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Abstract

We consider the boundary value problem Au + u” = 0 in a bounded, smooth domain £2 in R2 with
homogeneous Dirichlet boundary condition and p a large exponent. We find topological conditions on 2
which ensure the existence of a positive solution u, concentrating at exactly m points as p — oo. In
particular, for a nonsimply connected domain such a solution exists for any given m > 1.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

This paper is concerned with analysis of solutions to the boundary value problem:

Au+uP? =0 1in S2,
u>0 in £2, (1.1)
u=0 on 0s2,
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where £2 is a smooth bounded domain in R? and p is a large exponent. Let us consider the
Rayleigh quotient

[o IVul?
(f_Q lu|P+1)2/(p+1)°

Ip(u) = u € Hy (£2)\ {0},

and set

Sp= inf 1,(u).
ueH} ($2)\{0}

Since H(}(.Q) is compactly embedded in LP*1(£2) for any p > 0, standard variational methods
show that S, is achieved by a positive function u,, which solves problem (1.1). The function u ,
is known as least energy solution.

In [27,28] the authors show that the least energy solution has L°-norm bounded and bounded
away from zero uniformly in p, for p large. Furthermore, up to subsequence, the renormalized
energy density p|Vu, |2 concentrates as a Dirac delta around a critical point of the Robin function
H (x, x), where H is the regular part of Green function of the Laplacian in £2 with homogeneous
Dirichlet boundary condition. Namely, the Green function G (x, y) is the solution of the problem

—AG(x,y)=08,(x) xe€f2,
Gx,y)=0 x €082,

and H (x, y) is the regular part defined as

1
H 3 =G, y) = 5 log =

In [1,16] the authors give a further description of the asymptotic behaviour of u,, as p — 00, by
identifying a limit profile problem of Liouville type:

Au+e' =0 inR2,
{fR2 o < oo, (1.2)
and showing that |lu,[|co — /€ as p — +00.
Problem (1.2) possesses exactly a three-parameters family of solutions
U, 1 86 (1.3)
x=log—5—-=, .
A N P Rk

where § is a positive number and & € R2 (see [6]).
The aim of this paper is to build solutions for problem (1.1) that, up to a suitable normal-
ization, look like a sum of concentrated solutions for the limit profile problem (1.2) centered at
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several points &, ..., &y, as p — oo. In this case, when m is possibly greater than 1, the func-
tion responsible to locate the concentration points &, ..., &, is more involved than the Robin
function. In fact, location of such points is related to critical points of the function

m

m
omE1, . E) =Y HELE)+ Y GELE).
j=1 i,j=1
i#]j
Let us mention that the same function ¢,, is responsible for the location of the points of con-
centration for solutions to the mean field equation in bounded domains £2 C R2 (see [3,12,14]).
Our main result reads as follows.

Theorem 1.1. Assume that $2 is not simply connected. Then given any m > 1 there exists pp > 0
such that for any p > py problem (1.1) has a solution u, which concentrates at m different
points in §2, according to (1.6), (1.7) and (1.8), as p goes to +o<.

This result is consequence of a more general theorem, which we state below, that ensures the
existence of solutions to problem (1.1) which concentrate at m different points of £2, under the
assumption that the function ¢, has a nontrivial critical value.

Let 2™ be £2 x £2 x --- X §£2 m times. We define

Om (X1, ..., Xp) =400 if x; =x; for some i # j.

Let D be an open set compactly contained in £2™ with smooth boundary. We recall that ¢,
links in D at critical level C relative to B and By if B and By are closed subsets of D with B
connected and By C B such that the following conditions hold: Let us set I to be the class of all
maps @ € C(B, D) with the property that there exists a function ¥ € C ([0, 1] x B, D) such that:

v (0, ) =1dp, v, =2, w(T, )|p,=1dp, foralltel0,1].

We assume

sup g (@ (), (1.4)
yEB

sup gn(y) <C=

inf
yEB() del’

and for all y € D such that ¢,, (y) = C, there exists a vector 7, tangent to 9D at y such that

Vou(y) -ty #0. (1.5)

Under these conditions a critical point y € D of ¢, with ¢,,(y) = C exists, as a standard defor-
mation argument involving the negative gradient flow of ¢, shows. It is easy to check that the
above conditions hold if

inf @, (x) < inf_@,(x), or sup@,(x)> sup @,(x),
xeD x€dD xeD xedD

namely the case of (possibly degenerate) local minimum or maximum points of ¢,,. We call C a
nontrivial critical level of ¢,, in D.
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Theorem 1.2. Let m > 1 and assume that there is an open set D compactly contained in 2™,
where @, has a nontrivial critical level C. Then, there exists p,, > 0 such that for any p > py
problem (1.1) has a solution u, which concentrates at m different points of §2, i.e., as p goes
to +00

m
puZH — 8re Z 8¢; weakly in the sense of measure in Q2 (1.6)
i=1

for some & € D such that ¢, (&1, ...,En) =C and Vo, (&1, ..., En) = 0. More precisely, there
is an m-tuple EP = ("g‘lp, ..o, D) € D converging (up to subsequence) to & such that, for any
8 >0, as p goes to +o0

m
up — 0 uniformly in 2\ U Bs(¢) and (1.7)
j=1
sup  up(x) — Je. (1.8)
xeBs(E))

The detailed proof of how Theorem 1.2 implies the result contained in Theorem 1.1 can be
found in [12].

As already mentioned, the case of a (possibly degenerate) local maximum or minimum for
¢@m 1s included. This simple fact allows us to obtain an existence result for solutions to problem
(1.1) also when £2 is simply connected. Indeed, we can construct simply connected domains of
dumbbell-type, where a large number of concentrating solutions can be found.

Let 4 be an integer. By h-dumbbell domain with thin handles we mean the following: let
20=82,U---U&2y,, with £21, ..., £2;, smooth bounded domains in R? such that §2; N S_Zj =0
if i # j. Assume that

2 C{Grx) eRY g <x1 <bi},  2iN{xn=0}#£0,
for some b; <a;yjandi=1,...,h. Let
Ce ={(x1,x2) eR% |x| <&, x1 € (ai,bp)}, for some & > 0.

We say that §2, is a A-dumbbell with thin handles if £2, is a smooth simply connected domain
such that 29 C £2, C £2¢ U Cg, for some € > 0.
The following result holds true.

Theorem 1.3. There exist ¢, > 0 and pp > 0 such that for any ¢ € (0, ;) and p > py prob-
lem (1.1) in 82, has at least 2" — 1 families of solutions which concentrate at different points
of 82, according to (1.6), (1.7) and (1.8), as p goes to +00. More precisely, for any integer
1 <m < h there exist (Z) families of solutions of (1.1) which concentrate at m different points
of §2.

The detailed proof of how Theorem 1.2 implies the result contained in Theorem 1.3 can be
found in [14]. We also refer the reader to [4,7], where domains like dumbbells with thin handles
are considered.



P. Esposito et al. / J. Differential Equations 227 (2006) 29-68 33

The proof of all our results relies on a Lyapunov—Schmidt procedure, based on a proper choice
of the ansatz for the solution we are looking for. Usually, in other related problems of asymptotic
analysis, the ansatz for the solution is built as the sum of a main term, which is a solution (prop-
erly modified or projected) of the associated limit problem, and a lower order term, which can be
determined by a fixed point argument. In our problem, this is not enough. Indeed, in order to per-
form the fix point argument to find the lower order term in the ansatz (see Lemma 4.1), we need
to improve substantially the main term in the ansatz, adding two other terms in the expansion of
the solution (see Section 2). This fact is basically due to estimate (4.7).

By performing a finite-dimensional reduction, we find an actual solution to our problem ad-
justing points £ inside £2 to be critical points of a certain function F'(§) (see (5.2)). It is quite
standard to show that this function F (&) is a perturbation of ¢, (&) in a C%-sense. On the other
hand, it is not at all trivial to show the C! closeness between F and ¢,,. This difficulty is re-
lated to the difference between the exponential decay of the concentration parameters § ~ ¢~ 7/
(see (2.3)) and the polynomial decay # of the error term ||AUg + Ugf’ I« of our approximating

function U (see Proposition 2.1). We are able to overcome this difficulty (see Lemma 5.3) using
a Pohozaev-type identity.

Now, we would like to compare problem (1.1) with some widely studied problems which have
some analogies with it.

In higher dimension the problem equivalent to problem (1.1) is the slightly subcritical problem

Nt2 )

Au+ud2"% =0 1in £,

u>0 in £2, (1.9)
u=0 on 052,

where £2 is a smooth bounded domain in RY, N >3, and ¢ is a positive parameter. Indeed, in
N+

dimension N > 3, the embedding of HO1 (£2) in LP+1(£2) is compact for every p < N—_% Hence
the minimum of the Rayleigh quotient corresponding to problem (1.9) is achieved by a positive
function u,, called least energy solution, which, after a multiplication by a suitable positive
constant, is a solution to (1.9).

It is well known that, as ¢ goes to 0, the least energy solution u#, concentrates around a point,
which is a critical point of the Robin function of the corresponding Green function (see [2,17,
19,25]). Also the converse is true: around any stable critical point of the Robin function one can
build a family of solutions for (1.9) concentrating precisely there (see [23,25,26]).

In [2,21] the authors showed that also for problem (1.9) there exist solutions with concentra-
tion in multiple points and, as in the problem that we are considering in the present paper, the
points of concentration are given by critical points of a certain function defined in terms of both
the Green function and Robin function.

The analogies between problems (1.1) and (1.9) break down here. Indeed, while for (1.1) one
can find solutions with an arbitrarily large number of condensation points in any given not simply
connected domain 2, in [2] the authors proved that solutions to (1.9) can have at most a finite
number of peaks which depends on £2 (see, also, [15,21]).

The property of problem (1.1) to have a solution with an arbitrarily large number of points of
condensation is what one expects to happen in the slightly supercritical version of problem (1.9),
namely
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N+2
Au+uv=2T =0 in,

u=>0 in £2, (1.10)
u=>0 on d052.

Indeed, a conjecture for (1.10) is that, given any domain §2 with a hole, one can see solutions
with an arbitrarily large number of peaks (see [9,10,24]). For this fact, despite of being compact
and hence subcritical in dimension 2, problem (1.1) shares patterns similar to the ones associated
to slightly supercritical problem (1.10) in higher dimension.

However, again the analogies between (1.1) and (1.10) in higher dimension break down here.
Indeed, the dilation invariance, which is crucial in the study of problem (1.10), does not play
a role in finding solutions to problem (1.1), as already observed for a similar two-dimensional
problem in [12,14] (see, also, [3]): only translation invariance is concerned in the study of (1.1).

The only translation invariance is the crucial key which allows to find solutions to the sub-
critical problem (see [11,18,20,22,29])

—2Au+u=uP in 2,
u=>0 in £2, (1.11)
u=0 on 0S2,

where £ is a bounded open domain in RV, p > 1 if N=2and | < p < %—*_’% if N>3,¢eisa
positive parameter.

Moreover, the property of problem (1.1) to have solution with an arbitrarily large number
of points of condensation is what happens in the subcritical problem (1.11). In fact, in [8] the
authors prove that if the reduced cohomology of £2 is not trivial, then for any integer k such a
problem has at least one k-peaks solution, provided the parameter ¢ is small enough.

However, again the analogies between (1.1) and (1.11) break down here. Indeed, problem (1.1)
is somehow almost critical in R?, since the limit problem as p goes to 4-oc is (1.2) which is
critical in R%, while the limit problem of (1.11) as e goes to 0 is the subcritical problem

—Au+u=u” inRV,
u=>0 in RV,
ue  H'RV).

The paper is organized as follows. In Section 2 we describe exactly the ansatz for the solution we
are searching for. We rewrite the problem in term of a linear operator L for which a solvability
theory is performed in Section 3. In Section 4 we solve an auxiliary nonlinear problem. We
reduce (1.1) to solve a finite system ¢;; = 0, as we will see in Section 5. Section 5 contains also
the proof of Theorem 1.2.

2. A first approximation of the solution

In this section we will provide an ansatz for solutions of problem (1.1). A useful observation
is that u satisfies Eq. (1.1) if and only if

2
v(y) =8r"Tu(@y +£), yeSks
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satisfies

{Av+v”=0 in £2¢ 5,

2.1
v>0 in $2;, v=0 ondf%;, 1

where & is a given point in £2, § is a positive number with § — 0, and §2¢ 5 is the expanding
domain defined by %.

In this section we will show that the basic elements for the construction of an approximate
solution to problem (1.1) which exhibits one point of concentration (or equivalently of prob-
lem (2.1)) are the radially symmetric solutions of problem (1.2) given by Us ¢ defined in (1.3).

For Us ¢ (x) defined in (1.3), we denote by PUs ¢ (x) its projection on the space HO1 (£2),
namely PUs g (x) is the unique solution of

APUs g = AUse in £2,
PUse(x)=0 on of2.

Since PUs ¢ (x) — Us ¢ (x) + log(88%) + 4logﬁ = 0(5?) uniformly on x € 32 as § — 0
(together with any boundary derivatives), by harmonicity we get

PUs s (x) = Us ¢ (x) — log(88%) + 87 H(x, &) + O(8%) in C'(R2),

N . 2.2)
PUsg(x) =8nG(x,&) + 0(8 ) in CIOC(.Q \ {‘;‘}),
provided £ is bounded away from 952.
Assume now that
) 1
(Szl"l’e 4’ EgngC’ (2'3)
and define
_p
e2(p-1
u(x) = WPU&S(X), x €S2. 2.4)

Observe that, as p — 00,

1
u(E)— e and u(x)= 0(—) for x #E£.
p
Furthermore, under the extra assumption that the parameter p is defined by the relation

log(81u*) =8r H(, &),

a direct computation shows that a good first approximation for a solution to problem (1.1) ex-
hibiting only one point of concentration is given by a perturbation of the function u defined
in (2.4).

Indeed, in the expanded variable y = % € %, if we define v(y) = 8%/ P~ Dy (8y +£), then
our first approximation (2.4) looks like
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o7 (P U100 + 0(e” Hlyl 4e7H)) @5)

and hence

1 Uo(»\”
P~ _ LU0y J
Av+v pp/(p—l)[ e +<1+ » ,

which, roughly speaking, implies that the error for u to be a solution of (1.1) exhibiting one point
of concentration, or equivalently for v to be a solution of (2.1), is of order 4.

However, as we will see below, this is not enough to build an actual solution to (1.1) starting
from u (x). We need to refine this first approximation, or equivalently, according to (2.5), we need
to go further in the expansion of v(y) = p+ U;,0(y) + o(1), by identifying first and second order
termsin v — p — Uj 0.

Let us call

Voo (¥) = U1,0(y)

and consider
_ 1 1
v(y) = voo(y) + ;wo(y) + ?wl(y),

where wg, wy solve

8 1
Aw; + w; = ; inRz, i=1,2,
o T ar e
where
1 1 1 1
fo :4v§o, fi= 8(w0voo — g”go — Ewg — gvgo + §w00c2>o>- (2.6)

According to [5], for a radial function f(y) = f(]y]|) there exists a radial solution

V=2 [ ¢s()—ds(1)
B (s — 1)2
0

ds+¢f(1)1rTr>

for the equation

8

Aw + szf(y)v

where

N

2+ 1\ (s — D2 [ 11
¢f(S)=<S2_1> - /t1+t2f(t)dt for s # 1
0
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and ¢ (1) =limy_,1 ¢ (s). It is a straightforward computation to show that

“+o00

|logr|
w(r)=Cylogr+ D¢+ O s > as r — 400,
r
r
where
“+o00 5 +oo
t
Cf=/ 2+1f(t)a’t provided /t|f|(t)dt<+oo.
0 0

Therefore, up to replacing w(r) with w(r) — Dy ;i—;}, we have shown:

Lemma 2.1. Let f € C'([0, +00)) such that [ t|logt|| f|(t)dt < +00. There exists a C?
radial solution w(r) of equation

8

=/ mE

such that as r — 400

+oo +o0
") /tt — Lyt logr + 0 / s Hogrl)
w =
2 +1 g r2

0 r
+00 +oo
21 | |1gr|
arw<r>=</tt — f(t)dt) +0< /slfl()d + )
0 r

By means of Lemma 2.1, since fp has at most logarithmic growth at infinity (see (2.6)), we
can define wo(r) as a radial function satisfying

wo(y) = C010g|Y|+0(| |) as |y| = +oo, 2.7

where

8
/(ﬂ DEl (m>=12_410g3,

More precisely, since we will need the exact expression of wgp, we have that

2log8 — 10

1
— 61
wo(y) = voo<y>+ og(ly* +1) + ST
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+00

Iy?—1 5o 1., / ds s+1
21 1) — =log’8+4 1
ThEr (g (b - SlogT8 44 [ mrlog =
[yI?
—810g|y|10g(|y|2+1)), (2.8)

as we can see by direct inspection. From (2.7) we get that also f] grows at most logarithmically
at infinity and w can be defined as a radial function satisfying

1
wi(y) =Cy 10g|y|+0(|y—|> as |y| — +o0, (2.9)

for a suitable constant C.

We will see now that the profile W (p+vo(y)+ %wo(y) + #un (y)) is a better approx-
imation for a solution to the equation

Av+vP =0

in the region |y| < Ce?/3. Indeed, by Taylor expansions of exponential and logarithmic function,
we have that, for |y| < CeP/8,

SIS S| PUR Y (ARG T pr O ah
—+=+—=) =€ o —|lc—ab+—+—+———
p P P 2)  p? 32 8 2

6
+0(10g (|y3|+2)>} 2.10)
p

provided —4log(]y| +2) <a(y) < C and |b(y)| + |[c(¥)| < Clog(|y| + 2).
Observe that in our case 2C > a + % + ﬁ > —%p for |y| < CeP/3. Hence, by the choice of

Voo, Wo and w and expansion (2.10), we obtain that

1 1og®(yl +2)

Av 40P = 0< —=
pt A+ y?)?

> in |y] < Ces.

As before, we will see now that a proper choice of the parameter p will automatically imply that
this approximation for v is also good for the boundary condition to be satisfied. Indeed, observe
that by (2.7), (2.9) and Lemma 2.1 we get fori = 1,2

(*=E\\_ . (*=¢ : . nclo
Pl w; 5 w; 5 —2nCiH(x,&)+ Cilogéd+ O(5) inC (£2)
(2.11)

P<wi (x f)) — GG 6 +06) inCL (2 (£).

provided £ is bounded away from 952. If we take p as a solution of

C C logé C
log(81*) = 8w H (£, s>(1 - ﬁ - ﬁ) + % (co n 71)
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we get that
_p
e2p-1

p IP x—£ 1 p x—£
g [rose 57 ((555) )+ 7 (o (557))

is a good first approximation in order to construct a solution for (1.1) with just one concentration
point.
Let us remark that y bifurcates, as p gets large, by i = e=3/4¢*"H &8 solution of equation

u(x)=

log(8u*) =8m H(£,8) — % =8mw H(£,&) — 3 +1log8.

n =e_?Tez”H(§’g)(1 + O(l>>
p

Let us see now how things generalize if we want to construct a solution to problem (1.1) which
exhibits m points of concentration. Let ¢ > 0 fixed and take an m-tuple & = (&1, ...,&,) € O,,
where

More precisely,

O ={6=(&1,....6n) € 2™ dist(§;,002) > 2¢, |& — & >2¢, i # j}.

Define
=~ 1 1 x—&; 1 x—&;
Ug (x) = 7_[PU§-,5-(X)+—P(U)0< ’))+—P<w1( ’))}
;yuﬁ/(” LT p 3 p? 5
where
P __»p . 1
y=prle 20D and §;=p e *, Egung. (2.12)

The parameters u; will be chosen later. Observe that for any j #i and x = §;y +§;

;[PU () + lP<w (ﬁ» + lP(w <ﬁ>>]
yui/(p—l) 8j:8j » 0 5 2 ! 5

P
8 Co € e f 4y -4l
- —G(s,s)[l -0 —} + 0(—).
yul/ PO ap 4p? y

Hence, we get that the function Ug (x) is a good approximation for a solution to problem (1.1)
exhibiting m points of concentration provided

C C log §; C
10%(811?) =8 H (&, &‘)(1 - ﬁ - —1) + Ig) l (Co + —1>

4p? P
2/(p—1
5 |-

+87 Y G E) |- —
/(p=1) Jo ot 4 4
# M poap
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A direct computation shows that, for p large, u satisfies

i = o~ h T HE L) 2 z,-#,-G(s,-,sn(l v 0(1)) 2.13)
P

Indeed, with this choice of the parameters u;, we have that

m

Z L |:PU (x)-l—lP(w <x—_§j>>+iP<w <x_— 5,/))]
=20 88 p \\Us; 2\ 7

1 1 1 _r 2
=W(p‘i‘voo()’)‘F_WO(Y)+_2w1(Y)+O(e “yl+e 4)) (2.14)
YU p p

1

forx =6y +5&;.

Remark 2.1. Let us remark that Ug is a positive function. Since |veo + %wo + #wﬂ < Cin
ly| < %, by (2.14) we get that Ug is positive in B(§;, €) for any i =1, ..., m. Moreover, by

(2.11) we get that
p((w; (=5
wi| —- — =27 C;G(-,§))
J

in C'-normon |x —&;| > €,i =0, 1, and then

PUs o+ 2P (wol “=20)) + L p(wy (2251} = snGe.60)
(Sj,&'j » 0 8] p2 1 81 1S

in C'-norm on |x — &j| > €. Hence, since %(~, ;) <0on 082, Ug is a positive function in £2.

We will look for solutions u of problem (1.1) in the form u = Ug + ¢, where ¢ will represent
an higher-order term in the expansion of u. Let us set

We () = pUL ™ (x).

In terms of ¢, problem (1.1) becomes

{uw=—@+mw]m9, (2.15)
¢=0 on 052,
where
L(¢):= Ap + We¢p and (2.16)
Re:= AU + UL, N@) =[WUs + )" —UL — pUl™'¢]. 2.17)

The main step in solving problem (2.15) for small ¢, under a suitable choice of the points &;, is
that of a solvability theory for the linear operator L. In developing this theory, we will take into
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account the invariance, under translations and dilations, of the problem Av + ¢” =0 in R2. We
will perform the solvability theory for the linear operator L in weighted L™ spaces, following
[12]. For any h € L°°(£2), define

m —1
8 .
|h]l« = sup / h(x)|. (2.18)
" xe2 ; (6 + Ix — &)
We conclude this section by proving an estimate of R in || - ||«.

Proposition 2.1. For fixed € > 0, there exist C > 0 and po > 0 such that for any & € O, and
P 2 Po

C

|avs +Ug], < - 2.19)

'B

Proof. Observe that

5) e (52))
AU, Aw + Aw
o /13/ §/<P ( O( 8 P25? 1 8
_Ej X_Ej
( ( 8j >+ 282f< 8j )
_l Uj ﬁ _l Uj ﬁ
e wo( ) s (57)) a2

where for j =1,...,m, Uj = Us, ¢; and for i =0, I, fily) = Wﬁ(y) with fy, f1 given
in (2.6). By (2.2) and (2.11), formula (2.20) gives that, if [x —&;| > ¢ forany j=1,...,m,

m -1

3; )
Z AUg + U <C
‘<j=1 (812.+|x_gj|2)3/2> (AUs +UL) (x) e

(2.21)
and, if |[x — §;| <eforsomei=1,...,m,
AU + U7 ’ 1 ( AN VS L Y00 S
= - —Jo)+ =10 — — 557 woly
T s e\ T PR p » P (+ Y1)

! 5 (y)>+U”(ay+$)+0(pe—%) (2.22)

B N , .

p> (1 +1y[»)? g

where we denote y = ng" . By (2.14) we deduce that for x =6;y + &;,

» )4 4 1 1 1 e 7 e\’
Ug (x) = ) 14+ —voo(y) + Zwo(y) + zwi(y) + O —|)’|+ .
YU p p? P p p
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Since (W.Z/IZ]H) W = ya,z,ﬁl/(”*” , by (2.10) we get for |x — & | < e4/8;

g p— i [1+1<wo<y>—1log2(L>>
S e 2T nee
1 8 1 8
F(")‘ _1°g<(1+|y|2>2>w°+§l°g <<1+|y|2>2)

2
P g ()~ 5w ()
+ 04 ot —— ) = o ———
2 st \a+pp?) 2 B larpp?

log®(ly| + 2 —&
+0<—g (LyJ )+p2€_%y+p26_%>], y= al 5_5’.
15

Hence, in this region we obtain that

m —1
8 )
Z AUg +U
’( (8}2.+|x_,§j|2)3/2> ( & g)(x)

J=1

2 _ea2y3
< ‘M(AUg +U§)(x)

di

C 3 11og®(yl+2) _C x—§
<=1 gl == )< —, = ) 2.23
, (1+bF) <p3 arpp? ) S YT 23

On the other hand, if £4/8; < |x — & < & we have that

e? 1 x—§&
Ul (x)= 0(—7) = L
; y A+pP2) 7T s

since (1 + %)p < €°. Thus, in this region

" -1
Z 3; ,
AUg + U,
‘( (Bf + |x — gj|2)3/2) ( & £ )(x)

j=1

p _ x—§
—o[—P )< L y= . 2.24
0((1+|y|2>1/2> Cpe ®, y=—5 224)

By (2.21), (2.23) and (2.24) we obtain the desired result. O

ool

3. Analysis of the linearized operator

In this section, we prove bounded invertibility of the operator L, uniformly on & € O,, by
using L*°-norms introduced in (2.18). Let us recall that L(¢) = A¢ + We¢p, where We(x) =

pU ; - (x). For simplicity of notation, we will omit the dependence of W on &.
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As in Proposition 2.1, we have for the potential W (x) the following expansions. If [x —&;| < ¢
forsomei=1,...,m

p !
W(X)=P<72 - )
7/Mi/(p )

1 1 1 e T\ \"!
<1+—mm00+——wmw+"—wu@)+0(—;%ﬂ+"77))

P

_2 1 1 1 e % e \\"!
=8N\ 1+ —vo W+ Zwo(y) + zwi(y) + 0| —Iyl+— . 30D
p p P’ P p

where again we use the notation y = "g—g’ In this region, we have that

c 1
W(x) < —e'>We 570 = g (Vi)
(x) 52 ( )

since Voo (y) = —2p. Indeed, by Taylor expansions of exponential and logarithmic functions as
in (2.10), we obtain that, if |x — &| < e+/8; (and |y| < %),

P

5 1 1 1 e\ \"!
W(x)=34; (1+_Uoo(y)+ wo(y) + — W1(y)+0<—|yl+ ))
p p? p? p P

8 1 1 log* 2
= 27(1+—<w0—v00— —v2 > +0<%2|+))>.
87 (1+1y»)? P 2 P

Ifjlx—§|>¢eforanyi=1,...,m,

Summing up, we have:
Lemma 3.1. Let ¢ > 0 be fixed. There exist Dy > 0 and po > 0 such that
m
W(x) < Dy ZeUf(x)
j=1

forany & € O, and p > py. Furthermore,

8 1 1 log*(1y| +2)>)
=———(1+—(wo—veo — s | + O ———
W) $a+wm2(+p(m 0 f®>+ ( P2

x—§;
S

forany |x — &;| < e+/8;, where y =
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Remark 3.1. As for W, let us point out that, if |[x — &;| <& forsomei =1, ..., m, there holds
1 p=2 P2 pa ag :
oo ) <o) o
P YKy
Since this estimate is true if |[x —&;| > ¢ forany i =1, ..., m, we have that

1\\?"? "
P(Ug +0<—3>> <CD Vi, (3.2)
p iz
In an heuristic way, the operator L is close to L defined by

L(¢)=Ap + (Ze”f>¢.

i=1

The operator Lis “essentially” a superposition of linear operators which, after a dilation and
translation, approach, as p — 0o, the linear operator in R?,

8
o> At e

namely, equation Av + ¢” = 0 linearized around the radial solution log W. Set

2

z0(y) = , ,
Iyl +1 1+ |y?

The first ingredient to develop the desired solvability theory for L is the well-known fact that any
bounded solution of L(¢) =0 in R? is precisely a linear combination of the z;, i =0, 1, 2, see
[3] for a proof. ~

The second ingredient is a detailed analysis of L — L. It has been proved in [12,14] that the
operator L is invertible in the set of functions which, roughly speaking, are orthogonal to the
functions z; for i = 1, 2, and the operatorial norm of L~! behaves like p as p — +o0. Since
L is close to L up to terms of order at least % (see Lemma 3.1), the invertibility of L becomes
delicate and non trivial.

In [12,14] there were established a priori estimates respectively in weighted L°°-norms and
in HO1 (£2)-norms. We will follow the approach in [12] since the estimates there are stronger and
in this context very helpful.

Given h € C(£2), we consider the linear problem of finding a function ¢ € W2'2(.Q) such that

2 m
L(d)):h—l—ZZcijerZij in £2, (3.3)

i=1 j=1
¢=0 onas2, 34

/eUfz,-,-qs:o foralli=1,2, j=1,...,m, (3.5)
2
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for some coefficients ¢;j, i =1,2 and j =1, ..., m. Here and in the sequel, for any i =0, 1,2
and j =1,...,m we denote

|x—¢&;|2—52

T
Zitoy o (Y28 ) 2 | P =0
Y B 5 - 45j(x—5j),- e
J L=l i =1,2.

2
83 +lx—¢1?

The main result of this section is the following:

Proposition 3.1. Let ¢ > 0 be fixed. There exist py > 0 and C > 0 such that, for h € C(82) there
is a unique solution to problem (3.3)—(3.5), for any p > po and & € Og, which satisfies

[¢lloo < Cplihlls. (3.6)

Proof. The proof of this result consists of six steps. ~
Step 1. The operator L satisfies the maximum principle in £2 := £2 \ U';’Zl B(&j, Rs;) for R
large, independent on p. Namely, '

if L(y)<0in2 and ¥ >0o0ndg, theny >0 in 2.

In order to prove this fact, we show the existence of a positive function Z in 2 satisfying
L(Z) < 0. We define Z to be

 (alx—&))
7 = i s 0.
(x) Z Zo( 55 ) a>
Jj=1 ’
First, observe that, if |[x —&;| > R§; for R > 5, then Z(x) > 0. On the other hand, we have

82

W(x)Z(x) < DO<ZU“>>Z(x> DOZ(X)Z _§|4,
J

j=1

where Dy is the constant in Lemma 3.1. Further, by definition of zo,

_AZ(X)Ziazsai(a%x—§j|2—5§) >lZm: 8483 Zm: 857
(@l = &P +8)% 7 345 (@l —¢; |2+52>2 DB

j=1

V2

provided R > ~=. Hence
mo 887

41
LZx) <[ -——= — 1 <0
(x) ( a2 2~|— );|x_$j|4<

provided that a is chosen sufficiently small, but independent of p. The function Z(x) is what we
are looking for.
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Step 2. Let R be as before. Let us define the “inner norm” of ¢ in the following way

ol = sup p1(x).

er';'zl B(&;,Ré5)
We claim that there is a constant C > 0 such that, if L(¢) =& in £2, h € C%*(82), then

Iplloo < Clllll; + lI7ll],

for any h € CY(£2). We will establish this estimate with the use of suitable barriers. Let M =
2 diam £2. Consider the solution v (x) of the problem:
A =2 inRS; <|x—&j|<M
I T g P J J ’

Yi(x)=0 on|x —§&;j|=Rédjand |x —&;| =M.

Namely, the function v (x) is the positive function defined by

w,-<x>=—|x2_5-’§j|+A+Blog|x—s,-|,
where
B= (5—/—l> : <0
M R IOg(Rlaj)
and

Hence, the function ¥ — j (x) is uniformly bounded from above by a constant independent of p,
since we have that, for R6; < |x —&;| < M,

28]' M 2
Yj(x) <A+ Blog(Réj) = i _BlogR—(Sj =

Define now the function
m
$) =2[p1: Z(x) + lIhlle Y ¥ (x),
j=1

where Z was defined in the previous step. First of all, observe that by the definition of Z, choos-
ing R larger if necessary,

¢(x) 2209l Z(x) = llplli = |$l(x) for |x —&;|=Ré;, j=1,....m,
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and, by the positivity of Z(x) and ¥, (x),
$(x) >0=p|(x) forxedf.

Since by definition of || - ||« we have that

ol — g2

3.7

finally, we obtain that

< 1Al Zw,m— ap Z( |3 +W(x>w,<x))

j 2mD0 U
< Il Z( s+ e f“‘))
= s | R

m 8
< — Al ! <=l <IL
I (;(8§+|x_§i|2)3/2> [h(0)] < LI (x)

provided R > 16m Dy and p large enough. Hence, by the maximum principle in step 1 we obtain
that

lpl(x) < d(x) forx e 2,

and therefore, since Z(x) < 1 and ¥;(x) < %,

Iplloc < Clllll; + Nll]-

Step 3. We prove uniform a priori estimates for solutions ¢ of problem L¢ =h in £2, ¢ =0
on 952, when h € C%*(§2) and ¢ satisfies (3.5) and in addition the orthogonality conditions:

/eU.iZqu{):O for j=1,....m. (3.8)
2

Namely, we prove that there exists a positive constant C such that for any § € O, and
heCc%(2)

[Plloe < Clinllx,

for p sufficiently large. By contradiction, assume the existence of sequences p, — 0o, points
&" € O, functions h,, and associated solutions ¢, such that ||z, |« — 0 and ||¢, || = 1.
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Since ||¢y, |lco = 1, step 2 shows that liminf,,_, { « ||¢y |l; > 0. Let us set an(y) Pn (5”y+$ )
for j=1,...,m. By Lemma 3.1 and (3.7), elliptic estimates readily 1mply that ¢” converges
umformly over compact sets to a bounded solution ¢°° of the equation in R?:

8

A —_—— =
*tarore?

This implies that qb‘/’o is a linear combination of the functions z;, i =0, 1, 2. Since ||¢” loo <1,
by Lebesgue theorem the orthogonality conditions (3.5) and (3.8) on ¢, pass to the hmlt and give

8 A )
/ WZ;’()’)Q&;O =0 for any i1 =0,1,2.
2

Hence, q@}’o =0forany j =1,...,m contradicting liminf,_, . o [|¢ |l; > O.
Step 4. We prove that there exists a positive constant C > 0 such that any solution ¢ of equa-
tion L¢ = h in £2, ¢ =0 on 942, satisfies

¢llco < CplAll,

when h € C%%(£2) and we assume on ¢ only the orthogonality conditions (3.5). Proceeding by
contradiction as in step 3, we can suppose further that

Pullhylls — 0 asn — +o0, (3.9)

but we loss in the limit the condition fRZ ﬁzg(y)é?" = 0. Hence, we have that

Iy>—1

pt— Cji—  in O (R? 3.10
; yesr M toc (R7) (3.10)
for some constants C;. To reach a contradiction, we have to show that C; =0 for any j =
1,...,m. We will obtain it from the stronger condition (3.9) on #,,.

To this end, we perform the following construction. By Lemma 2.1, we find radial solutions

w and ¢ respectively of equations

8 8 8 8
+ w= z0(y) and Ar+ t= in R2
A+y»H* A+Iy»H? I+y»H* A +1yH?

’

such that as |y| — 400

4 1 1
w(y) =z 10g|y|+0(| |> t(y)=0<m>,

+o<> —1 +o00o —1
since 8 | E;2+1;4 dt =% and8 f; (;2+1)3 dt =0.

For simplicity, from now on we will omit the dependence on n. For j =1, ..., m, define now

87
uj(x)=w< SJE/)JF (10g8;)Zo; (x) + — H(g,,gm( E’)

]
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and denote by Pu; the projection of u ; onto H({(.Q). Since uj — Pu; + g—‘log ﬁ = 0(4;) on
052 (together with boundary derivatives), by harmonicity we get '

)

8w o ) L=
P”.i=u.1—7H(~,§,~)+0(e 9) incl(f),

3.11
87T _P . 1 = ( )
Puj=——G(.§)+0(e77) inCioe(2\ (§)))-
The function Pu; solves
APuj+W(x)Puj=e"i Zgj + (W(x) — e%I) Pu; + R;, (3.12)
where
8 U;
R () = Puj—uj+ = HE . 6)) e,
Multiply (3.12) by ¢ and integrate by parts to obtain
/eU-fZOj¢+/(W(x)—eUf)Pujqb:/Pujh—/qub. (3.13)

2 2 2 2

First of all, by Lebesgue theorem and (3.10) we get that

. 8(|y>—1)? 8xn

U

eI Zyidp— C; —_—— = —C,;. 3.14
f W Ay =3 ¢ G-19
2 R2

The more delicate term is f_Q(W(x) — eUf')Pujqb. By Lemma 3.1 and (3.11) we have that

/(W(x) — eV Pu;¢

2

8 p
= / (W(x) — Vi) Pujp — %ZG(&,%) / W(x)p —0(e™¥)

B(&.e4/3)) a B(E.e/5)
4logd; 8 1, A
-5 | (w" T gt
B(0,¢//3})
8w 8 N 1
Sy | (1+|y|2>2"”‘+0<5)
i BO.6/V5)

_ G 8yl =1)?

1 2
N4 <w0_voo—_voo)()’)_0(1)
3 2 (I +1y9) 2
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since Lebesgue theorem and (3.10) imply:

8 1 A (yP? = 1)
| (g Juod — e [T (v - 32 )

B(0.6/4/5}) R?

and

/ _8 5 / P =1 _
(a +| 7?2 1+ |y|2)2 yI* +1
B(0.2//8¢)

In a straightforward but tedious way, by (2.8) we can compute:

8(lyI> — 1)? 1
e (107 gt 0=
RZ

so that we obtain

/(W(x)—e )Pu,qb—g Cj+o(l).

2

As far as the R.H.S. in (3.13), we have that by (3.11)

m 5
Puih|= 0| ||, puit) = 0ol
'Q/ N <” ” !<1;(8£+|x_§k|2)3/2)| ”~’|) (Plkll)

since [, |Puj| = O(|logd;|) = O(p) and

B(§j.¢)

Finally, by (3.11)

[ rio= 0(/eUf(|x ~ &l +e—i’)) —o(e ).

Hence, inserting (3.14)—(3.17) in (3.13) we obtain that

167

forany j =1, ..., m. Necessarily, C; = 0 and the claim is proved.

8 |
i< - uil(s; N — '
./ (5]2-+|x—§j|2)3/2|141|<R[ (1+|y|2)3/2|u]|( iY+E)=0(p)

(3.15)

(3.16)

(3.17)
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Step 5. We establish the validity of the a priori estimate:

Plloo < Cpllnllx (3.18)
for solutions of problem (3.3)—(3.5) and h € C 0.@(§2). The previous step gives

2 m
oo < Cp(nhn* +> 3 |ci,~|)

i=1 j=I

since [lei Z;; ||, <2|le¥7 |, < 16.
Hence, arguing by contradiction of (3.18), we can proceed as in step 3 and suppose further that
2 m
Pallalls =0, pay Y |eli| 28>0 asn— +oc.
i=1j=1

We omit the dependence on n. It suffices to estimate the values of the constants ¢;;. Fori =1,2
and j =1,...,m, multiply (3.3) by PZ;; and, integrating by parts, get:

2

chlh(leh,le])Hl +/th,j _/W(x)¢>PZ,] /erz,-,-¢>, (3.19)

I=1 h=1 o o

since APZ;j = AZ;j = —eli Zij.Fori=1,2and j =1,...,m we have the following expan-
sions:

PZij=Zij — 878, —— (&) + 0(53), PZoj = Zoj — 14 0(87) (3.20)

oH
T3

in C'(£2) and

PZ © —— &)+ 0(8),  PZyj=0(s3) (3.21)

0=,

in Clloc(ﬁ \ {¢;1). By (3.20), (3.21) we deduce the following “orthogonality” relations: for i,/ =
1,2and j,h=1,...,m with j #h,

Iyl 2
(PZl'jﬂPle)H(}(Q):( / (1+| |2)4 ij+0(8j)v (PZtJvPZlh)H £2) = 0(8 ah)

(3.22)
and

(PZOj’Ple)H(}(_Q)ZO((S]Z)a (PZOj,PZlh)H(;(_Q)ZO(‘Sj(Sh) (3.23)

uniformly on & € O,, where §;; denotes the Kronecker’s symbol. In fact, we have that
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— Uj.. .
(PZij’Ple)HOI(Q) _/e 1ZijPZ;;
2

_ oH
- / eU.fzi,-(z,-,- 878 5 & £+ O0(5; |x—$,|+83)>+0(8§)
B(&;.¢)

ViV ly|? 5
2128 R ——— 1 0 5 El
a+hD " ( f<1+|y|2)4) i +0()

R2

(PZij. PZin) 1 ) = / Vi 2. PZun
2

= / eli Zij (—8778}1 &, 8n) + 0(8h|)C —§&jl+ 8h)) + 0(8;)
B(§j.¢)

=0(8;n),

d(Eni

(PZOjaPle)HOl(Q)Z/EUjZ()jPZ]j
2

= / eUfZ()j<sz 8 (51751)4‘0(8 |x—§]|+8 ))"—0(8?)
Béj.e)

~0(s)

oH
’a@,)

and

(PZ0j7PZlh)HO| o= / er Z()jPZlh
2

= / eUfZ()j< 8 ép——— ($/ Sh)—|—0(5h|x—§/|+5h)>+0(8]2')
B(&j.¢)

= 0(5;8)

MH

Now, since

‘/hPZU <c’/ 7] < Cllll,
2 2

by (3.22) the L.H.S. of (3.19) is estimated as follows:

2 m
LH&:D%+0<§§:2}m>+0MH) (3.24)

=1 h=1



P. Esposito et al. / J. Differential Equations 227 (2006) 29-68 53

where D = 64 fRz . Moreover, by Lemma 3.1 the R.H.S. of (3.19) takes the form:

Iy
(I+yH*

LHS. = f W (x)pPZi; —/er¢Zi.j+0(\/87j||¢”oo>

B(j.4/3)) $
= / (W) —e")$PZij + / 19 (PZij - Zip) + 0 (/3 1411)
GV «
1 32y ( v§o> A ( 1 )
=— ——(wo—veo — 2 )p; + O — 3.25
; / T (0= v = 52 )d + 0 0l (3.25)
B(&j.6//3})

in view of (3.20), where qgj (y) = ¢(jy + &;). Inserting the estimates (3.24) and (3.25) into
(3.19), we deduce that

2 m
o 1
Dcij+0<e i3S :|cm|> =0<||h||*+;||¢||oo).
=1 h=1

Hence, we obtain that

2

m 1
D> leml = 0(||h||*+ ;||¢||oo). (3.26)

=1 h=1

Since 212:1 Y r—i leinl = o(1), as in step 4 we have that

¢§j_>cj7|y|2_1 in C0_(R?)
lyl2+1 o
for some constant Cj, j =1, ..., m. Hence, in (3.25) we have a better estimate since by Lebesgue

theorem the term

32y; 1 o
/ m(wo—voo— zvé>(y)¢j(y)
B(0,e/,/3;)

converges to

32y (IyP* = 1) L,
& [T (o zRJor=o
R2
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Therefore, we get that the R.H.S. in (3.19) satisfies: R.H.S. = 0(%), and in turn, 212=1 Yorei el
= O(l|hll+) + 0(%). This contradicts

2 m
PY_ Y lcijl 28>0,

i=1 j=1

and the claim is established.
Step 6. We prove the solvability of (3.3)—(3.5). To this purpose, we consider the spaces:

2 m
KEZ{ZZCUPZ:&* cijeRfori=1,2, jzl,...,m} and
i=1 j=I
KSL={¢€L2(-Q)I /eU-’Zij¢=0fori=1,2, j=1,...,m}.
2
Let ITg : L?(2) — K; defined as
2 m
M= cijPZ.

i=1 j=1

where ¢;; are uniquely determined (as it follows by (3.22), (3.23)) by the system:

2 m
/eU”Zlh<¢—ZZcijPZij) =0 forany/=1,2, h=1,...,m.

o i=1 j=1

Let 17;- =1d—T1Tg: L2(2) > KEJ- Problem (3.3)—(3.5), expressed in a weak form, is equivalent
to find ¢ € Kg- N HO1 (£2) such that

(¢,¢)H6(Q):/(W¢—h)wdx for all r € Ki- N Hy (£2).
2

With the aid of Riesz’s representation theorem, this equation gets rewritten in K ;— N H(} (£2) in
the operatorial form

(1d—K)¢ = h, (3.27)

where i = H;-A_lh and K (¢p) = —H;-A_l(W¢) is a linear compact operator in Kg‘ N HOl (£2).
The homogeneous equation ¢ = K(¢) in K Sl N HOl (£2), which is equivalent to (3.3)—(3.5) with
h =0, has only the trivial solution in view of the a priori estimate (3.18). Now, Fredholm’s al-

ternative guarantees unique solvability of (3.27) for any hek SJ_ Moreover, by elliptic regularity
theory this solution is in W22(2).
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At p > po fixed, by density of C%%(£2) in (C(£2), || - |ls0), We can approximate i € C(£2) by
smooth functions and, by (3.18) and elliptic regularity theory, we can show that (3.6) holds for
any h € C(£2). The proof is complete. O

Remark 3.2. Given h € C(£2), let ¢3 be the solution of (3.3)—(3.5) given by Proposition 3.1.
Multiplying (3.3) by ¢ and integrating by parts, we get

||¢||§,01(m=fvv¢2—/h¢.
ko)

2

By Lemma 3.1 we get
161l (2) < C(llplloo + lIAl)-
4. The nonlinear problem

We want to solve the nonlinear auxiliary problem

2 m
AU+ )+ Ue + )P =Y cije¥izy in L2, (4.1)
i=1 j=I
Us+¢>0 in£2, 4.2)
$=0 onas2, (4.3)
/eUle-qu:o foralli=1,2, j=1,...,m, (4.4)
2
for some coefficients ¢;j,i = 1,2 and j =1, ..., m, which depend on &. Recalling that

-1
N@) =|Us +oI" — U —pU{™ ¢.  R=AU; +U{,
we can rewrite (4.1) in the form

2 m

L@)=—(R+N@®)+ Y > cije’izi.

i=1 j=1

Using the theory developed in the previous section for the linear operator L, we prove the fol-
lowing result:

Lemma 4.1. Let ¢ > 0 be fixed. There exist C > 0 and po > 0 such that, for any p > po and
& € Og, problem (4.1)—(4.4) has a unique solution ¢g which satisfies

C
e lloo < s 4.5

Further, there holds:
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C
ZD@, ®)] < < I9ell 3 ) <

i=1 j=1

(4.6)

“Em’ a

Proof. Let us denote by C, the function space C(£2) endowed with the norm || - ||+. Proposi-
tion 3.1 implies that the unique solution ¢ = T (k) of (3.3)—(3.5) defines a continuous linear
map from the Banach space C, into Cy(£2), with norm bounded by a multiple of p. Problem
(4.1)—(4.4) becomes

¢ =A@@):=—T(R+ N(9)).

For a given number y > 0, let us consider the region

Fyi={p e Co@: 19l < L5 1.
p

We have the following estimates:

IN@)|, < CpliollZ,. IN@1) — N2 |, < Cp( max lIgillco ) 161 — d2lloe,  (4.7)
i=1,2

for any ¢, ¢1, ¢ € F),. In fact, by Lagrange’s theorem we have that

p—2
IN®)| < p(p - 1)(Us " 0(%)) &,
P

1\)\"?
[N(@g1) = N(g2)| < p(p—l)(Us+0< )) (max ¢x1) ¢1 — 62|

for any x € §2, and hence, by (3.2) we get (4.7) since || Z;f’:l eVi|l, = O(1). By (4.7), Proposi-
tions 2.1 and 3.1 imply that

D
[4@ ] < D'P(IN@)], +1RI) < O(P*1915) + 5 and
[4@) = 4@, < C'p[N @) = N @2, < Cp*(max gl )1 = d2lloc

for any ¢, ¢1, ¢ € F),, where D is independent of y. Hence, if ||¢[|o0 < p? , we have that

1 D 2D
|A@) ] = 0<—||¢||oo) + 5 <5
p p p

Choose y =2D. Then, A is a contraction mapping of F,, since

1
[A@) — Al |, < §||¢1 —$2lloo
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for any ¢, ¢ € F, . Therefore, a unique fixed point ¢z of A exists in F),. By (3.26), we get that

2

- 1
Y @)= 0<||N(¢§)||* + IR+ ;||¢g||oo) <

i=1 j=1

C
I’E

and by Remark 3.2 we deduce that

C
19l 302) = O(I19elloo + N[N @), +IRI) < 5.

The proof is now complete since qbg_ solves (4.1)—(4.4): in order to show the validity of (4._2),
let us remark that p|¢g¢| — 0 in C(£2) and by elliptic regularity theory p|¢s| — 0 in C 12\
U;’zl B(&;, €)) and so, we can proceed as in Remark 2.1 to show that Uz + ¢¢ >01in £2. O
Let &1, & € O,. Since
-1
A(¢El - ¢Ez) + PUg[z (¢Sl - ¢Ez)

= ((Ug, + ¢6,)" — (e, + ¢)7) + ((Us, + ¢6,)” — (U, + be,)” — pUL™ (5, — ¢5,))

2 m
+AWUs, — U+ YD (cij&) — cij(€)e (€1 Zij (&)

i=1 j=1

2 m
+ )Y cij @)V (ENZij ) — eV (82) Zij (82))

i=1 j=1

and by (3.2)

| (e, + ) — W, + ¢)” — pUL ™ (9e, — 06,

C 1\\?? 1
< F”% — ¢, Hpr(Ua + 0(;)) * =o(;u¢sl —¢g2||oo)

uniformly in O,, by Proposition 3.1 and (4.6) we get

¢z, — e, loo < Cp || (Ue, + ¢,)? — (U, + ¢,)7 |,

2 m
C
+ =Y > eV EnNzij ) — Vi @) Zij &) |, + Cp| AU, — Ue)

i=1 j=I

*°

for any p > po and &1, & € O; (here, || - ||« is considered with respect to &1). Hence, for fixed
D = po, the map & — ¢ is continuous in Co(£2) and, in view of Remark 3.2, in HO1 (£2). Further,
this map is a C!-function in C((£2) as it follows by the Implicit Function Theorem applied to the
equation:

G(.¢) =T [Us + I+ A7 (Us + T ¢)" |+ [Tep =0, ¢ € Co(£2),
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where T, H; are the maps from L?(§2) respectively onto

2 m
KSZ{chijpzij:CijERfOI’i:l,z’j:l,..,,m} and
i=1 j=1

K§={¢6L2(9); /eU-/Zij¢=0fori=1,2, j=1,...,m}
2

(see the notations in step 6 in the proof of Proposition 3.1). Let us remark that I ¢ € Cg (2),
for any k > 0. Indeed, G(§, ¢¢) = 0 and the linearized operator:

0G

7 & 00 = M [id+pA~" ((Us + ¢e)? ™' 1T)] + 1T

is invertible for p large. In fact, easily we reduce the invertibility property to uniquely solve the
equation %(S, Pe)[pl=hin Kg- forany h € K;- N Cy($2). By Fredholm’s alternative, we need

to show that in K SJ- N Cp(£2) there is only the trivial solution for the equation % ¢, 99)¢]1=0,
or equivalently for

2 m
Lo=pUl™" = We+ )" N+ D> cije zi,
i=1 j=1

for any choice of the coefficients c;;, since by elliptic regularity theory ¢ € Cg(ﬁ ). By Proposi-
tion 3.1 and (3.2), we derive that

Iplloe < C'p| (UL = (Ue +¢0)7 )0,

1\)"?
< C/p2||¢||oo||¢s||ooHp<Ug + O(F>>

<lol«

*

and hence, ¢ = 0. Similarly, we have also that £ — ¢¢ is a C!-function in HOl (£2).
5. Variational reduction

After problem (4.1)—(4.4) has been solved, we find a solution of (2.15) (and hence for (1.1))
if & is such that

¢ij(§)=0 foralli=1,2, j=1,...,m, 5.1

where ¢;; (§) are the coefficients in (4.1). Problem (5.1) has a variational structure. Associated to
(1.1), let us consider the energy functional J, given by

1 1
Jp(u) == Vuzdx——/um'ldx, ue H\(Q),
p(u) 2!| | p+19|| 0 (£2)
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and the finite-dimensional restriction

F &) :=Jp(Ug + ), 5.2)

where ¢ is the unique solution to problem (4.1)—(4.4) given by Lemma 4.1. Critical points of F
correspond to solutions of (5.1) for large p, as the following result states:

Lemma 5.1. The functional F(&) is of class C'. Moreover, for all p sufficiently large, if
D¢ F (&) =0 then & satisfies (5.1).

Proof. We have already shown that the map § — ¢¢ isa C 1-map into HO1 (£2) and then, F (&) is

a C!-function of &.
Since D¢ F(§) =0, we have that

0= —/(A(Ug + ¢g) + (Ut +¢g)p)(DgUg + Deope)
2

=- ZZQ, (5)/e 1 Zij(DeUs + D)

i=1j=1

__ZZC’](E)/e sz]DEUE+ZZCl](§)/D§ € jle

i=1j=1 i=1j=1

since f_Q eli Z;j¢e = 0. By the expression of Ug, we have that

m
)i Us =— — £ —
' oy Lp -1 P \p(p-1 prp—1)

1 1
+—Vwo-y+—=Vuw -y)
p p

}3@,-),» log 45
o x—&s
V=3

1 1 x—gj 1 )C—Ej
S P P

! P(Z P (x—g,> Ly <X_$’>>+0(1> (5.3)
yop/ P\ 5 P 5 ¥

since P:L%(§2) — L°(£2) is a continuous operator (apply to ——Us, &, Zos, w](ngs),

Vw; (5= gr) (%) for j =0, 1 which are bounded in £2 in view of Lemma 2.1), and

8; — £,
a(S/)i(eUthh) =—45heU"< i —6(x Eni(x —§&j) )5

8+ 1x — &2 Of + |x — &11)?
+ 3¢V Zon Zinde, ), 10g 1, (5.4)
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where §;; denotes the Kronecker’s symbol. Hence, by (5.3), (5.4) fori =1,2and j=1,...,m,
we get that

1
0=, FE) = ——370—7; Z chh (E)PZij. PZn) @)
ydjn M I=1 h=1

1
+0( /|3(S,), (e Zu) )ZZ!CM(%H
PYd; o I=1 h=1

since 0;w (2 6&) is bounded in £2, j =0, 1, in view of Lemma 2.1. Taking into account (3.22),

(3.23), (4.5) and (5.4) we get

o= (/ vP* y) &+0
Y AR A

which implies for p large (independent of & € O;) that ¢;j(§) =0 forany i = 1,2 and j =
1,...,m. O

Z > Icm@)l)

]llh

Next lemma shows that the leading term of the function F (§) is given by ¢,, ().

Lemma 5.2. Let ¢ > 0. The following expansion holds:

Py — 47tmp 3272 " : )+4”m+ m /( 8 A >+0< 1)
= —Om (51, ..., — t+ — 5 Voo — Awg —
y? y2 " A AN DR > P’

R

uniformly for & € Og.

Proof. First of all, multiply (4.1) by Ug + ¢¢ and integrate by parts to get:

/(Ug + )P = /|V(U§+¢5)| +ch,,/e i Z:i(Ug + z)

i=lj=1 o

/|V(U§+¢5)| +ch,,/e i Z;jUs

i=1 j=1

in view of (4.4). Since U is a bounded function, by (4.6) we get that
2 1
/(Ug + )"t = f|V(U5 +oe)|" + 0(?)
2 Q

uniformly for & € O,. We can write
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1 1 2 1
F(g):<§_ﬁ>/|vw§ + %) +O<F>
2
1 1
:(E_mx/wug +2/VU5V¢5+/IV¢5| >+0<—4> (5.5)
2

We expand the term f_Q VU 12 in view of (2.14) and (2.20) we have that

/|VUg|2 m f (eUf—iAwo(x_§f>
M2/<p D 52 5;

J B(&;.¢) J

61

1 x—§&; p
_pz—chz.Aw1< 5j/>+0(pe 2))Ug+0(e 2)

m
= o / <L—1Aw0—iAwl+O(pzep)>
J.Z_l y2u oD T+ P2 P

2
B(0,8/5;)

1 1
<p+voo+pwo+ swi+ O(e” Tyl e §)>+0(e—§)

= 1 8 1
= _ 871p+/(— Aw()) + O(—))
;yzu‘}/(”—”( A+ e P

8nmp 32

m 8
loguw; + /( — Awy
y? y? Z g I+ y22"™
R2

j=1

4
I

since I P=1- %log wj+ O(#). Recalling property (2.13) of u;, then we get that:

5 8mmp 6472 247m
[VUg|” = )2 _7(pm($1»~~~95m)+
m 8 1
+P REaEY +|y|2)2voo—Awo +0 3 (5.6)
R2

uniformly for & € O,. Hence, using (4.6) and (5.6) we get that

1 1
/VUgV(]ﬁg + 5/ Vs |* = 0(W)' (5.7)
2 2

Finally, inserting (5.6), (5.7) in (5.5), we get that
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F(e) = 4JTmp 3272 @ Ed 4rm Lm ( 8 A >+ 0( 1 >
= — | _ —_— —FF — wo Y
y? yr " "y 2 A+ Py °° p?

R

uniformly for & € O,. O
Now, we want to show that the expansion of F(£) in terms of ¢, (&) holdsina C I_sense.

Lemma 5.3. Let ¢ > 0. The following expansion holds:

2
V(S/)i F¢)=

1
, 4<pm(sl,...,sm)+o(?>

uniformly for & € O, forany j=1,...,mandi=1,2.

Proof. Let j € {l,...,m} and i € {1,2} be fixed. We want to expand the derivatives of F ()
in &:

ey F (&) = —/(Aus +ug ) e,
2

where ug = Ug + ¢¢. Let us remark that it is very difficult to show directly that the expansion of
F (&) holdsina C!-sense since there is a difference between the exponential decay of the concen-
tration parameters §; = pje ¥ and the polynomial decay 3 7 of || Rg ||« (see Proposition 2.1). As
usual in similar contexts (also in higher dimensions), we should be able to show that || s ¢« || o is
of order % Unfortunately, since || ||« is only of order #, 0g ¢¢ is not a small function and,
at a first glance, there is no hope for a C!-expansion of F(£). To overcome the problem, the idea
is the following: first, we replace the term d(),uz with dy; ug in the expression of d), F'(§) in
a neighborhood of &, up to higher order terms, and afterwards we use a Pohozaev-type identity
based on integration by parts.

To this purpose, let n be a radial smooth cut-off function such that 0 <n < 1,n=1for |x| <€
and n =0 for |x| > 2¢. In view of (4.1) and (4.4), we can write

f(A“s +ug)d;, e

2

)

m

ZZZ / Ule[&(S/)i‘bS: chklfa(gj), /Zkl)¢§
k=1 1=1

= k=11=1

2 m
Y e / U1 Zy ) (x — &)

k=

~
—

ZC“f Ay (€V Zr) + n(x — 1)y (e Zur) |6
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chkl Ulelax n(x—éj)‘ﬁé)
k=1 1=
2
-

k=1

Ms

~

1

Cki / O, (¥ Zur) +n(x — &))dx, (€ Zur) | e (5.8)
2

by an integration by parts of the derivative in x;. As for (5.4), we get that

() (eUl Zkl) +n(x —§;)dy (eUl Zkl)

51 U,n(x S]) 5118 4245, U,(x_él)k(x_sl)i(

=4 S 57
8+ Ix — &2 (67 + |x — &[22

8 —n(x —§&)))

+ 3e IZ()lela(gj)i log 1y

=3¢l Zo[Zkla(gj)i log p; + O(e_%p),

where §;; denotes the Kronecker’s symbol, and hence, we get that

chkl/ e (e eV Zi) +n(x — £y, (¥ Zit) | e

k=11=1 Q

1

< Cldilomax aul [ (e + 0(ei7)) = 0<—7>
2

p

in view of | Zo; Zy1] < 2, (4.5), (4.6). Inserting in (5.8), we get that

1
/(Aus +ug)oe;, s = ZZCkI/eUIZklaxi (n(x —&j)epe) + 0(—7). (5.9)

p
2 k=11=1 ¢

Since ppz — 0 in Cl-norm away from &1, ..., &, (5.9) gives that

1
/(Aug +u§ 3@]),(155 chkl / eU’ZkIBXiqﬁg + O<—7>

5 k=li=1 g o p
» 1
=— (Aug +ul)og,¢: + O o (5.10)
B(§j.€)

always in view of (4.1), (4.5) and (4. 6)
Now, by Lemma 2.1 we get that |L 5 y; wl(x 5 )| < C forany / = 1, 2 and for x away from &;.
Hence, by the expression of Ug and (2 2), (2. 11) we get that for |x — §;| < 2e:
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m
1 1 gs X _é}_s
stiE (ot o o25)) e (55)

s=1 VI

E .U + 18 x —& + 1 p x — & L0 1
- i —— Oy; W w _
2/(p ) \ Oxi Yés.8s D3, x; WO 5 P28s x; W1 3, y
1 1 x—&; 1 x—§; 1
- Z"——3,-wo< ’)——aiw1<—>>+0<—), 5.11)
: 2“’"“( Yo J P 5 %

7/8]1/«./'

since Oy, Us, e, = —‘SLSZ,-S. Since, as already observed, 0y, wl(x;fj ) = O(4;) uniformly away
from&;,1=1,2, by (5.11), in particular, we get

1
3y, Us = 0(—), (5.12)
%

for € < |x — &;| < 2e. Moreover, the maximum principle and Lemma 2.1 imply that

e (5)) () e
J J

in C(2) for any / =1, 2, and hence, by (5.3) and (5.11) we get that

1 1 1
B(S.)iU;:—}—n(x—é;'-)aingi_(PZ“—Z--)—i—O(—)=0<—> (5.13)
, P s AT A O ) =0y

in view of (3.20). Now, by (5.12), (5.13) we can write that:

/(A“s +ug)de,), Us
2

2 m
:_chkz/ewzkm(x—51')3&'[]5

k=1 1=1 Q

2 m
ZZ f Y121 (8¢e, Us +1(x — £)dx, Ue)

2 " 1 1
=— Ckl e Z10y;Ug + O F =— (Aug +u )8)(1 Us+ 0O S
k=LI=1 B e B(j.€)

(5.14)
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in view of (4.1) and (4.6). Resuming, by (5.10) and (5.14) we have:

A F(E)=— /(Aus +ug) @), Us + ) be)

2
= / (Aug—i—ug)(&x,Ug+3Xi¢>g)+0<#>
B(&j.€)
= / (Aug+u§)ax,.u5+0<i5>. (5.15)
B(&j,€) i

Now, the role of Vg, (§) becomes clear by means of the following Pohozaev-type identity (we
follow some arguments of [13]): for any B C §2 and for any function u

1 1

/AuVu:/ d,uVu — =|Vul*n |, /u”Vu: —/u”“n, (5.16)
2 1+p

B 3B B aB

where n(x) is the unit outer normal vector of B at x € dB. Let

() =H(x, )+ Y Glx,&)
I#j

forany j =1,...,m. Since, as already observed, pgs — 0 in Cl-norm away from &1, ..., &,
for our function ug by (2.2) and (2.11) we have the following asymptotic property:
m
pug(x) > 8m/e Y G(x.&) in Coo(2\ {&1..... &n)). (5.17)
=1

Apply now (5.16) on B = B(§;,¢), j =1,...,m, and use (5.17) to obtain as p — +o00

1 1
/(Aug +u§)Vu§ = /<8nu§Vug — §|Vug|2n + mué’“n)
B 9B

_647‘[26/ 1 490, 1 x—éj 4 Vo,
-T2 e T M T —gr Y
0B

1| 1 x—g v I& N 1
2| g2 | T2
647

1
= TV%(E]')-FO(?),
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since we decompose Z;":l G(x, &) = —% In|x —&;| + ¢;(x) with ¢;(x) a harmonic function
near &;. In fact, we have used that
1
5o | Vei=VeiE)

dB
since Vg, is harmonic near £, and by (5.16)

1 2

anij(pj—§|V§0j| nj)= AgojV(pj =0.
9B B

Combining with (5.15), finally, we get

3272 1 3272 1
dp) F (&) =— 2 A ipm(E) +o )= 3 om(E) +o s

since Vo;(&;) = %ng ©m (€). The proof is now complete. O

Finally, we carry out the proof of our main result.
Proof of Theorem 1.2. Let us consider the set D as in the statement of the theorem, C the
associated critical value and & € D. According to Lemma 5.1, we have a solution of problem (1.1)

if we adjust £ so that it is a critical point of F(£) defined by (5.2). This is equivalent to finding a
critical point of

2
~. .Y _Aamp  Amm m 8 _
F(E)_Szﬂ[ © -~ 2y2/((1+|y|2)2"°° Awo)}'
R2

On the other hand, from Lemmata 5.2 and 5.3, we have that for £ € DN O,

F(&) = gn (&) +0(1)0, (&),

where @), and Vg ®,, are uniformly bounded in the considered region as p — oo.

Let us observe that if M > C, then assumptions (1.4), (1.5) still hold for the function
min{M, ¢,,(§)} as well as for min{M, ¢,,(§) + 0(1)®,(&)}. It follows that the function
min{M, F (&)} satisfies for all p large assumptions (1.4), (1.5) in D and therefore has a criti-
cal value C,, < M which is close to C in this region. If §, € D is a critical point at this level for
F (&), then, since

F(,)<Cp<M,

we have that there exists ¢ > 0 such that [§, j — &pi| > 2¢, dist(§),;, 0§2) > 2¢. This implies
C'-closeness of F (¢) and ¢, (&) at this level, hence Vg, (§,) — 0. The function u,(x) =
(ng (x) + ¢, (x)) is therefore a solution with the qualitative properties predicted by the the-
orem. [J
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