Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index ${ }^{2 / 4}$

P. Esposito ${ }^{\text {a }}$, G. Mancini ${ }^{\text {a,** }}$, Sanjiban Santra ${ }^{\text {b }}$, P.N. Srikanth ${ }^{\text {c }}$
${ }^{a}$ Dipartimento di Matematica, Università degli Studi "Roma Tre", Largo S. Leonardo Murialdo, 1-00146 Roma, Italy
${ }^{\text {b }}$ Department of Mathematics, Indian Institute of Science, Bangalore-560 012, India
${ }^{\text {c }}$ TIFR Centre, PB 1234, IISc Campus, Bangalore-560 012, India
Received 12 October 2006
Available online 1 May 2007

Abstract

We study the asymptotic behavior of radial solutions for a singularly perturbed semilinear elliptic Dirichlet problem on an annulus. We show that Morse index informations on such solutions provide a complete description of the blow-up behavior. As a by-product, we exhibit some sufficient conditions to guarantee that radial ground state solutions blow-up and concentrate at the inner/outer boundary of the annulus.

© 2007 Elsevier Inc. All rights reserved.
MSC: 35J20; 35J25; 35J60
Keywords: Blow-up analysis; Morse index; Mountain Pass theorem

1. Introduction

In this paper, we study the asymptotic behavior as $\lambda \rightarrow+\infty$ of radial solutions to the problem:

$$
\begin{cases}-\Delta u+\lambda V(x) u=u^{p} & \text { in } \Omega, \tag{1}\\ u>0 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

[^0]where $p>1, \Omega:=\left\{x \in \mathbb{R}^{N}: 1<|x|<2\right\}$ is an annulus and $V: \bar{\Omega} \rightarrow \mathbb{R}$ is a radial smooth potential bounded away from zero:
\[

$$
\begin{equation*}
\inf _{\Omega} V>0 . \tag{2}
\end{equation*}
$$

\]

The starting point of our analysis is the following, easy to prove, fact: since $H_{0, \text { rad }}^{1}(\Omega)$, the space of $H_{0}^{1}(\Omega)$-radial functions, is compactly embedded into $L^{p+1}(\Omega)$ for any $p>1$, radial solutions u_{λ} of (1) blow-up in $L^{\infty}(\Omega)$, i.e. $\max _{\Omega} u_{\lambda} \rightarrow+\infty$ as $\lambda \rightarrow+\infty$ (similar blow-up occurs in a general domain Ω as well, if $N=2$ and $1<p<+\infty$ or $N \geqslant 3$ and $1<p \leqslant \frac{N+2}{N-2}$). It is then quite interesting, also in view of existence, to identify the limiting equation, to understand the nature of the blow-up set and to describe the asymptotic profile of u_{λ} : throughout the paper, $\lambda_{n} \rightarrow_{n}+\infty$ and then $\max _{\Omega} u_{n} \rightarrow_{n}+\infty$ (u_{n} corresponding solution of (1)).

Actually, we only know of a paper by Dancer [4] where some asymptotic analysis of (1) is carried over. It is limited to the case $V \equiv 1$ and p subcritical; by means of ODE techniques, Dancer shows that, for λ large, the only positive radial solution is the radial ground state, and it takes its unique maximum on a sphere whose radius goes to 1 .

In some papers [1,2] by Ambrosetti, Malchiodi and Ni the knowledge of the limiting equation is used to obtain existence. Among other things, for potentials V satisfying (2) they found in [2] solutions u_{λ} blowing up as $\lambda \rightarrow+\infty$ on spheres of suitable radius. First, they introduce an auxiliary potential (see also [3])

$$
\begin{equation*}
M(r):=r^{n-1} V^{\theta}(r), \quad \theta=\frac{p+1}{p-1}-\frac{1}{2} \tag{3}
\end{equation*}
$$

(here and in what follows we freely write x as $|x|$ and $V(x)$ as $V(|x|))$. Then, using constructive methods based on a nonlinear Lyapunov-Schmidt reduction, they build solutions u_{λ} which blowup at the inner boundary (if $M^{\prime}(1)>0$) as well as solutions which blow-up at spheres whose radius is a strict local maximum (or minimum) of M. More in general, the Ambrosetti, Malchiodi and Ni work makes clear the crucial role of the "critical set":

$$
\begin{equation*}
\mathcal{M}=\{a \in[1,2]:(a-1) \dot{M}(a) \leqslant 0,(2-a) \dot{M}(a) \geqslant 0\} . \tag{4}
\end{equation*}
$$

At least generically, any point $a \in \mathcal{M}$ should be a good candidate for being a blow-up radius, i.e. for the existence of $\left(\lambda_{n}, u_{n}\right)$ solutions such that

$$
\lambda_{n} \rightarrow+\infty, \quad \max _{|r-a| \leqslant \delta} u_{n}(r) \rightarrow+\infty \quad \text { as } n \rightarrow+\infty, \forall \delta>0 .
$$

One of our main results is that a blow-up radius has to belong to \mathcal{M}. Actually, the asymptotic analysis we develop in this paper relies on a Morse index assumption. Given solutions (λ_{n}, u_{n}) with $\lambda_{n} \rightarrow+\infty$ we will assume u_{n} have uniformly bounded Morse index, i.e.

$$
\left\{\begin{array}{l}
\exists \bar{k} \in \mathbb{N} \text { such that, if } W \text { is a linear subspace of } H_{0, \text { rad }}^{1}(\Omega) \text { and, for some } n \in \mathbb{N}, \tag{5}\\
\int_{\Omega}|\nabla v|^{2}+\lambda_{n} V(x) v^{2}-p u_{n}^{p-1} v^{2}<0, \forall v \in W \backslash\{0\}, \text { then } \operatorname{dim} W \leqslant \bar{k}
\end{array}\right.
$$

As a consequence of Theorem 3.1, of Corollary 3.2 and Theorem 4.2 we have the following:

Theorem 1.1. Let $\lambda_{n} \rightarrow_{n}+\infty, u_{n}$ be solutions to (1) satisfying (5). Then, up to a subsequence, there are $k \leqslant \bar{k}$ and points $a_{n}^{i} \in(1,2), i=1, \ldots, k$, with the following properties: a_{n}^{i} are the unique points of maximum of $u_{n}, u_{n}\left(a_{n}^{i}\right) \rightarrow+\infty, a_{n}^{i}$ converge to points $a^{i} \in \mathcal{M}$, not necessarily distinct; furthermore, $u_{n} \rightarrow 0$ uniformly away from $\left\{a^{1}, \ldots, a^{k}\right\}$.

We recall that a radial ground state solution always satisfies (5): it has exactly Morse index one in $H_{0, \mathrm{rad}}^{1}(\Omega)$ (see [5]). Thus, as a by-product of Theorem 1.1, we obtain, generalizing [4], an explicit sequence of solutions blowing up on a sphere (compare with [2]):

Theorem 1.2. Let u_{λ} be a radial ground state solution of (1). For λ large, u_{λ} has a unique point of maximum a_{λ} and $u_{\lambda}\left(a_{\lambda}\right) \rightarrow+\infty$. Furthermore, if $a_{\lambda_{j}} \rightarrow a$, then

$$
\begin{array}{cl}
\dot{M}(r)>0 \forall r \in(1,2] \quad \Rightarrow \quad a=1 \quad \text { while } \quad \dot{M}(r)<0 \quad \forall r \in[1,2) \quad \Rightarrow \quad a=2, \\
& \dot{M}(1)<0<\dot{M}(2) \quad \Rightarrow \quad \dot{M}(a)=0 .
\end{array}
$$

Thus, in any case, $a \in \mathcal{M}$. Finally, $u_{n} \rightarrow 0$ uniformly away from a.
The paper is organized as follows. In Section 2 we introduce a blow-up approach to identify the limit profile problem. In Section 3 we obtain the crucial global estimate (19) which will allow us in Section 4 to localize the blow-up set. In Appendix A, we briefly discuss the limiting problem and present a Pohozaev-type identity.

2. Local profile

In this section we give a complete identification of the limit profile problem and its spectral properties. Let U be the unique solution (see Appendix A) of the problem

$$
\begin{cases}-\ddot{U}+\frac{2}{p+1} U=U^{p} & \text { in } \mathbb{R} \tag{6}\\ 0<U(r) \leqslant U(0)=1 & \text { in } \mathbb{R}\end{cases}
$$

Proposition 2.1. Let $\left(\lambda_{n}, u_{n}\right)$ be solutions of (1) with u_{n} satisfying (5). Let $a_{n} \in(1,2)$ be such that $u_{n}\left(a_{n}\right) \rightarrow+\infty$. Let $\varepsilon_{n}=u_{n}\left(a_{n}\right)^{-\frac{p-1}{2}}$ and $U_{n}(r)=\varepsilon_{n}^{\frac{2}{p-1}} u_{n}\left(\varepsilon_{n} r+a_{n}\right)$ for $r \in I_{n}$, where $I_{n}=\left(\frac{1-a_{n}}{\varepsilon_{n}}, \frac{2-a_{n}}{\varepsilon_{n}}\right)$. Assume that

$$
\begin{equation*}
\exists R_{n} \rightarrow+\infty: \quad u_{n}\left(a_{n}\right)=\max _{\left\{\left|r-a_{n}\right| \leqslant R_{n} \varepsilon_{n}\right\}} u_{n} . \tag{7}
\end{equation*}
$$

Then, for a subsequence, we have that

$$
\begin{gather*}
\frac{1-a_{n}}{\varepsilon_{n}} \rightarrow_{n}-\infty, \quad \frac{2-a_{n}}{\varepsilon_{n}} \rightarrow_{n}+\infty, \tag{8}\\
\lambda_{n} \varepsilon_{n}^{2} V\left(a_{n}\right) \rightarrow_{n} \frac{2}{p+1} \tag{9}
\end{gather*}
$$

and $U_{n} \rightarrow U$ in $C_{\text {loc }}^{1}(\mathbb{R})$ as $n \rightarrow+\infty$, where U is the solution of (6). Moreover

$$
\begin{align*}
& \exists R=R(U)>0, \exists \psi_{n} \in C_{0}^{\infty}\left(\left[a_{n}-R \varepsilon_{n}, a_{n}+R \varepsilon_{n}\right]\right): \\
& \quad \int_{\Omega}\left|\nabla \psi_{n}(|x|)\right|^{2}+\left(\lambda_{n} V-p u_{n}^{p-1}\right) \psi_{n}(|x|)^{2} d x<0 \quad \forall n \text { large } . \tag{10}
\end{align*}
$$

Proof. First, we rewrite (1) in polar coordinates:

$$
\begin{cases}-\ddot{u}_{n}-\frac{N-1}{r} \dot{u}_{n}=u_{n}^{p}-\lambda_{n} V(r) u_{n} & \text { in }(1,2), \\ u_{n}>0 & \text { in }(1,2), \\ u_{n}(1)=u_{n}(2)=0 . & \end{cases}
$$

Since a_{n} is a point of local maximum, we have $0 \leqslant-\ddot{u}_{n}\left(a_{n}\right)=u_{n}^{p}\left(a_{n}\right)-\lambda_{n} V\left(a_{n}\right) u_{n}\left(a_{n}\right)$, and hence, denoted $\omega(V):=\left[\max _{\bar{\Omega}} V\right]\left[\min _{\bar{\Omega}} V\right]^{-1}$, it results

$$
\begin{equation*}
1 \geqslant \lambda_{n} V\left(a_{n}\right) u_{n}^{1-p}\left(a_{n}\right)=\lambda_{n} \varepsilon_{n}^{2} V\left(a_{n}\right) \geqslant 0, \quad \lambda_{n} \varepsilon_{n}^{2} V(r) \leqslant \omega(V) . \tag{11}
\end{equation*}
$$

Passing eventually to a subsequence, we can assume

$$
\begin{equation*}
\lambda_{n} \varepsilon_{n}^{2} V\left(a_{n}\right) \rightarrow \mu, \quad \frac{a_{n}-1}{\varepsilon_{n}} \rightarrow L_{0}, \quad \frac{2-a_{n}}{\varepsilon_{n}} \rightarrow L_{1} \quad \text { as } n \rightarrow+\infty, \tag{12}
\end{equation*}
$$

for some $\mu \in[0,1], L_{0}, L_{1} \in[0,+\infty]$. Finally, notice that U_{n} satisfies the equation:

$$
\begin{cases}-\ddot{U}_{n}-(N-1) \frac{\varepsilon_{n}}{\varepsilon_{n} r+a_{n}} \dot{U}_{n}=U_{n}^{p}-\lambda_{n} \varepsilon_{n}^{2} V\left(\varepsilon_{n} r+a_{n}\right) U_{n}, & r \in I_{n} \tag{13}\\ U_{n}(0)=1, \quad \dot{U}_{n}(0)=0, \quad U_{n}(r)>0, & r \in I_{n} \\ U_{n}=0, & r \in \partial I_{n}\end{cases}
$$

In the sequel, we will denote by $|A|$ the Lebesgue measure of a set A.
1st Step: For any closed bounded interval I with $0 \in I$, there exists $C=C(|I|)>0$:

$$
\begin{equation*}
\left\|U_{n}\right\|_{C^{1,1}\left(I_{n} \cap I\right)} \leqslant C \quad \forall n \in \mathbb{N} \tag{14}
\end{equation*}
$$

Set $J_{n}=I_{n} \cap I$. Since I is bounded, (7) implies $U_{n}(r) \leqslant U_{n}(0)=1$ for $n \geqslant n(|I|)$ and $r \in J_{n}$. Hence, by (11), (13):

$$
\begin{aligned}
\left|\dot{U}_{n}(r)\right|=\left|\dot{U}_{n}(r)-\dot{U}_{n}(0)\right| & \leqslant|r| \int_{0}^{1}\left|\ddot{U}_{n}(t r)\right| d t \leqslant(N-1)[1+\omega(V)]\left(\varepsilon_{n} \max _{s \in J_{n}}\left|\dot{U}_{n}(s)\right|+1\right)|r| \\
& \leqslant \frac{1}{2} \max _{r \in J_{n}}\left|\dot{U}_{n}(r)\right|+(N-1)[1+\omega(V)]|I|,
\end{aligned}
$$

and then: $\max _{r \in J_{n}}\left|\dot{U}_{n}(r)\right| \leqslant 2(N-1)[1+\omega(V)]|I|$ for $n \geqslant n(|I|)$. In turn, this implies

$$
\begin{aligned}
\left|\dot{U}_{n}(r)-\dot{U}_{n}(s)\right| & \leqslant|r-s| \int_{0}^{1}\left|\ddot{U}_{n}(s+t(r-s))\right| d t \\
& \leqslant(N-1)[1+\omega(V)]\left(\varepsilon_{n} \max _{t \in J_{n}}\left|\dot{U}_{n}(t)\right|+1\right)|r-s| \\
& \leqslant 2(N-1)[1+\omega(V)]|r-s| \quad \forall r, s \in J_{n}, n \geqslant n(|I|)
\end{aligned}
$$

i.e. (14) holds with $C=\max \left\{2(N-1)[1+\omega(V)][|I|+1]+1,\left\|U_{n}\right\|_{C^{1,1}\left(I_{n} \cap I\right)}: 1 \leqslant n<n(|I|)\right\}$.

2nd Step: $L_{0}=L_{1}=+\infty$ and $U_{n} \rightarrow U$ in $C_{\mathrm{loc}}^{1}(\mathbb{R})$ as $n \rightarrow+\infty$.
Assume that $L_{0}<+\infty$. Then, by (14), U_{n} is uniformly bounded in $C^{1,1}\left[-\frac{a_{n}-1}{\varepsilon_{n}}, R\right]$, for any $R>0$. Since $L_{0}<+\infty$ implies $L_{1}=+\infty$, we can assume, up to a subsequence and a diagonal process, that $U_{n} \rightarrow U$ in $C_{\mathrm{loc}}^{1}\left[-L_{0},+\infty\right)$ (and then $L_{0}>0$) where:

$$
\begin{cases}-\ddot{U}+\mu U=U^{p} & \text { in }\left(-L_{0},+\infty\right) \\ 0 \leqslant U(r) \leqslant U(0)=1 & \text { in }\left(-L_{0},+\infty\right) \\ U\left(-L_{0}\right)=0 & \end{cases}
$$

in view of (7), (12)-(13). Since U is even (see Appendix A), $U\left(L_{0}\right)=0$ and then $\dot{U}\left(L_{0}\right)=0$ because $U \geqslant 0$. Hence $U \equiv 0$, a contradiction. Thus $L_{0}=+\infty$. Similarly, $L_{1}=+\infty$.

3rd Step: $\mu=\frac{2}{p+1}$ and (10) holds.
As shown in Appendix A, U positive implies its energy is nonpositive:

$$
\begin{aligned}
0 \geqslant H(U, \dot{U}) & :=\frac{1}{2} \dot{U}^{2}-\frac{1}{2} \mu U^{2}+\frac{1}{p+1} U^{p+1} \equiv \frac{1}{2} \dot{U}^{2}(0)-\frac{\mu}{2} U^{2}(0)+\frac{1}{p+1} U^{p+1}(0) \\
& =\frac{1}{p+1}-\frac{\mu}{2}
\end{aligned}
$$

Hence $\mu \geqslant \frac{2}{p+1}$. Now, $\mu>\frac{2}{p+1}$ implies (see Appendix A) U is a positive, possibly constant, periodic solution and there is a countable family of functions $\phi_{j} \in C_{0}^{\infty}(\mathbb{R})$ with mutually disjoint supports such that, for some $\delta>0$, it results

$$
\int_{\mathbb{R}}\left(\dot{\phi}_{j}^{2}+\mu \phi_{j}^{2}-p U^{p-1} \phi_{j}^{2}\right) d r \leqslant-\delta<0
$$

Let $\phi_{j, n}(r)=\phi_{j}\left(\frac{r-a_{n}}{\varepsilon_{n}}\right)$, so that $\operatorname{supp} \phi_{j, n}=a_{n}+\varepsilon_{n} \operatorname{supp} \phi_{j}$ are disjoint for different j 's and contained in $\left\{a_{n}-R_{j} \varepsilon_{n} \leqslant|x| \leqslant a_{n}+R_{j} \varepsilon_{n}\right\}$, for some $R_{j}>0$. Moreover, if $a:=\lim _{n \rightarrow+\infty} a_{n}$ (along some subsequence), by Steps 1-2 we get:

$$
\begin{aligned}
& \varepsilon_{n} \int_{\Omega}\left(\left|\nabla \phi_{j, n}\right|^{2}+\left(\lambda_{n} V(r)-p u_{n}^{p-1}\right) \phi_{j, n}^{2}\right) \\
& \quad=\varepsilon_{n} \int_{1}^{2} r^{N-1}\left(\left(\dot{\phi}_{j, n}\right)^{2}+\left(\lambda_{n} V(r)-p u_{n}^{p-1}\right) \phi_{j, n}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\text {Supp } \phi_{j}}\left(\varepsilon_{n} r+a_{n}\right)^{N-1}\left[\dot{\phi}_{j}^{2}+\left(\lambda_{n} \varepsilon_{n}^{2} V\left(\varepsilon_{n} r+a_{n}\right)-p U_{n}^{p-1}\right) \phi_{j}^{2}\right] \\
& \rightarrow_{n} a^{N-1} \int_{\mathbb{R}}\left(\dot{\phi}_{j}^{2}+\left(\mu-p U^{p-1}\right) \phi_{j}^{2}\right) \leqslant-\delta<0 \quad \forall n \geqslant n(j) .
\end{aligned}
$$

This contradicts (5) and hence $\mu=\frac{2}{p+1}$. As for (10), just notice that, by (6) we have

$$
\int_{\mathbb{R}}\left(\dot{U}^{2}+\left(\frac{2}{p+1}-p U^{p-1}\right) U^{2}\right)=-(p-1) \int_{\mathbb{R}} U^{p+1}<0
$$

(see (A.2) in Appendix A) and hence, by density, there exist $R=R(U)$ and $\psi \in C_{0}^{\infty}([-R, R])$ such that

$$
\int_{\mathbb{R}}\left(\dot{\psi}^{2}+\left(\frac{2}{p+1}-p U^{p-1}\right) \psi^{2}\right)<0
$$

As above, we see that $\psi_{n}(r)=\psi\left(\frac{r-a_{n}}{\varepsilon_{n}}\right)$ satisfies the requirements in (10). This ends the proof of Proposition 2.1.

3. Global behavior

Once the limit profile problem (6) has been identified and the local behavior around a blowup sequence a_{n} has been described, our next task is to provide global estimates: we will show that the sequence u_{n} decays exponentially away from blow-up points and we will prove that the number of blow-up sequences cannot exceed \bar{k}, the upper bound for the Morse index of the $\left(u_{n}\right)$'s. We have the following global result:

Theorem 3.1. Let $\lambda_{n} \rightarrow \infty, u_{n}$ be solutions of (1) satisfying (5). Up to a subsequence, there exist $a_{n}^{1}, \ldots, a_{n}^{k}, k \leqslant \bar{k}\left(\bar{k}\right.$ given in (5)), with $\varepsilon_{n}^{i}=u_{n}\left(a_{n}^{i}\right)^{-\frac{p-1}{2}} \rightarrow 0$ such that

$$
\begin{gather*}
\lambda_{n}\left(\varepsilon_{n}^{i}\right)^{2} V\left(a_{n}^{i}\right) \rightarrow \frac{2}{p+1} \quad \text { as } n \rightarrow+\infty \quad \forall i=1, \ldots, k, \tag{15}\\
\varepsilon_{n}^{1} \leqslant \varepsilon_{n}^{i} \leqslant C \varepsilon_{n}^{1} \quad \forall i=1, \ldots, k, \tag{16}\\
\frac{\varepsilon_{n}^{i}+\varepsilon_{n}^{j}}{\left|a_{n}^{i}-a_{n}^{j}\right|} \rightarrow 0 \quad \text { as } n \rightarrow+\infty \quad \forall i, j=1, \ldots, k, i \neq j, \tag{17}\\
u_{n}\left(a_{n}^{i}\right)=\max _{\left\{\left|r-a_{n}^{i}\right| \leqslant R_{n} \varepsilon_{n}^{i}\right\}} u_{n}, \tag{18}\\
u_{n}(r) \leqslant C\left(\varepsilon_{n}^{1}\right)^{-\frac{2}{p-1}} \sum_{i=1}^{k} e^{-\gamma \frac{\left|r-a_{n}^{i}\right|}{\varepsilon_{n}^{1}}} \quad \forall r \in(1,2), \forall n \in \mathbb{N}, \tag{19}
\end{gather*}
$$

for some $\gamma, C>0$ and $R_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$.

Proof. The proof is divided into two steps.
1st Step: There exist $k \leqslant \bar{k}$ sequences $a_{n}^{1}, \ldots, a_{n}^{k}$ satisfying (15)-(18) such that:

$$
\begin{equation*}
\lim _{R \rightarrow+\infty}\left(\limsup _{n \rightarrow+\infty}\left[\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{d_{n}(r) \geqslant R \varepsilon_{n}^{1}\right\}} u_{n}(r)\right]\right)=0 \tag{20}
\end{equation*}
$$

where $d_{n}(r)=\min \left\{\left|r-a_{n}^{i}\right|: i=1, \ldots, k\right\}$ is the distance function from $\left\{a_{n}^{1}, \ldots, a_{n}^{k}\right\}$.
First of all, let a_{n}^{1} be a point of global maximum of $u_{n}: u_{n}\left(a_{n}^{1}\right)=\max _{r \in(1,2)} u_{n}(r)$. Since (18) clearly holds for a_{n}^{1}, Proposition 2.1 applies, and (9) provides exactly (15). If (20) already holds for a_{n}^{1}, then we take $k=1$ and the claim is proved. If not (passing to a subsequence)

$$
\begin{equation*}
\exists \delta>0, \exists R_{n} \rightarrow+\infty: \quad\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{\left|r-a_{n}^{1}\right| \geqslant R_{n} \varepsilon_{n}^{1}\right\}} u_{n}(r) \geqslant 2 \delta>0 . \tag{21}
\end{equation*}
$$

Now, an application of Proposition 2.1 gives, eventually for a subsequence,

$$
\begin{equation*}
\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} u_{n}\left(r \varepsilon_{n}^{1}+a_{n}^{1}\right)=U_{n}^{1}(r) \rightarrow_{n} U(r) \tag{22}
\end{equation*}
$$

uniformly on bounded sets (U solution of (6)). By the decay of U (see (A.1)), there is $R_{\delta}>0$ such that $U(r) \leqslant \frac{\delta}{2}$ for $|r| \geqslant R_{\delta}$. Hence, using (22), we see that (R_{j} given in (21))

$$
\forall j \exists n_{j}: \quad R_{n_{j}} \geqslant R_{j} \quad \text { and } \quad\left(\varepsilon_{n_{j}}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{R_{\delta} \varepsilon_{n_{j}}^{1} \leqslant\left|r-a_{n_{j}}^{1}\right| \leqslant R_{j} \varepsilon_{n_{j}}^{1}\right\}} u_{n_{j}}(r) \leqslant \delta .
$$

This, jointly with (21) gives

$$
\begin{align*}
\left(\varepsilon_{n_{j}}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{\left|r-a_{n_{j}}^{1}\right| \geqslant R_{\delta} \varepsilon_{n_{j}}^{1}\right\}} u_{n_{j}}(r) & =\left(\varepsilon_{n_{j}}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{\left|r-a_{n_{j}}^{1}\right| \geqslant R_{j} \varepsilon_{n_{j}}^{1}\right\}} u_{n_{j}}(r) \geqslant 2 \delta>\delta \\
& \geqslant\left(\varepsilon_{n_{j}}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{R_{\delta} \varepsilon_{n_{j}}^{1} \leqslant\left|r-a_{n_{j}}^{1}\right| \leqslant R_{j} \varepsilon_{n_{j}}^{1}\right\}} u_{n_{j}}(r) \quad \forall j . \tag{23}
\end{align*}
$$

Hence, for any j :

$$
\begin{equation*}
\exists a_{n_{j}}^{2} \in\left\{\left|r-a_{n_{j}}^{1}\right| \geqslant R_{j} \varepsilon_{n_{j}}^{1}\right\}: \quad u_{n_{j}}\left(a_{n_{j}}^{2}\right)=\max _{\left\{\left|r-a_{n_{j}}^{1}\right| \geqslant R_{\delta} \varepsilon_{n_{j}}^{1}\right\}} u_{n_{j}}(r) \geqslant 2 \delta\left(\varepsilon_{n_{j}}^{1}\right)^{-\frac{2}{p-1}} . \tag{24}
\end{equation*}
$$

By (24) we get $\varepsilon_{n_{j}}^{2}:=u_{n_{j}}\left(a_{n_{j}}^{2}\right)^{-\frac{p-1}{2}} \leqslant \varepsilon_{n_{j}}^{1}(2 \delta)^{-\frac{p-1}{2}}$, and since $\varepsilon_{n_{j}}^{1} \leqslant \varepsilon_{n_{j}}^{2}$ we see that (16) is fulfilled, as well as (17) because $\left|a_{n_{j}}^{2}-a_{n_{j}}^{1}\right| \geqslant R_{j} \varepsilon_{n_{j}}^{1}$. This inequality and (23) imply (18):

$$
u_{n_{j}}\left(a_{n_{j}}^{2}\right)=\max _{\left\{\left|r-a_{n_{j}}^{2}\right| \leqslant\left[R_{j}-R_{\delta}\right](2 \delta)^{\frac{2}{p-1}} \varepsilon_{n_{j}}^{2}\right\}} u_{n_{j}}(r) .
$$

In fact

$$
\begin{aligned}
& \left|r-a_{n_{j}}^{2}\right| \leqslant\left[R_{j}-R_{\delta}\right](2 \delta)^{\frac{p-1}{2}} \varepsilon_{n_{j}}^{2} \Rightarrow \\
& \left|r-a_{n_{j}}^{1}\right| \geqslant\left|a_{n_{j}}^{2}-a_{n_{j}}^{1}\right|-\left[R_{j}-R_{\delta}\right](2 \delta)^{\frac{p-1}{2}} \varepsilon_{n_{j}}^{2} \geqslant R_{j} \varepsilon_{n_{j}}^{1}-\left[R_{j}-R_{\delta}\right] \varepsilon_{n_{j}}^{1}=R_{\delta} \varepsilon_{n_{j}}^{1}
\end{aligned}
$$

Up to the subsequence n_{j}, thus (16)-(18) hold true for $\left\{a_{n}^{1}, a_{n}^{2}\right\}$, and, if $\left\{a_{n}^{1}, a_{n}^{2}\right\}$ also satisfy (20), we are finished. Otherwise, we iterate the above argument: given s sequences $a_{n}^{1}, \ldots, a_{n}^{s}$, let us denote $d_{n}(r)=\min \left\{\left|r-a_{n}^{i}\right|: i=1, \ldots, s\right\}$. If (15)-(18) are satisfied, but (20) is not, we have

$$
\exists \delta>0, \exists R_{n} \rightarrow+\infty: \quad\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{d_{n}(r) \geqslant R_{n} \varepsilon_{n}^{1}\right\}} u_{n}(r) \geqslant 2 \delta
$$

and, by assumptions (16)-(18) and Proposition 2.1:

$$
\begin{align*}
& \exists \theta_{i} \in\left[\frac{1}{C}, 1\right]: \frac{\varepsilon_{n}^{1}}{\varepsilon_{n}^{i}} \rightarrow \theta_{i}, \\
& \quad\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} u_{n}\left(r \varepsilon_{n}^{1}+a_{n}^{i}\right)=\left(\frac{\varepsilon_{n}^{1}}{\varepsilon_{n}^{i}}\right)^{\frac{2}{p-1}} U_{n}^{i}\left(\frac{\varepsilon_{n}^{1}}{\varepsilon_{n}^{i}} r\right) \rightarrow \theta_{i}^{\frac{2}{p-1}} U\left(\theta_{i} r\right) \tag{25}
\end{align*}
$$

uniformly on bounded sets. By (A.1), $\theta_{i}^{\frac{2}{p-1}} U\left(\theta_{i} r\right)<\delta$ for $|r| \geqslant R_{\delta}$. Now things go as above, replacing $\left|r-a_{n}^{1}\right|$ with $d_{n}(r)$. Finally, the argument ends after at most \bar{k} iteration, because Proposition 2.1 applies to any sequence $a_{n}^{i}, i=1, \ldots, k$, providing, for n large, radial functions $\psi_{n}^{i} \in C_{0}^{\infty}(\Omega)$ such that (10) holds with supp $\psi_{n}^{i} \subset\left\{a_{n}^{i}-R \varepsilon_{n}^{i} \leqslant|x| \leqslant a_{n}^{i}+R \varepsilon_{n}^{i}\right\}$, for some $R>0$. By (17) we get that $\psi_{n}^{1}, \ldots, \psi_{n}^{k}$ have disjoint compact supports for any n large and then $k \leqslant \bar{k}$.

2nd Step: Let $a_{n}^{1}, \ldots, a_{n}^{k}$ be as in the first step. Then there are $\gamma, C>0$ such that:

$$
u_{n}(r) \leqslant C\left(\varepsilon_{n}^{1}\right)^{-\frac{2}{p-1}} \sum_{i=1}^{k} e^{-\gamma \frac{\left|r-a_{n}^{i}\right|}{\varepsilon_{n}^{n}}} \quad \forall r \in(1,2), \forall n \in \mathbb{N} .
$$

By (20), for $R>0$ large and $n \geqslant n(R)$, it results (recall that $\omega(V):=\left[\max _{\bar{\Omega}} V\right]\left[\min _{\bar{\Omega}} V\right]^{-1}$)

$$
\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} \max _{\left\{d_{n}(r) \geqslant R \varepsilon_{n}^{1}\right\}} u_{n}(r) \leqslant\left(\frac{1}{(p+1) \omega(V)}\right)^{\frac{1}{p-1}}
$$

and hence $\left(\varepsilon_{n}^{1}\right)^{2} u_{n}^{p-1}(r) \leqslant \frac{1}{(p+1) \omega(V)}$ in $\left\{d_{n}(r) \geqslant R \varepsilon_{n}^{1}\right\}$. On the other hand, by (15) we get

$$
\lambda_{n}\left(\varepsilon_{n}^{1}\right)^{2} V(r) \geqslant[\omega(V)]^{-1} \lambda_{n}\left(\varepsilon_{n}^{1}\right)^{2} V\left(a_{n}^{1}\right) \rightarrow_{n} \frac{2}{(p+1) \omega(V)}
$$

Hence, the following holds true: there are $R>0$ and $n(R)$ such that, if $n \geqslant n(R)$, then

$$
\begin{equation*}
\left(\varepsilon_{n}^{1}\right)^{2}\left[\lambda_{n} V(r)-u_{n}^{p-1}(r)\right] \geqslant \frac{1}{2(p+1) \omega(V)}>0 \quad \text { if } d_{n}(r) \geqslant R \varepsilon_{n}^{1} \tag{26}
\end{equation*}
$$

Now, consider the linear operator:

$$
L_{n} \phi=-\Delta \phi+\left(\lambda_{n} V(r)-u_{n}^{p-1}(r)\right) \phi, \quad \phi \in C^{2}(\Omega)
$$

Notice that $L_{n} u_{n}=0$. Since $u_{n}>0$ in Ω, L_{n} satisfies the minimum principle in any domain in Ω (see [6]). Let $\gamma>0$ and $\phi_{n}^{i}(r)=e^{-\gamma\left(\varepsilon_{n}^{1}\right)^{-1}\left|r-a_{n}^{i}\right| \text {. By (26), for } R \text { large it results }}$

$$
L_{n} \phi_{n}^{i}=\left(\varepsilon_{n}^{1}\right)^{-2} \phi_{n}^{i}\left[-\gamma^{2}+(N-1) \frac{\varepsilon_{n}^{1}}{r} \gamma \frac{r-a_{n}^{i}}{\left|r-a_{n}^{i}\right|}+\left(\varepsilon_{n}^{1}\right)^{2}\left(\lambda_{n} V(r)-u_{n}^{p-1}(r)\right)\right]>0
$$

if $d_{n}(r) \geqslant R \varepsilon_{n}^{1}, \gamma^{2} \leqslant \frac{1}{8(p+1) \omega(V)}$ and $n \geqslant n(R, \gamma)$. In addition, by (25) we have

$$
\left.\left(e^{\gamma R} \phi_{n}^{i}(r)-\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} u_{n}(r)\right)\right|_{r=a_{n}^{i} \pm R \varepsilon_{n}^{1}}=1-\left(\varepsilon_{n}^{1}\right)^{\frac{2}{p-1}} u_{n}\left(a_{n}^{i} \pm R \varepsilon_{n}^{1}\right) \rightarrow 1-\theta_{i}^{\frac{2}{p-1}} U\left(\pm \theta_{i} R\right)>0
$$

Then $\Phi_{n}:=e^{\gamma R}\left(\varepsilon_{n}^{1}\right)^{-\frac{2}{p-1}} \sum_{i=1}^{k} \phi_{n}^{i}$ satisfies

$$
L_{n}\left(\Phi_{n}-u_{n}\right)>0 \quad \text { in }\left\{d_{n}(r)>R \varepsilon_{n}^{1}\right\} \quad \text { and } \quad \Phi_{n}-u_{n}>0 \quad \text { on }\left\{d_{n}(r)=R \varepsilon_{n}^{1}\right\} \cup\{|r|=1,2\}
$$

(notice that, by (16)-(17) $\left\{d_{n}(r)>R \varepsilon_{n}^{1}\right\}$ are disjoint intervals for $n \geqslant n(R)$), and then, by minimum principle $u_{n} \leqslant \Phi_{n}$ in $\left\{d_{n}(r)>R \varepsilon_{n}^{1}\right\}$, if R is large and $n \geqslant n(R)$. That is

$$
\begin{equation*}
u_{n}(r) \leqslant e^{\gamma R}\left(\varepsilon_{n}^{1}\right)^{-\frac{2}{p-1}} \sum_{i=1}^{k} e^{-\gamma \frac{\left|r-a_{n}^{i}\right|}{\varepsilon_{n}^{n}}} \quad \text { if } d_{n}(r) \geqslant R \varepsilon_{n}^{1} \text { and } n \geqslant n(R) . \tag{27}
\end{equation*}
$$

Since

$$
u_{n}(r) \leqslant \max _{\Omega} u_{n}=\left(\varepsilon_{n}^{1}\right)^{-\frac{2}{p-1}} \leqslant e^{\gamma R}\left(\varepsilon_{n}^{1}\right)^{-\frac{2}{p-1}} \sum_{i=1}^{k} e^{-\gamma \frac{\left|r-a_{n}^{i}\right|}{\varepsilon_{n}^{n}}} \text { if } d_{n}(r) \leqslant R \varepsilon_{n}^{1} \text { and } n \geqslant n(R),
$$

(27) holds for any $r \in(1,2)$ and $n \geqslant n(R)$. Thus, for some $C \geqslant e^{\gamma R}$ (19) holds true for any n and the proof is now complete.

As a by-product, the number of points of local maximum is controlled by (5):

Corollary 3.2. Let $\lambda_{n} \rightarrow \infty$, u_{n} be solutions of (1) satisfying (5). Up to a subsequence, u_{n} has, for n large, exactly k points of local maximum $a_{n}^{1}, \ldots, a_{n}^{k}, k \leqslant \bar{k}$, where $a_{n}^{1}, \ldots, a_{n}^{k}$ are given by Theorem 3.1.

Proof. By (26) $u_{n}^{p}-\lambda_{n} V(r) u_{n}<0 \forall r \in\left\{d_{n}(r) \geqslant R \varepsilon_{n}^{1}\right\}$, for R large and fixed and $n \geqslant n(R)$. Hence, by (1) all the points of local maximum of u_{n} stay, for n large, in the region $d_{n}(r) \leqslant R \varepsilon_{n}^{1}$. We are lead to show that $a_{n}^{1}, \ldots, a_{n}^{k}$ are, for n large, the only points of local maximum of u_{n} in $d_{n}(r) \leqslant R \varepsilon_{n}^{1}$.

By contradiction, let s_{n} be points of local maximum of u_{n}, with $0<\left|s_{n}-a_{n}^{i}\right| \leqslant R \varepsilon_{n}^{1}$, for some $i \leqslant k$. Since 0 is the only critical point of the limit function U, by the $C_{\text {loc }}^{1}(\mathbb{R})$ convergence of U_{n}^{i} to U we get $\tilde{s}_{n}:=\frac{s_{n}-a_{n}^{i}}{\varepsilon_{n}^{i}} \rightarrow 0$ as $n \rightarrow+\infty$. By (13) and (15) we get:

$$
-\ddot{U}_{n}^{i}\left(\tilde{s}_{n}\right)=\left(U_{n}^{i}\right)^{p}\left(\tilde{s}_{n}\right)-\lambda_{n}\left(\varepsilon_{n}^{i}\right)^{2} V\left(\tilde{s}_{n}\right) U_{n}^{i}\left(\tilde{s}_{n}\right) \rightarrow_{n} 1-\frac{2}{p+1}>0
$$

Then, s_{n} is a strict local maximum and hence there is a local minimum at some t_{n} strictly in between s_{n} and a_{n}^{i}. However, as for s_{n}, it should be $\tilde{t}_{n}:=\frac{t_{n}-a_{n}^{i}}{\varepsilon_{n}^{i}} \rightarrow 0$ as $n \rightarrow+\infty$ and $\ddot{U}_{n}^{i}\left(\tilde{t}_{n}\right)<0$ for n large, a contradiction.

4. Location of the blow-up set

In concentration phenomena, the role of the modified potential $M(r)$ given in (3) has been pointed out in papers of Ambrosetti, Malchiodi and Ni [1,2], when dealing with the same equation either in \mathbb{R}^{N} or in a ball/annulus in \mathbb{R}^{N} with homogeneous Dirichlet boundary condition. To show by an asymptotic approach the role of $M(r)$, we will combine the results in the previous section with a Pohozaev-type identity (see Appendix A).

Let us start with some asymptotic estimates for u_{n}, solutions of (1). By Corollary $3.2 u_{n}$ has, up to a subsequence, exactly k points of local maximum $a_{n}^{1}, \ldots, a_{n}^{k} \in(1,2)$ with, say, $a_{n}^{i} \rightarrow a^{i} \in[1,2], i=1, \ldots, k$. Let $J_{i}=\left\{j=1, \ldots, k: a_{n}^{j} \rightarrow_{n} a^{i}\right\}$. We have the following:

Lemma 4.1. Let $g(r)$ be some smooth function on $[1,2]$. Let $q>1$. Fix $i \in\{1, \ldots, k\}$ and denote $I_{\delta}^{i}:=\left[a^{i}-\delta, a^{i}+\delta\right] \cap(1,2)$ where $\delta>0$ is so small that $I_{\delta}^{i} \cap\left\{a^{1}, \ldots, a^{k}\right\}=\left\{a^{i}\right\}$. Then

$$
\begin{equation*}
\int_{I_{\delta}^{i}} g(r) u_{n}^{q}=g\left(a^{i}\right)\left(\sum_{j \in J_{i}}\left(\varepsilon_{n}^{j}\right)^{\frac{p-1-2 q}{p-1}}\right)\left(\int_{\mathbb{R}} U^{q}+o_{n}(1)\right) \tag{28}
\end{equation*}
$$

where $o_{n}(1) \rightarrow 0$ as $n \rightarrow+\infty$. In particular, there holds:

$$
\begin{equation*}
\int_{1}^{2} u_{n}^{p+1}=\left(\sum_{i=1}^{k}\left(\varepsilon_{n}^{i}\right)^{-\frac{p+3}{p-1}}\right)\left(\int_{\mathbb{R}} U^{p+1}+o_{n}(1)\right) \tag{29}
\end{equation*}
$$

Proof. Let $d_{n}(r):=\min \left\{\left|r-a_{n}^{i}\right|: i=1, \ldots, k\right\}$. Given $R>0$, (8), (16) and (17) imply that, for $n \geqslant n(R),\left\{d_{n}(r) \leqslant R \varepsilon_{n}^{1}\right\}$ are mutually disjoint intervals and

$$
\left\{d_{n}(r) \leqslant R \varepsilon_{n}^{1}\right\} \subset(1,2) \quad \text { and } \quad I_{\delta}^{i} \cap\left\{d_{n}(r) \leqslant R \varepsilon_{n}^{1}\right\}=\bigcup_{j \in J_{i}}\left\{\left|r-a_{n}^{j}\right| \leqslant R \varepsilon_{n}^{1}\right\}
$$

By (19) we know that $u_{n}^{q} \leqslant C\left(\varepsilon_{n}^{1}\right)^{-\frac{2 q}{p-1}} \sum_{j=1}^{k} e^{-q \gamma \frac{\left|r-a_{n}^{j}\right|}{\varepsilon_{n}^{1}}}$. Thus

$$
\begin{aligned}
\int_{I_{\delta}^{i}} g(r) u_{n}^{q}= & \int_{I_{\delta}^{i} \cap\left\{d_{n}(r) \leqslant R \varepsilon_{n}^{1}\right\}} g(r) u_{n}^{q}+\int_{I_{\delta}^{i} \cap\left\{d_{n}(r) \geqslant R \varepsilon_{n}^{1}\right\}} g(r) u_{n}^{q} \\
= & \sum_{j \in J_{i}} \int_{\left\{\left|r-a_{n}^{j}\right| \leqslant R \varepsilon_{n}^{1}\right\}} g(r) u_{n}^{q}+O\left(\left(\varepsilon_{n}^{1}\right)^{-\frac{2 q}{p-1}} \sum_{j=1}^{k} \int_{I_{\delta}^{i} \cap\left\{d_{n}(r) \geqslant R \varepsilon_{n}^{1}\right\}} e^{-q \gamma \frac{\left|r-a_{n}^{j}\right|}{\varepsilon_{n}^{n}}}\right) \\
= & \sum_{j \in J_{i}}\left(\varepsilon_{n}^{j}\right)^{-\frac{2 q-p+1}{p-1}} \int_{\left\{|r| \leqslant R \frac{\varepsilon_{n}^{1}}{\varepsilon_{n}^{j}}\right\}} g\left(\varepsilon_{n}^{j} r+a_{n}^{j}\right)\left(U_{n}^{j}\right)^{q} \\
& +O\left(\left(\varepsilon_{n}^{1}\right)^{-\frac{2 q}{p-1}} \sum_{j=1}^{k} \varepsilon_{n}^{j} \int_{\left\{|r| \geqslant R \frac{\varepsilon_{n}^{1}}{\varepsilon_{n}^{j}}\right\}} e^{-q \gamma|r| \frac{\varepsilon_{n}^{j}}{\varepsilon_{n}^{1}}}\right) .
\end{aligned}
$$

Up to a subsequence, by (16) we can assume that $\varepsilon_{n}^{1} / \varepsilon_{n}^{j} \rightarrow_{n} \theta_{j} \in\left[\frac{1}{C}, 1\right]$ for any $j=1, \ldots, k$. Since $U_{n}^{j} \rightarrow_{n} U$ in $C_{\text {loc }}^{1}(\mathbb{R})$ for any $j=1, \ldots, k$, we find, along some subsequence

$$
\lim _{n \rightarrow+\infty}\left(\varepsilon_{n}^{1}\right)^{\frac{2 q-p+1}{p-1}} \int_{I_{\delta}^{i}} u_{n}^{q}=g\left(a^{i}\right) \sum_{j \in J_{i}} \theta_{j}^{\frac{2 q-p+1}{p-1}} \int_{\left\{|r| \leqslant R \theta_{j}\right\}} U^{q}+O\left(\sum_{j=1}^{k} \int_{\left\{|r| \geqslant R \theta_{j}\right\}} e^{-\frac{q \gamma|r|}{\theta_{j}}}\right)
$$

Sending R to infinity, we get, along the same subsequence,

$$
\lim _{n \rightarrow+\infty}\left(\varepsilon_{n}^{1}\right)^{\frac{2 q-p+1}{p-1}} \int_{I_{\delta}^{i}} u_{n}^{q}=g\left(a^{i}\right)\left(\sum_{j \in J_{i}} \theta_{j}^{\frac{2 q-p+1}{p-1}}\right) \int_{\mathbb{R}} U^{q} .
$$

Since we found the same value along any convergent subsequence, and recalling the definition of θ_{j}, the proof of (28) is complete. Finally, since by (19) $u_{n} \rightarrow 0$ as $n \rightarrow+\infty$ uniformly far away from $\left\{a^{1}, \ldots, a^{k}\right\}$, (28), with $q=p+1$ and $g \equiv 1$, implies (29).

The asymptotic expansions in Lemma 4.1, combined with the Pohozaev identity (A.3), leads to the identification of $a^{i}, i=1, \ldots, k$:

Theorem 4.2. For any $i=1, \ldots, k a^{i} \in \mathcal{M}$, where \mathcal{M} is given in (4).
Proof. Given $i=1, \ldots, k$, first consider the case $a^{i} \in(1,2)$. Let I_{δ}^{i} be as in Lemma 4.1. By (15), (19) $\lambda_{n} u_{n}^{2} \rightarrow_{n} 0$ uniformly away from the a^{i} 's and elliptic regularity estimates imply the same for \dot{u}_{n}. Thus we see, plugging $a=a^{i}-\delta, b=a^{i}+\delta$ in (A.3), that:

$$
\left(N-\frac{3}{2}-\frac{1}{p+1}\right) \int_{a^{i}-\delta}^{a^{i}+\delta} u_{n}^{p+1}+\lambda_{n} \int_{a^{i}-\delta}^{a^{i}+\delta}\left(\frac{r}{2} \dot{V}-(N-2) V\right) u_{n}^{2}+\left(N-\frac{3}{2}\right) \int_{a^{i}-\delta}^{a^{i}+\delta} \frac{N-1}{2 r^{2}} u_{n}^{2} \rightarrow 0
$$

as $n \rightarrow+\infty$. By (15) and (28) we get as $n \rightarrow+\infty$ (here $o_{n}(1) \rightarrow 0$ as $\left.n \rightarrow+\infty\right)$

$$
\begin{aligned}
& \int_{a^{i}-\delta}^{a^{i}+\delta} u_{n}^{p+1}=\left(\sum_{j \in J_{i}}\left(\varepsilon_{n}^{j}\right)^{-\frac{p+3}{p-1}}\right)\left(\int_{\mathbb{R}} U^{p+1}+o_{n}(1)\right), \quad \int_{a^{i}-\delta}^{a^{i}+\delta} \frac{u_{n}^{2}}{r^{2}}=\frac{1}{\lambda_{n}} O\left(\sum_{j \in J_{i}}\left(\varepsilon_{n}^{j}\right)^{-\frac{p+3}{p-1}}\right), \\
& \lambda_{n} \int_{a^{i}-\delta}^{a^{i}+\delta}\left(\frac{r}{2} \dot{V}-(N-2) V\right) u_{n}^{2}= \frac{1}{p+1}\left(a^{i} \frac{\dot{V}\left(a^{i}\right)}{V\left(a^{i}\right)}-2(N-2)\right)\left(\sum_{j \in J_{i}}\left(\varepsilon_{n}^{j}\right)^{-\frac{p+3}{p-1}}\right) \\
& \times\left(\int_{\mathbb{R}} U^{2}+o_{n}(1)\right) .
\end{aligned}
$$

Hence, also making use of the relation $\int_{\mathbb{R}} U^{p+1}=\frac{4}{p+3} \int_{\mathbb{R}} U^{2}$ (see (A.1)), we get

$$
\begin{aligned}
0 & =\left(N-\frac{3}{2}-\frac{1}{p+1}\right) \int_{\mathbb{R}} U^{p+1}-\frac{2(N-2)}{p+1} \int_{\mathbb{R}} U^{2}+\frac{a^{i}}{p+1} \frac{\dot{V}\left(a^{i}\right)}{V\left(a^{i}\right)} \int_{\mathbb{R}} U^{2} \\
& =\left[N\left(\frac{4}{p+3}-\frac{2}{p+1}\right)-\left(\frac{3}{2}+\frac{1}{p+1}\right) \frac{4}{p+3}+\frac{4}{p+1}+\frac{a^{i}}{p+1} \frac{\dot{V}\left(a^{i}\right)}{V\left(a^{i}\right)}\right] \int_{\mathbb{R}} U^{2} \\
& =\left[N-1+\frac{p+3}{2(p-1)} \frac{a^{i} \dot{V}\left(a^{i}\right)}{V\left(a^{i}\right)}\right] \frac{2(p-1)}{(p+3)(p+1)} \int_{\mathbb{R}} U^{2} \\
& =\frac{2(p-1)}{(p+3)(p+1)}\left(\int_{\mathbb{R}} U^{2}\right) V\left(a^{i}\right)^{-\theta}\left(a^{i}\right)^{2-N} \dot{M}\left(a^{i}\right) .
\end{aligned}
$$

Consider now the case $a^{i}=1$. Let I_{δ}^{i} be as above. As before, $\lambda_{n} u_{n}^{2}+\dot{u}_{n}^{2} \rightarrow 0$ as $n \rightarrow+\infty$ at $1+\delta$. Taking $a=1, b=1+\delta$ in (A.3), we see that:

$$
\begin{aligned}
& \left(N-\frac{3}{2}-\frac{1}{p+1}\right) \int_{1}^{1+\delta} u_{n}^{p+1}+\lambda_{n} \int_{1}^{1+\delta}\left(\frac{r}{2} \dot{V}-(N-2) V\right) u_{n}^{2}+\left(N-\frac{3}{2}\right) \int_{1}^{1+\delta} \frac{N-1}{2 r^{2}} u_{n}^{2} \\
& \geqslant\left(N-\frac{3}{2}-\frac{1}{p+1}\right) \int_{1}^{1+\delta} u_{n}^{p+1}+\lambda_{n} \int_{1}^{1+\delta}\left(\frac{r}{2} \dot{V}-(N-2) V\right) u_{n}^{2} \\
& \quad+\left(N-\frac{3}{2}\right) \int_{1}^{1+\delta} \frac{N-1}{2 r^{2}} u_{n}^{2}-\frac{1}{2} \dot{u}_{n}^{2}(1) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow+\infty$. Arguing as above, we get that

$$
0 \leqslant \frac{2(p-1)}{(p+3)(p+1)}\left(N-1+\frac{p+3}{2(p-1)} \frac{\dot{V}(1)}{V(1)}\right) \int_{\mathbb{R}} U^{2}
$$

Hence, $\dot{M}(1) \geqslant 0$, and $a^{i}=1 \in \mathcal{M}$ holds.
Case $a^{i}=2$ can be dealt similarly, getting now $a^{i}=2 \in \mathcal{M}$. Hence, the theorem is completely established.

Appendix A

A.1. Phase plane analysis of the limiting equation

Let U be a C^{2}-solution of the equation

$$
-\ddot{U}+\mu U=|U|^{p-1} U
$$

and $(U(r), \dot{U}(r))$ the corresponding (parametrized) orbit in the phase plane. Let

$$
H(u, v):=\frac{1}{2} v^{2}+G(u), \quad G(u):=-\frac{\mu}{2} u^{2}+\frac{1}{p+1}|u|^{p+1}
$$

be the energy function; it is a conserved quantity: $h \equiv H(U(r), \dot{U}(r))$ is the energy of the orbit (U, \dot{U}). Since level sets $\{H(u, v)=h\}$ are compact, U is globally defined. For simplicity, we will consider the case $\mu>0$ (case $\mu=0$ can be dealt in a similar and simpler way). Direct inspection on the level sets of H gives:

- $\{H(u, v)=h>0\}$ is a closed orbit enclosing the unstable equilibrium $(0,0)$;
- $\{(u, v): u>0, H(u, v)=0\}$ is an homoclinic orbit, asymptotic to $(0,0)$;
$-\{(u, v): u>0, H(u, v)<0\}$ is a closed orbit enclosing the stable equilibrium $\left(\mu^{\frac{1}{p-1}}, 0\right)$.
As a consequence, U positive implies: $H(U, \dot{U}) \leqslant 0$.
From now on we will assume $U(0)=1, \dot{U}(0)=0$ (notice that U is even, because it satisfies the same Cauchy problem as $\tilde{U}(r):=U(-r))$. In this case, $H(U(r), \dot{U}(r)) \equiv \frac{1}{p+1}-\frac{\mu}{2} \leqslant 0$ iff $\mu \geqslant \frac{2}{p+1}$, so U positive implies $\mu \geqslant \frac{2}{p+1}$.
Case $\mu>\frac{2}{p+1}: \boldsymbol{U}$ has infinite Morse index. From above: U is a positive periodic solution.
In case $U \equiv \mu^{\frac{1}{p-1}}=1(U(0)=1)$, the linearized equation at U is $\ddot{v}+(p-1) v=0$. Let (a, b) be such that the first eigenvalue of the Dirichlet problem is smaller than $(p-1)$. Let φ be the corresponding positive eigenfunction. After setting $\varphi \equiv 0$ outside (a, b), we see that $\int_{\mathbb{R}} \dot{\varphi}^{2}-(p-1) \varphi^{2}<0$.

Let $U \neq \mu^{\frac{1}{p-1}}$. Let $U(\bar{r})=\min _{\mathbb{R}} U(r)$. By the above discussion, $0<U(\bar{r})<\mu^{\frac{1}{p-1}}$ and hence $G^{\prime}(U(\bar{r}))<0$. If T is a period of $U, I_{k}:=[\bar{r}+k T, \bar{r}+(k+1) T], \varphi_{k}:=[U-U(\bar{r})] \chi_{I_{k}}$, then

$$
\int_{I_{k}} \dot{\varphi}_{k}^{2}+\mu \varphi_{k}^{2}-p U^{p-1} \varphi_{k}^{2}=\int_{I_{k}}\left[U^{p}-\mu U-\left(p U^{p-1}-\mu\right)(U-U(\bar{r}))\right] \varphi_{k} d r .
$$

But $U^{p}(r)-\mu U(r)-\left(p U^{p-1}(r)-\mu\right)(U(r)-U(\bar{r}))=G^{\prime}(U(r))-G^{\prime \prime}(U(r))[U(r)-U(\bar{r})] \leqslant$ $G^{\prime}(U(\bar{r}))$ because G^{\prime} is convex on $(0,+\infty)$. Thus we have

$$
\int_{\mathbb{R}} \dot{\varphi}_{k}^{2}+\mu \varphi_{k}^{2}-p U^{p-1} \varphi_{k}^{2} \leqslant G^{\prime}(U(\bar{r})) \int_{0}^{T}[U-U(\bar{r})]<0 .
$$

By density, we can replace the φ_{k} with C_{0}^{∞}-functions with mutually disjoint supports.
Case $\mu=\frac{2}{p+1}$: exponential decay. Zero energy implies (U, \dot{U}) is homoclinic to the zero equilibrium. Also, U is even and $\dot{U}(-r)>0>\dot{U}(r) \forall r>0$. We claim that

$$
\begin{equation*}
\exists C>0: U(r) \leqslant C e^{-\frac{|r|}{\sqrt{p+1}}} \quad \forall r \in \mathbb{R}, \quad \frac{2}{p+1} \int_{\mathbb{R}} U^{2}=\left(\frac{1}{2}+\frac{1}{p+1}\right) \int_{\mathbb{R}} U^{p+1} \tag{A.1}
\end{equation*}
$$

This follows from the conservation of energy: $\dot{U}^{2} \equiv \frac{2}{p+1}\left(U^{2}-U^{p+1}\right)$. Since $\dot{U}<0$ on $(0,+\infty)$ and $U(r) \rightarrow 0$ as $r \rightarrow+\infty$, we get that:

$$
\frac{\dot{U}(r)}{U(r)}=(\ln U(r))^{\prime}=-\sqrt{\frac{2}{p+1}\left(1-U^{p-1}(r)\right)} \rightarrow-\sqrt{\frac{2}{p+1}} \quad \text { as } r \rightarrow+\infty
$$

Hence, there exist $C>0$ and $R>0$ large so that $U(r) \leqslant C e^{-\frac{r}{\sqrt{p+1}}}$ for $r \geqslant R$. In a similar way, we can get an exponential decay at $-\infty$. The conservation of energy gives an exponential decay for \dot{U} as well, and by integration on \mathbb{R} yields: $\frac{1}{2} \int_{\mathbb{R}} \dot{U}^{2}=\frac{1}{p+1}\left(\int_{\mathbb{R}} U^{2}-\int_{\mathbb{R}} U^{p+1}\right)$.

Multiplying (6) by U and integrating on \mathbb{R}, we obtain that

$$
\begin{equation*}
\frac{1}{2} \int_{\mathbb{R}} \dot{U}^{2}=-\frac{1}{p+1} \int_{\mathbb{R}} U^{2}+\frac{1}{2} \int_{\mathbb{R}} U^{p+1} \tag{A.2}
\end{equation*}
$$

Taking the difference of these last two relations, (A.1) follows.

A.2. A Pohozaev-type identity

Lemma A.1. Let u be a radial solution of (1). Let $1 \leqslant a<b \leqslant 2$. Then

$$
\begin{align*}
\frac{a}{2} \dot{u}^{2}(a)= & \frac{b}{2} \dot{u}^{2}(b)+\left.\left(r \frac{u^{p+1}}{p+1}-\frac{\lambda}{2} r V u^{2}+\left(N-\frac{3}{2}\right) \dot{u} u+\left(N-\frac{3}{2}\right) \frac{N-1}{2 r} u^{2}\right)\right|_{a} ^{b} \\
& +\left(N-\frac{3}{2}-\frac{1}{p+1}\right) \int_{a}^{b} u^{p+1}+\lambda \int_{a}^{b}\left(\frac{r}{2} \dot{V}-(N-2) V\right) u^{2} \\
& +\left(N-\frac{3}{2}\right) \int_{a}^{b} \frac{N-1}{2 r^{2}} u^{2} . \tag{A.3}
\end{align*}
$$

Proof. Multiply (1), written in polar coordinates, by $r \dot{u}$ and integrate on $[a, b]$:

$$
\int_{a}^{b}\left(u^{p}-\lambda V u\right) r \dot{u}=\int_{a}^{b}\left(-\ddot{u}-\frac{N-1}{r} \dot{u}\right) r \dot{u}=-\left.\frac{r}{2} \dot{u}^{2}\right|_{a} ^{b}-\left(N-\frac{3}{2}\right) \int_{a}^{b} \dot{u}^{2} .
$$

An integration by parts gives

$$
\int_{a}^{b}\left(u^{p}-\lambda V u\right) r \dot{u}=\left.r\left(\frac{u^{p+1}}{p+1}-\frac{\lambda}{2} V u^{2}\right)\right|_{a} ^{b}-\frac{1}{p+1} \int_{a}^{b} u^{p+1}+\frac{\lambda}{2} \int_{a}^{b}(V+r \dot{V}) u^{2}
$$

Hence, we obtain:

$$
\begin{align*}
\frac{a}{2} \dot{u}^{2}(a)= & \frac{b}{2} \dot{u}^{2}(b)+\left.r\left(\frac{u^{p+1}}{p+1}-\frac{\lambda}{2} V u^{2}\right)\right|_{a} ^{b}+\left(N-\frac{3}{2}\right) \int_{a}^{b} \dot{u}^{2} \\
& -\frac{1}{p+1} \int_{a}^{b} u^{p+1}+\frac{\lambda}{2} \int_{a}^{b}(V+r \dot{V}) u^{2} . \tag{A.4}
\end{align*}
$$

Multiplying (1) by u and integrating on $[a, b]$, we get:

$$
\int_{a}^{b}\left(u^{p+1}-\lambda V u^{2}\right)=\int_{a}^{b}\left(-\ddot{u}-\frac{N-1}{r} \dot{u}\right) u=-\left.\dot{u} u\right|_{a} ^{b}+\int_{a}^{b} \dot{u}^{2}-\left.\frac{N-1}{2 r} u^{2}\right|_{a} ^{b}-\int_{a}^{b} \frac{N-1}{2 r^{2}} u^{2}
$$

and so

$$
\begin{equation*}
\int_{a}^{b} \dot{u}^{2}=\left.\left(\dot{u} u+\frac{N-1}{2 r} u^{2}\right)\right|_{a} ^{b}+\int_{a}^{b} \frac{N-1}{2 r^{2}} u^{2}+\int_{a}^{b}\left(u^{p+1}-\lambda V u^{2}\right) \tag{A.5}
\end{equation*}
$$

Inserting (A.5) in (A.4), we finally get (A.3).

References

[1] A. Ambrosetti, A. Malchiodi, W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. I, Comm. Math. Phys. 235 (3) (2003) 427-466.
[2] A. Ambrosetti, A. Malchiodi, W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. II, Indiana Univ. Math. J. 53 (2) (2004) 297-329.
[3] M. Badiale, T. D'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation, Nonlin. Anal. Ser. A 49 (7) (2002) 947-985.
[4] E.N. Dancer, Some singularly perturbed problems on annuli and a counterexample to a problem of Gidas, Ni and Nirenberg, Bull. London Math. Soc. 29 (1997) 322-326.
[5] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math., vol. 107, Cambridge Univ. Press, Cambridge, 1993.
[6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, 1983.

[^0]: First and second authors are supported by MURST, project "Variational methods and nonlinear differential equations."

 * Corresponding author.

 E-mail addresses: esposito@mat.uniroma3.it (P. Esposito), mancini@mat.uniroma3.it (G. Mancini), sanjiban@ math.iisc.ernet.in (S. Santra), srikanth@math.tifrbng.res.in (P.N. Srikanth).

