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Abstract

We study the asymptotic behavior of radial solutions for a singularly perturbed semilinear elliptic Dirich-
let problem on an annulus. We show that Morse index informations on such solutions provide a complete
description of the blow-up behavior. As a by-product, we exhibit some sufficient conditions to guarantee
that radial ground state solutions blow-up and concentrate at the inner/outer boundary of the annulus.
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1. Introduction

In this paper, we study the asymptotic behavior as A — o0 of radial solutions to the problem:

—Au+AV(X)u=u? in§2,
u>0 in £2, (D
u=20 on 0§52,
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where p > 1, 2 :={x e R¥: 1 < |x| < 2} is an annulus and V :£2 — R is a radial smooth
potential bounded away from zero:

infV > 0. 2
infy > 2)

The starting point of our analysis is the following, easy to prove, fact: since H&rad(Q), the

space of H(} (£2)-radial functions, is compactly embedded into LP+1(£2) for any p > 1, radial
solutions u; of (1) blow-up in L°°(£2), i.e. maxp u) — 400 as A — +o0o (similar blow-up
occurs in a general domain §2 aswell,if N=2and 1 < p <+4+oocor N >3and 1 < p < %—J_r%). It
is then quite interesting, also in view of existence, to identify the limiting equation, to understand
the nature of the blow-up set and to describe the asymptotic profile of u;: throughout the paper,
An =5 +00 and then maxg u, —, +00 (u, corresponding solution of (1)).

Actually, we only know of a paper by Dancer [4] where some asymptotic analysis of (1) is
carried over. It is limited to the case V =1 and p subcritical; by means of ODE techniques,
Dancer shows that, for A large, the only positive radial solution is the radial ground state, and it
takes its unique maximum on a sphere whose radius goes to 1.

In some papers [1,2] by Ambrosetti, Malchiodi and Ni the knowledge of the limiting equation
is used to obtain existence. Among other things, for potentials V' satisfying (2) they found in [2]
solutions u, blowing up as A — +0o on spheres of suitable radius. First, they introduce an
auxiliary potential (see also [3])

M) =V, o=PT1 1 3)
p—1 2
(here and in what follows we freely write x as |x| and V (x) as V (|x])). Then, using constructive
methods based on a nonlinear Lyapunov—Schmidt reduction, they build solutions u; which blow-
up at the inner boundary (if M’(1) > 0) as well as solutions which blow-up at spheres whose
radius is a strict local maximum (or minimum) of M. More in general, the Ambrosetti, Malchiodi
and Ni work makes clear the crucial role of the “critical set”:

M=lae[l,2]: (a— M) <0, 2—a)M(a)>0}. 4)

At least generically, any point a € M should be a good candidate for being a blow-up radius, i.e.
for the existence of (), u,) solutions such that

Ap — +00, |ma1>é(sz,t,,(r)—>+oo asn — +oo, V6 > 0.
r—alx

One of our main results is that a blow-up radius has to belong to M. Actually, the asymptotic
analysis we develop in this paper relies on a Morse index assumption. Given solutions (A, ;)
with A, — 400 we will assume u, have uniformly bounded Morse index, i.e.

3k € N such that, if W is a linear subspace of Holﬁ q(§2) and, for some n € N,

/|Vv|2 TV (@) — pul w2 <0, Yo e W\ {0}, then dim W < k. ®)
2

As a consequence of Theorem 3.1, of Corollary 3.2 and Theorem 4.2 we have the following:
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Theorem 1.1. Let A, —, +00, up be solutions to (1) satisfying (5). Then, up to a subsequence
there are k < k and points a, € (1, 2), i =1,...,k, with the following propertles a,, are the
unique points of maximum of u,, u,(a;) — +oo a, converge to points a' € M, not necessarlly
distinct; furthermore, u,, — 0 uniformly away from {a ak}.

We recall that a radial ground state solution always satisfies (5): it has exactly Morse index
one in H(}’md(.Q) (see [S]). Thus, as a by-product of Theorem 1.1, we obtain, generalizing [4], an
explicit sequence of solutions blowing up on a sphere (compare with [2]):

Theorem 1.2. Let u; be a radial ground state solution of (1). For A large, u)_ has a unique point
of maximum a,, and u) (a)) — +00. Furthermore, ifa;\_/. — a, then

M@r)>0V¥re(1,2] = a=1 while Mr)<0 Vre[l,2) = a=2,
M(1)<0<M®2) = M()=0.

Thus, in any case, a € M. Finally, u, — 0 uniformly away from a.

The paper is organized as follows. In Section 2 we introduce a blow-up approach to identify
the limit profile problem. In Section 3 we obtain the crucial global estimate (19) which will
allow us in Section 4 to localize the blow-up set. In Appendix A, we briefly discuss the limiting
problem and present a Pohozaev-type identity.

2. Local profile

In this section we give a complete identification of the limit profile problem and its spectral
properties. Let U be the unique solution (see Appendix A) of the problem

.. 2
U+ —U=U? inR,

T in ©)
0<UM<U®O =1 inR.

Proposition 2.1. Let (A, u,) be solutions of (1) with uy satisfying (5). Let a, € (1,2) be such

that u,(a,) — +oo . Let ¢, = un(an)*% and U, (r) = 8,,_ uy(eqnr + ay) for r € I,, where

I, = (=9 2= Assume that
En En

AR, — +o0: uy(ay) = max Uy. (7
{lr_anlangn}

Then, for a subsequence, we have that

1—a, 2—ay
—n —00, —>n +OO» (8)
&n &n
2 2
A&y Vian) —n ﬁ 9

and U, - UinC}

loc (R) as n — +00, where U is the solution of (6). Moreover
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AR=RWU) >0, Iy, € C*(lan — Rey, an + Rey]):

/|Vlﬂn(|)€|)|2 + AV — pu,[;_l)wn(|x|)2dx <0 Vnlarge. (10)
2

Proof. First, we rewrite (1) in polar coordinates:

N _1 . P .

p U, =u, — A, V(@ru, in(1,2),

u, >0 in (1,2),
up (1) =u,(2) =0.

—Uy —

Since a, is a point of local maximum, we have 0 < —ii,(a,) = ul (a,) — *n V (an)u,(ay), and
hence, denoted w (V) :=[maxs V][ming V]~L, it results

12 haVian)uy P (@) = 2ne2V(an) 20, 2pe2V(r) <o(V). (11)

Passing eventually to a subsequence, we can assume

aﬂ_l—)Lo, 2—ay,
n &n

A,,sﬁV(a,,) — U, — L1 asn— 400, 12)
for some w1 € [0, 1], Lo, L1 € [0, +oc]. Finally, notice that U,, satisfies the equation:

. & .
~Up— (N =1)—L—U, =UY — 22V (enr +a)Uy, rely,

enlr +ap 13
Ua@ =1, T,0)=0, Up(r)>0, rel, ()
U, =0, redl,.
In the sequel, we will denote by |A| the Lebesgue measure of a set A.
1st Step: For any closed bounded interval / with 0 € I, there exists C = C(|]) > 0:
1Unllcrig,npy C VneN. (14)

Set J, = I, N I. Since [ is bounded, (7) implies U,(r) < U,(0) =1 for n > n(|I]) and r € J,.
Hence, by (11), (13):

1
|0a ()] = [0a () = 0n(0)] < |r|/|Un<tr)|dr< (N = D[1+@(V)] (#0 max| T ()| + 1)Ir]
0

1 .
< Erréa}an(r)’ + (N = D[l +oW]I,

and then: max, ¢, |Un (r)] <2(N — D[1 4+ @ (V)1|1| for n > n(|I]). In turn, this implies
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1
|Un(r) = Un(s)| < I —s|/|0n(s+t(r —s))|dt

<N -D[1 —i—a)(V)](s,, max| U (1)] + 1)|r—s|
ted,
2N =D[l+oW)]ir—s| Vr.s€Jy, n=n(l1]),
i.e. (14) holds with C = max{2(N — D[1 +oWI[I/|+ 11+ 1, Unllcri,nn: 1 <n <n(1])}.
2nd Step: Lo=L; =+ooand U,, — U in CIIOC(R) as n — +oo.
Assume that Ly < +o00. Then, by (14), U,, is uniformly bounded in Cl’l[—“"s—;l, R], for any

R > 0. Since Lo < 400 implies L1 = 400, we can assume, up to a subsequence and a diagonal
process, that U, — U in Clloc[—Lo, +00) (and then Ly > 0) where:

—U+pUu=0r in (—Lg, +00),
0<UMr)<U@O)=1 in(—Lg,+00),
U(—Lg) =0

in view of (7), (12)—(13). Since U is even (see Appendix A), U(Ly) = 0 and then U(Lo) =
because U > 0. Hence U =0, a contradiction. Thus Ly = +oc0. Similarly, L = +o0.

3rd Step: ;= ﬁ and (10) holds.
As shown in Appendix A, U positive implies its energy is nonpositive:

. 1., 1 1 1. 1
O>H(U,U):=§U2—§MU2+ﬁUPHEE 2(0) — U(O)+p+1U1’+1(O)
1 I
p+1 2"

Hence u > ﬁ. Now, © > ﬁ implies (see Appendix A) U is a positive, possibly constant,
periodic solution and there is a countable family of functions ¢; € C§°(R) with mutually disjoint
supports such that, for some § > 0, it results

/ (67 + ne} — pUP~'97) dr <=6 <0.

R

Let ¢ja(r) = ¢>j(r;:‘" ), so that supp¢; , = a, + &, supp¢; are disjoint for different j’s and
contained in {a, — Rj&, < |x| < a, + Rj¢&,}, for some R; > 0. Moreover, if a :=lim;,, (o ay
(along some subsequence), by Steps 1-2 we get:

gn/(|v¢j,,,|2+(/\nv(r) pui")9?,)

2

2
/ N1 (i + (V) — pub™)62,)
1
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= / (enr +an)N ™ 1[(]5 + (An€2V (enr +an) — pUY~ 1)¢]2]

Supp¢;
., aN-l/(¢;+(M_pUP—1)¢1) <=8<0 Vn=n()).
R

This contradicts (5) and hence u = % As for (10), just notice that, by (6) we have

[ ) o
R P R

(see (A.2) in Appendix A) and hence, by density, there exist R = R(U) and ¥ € C°([—R, R])

such that
/(‘” *( o ]>"’2><°
w1 P '
R

As above, we see that v, (r) = ¥ ( %) satisfies the requirements in (10). This ends the proof of
Proposition 2.1. O

3. Global behavior

Once the limit profile problem (6) has been identified and the local behavior around a blow-
up sequence a, has been described, our next task is to provide global estimates: we will show
that the sequence u, decays exponentially away from blow-up points and we will prove that
the number of blow-up sequences cannot exceed k, the upper bound for the Morse index of the
(u,)’s. We have the following global result:

Theorem 3.1. Let A,, — 00, u,, be solutions of (1) satisfying (5). Up to a subsequence, there exist

a,lz,... <k (k given in (5)), wzths —un(a )~ bt — 0 such that
A (18")2V((1’)—>i asn— +oo Vi=1 k (15)
n n n p+l g ey vy
el <el <cel vi=1,...k, (16)

u—)O asn— 400 Vi, j=1,....k, i#], (17)
\aj, — aj|

Up (a,’;) = max Uy, (18)

{Ir—a}|<Rneh)

__2 k —y—‘ria’i"

un(r)<Cley) 7T e % Vre(l,2), VneN, (19)

for some y,C > 0 and R, — +00 as n — +00.
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Proof. The proof is divided into two steps.

1st Step: There exist k < k sequences al, ..., a',j satisfying (15)—(18) such that:

n’:

2
lim <lim sup[(s,ll) =1 max u, (r)]) =0, (20)
R—+00\p— 400 {dn(r)=Re}}
where d,, (r) = min{|r — afl|: i=1,...,k} is the distance function from {a,i, e, a,’i}.

First of all, let a,l be a point of global maximum of u,,: un(a,ll) =max,¢(1,2) Un(r). Since (18)
clearly holds for a,ll, Proposition 2.1 applies, and (9) provides exactly (15). If (20) already holds

for a,%, then we take k = 1 and the claim is proved. If not (passing to a subsequence)

2
38 >0, 3R, — +oo:  (e})7T  max  u,(r) =28 > 0. (1)

{|r*ay1l|>Rn€yll}

Now, an application of Proposition 2.1 gives, eventually for a subsequence,

2
(erlt) Py (r‘?rlz + al}l) = Ur} (r) =, U(r) (22)
uniformly on bounded sets (U solution of (6)). By the decay of U (see (A.1)), there is Rs > 0
such that U(r) < % for |r| > Rs. Hence, using (22), we see that (R; given in (21))

2

Vjdnj: Ry, >R; and (g} )7 T max Uun;(r) < 8.
T Ry <lr—ay ISR e )

This, jointly with (21) gives

2 2
(81_)P*‘ max u,,.(r):(elA)P*‘ max Uy (r)=28>48
nj 1 1 J nj 1 | J
{Ir—a, .1ZRsey, .} {lr—a,.IZRje, .}
J J J J
1 2
2(8n_ p-l max un;(r) Vj. (23)
! {Rse) <Ir—a} |<R;e) )
J J J
Hence, for any j:
3a? € Hr —al | >Rje! } u (a2 ) = max Uy, (r) >26(81 )_f’El (24)
nj UL AT B A nR T AN, '

(Ir—a} I>Rse} )

—1

4 —1
By (24) we get 8,%], = Up; (aﬁj)"T < e,llj (28)’%, and since s,llj < 8%]_ we see that (16) is

fulfilled, as well as (17) because |a,%f — a,llf| >R js,ll/,. This inequality and (23) imply (18):

2
un,(a7,) = max (),
{Ir—aj I<IR;—Rs128) P~ ef )

In fact
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p=1
|r—a,2,_/_| <[R; — Rs1(28) 2 sﬁj =

p=1
|r - a,llj| > |a,21j — a,llj| —[R; — R5](28) 2 sﬁj = strllj —[R; — Rg]srllj = Rga,ij.

Up to the subsequence n, thus (16)—(18) hold true for {a,ll, a,%}, and, if {a,l, aﬁ} also satisfy (20),
we are finished. Otherwise_, we iterate the above argument: given s sequences ai, ..., a, letus
denote d,(r) =min{|r —a,,|: i =1,...,s}. If (15)-(18) are satisfied, but (20) is not, we have

2
36 >0, 3R, — +oo:  (e)7 T max  u,(r) =28
{dn(r)>Rn‘9;H

and, by assumptions (16)—(18) and Proposition 2.1:

1 e
;| =,1: L0,
C &gl

A= L i £ P i ((n T
(8n)l’ u,,(rsn—i—an): — U\ =r)—> 06" U@ir) (25)

2
uniformly on bounded sets. By (A.1), OiﬁU (6;r) < 6 for |r| > Rs. Now things go as above,
replacing |r — a,lz| with d,(r). Finally, the argument ends after at most k iteration, because
Proposition 2.1 applies to any sequence a;,, i =1, ..., k, providing, for n large, radial functions
¥, € C5°(82) such that (10) holds with supp v, C {a, — Re,, < |x| < a;, + Re,,}, for some R > 0.
By (17) we get that w,]l, ey w,’f have disjoint compact supports for any n large and then k < k.

2nd Step: Let a,i, e, a,’i be as in the first step. Then there are y, C > 0 such that:

ko r—dh)

un(r)<C(el)‘% D e T Wre(1,2), VneN.

n

i=1
By (20), for R > 0 large and n > n(R), it results (recall that w (V) := [max V][ming vli~h

2 1 1
1\ 521 L
£,)? max U,(r) < (—)r 1,
(&) {dn(r) > Re}) ") ((p+ l)w(V))

and hence (e,i)zu,’,’_l(r) < T in {d,(r) > Re,ﬁ}. On the other hand, by (15) we get

1
ptho(V)

2

N2 -1 1\2 1 -
A (80) V() = [0V)] An(e,) V(@) —n (p+Do(V)

Hence, the following holds true: there are R > 0 and n(R) such that, if n > n(R), then

()’ PV ) —ub ™ ()] >0 ifd,(r) > Re). (26)

>
2(p+ Do (V)
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Now, consider the linear operator:

Lup=—A¢+ (V) —ul ' ())d. ¢ €CHR).

Notice that L,u, =0. Since u, > 01in £2, L, satjsﬁes the minimum principle in any domain in
§2 (see [6]). Let y > 0 and ¢£l (r)= e~vEn T Ir—ayl, By (26), for R large it results

1
. 2 &
Ln¢;z = (8;) ¢ll’l [_V2 + (N — 1)7")/

T (P (V) u,’;_l(r)):| >0

Ir —ai|

ifd,(r) > Rs,i, yz < 8(p+]71)w(\/) and n > n(R, y). In addition, by (25) we have

2
("R ) — (1) 7 Tun ()], ot = 1 — (61)7 Tun(d}, £ Rel) = 1= 67 U(26;R) > 0.

n
o VRN 2T Nk i e
Then @, :=e""(g,) 71 ) ;_, ¢, satisfies
Ly(®y —uy) >0 in{d,(r)>Rel} and &, —u, >0 on{d,(r)=Rel}U{lrl=1,2}

(notice that, by (16)-(17) {d, (r) > Rs,ll} are disjoint intervals for n > n(R)), and then, by mini-
mum principle u, < @, in {d, (r) > Re,i}, if R is large and n > n(R). That is

i
k . lr—apl

2
un(r) < R(e}) 7Ty e " ifdy(r) > Re) andn > n(R). 27)

n

Since

k
_ _ -y .
u,(r) < mgxun = (81) =T g eVR(sl) p-T E e cn if d, (r) < Re,i and n > n(R),

n

(27) holds for any r € (1,2) and n > n(R). Thus, for some C > e¥® (19) holds true for any n
and the proof is now complete. 0O

As a by-product, the number of points of local maximum is controlled by (5):

Corollary 3.2. Let A, — 00, uy be solutions of (1) satisfying (5). Up to a subsequence, uy has,
for n large, exactly k points of local maximum a,ll, e, aﬁ, k <k, where ai, R a’; are given by

Theorem 3.1.

Proof. By (26) ubl — 2 V(ru, <0Vr e {d,(r) > Rs,l}, for R large and fixed and n > n(R).
Hence, by (1) all the points of local maximum of u, stay, for n large, in the region d,, (r) < Re,ll.
‘We are lead to show that a,ll, R a',j are, for n large, the only points of local maximum of u,, in
dy(r) < Re) .
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By contradiction, let s, be points of local maximum of u,, with 0 < |sn a,’;| < Rs%, for

some i < k. Since 0 is the only critical point of the limit function U, by the CloC (R) convergence

of Ul to U we get 5, := = ai Gy Qasn — +o00. By (13) and (15) we get:

—UlGy) = (U,g)”(gn) - xn(e;',)2V(§n)U,i(§n) -, 11— ﬁ > 0.

Then, s, is a strict local maximum and hence there is a local minimum at some f, strictly in

t”s_—,“;'—>0asn—>+ooand(7,i(fn)<0

n

between s, and afl. However, as for s, it should be 7, :=

for n large, a contradiction. O
4. Location of the blow-up set

In concentration phenomena, the role of the modified potential M (r) given in (3) has been
pointed out in papers of Ambrosetti, Malchiodi and Ni [1,2], when dealing with the same equa-
tion either in RY or in a ball/annulus in RY with homogeneous Dirichlet boundary condition. To
show by an asymptotic approach the role of M(r), we will combine the results in the previous
section with a Pohozaev-type identity (see Appendix A).

Let us start with some asymptotic estimates for u,, solutions of (1). By Corollary 3.2 u,
has, up to a subsequence, exactly k points of local maximum a,ll, ...,a’,f € (1,2) with, say,

ai—a e[l,2],i=1,....k.Let i ={j=1,....k al —, a'}. We have the following:

Lemma 4.1. Let g(r) be some smooth function on [1,2]. Let g > 1. Fixi € {1, ..., k} and denote
I’ =[d —6,a +81Nn(, 2)wher68>01ss0smallthatl’ﬂ{a k}—{a} Then
. . p—l=2¢q
[ st =etai) (e ) ([ +o,,<1>) (8)
I; Jjedi R

where 0, (1) — 0 as n — +o00. In particular, there holds:

2 k
/ué’“ = (Z(s,’;)‘ﬁ)(/m“ +on(1>>. (29)
1 =

i=1 R

Proof. Let d,,(r) := min{|r — af,|: i=1,...,k}. Given R > 0, (8), (16) and (17) imply that, for
n=n(R), {d,(r) < ng} are mutually disjoint intervals and

{da() <Reb} € (1,2) and 1§ N {dy(r) < Rep} = | J{|r —al| < Rep}.

Jjedi

lr— a,gl

2 —
By (19) we know that uff < C(e}) 71 Y-%_je " e . Thus



P. Esposito et al. / J. Differential Equations 239 (2007) 1-15 11

/g(r)uz = / g(ru + / g(ryus,

1 IiN{dn (r)<Rej) IiN{dy(r)>Re})
2 gy el
=Y. / grug+ ol () 7Y / e e
i<y, aj|<Rel) I=1 iy (> Re))
. 2q—p+l . . .
=6 T [ st i)
Jj€di ol
{IrléRﬁ}
=2 L —qylrl
voEy ™ ye [ 7).
j=1 ol
HH?Rﬁ-}
Up to a subsequence, by (16) we can assume that s,ll/s,{ —n0j € [%, 1] forany j=1,...,k.
Since U;) —, U in CIIOC(R) forany j =1,...,k, we find, along some subsequence
1 2q—=p+l1 q . % k _qZIrI
. 2 i = g .
nETOO(Sn) P /un—g(a)ZQj / U4+ 0 Z / e i ).
I jek {Ir|<R6;) 7=r1= Rej)

Sending R to infinity, we get, along the same subsequence,

2g—p+1 2g—p+1
. 1 — _ p—1 q
L )T [ =et) (Do) [
R

jed;
I;

Since we found the same value along any convergent subsequence, and recalling the definition
of 6;, the proof of (28) is complete. Finally, since by (19) u, — 0 as n — +oo uniformly far
away from {a',...,da*}, (28),withg=p+1landg=1, implies (29). O

The asymptotic expansions in Lemma 4.1, combined with the Pohozaev identity (A.3), leads
to the identification of a', i =1, ..., k:

Theorem 4.2. Foranyi=1,...,k a' € M, where M is given in (4).
Proof. Giveni =1, ..., k, first consider the case a’ € (1,2). Let Ig be asin Lemma4.1. By (15),
(19) )\nuﬁ — 5, 0 uniformly away from the a'’s and elliptic regularity estimates imply the same

for it,. Thus we see, plugging a = a’ — 8, b =a’ + § in (A.3), that:

a'48 a'+8 a'48

3001 1 r 3 N-1
N—Z——— ul ™+, / “V-(N=-2V )i+ (N-= / 250
( 2 p+1>_/ T <2 ( ))”"+ 2) | 2

al—§ al—§ al—§
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as n — +oo. By (15) and (28) we get as n — +oo (here 0,,(1) — 0 as n — +00)

a[_,’_(s ai+8 2 1
3 u i\ — 2
[ = (2 B) (o). [ 5= Lo( ),
ai—§ jeJdi R al—§ jed
) 1 V( i) 3
r . 2 _ i a J 7%
e et ) ()

al—§ Jel

X (/U2+on(1)>.
R

Hence, also making use of the relation [, UPT! = % [z U? (see (A.1)), we get
0:<N_§_L>/UP+1_M/U2+ a V(a") U?

2 p+l p+1 p+1V(a)

R R R

[N<4 2> (3+ 1>4+4+a" V(ai)i|/U2

p+3 p+1 2 p+1)p+3 p+1 p+1V(d)

R
[N_1+ p+3 azv(at)} 2(p—1) 1)/U2
R

2(p—1 V@) J(p+3(p+

_ 2= 2 @) @ m(a
_(p+3><p+1>(/U)V(“) ()" M (@)

R

Consider now the case a' = 1. Let Ig be as above. As before, Anu% + 12% — Q0 asn— 400 at
1 +46. Takinga=1,b =1+ 6 in (A.3), we see that:

1+6 1+6

146
3 1 r. 3 N-—1
p+1 2 2
(N—E—p+1>/un +An/<§V—(N—2)V>un+<N—§)/ 55l
1 1 1
3 : 1+46 1+6
+1 ro.- 2
><N—E—m)/uf; +An/<§V—(N—2)V>un
1 1
146

3 N-1 1,
+<N—§>/ > ufl—iu%(l)—>0
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as n — 4-00. Arguing as above, we get that

0c 2= D (N—1~|—7p+3 @>/U2.
(p+3)(p+1 2(p—DH VD) J

Hence, M_(l) >0,and a' =1 € M holds. '
Case a' = 2 can be dealt similarly, getting now a' = 2 € M. Hence, the theorem is completely
established. O

Appendix A
A.l. Phase plane analysis of the limiting equation
Let U be a C2-solution of the equation
—U+pU=UI"""U,
and (U (r), U (r)) the corresponding (parametrized) orbit in the phase plane. Let

| 1
Hv)i= 0+ G, Gw= —%u2 + mw’“

be the energy function; it is a conserved quantity: h = H(U (r), U(r)) is the energy of the orbit
(U, U). Since level sets {H (u, v) = h} are compact, U is globally defined. For simplicity, we will
consider the case ;> 0 (case u = 0 can be dealt in a similar and simpler way). Direct inspection
on the level sets of H gives:

— {H(u,v) =h > 0} is a closed orbit enclosing the unstable equilibrium (0, 0);
- {(u,v): u>0, H(u,v)=0}1is an homoclinic orbit, asymptotic to (0, 0);

1
— {(u,v): u>0, H(u,v) <0} is a closed orbit enclosing the stable equilibrium (u?-T, 0).

As a consequence, U positive implies: H (U ,.U ) <0.
From now on we will assume U (0) =1, U(0) =0 (notice that U is even, because it satisfies
the same Cauchy problem as U (r) := U(—r)). In this case, H({U (r), U (r)) = - % < 0iff

p+l1
2 s . . 2
w= 4T SO U positive implies u > T

2

Case u > FESE U has infinite Morse index. From above: U is a positive periodic solution.

1
In case U = ur-T =1 (U(0) = 1), the linearized equation at U is ¥ + (p — 1)v = 0. Let
(a, b) be such that the first eigenvalue of the Dirichlet problem is smaller than (p — 1). Let
¢ be the corresponding positive eigenfunction. After setting ¢ = 0 outside (a, b), we see that

Jr@*— (p—Dyg? <.
1 1
Let U # pur-T.Let U(r) = ming U (r). By the above discussion, 0 < U (r) < =T and hence
G'(U(r) <0.If Tisaperiodof U, Iy :=[r + kT,7 + (k+ 1)T], gx :==[U — U(#)]x1,, then

/ i +nep — pUP g = / [UF —pU = (pUP™! = 0)(U = U®)]gxdr.
I I
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But U?(r) — pU(r) — (pUP™ (1) —)(U (r) = U (7)) = G'(U(r)) — G" (U (r)NIU (r) — U ("] <
G’ (U(r)) because G’ is convex on (0, +00). Thus we have

T
/¢>,§ + npf — pUP ol <G/ (U ) /[U — U] <0.
R 0

By density, we can replace the ¢ with C3°-functions with mutually disjoint supports.

Case u = ﬁ: exponential decay. Zero energy implies (U, U) is homoclinic to the zero equi-
librium. Also, U is even and U(—r) >0> U(r) Vr > 0. We claim that

] 2 1 1
AC>0: U(r) < Ce Vvl VreR, - U2=<—+—)/U”+l. (A.1)
p+1 2 p+1
R R

This follows from the conservation of energy: U?= % (U2 = UP*YY . Since U <0Oon (0, +00)

and U (r) — 0 as r — +o00, we get that:

ue _ % e _ 2
U(r)_(an(r))_ \/p+1(1 Ur-1(r)) —» o as r — +00.

Hence, there exist C > 0 and R > 0 large so that U (r) < Ce Vr1 for r > R. In a similar way,
we can get an exponential decay at —oo. The conservation of energy gives an exponential decay
for U as well, and by integration on R yields: 1 [, U = ﬁ(f]R U?— [RUPTH.

Multiplying (6) by U and integrating on R, we obtain that

1., 1 , 1
- U0*=——— | U*+= | UPTL. A2
2/ p+1/ +2f (A2)
R R

R

Taking the difference of these last two relations, (A.1) follows.
A.2. A Pohozaev-type identity

Lemma A.1. Let u be a radial solution of (1). Let 1 <a <b < 2. Then

up+1 b

2@ = 2ide) + APRVPEI VAN P PYANER Al
—u“(a)==u r —=rVu — = |uu - = u
2 2 P12 2 2) 2

a

3\ [N—1 ,
+(nN=2 R (A3)
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Proof. Multiply (1), written in polar coordinates, by ru and integrate on [a, b]:

b b N—1 b 3 b
/(up —kVu)rd:/(—ii— — u)m:-iuz - (N— —)/uz.
r 2 |, 2
a a

a

An integration by parts gives

b b b

p+1 A
/(up —kVu)rd:r " —Zvu?
p+1 2

a a a

Hence, we obtain:

b ptL )
Ci2@) = 2@y +r( L— — Zyy2
2 2 P+l 2

b b
1 A .
——— [ uPT S Vvt A4
PES ut + > / (V+rViu (A4)
a a
Multiplying (1) by u and integrating on [a, b], we get:

/ / N-1 b N—1 b [N-1
/(MP'H —AVu2)=/<—ﬁ— _ zl>u=—llu +/b't2— ol —/ _2 u?
r a 2r a 2r

a a a a

and so

b ‘ N -1 2 ( p+1 2
a+ S (WP —avu?). (A.5)
a

a

b
N—1
/122=<L2u+ u2>
2r

a

Inserting (A.5) in (A.4), we finally get (A.3). O
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