω

∂u

∂n
dλ ≥ 0

−1

2

(∫

∂Ω

∂u

∂n
dλ

)2

if

∫

∂Ω

∂u

∂n
dλ < 0

and hence, denoted by (t, λ) a pair which minimizes ˜J , we have that:

t = −
∫

∂Ω

∂u

∂n
dλ > 0 and λ minimizes λ 7→

∫

∂Ω

∂u

∂n
dλ. (25)

We have that

∫

∂Ω

∂u

∂n
dλ ≥ −M and the equality holds if and only if

sptλ ⊆ K+ ∪K−, λ ≥ 0 (resp. ≤ 0) in K− (resp. K+), t = M, (26)

where M and K± are defined in (6). Finally by Theorems 2.6, 3.4, 3.5 we can deduce the
proof of Theorem 1.2.

Proof of Theorem 1.2. Since supm Jm(vm|∂Ω) ≤ supm Jm(0) = 0 < +∞, up to a sub-
sequence, vm|∂Ω weakly* converges in M(∂Ω) to a minimum point µ of J which must
have the form µ = tλ with (t, λ) satisfying (25).
Hence, since the total variation is lower semicontinuous with respect to the weak* con-
vergence,

|µ|(∂Ω) = M ≤ lim inf
m→0

∫

∂Ω

|vm|.

For any converging subsequence of
∫

∂Ω
|vm| with limit s we have s ≥ M and, along this

subsequence,

−1

2
M2 = J(µ) = lim

m→0
Jm(vm|∂Ω) ≥

1

2
s2 −Ms.

Since 1
2
t2 − Mt > −1

2
M2 for t > M , then s = M for any converging subsequence of

∫

∂Ω
|vm| and this implies

lim
m→0

∫

∂Ω

|vm| = M.
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Hence
vm

∫

∂Ω
|vm|

weakly* converges to the measure λ in M(∂Ω) and λ satisfies (26).

Proof of Theorem 1.3. Up to a subsequence, hm ∈ M1(∂Ω) weakly* converges to some
ν in M(∂Ω) with the properties |λ| ≤ ν and ν(∂Ω) ≤ 1 = |λ|(∂Ω). Hence ν = |λ| and
the proof is completed.
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