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Abstract

We study the asymptotic behavior of radial solutions for a singularly perturbed semilinear elliptic Dirich-
let problem on an annulus. We show that Morse index informations on such solutions provide a complete
description of the blow-up behavior. As a by-product, we exhibit some sufficient conditions to guarantee
that radial ground state solutions blow-up and concentrate at the inner/outer boundary of the annulus.
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1. Introduction

In this paper, we study the asymptotic behavior as λ → +∞ of radial solutions to the problem:

{−�u + λV (x)u = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)
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where p > 1, Ω := {x ∈ R
N : 1 < |x| < 2} is an annulus and V : Ω̄ → R is a radial smooth

potential bounded away from zero:

inf
Ω

V > 0. (2)

The starting point of our analysis is the following, easy to prove, fact: since H 1
0,rad(Ω), the

space of H 1
0 (Ω)-radial functions, is compactly embedded into Lp+1(Ω) for any p > 1, radial

solutions uλ of (1) blow-up in L∞(Ω), i.e. maxΩ uλ → +∞ as λ → +∞ (similar blow-up
occurs in a general domain Ω as well, if N = 2 and 1 < p < +∞ or N � 3 and 1 < p � N+2

N−2 ). It
is then quite interesting, also in view of existence, to identify the limiting equation, to understand
the nature of the blow-up set and to describe the asymptotic profile of uλ: throughout the paper,
λn →n +∞ and then maxΩ un →n +∞ (un corresponding solution of (1)).

Actually, we only know of a paper by Dancer [4] where some asymptotic analysis of (1) is
carried over. It is limited to the case V ≡ 1 and p subcritical; by means of ODE techniques,
Dancer shows that, for λ large, the only positive radial solution is the radial ground state, and it
takes its unique maximum on a sphere whose radius goes to 1.

In some papers [1,2] by Ambrosetti, Malchiodi and Ni the knowledge of the limiting equation
is used to obtain existence. Among other things, for potentials V satisfying (2) they found in [2]
solutions uλ blowing up as λ → +∞ on spheres of suitable radius. First, they introduce an
auxiliary potential (see also [3])

M(r) := rn−1V θ(r), θ = p + 1

p − 1
− 1

2
(3)

(here and in what follows we freely write x as |x| and V (x) as V (|x|)). Then, using constructive
methods based on a nonlinear Lyapunov–Schmidt reduction, they build solutions uλ which blow-
up at the inner boundary (if M ′(1) > 0) as well as solutions which blow-up at spheres whose
radius is a strict local maximum (or minimum) of M . More in general, the Ambrosetti, Malchiodi
and Ni work makes clear the crucial role of the “critical set”:

M = {
a ∈ [1,2]: (a − 1)Ṁ(a) � 0, (2 − a)Ṁ(a) � 0

}
. (4)

At least generically, any point a ∈M should be a good candidate for being a blow-up radius, i.e.
for the existence of (λn,un) solutions such that

λn → +∞, max
|r−a|�δ

un(r) → +∞ as n → +∞, ∀δ > 0.

One of our main results is that a blow-up radius has to belong to M. Actually, the asymptotic
analysis we develop in this paper relies on a Morse index assumption. Given solutions (λn,un)

with λn → +∞ we will assume un have uniformly bounded Morse index, i.e.

⎧⎪⎨
⎪⎩

∃k̄ ∈ N such that, if W is a linear subspace of H 1
0,rad(Ω) and, for some n ∈ N,∫

Ω

|∇v|2 + λnV (x)v2 − pu
p−1
n v2 < 0, ∀v ∈ W \ {0}, then dimW � k̄. (5)

As a consequence of Theorem 3.1, of Corollary 3.2 and Theorem 4.2 we have the following:
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Theorem 1.1. Let λn →n +∞, un be solutions to (1) satisfying (5). Then, up to a subsequence,
there are k � k̄ and points ai

n ∈ (1,2), i = 1, . . . , k, with the following properties: ai
n are the

unique points of maximum of un, un(a
i
n) → +∞, ai

n converge to points ai ∈ M, not necessarily
distinct; furthermore, un → 0 uniformly away from {a1, . . . , ak}.

We recall that a radial ground state solution always satisfies (5): it has exactly Morse index
one in H 1

0,rad(Ω) (see [5]). Thus, as a by-product of Theorem 1.1, we obtain, generalizing [4], an
explicit sequence of solutions blowing up on a sphere (compare with [2]):

Theorem 1.2. Let uλ be a radial ground state solution of (1). For λ large, uλ has a unique point
of maximum aλ and uλ(aλ) → +∞. Furthermore, if aλj

→ a, then

Ṁ(r) > 0 ∀r ∈ (1,2] ⇒ a = 1 while Ṁ(r) < 0 ∀r ∈ [1,2) ⇒ a = 2,

Ṁ(1) < 0 < Ṁ(2) ⇒ Ṁ(a) = 0.

Thus, in any case, a ∈M. Finally, un → 0 uniformly away from a.

The paper is organized as follows. In Section 2 we introduce a blow-up approach to identify
the limit profile problem. In Section 3 we obtain the crucial global estimate (19) which will
allow us in Section 4 to localize the blow-up set. In Appendix A, we briefly discuss the limiting
problem and present a Pohozaev-type identity.

2. Local profile

In this section we give a complete identification of the limit profile problem and its spectral
properties. Let U be the unique solution (see Appendix A) of the problem⎧⎨

⎩−Ü + 2

p + 1
U = Up in R,

0 < U(r) � U(0) = 1 in R.

(6)

Proposition 2.1. Let (λn,un) be solutions of (1) with un satisfying (5). Let an ∈ (1,2) be such

that un(an) → +∞ . Let εn = un(an)
− p−1

2 and Un(r) = ε
2

p−1
n un(εnr + an) for r ∈ In, where

In = ( 1−an

εn
, 2−an

εn
). Assume that

∃Rn → +∞: un(an) = max
{|r−an|�Rnεn}

un. (7)

Then, for a subsequence, we have that

1 − an

εn

→n −∞,
2 − an

εn

→n +∞, (8)

λnε
2
nV (an) →n

2

p + 1
(9)

and Un → U in C1 (R) as n → +∞, where U is the solution of (6). Moreover
loc
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∃R = R(U) > 0, ∃ψn ∈ C∞
0

([an − Rεn, an + Rεn]
):∫

Ω

∣∣∇ψn

(|x|)∣∣2 + (
λnV − pu

p−1
n

)
ψn

(|x|)2
dx < 0 ∀n large. (10)

Proof. First, we rewrite (1) in polar coordinates:

⎧⎪⎨
⎪⎩

−ün − N − 1

r
u̇n = u

p
n − λnV (r)un in (1,2),

un > 0 in (1,2),

un(1) = un(2) = 0.

Since an is a point of local maximum, we have 0 � −ün(an) = u
p
n (an) − λnV (an)un(an), and

hence, denoted ω(V ) := [maxΩ̄ V ][minΩ̄ V ]−1, it results

1 � λnV (an)u
1−p
n (an) = λnε

2
nV (an) � 0, λnε

2
nV (r) � ω(V ). (11)

Passing eventually to a subsequence, we can assume

λnε
2
nV (an) → μ,

an − 1

εn

→ L0,
2 − an

εn

→ L1 as n → +∞, (12)

for some μ ∈ [0,1], L0,L1 ∈ [0,+∞]. Finally, notice that Un satisfies the equation:

⎧⎪⎪⎨
⎪⎪⎩

−Ün − (N − 1)
εn

εnr + an

U̇n = U
p
n − λnε

2
nV (εnr + an)Un, r ∈ In,

Un(0) = 1, U̇n(0) = 0, Un(r) > 0, r ∈ In,

Un = 0, r ∈ ∂In.

(13)

In the sequel, we will denote by |A| the Lebesgue measure of a set A.

1st Step: For any closed bounded interval I with 0 ∈ I , there exists C = C(|I |) > 0:

‖Un‖C1,1(In∩I ) � C ∀n ∈ N. (14)

Set Jn = In ∩ I . Since I is bounded, (7) implies Un(r) � Un(0) = 1 for n � n(|I |) and r ∈ Jn.
Hence, by (11), (13):

∣∣U̇n(r)
∣∣ = ∣∣U̇n(r) − U̇n(0)

∣∣ � |r|
1∫

0

∣∣Ün(tr)
∣∣dt � (N − 1)

[
1 + ω(V )

](
εn max

s∈Jn

∣∣U̇n(s)
∣∣ + 1

)
|r|

� 1

2
max
r∈Jn

∣∣U̇n(r)
∣∣ + (N − 1)

[
1 + ω(V )

]|I |,

and then: maxr∈Jn |U̇n(r)| � 2(N − 1)[1 + ω(V )]|I | for n � n(|I |). In turn, this implies
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∣∣U̇n(r) − U̇n(s)
∣∣ � |r − s|

1∫
0

∣∣Ün

(
s + t (r − s)

)∣∣dt

� (N − 1)
[
1 + ω(V )

](
εn max

t∈Jn

∣∣U̇n(t)
∣∣ + 1

)
|r − s|

� 2(N − 1)
[
1 + ω(V )

]|r − s| ∀r, s ∈ Jn, n � n
(|I |),

i.e. (14) holds with C = max{2(N −1)[1+ω(V )][|I |+1]+1, ‖Un‖C1,1(In∩I ): 1 � n < n(|I |)}.

2nd Step: L0 = L1 = +∞ and Un → U in C1
loc(R) as n → +∞.

Assume that L0 < +∞. Then, by (14), Un is uniformly bounded in C1,1[− an−1
εn

,R], for any
R > 0. Since L0 < +∞ implies L1 = +∞, we can assume, up to a subsequence and a diagonal
process, that Un → U in C1

loc[−L0,+∞) (and then L0 > 0) where:

⎧⎨
⎩

−Ü + μU = Up in (−L0,+∞),

0 � U(r) � U(0) = 1 in (−L0,+∞),

U(−L0) = 0

in view of (7), (12)–(13). Since U is even (see Appendix A), U(L0) = 0 and then U̇ (L0) = 0
because U � 0. Hence U ≡ 0, a contradiction. Thus L0 = +∞. Similarly, L1 = +∞.

3rd Step: μ = 2
p+1 and (10) holds.

As shown in Appendix A, U positive implies its energy is nonpositive:

0 � H(U, U̇) := 1

2
U̇2 − 1

2
μU2 + 1

p + 1
Up+1 ≡ 1

2
U̇2(0) − μ

2
U2(0) + 1

p + 1
Up+1(0)

= 1

p + 1
− μ

2
.

Hence μ � 2
p+1 . Now, μ > 2

p+1 implies (see Appendix A) U is a positive, possibly constant,
periodic solution and there is a countable family of functions φj ∈ C∞

0 (R) with mutually disjoint
supports such that, for some δ > 0, it results∫

R

(
φ̇2

j + μφ2
j − pUp−1φ2

j

)
dr � −δ < 0.

Let φj,n(r) = φj (
r−an

εn
), so that suppφj,n = an + εn suppφj are disjoint for different j ’s and

contained in {an − Rjεn � |x| � an + Rjεn}, for some Rj > 0. Moreover, if a := limn→+∞ an

(along some subsequence), by Steps 1–2 we get:

εn

∫
Ω

(|∇φj,n|2 + (
λnV (r) − pu

p−1
n

)
φ2

j,n

)

= εn

2∫
rN−1((φ̇j,n)

2 + (
λnV (r) − pu

p−1
n

)
φ2

j,n

)

1
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=
∫

Suppφj

(εnr + an)
N−1[φ̇2

j + (
λnε

2
nV (εnr + an) − pU

p−1
n

)
φ2

j

]

→n aN−1
∫
R

(
φ̇2

j + (μ − pUp−1)φ2
j

)
� −δ < 0 ∀n � n(j).

This contradicts (5) and hence μ = 2
p+1 . As for (10), just notice that, by (6) we have

∫
R

(
U̇2 +

(
2

p + 1
− pUp−1

)
U2

)
= −(p − 1)

∫
R

Up+1 < 0

(see (A.2) in Appendix A) and hence, by density, there exist R = R(U) and ψ ∈ C∞
0 ([−R,R])

such that ∫
R

(
ψ̇2 +

(
2

p + 1
− pUp−1

)
ψ2

)
< 0.

As above, we see that ψn(r) = ψ(r−an

εn
) satisfies the requirements in (10). This ends the proof of

Proposition 2.1. �
3. Global behavior

Once the limit profile problem (6) has been identified and the local behavior around a blow-
up sequence an has been described, our next task is to provide global estimates: we will show
that the sequence un decays exponentially away from blow-up points and we will prove that
the number of blow-up sequences cannot exceed k̄, the upper bound for the Morse index of the
(un)’s. We have the following global result:

Theorem 3.1. Let λn → ∞, un be solutions of (1) satisfying (5). Up to a subsequence, there exist

a1
n, . . . , a

k
n, k � k̄ (k̄ given in (5)), with εi

n = un(a
i
n)

− p−1
2 → 0 such that

λn

(
εi
n

)2
V

(
ai
n

) → 2

p + 1
as n → +∞ ∀i = 1, . . . , k, (15)

ε1
n � εi

n � Cε1
n ∀i = 1, . . . , k, (16)

εi
n + ε

j
n

|ai
n − a

j
n |

→ 0 as n → +∞ ∀i, j = 1, . . . , k, i �= j, (17)

un

(
ai
n

) = max
{|r−ai

n|�Rnεi
n}

un, (18)

un(r) � C
(
ε1
n

)− 2
p−1

k∑
i=1

e
−γ

|r−ai
n|

ε1
n ∀r ∈ (1,2), ∀n ∈ N, (19)

for some γ,C > 0 and Rn → +∞ as n → +∞.
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Proof. The proof is divided into two steps.

1st Step: There exist k � k̄ sequences a1
n, . . . , a

k
n satisfying (15)–(18) such that:

lim
R→+∞

(
lim sup
n→+∞

[(
ε1
n

) 2
p−1 max

{dn(r)�Rε1
n}

un(r)
])

= 0, (20)

where dn(r) = min{|r − ai
n|: i = 1, . . . , k} is the distance function from {a1

n, . . . , a
k
n}.

First of all, let a1
n be a point of global maximum of un: un(a

1
n) = maxr∈(1,2) un(r). Since (18)

clearly holds for a1
n, Proposition 2.1 applies, and (9) provides exactly (15). If (20) already holds

for a1
n, then we take k = 1 and the claim is proved. If not (passing to a subsequence)

∃δ > 0, ∃Rn → +∞: (
ε1
n

) 2
p−1 max

{|r−a1
n|�Rnε1

n}
un(r) � 2δ > 0. (21)

Now, an application of Proposition 2.1 gives, eventually for a subsequence,

(
ε1
n

) 2
p−1 un

(
rε1

n + a1
n

) = U1
n (r) →n U(r) (22)

uniformly on bounded sets (U solution of (6)). By the decay of U (see (A.1)), there is Rδ > 0
such that U(r) � δ

2 for |r| � Rδ . Hence, using (22), we see that (Rj given in (21))

∀j ∃nj : Rnj
� Rj and

(
ε1
nj

) 2
p−1 max

{Rδε1
nj

�|r−a1
nj

|�Rj ε1
nj

}
unj

(r) � δ.

This, jointly with (21) gives

(
ε1
nj

) 2
p−1 max

{|r−a1
nj

|�Rδε1
nj

}
unj

(r) = (
ε1
nj

) 2
p−1 max

{|r−a1
nj

|�Rj ε1
nj

}
unj

(r) � 2δ > δ

�
(
ε1
nj

) 2
p−1 max

{Rδε1
nj

�|r−a1
nj

|�Rj ε1
nj

}
unj

(r) ∀j. (23)

Hence, for any j :

∃a2
nj

∈ {∣∣r − a1
nj

∣∣ � Rjε
1
nj

}: unj

(
a2
nj

) = max
{|r−a1

nj
|�Rδε1

nj
}
unj

(r) � 2δ
(
ε1
nj

)− 2
p−1 . (24)

By (24) we get ε2
nj

:= unj
(a2

nj
)−

p−1
2 � ε1

nj
(2δ)−

p−1
2 , and since ε1

nj
� ε2

nj
we see that (16) is

fulfilled, as well as (17) because |a2
nj

− a1
nj

| � Rjε
1
nj

. This inequality and (23) imply (18):

unj

(
a2
nj

) = max
{|r−a2

nj
|�[Rj −Rδ](2δ)

2
p−1 ε2

nj
}
unj

(r).

In fact
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∣∣r − a2
nj

∣∣ � [Rj − Rδ](2δ)
p−1

2 ε2
nj

⇒
∣∣r − a1

nj

∣∣ �
∣∣a2

nj
− a1

nj

∣∣ − [Rj − Rδ](2δ)
p−1

2 ε2
nj

� Rjε
1
nj

− [Rj − Rδ]ε1
nj

= Rδε
1
nj

.

Up to the subsequence nj , thus (16)–(18) hold true for {a1
n, a

2
n}, and, if {a1

n, a
2
n} also satisfy (20),

we are finished. Otherwise, we iterate the above argument: given s sequences a1
n, . . . , a

s
n, let us

denote dn(r) = min{|r − ai
n|: i = 1, . . . , s}. If (15)–(18) are satisfied, but (20) is not, we have

∃δ > 0, ∃Rn → +∞: (
ε1
n

) 2
p−1 max

{dn(r)�Rnε1
n}

un(r) � 2δ

and, by assumptions (16)–(18) and Proposition 2.1:

∃θi ∈
[

1

C
,1

]
: ε1

n

εi
n

→ θi,

(
ε1
n

) 2
p−1 un

(
rε1

n + ai
n

) =
(

ε1
n

εi
n

) 2
p−1

Ui
n

(
ε1
n

εi
n

r

)
→ θ

2
p−1
i U(θir) (25)

uniformly on bounded sets. By (A.1), θ
2

p−1
i U(θir) < δ for |r| � Rδ . Now things go as above,

replacing |r − a1
n| with dn(r). Finally, the argument ends after at most k̄ iteration, because

Proposition 2.1 applies to any sequence ai
n, i = 1, . . . , k, providing, for n large, radial functions

ψi
n ∈ C∞

0 (Ω) such that (10) holds with supp ψi
n ⊂ {ai

n −Rεi
n � |x| � ai

n +Rεi
n}, for some R > 0.

By (17) we get that ψ1
n, . . . ,ψk

n have disjoint compact supports for any n large and then k � k̄.

2nd Step: Let a1
n, . . . , a

k
n be as in the first step. Then there are γ,C > 0 such that:

un(r) � C
(
ε1
n

)− 2
p−1

k∑
i=1

e
−γ

|r−ai
n|

ε1
n ∀r ∈ (1,2), ∀n ∈ N.

By (20), for R > 0 large and n � n(R), it results (recall that ω(V ) := [maxΩ̄ V ][minΩ̄ V ]−1)

(
ε1
n

) 2
p−1 max

{dn(r)�Rε1
n}

un(r) � (
1

(p + 1)ω(V )
)

1
p−1 ,

and hence (ε1
n)

2u
p−1
n (r) � 1

(p+1)ω(V )
in {dn(r) � Rε1

n}. On the other hand, by (15) we get

λn

(
ε1
n

)2
V (r) �

[
ω(V )

]−1
λn

(
ε1
n

)2
V

(
a1
n

) →n

2

(p + 1)ω(V )
.

Hence, the following holds true: there are R > 0 and n(R) such that, if n � n(R), then

(
ε1
n

)2[
λnV (r) − u

p−1
n (r)

]
� 1

> 0 if dn(r) � Rε1
n. (26)
2(p + 1)ω(V )
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Now, consider the linear operator:

Lnφ = −�φ + (
λnV (r) − u

p−1
n (r)

)
φ, φ ∈ C2(Ω).

Notice that Lnun = 0. Since un > 0 in Ω , Ln satisfies the minimum principle in any domain in
Ω (see [6]). Let γ > 0 and φi

n(r) = e−γ (ε1
n)−1|r−ai

n|. By (26), for R large it results

Lnφ
i
n = (

ε1
n

)−2
φi

n

[
−γ 2 + (N − 1)

ε1
n

r
γ

r − ai
n

|r − ai
n|

+ (
ε1
n

)2(
λnV (r) − u

p−1
n (r)

)]
> 0

if dn(r) � Rε1
n, γ 2 � 1

8(p+1)ω(V )
and n � n(R,γ ). In addition, by (25) we have

(
eγRφi

n(r) − (
ε1
n

) 2
p−1 un(r)

)∣∣
r=ai

n±Rε1
n
= 1 − (

ε1
n

) 2
p−1 un

(
ai
n ± Rε1

n

) → 1 − θ
2

p−1
i U(±θiR) > 0.

Then Φn := eγR(ε1
n)

− 2
p−1

∑k
i=1 φi

n satisfies

Ln(Φn − un) > 0 in
{
dn(r) > Rε1

n

}
and Φn − un > 0 on

{
dn(r) = Rε1

n

} ∪ {|r| = 1,2
}

(notice that, by (16)–(17) {dn(r) > Rε1
n} are disjoint intervals for n � n(R)), and then, by mini-

mum principle un � Φn in {dn(r) > Rε1
n}, if R is large and n � n(R). That is

un(r) � eγR
(
ε1
n

)− 2
p−1

k∑
i=1

e
−γ

|r−ai
n|

ε1
n if dn(r) � Rε1

n and n � n(R). (27)

Since

un(r) � max
Ω

un = (
ε1
n

)− 2
p−1 � eγR

(
ε1
n

)− 2
p−1

k∑
i=1

e
−γ

|r−ai
n|

ε1
n if dn(r) � Rε1

n and n � n(R),

(27) holds for any r ∈ (1,2) and n � n(R). Thus, for some C � eγR (19) holds true for any n

and the proof is now complete. �
As a by-product, the number of points of local maximum is controlled by (5):

Corollary 3.2. Let λn → ∞, un be solutions of (1) satisfying (5). Up to a subsequence, un has,
for n large, exactly k points of local maximum a1

n, . . . , a
k
n, k � k̄, where a1

n, . . . , a
k
n are given by

Theorem 3.1.

Proof. By (26) u
p
n − λnV (r)un < 0 ∀r ∈ {dn(r) � Rε1

n}, for R large and fixed and n � n(R).
Hence, by (1) all the points of local maximum of un stay, for n large, in the region dn(r) � Rε1

n.
We are lead to show that a1

n, . . . , a
k
n are, for n large, the only points of local maximum of un in

dn(r) � Rε1
n .
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By contradiction, let sn be points of local maximum of un, with 0 < |sn − ai
n| � Rε1

n, for
some i � k. Since 0 is the only critical point of the limit function U , by the C1

loc(R) convergence

of Ui
n to U we get s̃n := sn−ai

n

εi
n

→ 0 as n → +∞. By (13) and (15) we get:

−Ü i
n(s̃n) = (

Ui
n

)p
(s̃n) − λn

(
εi
n

)2
V (s̃n)U

i
n(s̃n) →n 1 − 2

p + 1
> 0.

Then, sn is a strict local maximum and hence there is a local minimum at some tn strictly in

between sn and ai
n. However, as for sn, it should be t̃n := tn−ai

n

εi
n

→ 0 as n → +∞ and Ü i
n(t̃n) < 0

for n large, a contradiction. �
4. Location of the blow-up set

In concentration phenomena, the role of the modified potential M(r) given in (3) has been
pointed out in papers of Ambrosetti, Malchiodi and Ni [1,2], when dealing with the same equa-
tion either in R

N or in a ball/annulus in R
N with homogeneous Dirichlet boundary condition. To

show by an asymptotic approach the role of M(r), we will combine the results in the previous
section with a Pohozaev-type identity (see Appendix A).

Let us start with some asymptotic estimates for un, solutions of (1). By Corollary 3.2 un

has, up to a subsequence, exactly k points of local maximum a1
n, . . . , a

k
n ∈ (1,2) with, say,

ai
n → ai ∈ [1,2], i = 1, . . . , k. Let Ji = {j = 1, . . . , k: a

j
n →n ai}. We have the following:

Lemma 4.1. Let g(r) be some smooth function on [1,2]. Let q > 1. Fix i ∈ {1, . . . , k} and denote
I i
δ := [ai − δ, ai + δ] ∩ (1,2) where δ > 0 is so small that I i

δ ∩ {a1, . . . , ak} = {ai}. Then

∫
I i
δ

g(r)u
q
n = g

(
ai

)( ∑
j∈Ji

(
ε
j
n

) p−1−2q
p−1

)( ∫
R

Uq + on(1)

)
(28)

where on(1) → 0 as n → +∞. In particular, there holds:

2∫
1

u
p+1
n =

(
k∑

i=1

(
εi
n

)− p+3
p−1

)( ∫
R

Up+1 + on(1)

)
. (29)

Proof. Let dn(r) := min{|r − ai
n|: i = 1, . . . , k}. Given R > 0, (8), (16) and (17) imply that, for

n � n(R), {dn(r) � Rε1
n} are mutually disjoint intervals and

{
dn(r) � Rε1

n

} ⊂ (1,2) and I i
δ ∩ {

dn(r) � Rε1
n

} =
⋃
j∈Ji

{∣∣r − a
j
n

∣∣ � Rε1
n

}
.

By (19) we know that u
q
n � C(ε1

n)
− 2q

p−1
∑k

j=1 e
−qγ

|r−a
j
n |

ε1
n . Thus
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∫
I i
δ

g(r)u
q
n =

∫
I i
δ∩{dn(r)�Rε1

n}
g(r)u

q
n +

∫
I i
δ∩{dn(r)�Rε1

n}
g(r)u

q
n

=
∑
j∈Ji

∫
{|r−a

j
n |�Rε1

n}

g(r)u
q
n + O

((
ε1
n

)− 2q
p−1

k∑
j=1

∫
I i
δ∩{dn(r)�Rε1

n}
e
−qγ

|r−a
j
n |

ε1
n

)

=
∑
j∈Ji

(
ε
j
n

)− 2q−p+1
p−1

∫
{|r|�R

ε1
n

ε
j
n

}

g
(
ε
j
nr + a

j
n

)(
U

j
n

)q

+ O

((
ε1
n

)− 2q
p−1

k∑
j=1

ε
j
n

∫
{|r|�R

ε1
n

ε
j
n

}

e
−qγ |r| ε

j
n

ε1
n

)
.

Up to a subsequence, by (16) we can assume that ε1
n/ε

j
n →n θj ∈ [ 1

C
,1] for any j = 1, . . . , k.

Since U
j
n →n U in C1

loc(R) for any j = 1, . . . , k, we find, along some subsequence

lim
n→+∞

(
ε1
n

) 2q−p+1
p−1

∫
I i
δ

u
q
n = g

(
ai

) ∑
j∈Ji

θ

2q−p+1
p−1

j

∫
{|r|�Rθj }

Uq + O

(
k∑

j=1

∫
{|r|�Rθj }

e
− qγ |r|

θj

)
.

Sending R to infinity, we get, along the same subsequence,

lim
n→+∞

(
ε1
n

) 2q−p+1
p−1

∫
I i
δ

u
q
n = g

(
ai

)( ∑
j∈Ji

θ

2q−p+1
p−1

j

)∫
R

Uq.

Since we found the same value along any convergent subsequence, and recalling the definition
of θj , the proof of (28) is complete. Finally, since by (19) un → 0 as n → +∞ uniformly far
away from {a1, . . . , ak}, (28), with q = p + 1 and g ≡ 1, implies (29). �

The asymptotic expansions in Lemma 4.1, combined with the Pohozaev identity (A.3), leads
to the identification of ai , i = 1, . . . , k:

Theorem 4.2. For any i = 1, . . . , k ai ∈ M, where M is given in (4).

Proof. Given i = 1, . . . , k, first consider the case ai ∈ (1,2). Let I i
δ be as in Lemma 4.1. By (15),

(19) λnu
2
n →n 0 uniformly away from the ai ’s and elliptic regularity estimates imply the same

for u̇n. Thus we see, plugging a = ai − δ, b = ai + δ in (A.3), that:

(
N − 3

2
− 1

p + 1

) ai+δ∫
i

u
p+1
n + λn

ai+δ∫
i

(
r

2
V̇ − (N − 2)V

)
u2

n +
(

N − 3

2

) ai+δ∫
i

N − 1

2r2
u2

n → 0
a −δ a −δ a −δ
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as n → +∞. By (15) and (28) we get as n → +∞ (here on(1) → 0 as n → +∞)

ai+δ∫
ai−δ

u
p+1
n =

( ∑
j∈Ji

(
ε
j
n

)− p+3
p−1

)( ∫
R

Up+1 + on(1)

)
,

ai+δ∫
ai−δ

u2
n

r2
= 1

λn

O

( ∑
j∈Ji

(
ε
j
n

)− p+3
p−1

)
,

λn

ai+δ∫
ai−δ

(
r

2
V̇ − (N − 2)V

)
u2

n = 1

p + 1

(
ai V̇ (ai)

V (ai)
− 2(N − 2)

)( ∑
j∈Ji

(
ε
j
n

)− p+3
p−1

)

×
( ∫

R

U2 + on(1)

)
.

Hence, also making use of the relation
∫

R
Up+1 = 4

p+3

∫
R

U2 (see (A.1)), we get

0 =
(

N − 3

2
− 1

p + 1

)∫
R

Up+1 − 2(N − 2)

p + 1

∫
R

U2 + ai

p + 1

V̇ (ai)

V (ai)

∫
R

U2

=
[
N

(
4

p + 3
− 2

p + 1

)
−

(
3

2
+ 1

p + 1

)
4

p + 3
+ 4

p + 1
+ ai

p + 1

V̇ (ai)

V (ai)

]∫
R

U2

=
[
N − 1 + p + 3

2(p − 1)

ai V̇ (ai)

V (ai)

]
2(p − 1)

(p + 3)(p + 1)

∫
R

U2

= 2(p − 1)

(p + 3)(p + 1)

( ∫
R

U2
)

V
(
ai

)−θ (
ai

)2−N
Ṁ

(
ai

)
.

Consider now the case ai = 1. Let I i
δ be as above. As before, λnu

2
n + u̇2

n → 0 as n → +∞ at
1 + δ. Taking a = 1, b = 1 + δ in (A.3), we see that:

(
N − 3

2
− 1

p + 1

) 1+δ∫
1

u
p+1
n + λn

1+δ∫
1

(
r

2
V̇ − (N − 2)V

)
u2

n +
(

N − 3

2

) 1+δ∫
1

N − 1

2r2
u2

n

�
(

N − 3

2
− 1

p + 1

) 1+δ∫
1

u
p+1
n + λn

1+δ∫
1

(
r

2
V̇ − (N − 2)V

)
u2

n

+
(

N − 3

2

) 1+δ∫
N − 1

2r2
u2

n − 1

2
u̇2

n(1) → 0
1
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as n → +∞. Arguing as above, we get that

0 � 2(p − 1)

(p + 3)(p + 1)

(
N − 1 + p + 3

2(p − 1)

V̇ (1)

V (1)

)∫
R

U2.

Hence, Ṁ(1) � 0, and ai = 1 ∈ M holds.
Case ai = 2 can be dealt similarly, getting now ai = 2 ∈M. Hence, the theorem is completely

established. �
Appendix A

A.1. Phase plane analysis of the limiting equation

Let U be a C2-solution of the equation

−Ü + μU = |U |p−1U,

and (U(r), U̇ (r)) the corresponding (parametrized) orbit in the phase plane. Let

H(u,v) := 1

2
v2 + G(u), G(u) := −μ

2
u2 + 1

p + 1
|u|p+1

be the energy function; it is a conserved quantity: h ≡ H(U(r), U̇ (r)) is the energy of the orbit
(U, U̇). Since level sets {H(u,v) = h} are compact, U is globally defined. For simplicity, we will
consider the case μ > 0 (case μ = 0 can be dealt in a similar and simpler way). Direct inspection
on the level sets of H gives:

– {H(u,v) = h > 0} is a closed orbit enclosing the unstable equilibrium (0,0);
– {(u, v): u > 0, H(u, v) = 0} is an homoclinic orbit, asymptotic to (0,0);

– {(u, v): u > 0, H(u, v) < 0} is a closed orbit enclosing the stable equilibrium (μ
1

p−1 ,0).

As a consequence, U positive implies: H(U, U̇) � 0.
From now on we will assume U(0) = 1, U̇ (0) = 0 (notice that U is even, because it satisfies

the same Cauchy problem as Ũ (r) := U(−r)). In this case, H(U(r), U̇ (r)) ≡ 1
p+1 − μ

2 � 0 iff

μ � 2
p+1 , so U positive implies μ � 2

p+1 .

Case μ > 2
p+1 : U has infinite Morse index. From above: U is a positive periodic solution.

In case U ≡ μ
1

p−1 = 1 (U(0) = 1), the linearized equation at U is v̈ + (p − 1)v = 0. Let
(a, b) be such that the first eigenvalue of the Dirichlet problem is smaller than (p − 1). Let
ϕ be the corresponding positive eigenfunction. After setting ϕ ≡ 0 outside (a, b), we see that∫

R
ϕ̇2 − (p − 1)ϕ2 < 0.

Let U �= μ
1

p−1 . Let U(r̄) = minR U(r). By the above discussion, 0 < U(r̄) < μ
1

p−1 and hence
G′(U(r̄)) < 0. If T is a period of U , Ik := [r̄ + kT , r̄ + (k + 1)T ], ϕk := [U − U(r̄)]χIk

, then∫
ϕ̇2

k + μϕ2
k − pUp−1ϕ2

k =
∫ [

Up − μU − (
pUp−1 − μ

)(
U − U(r̄)

)]
ϕk dr.
Ik Ik
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But Up(r)−μU(r)− (pUp−1(r)−μ)(U(r)−U(r̄)) = G′(U(r))−G′′(U(r))[U(r)−U(r̄)] �
G′(U(r̄)) because G′ is convex on (0,+∞). Thus we have

∫
R

ϕ̇2
k + μϕ2

k − pUp−1ϕ2
k � G′(U(r̄)

) T∫
0

[
U − U(r̄)

]
< 0.

By density, we can replace the ϕk with C∞
0 -functions with mutually disjoint supports.

Case μ = 2
p+1 : exponential decay. Zero energy implies (U, U̇) is homoclinic to the zero equi-

librium. Also, U is even and U̇ (−r) > 0 > U̇(r) ∀r > 0. We claim that

∃C > 0: U(r) � Ce
− |r|√

p+1 ∀r ∈ R,
2

p + 1

∫
R

U2 =
(

1

2
+ 1

p + 1

)∫
R

Up+1. (A.1)

This follows from the conservation of energy: U̇2 ≡ 2
p+1 (U2 −Up+1) . Since U̇ < 0 on (0,+∞)

and U(r) → 0 as r → +∞, we get that:

U̇ (r)

U(r)
= (

lnU(r)
)′ = −

√
2

p + 1

(
1 − Up−1(r)

) → −
√

2

p + 1
as r → +∞.

Hence, there exist C > 0 and R > 0 large so that U(r) � Ce
− r√

p+1 for r � R. In a similar way,
we can get an exponential decay at −∞. The conservation of energy gives an exponential decay
for U̇ as well, and by integration on R yields: 1

2

∫
R

U̇2 = 1
p+1 (

∫
R

U2 − ∫
R

Up+1).
Multiplying (6) by U and integrating on R, we obtain that

1

2

∫
R

U̇2 = − 1

p + 1

∫
R

U2 + 1

2

∫
R

Up+1. (A.2)

Taking the difference of these last two relations, (A.1) follows.

A.2. A Pohozaev-type identity

Lemma A.1. Let u be a radial solution of (1). Let 1 � a < b � 2. Then

a

2
u̇2(a) = b

2
u̇2(b) +

(
r

up+1

p + 1
− λ

2
rV u2 +

(
N − 3

2

)
u̇u +

(
N − 3

2

)
N − 1

2r
u2

)∣∣∣∣
b

a

+
(

N − 3

2
− 1

p + 1

) b∫
a

up+1 + λ

b∫
a

(
r

2
V̇ − (N − 2)V

)
u2

+
(

N − 3

2

) b∫
a

N − 1

2r2
u2. (A.3)
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Proof. Multiply (1), written in polar coordinates, by ru̇ and integrate on [a, b]:
b∫

a

(
up − λV u

)
ru̇ =

b∫
a

(
−ü − N − 1

r
u̇

)
ru̇ = − r

2
u̇2

∣∣∣∣
b

a

−
(

N − 3

2

) b∫
a

u̇2.

An integration by parts gives

b∫
a

(
up − λV u

)
ru̇ = r

(
up+1

p + 1
− λ

2
V u2

)∣∣∣∣
b

a

− 1

p + 1

b∫
a

up+1 + λ

2

b∫
a

(V + rV̇ )u2.

Hence, we obtain:

a

2
u̇2(a) = b

2
u̇2(b) + r

(
up+1

p + 1
− λ

2
V u2

)∣∣∣∣
b

a

+
(

N − 3

2

) b∫
a

u̇2

− 1

p + 1

b∫
a

up+1 + λ

2

b∫
a

(V + rV̇ )u2. (A.4)

Multiplying (1) by u and integrating on [a, b], we get:

b∫
a

(
up+1 − λV u2) =

b∫
a

(
−ü − N − 1

r
u̇

)
u = −u̇u

∣∣∣∣
b

a

+
b∫

a

u̇2 − N − 1

2r
u2

∣∣∣∣
b

a

−
b∫

a

N − 1

2r2
u2

and so

b∫
a

u̇2 =
(

u̇u + N − 1

2r
u2

)∣∣∣∣
b

a

+
b∫

a

N − 1

2r2
u2 +

b∫
a

(
up+1 − λV u2). (A.5)

Inserting (A.5) in (A.4), we finally get (A.3). �
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