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Abstract

We present an asymptotic analysis for a perturbed prescribed scalar curvature-type equation.
A major consequence is a non-existence result in low dimension. Conversely, we prove an
existence result in higher dimensions: to this aim we develop a general finite-dimensional
reduction procedure for perturbed variational functionals. The general principle can be useful
to discuss some other nonlinear elliptic PDE with Sobolev critical growth in bounded domains.
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1. Introduction

Let Q be a smooth bounded open set in RY, N >3, and f(x) e C* (Q) be a function
positive somewhere. It is well known that the problem

N+2
—Au=f(x)uN-2 in Q,
(PSCE) ¢ u>0 in Q,
u=20 in 0Q
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has no solution, in general: by Pohozaev identity, and if Q is strictly star-shaped, a
necessary condition is 0 <sup,.o < Vf(x),x)>. Moreover, ground state solutions do
never exist:

2
inf Jo IVl _ S

Sy N N2 N2
fueny(@: [, fuiN-2>0) (Jof u[N=2)

N (maxf)

(S = best Sobolev constant) is never attained.

We will discuss asymptotic behaviour and existence of multiple solutions for
(PSCE) in the perturbative case: f = 1 + da, ae C*(Q) and 6 —»0. We will refer to this
perturbative problem as (PSCE);.

In Section 2 we will perform a blow-up analysis for one-peak solutions of
(PSCE);, showing, in particular, that in quite general situations boundary
concentration cannot occur. Another major outcome will be the non-existence, in

N
low dimensions, of one-peak solutions (i.e. with energy close to S2):

Theorem 1.1. Let N = 3,4. If us are solutions of (PSCE); then

.. 2 N
lim inf |Vus|” > S2.
0—0 Q

As for existence, we state in Section 3 a variational principle for perturbative
problems in presence of a manifold of “quasi critical points” for an unperturbed
energy functional. Our principle extends to a more general setting, a nonlinear
Lyapunov—Schmidt-type reduction introduced in [6] and recently improved by
Ambrosetti and alias (see [5] and also the pioneering work of Rey [35]).

In Section 4 we will apply our reduction principle to (PSCE); to give some
existence and multiplicity result (of one-peak solutions) in dimension N > 5:

Theorem 1.2. Let N=5. Let xo€Q be an isolated critical point of a with non-zero
topological index and Aa(xy)>0. Then (PSCE); has solutions us which blow up, as ¢
goes to zero, exactly at xy.

On large balls, we obtain some new insight for (PSCE) giving an interpretation of
the index counting condition introduced by Bahri and Coron (as for Ref. [10]);
see Theorem 4.9 and related remarks.

In Section 5, we will discuss some other applications of the finite-dimensional
reduction to the following class of problems:

(P) —Au = |uf"u+g(d,x,u) in Q,
u=20 on 09,
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where, here and elsewhere in the paper, p = % Here ¢(d,x,u) is a perturbation

term, small if § is small, satisfying the growth condition
Je>0:1g(d, x,u)|<c(1 + [ul”).

For g(d,x,u) = duand 0< 0 < 1, (Q), precise existence results for (P) were established
in [14] (see also [2] for sharp conditions in higher dimensions and general
nonlinearities); existence of multiple solutions and asymptotic behaviour for
0—0" were discussed in [26,35]. We generalize to a perturbation term ¢(d, x,u) =
da(x)ul!'u, 1<qg<p, a(x)eC*(Q). We cover also the case g(J,x,u) = |u+
da(x)P~" (u + da(x)) — [ul’'u, slightly improving existence results for non-homo-
geneous BVPs obtained in [37] (see also [16,17]).

2. Asymptotic analysis for (PSCE);, boundary concentration and
a non-existence result in low dimensions

Blow-up analysis for (PSCE) is a problem widely studied: see, to quote a few,
[15,26,34,35] in case f = 1, [27,28] in case f not constant and [23,39,40] for (PSCE)
with an additional linear term (in [27,39,40] blow-up analysis of subcritical
minimizers in a radial setting leads to an existence result). We will restrict our
attention to “‘one-peak solutions” for

N2
—Au = (1 4+ oa(x))uN-2 in Q,
(PSCE); u>0 in Q,
u=20 on 0%Q.

I.e. we consider solutions us to (PSCE); such that, for some yoeQ

N
2 .
|Vus|”— S26,, as d—0 in the sense of measures.

An important point here is to show that boundary concentration cannot occur if a
non-degeneracy assumption on the critical points of @ on 0Q is fulfilled. Some non-
degeneracy assumption seems to be in some sense necessary, since in general we
cannot exclude such a phenomenon: in [18] it is exhibited a sequence of solutions for
some perturbation of (PSCE) blowing up at a flat strict local maximum of f on the
boundary.

As far as we know, the only known obstruction to boundary concentration is the
following: %<0 on 9Q, see [9] for a result in this direction for (PSCE) in the non-
perturbative case. If §:<0 on 0Q, the method of [26], based on moving plane
techniques as developed in [25], might exclude, in some cases, boundary
concentration (one should ask, in addition, that a(x) increases in the inward normal
direction in a neighbourhood of the boundary). Instead, we will use, for general a(x),
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the method in [35]: after improving some estimates and performing an accurate
expansion of Pohozaev identities, it can be put at work to give the result.
Let us recall some well-known facts. For ¢>0 and yeR", let

Up) = TU(E2), U - — D o -y -2

(1+1x) 2

N+2
U., are known to be the positive solutions in R" of —Au = uN—2. Denoted by
P: D'?(RY) - H}(Q) the orthogonal projection:

/ VPoVy = / VoVy VyeH!(Q),
Q Q

let

T“PU&J" = {WeHé(Q) <M}7PUF,7}’> - <W7

<w,%> =0 i=1, ...,N}.
Oy

The following facts are well known (see Proposition 2 in [11] and [35,38]):

OPU,,
oe

Proposition 2.1. Let {us} be as above. Then, for ¢ small,
us = o5 PUs; s + W5 (1)
with as, e5€ (0,4 00), ys€Q, wse Ty,pu,,, and, as 6—0,

&

— 50 s—0 in H(Q
a’ist(y(;,OQ)_>7 ws =0 in Hy(2)

O‘é_)lv Y5 =)o,

Some notations are in order. Let H(x,y) denote the regular part of the Green
function of Q, i.e. for xeQ

AyH(x7y) :0 in Q’
H(x,y) = |x —y|_(N_2) on 022
and set H(p) == H(p,y). Also, denote D == &' [r de'
(1) 2

The main result in this section is the following:

Theorem 2.2. Let N>3, ae C*(Q), Crita = {xeQ: Va(x) =0}. Assume {us} are
solutions for (PSCE); such that, for some y,eQ

N
|Vus|* — S2 0y, as 0—0 in the sense of measures. (2)
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Then N=5, Va(yo) =0 and Aa(yo)=0. Furthermore, yy cannot belong to 0%,
provided

D?a is invertible Yxe Crit an Q. (a)

In addition, if we write us as in (1), it results

N
géN—4 -5 S2Aa(y)
N(N —2)DH y)

+0(0) as 0—0. (3)

We now derive Theorem 1.1 from the first statement in Theorem 2.2.

Proof of Theorem 1.1. First of all, let us remark that
. 2 N
Co = inf |Vul|">S2,

M Jq

where M is the set of non-trivial solutions of (PSCE);_,. Otherwise we could find a

N
sequence {u,},.n such that u, solves (PSCE),;_, and |, [Vu|* > S2 as n— + 0.
Since (PSCE); has no ground-state solutions, u,—0 weakly in H}(Q) and

N -
|Vu,,|2 — §26,, in the sense of measures, yy €2 (see [38]). By (6), we have that

N-2
ocﬁ(N—2)g;V‘2H(yn)D+o<(%) > =0,

where d,, .= d(y,, 0Q) and a,, &,, y, are as in Proposition 2.1. A contradiction in view
of d¥"2H (y,) = O(1) (see [35)).
Now, assume there are solutions us for (PSCE); with 0—0 and

N
fQ |Vu,;|2< min Cy,dS2. From above, we derive that u;— 0 in H(} () and hence
Theorem 2.2 applies: N>=5. O

To prove Theorem 2.2, we will make use of Pohozaev identities (see [33]):

Lemma 2.3. Let u be a smooth solution of (PSCE);, n(x) the unit outer normal to 0Q
in x. Then, for any yeRY and j =1, ..., N we have

2
) 2N
/asz(g_) ooyl =220 [ ooy Vaya, @)

/GQ<ZZ)2”1‘(X) = NT_25 /Q 8_;a(x)u%. (5)
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Proof of Theorem 2.2. We will plug us (as given in (1)) in (4)—(5) and use several
estimates from Appendix B. We will omit from now on the dependence on J.
Inserting (B.3) and (B.5) into (4), we get

1 N
>(N —2)e""2H(y)D — N 18266 Aa(y)

N-=2

_o<(i)“+5g(i)2+5831n§+5zgz+ on

d d =15
Y LA )
0Q o

on
Here we used the following fact: if ©y denotes the projection of y on 92 and
d = dist(y, 0Q) <dp suitably small, then {x —y,n(x)) = (x—ny,n(x)) + O(d) =
O(|x — ny|* +d) = O(|x — y|* + d). Now, using (B.9)~(B.10) and (B.13)~(B.14) and

s(5) T =02+ (5)" ) =062+ (£)"7) s

2 2
d ow

nir2 (09) on

L2(0Q)
@
on

oPU,,
on

@
on

N-2
2

we get

.\ N—2
(N —2)eN2H(y)D — %ap“S%éan(y) + 0<(;) +5£2) =0. (6)

Since H(y)dV=2— C(yo) >0 as 6 —0 (see [35]), we obtain Aa(yo)>0 and
N4

SV 2= o(1). (7)

This implies, in particular, N > 5. Now, inserting (B.6) and (B.11) into (5), we obtain,
forj=1,...,N,

N2 3 % 2 ow|? OPU,,||0w
00a(y) = 0<dN1 + 5(3) +oe” | + 0 on L2(09)+/{)g an lanl |
Hence, from (B.9) and (B.13) we get
N-2 g2
Va(y)—i—O(éle—i—d)—O (8)

because
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From (7) and (8), we get
&2
vat) = o[ %) )
and hence Va(y) = 0. Also, assuming y, €9, (9) rewrites as

‘D%@w<y—m>+ﬁ®hﬁw):0<;> as 550

v = yol vy = o
because |y — yo|>d and this implies D*a(yo) is not invertible, contradicting (a).
Hence yg e Critan Q. Finally, using o« — 1, from (6) we get

4 1 N Aa(y,)
AR S2
NN =2)D " H(y)

as 0—0. |

3. Almost critical manifolds and a reduction procedure: a general principle

We will develop in this section a perturbation theory for functionals of the form
E5<u) :E<u) - G((sau)a u€V7 56(_50750)1

where G is a “small” C? functional on the Hilbert space ¥ and E has a “non-
degenerate almost critical manifold”, that is:

There is a smooth immersion z : (0,+00) x (0,+00) x O— ¥, O smooth open set
in RV, parametrizing the smooth manifold Z = {z(a,¢,y): «>0, £>0, ye 0}, such
that

(A1) Z is bounded and sup . [|[VE(z(2,¢,))|| = o(1) as («,&) = (1,0),

(A2) there exists 0<éey<1 such that L. == n} E"(z)|;. €lso(T, T} )VzeZ,, and
sup-.z, [IL:"]|< o0,

where Z; = {z(o,¢,y):1 —s<a<l+s, O<e<s, yeO}, O<s<l, T. is the
tangent space at ze Z and n, : V- T., nt = Id — ., are the orthogonal projections.
We will also require a good behaviour of E around points ze Z.

For R(z,w) = VE(z+w) — [VE(z) + E"(z)w], we will assume

(A3) sup.., ||R(z,w)]| = o([Iwl]) and sup.., [ R(z,w)|| = o(1) as [w]| —0.

As for the perturbation G, we will assume

(A4 G(6,u),||G(3,u)|l,||G"(3,u)|| =500 uniformly on bounded sets.

We will perform, under these assumptions, a reduction procedure which follows
the lines developed by Ambrosetti and collaborators; while they deal with
perturbations of functionals which possess a non-degenerate manifold of critical
points, we are perturbing a functional which, in general, has no critical points at all:
the manifold of critical points is replaced here by a manifold of “quasi-critical
points”. Actually, problems which fit into this framework have been widely



P. Esposito, G. Mancini | Journal of Functional Analysis 205 (2003) 306-356 313

considered, starting from the pioneering work [35] (see also [1,3,10-13,36,37] to
quote a few). So, this is an effort to give a general framework, in the spirit of the
work of Ambrosetti, while borrowing basic analysis from Rey. First, we have:

Lemma 3.1. Let E; satisfy assumptions (A1)—(A4). Then there exist 0<e; <1, 6;>0
and a smooth map z—-w(0,z), z = z(a,¢&,y), for |0]<dy, | —ey<a<l+g, 0<e<g
and ye O, such that
(i) m.w(d,2) =0
and
(i) ntVEs;(z+w(d,2)) =0.

Furthermore,

1w(3,2)Il = O(||n= VEs(2)])). (10)

Proof. Set L := supy, ||L-Y]]. Egs. (i)-(ii) rewrite as a fixed point equation:
=L 'n}(VEs;(z) — G"(,2)w + Rs(z,w)), weTrt, (11)

where L. and R; are as above. For a given d € (—dy, d) and ze Z,,, let us denote by
N the operator at the right-hand side in (11). We have

INs-WIISLAIVE@)| + [IVG(0, 2)|| + |G"(8, [ [w]] + [|Rs (z, w)])-
By (A3) and (A4), we can find p>0, 0<0; <y such that

1
sup [[Rs(z, wl[ + sup [[DwRs(z, willlpwll < gz (il liwll<p,fol<or,

1
_ u
LIVG(,2) + 116"6.2) 1<

|5|<51, zel.
By (A1) we can find 0 <e; <éo such that sup_ IVE(z)|| <4 p. Hence,
wl[<p = [INs-(W)l[<p,

that is, N5, maps B, := {we T : ||w||<p} into itself for ze Z, , |5|< 5.
Since for wi, wre B, we get

1
||N(s,z<wl>N(s;<Wz>|<L< sup [|DuRs(z, rwl+<1z>W2>||+4L>||wlWz||

o<zl

<3 lwi —wal|,
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we see that Nj. is a contraction on B,. Thus, N;.(-) has a fixed point in B,, say
w = w(d,z) for |0|<0; and zeZ,,. Now, from the fixed point equation,

[w(3,2)| = [IN5(w(0,2))I| = O(||m= VE5(2)|]) + o(1)] (8, 2)]],

where 0(1) >0 as p + -0, and hence ||w(d,2)|| = O(||nt VE;(z)])).
Smoothness of z—w(J, z) follows by the IFT applied to the equation

nrVEs(z+ntu) +mu=0, ueH)(Q).

In fact, the linearized operator at w = w(3,z), nt E{(z + w)rn + . is invertible, up
to take &, d; smaller, because sup..z, [|w(d,z)|| >0 as ¢ + ;-0 and, at 6 =0,
w =0, it is trivially invertible by (A.2). O

The final step in the reduction procedure is to prove that critical points of Ej, close
to Z, correspond to critical points of

Es(a,6,y) = Es(z(a,&,y) + w(d,z(x, &,1))).

The proof relies on C! estimates of w(J, z) which involve the variation of 7. Let us
first prove C! estimates under suitable assumptions.

Lemma 3.2. Assume (A1)-(A4) and let w(9,z) be given by Lemma 3.1. Then

ow
57| = Ol (12)
provided the following assumption holds true:
9, 1 L
Je>0: nza(n: v)||<cl||n;v|| VzeZ, YveV. (A5)

ow

Proof. Let w = w(4,Z) for some Ze Z, d fixed. From 7, w(0,z) = 0 it follows 7, §*

— (m.w) at z = z. Since — Z(n.w) = Z(nw), we have, by (A5),
= %(5, zZ) <C||7I_;i wl|.
This proves (12), because n2w =w. O

Theorem 3.3. Assume (A1)—(AS) and let w(9, z) be given by Lemma 3.1. Then, for ¢, 0
small, VEs(zo + w(0,20)) = 0 iff zo is a critical point of z— Es(z + w(9,z)).
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Proof. Let z(¢) be a smooth curve on Z with z(0) = zy and 2(0) = n,,VEs(z0 +
w(d,29)). By assumption,

0= %Ea(z(t) +w(0,z(1))],— = <VEa(zo + w(J,20)),2(0) +% (5720)2'(())>.

Since m2- VE;(zo + w(d,20)) = 0, using (10) and (12), we get

ow

12(0)| <[12(0)P” Tz, (9,20

‘ <cllw(3, 20)1l12(0)||* <ell2(0) [l V Es(zo)

and hence z(0) = 0 because ||VE;s(z)|| <1 for ze Z,, if &) + 0; is small. [

Remark 3.4 (The Melnikov function). Theorem 3.3 applies as follows: first, write

Es(2(v) +w(9,7)) = E(2(7)) - G(9,2(7))
+ /0 {VE;(z(t) + tw(d,7)),w(d, 7) Y.

If we suppose E” uniformly bounded on bounded sets, we have, by (10),

Es(z() +w(0,7)) = E(2(1)) — G(6,2(1)) + O]

no VEs(2(0)I1).

In the applications, the remainder term will be “negligible” and one is led to look for
critical points of the “Melnikov function”

E5(2(1)) = E(2(1)) = G(9,2(1)).

4. Multiple solutions for (PSCE);

Here we complement the non-existence result contained in Theorem 1.1 by
showing that for N >5 there are branches of solutions for (PSCE); bifurcating from
critical points of a(x) with positive laplacian, non-degenerate in some sense: this is
the content of Theorem 1.2. To prove it, we will apply Theorem 3.3 to the functional
Es(u) = E(u) — G(6,u), ue H{(Q), where

1 I 5
pw =5 [ Vil [ 6w =L [ aopr

The functional E(u) possesses a ‘“‘non-degenerate almost critical manifold”

Z ={oPU,,:a>0, ¢>0, yeQ, d(y,0Q2)>7}, 9>0,
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where PU,, are as in Section 2. In particular, PU,, is the unique solution of
—APU,, = -AU,, = Ug}, in Q,
PU,, =0 on 02.

We will omit, if not relevant, any reference to y. We will use several facts stated in
Appendix A.
Assumptions (A1) and (A2) are checked in Lemma A.6, while (A.3) follows from

Lemma 4.1. Let p = min{p,2}. Then
Je>0:]|R(z,w)|| + ||DwR(z, w)|\||1/v||<c||w||ﬁ VzeZ.

Proof. By direct computation, for any ¢, € H}(Q):
CRE w4 == [ [z w ™ w) = 2 = 2w,
Q
DR =p [t .
Q

Using the elementary inequalities, for a,beR,

c,(Jaf’ B2 + b)) if p>2,

a+b)a+blP ' —alaP! = plalP~'h|<
e bla by~ —ala™ —plar < 711 iy

cp(lal” (bl + |b"™") if p>2,

llal"™" = Ja+ b < O .
¢p|bl? if p<2,

and Holder and Sobolev inequalities, the Lemma readily follows. [

Assumption (A4) is easily checked and (AS5) follows by Lemmas (A.4) and (A.5)
and

Remark 4.2. Assumption (AS5) involves the second derivatives of z(a, ¢, y). Property
(A5), and hence Lemma 3.2, Theorem 3.3, can be derived more directly by the
following facts:

102117 ‘s
3¢>0: —— <, 0iz,0;zy = o(||0iz||||0;z Vi#]. 13
,zk: TEEEEE 02,0z = o([|0:2]l1]9)zl1) Jo (13)

In fact, if s = (o, ¢,p) and z(s(¢)) is a curve in Z such that z(s(0)) = z, property
(AS5) is equivalent to prove

dz

7 . YveH)(Q).

<cffmz o]

=0 =0



P. Esposito, G. Mancini | Journal of Functional Analysis 205 (2003) 306-356 317

If we write 7. 4(n,0)|,g = Y0z and §|_g = 3,0z %1(0), the second assumption
in (13) implies that

2

m @] | = (1+0(1) Y @ll9zIF,
=0 j

dl | (1+01) S (2 0) Zua- &

dt|_oll ? — \ d1 il

Since {7, v, (9;z)(s(t)) ) =0, we can get

2 d N
= <TE:E(TCZ<[)U a]a Z>

- Ealstaco)

1

dsy, ||a'kZH2 ’
< ||nt 0)719, 28 —
I v(Ej o) un)( || > <§j,k:||a,-z||zakz||2

dz
dt

Hence (AS) follows. So, instead of (A5), one might more easily check (13).

Now, we are led to look for critical points of Es(a,¢,y) = Es(aPU,, +
w(d,a,¢,v)). Accordingly with Remark 3.4, we need to estimate the remainder
term. Since ¢, , == U, — PU,, is an harmonic function, we get

t=0

< c||nto|

z

n-i (nk,v)

t=0

N=2
||l//Ly||oc max Ua:y - 0( 2 )

If we write for any ®e H}(Q)
<VE(Z),<1>>:a/QVPUS,yWP—aP/QPUg@
— (o) /Q U£y¢+a”/gz(U£nyU£y)©
(VG(5,2), > zaaﬂ/ga(x)w{qus
zéocp{a(y) /Q Uf‘}@—i-/g {Va(y),x =y, Ul &
# 02| [ (o) - a) - <Ta) - 301,

—&-/Q a(x)(PU{jy — U&)(P},
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we can obtain, using Lemma A.1,

N
2

IR VEE)| = 063), [VEG)|| = 02 + |1 - a),

|7

(0, 2)| = 0(3e[Va(y)| +0¢%),  [[VG(3,2)[| = 0(9),
because [, U? @ = [, VPU, V& =0 for any #eT.". As for the remainder term,

In VE;(2)|* = O(N + 6% |Va(y)* + 8%,
IVEs(2)|]* = 0N + 6 + |1 — o). (14)
According to Lemma A.5 in Appendix A, we have

2 PN N 2
E(aPU,,) = (“ - )57 +D (—“‘2 + aP“)H(y)gm + oM,

2 p+1
where, as in Section 2, D = cN 7 S N+2 Finally, from Lemmas A.l1 and A.2
(4P 2
we see that
G(5,aPU,,) = 0+ (x)PUP}!
y & &y, — +1a an e,y

= [0+ 3 ate-

+ %&ya( )(x = y)i(x = )+ Olx = y[) | UL + 036" )

N
S2 S2
_ ol P _ o2 s2A 3
o Sil da(y) — o N oe“Aa(y) + O(d¢”)
because, by an integration by parts,
|x|? N dx N XN
dx = = S2.
/ (1 + )" N=2Jrv (14 xP)% N-2

Summarizing, using (14), we get the following expansions for Es(a,¢,y), ze Z:
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Lemma 4.3. Let N>=5. Then

0(2 O(p+1

Es(aPU,, +w) = <E_p+ 1

N N
S2 S2
e _ I e 52
1 oa(y) — o 2 oe-Aa(y)

+ 0N + 822 |Va(y))* + oc%).

N 2
>S7 + D(—%—&— oz”Jrl)H(y)sN_2

— gPtl

Next, we establish C! estimates.

Lemma 4.4. Let N>=5. Then

N

2
%Eé(apu;,y Fw) = — ot %5&-61@) 40N 4 56+ 8
N2
+¢&2 |l —ol+|l —af) (15)
9 _ A N-3
%% Es(0PU;y +w) =D(N —2) 7 + o H(y)e
s3 3
— ot ﬁésAa(y) + O(N2 + 082 + 8*|Va(y)|
2 N=2
+ 0e+e¢ 2 |l —o|+ 90|l —af|Va(y)| + o¢|]l —of) (16)
0 N N N
%E(s(ocPUg,y +w)=82(00 — o) — da(y)o S2 + O(de + ¢2). (17)

Proof. Since VE;(aPU,, +w) = O(||VE;s;(aPU,,)||), we have

0
——Es(aPU;y +w)

i
— <VE5(0<PUW +W),a‘91;;f;:,y +nzg_;vi>
= a2<PUw7%> — 0 / (1 + 0a(x))|ePU,, + wl’™ (@PU,, + w) oPU,,
i @ Oy
+ 0(||VE5(0<PUW)|| nzg—;vi )
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The first term is estimated in Lemma A.5:

oPU,, )
(PUL 200} = -D G ()2 4 06

As for the third term, we first derive from (12) and Lemma A.4:

m ol = | 2092~ o L)
8y, 0z oyl P
and hence
ow
[[VEs(aPU,y)l| ™ oyl = O([[VEs(2)|[|[wl])-

It remains to estimate the second term. We claim that
_ oPU,,
/ (1 + 6a(x))|aPU,, +wl’ ' (aPU,, + w) ——2
Q Oyi
N

= oo’

Putting together estimates (18)—(20), we get

N

0
8—yiE§(PUz;,y + W) = — 5ocp+1lm8a( )

+ 0(8

52 5 N=2 ?
lém<y>+0<sN2+8||w||+a z ||w||+”ﬁ'>.

—HWII o7 | +—||VEo( )IIWI)

and hence (15) follows from (10) and (14). We now prove (20). We have

OPU,
/ (1 + da(x))|ePU,, + wi ! (aPUgy + w) o s
Q ;
OPU, OPU,
= o / PUP ——% + 5o / x)PU?, ——"
o o o a(x)PUL, Jyi

oP
—&-poz”"/ PUYY P2y 4 hout.,
Q ay,

where, by Taylor expansion,

oPU,
hot.=0(6 | UP|—2
© < / &y 3)’1’

8PU8_,),
yi

w2—|-/
Q

w —|—/ Uf’yz

OPU,,

Oy

(18)

(19)

(20)

|w|”)
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if N =5, while
OPU, OPU,
hot =0(6 | UP'| -2 / PUP 2| 22
0 ( /Q N [w| + R w
if N>6. The first term in (21) is estimated in Lemma A.5:
OPU, oOH 1
PUP " = 2D—— N2 0( eV og-). 22
/Q “  ay, 7, (r,)e" ™"+ O( &7 log (22)

As for the second term in (21), we observe that, using Lemmas A.l1 and A.2, we get

oPU,,
a(x)PUP e
| atspuz, 5
= 0; - o(lx -y | U? OUsy oV
| [a0) 432 9a0)(x =)+ Olx = 31| UL, 5+ OGN
j '
N-2 [x[?
== 9a c”“/ —————dx+ O(¢
N (y) N RY (1 +|x‘2)N+l ( )
S%

As for the third term in (21), using U?;! — PUZ M <cUP 2y Oy 0<U;J) and

8!}” a_y,
Lemmas A.2 and A.l, we have that

OPU, oU,, N-2 N-2
/ PU£;1—6 %’yW:/ Uﬁ;l 68;} w+ O0(e 2 ||w]]) = 0(e 2 ||w|]), (24)
Q Vi Q Vi

10Uy ,0PU, o . . _2 -2 _3
becausepfg vz, oW = < o ;wy = 0. Finally, using U7 * — PUI' “<cU! Py,
2

N(6=N)\ N
, 6-N
Uy _ 0( U“"") and recalling also (see Lemma A.1) ( fQ Ug?y(N _2)> = O(s 2 log l>7

yi g £

Na-N)\ ¥
(fg U,,N 2 > = 0(¢*"), we estimate h.o.t. in case N >6:

8Us,y i 8‘%,};
Jyi Jyi

OPU,,
yi

hot=0 5/ urt |w|+/ PU!? w2>
Q Q ’

O
=o| < . 2
of 2wl + 25)
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In case N = 5, we estimate the additional term using Lemma A.4:

OPU |\ o (eI
/‘ 7, |<c( ) (26)

Estimates (22), (23) and (25)-(26) yield (20) and the claim is proved. [

As for the e-derivative, we can argue in a similar way:

® Eq. (18) is replaced (see Lemma A.5) by

OPU,, N -2 _ _
<PUW7 5 '}> = 5 DH(y)eV 7 + 0(eV?) (27)

® Eq. (19) remains unchanged (see Lemma A.4)
® Eq. (20) is replaced by

oP U,y
Oe

/ (1+ 0a(x))[oPUpy + W'~ (eP Uy +w)
Q
s7
—(N = 2)Da" H(y)e" ™ + of - deAaly)

+ 0<8N H H HwH—i— ||w||>. (28)

Putting together (27), (19), (28) and using (14), we obtain (16).

Estimate (28) can be obtained as in (20):
Eq. (22) is replaced (see Lemma A.5) by

/ PU, % = —(N —=2)DH()e" 3 + 0(e¥2); (29)
A :

Eq. (23) is replaced by

| atopur, 20— /Qa<y>+§j D) (x ),

J

6U8_,
Z Bya(y)(x = »)i(x = y); + Olx = y) | UL, =52 + O(7)
= N2 payey 18/ BEA =D e | o)
4N N Ry (1 4 | PHYN

:ﬁﬁeAa(y) +0(&); (30)
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Eq. (24) is replaced by

N-=2
[ opur S = [ w9 0 T ) = o vl 61
Q

as for the h.o.t., (25) and (26) become, respectively,
ou,, oy,
-1 —2|9Y%y eyl 2
5AU§}, | |+/ PU:Zy T_TM}
5 ursl N4
:O<E||w||+/<%+,s > ury 24N B’Ufy3 w?
IIWII

= ( [l + (32)

OPUy| o (WP
— < .
/Q‘ % \ \c( . (33)

As for the wa-derivative, we can argue in a similar but more direct way. Using
Lemma A.S5, it is easy to see that

OPU,,
e

and

0 ow
aEg(ocPUw +w) = <VE5(0¢PUW +w), PU;, + 7. %>
=o|[PU,, | - / (14 8a(x))[aPUyy + w’™ (aPUsy + w)PUsy,
Q

+ O(IVEs ()] Iwll)

:oc||PU&,y||2 —o? / PUg;rl — da(y)od / PUf;l + O(d¢ + ||w]])
Q Q ’

N N N

=82(a— o) — da(y)od’ S2 4+ O(d¢ + €2),

Low)| _

because ||n;- 57|

O([lwl [|PUe

) = O(||wl])-

Remark 4.5. In the expansion of the e-derivative (16), we have a remainder term
0(5*|Va(y)|). The presence of |Va(y)| is needed only for N = 5. In fact, in this case

we will require d ~¢: then 67 is not small with respect to the second leading term in
the g-derivative which is of order Je.

Proof of Theorem 1.2. Choose 2( ><s< ( <1 if N>8 and s =1 if 5<N<S.

-
Introducing new variables 0 = 6 N—4¢, v = ¢ *(a — 1), we are led to look for zeroes
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for the vector field
D(v,0,y) = (Ys,05, Y5)(v,0,y),

where

Y(3(U)05y) =0 +1:l(fy>151_s + 0(1)7

05(v,0,y) = DN(N — 2 H(1)0"* — S3Aa(y) + o(1) + OSN30~ [Va(y)|),
Y5(Ua Hay) = va(y) + 0(1)7

where o(-), O(-) hold for 6 -0 uniformly in y and 6, v bounded.
Now let yy be an (interior) isolated critical point of a(x) with Aa(y) >0 and non-

N N—4
zero topological index. Then 6y = <$%> is well defined and positive.

Let us set

_ao) jf S< NS I if 5<NKS,
vy = p=1 7 " and n= .
0 if N>38, 0 if N>8.

We define the homotopy @(#;v,6,y) by components as

_ a(yo) . o a(yo)
(15lv+np_1+t<l/'o(u,9,y) v np—l’

@y =DN(N — 2)H(y0)0" ™ — S%Aa(yo) +1(05(v,0,y)

— DN(N — )H()0"™ - S2Aa(y)),
@3 =Va(y) + 1(Y5(v,0,y) — Va(y)).

Since |Va(y)| = O(]y — yo|), working on the first two components, it is possible to
find r>0 such that for ¢ small

|®(1;00 — 1,0, )| + [@(t;00 4 1,0, )| + | (10,500, )| + |D(t;0,3 00, ¥)| >0

for 1€[0,1], ve vy — 1,v9 + 1], 030,35 0o] and yeB,(y9). We fix such r>0. Since
infy,cop, () [Va(y)| >0 by the third component, we have that for ¢ small

inf |®(t;0,0,y)|>0 Vie[0,1], velvo— 1,00+ 1], Oe[L0,30,].
y€0B;(y)

So, for homotopic invariance, we can conclude that

deg(®(v,0, ), [vo — 1,00 + 1] x [300,300] x By(y0),0)#0,
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because
deg(¢(07 v, 67y)7 [00 - 1’ Vo + 1] X [% 907%00} X Bi(y0)70) = —deg(Va, Bl(y0)70)

So we find a free critical point u; = aPU,, + w(d,a,¢,y) of E; and we want to show
that it is a positive function. Since for us there holds

—Aus = (1 + da(x))|us|’ " us,

if we multiply and integrate for —u; = —max(—us,0), we obtain

—12 _ —\p+1
/Q|w5| f/9<1+5a<x>><u5> |

From the Sobolev embedding theorem and the above inequality, we get

s(/g(ug)f’“)’%sc/g(ug)f’“. (34)

Let us remark that, since PU,, >0, we have uy <|w(d,a,¢,y)|. If, by contradiction,
uy #0 for 6 small, we can simplify in (34) to obtain

p—1

O\ .
S“(/ <uo->”l> <Cw(B, 6| P) > 520 0.
Q

Then, for ¢ small, u5 >0 and, by maximum principle, us > 0. This completes the proof
of Theorem 1.2. [

Because of geometric significance, (PSCE) has been widely studied in case @ = RY
(see [4,7,8,19,20,22,29-32]). Regarding the problem on the whole space as a limiting
problem, we will study now (PSCE) on large balls Bg. Of course, the bifurcation
result stated in Theorem 1.2 holds true. However, a more careful analysis brings to
evidence a (possible) decay, as R goes to infinity, of the size of the perturbation
insuring existence (and non-degeneracy) of bifurcating solutions.

From now on, Q= Bg. For simplicity, we perform the finite-dimensional
reduction and compute the “Melnikov function” with respect to

7 = {PRUgﬁy:8>07 |y|<r}’

where Pg: D'?(RV)— H}(Bg) is the orthogonal projection. It is easy to see

(see Lemma A.6) that Z is a “‘non-degenerate almost critical manifold™, in the sense

that there holds

(A1) Z is bounded and sup),, [|[VE(PrU.,)|| = o(1) as 5—0,

(A2)" there exists & >0 such that L.:=nlE"(z)|;.elso(T}, T}) VzeZ, and
sup..z, ||L-'[| < o0, where Z,, = {PrU,, : [y <r, 0<e<eoR}.



326 P. Esposito, G. Mancini | Journal of Functional Analysis 205 (2003) 306-356

From now on, we assume aeCj(RY), Q=Bg, R>1 and Crita:=
{xeR": Va(x) = 0} = B,. The finite-dimensional reduction can be performed, with

a bound § on the size of the perturbation independent on R. Similar computations as
above can be carried over to obtain the estimate

IVEsPU,)IF = 06"+ o (3)").

as well as the following expansions for the functional Es and its derivatives:

N
1 N S72 DdN e\N-2
E P &,y = —_— 2 —_ 5 _—
s(PUy+w) =35 52 p+1“(y) +z(1_R—2|y|2)N*2(R)
N
Sz 2 ENNTL (3 2
v Aa(r)oe +0((R) 08> + 6 ) (35)
0 DdN 8N73 S%
— Es(P € - -2 ——A
% 5(PU,y +w) = (N )2(1—R*2|y|2)N’2RN*2 N a(y)de
eN-2 ) 5
+ O(RN_1 + e +8), (36)
N
d 52 gN-2 5
— Es(PU,, -7 2. 9
o 5(PU,, +w) p+1Va(y)5+O(RN1+5.s + 8) (37)

where dy = m, D as above, w = w(d, R,¢,y) as in Lemma 3.1.

I
Now, after setting 0 = 1 N-4¢, 1 := SRV 2, we are led to look for critical points of

N 2
2 N4 D N 2
M. r(0,y) = 52 ! [2 dy oN—2 — STAa(y)Q2 + tN-40(1),

a —
p 1Y PN R

where [|o(1)]|c1 =0 on compact subsets of R™ x B, as t—0. As above, isolated
critical points of @ with Aa> 0 and non-zero topological index generate critical points
of M. g(6,y), provided < 1. Hence, we get

Theorem 4.6. Let N =6 and a as above. Then there exist 6y small and Ry such that, for
any R= Ry and 5<%, problem (PSCE) on Bg with f = 1 + da has at least as many
positive solutions as the number of non-degenerate critical points of a with positive
laplacian.

Remark 4.7. The analysis in Theorem 4.6 is less accurate than in Theorem 1.2
because of the different choice of Z. So we lose dimension N = 5.



P. Esposito, G. Mancini | Journal of Functional Analysis 205 (2003) 306-356 327

Because of the decay 6 < R>™", we cannot obtain solutions on the whole space as
limits of our bifurcating solutions: for this, we need solutions on large balls and
uniform size of the perturbation. We first observe that our bifurcation result relies on
the rather weak assumption “a has non-degenerate critical points with positive
laplacian”. Such an assumption should be compared with the much stronger
“counting condition”

i(Va,x)#0
{x: Va(x)=0, Aa(x)>0}

discovered by Bahri and Coron, see Ref. [10], in their investigation of (PSCE) on the
3 sphere (see also [20]). A very nice interpretation of the “counting condition” is
given, in term of degree theoretic arguments, in [4] (see also [24,31] for a Morse
theory point of view).

We will show below that, while the bifurcating solutions might, for R larger and
larger, degenerate and cancel each other for ¢ smaller and smaller, the counting
condition enters as an obstruction to a complete collapse of these solutions, insuring,
via a continuation argument based on suitable a priori bounds, existence on large
balls B up to some J independent on R. As noticed above, there is 6 such that, for
any given p >0, the reduced functional E;(e,y) = Es(z(¢,y) + w(d, R, ¢,y)) is defined
on Dt ={(¢,):&> + |y’ <p?,¢>0} for <5 and R>R = R(p). We will assume,
from now on,

D’a(x)eGly(R) and Aa(x)#0 for any xeCrita. (38)

Let y;, j =1, ...,1 be the critical points of a with positive laplacian. The homotopy
argument used in the proof of Theorem 4.6 gives, for R given and §<J(R), the

existence of open neighbourhoods V; = (0,,0;) x Uy of (6(y;),»;), where

1
N

N sov o\ N—4
0(y;)) =0(y;,R) = (SzAa(yf)(lR“yfl“)A 2) and U; are small neighbourhoods of

N(N—2)Ddy

y; with [|Va||>0 on 9U;, such that
dey(VM‘c,R7 Vjvo) = _dEQ(vaa l/],()) = _i(va7yj)‘

From Section 2, for § <J(R) the critical points of M, r in the ¥} are in one-to-one
1
correspondence with the critical points of Ejs(e,y) in D;(s = D) n{e>06N-4},

1
0 = min; {0}, p>2r, through the map (6, y) - ((SRY=2)N-40, y).
This readily implies
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Lemma 4.8. There is R and, for any R= R, there is § = 5(R), such that

~

deg(—VE;(e, ), pb, Z i(Va,x;) Vp>2r.

To continue this degree estimate up to some & independent on R, we need suitable
a priori bounds. First, we have

Claim 1. There is some R such that, if $<5 and R=R, then Ej(e,y) has no critical

1
points on D n{e = &5}, &5 = 0oN-4.
To have complete a priori bounds we will assume, following [4],
3 >0: (Va(x),x» <0 V|x|>p/,

(Va(x),x»eL'(R"), /R {Va(x),x)) <0. (39)

Claim 2. If (39) holds, there is some & such that Es(e,y) has no critical points on
{2 + [y)* = p2, >}, for some p>max{p’,2r} and 5<5.

By the above claims, we deduce that, for some R large and o small

~

deg(—VE;s(e,y), Dy n{e>e5},0) Z i(Va,x;) Vo<, R=R

for some p>2r fixed. Hence, we have

Theorem 4.9. Let N>6, ae C;(RY), CritacB,, a satisfying (38)~(39). Assume in
addition

i(Va,x)#0. (40)
{x: Va(x), Aa(x)>0}

Then problem (PSCE) on Q = B with f = 1 + da has a solution for §<é and R=R, §
independent on R.

Proof. We have just to prove the claims. As for Claim 1, it follows from
assumption (38) and expansions (36)—(37) of the derivatives of FEj
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on Dy n{e= ¢}

S2 N=3 N=3
V.Es(PU,, +w) = — ﬁAa(y)(S!\F4 + 0(0N-4),
N

S22
V,Es(PUsy +w) = o1 Va(y)o + o(9).

Finally, we prove Claim 2. From (39), we can show that there exists p=>p’ such that
(Vieyl(e,9), (6,9)> <0 if &+ |y =p?, (41)

i +1 p+1 fon i
where I'is [pv aUPr! = [ov a(ex +p) U, extended as an even function in &. Now,
using previous computations, we get

1 N Ddy e\N-2
WS e

e o ()" ()" ),

Es (PUgJ, =+ W) =

we get that, for d<1 and R>1, on {&+ |y]* =p?}n{e>es} there holds
<_ 3}E07<8y)><0

Final remark. A different situation occurs if we assume in (39) the reverse inequality.
First, we observe that to compute deg(—V(w>E5,D+ 0), we can also proceed as

p,07
follows. From
5 SN 3 52
V(sva(s = —p—+ I V(E}, I+ O<RN 3 + 8)7

L, <0<, M, a large constant,

deg(—V >E5,Dpo, 0) = deg(V(,,)I', D} 4,0),

p:07
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whenever the r.h.s. is defined. This is the case if (39) holds, as well as if the reverse
inequality is satisfied therein. Since, as can be easily seen,

or o*r

rO.9) = S2a0), 5 (0.) =0, S5(0,9) = Cha(y)

for some positive constant C, we have, denoted D, == {2 + [y|* <p?},
deg(V ;) I', D, 5,0) =2deg(V )T, Dpé, 0) + deg(V .y I', D, 0 {|e] <e&s5},0)

=2deg(V,,yI', D} ;,0) + Z i(Va,x)
{x: Va(x)=0, Aa(x)>0}
- Z i(Va,x).
{x: Va(x)=0, Aa(x)<0}

0,07

If the reverse inequality holds true in (39), we get the reverse inequality in (41), and
then

i(Va,x) + Z i(Va,x) =1 = deg(V, ) I',D,s,0).
{x: Va(x)=0, Aa(x)>0} {x: Va(x)=0, Aa(x)<0}

Henceforth, for R*V <9<,

deg(—V (. Es, D} 5,0) = deg(V ;) I', D} 5,0) = > i(Va,x).
{x: Va(x)=0, Aa(x)<0}

On the other hand, Claims 1 and 2 still hold true and so we conclude that

dEQ(_v(s,y)Eé,D;570)|5<R3*N = - Z i(vav X)
{x: Va(x)=0, Aa(x)>0}

# > i(Va, x)
0

{x : Va(x)=0, Aa(x)<0}

= deg(_v(g,y)E57 D;(S, 0) |5>R2—N-

In particular, no a priori bounds are available in this case.

5. Further applications of the reduction principle

We consider a generalization of [35]: given a(x) a smooth function in Q, >0 a
small parameter, l<q<N +2 and N >3, find u>0 such that

N+2
—Au = uN-2 + da(x)u? in Q,
(P)s .
u=20 in 0Q.
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In this case, the unperturbed functional is E(u) and the finite-dimensional reduction
is performed with respect to the “non-degenerate almost critical manifold”

Z ={PU,,:e>0, yeQ, dist(y,02)>7}, 7>0,

in the sense that there holds

(A1)" Z is bounded and Sup,co gii(y.00)=, [VE(PUsy)|| = o(1) as ¢—0,

(A2)" there exists g >0 such that L, = n}E"(z)|;. €lso(T+, T}) Vze Z,, and
sup..., [|L:1]|< cc.

where Z, = {PU,,:0<e<ey, yeQ, dist(y,0Q2)>y} (see Lemma A.6). The
perturbation is

d
G(d,u) = —— ol
(0,1) == /Qalul

Using Lemmas A.1 and A.2, one can get the following estimate for the remainder term:

IVEs(PU,,)|I> = OV~ + 8% 42),

where
N+2 N-2 )
g2 21 if q>2<1>’v—t22),
N+2 N+2
— ! 00 YOIV if 4 — NE2

A ¢ 4 (logh2v if g = oy
N2 .
g2 ¢ if q<2(/]\(,—t22).

As for the “Melnikov function™ (see Remark 3.4), if ¢> 525, one gets

0 +1
E;(PU,y) =E(PU,) Tg+1 /Q aPU{,

1N Fei! N-2
= S22+ H N-2 T%N 5 N-"5 (g+1)
vS2 5 HY) g+ 100
N2
+ OV ) 4+ o(8eV 7 @)y, (42)
where F = [pv W and the expansion of E5(PU,, + w) follows by

(14 2
Es;(PU.y +w) = E(PUyy) + O(HVEE(PUE-}’)HZ)v

2
where w = w(J, ¢,y) is defined as in Lemma 3.1. After setting 6 =6 V-2(a+D)-4¢ if

q>max{3%, 52}, the expansion of E; becomes

| —CLE R ) Feit! N2
E(S(PUEJ_‘_W):NSZ +5(N—2)(q+l)74 ZH(y)QN—Z_%a(y)QN* 5 (4+1)+0(1) ,
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where 0(1) -0 as 6 — 0 in C° norm for 0 bounded and bounded away from zero. So we
are led to study the ““stable” critical points of

2 - 2)(q+1)
M(0.) = DHOIO" — & Faly)0* 2020, ye,

where F, D and cy are as above. Since

2
M 2N—(N-2)(g+1)]c% Fa(y)\ (N=2)(g+1)—4
M _y o J0=00)= ( -2)(¢+DDHD) )

90
a(y)>0
and
(N-2)
(N=-2)(¢q+1)—4
M(0(), 7)) = D a0’
YhY) = ENg IN-(N-2)(g+1) ’
H(y) W=2)
N 2)(g+) N\ )
e — (N=2)(g+1)—4(2N — (N —2)(g+ 1)) @20+ [ Fe§ AFL) (N=2)(g D=4
Na N -2 D(N —2) q+1 ’
we can introduce
2
_ a(y)
K(y) = vy VEY
H(y) W=2)

and the following result follows:

Theorem 5.1. Let M, K be given as above and let (0;,y;) be critical points of M. Let
1<q<fHif N=51<q<3if N=4,3<q<5if N=3.

@) If (0,,y) are CO-stable, then there are C; disjoint compact neighbourhoods of
(0;,y;) and, for 6>0 small, there are us, solutzons of (P);, such that

N
|Vu(3,,-|24S75x] as 6—0 for some xje C;. (43)

(ii) Let C; be disjoint compact subsets of Q such that, for any j,

a(y)>0 VyeC;, max K< max K.
J

G

Then, for 6 small, (P)s has solutions us; such that (43) holds.
Moreover, such solutions are positive.
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Proof. We just derive (ii) from (i). For any given ye 2, let

o) o (2 = Y = 2(g + DI Fa() W
m (N —2)(q + 1)DH(y)

be the absolute minimizer of 60— M (0,y) and let

0<0<min 0(y)< max 0(y)<0, m:= min M, my:= min M
yeC yeC [0,0)xC d([0,0)x C)

for C = C; fixed. Since

(N-2)
M(0(y),y)) = Dy gK(y)N-21tD=4, - VyeQ,

Dy 4 as above, one easily obtains maxyc K <maxc K = m<mj and then (ii) follows
from (i).

The proof of the positivity for these solutions follows the same argument as in
Theorem 1.2 because g=>1.

For the derivatives, similar computations as in Lemma 4.4 can be performed in
case 1<qg<i2if N>5,3<q<3if N=4. O

Theorem 5.2. Let M, K be given as above and let (0;,y;) be critical points of M. Let
1<g<¥H if N>5,3<q<3if N=4.

(k) If (0;,y;) are Cl—stable then there are C; disjoint compact neighbourhoods of
(05, ;) and, for 6>0 small, there are us, solullons of (P);, with property (43).

(kk) Let yo be a non-degenerate critical point of K with a(yy)>0. Then, for 6 small,
(P)s has a solution us satisfying (43) with limit Dirac mass in y.

Moreover, such solutions are positive.

Proof. By the assumptions VK(y9) = 0, D*K(yo) € GIy(R) and a(y,) >0, it follows
that VM (0(yo),y0) = 0 and D*M (0(yo), yo) € Gly+1(R). The proof of this fact is a
straightforward computation, we skip here the details. [

Remark 5.3. (i) Non-degeneracy of critical points of K implies non-degeneracy of
critical points of C2-perturbations of M. This in turn would lead (see the proof of
Theorem 5.1) to non-degeneracy and precise Morse index estimates of the
corresponding variational functional associated to (P);. However, we will not carry
over C? estimates in this paper.

(i) If a(x) =1, N>4 and ¢ = 1, then we find as many positive solutions as the
number of non-degenerate critical points of H(y), which is exactly the famous result
contained in [35].

Our approach applies as well to the non-homogeneous boundary value problem
with small data. Let QcRY, N>3, be a smooth open bounded domain and



334 P. Esposito, G. Mancini | Journal of Functional Analysis 205 (2003) 306-356

peC*(0Q), «e(0,1). Let us consider the following BVP:

_4_
(BVP){ —Au = |[u/N-2u in Q,
u=q on 0Q.

It can be seen (see [21] for a more general equation) that (BVP) has a “‘small”
positive solution if ¢>0 is non-trivial and suitably small. We are interested for
(BVP) with boundary data d¢, 6 >0 small and ¢ positive somewhere, rewritten in the
equivalent form:

_4 .
(BVP), —Au = |u+ 0alN-2(u+ da) in Q,
ue H)(Q),

where a denotes the harmonic extension of ¢. Here the perturbation is
1 p+1 p+1
G(o,u) =—— |u+ dal’™ — Jul™,
r+1Jo

which is a C? functional converging to zero C>-uniformly on bounded sets. So we
can find w according to Lemma 3.1 and the finite-dimensional reduction can be

performed. Now we can expand G(d,u) in the form G(d,u) =0 [, a(x)uf’” "+
G>(0,u) where

G0l =0(5* [y o),
Q

(P=2(p+1)\ p+1
IVGy(3,u)|| = O 5"+52</|u| » ) (if p>2)
Q

Let us stress that u— [, a(x)|u/’~'u is not a C? functional for N > 6.

Some remarks are in order:

(a) the problem with a perturbation term G(d,u) = G(o,u) — G2(d,u) =
d [pa(x x)|uf"u is exactly of the form (P )s with ¢ = p — 1, a(x) replaced by pa(x).
So the expansion for E\(PU,,) = E(PU,,) — G1(d,PU,,) is given by (42) because
q=p—1>3

(b) G2(6,u) gives a contrlbutlon to the remainder term ||VE;|[*, Es = E — G(3,-),
of order O(6% + 56 (1f N <6));

(©) G (9, PUgy) (" + &%);
N— N2
(@) if 5~aT there holds E;(PU, +w) = E{(PU,,) + 0(d¢ 2 ). So it follows



P. Esposito, G. Mancini | Journal of Functional Analysis 205 (2003) 306-356 335

Theorem 5.4. Let

-2
M(0,3) =eyH()0" > = 2a(5)0 7 050, e,

K(y) = yeQ

and let (0;,y;) be critical points of M.
() If (0;,y;) are CO-stable, then there are C; disjoint compact neighbourhoods of
(0;,y;) and, for 6>0 small, there are usj, solutions of (BVP),, such that

N
|Vu5J|2 — 820y, as 60 for some x;€C;. (45)
(i) Let C; be disjoint compact subsets of Q such that, for any j,

a(y)>0 Vye(, max K< max K.

G G
Then, for 6 small, (BVP), has solutions us; such that
5 N

|Vus j|”— S26,, as 6—0 for some x;eC;. (46)
Moreover, if ¢ =0, such solutions are positive.
Proof. We need only to prove that the solutions are positive if ¢ =0. If this case, we
define v; as the “small” positive solution of (BVP);, 6> 0 small, whose existence is
ensured by [21]. We verify that u = us — vy is positive (for simplicity, we will omit the
dependence on §). Since for u there holds

—Au = |u+ da + vs]” (u+ da + vs) — (da + vs)’,

we have that, for any ¢ e H}(Q),

1
/VuV(l):p/uq,’)/ |su + da + v’ ds.
Q Q 0

By choosing ¢ = —u~ = —max(—u,0), we obtain

/Q|V”7|2 ZP/Q(LF)2 /01 | —su~ + 6a+ o5’ " ds
<o(1)(/9(u—)P“)”%+c2/Q(u—)P“.
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From the Sobolev embedding theorem and the above inequality we get

S(/Q(u‘)“l)szsO(l)(/Q (u_)pH)pil—&—Cz /Q(u-)l’“. (47)

Let us remark that since PU, , >0, we have u~ <|w(d, ¢, y)| + vs. If, by contradiction,
u~ #0 for 0 small, we can simplify in (47) to obtain

i

= _ .

S<0(1)+C2(/ (”)pﬂ) <o(1) + Cs(||w(d, )" + [[os|"™") = 5-00.
Q

Then, for ¢ small, us >vs >0. This completes the proof of Theorem 5.4. [

Similar computations can be performed for the derivatives leading to the
counterpart of Theorem 5.2. Essentially, if ¢ >0 and 6 >0 is small, problem (BVP);
has as many positive solutions as the non-degenerate critical points of K with a>0.
This is almost the same result for this problem contained in [37]. However, Theorem
5.4 represents a slight improvement because it permits to handle dimension N =3
and it provides an existence result (in any dimension) corresponding to the strict
relative maxima of K.

With the aid of Theorem 5.4, we can provide an example where some highly
oscillating boundary data produce a large number of solutions:

An example. Let Q = B;(0) be the unit open ball, n any positive integer. Let y;€ 0B;,
j=1,...,nand t>1. We want to show that

N2
— Au=uN-2 in By,

" 1
u=2~a N2 on aBl
=y -yl

|yi

has at least n positive solutions if t<?,, =1 + —5—, p<min;4; )’ and J smaller

411N 2
than some §;.

Denoted a'(y) = >/ e ‘x > and K'(y) = ((})))2, it is enough to check, to apply
Theorem 5.4, that

m; =max{K'(y) :yeBi(0), |y —yi|=p Y}

<max{K'(y):yeBi(0), |y —yi|<p} Vi=1,...,n provided t<t,,.
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Appendix A
Here, we recall several kinds of estimates for

g 2 N=2
U.y(x) =cn 3 ey =[N(N=2)] 4, ¢>0, yeRY.

N
Also, [ov VU7 = [fov UPF! = S7 and

&y
oU,, N-2 Xi— Vi ou;,, N-=-2
Vo (1) = —en(V - 26 B e[ P ww, @
| @+ —yyz 1O
U, N—-2 N4 g —|x—y) ouU, N-2
8:} (x) = —cn 562 o ‘ 8:y( )'< 5 U,y(x). (A2)
’ (&2 + |x = y[")2 '
Direct computations give the following estimates.
Lemma A.1.
N2
o(N "2 j _
(¢ ) if 4>y —
N diam Q N
/QUs‘{y: 0<a210g ; > lfq:N—2’
0(8¥q(dlam QN W=y e
N =2
N2, '
& s
_yPUl = s i a4
/B,(y)" b=l U, =0 r(N=2)g-N-s if >N
where r>0.

Now to get estimates for PU,, (recall that APU,, = AU,,, PU,, = 0 on 0Q), let
us introduce

N-2

lpz:,y = Uvﬁw}’ - PU‘L’J’? fl‘I-,)’ = lpz;,y - CNH(y7 ')8 5
where H(y,x) denotes the regular part of the Green’s function, i.e., VyeQ,
AcH(y,x)=0in Q and H(y,X)|.co0 = |x—y|7<N72>. For any given yeQ we will
denote d = dist(y,0Q) and H(y) = H(y,y). By the maximum principle:
N2
e 2

Oglpé:,y< (]&,y? ||‘//;:,y||oc < 52%3 Uv’hy(x) <CNW'
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N-=2 N+2

: e 2 - . . - s 2 . g
In particular, 0< U, — PU? < ¢p= UL, . We also have fey = O(% %) because f;,

is harmonic in Q with boundary data

, N2 1 ! L
Jey(x) = cne 2 N2 va| =0 aN
@+ =Py e

Similarly, one gets estimates for the derivatives of y, , and £, ,. Summarizing (see also
[35] for more details)

Lemma A.2. Given >0, ,,, f.,, d as above, then

£\ ov,, £\ ov,, S
Vir = O\ 2]y, =\ 1) e = O\ vz | (A-3)
N e V2 A e Py, L "
0y davy | 9y;0e av-1| 9g2 an-2 |’ '
23 o, M2\ o, 5
e oy e by e
Jor =0\ " [y, = O\ i ) as — O\ v (A.3)

We are now interested in some estimate for the Z7*!-norm of ., Let us define

1//87y(x) if xeQ,

Vo () = { Up,(x) if xeRMQ.

We have that e D'>(R"), D'?(RY) being the completion of C¢° (R) with respect
to the L>-norm of the gradient, and, by Sobolev inequality,

2
~ 11 ~
( /RN lpé):}tl) <§ /RN |vw87y|27

where S is the Sobolev constant. For the r.h.s. we can obtain

/N |V‘/;£.,y ? :/ |st,y|2 _/ |VPU£-,y|2
R RY Q
N e\N-2
=57 — P+l P = hd
/Q Ve +/g Vi 0<<d) )
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because [, VU,,VPU,, = [,|VPU,,|*. Hence,

o= +of() ~o((3)

which proves

Lemma A.3.

N-=2

Wyl = 0((2)2> (A.6)

Now, using estimates on i, , and its derivatives, we can get for the first and second
derivatives of PU,:

Lemma A.4. Let y>0. Then, for all i#j, we have

OPU,,|[*
Oe

2

orPU,,|I?
’ ‘ = - + 0(8N74)a

Jyi

+ 0" ), H

&2 &2

OPU,, OPU,,\ . y_3 OPU,, OPU,\ . v_3
< ayl 9 8_]/] >_0(8 )5 8)71 ’ 68 _0(8 )’

Cof 1) PP _ (1) ||&PUes
g2)’ 0yi0e g2)’ 0e?

uniformly for yeQ with d(y, 0Q) >

‘ ‘ 0P U,y
0yi0y;

o)

Proof. For the norm and scalar product of first derivatives, by Lemma A.1, Lemma
A.2 and Og% = 0(%), we get, for i#j,

OPU,, 27 o1 OUsy ? N-3y _ €l N-3
OPU||* OU,, & N4
H T =D /RN Us,y ( Oe +0( ) 8_2 + 0(9 )7
<8PU&,y 8PUe,y> —0 / pr-! OUsy|| 0Usy 4V ) = 0N
dyi T Oy Q\B, () Yo Oy yj ’
OPU,, OPU,,\ _ 1| 0U || 00| vs) s
< Ay Oe >_ 0( /Q\B;m Yor | oy || e | T° = 0"
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For the second derivatives, by Lemma A.2, we get for the first relation

2
/ vaszg,y :O( / [UPZ OUg,|| 0Us,,y p-1 82U8,},”62PUW>
ol 0yidy; ol ™| 9yi |l 9y 1 Oyioyl 1| Oyidy
1 1§52 » 1
=0 374—’_3728 2 o Us,y =0 874 s
because g;%;; = O(Z}‘) We proceed in an analogous way for the remaining
relations.

Now, we carry out a more subtle analysis with the aid of the expansion of ¥, , in
term of the regular part of Green’s function.

2N

Lemma A.5. Let D = ¢} 2 Jrv % and 7>0. Then

(1+]xP) 2
N
Pl /g [VPUI* = 87 = DH(&" + O,

N
p+1 _ N-2 N-1
/Q PUT =82 — (p+ 1)DH(y)e" =+ O(e" ),

<PU8.,yy aPU”> _poH (2" 2+ 0N,

yi Oy
oPU,, N -2
PUSJH = = DH(y)8N73 + 0(8N72)7
Oe 2
oPU,, OH 1
PUP % — _ 92D N-2 N-115g —
/Q Uzy oy 7, (7, 2)e""" + O e log ),

/ PUZy apgf}’ = —(N =2)DH(y)e" > + 0(s" ),
Q

uniformly for ye Q with d(y,0Q) > 7.

Proof. Let us

by Lemma A.

N
recall that [ [VU,,|* = [ov UZf! = S2. Now, for the first relation,
1, Lemma A.2 and using Taylor expansion for H(y, x), we get

2
/QWPUW' :/Q Uﬁjl—/g Ul .,

= vt —eve o [ v H O(|x — oV
= o Yo CNE , PIH () + O(]x — y)] + O(e™)

:S% — DH(y)e" 2+ 0" 1),
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because

N
[ vnbe =51 = 03

Similarly, for the second one we have
[opust= et -wen [ vnw, o
Q Q e 7
N
=S2 — (p+ 1)DH(y)eN 2 + 0(N ).

Next, by Lemma A.1, Lemma A.2 and Taylor expansion for 2 5 9H (4, x):

OPU, N2 OH
PU, YN — _ove 2 P _ N-1
< Ver: =5, > ene /Q Uw[ay,. (v,) + O(|x y)] + 0"

OH
—_D N-2 N-1
5y, 022 06,
because
1 U,
Up-H _ ‘. / 1 / Ur D 0 N—1 )
ST /R* o cost. = oy 3y, R¥e Hdy; ")
Similarly,
oPU,, N—4
(Puo ) = =X 220t [ o i) + o=+ 06" )
N — 2

= —TDH(J’) P+ 0V,

because, as above,

oU, aU,,
U? & U? &Y 0 ‘Nfl .
A ey e /RN\Q & Oe (e )

For the last but one relation, we get

oPU,, OPU, BPU‘g
PU? J:/ u?  — / urt :
/Q “r Oy o Oy P Q !0 o

oPU,
+0 /Uf2 —— 2)
<Q T Oy Ve
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Now, oddness implies fB_‘< pr-19%y 0, and hence, using Lemmas A.l1 and A.2,

&y 0Oy
OPU,
—1 &,y
p/QUé’,y 7, Vey

10U,
_”/u ULy Gy + 06

au,
_ch£ / s}l 6;)’
i

Zay )0 = y) + O(x =) | + 0V )

N2 N—-1 1
: +0( ¥ og-

because

ou, o
. 1Y ¥ey o .
PCN /R Up ayl ( j_yj) = —CN o a—xZ(U,p’y)(xj —yj)

N2
=cCN U8y5 Dg 2 551'.
RY

For the remainder term, by Lemmas A.l and A.2, we get

U, N-2
-2 2 N-2 -2 &)
/Q Uf,y 1/187},0(8 /Q Uf.,y (‘a—yl +¢& 2 )>

diam Q N

1 1
=0| &N ’ p73+8Nlog— —O<Nlog )
0 (1+p?) €

OPU,,
Jyi

Thus, from the third relation of this Lemma A.5, we obtain the requested expansion.
Finally, we have

OPU,, OPU, au, 1
PU? - e / Up &y / U%)*l &y 0 N—1 1 -
/.Q “r 88 Q oy 88 r B‘,‘(y) o 88 lpg’y * ¢ g & '

because, as above,

N—4
/ ur? Vi, = 0<8N : / ur, 2( + ST>)
Q Q
diam Q

-~ € prI _ 1 _ 1
=0[ &V 72+8N Mog—| =0(&" log-).
0 (1+p?) & €

OPU,,
oe

oU,,
oe
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Once again, we need to estimate the different terms.

ou, N2 U, )
V4 / Ufpyl de — ‘psy =pene 2 / Uel:,yla—}[H(y)"’_O(lx_ym +0(8N ])
B,(y) B,(y) ¢

-2
:NTDH(y)sN_3 + 0(eV72).

Finally, from the fourth relation in this Lemma A.5, we obtain

PU,
/ PUﬁy% =—(N=2)DH(»)e" 7 +0("?). O
, PO

We conclude this appendix by showing that all the manifolds Z considered in the
paper are “non-degenerate almost critical manifold” for the functional E(u) =

2 I
o IVu| —ﬁ Jo [l ue H)(Q).

Lemma A.6. Let d = dist(y,0Q), diam Q< R. Then

N2 oy
oy (S T+|1—oc|) if N>6,

O<e(§,(1g)3+|1—0€|) if N=6,
an(GY 24 1—a])  if 3SN<6,

() Jay : [[VE(aPU,,)||<

for o bounded. Furthermore, 30 <gy<1, ¢>0:
(i) ||t E"(z)w||=c||w||, z = aPU,,, for any we T, = {we H}(Q): {w,PU,,» =

Cw, L0y — (0, 20 — 0 Wi =1, ..., N} and for 0<e<syd, 1 —gg<a<1+ e;

’ ) ayl
(i) ||mt E"(z)w||=c||w||, z = PU,,, for any weT, = {weH}(Q): {w, d%%‘-") =

<w,agiji""’> =0Vi=1,...,N} and for 0<e<egd.

N
Proof. (i) Since [, VPU,, Vo = [, U’ ¢ YoeH;(Q) and [, U’ = S2, we have

|<VE(°CPU1:,y)a(P>| =

OC/ vPUs,yVQD_ap / PUf},QD‘
Q Q '

pl

17
1 P+
<uS 2||<p||</Q<Ugy—PU5,> ) o — S ol

1 -V )N 751 var
<pocSZ||(p||||zp£7y||oc</Q U, 7 > o — o |S 3 ||o].

By Lemma A.1 and (A.3), estimate (i) follows.
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It is well known that (see Appendix D in [35])

4
2 - 2
/Q [Vw]| —p/Q U£y11v2>—4/g [Vw]| (A7)

for any we T;. Hence, we get

||l E"(aPU,,)w|| = ——=C E"(aPU, ) w, w)

1
I
2
—-_ 2_ p—1 PU])—l 2 >
||w||[/g'w' P /g W]/N+4

for any we T and for 0<e<eggd, 1 —gg<a<1+ &. Hence (ii) holds.

[|wl]

- - _ , _ (wPUyD
We can write any we 75 in the form w = Ang, PU;, + v, ve T, A = U, PO

Since n7,PU,, = PU,, +o(1) as -0 in view of Lemma A4, setting w; =
—Ang, PU;, + v, we can get

/Vwle—p/ PUg’Jflwmzlzi2 {p/ Ufj,l /|VPU1y|]
Q Q
+ [k =p [ Uz (vl
Q Q
N 4
> (p- ST+ / Vol + o(llwlP)
> cf il

for £ small, ¢ a positive constant. Finally, we can conclude that

1
||nT2E”(PU87y)W|>—{/ VWVWl—p/ PUQ;IWWI]ZdWH
[willl Je Q

for £ small, we T, and then (iii). [

Appendix B

In this appendix, we give the proofs of all facts needed in the expansion of
Pohozaev identities.

Proposition 2.1 gives a decomposition of us in the form us = asPU,; ,, + ws,
woeTﬁpr , wg—0 as 0—0 (from now on, we will omit for simplicity the
dependence on ¢), but it does not give any information about the rate of convergence
of w. However, assuming w—0, «— 1 and using the equation for w, we can gain
something more:
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Lemma B.1. Let § = min{¥, N — 2}. Then
e\4d
]| = 0((3) +5£>. (B.1)

Proof. In fact, the function w solves
—Aw =[(@PU;y +w) —alU? |+ da(x)(aPU;, +w)’ in Q,
w=0 on 0Q. (B.2)
Using
(a+b) —a = 0@ |p] + b)),
(a+ by —a —pa~'b = O(bf’ + @b (if p>2))

for a=0, a+ b>0, we can get, by multiplying (B.2) for w and integrating,
/ |Vw)? :(oc”—oc)/ Uy,w + por~! / U£;11v2
Q Q Q
+ do’a(y) /Q Up,w+ 0< /Q ULl + wl(wl” + [, )
4 / P2l (0 + 2, ) if p>2)
Q

+5/ |x—y|U£y|tv|+5/ Ufylwz>.
Q ’ e

By Lemma A.l and (A.3), (A.6), for the term [, Uﬁ;l |l we can get

[ ooty = [ vn g [l
Q B/} \B

4 (9) Q\By(y)

= (NN 75T N =
=0| = Uy 7 - ur!
dN_2< | v ) (%) ( L ) I
e\d
:0((3) ||w|).

Hence, from [, U’ w = [, VPU,,Vw =0, a—1 and (A.6) we derive

(1-1-0(1))/Q|Vw|2—p/g Uﬁ;l\v220<(2>4+58)|vv||.
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In view of (A.7) we get the estimate

||w|=0((g)q+5e>. O

Now we give crucial estimates for expanding the Pohozaev identities for ug.

Lemma B.2. Let n(x) be the unit outer normal to 0Q in x, D as in Section 2. Then

[ () cxmsmts = v oo (3)).

aPU} p 2 B SN_l .
/OQ( o 7)) I’lj<X) =2V 2D8JH(J’)+0(d—N>7 j=1,...,N. (B.4)

Proof. Multiplying
—APU,, =U!, in Q,

PU;, =0 on 0Q

for {x -y, VPU,, > and 0, PU,,, we can get by some integration by parts

N -2 1 oPU, \>
e /4 _ &) _
5 /QUWPUS,erz/m( B ) {x = y,n(x))

:/ APM;.}’<x7y7VPl]1:,y>
Q

:—/ Us”’y<x—y,VPU£,y>
Q
N -2
:—/ ur PUgy—ps/ U 'PU,,0,U,,,
2 o N 7 o Ny ) »

because {x — y,V,U,, > =32U,, +¢9,U,,, and

1 oPU,,\*
2 /09< on >n_/(X) /Q — APU,,8,,PU,,

-1
= /Q U{ 05, PUsy = p /Q Uy, PU:y0y, Uy,
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respectively. So, by the first equality we get

2
/ OPU.y (x—y,n(x)> = —2pe / ur-'ru,,0,U,,
o0Q On o ' '

N 1
_282 CNH(y) [38< /RN Us,y) + P AA'\Q Ug,y:|
N-2|x —y|
ol [ (s )
o )
RN\Q &,y

—w -2 o (5"

where we have used Lemma A.1 and the estimates H(y) +d|VH(y)| = O(33=),

0 U, = O<UF) and (A.5). Hence (B.3) holds. Finally, by the second equality we
derive

PU,,\>
/ OPU., ni(x) = —2p / Ug;IPUS,yay,US,},
0Q on Q

1
p—1 - /4 p+1
Ue;«,,V a}’f UH»)’JF e 0( /Q lf&}’|U&,y Jr/RN\Q U&,}’ >

N +2 2 N-1
:2T‘SN725€V+131'H(%J’) /,%dX‘F 0(8—>7

where we have used Lemma A.l and the estimates H(y) +d|VH(y)|+
dP|DH(»)| = O(), 9y, U,y = 0(%2), (A.5) and

N
/Q x =y U0, Usy| = 0(82>.

Hence (B.4) follows because, by an integration by parts,

/ |x|? N dx
dx = . O
. N+4 N N+2
R (14 [xP) 2 NH2 TRy (14 1Py
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Lemma B.3. There holds

—25 / (x =y, Va(x) ) (aPU,, +w)'*!
o

1 N e\ N € N2
— gt 2 d . 2 2,2
o’ S2 8¢ Aa(y)+0<5(d> +5a(d) +3¢’ ln +5 ), (B.5)
N 25/6a )(@PU,, +w)*!
N2 e 058N-258%52 i=1,...,N. (B.6
N ° ja(v) + (3) +<3) +oe ), j=1., N (B.6)

Proof. Using

(a+by™ =@ = O(|b| + b,

(a+ b)Y — @' — pa’b = OB + |,

for a=0, a+ b=0, we can get by Lemma A.l

/ {x—=y,Va(x)) (aPU,, + w)"’+1
Q

= ot! /Q {x—y,Va(x)y Ul

+0( [ e u, ol ) + e+ | W;;l)
Q ’ ' Q

1 |x
= — o1 2 Aa(y) / —_
oo R (13"

e\ N 1
+o((3) ¥ In o ellwl] - ey |+ IIP ! 1,0 )
because

(x =y, Va(x)) = {(x =y, Va(y)> + {D*a(y)(x — y),x —y)> + O(|x — y|*),
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and
/ da(x)(@PU,, + w)’*!
Q

— ! /Q [0a(y) + <Voa(y),x —y> + O(]x — y|2)] Uﬁ;l

+po? /Q [aja@)+o(|x-y|)]ugjy<w_a%)+0<HW”2 +( /Q p])%)

)
U’H(Q) )
because [, U? w = 0.
Using now (A.3), (A.6) and (B.1) in the above expansions, we conclude the
proof. [

N e\N
—ocf’“a,»a@mw((g) 48 allwll Wl [ U2, + 11wl + e

Let us remark that, by an integration by parts,

/ |x|? o N / dx
RY (1+|xHY 2(N —1) Jrv (1 + |xH)N!

__N ! . Ry
C2AN-2) [ / T+ +/ T+ 1

Let us introduce a smooth cut-off function & on RY such that 0<é<1, £ =0 on
Bi(0) and & =1 on B(0)". Set n(x) = ().
2

For y€{0, 1}, we consider the function z(x) = n(x)|x — y|'w(x) which solves
—Az=y¢g(x) in Q,

z=0 on 0Q, (B.7)

"Aw(x) = An(x)|x = y['w(x) = p(N +7 = 2)|x

g(x) = —n(x)lx -y
— 0w () = 27 V() x =y ]x =y P w(x)

T2UW(X), X — p).

= 2x = y['{Vn(x), Vn(x) > = 2ym(x)|x — y
Similarly, we define v(x) = 5(x)|x — y|" PU,,(x) which solves
—Av="h(x) in Q,

v=0 on 0Q, (B.8)
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with

h(x) = n(x)|x = ' U2

£y

— An(x)lx = ' PUsy(x)

— (N +7 = 2)[x =y n(x)PU,,(x)

29 Vn(x),x — p>[x — y[TPU,(x)

= 2x = y["<{Vn(x), VPU,(x) )

29m(x)|x — ¥ PV PU, y(x),x — ¥

By elliptic regularity theory and the theory of traces, we have the inequalities

o=y 22 o 9yl = yfw) 2 <Clyl;
|29 | On Lz(ag)\ He
_oPU,,I? d , 2 s
c—yp %l | e yrpU, <Cl3,
e ] < |G| <
for some constant C>0 and ¢ == 2.

Remark B.4. With the function z, we are cutting |x — y['w to be zero in a small
neighbourhood B;(y) of the concentration point y. In this way, we will expect that
2

the estimate for ||x — y|"2Y| 12(00) becomes sharper. This idea is already present in [35]
where an estimate for 22| 12(00) 18 obtained: it corresponds to the choice y = 0 but this
estimate is not enough for our purposes.

Multiplying n(x)w also for |x — y|, we can expect to gain in the estimate some
power of d as a multiplying factor. It is just what happens and it will be crucial in the

proof of Theorem 2.2. We apply the same method also to obtain some estimate for
yOPUs,
|| — J’|/T|LZ(09)~

We are now in position to prove

Lemma B.5. There holds

owl? eN-2 &
av —o[ £ 4% B.9
M| 1290) o(le i d>7 (B)
ow|* AR B.10
|xy|8nL2<OQ)o<(d) +s). (B.10)
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Proof. It is enough to estimate each term of g(x) in L/-norm, g = N +1 Taking into
account that [Aw| = O(U?, + |w|"), it is easy to see that

2
a +o0 qy+N—1
y 1 2-1 d
(/Q (nx = ] Uf,y)q> =0]¢ /i (N+2)q dr

22 (147r%) 2

= 0(82y1 (2) N+3—2y>7

N+1

s oY= o @m0t ([ e V) = 0@

(f ) Q

(| (n|x—y|>’*2|w|>) |v|0<( S 2>) (/ ||)) — o(IWIP),

([ ) )=o g ( [ ) T _ o iy,
( " o B = o i),

(f r)'=o

(| <n|x—y|“|w|>) plof ([ 1= ‘)lenwn — o(IwlP).

2
It remains to estimate ( [, (n|x — y|’|w|”)?)¢, the most difficult because pg>p + 1. We
2(N-2) B(N-2) 2
multiply —Aw for n N+1 |x — y| ¥+T |w|N+Iw and, integrating by parts, with some

manipulations, we can get

2(N-2 HN-2) 2
/ — Aw;/] N+1 |x 7y| N+1 |W|N+1W
Q

_(N+D(N+3) N+3
(N +2)?

Q(N-2) Q(N-2) N+3
+0</ [l [Vl x =y ¥ T+ IVWI e =y VT [V

y(N=2)  2(N+2) 2(N+2)
# [ 19— PR T ] [ ey ).

P (N=2) 42
/ |V( 11N+1|x y| N+1 |W|N+l)‘2
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Since

2)(N=2)  N+43 (2y=1)(N=2) 2(N+2)
/ ‘le |v;1| |x y| N+1 |W|N+1 = O(d N+1 Hw|| N+1 >’

P(N-2) 43 2(N+2)
il [ 19wlx - YR |w|N+1—|~/|0(|w|| N)

Z(N-2)  2(N+2) Qy=1)(N=2)  2(N+2)
/ VnP =y 3T WA = 0(d AT |l 5 ),

(N=2) 2N+2) 2(N+2)
bl [ b=y RT 2R = ol R ),
and using |Aw| = O(U?, +|w|”), by the Sobolev inequality we get

DN-2)  2(N42)

2 (2y— 2(N+2)
S( [ b=y ) o (ST WINT ) + plo (1l )

2(N-2) y(N=2)  N+3
/ |Aw|;7 N+1 |x y| N+1 |W|N+1

! (N-2) 2(N-2)  2(N+2) 2(N-2) 2)(N=2)  N+3
= 0(/ (WP (17 NAT |x — y| NHT |w| N1 >+/ Uf,yﬂ NAT |x — p| NI |W|N+1>
Q o

—ofmir( [ 2

")

N(N-2) N>+N+6
IN(N+1)
(2",771>(N72) N+3 + o0 4’N7+N+6+N 1
N+1 N+1
+ Ol ¢ [|w]| p NI dr

2 (1 + r2) N24+N+6

2 )
P N3 mD(N-2) gy MASNG2 o, N2
o ([ lx—srmry) +0<||w|N+ls W (B) T,

It follows that

2 2
) 7 - 2(N+2) 2(N+2) e NASN=2 2y N43
(/Q<n|x—y|*|w\">q) ‘0<d2' L e [ e G IR I

Resuming all this estimates, we get that for y =0

N3 N2SN2
AN 1 I oy 3=
d

owl?
9 dN+3 d &

on

12(0Q) a



P. Esposito, G. Mancini | Journal of Functional Analysis 205 (2003) 306-356 353

and for y =1
2
owl? N4l N3 N*+N+6
=yl =0(e(Z) I Il ¥R () T )
6n Lz(@g) d d
Inserting (B.1), using N22(+NS£V232 @(;Nz% +2>% and
N3 N24sN—2 N N-2
0e)N-2/¢ - 2\ 2 1,2 & 1N2
B o(a(2)") o st ) oot 5.
¢ &£odT
we can obtain the required estimates. [
Similarly, we can proceed to prove
Lemma B.6. There holds
OPU,, |’ V-2
‘ & :0(“”“), (B.11)
on 12(0Q) dN-
oPU,, | g\ N-2
'|x—y| o :0<(—) ) (B.12)
M 1290 d
Proof. We need to estimate /4 in L9-norm, g = N_+1 By Lemma A.1, we have that
2 e Ao \V
( / (nlx — y”U;;”,y)"> =0| ! /d — e ¥
@ % (142) N
N+3-2y
~o#(5)"),
(8 d
2
2 p+1
q\?_ 2y—1 p+1 _ 21 ( E\N 72
W)) =0|d” / ur O(d’ - ,
< 2\B,(») ! ( d)
2
2
2 p+l1

7—2 q q p+1 e\V2
nPU,,)" ) "= 1yl0 ury =plo((z) )
Q\B;(y)

2

v

(L
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2
2 p+1
y— q .
([ awnbe—srtpuy ) =pio| et [y
Q Q\By(y)
2
_ y-1( & N2
2
” q o
( / <|x—y|'|w<x>|VPUs,y>‘f) ol / VPU,, [
Q Q\Bd
O(dZ 71 >
2
e q N 2
01, b=t 19 PUL )=l / 9PULP | = io((6)7).
where we have used
/ vPU,, <2 / |VUSJ,|2+ |V¢Ly| )
Q\By(») Q\By(») '
2 2

in view of

el = oot = | eori=o((5)"7)

It follows that

PU,,|* N2 PU,,|* .\ N2
‘a Usy :0<9N1)’ )lx_ﬂa Usy :0<<3) )
on 12(0Q) d on 12(0Q) d

By Lemmas (B.5) and (B.6), it can be easily deduced that
Lemma B.7. There holds

Js

oP U,
on

ow

8N72 82
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/69 Ix — yP2 —0((§)N2+ 582>. (B.14)

oP U,
on

aw
on
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