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We discuss existence results for a quasi-linear elliptic equation 
of critical Sobolev growth [3,14] in the low-dimensional case, 
where the problem has a global character which is encoded 
in sign properties of the “regular” part for the corresponding 
Green’s function as in [9,11].
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1. Introduction

Let Ω be a bounded domain in RN , N ≥ 2. Given 1 < p < N and λ < λ1, let us 
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⎧⎪⎪⎨
⎪⎪⎩
−Δpu = λup−1 + up∗−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(1.1)

where Δp(·) = div
(
|∇(·)|p−2∇(·)

)
is the p-Laplace operator, p∗ = Np

N−p is the so-called 
critical Sobolev exponent and λ1 is the first eigenvalue of −Δp given by

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω |∇u|p∫
Ω |u|p .

Since W 1,p
0 (Ω) ⊂ Lp∗(Ω) is a continuous but non-compact embedding, standard varia-

tional methods fail to provide solutions of (1.1) by minimization of the Rayleigh quotient

Qλ(u) =
∫
Ω |∇u|p − λ

∫
Ω |u|p

(
∫
Ω |u|p∗)

p
p∗

, u ∈ W 1,p
0 (Ω) \ {0}.

Setting

Sλ = inf
{
Qλ(u) : u ∈ W 1,p

0 (Ω) \ {0}
}
,

it is known that S0 coincides with the best Sobolev constant for the embedding 
D1,p(RN ) ⊂ Lp∗(RN ) and then is never attained since independent of Ω. Moreover, 
by a Pohozaev identity (1.1)λ=0 is not solvable on star-shaped domains, see [3,14]. The 
presence of the perturbation term λup−1 in (1.1) can possibly restore compactness and 
produce minimizers for Qλ, as shown for all λ > 0 first by Brezis and Nirenberg [3] in 
the semi-linear case when N ≥ 4 and then by Guedda and Veron [14] when N ≥ p2.

Let us discuss now the low-dimensional case p < N < p2. In the semi-linear situation 
p = 2 it corresponds to N = 3 and displays the following special features: according 
to [3], problem (1.1) is solvable on a ball precisely for λ ∈ (λ1

4 , λ1) and then, for the 
minimization problem on a general domain Ω, there holds

λ∗ = inf {λ ∈ (0, λ1) : Sλ < S0} ≥ 1
4λ1(B) = π2

4

(3|Ω|
4π

)− 2
3

through a re-arrangement argument, where B is the ball having the same measure of Ω. 
In particular, for λ ≤ λ1

4 a general non-existence result on B follows from an integral 
identity of Pohozaev type, obtained by testing the equation against ψ(|x|)u′ for a suitable 
smooth function ψ with ψ(0) = 0. An integration by parts for the term

1∫
rN−1|u′|p−2u′u

[p− 1
p

ψ′′ − N − 1
p

ψ′

r
+ N − 1

p

ψ

r2

]

0
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is required to eliminate the dependence on the derivatives of u, which is possible in 
general just for p = 2. The property λ∗ > 0 then requires a different proof for p �= 2.

Since Sλ decreases in a continuous way from S0 to 0 as λ ranges in [0, λ1), notice that 
Sλ = S0 for λ ∈ [0, λ∗], Sλ < S0 for λ ∈ (λ∗, λ1) and Sλ is not attained for λ ∈ [0, λ∗). 
A natural question concerns the case λ = λ∗ and the following general answer

Sλ∗ is not achieved (1.2)

has been given by Druet [9], with an elegant proof which unfortunately seems not to 
work for p �= 2. A complete characterization for the critical parameter λ∗ then follows 
through a blow-up approach crucially based on (1.2).

We use here some of the results in [1] - precisely reported in Section 2 for reader’s 
convenience - as a crucial ingredient to treat the quasilinear Brezis-Nirenberg problem 
(1.1) in the low-dimensional case p < N < p2. Given x0 ∈ Ω and λ < λ1, introduce the 
Green function Gλ(·, x0) as a positive solution to

{
−ΔpG− λGp−1 = δx0 in Ω
G = 0 on ∂Ω.

(1.3)

Since uniqueness of Gλ(·, x0) is just known for p ≥ 2, hereafter we will just consider the 
case p ≥ 2. If ωN denotes the measure of the unit ball in RN , recall that the fundamental 
solution

Γ(x, x0) = C0|x− x0|−
N−p
p−1 , C0 = p− 1

N − p
(NωN )−

1
p−1 , (1.4)

solves −ΔpΓ = δx0 in RN . The function

Hλ(x, x0) = Gλ(x, x0) − Γ(x, x0) (1.5)

is usually referred to as the “regular” part of Gλ(·, x0) but is just expected to be less 
singular than Γ(x, x0) at x0.

The complete characterization in [9] for λ∗ (see also [11] for an alternative proof) still 
holds in the quasi-linear case, as stated by the following main result.

Theorem 1.1. Let 2 ≤ p < N < 2p and 0 < λ < λ1. The implications (i) ⇒ (ii) ⇒ (iii) 
do hold, where

(i) there exists x0 ∈ Ω such that Hλ(x0, x0) > 0
(ii) Sλ < S0
(iii) Sλ is attained.

Moreover, the implication (iii) ⇒ (i) does hold under the assumption (1.2) and in par-
ticular λ∗ > 0.
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Some comments are in order. Assumption N < 2p is crucial here to guarantee that 
Hλ(·, x0) is Hölder continuous at x0, see [1]. When 2p ≤ N < p2 we conjecture Hλ(x, x0)
to be mildly but still singular at x0, with a behavior like mλ(x0)

|x−x0|α for an appropriate 

0 < α < N−p
p−1 , and mλ(x0) to play the same role as Hλ(x0, x0) in Theorem 1.1. The 

quantity mλ(x0) is usually referred to as the mass associated to Gλ(·, x0) and appears in 
several contexts, see for example [12,13,18–20]. Notice that in the semilinear case p = 2
the range 2p ≤ N < p2 is empty and such a situation doesn’t show up in [9].

The implication (iii) ⇒ (i) follows by a blow-up argument once (1.2) is assumed. 
To this aim, we first extend the pointwise blow-up theory in [10] to the quasi-linear 
context, a fundamental tool in the description of blow-up phenomena whose relevance 
goes beyond Theorem 1.1 and which completely settles some previous partial results 
[2,7,8] in this direction. Once sharp pointwise blow-up estimates are established, a major 
difficulty appears in the classical use of Pohozaev identities: written on small balls around 
the blow-up point as the radius tends to zero, they rule both the blow-up speed and the 
blow-up location since boundary terms in such identities can be controlled thanks to the 
property ∇Hλ(·, x0) ∈ L∞(Ω). Clearly valid in the semi-linear situation, such gradient 
L∞-bound is completely missing in the quasi-linear context but surprisingly the correct 
answer can still be found by a different approach, based on a suitable approximation 
scheme for Gλ(·, x0). At the same time, we provide a different proof of some facts in [9]
in order to avoid some rough arguments concerning the limiting problems on halfspaces, 
when dealing with boundary blow-up.

Under the assumption (1.2), in the proof of Theorem 1.1 we will show that 
Hλ∗(x0, x0) = 0 for some x0 ∈ Ω, a stronger property than the validity of the impli-
cation (iii) ⇒ (i) since Hλ(x, x) is strictly increasing in λ for all x ∈ Ω. Since S0 is 
not attained, notice that (1.2) always holds if λ∗ = 0 and then λ∗ > 0 follows by the 
property H0(x0, x0) < 0 for all x0 ∈ Ω. Moreover, since

sup
x∈Ω

Hλ∗(x, x) = max
x∈Ω

Hλ∗(x, x) = 0, (1.6)

by monotonicity of Hλ in λ and under the assumption (1.2) the critical parameter λ∗ is 
the first unique value of λ > 0 attaining (1.6) and can be re-written as

λ∗ = sup {λ ∈ (0, λ1) : Hλ(x, x) < 0 for all x ∈ Ω} .

In Section 2 we recall some facts from [1] that will be used throughout the paper and prove 
some useful convergence properties. The implication (i) ⇒ (ii) is established in Section 3
by the expansion of Qλ(PUε,x0) along the “bubble” PUε,x0 concentrating at x0 as ε →
0 and integral identities of Pohozaev type for Gλ(·, x0), crucial for a fine asymptotic 
analysis, are also derived. Section 4 is devoted to develop the blow-up argument along 
with sharp pointwise estimates to establish the final part in Theorem 1.1.
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2. Some preliminary facts

For reader’s convenience, let us collect here some of the results in [1]. To give the 
statement of Theorem 1.1 a full meaning, we need a general theory for problem (1.3), as 
stated in the following result.

Theorem 2.1. [1] Let 1 < p ≤ N and λ < λ1. Assume p ≥ 2 and N < 2p if λ �= 0. Then 
problem (1.3) has a positive solution Gλ(·, x0) so that Hλ(x, x0) in (1.5) satisfies

∇Hλ(·, x0) ∈ Lq̄(Ω), q̄ = N(p− 1)
N − 1 , (2.1)

which is unique when either λ = 0 or λ �= 0 and (2.1) holds. Moreover

• given M > 0, q0 > N
p and p0 ≥ 1 there exists C > 0 so that

‖H + c‖∞,Br(x0) ≤ C(r−
N
p0 ‖H + c‖p0,B2r(x0) + r

pq0−N
q0(p−1) ‖f‖

1
p−1
q0,B2r(x0)) (2.2)

for all ε, r, c ∈ R, f ∈ Lq0(Ω) and solution G = Γ + H, with H ∈ L∞(Ω) and 
∇H ∈ Lq̄(Ω), to

−ΔpG + ΔpΓ = f in Ω \ {x0} (2.3)

so that εp−1 ≤ r ≤ 1
4dist(x0, ∂Ω), |x−x0|

1
p−1

M(εp+|x−x0|
p

p−1 )
N
p

≤ |∇Γ | ≤ M |∇Γ|(x, x0), |c| +

‖H‖∞ + ‖f‖
1

p−1
q0 ≤ M , where Γ(·, x0) is given by (1.4);

• λGp−1
λ ∈ Lq0(Ω) for q0 > N

p and Hλ(·, x0) is a continuous function in Ω satisfying

|Hλ(x, x0) −Hλ(x0, x0)| ≤ C|x− x0|α ∀ x ∈ Ω (2.4)

for some C > 0, α ∈ (0, 1) with Hλ(x0, x0) strictly increasing in λ.

Notice that the first part in Theorem 2.1 has been established in [15]. Let us stress 
that the condition f ∈ Lq0(Ω) for some q0 > N

p , which is valid for f = λGp−1
λ when 

N < 2p if λ �= 0, is a natural condition on the R.H.S. of the difference equation (2.3) to 
prove L∞-bounds on H as it arises for instance in the Moser iterative argument adopted 
in [22]. In this respect, observe that also in the semilinear case Hλ(·, x0) is no longer 
regular at x0 when 4 = 2p ≤ N .

The following a-priori estimates are the basis of Theorem 2.1 and will be crucially 
used here to establish some accurate pointwise blow-up estimates.

Proposition 2.2. [1] Let 2 ≤ p ≤ N . Assume that an ∈ L∞(Ω), fn ∈ L1(Ω) and gn, ̂gn
satisfy
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gn, ĝn ∈ L∞(Ω) ∩W 1,p(Ω) p-harmonic in Ω, gn, ĝn non-constant unless 0

and

lim
n→+∞

‖an − a‖∞ = 0 with sup
Ω

a < λ1, sup
n∈N

[‖fn‖1 + ‖gn‖∞ + ‖ĝn‖∞] < +∞.

If un ∈ W 1,p
gn (Ω) solves −Δpun − an|un|p−2un = fn in Ω, then sup

n∈N
‖un‖p−1 < +∞ and, 

if gn = g, the sequence un is pre-compact in W 1,q(Ω) for all 1 ≤ q < q̄. Moreover, if N <

2p, an = λn ∈ R and ûn ∈ W 1,p
ĝn

(Ω) solves −Δpûn = fn in Ω, then sup
n∈N

‖un−ûn‖∞ < ∞.

We will also make use of the following general form of comparison principle.

Proposition 2.3. [1] Let 2 ≤ p ≤ N and a, f1, f2 ∈ L∞(Ω). Let ui ∈ C1(Ω̄), i = 1, 2, be 
solutions to

−Δpui − aup−1
i = fi in Ω

so that

ui > 0 in Ω,
u1

u2
≤ C near ∂Ω

for some C > 0. If f1 ≤ f2 with f2 ≥ 0 in Ω and u1 ≤ u2 on ∂Ω, then u1 ≤ u2 in Ω.

Let us introduce now a special approximation scheme for Gλ(·, x0), which is partic-
ularly suited for the problem we are interested in. Given C1 = N

N−p

p2
(
N−p
p−1

) (p−1)(N−p)
p2 , 

the so-called standard bubbles

Uε,x0(x) = C1

(
ε

εp + |x− x0|
p

p−1

)N−p
p

ε > 0, x0 ∈ RN , (2.5)

are the extremals of the Sobolev inequality

S0

⎛
⎝∫
RN

|u|p∗

⎞
⎠

p
p∗

≤
∫
RN

|∇u|p, u ∈ D1,p(RN ),

and the unique entire solutions in D1,p(RN ) of

−ΔpU = Up∗−1 in RN , (2.6)

see [5,21,25]. For λ < λ1 consider its projection PUε,x0 in Ω, as the solution of
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⎧⎪⎪⎨
⎪⎪⎩
−ΔpPUε,x0 = λPUp−1

ε,x0
+ Up∗−1

ε,x0
in Ω

PUε,x0 > 0 in Ω
PUε,x0 = 0 on ∂Ω.

(2.7)

Letting Gε,x0 = C0
C1

ε−
N−p

p PUε,x0 with C0 given by (1.4), decompose it as Gε,x0 = Γε,x0 +
Hε,x0 , where

Γε,x0 = C0

C1
ε−

N−p
p Uε,x0 = C0

(εp + |x− x0|
p

p−1 )
N−p

p

→ Γ(x, x0) (2.8)

in C1
loc(Ω̄ \ {x0}) as ε → 0. Since

fε,x0 := −ΔpΓε,x0 =
(C0

C1
ε−

N−p
p

)p−1
Up∗−1
ε,x0

= Cp−1
0 C

p2
N−p

1 εp

(εp + |x− x0|
p

p−1 )N−N−p
p

→ 0 (2.9)

in Cloc(Ω̄ \ {x0}) and
∫
Ω

fε,x0 = −
∫
∂Ω

|∇Γε,x0 |p−2∂νΓε,x0 → −
∫
∂Ω

|∇Γ|p−2(x, x0)∂νΓ(x, x0)dσ(x) = 1

as ε → 0 in view of (2.6) and (2.8), notice that fε,x0 ⇀ δx0 weakly in the sense of 
measures in Ω as ε → 0 and Gε,x0 solves

⎧⎪⎪⎨
⎪⎪⎩
−ΔpGε,x0 = λGp−1

ε,x0
+ fε,x0 in Ω

Gε,x0 > 0 in Ω
Gε,x0 = 0 on ∂Ω.

(2.10)

Thanks to Theorem 2.1 and Proposition 2.2 we can now establish the following conver-
gence result.

Proposition 2.4. Let 2 ≤ p ≤ N and assume N < 2p if λ �= 0. Then there holds

Hε,x0 → Hλ(·, x0) in C(Ω̄) (2.11)

as ε → 0.

Proof. By Proposition 2.2 we can find a subsequence εn → 0 so that Gεn,x0 → G in 
W 1,q

0 (Ω) as n → +∞ for all 1 ≤ q < q̄, where G = Γ(x, x0) +H is a solution of (1.3) for 
some H in view of (2.8) and (2.10). In particular, if λ �= 0 by the Sobolev embedding 
theorem there holds

Gεn,x0 → G in Lp(Ω) as n → +∞ (2.12)
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thanks to q̄∗ > p in view of N < 2p ≤ p2. Moreover, let us rewrite (2.10) in the equivalent 
form:

{
−Δp(Γε,x0 + Hε,x0) + ΔpΓε,x0 = λGp−1

ε,x0
in Ω

Hε,x0 = −Γε,x0 on ∂Ω.
(2.13)

Let us denote the solution of (2.10)λ=0 by G0
ε,x0

and set H0
ε,x0

= G0
ε,x0

− Γε,x0 . By the 
uniqueness part in Theorem 2.1 with λ = 0 we have that

G0
ε,x0

→ G0(·, x0) in W 1,q
0 (Ω)

as ε → 0, for all 1 ≤ q < q̄. Moreover, since |H0
ε,x0

| ≤ M on ∂Ω, by integrating (2.13)
against (H0

ε,x0
∓M)± we deduce that

|H0
ε,x0

| ≤ M in Ω (2.14)

in an uniform way and then G0
ε,x0

is locally uniformly bounded in Ω̄ \ {x0}. By elliptic 
estimates [6,16,22,23] and (2.10)λ=0 we deduce that

G0
ε,x0

uniformly bounded in C1,α
loc (Ω̄ \ {x0}) (2.15)

for some α ∈ (0, 1). Integrating (2.13)λ=0 against ηpH0
ε,x0

, 0 ≤ η ∈ C∞
0 (Ω), we get that

∫
Ω

ηp|∇H0
ε,x0

|p ≤ p

∫
Ω

ηp−1|∇η|(|∇Γε,x0 |p−2 + |∇H0
ε,x0

|p−2)|H0
ε,x0

||∇H0
ε,x0

|

and then (2.14) and Young’s inequality imply that

∇H0
ε,x0

uniformly bounded in Lp(Ω) (2.16)

in view of (2.15).
Let us consider now the case λ �= 0. Since

−Δp(Γε,x0 + Hε,x0) + Δp(Γε,x0 + H0
ε,x0

) = λGp−1
ε,x0

in Ω

with Hε,x0 −H0
ε,x0

= 0 on ∂Ω, an integration against Hε,x0 −H0
ε,x0

gives that

∫
Ω

|∇
(
Hε,x0 −H0

ε,x0

)
|p ≤ |λ|

∫
Ω

Gp−1
ε,x0

|Hε,x0 −H0
ε,x0

| ≤ |λ|‖Gε,x0‖p−1
p ‖Hε,x0 −H0

ε,x0
‖p

thanks to the Hölder’s inequality and the coercivity properties of the p-Laplace operator, 
and then
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∇
(
H0

εn,x0
−H0

εn,x0

)
uniformly bounded in Lp(Ω) (2.17)

in view of (2.12) and Poincaré inequality. A combination of (2.16) and (2.17) lead to 
a uniform Lp-bound on ∇H0

εn,x0
, showing by Fatou’s lemma that ∇H ∈ Lp(Ω). By 

Theorem 2.1 we have that G = Gλ(·, x0) and then

Gε,x0 → Gλ(·, x0) in W 1,q
0 (Ω) (2.18)

as ε → 0, for all 1 ≤ q < q̄.
To extend (2.14) to the case λ �= 0, observe that (2.10) and −ΔpΓε,x0 = fε,x0 in Ω

imply ‖Hε,x0‖∞ ≤ C for all ε > 0 thanks to Proposition 2.2 in view of N < 2p when 
λ �= 0. Since f = λGp−1

ε,x0
is uniformly bounded in Lq0(Ω) for some q0 > N

p in view of 
q̄∗

p−1 > N
p when N < 2p and

|∇Γε,x0 | = C0(N − p)
p− 1

|x− x0|
1

p−1

(εp + |x− x0|
p

p−1 )
N
p

≤ M |∇Γ|(x, x0),

we can apply (2.2) in Theorem 2.1 to Hε,x0 as a solution to (2.13) by getting

|Hε,x0(x) −Hλ(x0, x0)| ≤ C
(
r−

N
p−1 ‖Hε,x0 −Hλ(x0, x0)‖p−1,B2r(x0) + r

pq0−N
q0(p−1)

)
(2.19)

for all x ∈ Br(x0) and εp−1 ≤ r ≤ 1
4dist(x0, ∂Ω).

By contradiction assume that (2.11) does not hold. Then there exist sequences εn → 0
and xn ∈ Ω so that |Hεn,x0(xn) − Hλ(xn, x0)| ≥ 2δ > 0. Since by elliptic estimates 
[6,16,22,23] there holds

Gε,x0 → Gλ(·, x0) in C1
loc(Ω̄ \ {x0}) (2.20)

as ε → 0 in view of (2.10) and (2.18), we have that x̄ = x0 and then

|Hεn,x0(xn) −Hλ(x0, x0)| ≥ δ (2.21)

thanks to Hλ(·, x0) ∈ C(Ω̄). Since by the Sobolev embedding theorem Hε,x0 → Hλ(·, x0)
in Lp−1(Ω) as ε → 0 in view of (2.18) and q̄∗ > p − 1, we can insert (2.21) into (2.19)
and get as n → +∞

δ ≤ C
(
r−

N
p−1 ‖Hλ(·, x0) −Hλ(x0, x0)‖p−1,B2r(x0) + r

pq0−N
q0(p−1)

)
(2.22)

for all 0 < r ≤ 1
4dist(x0, ∂Ω). Since

r−
N

p−1 ‖Hλ(·, x0) −Hλ(x0, x0)‖p−1,B2r(x0) ≤ Crα → 0

as r → 0 thanks to (2.4), estimate (2.22) leads to a contradiction and the proof is 
complete. �
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As a by-product we have the following useful result.

Corollary 2.5. Let 2 ≤ p ≤ N and assume N < 2p if λ �= 0. Then the expansion

PUε,x0 = Uε,x0 + C1

C0
ε

N−p
p Hλ(·, x0) + o

(
ε

N−p
p

)
(2.23)

does hold uniformly in Ω as ε → 0.

3. Energy expansions and Pohozaev identities

We are concerned with the discussion of implication (i) ⇒ (ii) in Theorem 1.1, whereas 
the proof of (ii) ⇒ (iii) in Theorem 1.1 is rather classical and can be found in [14].

Let 0 < λ < λ1 and x0 ∈ Ω so that Hλ(x0, x0) > 0. In order to show Sλ < S0 let us 
expand Qλ(PUε,x0) for ε > 0 small. Since PUε,x0 solves (2.7), we have that

∫
Ω

|∇PUε,x0 |p − λ

∫
Ω

(PUε,x0)p =
∫
Ω

Up∗−1
ε,x0

PUε,x0 =
∫
Ω

Up∗

ε,x0

+ C1

C0
ε

N−p
p

∫
Ω

Up∗−1
ε,x0

[Hλ(x, x0) + o(1)] (3.1)

as ε → 0 in view of (2.23). Given Ωε = Ω−x0
εp−1 observe that

∫
Ω

Up∗

ε,x0
=

∫
Ωε

Up∗

1 =
∫
RN

Up∗

1 + O(εN ) (3.2)

and∫
Ω

Up∗−1
ε,x0

[Hλ(x, x0) + o(1)] =
∫
Ω

Up∗−1
ε,x0

[Hλ(x0, x0) + O(|x− x0|α) + o(1)]

= ε
(N−p)(p−1)

p

∫
Ωε

Up∗−1
1 [Hλ(x0, x0) + O(εα(p−1)|y|α) + o(1)]

= ε
(N−p)(p−1)

p Hλ(x0, x0)
∫
RN

Up∗−1
1 + o(ε

(N−p)(p−1)
p ) (3.3)

in view of (2.4) and 
∫
Rn Up∗−1

1 |y|α < +∞. Inserting (3.2)-(3.3) into (3.1) we deduce

∫
Ω

|∇PUε,x0 |p−λ

∫
Ω

(PUε,x0)p =
∫
RN

Up∗

1 +εN−pC1

C0
Hλ(x0, x0)

∫
RN

Up∗−1
1 +o(εN−p). (3.4)

By the Taylor expansion
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(PUε,x0)p
∗

= Up∗

ε,x0
+ ε

N−p
p

C1

C0
p∗Up∗−1

ε,x0
[Hλ(x, x0) + o(1)] + O(ε2

N−p
p Up∗−2

ε,x0
+ εN )

in view of (2.23) and ‖Hλ(·, x0)‖∞ < +∞, we obtain
∫
Ω

(PUε,x0)p
∗

=
∫
RN

Up∗

1 + εN−pC1

C0
p∗Hλ(x0, x0)

∫
RN

Up∗−1
1 + o(εN−p) (3.5)

thanks to (3.2)-(3.3) and
∫
Ω

Up∗−2
ε,x0

= ε2
(N−p)(p−1)

p

∫
Ωε

Up∗−2
1 = O(ε2

(N−p)(p−1)
p )

for N < 2p. Expansions (3.4)-(3.5) now yield

Qλ(PUε,x0) = S0 − (p− 1)S
p−N

p

0 (
∫
RN

Up∗−1
1 )C1

C0
εN−pHλ(x0, x0) + o(εN−p)

in view of (2.6) and

S0 =
∫
RN |∇U1|p

(
∫
RN Up∗

1 )
p
p∗

= (
∫
RN

Up∗

1 )
p
N .

Then, for ε > 0 small we obtain that Sλ < S0 thanks to Hλ(x0, x0) > 0.
As already discussed in the Introduction, a fundamental tool is represented by the 

Pohozaev identity. Derived [4] for autonomous PDE’s involving the p-Laplace operator, 
it extends to the non-autonomous case and writes, in the situation of our interest, as 
follows: if u ∈ C1,α(D̄) solves −Δpu = λup−1 + cup∗−1 + f in D for f ∈ C1(D̄) and 
c ∈ {0, 1}, given x0 ∈ RN there holds

∫
D

[NH − f〈x− x0,∇u〉 − N − p

p
|∇u|p]

=
∫
∂D

〈x− x0,−
|∇u|p
p

ν + |∇u|p−2∂νu∇u + Hν〉 (3.6)

with H(u) = λ
pu

p + c
p∗u

p∗ and

∫
D

|∇u|p =
∫
D

[λup + cup∗
+ fu] +

∫
∂D

u|∇u|p−2∂νu. (3.7)

An integral identity of Pohozaev type for Gλ(·, x0) like (3.8) below is of fundamen-
tal importance since Hλ(x0, x0) appears as a sort of residue. In the semi-linear case 
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such identity (3.8) holds in the limit of (3.6)-(3.7) on Bδ(x0) as δ → 0 thanks to 
∇Hλ(·, x0) ∈ L∞(Ω), a property far from being obvious in the quasi-linear context 
where just integral bounds on ∇Hλ(·, x0) like (2.1) are available. Instead, we can use the 
special approximating sequence Gε,x0 to derive the following result.

Proposition 3.1. Let 2 ≤ p < N and assume N < 2p if λ �= 0. Given x0 ∈ Ω, 0 < δ <

dist (x0, ∂Ω) and λ < λ1, there holds

C0Hλ(x0, x0)

= λ

∫
Bδ(x0)

Gp
λ(x, x0)dx +

∫
∂Bδ(x0)

(
δ

p
|∇Gλ(x, x0)|p − δ|∇Gλ(x, x0)|p−2(∂νGλ(x, x0))2

−λδ

p
Gp

λ(x, x0) −
N − p

p
Gλ(x, x0)|∇Gλ(x, x0)|p−2∂νGλ(x, x0)

)
dσ(x) (3.8)

for some C0 > 0.

Proof. Since by elliptic regularity theory [6,16,22,23] Gε,x0 ∈ C1,α(Ω̄) for some α ∈ (0, 1)
in view of (2.10), we can apply the Pohozaev identity (3.6) to Gε,x0 with c = 0 and 
f = fε,x0 on D = Bδ(x0) ⊂ Ω to get

∫
∂Bδ(x0)

(
−δ

p
|∇Gε,x0 |p + δ|∇Gε,x0 |p−2(∂νGε,x0)2 + λδ

p
Gp

ε,x0

+N − p

p
Gε,x0 |∇Gε,x0 |p−2∂νGε,x0

)

=
∫

Bδ(x0)

(
λGp

ε,x0
− N − p

p
fε,x0Gε,x0 − fε,x0〈x− x0,∇Gε,x0〉

)
(3.9)

in view of (3.7). The approximating sequence Gε,x0 has the key property that ∇Gε,x0

and fε,x0 are at main order multiples of ∇Uε,x0 and Up∗−1
ε,x0

, respectively, in such a way 
that fε,x0∇Gε,x0 allows for a further integration by parts of the R.H.S. in (3.9). The 
function Hε,x0 appears in the remaining lower-order terms and explains why in the limit 
ε → 0 an additional term containing Hλ(x0, x0) will appear in (3.8). The identity

∫
Bδ(x0)

Up∗−2
ε,x0

Gε,x0〈x− x0,∇Uε,x0〉

=
∫

Bδ(x0)

Up∗−1
ε,x0

〈x− x0,∇Gε,x0 −∇Hε,x0 + Hε,x0

∇Uε,x0

Uε,x0

〉

=
∫

Up∗−1
ε,x0

〈x− x0,∇Gε,x0 + p∗Hε,x0

∇Uε,x0

Uε,x0

〉

Bδ(x0)
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−δ

∫
∂Bδ(x0)

Up∗−1
ε,x0

Hε,x0 + N

∫
Bδ(x0)

Up∗−1
ε,x0

Hε,x0

does hold thanks to Gε,x0 = Γε,x0 + Hε,x0 and Γε,x0∇Uε,x0 = Uε,x0(∇Gε,x0 − ∇Hε,x0), 
which inserted into∫

Bδ(x0)

Up∗−1
ε,x0

〈x− x0,∇Gε,x0〉

= δ

∫
∂Bδ(x0)

Up∗−1
ε,x0

Gε,x0 − (p∗ − 1)
∫

Bδ(x0)

Up∗−2
ε,x0

Gε,x0〈x− x0,∇Uε,x0〉

−N

∫
Bδ(x0)

Up∗−1
ε,x0

Gε,x0

leads to∫
Bδ(x0)

fε,x0〈x− x0,∇Gε,x0〉 = −(p∗ − 1)
∫

Bδ(x0)

fε,x0Hε,x0

[
〈x− x0,

∇Uε,x0

Uε,x0

〉 + N − p

p

]

−N − p

p

∫
Bδ(x0)

fε,x0Gε,x0 + oε(1) (3.10)

as ε → 0 in view of (2.8)-(2.9) and (2.11). Since there holds

p(p− 1)
N − p

C1−p
0 C

− p2
N−p

1

∫
Bδ(x0)

fε,x0Hε,x0

[
〈x− x0,

∇Uε,x0

Uε,x0

〉 + N − p

p

]

= εp
∫

Bδ(x0)

Hε,x0

(p− 1)εp − |x− x0|
p

p−1

(εp + |x− x0|
p

p−1 )N+2−N
p

=
∫

B δ
εp−1

(0)

Hε,x0(εp−1y + x0)
(p− 1) − |y|

p
p−1

(1 + |y|
p

p−1 )N+2−N
p

→
∫
RN

(p− 1) − |y|
p

p−1

(1 + |y|
p

p−1 )N+2−N
p

Hλ(x0, x0)

as ε → 0 in view of (2.4), (2.11) and the Lebesgue convergence Theorem, we can insert 
(3.10) into (3.9) and as ε → 0 get the validity of

C0Hλ(x0, x0) =
∫

λGλ(x, x0)pdx

Bδ(x0)
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+
∫

∂Bδ(x0)

(
δ

p
|∇Gλ(x, x0)|p − δ|∇Gλ(x, x0)|p−2(∂νGλ(x, x0))2

−λδ

p
Gp

λ(x, x0) −
N − p

p
Gλ(x, x0)|∇Gλ(x, x0)|p−2∂νGλ(x, x0)

)
dσ(x)

in view of (2.20) and lim
ε→0

Gε,x0 = Gλ(·, x0) in Lp(Ω) if λ �= 0, as it follows by (2.18) and 

q̄∗ > p thanks to N < 2p ≤ p2, where

C0 = (p∗ − 1) N − p

p(p− 1)C
p−1
0 C

p2
N−p

1

∫
RN

|y|
p

p−1 − (p− 1)
(1 + |y|

p
p−1 )N+2−N

p

.

Concerning the sign of the constant C0, observe that

∫
RN

|y|
p

p−1

(1 + |y|
p

p−1 )N+2−N
p

= − p− 1
pN + p−N

∫
RN

〈y,∇(1 + |y|
p

p−1 )
N
p −N−1〉

= N(p− 1)
pN + p−N

∫
RN

(1 + |y|
p

p−1 )
N
p −N−1

and then
∫
RN

|y|
p

p−1

(1 + |y|
p

p−1 )N+2−N
p

= N(p− 1)
p

∫
RN

1
(1 + |y|

p
p−1 )N+2−N

p

,

which implies C0 > 0 in view of

∫
RN

|y|
p

p−1 − (p− 1)
(1 + |y|

p
p−1 )N+2−N

p

= (N − p)(p− 1)
p

∫
RN

(1 + |y|
p

p−1 )
N
p −N−2 > 0.

The proof of (3.8) is complete. �
4. The blow-up approach

Following [9] let us introduce the following blow-up procedure. Letting λn = λ∗ + 1
n , 

we have that Sλn
< S0 = Sλ∗ and then Sλn

is achieved by a nonnegative un ∈ W 1,p
0 (Ω)

which, up to a normalization, satisfies

−Δpun = λnu
p−1
n + up∗−1

n in Ω,

∫
Ω

up∗

n = S
N
p

λn
. (4.1)

Since λ∗ < λ1, by (4.1) the sequence un is uniformly bounded in W 1,p
0 (Ω) and then, up 

to a subsequence, un ⇀ u0 ≥ 0 in W 1,p
0 (Ω) and a.e. in Ω as n → +∞. Since
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Qλn
(u) = Qλ∗(u) − 1

n

‖un‖pp
‖un‖pp∗

≥ S0 −
C

n

for some C > 0 thanks to the Hölder’s inequality, we deduce that

lim
n→+∞

Sλn
= S0. (4.2)

By letting n → +∞ in (4.1) we deduce that u0 ∈ W 1,p
0 (Ω) solves

−Δpu0 = λ∗u
p−1
0 + up∗−1

0 in Ω,

∫
Ω

up∗

0 ≤ S
N
p

0 ,

thanks to un → u0 a.e. in Ω as n → +∞ and the Fatou convergence Theorem, and then

S0 ≤ Qλ∗(u0) = (
∫
Ω

up∗

0 )
p
N ≤ S0

if u0 �= 0. Since Sλ∗ = S0 would be achieved by u0 if u0 �= 0, assumption (1.2) is crucial 
to guarantee u0 = 0 and then

un ⇀ 0 in W 1,p
0 (Ω), un → 0 in Lq(Ω) for 1 ≤ q < p∗ and a.e. in Ω (4.3)

in view of the Sobolev embedding Theorem. Since by elliptic regularity theory [6,16,22,23]
and the strong maximum principle [24] 0 < un ∈ C1,α(Ω̄) for some α ∈ (0, 1), we can 
start a blow-up approach to describe the behavior of un since ‖un‖∞ → +∞ as n → +∞, 
as it follows by (4.3) and 

∫
Ω up∗

n = S
N
p

λn
→ S

N
p

0 as n → +∞.
Letting xn ∈ Ω so that un(xn) = max

Ω
un, define the blow-up speed as μn =

[un(xn)]−
p

N−p → 0 as n → +∞ and the blow-up profile

Un(y) = μ
N−p

p
n un(μny + xn), y ∈ Ωn = Ω − xn

μn
, (4.4)

which satisfies

−ΔpUn = λnμ
p
nU

p−1
n + Up∗−1

n in Ωn, Un = 0 on ∂Ωn (4.5)

with 0 < Un ≤ Un(0) = 1 in Ωn and

sup
n∈N

⎡
⎣∫
Ωn

|∇Un|p +
∫
Ωn

Up∗

n

⎤
⎦ < +∞.

Since Un is uniformly bounded in C1,α(A ∩ Ωn) for all A ⊂⊂ RN by elliptic estimates 
[6,16,22,23], we get that, up to a subsequence, Un → U in C1

loc(Ω̄∞), where Ω∞ is an 
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half-space with dist(0, ∂Ω∞) = L ∈ (0, ∞] in view of 1 = Un(0) − Un(y) ≤ C|y| for 
y ∈ B2(0) ∩ ∂Ωn and U ∈ D1,p(Ω∞) solves

−ΔpU = Up∗−1 in Ω∞, U = 0 on ∂Ω∞, 0 < U ≤ U(0) = 1 in Ω∞.

Since L < +∞ would provide U ∈ D1,p
0 (Ω∞), by [17] one would get U = 0, in contradic-

tion with U(0) = 1. Since

lim
n→+∞

dist(xn, ∂Ω)
μn

= lim
n→+∞

dist(0, ∂Ωn) = +∞, (4.6)

by [5,21,25] we have that U coincides with U∞ = (1 + Λ|y|
p

p−1 )−
N−p

p , Λ = C
− p2

(N−p)(p−1)
1

(by (2.5) with x0 = 0 and ε = C
p

(N−p)(p−1)
1 to have U∞(0) = 1). Since

Un(y) = μ
N−p

p
n un(μny + xn) → (1 + Λ|y|

p
p−1 )−

N−p
p uniformly in BR(0) (4.7)

as n → +∞ for all R > 0, in particular there holds

lim
R→+∞

lim
n→+∞

∫
BRμn (xn)

up∗

n =
∫
RN

Up∗

∞ = S
N
p

0 . (4.8)

Contained in (4.1)-(4.2), the energy information lim
n→+∞

∫
Ω

up∗

n = S
N
p

0 combines with (4.8)

to give

lim
R→+∞

lim
n→+∞

∫
Ω\BRμn (xn)

up∗

n = 0, (4.9)

a property which will simplify the blow-up description of un. Up to a subsequence, let 
us assume xn → x0 ∈ Ω̄ as n → +∞.

The proof of the implication (iii) ⇒ (i) in Theorem 1.1 proceeds through the 5 steps 
that will be developed below. The main technical point is to establish a comparison 
between un and the bubble

Un(x) = μ
N−p

p(p−1)
n

(μ
p

p−1
n + Λ|x− xn|

p
p−1 )

N−p
p

in the form un ≤ CUn in Ω, no matter xn tends to ∂Ω or not. Thanks to such a 
fundamental estimate, we will first apply some Pohozaev identity in the whole Ωn to 
exclude the boundary blow-up dn = dist (xn, ∂Ω) → 0 as n → +∞. In the interior 
case, still by a Pohozaev identity on Bδ(xn) as n → +∞ and δ → 0, we will obtain an 
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information on the limiting blow-up point x0 = lim
n→+∞

xn ∈ Ω in the form Hλ∗(x0, x0) =
0 and then the property Hλ(x0, x0) > Hλ∗(x0, x0) = 0 for λ > λ∗ will follow by the 
monotonicity of Hλ(x0, x0).

Step 1. There holds un → 0 in Cloc(Ω̄ \ {x0}) as n → +∞, where x0 = lim
n→+∞

xn ∈ Ω̄.

First observe that

un → 0 in Lp∗

loc(Ω̄ \ {x0}) (4.10)

as n → +∞ in view of (4.9) and we are then concerned with establishing the uniform 
convergence by a Moser iterative argument. Given a compact set K ⊂ Ω̄\{x0}, consider 
η ∈ C∞

0 (RN \ {x0}) be a cut-off function with 0 ≤ η ≤ 1 and η = 1 in K. Since un = 0
on ∂Ω, use ηpuβ

n, β ≥ 1, as a test function in (4.1) to get

βpp

(β − 1 + p)p

∫
Ω

ηp|∇wn|p ≤ pp

(β − 1 + p)p−1

∫
Ω

ηp−1|∇η|wn|∇wn|p−1

+
∫
Ω

λnη
pwp

n +
∫
Ω

ηpup∗−p
n wp

n

in terms of wn = u
β−1+p

p
n and then by the Young inequality

∫
Ω

ηp|∇wn|p ≤ Cβp

⎛
⎝∫

Ω

|∇η|pwp
n +

∫
Ω

ηpwp
n +

∫
Ω

ηpup∗−p
n wp

n

⎞
⎠ (4.11)

for some C > 0. Since by the Hölder inequality

∫
Ω

ηpup∗−p
n wp

n ≤ C(
∫

Ω∩supp η

up∗

n )
p
N ‖ηwn‖pp∗ = o(‖ηwn‖pp∗)

as n → +∞ in view of (4.10) and Ω ∩ supp η ⊂⊂ Ω̄ \ {x0}, by (4.11) and the Sobolev 
embedding Theorem we deduce that

‖ηwn‖pp∗ ≤ C‖wn‖pp = C

∫
Ω

uβ−1+p
n → 0

for all 1 ≤ β < p∗−p +1 in view of (4.3) and then un → 0 in Lq(K) for all 1 ≤ q < Np∗

N−p

as n → +∞. We have then established that

un → 0 in Lq
loc(Ω̄ \ {x0}) (4.12)
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as n → +∞ for all 1 ≤ q < Np∗

N−p . Since N
p (p∗ − p) = p∗ < Np∗

N−p , observe that (4.12)
now provides that the R.H.S. in the equation (4.1) can be written as (λn + up∗−p

n )up−1
n

with a bound on the coefficient λn + up∗−p
n in Lq0

loc(Ω̄ \ {x0}) for some q0 > N
p . Given 

compact sets K ⊂ K̃ ⊂ Ω̄ \ {x0} with dist (K, ∂K̃) > 0, by [22] we have the estimate 
‖un‖∞,K ≤ C‖un‖p,K̃ and then un → 0 in C(K) as n → +∞ in view of (4.12) and 

p < Np∗

N−p . The convergence un → 0 in Cloc(Ω̄ \ {x0}) has been then established as 
n → +∞.

Step 2. The following pointwise estimates

lim
n→+∞

max
Ω

|x− xn|
N−p

p un < ∞, lim
R→+∞

lim
n→+∞

max
Ω\BRμn (xn)

|x− xn|
N−p

p un = 0 (4.13)

do hold.

By contradiction and up to a subsequence, assume the existence of yn ∈ Ω such that 
either

|xn − yn|
N−p

p un(yn) = max
Ω

|x− xn|
N−p

p un → +∞ (4.14)

as n → +∞ or

max
Ω

|x− xn|
N−p

p un ≤ C0, |xn − yn|
N−p

p un(yn) = max
Ω\BRnμn (xn)

|x− xn|
N−p

p un ≥ δ > 0

(4.15)
for some Rn → +∞ as n → +∞. Setting νn = [un(yn)]−

p
N−p , there hold |xn−yn|

νn
→ +∞

in case (4.14), |xn−yn|
νn

∈ [δ
p

N−p , C
p

N−p

0 ] in case (4.15) and νn → 0 as n → +∞, since 
xn−yn → 0 as n → +∞ when (4.15) holds thanks to Step 1. Up to a further subsequence, 
let us assume that xn−yn

νn
→ p as n → +∞, where p = +∞ in case (4.14) and p ∈ RN \{0}

in case (4.15). Since ( |xn−yn|
μn

)
N−p

p ≥ ( |xn−yn|
μn

)
N−p

p Un(yn−xn

μn
) = |xn − yn|

N−p
p un(yn) in 

view of (4.5), where Un is given by (4.4), then |xn−yn|
μn

→ +∞ as n → +∞ also in case 

(4.14). Setting Vn(y) = ν
N−p

p
n un(νny + yn) for y ∈ Ω̃n = Ω−yn

νn
, then Vn(0) = 1 and in 

Ω̃n there hold:

Vn(y) ≤ ν
N−p

p
n |νny + yn − xn|−

N−p
p |xn − yn|

N−p
p un(yn) = ( |xn − yn|

|νny + yn − xn|
)

N−p
p

≤ 2
N−p

p (4.16)

for |y| ≤ 1
2
|xn−yn|

νn
in case (4.14) and

|y − xn − yn
νn

|
N−p

p Vn(y) = |νny + yn − xn|
N−p

p un(νny + yn) ≤ C0 (4.17)

in case (4.15). Since
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−ΔpVn = λnν
p
nV

p−1
n + V p∗−1

n in Ω̃n, Vn = 0 on ∂Ω̃n,

by (4.16)-(4.17) and standard elliptic estimates [6,16,22,23] we get that Vn is uniformly 
bounded in C1,α(A ∩ Ω̃n) for all A ⊂⊂ RN \ {p}. Up to a subsequence, we have that 
Vn → V in C1

loc(Ω̄∞\{p}), where Ω∞ is an half-space with dist(0, ∂Ω∞) = L. Since p �= 0, 
there hold B |p|

2
(0) ⊂⊂ RN \ {p} and 1 = Vn(0) − Vn(y) ≤ C|y| for y ∈ B |p|

2
(0) ∩ ∂Ω̃n, 

leading to L ∈ (0, ∞]. Since V ≥ 0 solves −ΔpV = V p∗−1 in Ω∞, by the strong maximum 
principle [24] we deduce that V > 0 in Ω∞ in view of V (0) = 1 thanks to 0 ∈ Ω∞. Setting 
M = min{L, |p|}, by |xn−yn|

μn
→ +∞ as n → +∞ we have that BM

2 νn
(yn) ⊂ Ω \BRμn

(xn)
for all R > 0 provided n is sufficiently large (depending on R) and then

∫
Ω\BRμn (xn)

up∗

n ≥
∫

BM
2 νn

(yn)

up∗

n =
∫

BM
2

(0)

V p∗

n →
∫

BM
2

(0)

V p∗
> 0,

in contradiction with (4.9). The proof of (4.13) is complete.

Step 3. There exists C > 0 so that

un ≤ Cμ
N−p

p(p−1)
n

(μ
p

p−1
n + Λ|x− xn|

p
p−1 )

N−p
p

in Ω (4.18)

does hold for all n ∈ N.

Since (4.18) does already hold in BRμn
(xn) for all R > 0 thanks to (4.7), notice that 

(4.18) is equivalent to establish the estimate

un ≤ Cμ
N−p

p(p−1)
n

|x− xn|
N−p
p−1

in Ω \BRμn
(xn) (4.19)

for some C, R > 0 and all n ∈ N . Let us first prove the following weaker form of (4.19): 
given 0 < η < N−p

p(p−1) there exist C, R > 0 so that

un ≤ Cμ
N−p

p(p−1)−η
n

|x− xn|
N−p
p−1 −η

in Ω \BRμn
(xn) (4.20)

does hold for all n ∈ N . Since |x − xn|η−
N−p
p−1 satisfies

−Δp|x− xn|η−
N−p
p−1 = η(p− 1)(N − p

p− 1 − η)p−1|x− xn|η(p−1)−N ,

we have that Φn = C μ

N−p
p(p−1)−η

n +Mn
N−p
p−1 −η

, where ρ, C > 0 and Mn = sup un, satisfies

|x−xn| Ω∩∂Bρ(x0)
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−ΔpΦn − (λn + δ

|x− xn|p
)Φp−1

n

=
[
η(p− 1)(N − p

p− 1 − η)p−1 − (λn|x− xn|p + δ)
]

Φp−1
n

|x− xn|p

≥ 0 in Ω ∩Bρ(x0) \ {xn}

provided ρ and δ are sufficiently small (depending on η). Taking R > 0 large so that 
up∗−p
n ≤ δ

|x−xn|p in Ω \BRμn
(xn) for all n large thanks to (4.13), we have that

−Δpun − (λn + δ

|x− xn|p
)up−1

n = (up∗−p
n − δ

|x− xn|p
)up−1

n ≤ 0 in Ω \BRμn
(xn).

By (4.7) on ∂BRμn
(xn) it is easily seen that un ≤ Φn on the boundary of Ω ∩Bρ(x0) \

BRμn
(xn) for some C > 0, and then by Proposition 2.3 one deduces the validity of

un ≤ C
μ

N−p
p(p−1)−η
n + Mn

|x− xn|
N−p
p−1 −η

(4.21)

in Ω ∩ Bρ(x0) \ BRμn
(xn). Setting A = Ω \ Bρ(x0), observe that the function vn = un

Mn

satisfies

−Δpvn − λnv
p−1
n = fn in Ω, vn = 0 on ∂Ω, sup

Ω∩∂Bρ(x0)
vn = 1, (4.22)

where fn = up∗−1
n

Mp−1
n

= u
p2

N−p
n vp−1

n . Letting gn be the p-harmonic function in A so that 
gn = vn on ∂A, observe that ‖gn‖∞ = 1 in view of 0 ≤ vn ≤ 1 on ∂A. Since by Step 1
there holds

an = λn + u
p2

N−p
n → λ∗ in L∞(A)

as n → +∞ with λ∗ < λ1(Ω) < λ1(A), by Proposition 2.2 we deduce that 
sup
n∈N

‖vn‖p−1,A < +∞ and then sup
n∈N

‖fn‖1,A < +∞ in view of Step 1. Letting wn the 

solution of

−Δpwn = fn in A, wn = 0 on ∂A,

by Proposition 2.2 we also deduce that sup
n∈N

‖vn − wn‖∞,A < +∞ thanks to N < 2p. 

Since by the Sobolev embedding Theorem sup
n∈N

‖wn‖q,A < +∞ for all 1 ≤ q < q̄∗ in 

view of Proposition 2.2 and sup
n∈N

‖fn‖1,A < +∞, similar estimates hold for vn and then 

sup
n∈N

‖fn‖q0,A < +∞ for some q0 > N
p in view of N < 2p. By elliptic estimates [22] we 

get that sup ‖wn‖∞,A < +∞ and in turn sup ‖vn‖∞,A < +∞, or equivalently

n∈N n∈N
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sup
Ω\Bρ(x0)

un ≤ C sup
Ω∩∂Bρ(x0)

un (4.23)

for some C > 0. Thanks to (4.23) one can extend the validity of (4.21) from Ω ∩Bρ(x0) \
BRμn

(xn) to Ω \ BRμn
(xn). In order to establish (4.20), we claim that Mn in (4.21)

satisfies

Mn = o(μ
N−p

p(p−1)−η
n ) (4.24)

for all 0 < η < N−p
p(p−1) .

Indeed, by contradiction assume that there exist 0 < η̄ < N−p
p(p−1) and a subsequence 

so that

μ
N−p

p(p−1)−η̄
n ≤ CMn (4.25)

for some C > 0. Since vn = O(|x − xn|−
N−p
p−1 +η̄) uniformly in Ω \ BRμn

(xn) in view of 

(4.21) and (4.25), we have that vn and then fn = u
p2

N−p
n vp−1

n are uniformly bounded in 
Cloc(Ω̄\{x0}) and by elliptic estimates [6,16,22,23] vn → v in C1

loc(Ω̄\{x0}) as n → +∞, 
up to a further subsequence, where v �= 0 in view of sup

Ω∩∂Bρ(x0)
v = lim

n→+∞
sup

Ω∩∂Bρ(x0)
vn = 1. 

Moreover, notice that lim
n→+∞

‖fn‖1 = 0 would imply vn → v in W 1,q
0 (Ω) for all 1 ≤ q < q̄

and in Ls(Ω) for all 1 ≤ s < q̄∗ as n → +∞ in view of Proposition 2.2, where v is a 
solution of

−Δpv − λ∗v
p−1 = 0 in Ω. (4.26)

Letting

Tl(s) =
{

|s| if |s| ≤ l

±l if ± s > l

and using Tl(vn) ∈ W 1,p
0 (Ω) as a test function in (4.22), one would get
∫

{|vn|≤l}

|∇vn|p ≤ λn

∫
Ω

vpn + l‖fn‖1 → λ∗

∫
Ω

vp

as n → +∞ in view of q̄∗ > p and then deduce∫
Ω

|∇v|p ≤ λ∗

∫
Ω

vp < +∞

as l → +∞. Since v ∈ W 1,p
0 (Ω) solves (4.26) with λ∗ < λ1, one would have v = 0, in 

contradiction with sup v = 1. Once

Ω∩∂Bρ(x0)
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lim inf
n→+∞

‖fn‖1 > 0 (4.27)

has been established, by (4.4), (4.7) and (4.21) observe that

∫
BRμn (xn)

fn =
∫

BRμn (xn)

up∗−1
n

Mp−1
n

= μ
N−p

p
n

Mp−1
n

∫
BR(0)

Up∗−1
n = O

⎛
⎝ μ

N−p
p

n

Mp−1
n

⎞
⎠ (4.28)

and ∫
Ω\BRμn (xn)

fn = L
p2

N−p
n ( Ln

Mn
)p−1O

(
μ

(p∗−1)η− p
p−1

n log 1
μn

+ 1
)

(4.29)

where Ln = μ
N−p

p(p−1)−η
n + Mn. Setting η0 = p

(p−1)(p∗−1) , then (4.24) necessarily holds 
for η ∈ (η0, 

N−p
p(p−1) ) since otherwise Ln = O(Mn) and (4.28)-(4.29) would provide 

lim
n→+∞

‖fn‖ = 0 along a subsequence thanks to lim
n→+∞

Mn = 0, in contradiction 

with (4.27). Notice that (4.24) holds for η = η0 too, since otherwise the conclusion 

lim
n→+∞

‖fn‖ = 0 would follow as above thanks to Ln = O(μ
N−p

p(p−1)−η
n ) for η ∈ (η0, 

N−p
p(p−1) ). 

Setting ηk = ( p2

Np−N+p )kη0, arguing as above (4.24) can be established for η ∈ [ηk+1, ηk), 
k ≥ 0, by using the validity of (4.24) for η ∈ [ηk, N−p

p−1 ) in view of the relation

(p∗ − 1)ηk+1 −
p

p− 1 + p2

N − p

[
N − p

p(p− 1) − ηk

]
= 0.

Since p2

Np−N+p < 1 for p < N , we have that ηk → 0 as k → +∞ and then (4.24) is proved 

for all 0 < η < N−p
p(p−1) , in contradiction with (4.25). Therefore, we have established (4.24)

and the validity of (4.20) follows.
In order to establish (4.19), let us repeat the previous argument for vn = μ

− N−p
p(p−1)

n un, 
where vn solves

−Δpvn − λnv
p−1
n = fn in Ω, vn = 0 on ∂Ω, (4.30)

with fn = μ
−N−p

p
n up∗−1

n . Notice that fn satisfies

fn ≤ C0μ
p

p−1−(p∗−1)η
n

|x− xn|N+ p
p−1−(p∗−1)η in Ω \BRμn

(xn) (4.31)

for some C0 > 0 in view of (4.20) and then, by arguing as in (4.28),

∫
fn = O(1) + O

( ∫
μ

p
p−1−(p∗−1)η
n

|x− xn|N+ p
p−1−(p∗−1)η

)
= O(1) (4.32)
Ω Ω\BRμn (xn)
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for 0 < η < p
(p−1)(p∗−1) = p(N−p)

(p−1)(Np−N+p) . Letting hn be the solution of

−Δphn = fn in Ω, hn = 0 on ∂Ω,

by (4.32) and Proposition 2.2 we deduce that sup
n∈N

‖vn−hn‖∞ < +∞ thanks to N < 2p, 

or equivalently

‖un − μ
N−p

p(p−1)
n hn‖∞ = O(μ

N−p
p(p−1)
n ). (4.33)

For α > N the radial function

W (y) = (α−N)−
1

p−1

∞∫
|y|

(tα−N − 1)
1

p−1

t
α−1
p−1

dt

is a positive and strictly decreasing solution of −ΔpW = |y|−α in RN \B1(0) so that

lim
|y|→∞

|y|
N−p
p−1 W (y) = p− 1

N − p
(α−N)−

1
p−1 > 0. (4.34)

Taking 0 < η < p
(p−1)(p∗−1) to ensure α := N + p

p−1 − (p∗ − 1)η > N , then wn(x) =

μ
−N−p

p−1
n W (x−xn

μn
) satisfies

−Δpwn = μ
p

p−1−(p∗−1)η
n

|x− xn|N+ p
p−1−(p∗−1)η in RN \B1(xn).

Since

hn(x) = μ
− N−p

p(p−1)
n un(x) + O(1) = μ

−N−p
p−1

n Un(x− xn

μn
) + O(1) ≤ C1wn(x)

for some C1 > 0 and for all x ∈ ∂BRμn
(xn) in view of (4.7), (4.33) and W (R) > 0, we 

have that Φn = Cwn satisfies

−ΔpΦn ≥ fn in Ω \BRμn
(xn), Φn ≥ hn on ∂Ω ∪ ∂BRμn

(xn)

for C = C
1

p−1
0 + C1 thanks to (4.31), and then by weak comparison principle we deduce 

that

hn ≤ Φn ≤ C

|x− xn|
N−p
p−1

in Ω \BRμn
(xn) (4.35)

for some C > 0 in view of (4.34). Inserting (4.35) into (4.33) we finally deduce the 
validity of (4.19)
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Step 4. There holds x0 /∈ ∂Ω.

Assume by contradiction x0 ∈ ∂Ω and set x̂ = x0 − ν(x0). Let us apply the Pohozaev 
identity (3.6) to un with c = 1, f = 0 and x0 = x̂ on D = Ω, together with (3.7), to get

∫
∂Ω

|∇un|p〈x− x̂, ν〉 = p

p− 1λn

∫
Ω

up
n (4.36)

in view of un = 0 and ∇un = (∂νun)ν on ∂Ω. Since vn = μ
− N−p

p(p−1)
n un solves (4.30) and 

vn, fn are uniformly bounded in Cloc(Ω̄\{x0}) in view of (4.18) and (4.31) with η = 0, by 
elliptic estimates [6,16,22,23] we deduce that vn is uniformly bounded in C1

loc(Ω̄ \ {x0}). 
Fixing ρ > 0 small so that 〈x − x̂, ν(x)〉 ≥ 1

2 for all x ∈ ∂Ω ∩ Bρ(x0), by (4.18), (4.36)
and the C1-bound on vn we have that

∫
∂Ω∩Bρ(x0)

|∇un|p = O(λn

∫
Ω

up
n +

∫
∂Ω\Bρ(x0)

|∇un|p) = O(μ
N−p
p−1
n ) (4.37)

since p(N−p)
p−1 < N thanks N < 2p ≤ p2. Setting dn = dist(xn, ∂Ω) and Wn(y) =

d
N−p

p
n un(dny + xn) for y ∈ Ωn = Ω−xn

dn
, we have that dn → 0 and Ωn → Ω∞ as n → +∞

where Ω∞ is an halfspace containing 0 with dist(0, ∂Ω∞) = 1. Setting δn = μn

dn
→ 0 as 

n → +∞ in view of (4.6), the function Gn = δ
− N−p

p(p−1)
n Wn = μ

− N−p
p(p−1)

n d
N−p
p−1
n un(dny+xn) ≥

0 solves

−ΔpGn − λnd
p
nG

p−1
n = f̃n in Ωn, Gn = 0 on ∂Ωn, (4.38)

with f̃n = μ
−N−p

p
n dNn up∗−1

n (dny + xn) = dNn fn(dny + xn) so that

f̃n ≤ Cδ
p

p−1
n

|y|N+ p
p−1

, Gn ≤ C

|y|
N−p
p−1

in Ωn (4.39)

in view of (4.18) and (4.31) with η = 0. By (4.39) and elliptic estimates [6,16,22,23] we 
deduce that Gn → G in C1

loc(Ω̄∞ \ {0}) as n → +∞, where G ≥ 0 does solve

−ΔpG =

⎛
⎝∫
RN

Up∗−1

⎞
⎠ δ0 in Ω∞, G = 0 on ∂Ω∞,

in view of (4.38) and

lim
n→+∞

∫
Bε(0)

f̃n = lim
n→+∞

∫
B

ε
dn (0)

Up∗−1
n =

∫
RN

Up∗−1 (4.40)
μn
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for all ε > 0 in view of (4.6)-(4.7) and (4.18). By the strong maximum principle [24] we 
then have that G > 0 in Ω∞ and ∂νG < 0 on ∂Ω∞. On the other hand, for any R > 0
there holds ∫

∂Ωn∩BR(0)

|∇Gn|p = μ
−N−p

p−1
n d

N−1
p−1
n

∫
∂Ω∩BRdn (xn)

|∇un|p = O(d
N−1
p−1
n )

in view of (4.37) and then as n → +∞
∫

∂Ω∞∩BR(0)

|∇G|p = 0.

We end up with the contradictory conclusion ∇G = 0 on ∂Ω∞, and then x0 /∈ ∂Ω.

Step 5. There holds Hλ∗(x0, x0) = 0.

Let us apply the Pohozaev identity (3.6) to un with c = 1 and f = 0 on D = Bδ(x0) ⊂
Ω and (3.7) to get

λn

∫
Bδ(x0)

up
n +

∫
∂Bδ(x0)

(
δ

p
|∇un|p − δ|∇un|p−2(∂νun)2

− λnδ

p
up
n − N − p

p
un|∇un|p−2∂νun

)
− N − p

Np
δ

∫
∂Bδ(x0)

up∗

n = 0. (4.41)

As in the previous Step, up to a subsequence, there holds Gn = μ
− N−p

p(p−1)
n un → G in 

C1
loc(Ω̄ \ {x0}) as n → +∞, where G ≥ 0 satisfies

−ΔpG− λ∗G
p−1 =

⎛
⎝∫
RN

Up∗−1

⎞
⎠ δx0 in Ω, G = 0 on ∂Ω,

as it follows by (4.38) and (4.40) with dn = 1. Arguing as in Proposition 2.4, 
we can prove that H = G − Γ satisfies (2.1) and by Theorem 2.1 it follows that 
G =

(∫
RN Up∗−1) 1

p−1 Gλ∗(·, x0). Since μ
− N−p

p(p−1)
n un →

(∫
RN Up∗−1) 1

p−1 Gλ∗(·, x0) in 
C1

loc(Ω̄ \ {x0}) as n → +∞, by letting n → +∞ in (4.41) we finally get

λ∗

∫
Bδ(x0)

Gp
λ∗

(x, x0)dx +
∫

∂Bδ(x0)

(
δ

p
|∇Gλ∗(x, x0)|p − δ|∇Gλ∗(x, x0)|p−2(∂νGλ∗(x, x0))2

−λ∗δ

p
Gp

λ∗
(x, x0) −

N − p

p
Gλ∗(x, x0)|∇Gλ∗(x, x0)|p−2∂νGλ∗(x, x0)

)
dσ(x) = 0

and then Hλ∗(x0, x0) = 0 by (3.8).
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