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—Apu = AuP—1 4 P 1 in
u>0 in Q (1.1)
u=20 on 01,

where A,(-) = div(|V(:)[P=2V(-)) is the p-Laplace operator, p* = NN—_’; is the so-called
critical Sobolev exponent and A; is the first eigenvalue of —A, given by

v p
A = inf M
wewdP(@\{o} Jq |ulP

Since W, ?(Q) C LP (Q) is a continuous but non-compact embedding, standard varia-
tional methods fail to provide solutions of (1.1) by minimization of the Rayleigh quotient

_ fQ |VulP — )\fﬂ |u|P

2 . ue WrhP(Q)\ {o}.
Gy METTENG

Qx(u)

Setting

Sy = inf {Q,\(u): ue W)\ {0}} :

it is known that Sy coincides with the best Sobolev constant for the embedding
DYP(RN) ¢ LP"(RY) and then is never attained since independent of Q. Moreover,
by a Pohozaev identity (1.1)x—o is not solvable on star-shaped domains, see [3,14]. The
presence of the perturbation term AuP~! in (1.1) can possibly restore compactness and
produce minimizers for @y, as shown for all A > 0 first by Brezis and Nirenberg [3] in
the semi-linear case when N > 4 and then by Guedda and Veron [14] when N > p?.

Let us discuss now the low-dimensional case p < N < p?. In the semi-linear situation
p = 2 it corresponds to N = 3 and displays the following special features: according
to [3], problem (1.1) is solvable on a ball precisely for A € (4, A1) and then, for the
minimization problem on a general domain §2, there holds

. 1 w2 /3|Q\ 3
A= inf A€ (0.00): 3 < S0} > T (B) = Z(%)

through a re-arrangement argument, where B is the ball having the same measure of €.

In particular, for A < % a general non-existence result on B follows from an integral

identity of Pohozaev type, obtained by testing the equation against ¢ (|z|)u’ for a suitable
smooth function ¢ with ¢(0) = 0. An integration by parts for the term

1
/TN—1|ul|p—2u/u p_l'l///_ N_lﬂ_’_ N_l%]
p p T p T

0



S. Angeloni, P. Esposito / Journal of Functional Analysis 286 (2024) 110176 3

is required to eliminate the dependence on the derivatives of u, which is possible in
general just for p = 2. The property A* > 0 then requires a different proof for p # 2.

Since S decreases in a continuous way from Sy to 0 as A ranges in [0, A1), notice that
Sy =S for A € [0, A\,], Sx < Sp for A € (A, A1) and S) is not attained for A € [0, \,).
A natural question concerns the case A = A\, and the following general answer

S, is not achieved (1.2)

has been given by Druet [9], with an elegant proof which unfortunately seems not to
work for p # 2. A complete characterization for the critical parameter A, then follows
through a blow-up approach crucially based on (1.2).

We use here some of the results in [1] - precisely reported in Section 2 for reader’s
convenience - as a crucial ingredient to treat the quasilinear Brezis-Nirenberg problem
(1.1) in the low-dimensional case p < N < p?. Given zg € Q and A < )1, introduce the
Green function Gy (-, xg) as a positive solution to

{—APG —AGPL =6, in O L3)
G=0 on 0f).

Since uniqueness of G, (-, xg) is just known for p > 2, hereafter we will just consider the
case p > 2. If wy denotes the measure of the unit ball in R¥, recall that the fundamental
solution

p—1

N—p _—
[(z,20) = Colz — 20| 71, Cp= m(NwN) T, (1.4)

solves —A,I' = §,, in RY. The function
Hy(z,x0) = Ga(z,x0) — T'(x, 20) (1.5)

is usually referred to as the “regular” part of G,(,zp) but is just expected to be less
singular than T'(z,z¢) at xg.

The complete characterization in [9] for A, (see also [11] for an alternative proof) still
holds in the quasi-linear case, as stated by the following main result.

Theorem 1.1. Let 2 < p < N < 2p and 0 < A < A;. The implications (i) = (ii) = (i)
do hold, where

(i) there exists xg € Q such that Hy(xg,2z0) > 0
(if) Sy < Sp
(iii) Sy is attained.

Moreover, the implication (iii) = (i) does hold under the assumption (1.2) and in par-
ticular A, > 0.
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Some comments are in order. Assumption N < 2p is crucial here to guarantee that

Hy (-, 0) is Hélder continuous at xg, see [1]. When 2p < N < p? we conjecture H)(z, zq)

max (o)
|z —zo|*

to be mildly but still singular at xy, with a behavior like for an appropriate

0<ac< %7 and my(xg) to play the same role as Hj(zg,2o) in Theorem 1.1. The
quantity my(zo) is usually referred to as the mass associated to G»(-, zg) and appears in
several contexts, see for example [12,13,18-20]. Notice that in the semilinear case p = 2
the range 2p < N < p? is empty and such a situation doesn’t show up in [9].

The implication (iii) = (i) follows by a blow-up argument once (1.2) is assumed.
To this aim, we first extend the pointwise blow-up theory in [10] to the quasi-linear
context, a fundamental tool in the description of blow-up phenomena whose relevance
goes beyond Theorem 1.1 and which completely settles some previous partial results
[2,7,8] in this direction. Once sharp pointwise blow-up estimates are established, a major
difficulty appears in the classical use of Pohozaev identities: written on small balls around
the blow-up point as the radius tends to zero, they rule both the blow-up speed and the
blow-up location since boundary terms in such identities can be controlled thanks to the
property VHy (-, zg) € L*(f). Clearly valid in the semi-linear situation, such gradient
L*°-bound is completely missing in the quasi-linear context but surprisingly the correct
answer can still be found by a different approach, based on a suitable approximation
scheme for G5 (-, zg). At the same time, we provide a different proof of some facts in [9]
in order to avoid some rough arguments concerning the limiting problems on halfspaces,
when dealing with boundary blow-up.

Under the assumption (1.2), in the proof of Theorem 1.1 we will show that
H), (z9,x0) = 0 for some zy € 2, a stronger property than the validity of the impli-
cation (i#4) = (i) since Hy(x,z) is strictly increasing in A for all x € . Since Sy is
not attained, notice that (1.2) always holds if A, = 0 and then A, > 0 follows by the
property Hy(xzg, o) < 0 for all zg € . Moreover, since

sup Hy, (z,z) = max Hy, (z,x) = 0, (1.6)
TEQ e

by monotonicity of Hy in A and under the assumption (1.2) the critical parameter A, is
the first unique value of A > 0 attaining (1.6) and can be re-written as

A =sup{A € (0,A1): Hx(z,z) <0 for all x € Q}.

In Section 2 we recall some facts from [1] that will be used throughout the paper and prove
some useful convergence properties. The implication (i) = (i) is established in Section 3
by the expansion of Q(PUe,) along the “bubble” PU, ,, concentrating at zo as e —
0 and integral identities of Pohozaev type for G, (,xq), crucial for a fine asymptotic
analysis, are also derived. Section 4 is devoted to develop the blow-up argument along
with sharp pointwise estimates to establish the final part in Theorem 1.1.
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2. Some preliminary facts

For reader’s convenience, let us collect here some of the results in [1]. To give the
statement of Theorem 1.1 a full meaning, we need a general theory for problem (1.3), as
stated in the following result.

Theorem 2.1. [1] Let 1 <p < N and A < A\y. Assume p > 2 and N < 2p if A # 0. Then
problem (1.3) has a positive solution Gx(-,x0) so that Hx(x,xq) in (1.5) satisfies

. N(p-1
V() € 1), = D, 2.)
N -1
which is unique when either A =0 or A # 0 and (2.1) holds. Moreover
o given M >0, qo > % and pyg > 1 there exists C > 0 so that
_N pag—N L
HH + C||OC7BT($0) § C(T ro HH + C”PmBzr(ﬂUo) + raotr=b) Hf”;ovgw(fﬁo)) (2'2)

for all e,r,c € R, f € LY(Q) and solution G = I' + H, with H € L*(Q) and
VH e Li(Q), to

AN GHA T = in Q\ {zo} (2.3)
_1
so that e~ < r < Ydist(zg, 0Q), lemwolP < |VI'| < M|VT|(z,20), |c| +
M(eP+|z—zo|P—1) P

_1
|H oo + I fllét < M, where T(-, o) is given by (1.4);
. AG{(ﬂ € L% (Q) for qo > % and Hy (-, o) is a continuous function in Q0 satisfying

|Hx(x,20) — Hx(xg,20)| < Clz — 20| V2 EQ (2.4)
for some C >0, a € (0,1) with Hx(zo, o) strictly increasing in .

Notice that the first part in Theorem 2.1 has been established in [15]. Let us stress
that the condition f € L%(Q) for some gy > %, which is valid for f = )\Gf\_l when
N < 2pif A # 0, is a natural condition on the R.H.S. of the difference equation (2.3) to
prove L*°-bounds on H as it arises for instance in the Moser iterative argument adopted
n [22]. In this respect, observe that also in the semilinear case H)(-,xo) is no longer
regular at xg when 4 = 2p < N.

The following a-priori estimates are the basis of Theorem 2.1 and will be crucially
used here to establish some accurate pointwise blow-up estimates.

Proposition 2.2. [1] Let 2 < p < N. Assume that a, € L=(Q), f, € L*(Q) and g, dn
satisfy
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Gns G € LZ°(Q) N WP(Q) p-harmonic in Q, gn,§n non-constant unless 0
and

im lan — alloc =0 with supa < A1, sup [||fulls + [lgnlloc + |Gnlloo] < +oc.
n—+4o0o o) neN

If u, € ngf(Q) solves —Apun — an|un|[P~2u, = f,, in Q, then sup |Jup||,—1 < 400 and,
neN

if gn = g, the sequence u,, is pre-compact in W4(Q) for all 1 < q < q. Moreover, if N <

2p, a, = A\, € R and 4,, € ng’;p(ﬂ) solves —Apl, = fr in Q, then sup ||un —Uy || < 0.
neN

We will also make use of the following general form of comparison principle.

Proposition 2.3. [1] Let 2 < p < N and a, f1, fo € L®(Q). Let u; € C1(Q), i = 1,2, be
solutions to

—Apu; — auf_l =f inQ
so that
. U
u; >0 Q, — <C near 002
U2

for some C > 0. If f1 < fo with fo >0 in Q and u; < ug on AN, then uy < ug in €.

Let us introduce now a special approximation scheme for G(-, zp), which is partic-
N_p) (p=1)(¥ =)

N—
ularly suited for the problem we are interested in. Given C; = N a ( o1 ,

the so-called standard bubbles

N-—p

Ue,wo(l‘) = C]_ (%) € > O, o € RN, (25)
P + |z — x| P-T

are the extremals of the Sobolev inequality

pL*
So /|u\P* §/|Vu\p, we DLP(RY),
N RN

and the unique entire solutions in D'?(R¥Y) of
—AU=U""1 inRY, (2.6)

see [5,21,25]. For A < A consider its projection PU, ,, in 2, as the solution of
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—ApPUcyy = APUPI+UP,SY in Q

€,T0
PUcyy >0 in Q (2.7)
PUe,xo =0 on Of).

. _ Co _N
Letting G¢ z, = o€

H, .., where

o PU. ., with Cy given by (1.4), decompose it as Ge 4o = L'e 5, +

Co _N—-p CO

Lewo = = v Uego = — — I'(z, 2.8
o Cle e (6p+|$—$0|p51)Npp (m x0> ( )
in CL_(Q\ {z0}) as € — 0. Since
p2
Co _Np\p-1, ch o) rer
fém = —-A T :( OE_Np )p ' Pt = : ! : — — 0 (29)
»L0 4 »T0 C €,T0 P N_N-p
1 (e + | — 2ol 77) ¥

in Cloe(Q\ {z0}) and

/ Fome = — / VT [P 20, 0y — — / VT P~2(2, 20)0, (2, 20)dor(z) = 1
Q oN oN

as ¢ — 0 in view of (2.6) and (2.8), notice that f.,, — J, weakly in the sense of
measures in 2 as € = 0 and G 4, solves

—ApGe o = ANGPLE + o, in Q

€,T0
Gey >0 in Q (2.10)
Ge,zo =0 on Of).

Thanks to Theorem 2.1 and Proposition 2.2 we can now establish the following conver-
gence result.

Proposition 2.4. Let 2 < p < N and assume N < 2p if A # 0. Then there holds

Hezy = Ha(-x0) in C(Q) (2.11)
as € — 0.
Proof. By Proposition 2.2 we can find a subsequence €, — 0 so that G, ,, = G in
Wol’q(Q) as n — +oo for all 1 < ¢ < ¢, where G = I'(z,x¢) + H is a solution of (1.3) for
some H in view of (2.8) and (2.10). In particular, if A # 0 by the Sobolev embedding

theorem there holds

Ge,wo > G in LP(Q) as n — 400 (2.12)
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thanks to ¢* > p in view of N < 2p < p?. Moreover, let us rewrite (2.10) in the equivalent
form:

&0 (2.13)

_AP(FE,IO + He,zo) + Apre,zo = \GP ! in Q
HE,J)O = 7]?6,.7)0 on 39

Let us denote the solution of (2.10)y—¢ by G?, and set H?, = GY,  —T.,,. By the

€,T0 €,T0 €,T0
uniqueness part in Theorem 2.1 with A = 0 we have that

GO, — Go(-,m) in Wy'(Q)

€,T0

as € — 0, for all 1 < ¢ < ¢. Moreover, since |H?, | < M on 99, by integrating (2.13)
against (H°, F M)y we deduce that

€,Zo

|H?

€,Z0

<M inQ (2.14)

in an uniform way and then Gg,xo is locally uniformly bounded in Q \ {z¢}. By elliptic
estimates [6,16,22,23] and (2.10)y—¢ we deduce that

0
GE,IO

uniformly bounded in Cu%(Q\ {z0}) (2.15)

for some a € (0,1). Integrating (2.13),—¢ against n* H?

€,

0 <neC§e(Q), we get that

[V HSL P < [ (VT P 4 [VH, ) HE, VL,
Q Q

and then (2.14) and Young’s inequality imply that
0 . .
VH_ ,, uniformly bounded in L”() (2.16)

in view of (2.15).
Let us consider now the case A # 0. Since

~Ap(Temy + Hemy) + Ap(Tego + HY, ) = AGPLL in Q

€,Z0

with H 5, — H?, =0 on 0%, an integration against H, ,, — H?, gives that

€,20 €,20
JIV ey = B2 P SN [ G2y = B2 S NGl [Hmy ~ B
Q Q

thanks to the Holder’s inequality and the coercivity properties of the p-Laplace operator,
and then
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Vv (H? . —H? ) uniformly bounded in L?(£) (2.17)

€n,T0 €n,T0

in view of (2.12) and Poincaré inequality. A combination of (2.16) and (2.17) lead to
a uniform LP-bound on VH? showing by Fatou’s lemma that VH € LP(Q2). By

€n,T0?

Theorem 2.1 we have that G = G (-, o) and then
Ge o — Gl o) in Wy () (2.18)

ase— 0, forall 1 <g<gq.

To extend (2.14) to the case A # 0, observe that (2.10) and —ApT'c 5y = fez, in Q
imply ||Hegolloo < C for all € > 0 thanks to Proposition 2.2 in view of N < 2p when
A # 0. Since f = AGP,! is uniformly bounded in L% () for some gy > % in view of
pq%l>%whenN<2pand

Co(N —p) |z —ao|7 1

[VTeuo| =
’ P=1 (e + |z — zo|7T)

~ < M|VI|(z,z0),
P

we can apply (2.2) in Theorem 2.1 to He 5, as a solution to (2.13) by getting
N rag—N
|He,wo (z) — Hx(z0,20)| < C (7" Pt HHe,wo - HA(xvaO)”pfl,Bzr(%) + TqO(pfl)) (2.19)

for all z € B, (z0) and e#~! < r < Ldist(zo, 09).

By contradiction assume that (2.11) does not hold. Then there exist sequences ¢, — 0
and z, € Q so that |He, 40(zn) — Hx(2n,z0)| > 2§ > 0. Since by elliptic estimates
[6,16,22,23] there holds

Gewo = Ga-20) in Cpho(Q\ {z0}) (2.20)
as € = 0 in view of (2.10) and (2.18), we have that = xy and then
|He,, o (2n) — Hx(0,20)| > 6 (2.21)
thanks to Hy(-,29) € C(Q). Since by the Sobolev embedding theorem H. ., — Hx (-, )
in LP71(Q) as € — 0 in view of (2.18) and ¢* > p — 1, we can insert (2.21) into (2.19)
and get as n — +o0
pag—N
6 < C (17T [Ha( w0) = HA@0, 20)llp-1,B5.(ao) + 7700 ) (2.22)
for all 0 < r < 1dist(zo, 99). Since
_ N feY
rp=T||HA\ (-, w0) — Hx(20,%0)|lp—1,Bs,(20) < CT% — 0

as v — 0 thanks to (2.4), estimate (2.22) leads to a contradiction and the proof is
complete. O
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As a by-product we have the following useful result.

Corollary 2.5. Let 2 < p < N and assume N < 2p if XA # 0. Then the expansion

C; No N—

—€ PPH,\(-,J:O)—i—o(eTp) (2.23)
Co

PU. 3y = Uc g +
does hold uniformly in Q as e — 0.
3. Energy expansions and Pohozaev identities
We are concerned with the discussion of implication (i) = (4#¢) in Theorem 1.1, whereas
the proof of (i¢) = (i4i) in Theorem 1.1 is rather classical and can be found in [14].

Let 0 < A < Ay and g € 2 so that Hy(xg,x0) > 0. In order to show Sy < Sy let us
expand Qx(PU y,) for € > 0 small. Since PU, ,, solves (2.7), we have that

/|VPUE,1o‘p_)‘/(PU€,10)p :/UepxglPUE To /UEDTU
Q Q Q

Q
C1 N—»p —1
taeT UfmO [Hx(z,20) + o(1)] (3.1)
0 Q
as € — 0 in view of (2.23). Given Q. = %22 observe that

/”0 /Up /U” + O(e (3.2)

and

/ UP = [Hy (2, 20) + o(1)] = / U= [Hy (0, x0) + O(Jz — 20]®) + o(1)]
Q Q

(N—p)(p—1) —
_ o / UP" Y [H (0, 20) + O(e>@~V]y|®) + o(1)]
Q.

_ €<N—p;(p—1>H/\(x0’m0) / U{J*_1 _i_o(e(N—p;(p—l)) (3.3)
RN
in view of (2.4) and [p., UP" "yl < +oc. Inserting (3.2)-(3.3) into (3.1) we deduce
p* Cl p—1 N-p
|VPUE wolP—A | (PUey, )P = | Ui FH)\(.I(),JT()) U ~ " +o(e"7P). (34)
0

RN RN

By the Taylor expansion
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N—p

Up*il[Hk(xny) + 0(1)] + 0(62 P Up**2 + GN)

€,Zo

P

* * N— 1 %
(PUE,LCO):D = ngo +er Fop €,Z0

in view of (2.23) and || Hx(+, %o)]||cc < +00, we obtain

/(PU@IO)Z)* = / Uf* + eprg—;p*HA(on@o) / Uf*fl +o(eN7P) (3.5)
Q RN RN

thanks to (3.2)-(3.3) and

* (N—p)(p—1) * (N=p)(p—1)
p*—2 _  2——r_r= pT—2 21— —FAP— -/
/Uw.0 =e z /U1 =O(e r)

Q Q.

for N < 2p. Expansions (3.4)-(3.5) now yield

p=N « .. C B B
Qx(PU.,) = So— (p—1)S, * (/U{’ 1)al)eN PHy(xo,20) + 0(eNP)
RN

in view of (2.6) and

So = M Z(/ Uy k.
(f]RN U{) )p* RN
Then, for € > 0 small we obtain that Sy < Sy thanks to Hy(zg,xq) > 0.

As already discussed in the Introduction, a fundamental tool is represented by the
Pohozaev identity. Derived [4] for autonomous PDE’s involving the p-Laplace operator,
it extends to the non-autonomous case and writes, in the situation of our interest, as
follows: if u € CY*(D) solves —A,u = AuP~' +cuP” = + f in D for f € C'(D) and
c € {0,1}, given zg € RY there holds

/ INH — fla — 20, V) ?MW

D
P
= /(me,W—UVJr \Vu|P~20,uVu + Hv) (3.6)
oD P
with H(u) = %u” + Z%up* and
/|Vu|p = /[)\up +eu? + fu] + /u\Vu\p_28,,u. (3.7)
D D oD

An integral identity of Pohozaev type for G)(-,x0) like (3.8) below is of fundamen-
tal importance since H)y(zo,xo) appears as a sort of residue. In the semi-linear case
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such identity (3.8) holds in the limit of (3.6)-(3.7) on Bs(zg) as § — 0 thanks to
VHy(-,xg) € L>®(R), a property far from being obvious in the quasi-linear context
where just integral bounds on VH) (-, zo) like (2.1) are available. Instead, we can use the
special approximating sequence G. ., to derive the following result.

Proposition 3.1. Let 2 < p < N and assume N < 2p if A # 0. Given xg € Q, 0 < § <
dist (xg, Q) and X < A1, there holds

CoH (0, 70)
5
=) / GX (z, xo)dx + / <}—7|VG)\(.Z‘, x0)[P — 6| VG (2, 20)[P2(0, G (z, 10))?
Bs(z0) 9B;s(z0)

—%Gi(x,xo) - ?GA(Q:,:UO)|VG>\(:U,:EO)|Z’ZGUG)\(:U,wO)> do(x) (3.8)

for some Cy > 0.

Proof. Since by elliptic regularity theory [6,16,22,23] G .., € C*%(Q) for some « € (0,1)
in view of (2.10), we can apply the Pohozaev identity (3.6) to Ge 4, with ¢ = 0 and
f = fex, on D = Bs(xg) C Q to get

0 VGezo|? 4 0|VGe iz [P72(00Geno)® + e
p X0 X0 »Z0 p €,20
0B;s(z0)
N —
+TpGe,x0|VGe,xg|p_2auGe,xg>
N —
= / <)‘G€,mo - Tpr,IOGG’IO - fe,ﬂlo <‘T — Zo, VGE»I0>) (39)

Bs(zo0)

in view of (3.7). The approximating sequence G, has the key property that VG 4,
and fe z, are at main order multiples of VU, ,, and Ug;gl, respectively, in such a way
that fe . VGeq, allows for a further integration by parts of the R.H.S. in (3.9). The
function H, ., appears in the remaining lower-order terms and explains why in the limit
€ — 0 an additional term containing H)(zo, z¢) will appear in (3.8). The identity

/ U£;;2G€’€L’0 <$ — Zo, VUE,ZL’0>

Bs (o)

. VU,
= / Uéo,a:o 1<33‘ — 2o, VGG,JCO - VHGJO + Hé,ﬂlo U—xo>

€,Z0
Bs(zo)

x VU,

= / U5w31<'r — Zo, VGE,CCU +p*H€7Qfo U — >
€,T0
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— p -1 p"—1
) / UHEO He o+ N / ero H, .,
8B5 :Eo BS(mO)

does hold thanks to Ge gy = T'e gy + Hewo and T'c 5 VUe o = Ue 2y (VGe sy — VHe zy)s
which inserted into

U?P _1<£L' — 20, VG 1)

€,Z0
B(;(wo)
=5 [ U2 Gen = 07 =) [ UG- 0 VUL
OBs(x0) Bs(xo)
-N / UP o Gey
Bs(z0)
leads to
VU, , N —
/ fem0< anVGezo>: p _1 / fewo ewo .’E—l‘o, U ,0>+ p}
€,T0 p
Bs(z0)

Bs(zo
/ €,Z0 exo +05( ) (310)
Bs (o)

as € — 0 in view of (2.8)-(2.9) and (2.11). Since there holds

p(p - 1) Cé_pC;NLEP

VU z, N-—p
= =)

fe,one,a:[) |:<3j — Zo, Ue,;co P

Bs(zo0)

o (p— 1)e” — | — o7

&0 P _\N42_ N
P —_ p—1 P
PR
Z 1) — |yl
/ He,wo (Gp_ly +.’IJO) (p )L |1:\y/|_:2_ﬂ
(L+[y[>=T) P
B s (0)

ep—1

%/ ‘3\/['211\, Hy (0, 20)
1+|y| )N

as € — 0 in view of (2.4), (2.11) and the Lebesgue convergence Theorem, we can insert
(3.10) into (3.9) and as € — 0 get the validity of

CoHx(x0,x0) = / MG\ (7, x0)Pdz

Bs(zo)
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)

+ / (pVG,\(o:,xo)|p — 8|VGA(z, 20)[P2(0, Gz, 20))?

9Bs (o)

Ad N -
—?Gi(x,:vo) - TpGA(x,xo)VGA(x,x0)|p_23VG>\(x,a:0)> do(x)
in view of (2.20) and lir% Gewo = Ga(,20) in LP(Q) if X # 0, as it follows by (2.18) and

e—

q* > p thanks to N < 2p < p?, where

N=p i [ 77— (-1
Co=(p"—1 cr oyl ”/ .
o=l I Sy TN
Concerning the sign of the constant Cj, observe that
/ e
_P_ _N T . ’
Sy @M pNAp =N
N 1 _
—_ (p ) (1_~_|y|p71)p N-1
pN+p—N
RN
and then
/ lyl 7 _Ne-Y / 1
SEr\N42-8 Ery\N+2-17
pv LF[y7T) Py (L ly[7T)

which implies Cy > 0 in view of

/ |y|ﬁ 7(p71)1v — (Np])g(pl) /(1+|y|%)%—N—2 > 0.

(1+ [yl )™=

RN RN

The proof of (3.8) is complete. O
4. The blow-up approach

Following [9] let us introduce the following blow-up procedure. Letting A\, = A. + %,
we have that Sy, < Syp =S, and then S, is achieved by a nonnegative u,, € I/VO1 P(Q)
which, up to a normalization, satisfies

N

—Apuy, = Apub ™t 4 u’,’:fl in Q, /up* =Sy. (4.1)

n

Q

Since A, < A1, by (4.1) the sequence u,, is uniformly bounded in W, *(2) and then, up
to a subsequence, u, — ug > 0 in Wy P(Q) and a.e. in Q as n — +oo. Since
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L lually o C
= D0~ —

Qx, (u) = Qx, (u)

o |un e

for some C' > 0 thanks to the Holder’s inequality, we deduce that

lim Sy, = So. (4.2)

n—-+oo

By letting n — +oco in (4.1) we deduce that ug € Wy (Q) solves

—1 *_1 . * .
—Apug = Auf 4 uf T in Q, uf < S,

Q

thanks to u, — ug a.e. in £ as n — +o0o and the Fatou convergence Theorem, and then

*

)%SSO

So < Qi (uo) = (/“g

Q

if ug # 0. Since Sy, = Sp would be achieved by wg if ug # 0, assumption (1.2) is crucial
to guarantee ug = 0 and then

U, — 0in WyP(Q), wu, —0in LI(Q) for 1 < ¢ < p* and a.e. in Q (4.3)

in view of the Sobolev embedding Theorem. Since by elliptic regularity theory [6,16,22,23]
and the strong maximum principle [24] 0 < u,, € C1*(Q) for some a € (0,1), we can
start a blow-up approach to describe the behavior of u,, since ||ty || — +00 as n — 400,
N N
as it follows by (4.3) and [, ul, =Sy — S asn — +oc.
Letting z, € Q so that u,(z,) = ax Uy, define the blow-up speed as u, =

[Un (€))7 — 0 as n — +oo and the blow-up profile

K=p Q—x,
Un(y) = HUn un(ﬂny + xn)v RS Q, = 1 y (44)
which satisfies
— AU = ApPUP 4+ UP L in Q,, U, =0 on 0, (4.5)

with 0 < U, < U,(0) =1 in Q,, and

sup /|VU”|”—|—/U5* < 4o00.

neN
QTI,

Since U, is uniformly bounded in C**(A N Q,) for all A CC R¥Y by elliptic estimates
[6,16,22,23], we get that, up to a subsequence, U,, — U in C}_(Q), where Q, is an
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half-space with dist(0,0Q) = L € (0,00] in view of 1 = U,(0) — Un(y) < Cly| for
y € By(0) NS, and U € DVP(Q,) solves

~AU=U""1inQy, U=00n80,, 0<U<U(0)=1inQq

Since L < 400 would provide U € Dy*(Qs), by [17] one would get U = 0, in contradic-
tion with U(0) = 1. Since

i Q
i S0 40,000 = too, (4.6)

n—-+oo /,[,n n—-+oo
s : BN - =55
by [5,21,25] we have that U coincides with Uy, = (1 + Aly|?-1)" » , A =C,

(by (2.5) with 79 = 0 and e = C{¥ "%V to have U, (0) = 1). Since

N-p

Un(y) = pn "

Un (Y + ) = (1 + A|y|ﬁ)7¥ uniformly in Br(0) (4.7)

as n — +oo for all R > 0, in particular there holds

N

* * N
lim lim / uP = vt =57 . (4.8)
R—+o0c0on—+00

BRruy (zn) RN

’ﬂ—)OO

Contained in (4.1)-(4.2), the energy information lim /ufl = SO" combines with (4.8)
Q

to give

lim lim ub =0, (4.9)

R—+ocon—+o0
N\ Bruy, (Tn)

a property which will simplify the blow-up description of u,. Up to a subsequence, let
us assume x,, — g € Qasn— —+00.

The proof of the implication (i74) = (¢) in Theorem 1.1 proceeds through the 5 steps
that will be developed below. The main technical point is to establish a comparison
between u,, and the bubble

Un(z) =

(" + Alx — 2, 751) 5

in the form u, < CU, in €, no matter z, tends to 92 or not. Thanks to such a
fundamental estimate, we will first apply some Pohozaev identity in the whole €, to
exclude the boundary blow-up d,, = dist (z,,9Q) — 0 as n — +oo. In the interior
case, still by a Pohozaev identity on Bs(x,) as n — +oo and § — 0, we will obtain an
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information on the limiting blow-up point g = liI_P Zn € Qin the form H)y, (zg, o) =
n——+0oo
0 and then the property Hy(zg,x0) > Hx,(x0,29) = 0 for A > A, will follow by the

monotonicity of H)(xg,xo).

Step 1. There holds u,, — 0 in Coe(Q\ {zo}) as n — +o00, where zyp = lim =z, € Q.

n——+oo

First observe that

U, — 0 in L2 (Q\ {zo}) (4.10)

loc

as n — +oo in view of (4.9) and we are then concerned with establishing the uniform
convergence by a Moser iterative argument. Given a compact set K C Q\ {xo}, consider
n € C (RN \ {z0}) be a cut-off function with 0 <n < 1andn =1 in K. Since u,, =0
on 99, use nPu, B> 1, as a test function in (4.1) to get

ﬁpp v, P < pp p—1 \v4 v p—1
Gotapr ) TVl S e ) 1 IVl Vel
Q Q

+//\n77pwﬂ+/npuf:7pwfb
Q Q

B=1+p
in terms of w, = u, * and then by the Young inequality

/ P VP < CBP / VnlPw? + / Pk + / Ul Pw? (4.11)
Q Q

Q Q
for some C > 0. Since by the Holder inequality

N -
/ Pul Pt < O / ) [lwa2. = o lnewal|2)

Q QNsupp n

as n — 400 in view of (4.10) and Q N supp n CC Q\ {zo}, by (4.11) and the Sobolev
embedding Theorem we deduce that

e < Cllwa||h = C’/uﬁflﬂ’ —0
o)

Hnwn

forall1 < 8 < p*—p+1in view of (4.3) and then u, — 0in LI(K) forall 1 < ¢ < %
as n — 4+o0o. We have then established that

up, — 0in L (Q\ {z0}) (4.12)
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asn — +oo for all 1 < g < J]\,V—f;. Since %(p* —p) =p* < JJ\\,]—f*p, observe that (4.12)

now provides that the R.H.S. in the equation (4.1) can be written as (A, + u”*_”)u”_1

with a bound on the coefficient A, + u? ~P in L{ (Q\ {xo}) for some go > . Given

compact sets K € K € Q\ {xo} with dist (K,0K) > 0, by [22] we have the estlmate
[unlloo,x < Cllunll, g and then u, — 0 in C(K) as n — +oo in view of (4.12) and
p < g—fp. The convergence u, — 0 in Cloc(2 \ {20}) has been then established as
n — +00.

Step 2. The following pointwise estimates

N —
lim max |z — xn| Py, < 00, lim lim max |z —x, Py, =0 (4.13)
n——+00 R—+oon—=+00 Q\Bgy, (zn)
do hold.

By contradiction and up to a subsequence, assume the existence of y,, € 2 such that
either

| yn| P un(yn) mgx T — Tnp ¥un — +00 (414)
as n — +0oo or
N—p N-—p
max |z — x,| 7 up < Co, |Tn yn| B un(yn) = max |l —2n| ™7 up >95>0
Q N\ BRp,un (Tn

(4.15)
for some R, — +00 as n — +00. Setting v, = [ty (yn)] " ¥-7, there hold ‘w"y;y”l — +00

P
in case (4.14), W’L;y"l € [677, Cy "] in case (4.15) and v,, — 0 as n — +o00, since
Zn—Yn — 0asn — +oo when (4.15) holds thanks to Step 1. Up to a further subsequence,
let us assume that £2=¥2 — pasn — 400, where p = +oo in case (4.14) and p € R\ {0}

in case (4.15). Since (lx"u;j’”‘)lvzcT > (‘x"#;ny"l)]v; Up(¥#252) = |on — yHI%un(yn) in

view of (4.5), where U, is given by (4.4), then %;yl — 400 as n — 400 also in case
N—p -

(4.14). Setting Vi, (y) = vn " un(vny + yn) for y € Q, = Q;%, then V,,(0) = 1 and in
Qn there hold:

p p

V) S VT 1+ i — al =7 20 — gl () = (i Yel 2
|Vny+yn _-Tn|
<27 (4.16)
for |y| < 1 Il"y Ul in case (4.14) and
Ty — Yn  N= N-p
ly — u| ’Jan(y) = |UnY + Yn — Tn pyun(Vneryn) <o (4.17)

Un

in case (4.15). Since
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—ApVy = )\nuﬁV,{’_l + V,f*_l in Q,, V,=0on0dQ,,

by (4.16)-(4.17) and standard elliptic estimates [6,16,22,23] we get that V,, is uniformly
bounded in CH*(ANQ,) for all A cc RN \ {p}. Up to a subsequence, we have that
Vi, = Vin OL (Qo \{p}), where Q. is an half-space with dist(0, 9Q.,) = L. Since p # 0,
there hold B%(O) CC RN\ {p} and 1 = V,,(0) — V,,(y) < Cly| for y € B%(O) N oQ,,
leading to L € (0,00]. Since V' > 0 solves —A,V = VP ~1in Q,, by the strong maximum
principle [24] we deduce that V' > 0 in Q in view of V' (0) = 1 thanks to 0 € Q. Setting
M = min{L, |p|}, by %;y”‘ — +oo asn — +00 we have that Bu,, (yn) C Q\Bgy, (¥n)
for all R > 0 provided n is sufficiently large (depending on R) and then

ez [ we [ [ v

N\ Bruy, (n) By, (yn) By (0) B (0)

in contradiction with (4.9). The proof of (4.13) is complete.
Step 3. There exists C' > 0 so that

N—

C«Mp(p 1)
T (BT 4 A — g7

£
3
AN

in Q (4.18)

does hold for all n € N.

Since (4.18) does already hold in Bgy, (z,) for all R > 0 thanks to (4.7), notice that
(4.18) is equivalent to establish the estimate

N—

p(p—1) 1)
O 00\ Bay, (20) (4.19)

| — 2|71

Up <

for some C, R > O and all n € N. Let us first prove the following weaker form of (4.19):
given 0 < n < ( ) there exist C, R > 0 so that

Cﬂﬁin
Up < ————  inQ\ Bgy, (zn) (4.20)

| — @, | P17

does hold for all n € N. Since |z — xn|”_% satisfies

_N-p N-—p _ _1)—
—Aplz — @, [T ZU(P—l)(pj—ﬁ)p Ha — a, 1P DN,

Mp(p 1) n+M .
we have that ®,, = CiN where p,C > 0 and M,, = sup wu,, satisfies
lz—xp| P~ QNOB, (o)
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0

A, D, — (N + ————)BP !
P ( +‘$—.Tn|p) n
N-p . Pr—1
= —]_ — p — )\n — np 5 _n
W= DG =P = Ol —al? +0)| 2

>0 inQNBy(zg)\ {zn}

provided P and 0 are sufficiently small (depending on 7). Taking R > 0 large so that

ub P < m in Q\ Bgry, (x,) for all n large thanks to (4.13), we have that
g p—1 P —p g p—1 ;
_Apun - ()\n + |£L’ — (Enlp )U’n = (’I,Ln — m)un S 0 in Q \ BRHn (J,‘n).

By (4.7) on 0BRgy,, (xy) it is easily seen that u, < ®,, on the boundary of QN B,(xo) \
Bry, (z5,) for some C' > 0, and then by Proposition 2.3 one deduces the validity of

ﬁ,n—i_M
Hn n

Uy, < C (4.21)

IJ

|z — z, |P -

in QN By(20) \ By, (zn). Setting A = Q\ B,(z0), observe that the function v, = 37
satisfies

—Apu, — AP = £,in Q, v, =0 on 99, sup v, = 1, (4.22)
QNIB,(x0)

P2
p*—1

where f, = qu — = u, "ovP7L Letting g, be the p-harmonic function in A so that
gn = Uy ON 8A, observe that ||gp|lco = 1 in view of 0 < v, <1 on QA. Since by Step 1
there holds

p2

ap =Xy +un * — Ao in L®(A)

as n — +oo with A. < A (Q) < Ai1(A), by Proposition 2.2 we deduce that

sup ||vn|lp—1,4 < +oo0 and then sup || fn]l1,4 < +oo in view of Step 1. Letting w,, the
neN neN
solution of

—Ayw, = fpin A, w, =0o0n JA,

by Proposition 2.2 we also deduce that sup ||v, — Wy|lec,a < 400 thanks to N < 2p.

neN
Since by the Sobolev embedding Theorem sup ||wy|q4 < +oo for all 1 < ¢ < ¢*
neN
view of Proposition 2.2 and sup || fn||1 A < 400, similar estimates hold for v,, and then
neN
sup | fallgo.a < +oo for some go > = in view of N < 2p. By elliptic estimates [22] we

get that sup ||wp||co,a < 00 and in turn sup ||vp|/eo,a < +00, or equivalently
neN neN
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sup u, <C sup wu, (4.23)
Q\B,(x0) QNIB,(x0)

for some C' > 0. Thanks to (4.23) one can extend the validity of (4.21) from QN B,(xo) \
Bry, (z5) to Q\ Bgy, (z,). In order to establish (4.20), we claim that M, in (4.21)
satisfies

N-p__
pp—1)

My = o(uf” ") (4.24)
for all 0 < < -2=bs.
Indeed, by contradiction assume that there exist 0 < 1 < % and a subsequence
so that
N—p _ =
pi " < CM, (4.25)

for some C > 0. Since v, = O(|x — xn|_%+ﬁ) uniformly in Q\ Bgy, (z,) in view of
p2
(4.21) and (4.25), we have that v,, and then f, = u, "v2~! are uniformly bounded in

Cloc(Q\{z0}) and by elliptic estimates [6,16,22,23] v, — v in CL _(Q\{z0}) as n — +oo,

up to a further subsequence, where v # 0 in view of sup v = lim sup v, = 1.
QNOB,(z0) n=+% 0NoB, (x0)

Moreover, notice that liIJIrl | £nll1 = 0 would imply v,, — v in W3 %(Q) forall 1 < ¢ < g
n—-+0oo

and in L°(Q) for all 1 < s < ¢* as n — oo in view of Proposition 2.2, where v is a
solution of

—Apy— APt =0 in Q. (4.26)

Letting

[s| if |s] <1
T3 =
1(s) {il i +s>1

and using T(v,) € WyP(Q) as a test function in (4.22), one would get
Vo, [P < /\n/v£+l||fn||1 — )\*/vp
{lva <1} Q Q
as n — 400 in view of ¢* > p and then deduce
/|Vv|p §)\*/vp < 400
Q Q
as | — +oo. Since v € Wy ?(Q) solves (4.26) with A\, < A;, one would have v = 0, in

contradiction with  sup v = 1. Once
QNoB, (zo)
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liminf | fu [l >0 (4.27)

has been established, by (4.4), (4.7) and (4.21) observe that

*_q N—p N—p
up "~ pin” o1 fin”
/ fo= M = e / UP = =0 e (4.28)
BRun(In) BR}.Ln (wn) BR(O)
and
2 L (p—Dm--2 1
w=La ()P0 7T log — +1 4.29
f S 7 og -+ (4.29)
N\BRru, (¥n)
N—p —n
where L, = ph*™" " + M,. Setting ny = W’ then (4.24) necessarily holds
for n € (no,%) since otherwise L, = O(M,) and (4.28)-(4.29) would provide
lirJrrl Ifn]l = 0 along a subsequence thanks to lil_{_l M, = 0, in contradiction
n——+oo n——+00
with (4.27). Notice that (4.24) holds for n = ng too, since otherwise the conclusion

for 1) € (n0, 5o5=5)-

N—p __
lirf | fn]l = 0 would follow as above thanks to L, = O(uh""" n)
n—-+00

Setting ny = (prijw_p)kno, arguing as above (4.24) can be established for n € [ng+1, 7x),
k > 0, by using the validity of (4.24) for n € [, %) in view of the relation

2
. D N—-p
(P* = g1 — {

p
+ —771{|=0.
p—1 N-—pl[plp—1)

Since pri;“rp < 1for p < N, we have that n; — 0 as k — 400 and then (4.24) is proved

forall0 < n < pj(\;:ﬁ), in contradiction with (4.25). Therefore, we have established (4.24)

and the validity of (4.20) follows.

__N-p
In order to establish (4.19), let us repeat the previous argument for v, = pin, """ uy,,
where v,, solves
~Apvp — At = f,, in Q, v, =0 on 09, (4.30)
_N-p
with f, = un * u2 ~!. Notice that f,, satisfies
(" —1)n
Coud*

fn ofin in Q\ Bry, () (4.31)

for some Cy > 0 in view of (4.20) and then, by arguing as in (4.28),

M%—(z)*—l)n
/fn:O(l)—l-O( / |x—xn|N+ﬁ‘(P*‘”") —0(1) (4.32)
¢ N\ By, (2n)
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N— . .
for 0 <n< (p71)€p*71) = (pflﬁ((prgv+p). Letting h,, be the solution of

—Aphp = frin Q, h, =0o0n 09,

by (4.32) and Proposition 2.2 we deduce that sup ||v, — hp|leo < +00 thanks to N < 2p,
neN

or equivalently

_N—p_ _N—p_
[t — 1™ hnlloo = O(ui ™). (4.33)
For o« > N the radial function
T (N — 1)t
W) = @-m o [
tr-1

|yl
is a positive and strictly decreasing solution of —A,W = |y|=® in RY \ B;(0) so that

-p —1
lim |y| >+ W(y) = ]’\’[ (o — N)"#71 > 0. (4.34)

ly|—oo —-Pp

Taking 0 < 1 < W to ensure a := N + B3 — (p* — 1)n > N, then wy(z) =

_N-p
fn 7T W (555 satisfies

uﬁ—(p*—l)n N
n .
—Ayw, = - xn|N+p%17(p*71)” in RY \ By(z,).
Since
—N-p. -I=p T — Ty

)+ 0(1) < CLwy(x)

fin
for some C > 0 and for all x € OBpg,, (z,) in view of (4.7), (4.33) and W(R) > 0, we
have that ®,, = Cw,, satisfies

—A,®, > fr in Q\ Bry, (z5), ®n > hy on 02U IBRgy, (x5)

1
for C = C¢~" + C; thanks to (4.31), and then by weak comparison principle we deduce
that

hp < ®, < B in Q\ Bry, () (4.35)

= = N—p
@ — @p |77

for some C' > 0 in view of (4.34). Inserting (4.35) into (4.33) we finally deduce the
validity of (4.19)
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Step 4. There holds zg ¢ Of.

Assume by contradiction z¢ € 9 and set & = xg — v(zg). Let us apply the Pohozaev
identity (3.6) to u, with ¢ =1, f =0 and g =& on D = Q, together with (3.7), to get

/ VPl — 30y = LA, / P (4.36)
9 b Q
M

in view of u,, = 0 and Vu,, = (J,u,)v on 9. Since v, = pn """ u,, solves (4.30) and
Un, fn are uniformly bounded in Cioc(Q\ {z0}) in view of (4.18) and (4.31) with n = 0, by
elliptic estimates [6,16,22,23] we deduce that v,, is uniformly bounded in C{_(Q\ {zo}).
Fixing p > 0 small so that (z — 2,v(z)) > 1 for all z € 99 N B, (o), by (4.18), (4.36)
and the C'-bound on v,, we have that

N—
[Vun|? = O(An / uyp, + / Vun[7) = Ot ) (4.37)
4NN B, (zo) Q OO\ B, (z0)

since p(;v:lp) < N thanks N < 2p < p? Setting d,, = dist(x,,0Q) and W, (y) =
N-—p

dn? Un(dny + x,) for y € Q, d“ we have that d,, — 0 and Q,, — Q. asn — +o©

where Q0 is an halfspace containing 0 with dlst(O o) = 1. Setting 6, = = — 0 as

__N=p N-—p
n — 400 in view of (4.6), the function G,, = d, ") Wi = pin """V df " up(dpy+a,) >
0 solves
—A,Gp = A\dPGP7 = £, in Q,, G, =0ondQ,, (4.38)

_N-p

with f,, = pn * dNup Y,y +x,) = dY f.(dny + z,,) so that

s C
fnST%, Gn < =

in Q, (4.39)
lyl

in view of (4.18) and (4.31) with » = 0. By (4.39) and elliptic estimates [6,16,22,23] we
deduce that G,, — G in OL_(Qs \ {0}) as n — 400, where G' > 0 does solve

-A,G = /UP*—1 8o in oo, G =0 on I,

in view of (4.38) and

: p*—1 __ p*—1
e / fn—nkffm [ w= o (440)
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for all € > 0 in view of (4.6)-(4.7) and (4.18). By the strong maximum principle [24] we
then have that G > 0 in Q4 and 9,G < 0 on 9. On the other hand, for any R > 0
there holds

_N—-p N-1 N-1
/ IVGal” = pn " ™ / [Vun[” = O(di™")
89, NBR(0) 89N BRa,, (zn)
in view of (4.37) and then as n — 400
/ VG =o0.

We end up with the contradictory conclusion VG = 0 on 9., and then xq ¢ 9.
Step 5. There holds Hy, (zg,z9) = 0.

Let us apply the Pohozaev identity (3.6) to u, with ¢ =1and f =0on D = Bs(zg) C
Q and (3.7) to get

A, / W+ / (%|Vun|p—5|Vunp_2(&,un)2

Bs(x0) 9Bs (o)
And N—p _ N-—p X
_ T ap W Vu, P 20,0, | — —=6 / P =0. (441
OBs(x0)
N—

__N—=Pp
As in the previous Step, up to a subsequence, there holds G,, = jtn ** Y u, — G in

CL.(Q\ {zo}) as n — +o0, where G > 0 satisfies

loc
—A,G = \GP = (@/ UP" 1) 6, in Q, G =0ondQ,
N

as it follows by (4.38) and (4.40) with d, = 1. Arguing as in Proposition 2.4,
we can prove that H = G — T satisfies (2.1) and by Theorem 2.1 it follows that

-P

1 - e L
G = (Jpn UP71)77 G, (m0)- Since pin "™ Tuy = (fpw UP 1) 777 GaL (- 20) in
CL(Q\ {z0}) as n — +o0, by letting n — 400 in (4.41) we finally get

A / GI;\* ({,C,xo)d.’t + / <g|VG)\* ("1:71'0)|p _ (5|VG)\* (l',xo)‘P—2(aVG)\* (!.C,xo))Q
Bs(z0) 9B;s(wo)

A0 N — _
) Gf\*(x,xo) - TpGM(x,xo)|VGA*(x,xo)|p 28,,G>\*(a:,xo)) do(z) =0

and then Hy, (2o, o) = 0 by (3.8).
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