Full Length Article

The quasi-linear Brezis-Nirenberg problem in low dimensions ${ }^{\text {Nu }}$

Sabina Angeloni, Pierpaolo Esposito*
Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, Roma 00146, Italy

A R T I C L E I N F O

Article history:

Received 27 April 2023
Accepted 2 September 2023
Available online 27 September 2023
Communicated by J. Wei

Keywords:

Brezis-Nirenberg problem
Low dimensions
p-Laplace operator
Blow-up

A B S T R A C T

We discuss existence results for a quasi-linear elliptic equation of critical Sobolev growth [3,14] in the low-dimensional case, where the problem has a global character which is encoded in sign properties of the "regular" part for the corresponding Green's function as in [9,11].
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$. Given $1<p<N$ and $\lambda<\lambda_{1}$, let us discuss existence issues for the quasilinear problem

[^0]\[

$$
\begin{cases}-\Delta_{p} u=\lambda u^{p-1}+u^{p^{*}-1} & \text { in } \Omega \tag{1.1}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$
\]

where $\Delta_{p}(\cdot)=\operatorname{div}\left(|\nabla(\cdot)|^{p-2} \nabla(\cdot)\right)$ is the p-Laplace operator, $p^{*}=\frac{N p}{N-p}$ is the so-called critical Sobolev exponent and λ_{1} is the first eigenvalue of $-\Delta_{p}$ given by

$$
\lambda_{1}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p}}{\int_{\Omega}|u|^{p}} .
$$

Since $W_{0}^{1, p}(\Omega) \subset L^{p^{*}}(\Omega)$ is a continuous but non-compact embedding, standard variational methods fail to provide solutions of (1.1) by minimization of the Rayleigh quotient

$$
Q_{\lambda}(u)=\frac{\int_{\Omega}|\nabla u|^{p}-\lambda \int_{\Omega}|u|^{p}}{\left(\int_{\Omega}|u|^{p^{*}}\right)^{\frac{p}{p^{*}}}}, \quad u \in W_{0}^{1, p}(\Omega) \backslash\{0\} .
$$

Setting

$$
S_{\lambda}=\inf \left\{Q_{\lambda}(u): u \in W_{0}^{1, p}(\Omega) \backslash\{0\}\right\}
$$

it is known that S_{0} coincides with the best Sobolev constant for the embedding $\mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right) \subset L^{p^{*}}\left(\mathbb{R}^{N}\right)$ and then is never attained since independent of Ω. Moreover, by a Pohozaev identity $(1.1)_{\lambda=0}$ is not solvable on star-shaped domains, see [3,14]. The presence of the perturbation term λu^{p-1} in (1.1) can possibly restore compactness and produce minimizers for Q_{λ}, as shown for all $\lambda>0$ first by Brezis and Nirenberg [3] in the semi-linear case when $N \geq 4$ and then by Guedda and Veron [14] when $N \geq p^{2}$.

Let us discuss now the low-dimensional case $p<N<p^{2}$. In the semi-linear situation $p=2$ it corresponds to $N=3$ and displays the following special features: according to [3], problem (1.1) is solvable on a ball precisely for $\lambda \in\left(\frac{\lambda_{1}}{4}, \lambda_{1}\right)$ and then, for the minimization problem on a general domain Ω, there holds

$$
\lambda_{*}=\inf \left\{\lambda \in\left(0, \lambda_{1}\right): S_{\lambda}<S_{0}\right\} \geq \frac{1}{4} \lambda_{1}(B)=\frac{\pi^{2}}{4}\left(\frac{3|\Omega|}{4 \pi}\right)^{-\frac{2}{3}}
$$

through a re-arrangement argument, where B is the ball having the same measure of Ω. In particular, for $\lambda \leq \frac{\lambda_{1}}{4}$ a general non-existence result on B follows from an integral identity of Pohozaev type, obtained by testing the equation against $\psi(|x|) u^{\prime}$ for a suitable smooth function ψ with $\psi(0)=0$. An integration by parts for the term

$$
\int_{0}^{1} r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime} u\left[\frac{p-1}{p} \psi^{\prime \prime}-\frac{N-1}{p} \frac{\psi^{\prime}}{r}+\frac{N-1}{p} \frac{\psi}{r^{2}}\right]
$$

is required to eliminate the dependence on the derivatives of u, which is possible in general just for $p=2$. The property $\lambda^{*}>0$ then requires a different proof for $p \neq 2$.

Since S_{λ} decreases in a continuous way from S_{0} to 0 as λ ranges in [0, λ_{1}), notice that $S_{\lambda}=S_{0}$ for $\lambda \in\left[0, \lambda_{*}\right], S_{\lambda}<S_{0}$ for $\lambda \in\left(\lambda_{*}, \lambda_{1}\right)$ and S_{λ} is not attained for $\lambda \in\left[0, \lambda_{*}\right)$. A natural question concerns the case $\lambda=\lambda_{*}$ and the following general answer

$$
\begin{equation*}
S_{\lambda_{*}} \text { is not achieved } \tag{1.2}
\end{equation*}
$$

has been given by Druet [9], with an elegant proof which unfortunately seems not to work for $p \neq 2$. A complete characterization for the critical parameter λ_{*} then follows through a blow-up approach crucially based on (1.2).

We use here some of the results in [1] - precisely reported in Section 2 for reader's convenience - as a crucial ingredient to treat the quasilinear Brezis-Nirenberg problem (1.1) in the low-dimensional case $p<N<p^{2}$. Given $x_{0} \in \Omega$ and $\lambda<\lambda_{1}$, introduce the Green function $G_{\lambda}\left(\cdot, x_{0}\right)$ as a positive solution to

$$
\begin{cases}-\Delta_{p} G-\lambda G^{p-1}=\delta_{x_{0}} & \text { in } \Omega \tag{1.3}\\ G=0 & \text { on } \partial \Omega\end{cases}
$$

Since uniqueness of $G_{\lambda}\left(\cdot, x_{0}\right)$ is just known for $p \geq 2$, hereafter we will just consider the case $p \geq 2$. If ω_{N} denotes the measure of the unit ball in \mathbb{R}^{N}, recall that the fundamental solution

$$
\begin{equation*}
\Gamma\left(x, x_{0}\right)=C_{0}\left|x-x_{0}\right|^{-\frac{N-p}{p-1}}, \quad C_{0}=\frac{p-1}{N-p}\left(N \omega_{N}\right)^{-\frac{1}{p-1}} \tag{1.4}
\end{equation*}
$$

solves $-\Delta_{p} \Gamma=\delta_{x_{0}}$ in \mathbb{R}^{N}. The function

$$
\begin{equation*}
H_{\lambda}\left(x, x_{0}\right)=G_{\lambda}\left(x, x_{0}\right)-\Gamma\left(x, x_{0}\right) \tag{1.5}
\end{equation*}
$$

is usually referred to as the "regular" part of $G_{\lambda}\left(\cdot, x_{0}\right)$ but is just expected to be less singular than $\Gamma\left(x, x_{0}\right)$ at x_{0}.

The complete characterization in [9] for λ_{*} (see also [11] for an alternative proof) still holds in the quasi-linear case, as stated by the following main result.

Theorem 1.1. Let $2 \leq p<N<2 p$ and $0<\lambda<\lambda_{1}$. The implications (i) \Rightarrow (ii) \Rightarrow (iii) do hold, where
(i) there exists $x_{0} \in \Omega$ such that $H_{\lambda}\left(x_{0}, x_{0}\right)>0$
(ii) $S_{\lambda}<S_{0}$
(iii) S_{λ} is attained.

Moreover, the implication (iii) \Rightarrow (i) does hold under the assumption (1.2) and in particular $\lambda_{*}>0$.

Some comments are in order. Assumption $N<2 p$ is crucial here to guarantee that $H_{\lambda}\left(\cdot, x_{0}\right)$ is Hölder continuous at x_{0}, see [1]. When $2 p \leq N<p^{2}$ we conjecture $H_{\lambda}\left(x, x_{0}\right)$ to be mildly but still singular at x_{0}, with a behavior like $\frac{m_{\lambda}\left(x_{0}\right)}{\left|x-x_{0}\right|^{\alpha}}$ for an appropriate $0<\alpha<\frac{N-p}{p-1}$, and $m_{\lambda}\left(x_{0}\right)$ to play the same role as $H_{\lambda}\left(x_{0}, x_{0}\right)$ in Theorem 1.1. The quantity $m_{\lambda}\left(x_{0}\right)$ is usually referred to as the mass associated to $G_{\lambda}\left(\cdot, x_{0}\right)$ and appears in several contexts, see for example [12,13,18-20]. Notice that in the semilinear case $p=2$ the range $2 p \leq N<p^{2}$ is empty and such a situation doesn't show up in [9].

The implication $(i i i) \Rightarrow(i)$ follows by a blow-up argument once (1.2) is assumed. To this aim, we first extend the pointwise blow-up theory in [10] to the quasi-linear context, a fundamental tool in the description of blow-up phenomena whose relevance goes beyond Theorem 1.1 and which completely settles some previous partial results $[2,7,8]$ in this direction. Once sharp pointwise blow-up estimates are established, a major difficulty appears in the classical use of Pohozaev identities: written on small balls around the blow-up point as the radius tends to zero, they rule both the blow-up speed and the blow-up location since boundary terms in such identities can be controlled thanks to the property $\nabla H_{\lambda}\left(\cdot, x_{0}\right) \in L^{\infty}(\Omega)$. Clearly valid in the semi-linear situation, such gradient L^{∞}-bound is completely missing in the quasi-linear context but surprisingly the correct answer can still be found by a different approach, based on a suitable approximation scheme for $G_{\lambda}\left(\cdot, x_{0}\right)$. At the same time, we provide a different proof of some facts in [9] in order to avoid some rough arguments concerning the limiting problems on halfspaces, when dealing with boundary blow-up.

Under the assumption (1.2), in the proof of Theorem 1.1 we will show that $H_{\lambda_{*}}\left(x_{0}, x_{0}\right)=0$ for some $x_{0} \in \Omega$, a stronger property than the validity of the implication $(i i i) \Rightarrow(i)$ since $H_{\lambda}(x, x)$ is strictly increasing in λ for all $x \in \Omega$. Since S_{0} is not attained, notice that (1.2) always holds if $\lambda_{*}=0$ and then $\lambda_{*}>0$ follows by the property $H_{0}\left(x_{0}, x_{0}\right)<0$ for all $x_{0} \in \Omega$. Moreover, since

$$
\begin{equation*}
\sup _{x \in \Omega} H_{\lambda_{*}}(x, x)=\max _{x \in \Omega} H_{\lambda_{*}}(x, x)=0 \tag{1.6}
\end{equation*}
$$

by monotonicity of H_{λ} in λ and under the assumption (1.2) the critical parameter λ_{*} is the first unique value of $\lambda>0$ attaining (1.6) and can be re-written as

$$
\lambda_{*}=\sup \left\{\lambda \in\left(0, \lambda_{1}\right): H_{\lambda}(x, x)<0 \text { for all } x \in \Omega\right\}
$$

In Section 2 we recall some facts from [1] that will be used throughout the paper and prove some useful convergence properties. The implication $(i) \Rightarrow(i i)$ is established in Section 3 by the expansion of $Q_{\lambda}\left(P U_{\epsilon, x_{0}}\right)$ along the "bubble" $P U_{\epsilon, x_{0}}$ concentrating at x_{0} as $\epsilon \rightarrow$ 0 and integral identities of Pohozaev type for $G_{\lambda}\left(\cdot, x_{0}\right)$, crucial for a fine asymptotic analysis, are also derived. Section 4 is devoted to develop the blow-up argument along with sharp pointwise estimates to establish the final part in Theorem 1.1.

2. Some preliminary facts

For reader's convenience, let us collect here some of the results in [1]. To give the statement of Theorem 1.1 a full meaning, we need a general theory for problem (1.3), as stated in the following result.

Theorem 2.1. [1] Let $1<p \leq N$ and $\lambda<\lambda_{1}$. Assume $p \geq 2$ and $N<2 p$ if $\lambda \neq 0$. Then problem (1.3) has a positive solution $G_{\lambda}\left(\cdot, x_{0}\right)$ so that $H_{\lambda}\left(x, x_{0}\right)$ in (1.5) satisfies

$$
\begin{equation*}
\nabla H_{\lambda}\left(\cdot, x_{0}\right) \in L^{\bar{q}}(\Omega), \quad \bar{q}=\frac{N(p-1)}{N-1} \tag{2.1}
\end{equation*}
$$

which is unique when either $\lambda=0$ or $\lambda \neq 0$ and (2.1) holds. Moreover

- given $M>0, q_{0}>\frac{N}{p}$ and $p_{0} \geq 1$ there exists $C>0$ so that

$$
\begin{equation*}
\|H+c\|_{\infty, B_{r}\left(x_{0}\right)} \leq C\left(r^{-\frac{N}{p_{0}}}\|H+c\|_{p_{0}, B_{2 r}\left(x_{0}\right)}+r^{\frac{p q_{0}-N}{q_{0}(p-1)}}\|f\|_{q_{0}, B_{2 r}\left(x_{0}\right)}^{\frac{1}{p-1}}\right) \tag{2.2}
\end{equation*}
$$

for all $\epsilon, r, c \in \mathbb{R}, f \in L^{q_{0}}(\Omega)$ and solution $G=\Gamma+H$, with $H \in L^{\infty}(\Omega)$ and $\nabla H \in L^{\bar{q}}(\Omega)$, to

$$
\begin{equation*}
-\Delta_{p} G+\Delta_{p} \Gamma=f \quad \text { in } \Omega \backslash\left\{x_{0}\right\} \tag{2.3}
\end{equation*}
$$

so that $\epsilon^{p-1} \leq r \leq \frac{1}{4} \operatorname{dist}\left(x_{0}, \partial \Omega\right), \frac{\left|x-x_{0}\right|^{\frac{1}{p-1}}}{M\left(\epsilon^{p}+\left|x-x_{0}\right|^{\frac{p}{p-1}}\right)^{\frac{N}{p}}} \leq|\nabla \Gamma| \leq M|\nabla \Gamma|\left(x, x_{0}\right),|c|+$ $\|H\|_{\infty}+\|f\|_{q_{0}}^{\frac{1}{p-1}} \leq M$, where $\Gamma\left(\cdot, x_{0}\right)$ is given by (1.4);

- $\lambda G_{\lambda}^{p-1} \in L^{q_{0}}(\Omega)$ for $q_{0}>\frac{N}{p}$ and $H_{\lambda}\left(\cdot, x_{0}\right)$ is a continuous function in $\bar{\Omega}$ satisfying

$$
\begin{equation*}
\left|H_{\lambda}\left(x, x_{0}\right)-H_{\lambda}\left(x_{0}, x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\alpha} \quad \forall x \in \Omega \tag{2.4}
\end{equation*}
$$

for some $C>0, \alpha \in(0,1)$ with $H_{\lambda}\left(x_{0}, x_{0}\right)$ strictly increasing in λ.

Notice that the first part in Theorem 2.1 has been established in [15]. Let us stress that the condition $f \in L^{q_{0}}(\Omega)$ for some $q_{0}>\frac{N}{p}$, which is valid for $f=\lambda G_{\lambda}^{p-1}$ when $N<2 p$ if $\lambda \neq 0$, is a natural condition on the R.H.S. of the difference equation (2.3) to prove L^{∞}-bounds on H as it arises for instance in the Moser iterative argument adopted in [22]. In this respect, observe that also in the semilinear case $H_{\lambda}\left(\cdot, x_{0}\right)$ is no longer regular at x_{0} when $4=2 p \leq N$.

The following a-priori estimates are the basis of Theorem 2.1 and will be crucially used here to establish some accurate pointwise blow-up estimates.

Proposition 2.2. [1] Let $2 \leq p \leq N$. Assume that $a_{n} \in L^{\infty}(\Omega), f_{n} \in L^{1}(\Omega)$ and g_{n}, \hat{g}_{n} satisfy

$$
g_{n}, \hat{g}_{n} \in L^{\infty}(\Omega) \cap W^{1, p}(\Omega) \text { p-harmonic in } \Omega, g_{n}, \hat{g}_{n} \text { non-constant unless } 0
$$

and

$$
\lim _{n \rightarrow+\infty}\left\|a_{n}-a\right\|_{\infty}=0 \text { with } \sup _{\Omega} a<\lambda_{1}, \quad \sup _{n \in \mathbb{N}}\left[\left\|f_{n}\right\|_{1}+\left\|g_{n}\right\|_{\infty}+\left\|\hat{g}_{n}\right\|_{\infty}\right]<+\infty
$$

If $u_{n} \in W_{g_{n}}^{1, p}(\Omega)$ solves $-\Delta_{p} u_{n}-a_{n}\left|u_{n}\right|^{p-2} u_{n}=f_{n}$ in Ω, then $\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{p-1}<+\infty$ and, if $g_{n}=g$, the sequence u_{n} is pre-compact in $W^{1, q}(\Omega)$ for all $1 \leq q<\bar{q}$. Moreover, if $N<$ $2 p, a_{n}=\lambda_{n} \in \mathbb{R}$ and $\hat{u}_{n} \in W_{\hat{g}_{n}}^{1, p}(\Omega)$ solves $-\Delta_{p} \hat{u}_{n}=f_{n}$ in Ω, then $\sup _{n \in \mathbb{N}}\left\|u_{n}-\hat{u}_{n}\right\|_{\infty}<\infty$.

We will also make use of the following general form of comparison principle.
Proposition 2.3. [1] Let $2 \leq p \leq N$ and $a, f_{1}, f_{2} \in L^{\infty}(\Omega)$. Let $u_{i} \in C^{1}(\bar{\Omega}), i=1,2$, be solutions to

$$
-\Delta_{p} u_{i}-a u_{i}^{p-1}=f_{i} \quad \text { in } \Omega
$$

so that

$$
u_{i}>0 \text { in } \Omega, \quad \frac{u_{1}}{u_{2}} \leq C \text { near } \partial \Omega
$$

for some $C>0$. If $f_{1} \leq f_{2}$ with $f_{2} \geq 0$ in Ω and $u_{1} \leq u_{2}$ on $\partial \Omega$, then $u_{1} \leq u_{2}$ in Ω.
Let us introduce now a special approximation scheme for $G_{\lambda}\left(\cdot, x_{0}\right)$, which is particularly suited for the problem we are interested in. Given $C_{1}=N^{\frac{N-p}{p^{2}}}\left(\frac{N-p}{p-1}\right)^{\frac{(p-1)(N-p)}{p^{2}}}$, the so-called standard bubbles

$$
\begin{equation*}
U_{\epsilon, x_{0}}(x)=C_{1}\left(\frac{\epsilon}{\epsilon^{p}+\left|x-x_{0}\right|^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}} \quad \epsilon>0, x_{0} \in \mathbb{R}^{N} \tag{2.5}
\end{equation*}
$$

are the extremals of the Sobolev inequality

$$
S_{0}\left(\int_{\mathbb{R}^{N}}|u|^{p^{*}}\right)^{\frac{p}{p^{*}}} \leq \int_{\mathbb{R}^{N}}|\nabla u|^{p}, \quad u \in \mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right)
$$

and the unique entire solutions in $\mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right)$ of

$$
\begin{equation*}
-\Delta_{p} U=U^{p^{*}-1} \quad \text { in } \mathbb{R}^{N} \tag{2.6}
\end{equation*}
$$

see $[5,21,25]$. For $\lambda<\lambda_{1}$ consider its projection $P U_{\epsilon, x_{0}}$ in Ω, as the solution of

$$
\begin{cases}-\Delta_{p} P U_{\epsilon, x_{0}}=\lambda P U_{\epsilon, x_{0}}^{p-1}+U_{\epsilon, x_{0}}^{p^{*}-1} & \text { in } \Omega \tag{2.7}\\ P U_{\epsilon, x_{0}}>0 & \text { in } \Omega \\ P U_{\epsilon, x_{0}}=0 & \text { on } \partial \Omega\end{cases}
$$

Letting $G_{\epsilon, x_{0}}=\frac{C_{0}}{C_{1}} \epsilon^{-\frac{N-p}{p}} P U_{\epsilon, x_{0}}$ with C_{0} given by (1.4), decompose it as $G_{\epsilon, x_{0}}=\Gamma_{\epsilon, x_{0}}+$ $H_{\epsilon, x_{0}}$, where

$$
\begin{equation*}
\Gamma_{\epsilon, x_{0}}=\frac{C_{0}}{C_{1}} \epsilon^{-\frac{N-p}{p}} U_{\epsilon, x_{0}}=\frac{C_{0}}{\left(\epsilon^{p}+\left|x-x_{0}\right|^{\frac{p}{p-1}}\right)^{\frac{N-p}{p}}} \rightarrow \Gamma\left(x, x_{0}\right) \tag{2.8}
\end{equation*}
$$

in $C_{\text {loc }}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ as $\epsilon \rightarrow 0$. Since

$$
\begin{equation*}
f_{\epsilon, x_{0}}:=-\Delta_{p} \Gamma_{\epsilon, x_{0}}=\left(\frac{C_{0}}{C_{1}} \epsilon^{-\frac{N-p}{p}}\right)^{p-1} U_{\epsilon, x_{0}}^{p^{*}-1}=\frac{C_{0}^{p-1} C_{1}^{\frac{p^{2}}{N-p}} \epsilon^{p}}{\left(\epsilon^{p}+\left|x-x_{0}\right|^{\frac{p}{p-1}}\right)^{N-\frac{N-p}{p}}} \rightarrow 0 \tag{2.9}
\end{equation*}
$$

in $C_{\text {loc }}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ and

$$
\int_{\Omega} f_{\epsilon, x_{0}}=-\int_{\partial \Omega}\left|\nabla \Gamma_{\epsilon, x_{0}}\right|^{p-2} \partial_{\nu} \Gamma_{\epsilon, x_{0}} \rightarrow-\int_{\partial \Omega}|\nabla \Gamma|^{p-2}\left(x, x_{0}\right) \partial_{\nu} \Gamma\left(x, x_{0}\right) d \sigma(x)=1
$$

as $\epsilon \rightarrow 0$ in view of (2.6) and (2.8), notice that $f_{\epsilon, x_{0}} \rightharpoonup \delta_{x_{0}}$ weakly in the sense of measures in Ω as $\epsilon \rightarrow 0$ and $G_{\epsilon, x_{0}}$ solves

$$
\begin{cases}-\Delta_{p} G_{\epsilon, x_{0}}=\lambda G_{\epsilon, x_{0}}^{p-1}+f_{\epsilon, x_{0}} & \text { in } \Omega \tag{2.10}\\ G_{\epsilon, x_{0}}>0 & \text { in } \Omega \\ G_{\epsilon, x_{0}}=0 & \text { on } \partial \Omega\end{cases}
$$

Thanks to Theorem 2.1 and Proposition 2.2 we can now establish the following convergence result.

Proposition 2.4. Let $2 \leq p \leq N$ and assume $N<2 p$ if $\lambda \neq 0$. Then there holds

$$
\begin{equation*}
H_{\epsilon, x_{0}} \rightarrow H_{\lambda}\left(\cdot, x_{0}\right) \quad \text { in } C(\bar{\Omega}) \tag{2.11}
\end{equation*}
$$

as $\epsilon \rightarrow 0$.
Proof. By Proposition 2.2 we can find a subsequence $\epsilon_{n} \rightarrow 0$ so that $G_{\epsilon_{n}, x_{0}} \rightarrow G$ in $W_{0}^{1, q}(\Omega)$ as $n \rightarrow+\infty$ for all $1 \leq q<\bar{q}$, where $G=\Gamma\left(x, x_{0}\right)+H$ is a solution of (1.3) for some H in view of (2.8) and (2.10). In particular, if $\lambda \neq 0$ by the Sobolev embedding theorem there holds

$$
\begin{equation*}
G_{\epsilon_{n}, x_{0}} \rightarrow G \quad \text { in } L^{p}(\Omega) \text { as } n \rightarrow+\infty \tag{2.12}
\end{equation*}
$$

thanks to $\bar{q}^{*}>p$ in view of $N<2 p \leq p^{2}$. Moreover, let us rewrite (2.10) in the equivalent form:

$$
\begin{cases}-\Delta_{p}\left(\Gamma_{\epsilon, x_{0}}+H_{\epsilon, x_{0}}\right)+\Delta_{p} \Gamma_{\epsilon, x_{0}}=\lambda G_{\epsilon, x_{0}}^{p-1} & \text { in } \Omega \tag{2.13}\\ H_{\epsilon, x_{0}}=-\Gamma_{\epsilon, x_{0}} & \text { on } \partial \Omega\end{cases}
$$

Let us denote the solution of $(2.10)_{\lambda=0}$ by $G_{\epsilon, x_{0}}^{0}$ and set $H_{\epsilon, x_{0}}^{0}=G_{\epsilon, x_{0}}^{0}-\Gamma_{\epsilon, x_{0}}$. By the uniqueness part in Theorem 2.1 with $\lambda=0$ we have that

$$
G_{\epsilon, x_{0}}^{0} \rightarrow G_{0}\left(\cdot, x_{0}\right) \text { in } W_{0}^{1, q}(\Omega)
$$

as $\epsilon \rightarrow 0$, for all $1 \leq q<\bar{q}$. Moreover, since $\left|H_{\epsilon, x_{0}}^{0}\right| \leq M$ on $\partial \Omega$, by integrating (2.13) against $\left(H_{\epsilon, x_{0}}^{0} \mp M\right)_{ \pm}$we deduce that

$$
\begin{equation*}
\left|H_{\epsilon, x_{0}}^{0}\right| \leq M \quad \text { in } \Omega \tag{2.14}
\end{equation*}
$$

in an uniform way and then $G_{\epsilon, x_{0}}^{0}$ is locally uniformly bounded in $\bar{\Omega} \backslash\left\{x_{0}\right\}$. By elliptic estimates $[6,16,22,23]$ and $(2.10)_{\lambda=0}$ we deduce that

$$
\begin{equation*}
G_{\epsilon, x_{0}}^{0} \text { uniformly bounded in } C_{\mathrm{loc}}^{1, \alpha}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right) \tag{2.15}
\end{equation*}
$$

for some $\alpha \in(0,1)$. Integrating (2.13) $)_{\lambda=0}$ against $\eta^{p} H_{\epsilon, x_{0}}^{0}, 0 \leq \eta \in C_{0}^{\infty}(\Omega)$, we get that

$$
\int_{\Omega} \eta^{p}\left|\nabla H_{\epsilon, x_{0}}^{0}\right|^{p} \leq p \int_{\Omega} \eta^{p-1}|\nabla \eta|\left(\left|\nabla \Gamma_{\epsilon, x_{0}}\right|^{p-2}+\left|\nabla H_{\epsilon, x_{0}}^{0}\right|^{p-2}\right)\left|H_{\epsilon, x_{0}}^{0}\right| \nabla H_{\epsilon, x_{0}}^{0} \mid
$$

and then (2.14) and Young's inequality imply that

$$
\begin{equation*}
\nabla H_{\epsilon, x_{0}}^{0} \text { uniformly bounded in } L^{p}(\Omega) \tag{2.16}
\end{equation*}
$$

in view of (2.15).
Let us consider now the case $\lambda \neq 0$. Since

$$
-\Delta_{p}\left(\Gamma_{\epsilon, x_{0}}+H_{\epsilon, x_{0}}\right)+\Delta_{p}\left(\Gamma_{\epsilon, x_{0}}+H_{\epsilon, x_{0}}^{0}\right)=\lambda G_{\epsilon, x_{0}}^{p-1} \quad \text { in } \Omega
$$

with $H_{\epsilon, x_{0}}-H_{\epsilon, x_{0}}^{0}=0$ on $\partial \Omega$, an integration against $H_{\epsilon, x_{0}}-H_{\epsilon, x_{0}}^{0}$ gives that

$$
\int_{\Omega}\left|\nabla\left(H_{\epsilon, x_{0}}-H_{\epsilon, x_{0}}^{0}\right)\right|^{p} \leq|\lambda| \int_{\Omega} G_{\epsilon, x_{0}}^{p-1}\left|H_{\epsilon, x_{0}}-H_{\epsilon, x_{0}}^{0}\right| \leq|\lambda|\left\|G_{\epsilon, x_{0}}\right\|_{p}^{p-1}\left\|H_{\epsilon, x_{0}}-H_{\epsilon, x_{0}}^{0}\right\|_{p}
$$

thanks to the Hölder's inequality and the coercivity properties of the p-Laplace operator, and then

$$
\begin{equation*}
\nabla\left(H_{\epsilon_{n}, x_{0}}^{0}-H_{\epsilon_{n}, x_{0}}^{0}\right) \text { uniformly bounded in } L^{p}(\Omega) \tag{2.17}
\end{equation*}
$$

in view of (2.12) and Poincaré inequality. A combination of (2.16) and (2.17) lead to a uniform L^{p}-bound on $\nabla H_{\epsilon_{n}, x_{0}}^{0}$, showing by Fatou's lemma that $\nabla H \in L^{p}(\Omega)$. By Theorem 2.1 we have that $G=G_{\lambda}\left(\cdot, x_{0}\right)$ and then

$$
\begin{equation*}
G_{\epsilon, x_{0}} \rightarrow G_{\lambda}\left(\cdot, x_{0}\right) \text { in } W_{0}^{1, q}(\Omega) \tag{2.18}
\end{equation*}
$$

as $\epsilon \rightarrow 0$, for all $1 \leq q<\bar{q}$.
To extend (2.14) to the case $\lambda \neq 0$, observe that (2.10) and $-\Delta_{p} \Gamma_{\epsilon, x_{0}}=f_{\epsilon, x_{0}}$ in Ω imply $\left\|H_{\epsilon, x_{0}}\right\|_{\infty} \leq C$ for all $\epsilon>0$ thanks to Proposition 2.2 in view of $N<2 p$ when $\lambda \neq 0$. Since $f=\lambda G_{\epsilon, x_{0}}^{p-1}$ is uniformly bounded in $L^{q_{0}}(\Omega)$ for some $q_{0}>\frac{N}{p}$ in view of $\frac{\bar{q}^{*}}{p-1}>\frac{N}{p}$ when $N<2 p$ and

$$
\left|\nabla \Gamma_{\epsilon, x_{0}}\right|=\frac{C_{0}(N-p)}{p-1} \frac{\left|x-x_{0}\right|^{\frac{1}{p-1}}}{\left(\epsilon^{p}+\left|x-x_{0}\right|^{\frac{p}{p-1}}\right)^{\frac{N}{p}}} \leq M|\nabla \Gamma|\left(x, x_{0}\right)
$$

we can apply (2.2) in Theorem 2.1 to $H_{\epsilon, x_{0}}$ as a solution to (2.13) by getting

$$
\begin{equation*}
\left|H_{\epsilon, x_{0}}(x)-H_{\lambda}\left(x_{0}, x_{0}\right)\right| \leq C\left(r^{-\frac{N}{p-1}}\left\|H_{\epsilon, x_{0}}-H_{\lambda}\left(x_{0}, x_{0}\right)\right\|_{p-1, B_{2 r}\left(x_{0}\right)}+r^{\frac{p q_{0}-N}{q_{0}(p-1)}}\right) \tag{2.19}
\end{equation*}
$$

for all $x \in B_{r}\left(x_{0}\right)$ and $\epsilon^{p-1} \leq r \leq \frac{1}{4} \operatorname{dist}\left(x_{0}, \partial \Omega\right)$.
By contradiction assume that (2.11) does not hold. Then there exist sequences $\epsilon_{n} \rightarrow 0$ and $x_{n} \in \Omega$ so that $\left|H_{\epsilon_{n}, x_{0}}\left(x_{n}\right)-H_{\lambda}\left(x_{n}, x_{0}\right)\right| \geq 2 \delta>0$. Since by elliptic estimates [6,16,22,23] there holds

$$
\begin{equation*}
G_{\epsilon, x_{0}} \rightarrow G_{\lambda}\left(\cdot, x_{0}\right) \text { in } C_{\mathrm{loc}}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right) \tag{2.20}
\end{equation*}
$$

as $\epsilon \rightarrow 0$ in view of (2.10) and (2.18), we have that $\bar{x}=x_{0}$ and then

$$
\begin{equation*}
\left|H_{\epsilon_{n}, x_{0}}\left(x_{n}\right)-H_{\lambda}\left(x_{0}, x_{0}\right)\right| \geq \delta \tag{2.21}
\end{equation*}
$$

thanks to $H_{\lambda}\left(\cdot, x_{0}\right) \in C(\bar{\Omega})$. Since by the Sobolev embedding theorem $H_{\epsilon, x_{0}} \rightarrow H_{\lambda}\left(\cdot, x_{0}\right)$ in $L^{p-1}(\Omega)$ as $\epsilon \rightarrow 0$ in view of (2.18) and $\bar{q}^{*}>p-1$, we can insert (2.21) into (2.19) and get as $n \rightarrow+\infty$

$$
\begin{equation*}
\delta \leq C\left(r^{-\frac{N}{p-1}}\left\|H_{\lambda}\left(\cdot, x_{0}\right)-H_{\lambda}\left(x_{0}, x_{0}\right)\right\|_{p-1, B_{2 r}\left(x_{0}\right)}+r^{\frac{p q_{0}-N}{q_{0}(p-1)}}\right) \tag{2.22}
\end{equation*}
$$

for all $0<r \leq \frac{1}{4} \operatorname{dist}\left(x_{0}, \partial \Omega\right)$. Since

$$
r^{-\frac{N}{p-1}}\left\|H_{\lambda}\left(\cdot, x_{0}\right)-H_{\lambda}\left(x_{0}, x_{0}\right)\right\|_{p-1, B_{2 r}\left(x_{0}\right)} \leq C r^{\alpha} \rightarrow 0
$$

as $r \rightarrow 0$ thanks to (2.4), estimate (2.22) leads to a contradiction and the proof is complete.

As a by-product we have the following useful result.

Corollary 2.5. Let $2 \leq p \leq N$ and assume $N<2 p$ if $\lambda \neq 0$. Then the expansion

$$
\begin{equation*}
P U_{\epsilon, x_{0}}=U_{\epsilon, x_{0}}+\frac{C_{1}}{C_{0}} \epsilon^{\frac{N-p}{p}} H_{\lambda}\left(\cdot, x_{0}\right)+o\left(\epsilon^{\frac{N-p}{p}}\right) \tag{2.23}
\end{equation*}
$$

does hold uniformly in Ω as $\epsilon \rightarrow 0$.

3. Energy expansions and Pohozaev identities

We are concerned with the discussion of implication $(i) \Rightarrow(i i)$ in Theorem 1.1, whereas the proof of $(i i) \Rightarrow(i i i)$ in Theorem 1.1 is rather classical and can be found in [14].

Let $0<\lambda<\lambda_{1}$ and $x_{0} \in \Omega$ so that $H_{\lambda}\left(x_{0}, x_{0}\right)>0$. In order to show $S_{\lambda}<S_{0}$ let us expand $Q_{\lambda}\left(P U_{\epsilon, x_{0}}\right)$ for $\epsilon>0$ small. Since $P U_{\epsilon, x_{0}}$ solves (2.7), we have that

$$
\begin{align*}
\int_{\Omega}\left|\nabla P U_{\epsilon, x_{0}}\right|^{p}-\lambda \int_{\Omega}\left(P U_{\epsilon, x_{0}}\right)^{p}= & \int_{\Omega} U_{\epsilon, x_{0}}^{p^{*}-1} P U_{\epsilon, x_{0}}=\int_{\Omega} U_{\epsilon, x_{0}}^{p^{*}} \\
& +\frac{C_{1}}{C_{0}} \epsilon^{\frac{N-p}{p}} \int_{\Omega} U_{\epsilon, x_{0}}^{p^{*}-1}\left[H_{\lambda}\left(x, x_{0}\right)+o(1)\right] \tag{3.1}
\end{align*}
$$

as $\epsilon \rightarrow 0$ in view of (2.23). Given $\Omega_{\epsilon}=\frac{\Omega-x_{0}}{\epsilon^{p-1}}$ observe that

$$
\begin{equation*}
\int_{\Omega} U_{\epsilon, x_{0}}^{p^{*}}=\int_{\Omega_{\epsilon}} U_{1}^{p^{*}}=\int_{\mathbb{R}^{N}} U_{1}^{p^{*}}+O\left(\epsilon^{N}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{\Omega} U_{\epsilon, x_{0}}^{p^{*}-1}\left[H_{\lambda}\left(x, x_{0}\right)+o(1)\right] & =\int_{\Omega} U_{\epsilon, x_{0}}^{p^{*}-1}\left[H_{\lambda}\left(x_{0}, x_{0}\right)+O\left(\left|x-x_{0}\right|^{\alpha}\right)+o(1)\right] \\
& =\epsilon^{\frac{(N-p)(p-1)}{p}} \int_{\Omega_{\epsilon}} U_{1}^{p^{*}-1}\left[H_{\lambda}\left(x_{0}, x_{0}\right)+O\left(\epsilon^{\alpha(p-1)}|y|^{\alpha}\right)+o(1)\right] \\
& =\epsilon^{\frac{(N-p)(p-1)}{p}} H_{\lambda}\left(x_{0}, x_{0}\right) \int_{\mathbb{R}^{N}} U_{1}^{p^{*}-1}+o\left(\epsilon^{\frac{(N-p)(p-1)}{p}}\right) \tag{3.3}
\end{align*}
$$

in view of (2.4) and $\int_{\mathbb{R}^{n}} U_{1}^{p^{*}-1}|y|^{\alpha}<+\infty$. Inserting (3.2)-(3.3) into (3.1) we deduce

$$
\begin{equation*}
\int_{\Omega}\left|\nabla P U_{\epsilon, x_{0}}\right|^{p}-\lambda \int_{\Omega}\left(P U_{\epsilon, x_{0}}\right)^{p}=\int_{\mathbb{R}^{N}} U_{1}^{p^{*}}+\epsilon^{N-p} \frac{C_{1}}{C_{0}} H_{\lambda}\left(x_{0}, x_{0}\right) \int_{\mathbb{R}^{N}} U_{1}^{p^{*}-1}+o\left(\epsilon^{N-p}\right) . \tag{3.4}
\end{equation*}
$$

By the Taylor expansion

$$
\left(P U_{\epsilon, x_{0}}\right)^{p^{*}}=U_{\epsilon, x_{0}}^{p^{*}}+\epsilon^{\frac{N-p}{p}} \frac{C_{1}}{C_{0}} p^{*} U_{\epsilon, x_{0}}^{p^{*}-1}\left[H_{\lambda}\left(x, x_{0}\right)+o(1)\right]+O\left(\epsilon^{2 \frac{N-p}{p}} U_{\epsilon, x_{0}}^{p^{*}-2}+\epsilon^{N}\right)
$$

in view of (2.23) and $\left\|H_{\lambda}\left(\cdot, x_{0}\right)\right\|_{\infty}<+\infty$, we obtain

$$
\begin{equation*}
\int_{\Omega}\left(P U_{\epsilon, x_{0}}\right)^{p^{*}}=\int_{\mathbb{R}^{N}} U_{1}^{p^{*}}+\epsilon^{N-p} \frac{C_{1}}{C_{0}} p^{*} H_{\lambda}\left(x_{0}, x_{0}\right) \int_{\mathbb{R}^{N}} U_{1}^{p^{*}-1}+o\left(\epsilon^{N-p}\right) \tag{3.5}
\end{equation*}
$$

thanks to (3.2)-(3.3) and

$$
\int_{\Omega} U_{\epsilon, x_{0}}^{p^{*}-2}=\epsilon^{2 \frac{(N-p)(p-1)}{p}} \int_{\Omega_{\epsilon}} U_{1}^{p^{*}-2}=O\left(\epsilon^{2 \frac{(N-p)(p-1)}{p}}\right)
$$

for $N<2 p$. Expansions (3.4)-(3.5) now yield

$$
Q_{\lambda}\left(P U_{\epsilon, x_{0}}\right)=S_{0}-(p-1) S_{0}^{\frac{p-N}{p}}\left(\int_{\mathbb{R}^{N}} U_{1}^{p^{*}-1}\right) \frac{C_{1}}{C_{0}} \epsilon^{N-p} H_{\lambda}\left(x_{0}, x_{0}\right)+o\left(\epsilon^{N-p}\right)
$$

in view of (2.6) and

$$
S_{0}=\frac{\int_{\mathbb{R}^{N}}\left|\nabla U_{1}\right|^{p}}{\left(\int_{\mathbb{R}^{N}} U_{1}^{p^{*}}\right)^{\frac{p}{p^{*}}}}=\left(\int_{\mathbb{R}^{N}} U_{1}^{p^{*}}\right)^{\frac{p}{N}} .
$$

Then, for $\epsilon>0$ small we obtain that $S_{\lambda}<S_{0}$ thanks to $H_{\lambda}\left(x_{0}, x_{0}\right)>0$.
As already discussed in the Introduction, a fundamental tool is represented by the Pohozaev identity. Derived [4] for autonomous PDE's involving the p-Laplace operator, it extends to the non-autonomous case and writes, in the situation of our interest, as follows: if $u \in C^{1, \alpha}(\bar{D})$ solves $-\Delta_{p} u=\lambda u^{p-1}+c u^{p^{*}-1}+f$ in D for $f \in C^{1}(\bar{D})$ and $c \in\{0,1\}$, given $x_{0} \in \mathbb{R}^{N}$ there holds

$$
\begin{align*}
& \int_{D}\left[N H-f\left\langle x-x_{0}, \nabla u\right\rangle-\frac{N-p}{p}|\nabla u|^{p}\right] \\
& \left.\quad=\left.\int_{\partial D}\left\langle x-x_{0},-\frac{|\nabla u|^{p}}{p} \nu+\right| \nabla u\right|^{p-2} \partial_{\nu} u \nabla u+H \nu\right\rangle \tag{3.6}
\end{align*}
$$

with $H(u)=\frac{\lambda}{p} u^{p}+\frac{c}{p^{*}} u^{p^{*}}$ and

$$
\begin{equation*}
\int_{D}|\nabla u|^{p}=\int_{D}\left[\lambda u^{p}+c u^{p^{*}}+f u\right]+\int_{\partial D} u|\nabla u|^{p-2} \partial_{\nu} u . \tag{3.7}
\end{equation*}
$$

An integral identity of Pohozaev type for $G_{\lambda}\left(\cdot, x_{0}\right)$ like (3.8) below is of fundamental importance since $H_{\lambda}\left(x_{0}, x_{0}\right)$ appears as a sort of residue. In the semi-linear case
such identity (3.8) holds in the limit of (3.6)-(3.7) on $B_{\delta}\left(x_{0}\right)$ as $\delta \rightarrow 0$ thanks to $\nabla H_{\lambda}\left(\cdot, x_{0}\right) \in L^{\infty}(\Omega)$, a property far from being obvious in the quasi-linear context where just integral bounds on $\nabla H_{\lambda}\left(\cdot, x_{0}\right)$ like (2.1) are available. Instead, we can use the special approximating sequence $G_{\epsilon, x_{0}}$ to derive the following result.

Proposition 3.1. Let $2 \leq p<N$ and assume $N<2 p$ if $\lambda \neq 0$. Given $x_{0} \in \Omega, 0<\delta<$ dist $\left(x_{0}, \partial \Omega\right)$ and $\lambda<\lambda_{1}$, there holds

$$
\begin{align*}
& C_{0} H_{\lambda}\left(x_{0}, x_{0}\right) \\
& \quad=\lambda \int_{B_{\delta}\left(x_{0}\right)} G_{\lambda}^{p}\left(x, x_{0}\right) d x+\int_{\partial B_{\delta}\left(x_{0}\right)}\left(\frac{\delta}{p}\left|\nabla G_{\lambda}\left(x, x_{0}\right)\right|^{p}-\delta\left|\nabla G_{\lambda}\left(x, x_{0}\right)\right|^{p-2}\left(\partial_{\nu} G_{\lambda}\left(x, x_{0}\right)\right)^{2}\right. \\
& \left.\quad-\frac{\lambda \delta}{p} G_{\lambda}^{p}\left(x, x_{0}\right)-\frac{N-p}{p} G_{\lambda}\left(x, x_{0}\right)\left|\nabla G_{\lambda}\left(x, x_{0}\right)\right|^{p-2} \partial_{\nu} G_{\lambda}\left(x, x_{0}\right)\right) d \sigma(x) \tag{3.8}
\end{align*}
$$

for some $C_{0}>0$.
Proof. Since by elliptic regularity theory $[6,16,22,23] G_{\epsilon, x_{0}} \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$ in view of (2.10), we can apply the Pohozaev identity (3.6) to $G_{\epsilon, x_{0}}$ with $c=0$ and $f=f_{\epsilon, x_{0}}$ on $D=B_{\delta}\left(x_{0}\right) \subset \Omega$ to get

$$
\begin{align*}
& \quad \int_{\partial B_{\delta}\left(x_{0}\right)}\left(-\frac{\delta}{p}\left|\nabla G_{\epsilon, x_{0}}\right|^{p}+\delta\left|\nabla G_{\epsilon, x_{0}}\right|^{p-2}\left(\partial_{\nu} G_{\epsilon, x_{0}}\right)^{2}+\frac{\lambda \delta}{p} G_{\epsilon, x_{0}}^{p}\right. \\
& \left.\quad+\frac{N-p}{p} G_{\epsilon, x_{0}}\left|\nabla G_{\epsilon, x_{0}}\right|^{p-2} \partial_{\nu} G_{\epsilon, x_{0}}\right) \\
& = \tag{3.9}\\
& \int_{B_{\delta}\left(x_{0}\right)}\left(\lambda G_{\epsilon, x_{0}}^{p}-\frac{N-p}{p} f_{\epsilon, x_{0}} G_{\epsilon, x_{0}}-f_{\epsilon, x_{0}}\left\langle x-x_{0}, \nabla G_{\epsilon, x_{0}}\right\rangle\right)
\end{align*}
$$

in view of (3.7). The approximating sequence $G_{\epsilon, x_{0}}$ has the key property that $\nabla G_{\epsilon, x_{0}}$ and $f_{\epsilon, x_{0}}$ are at main order multiples of $\nabla U_{\epsilon, x_{0}}$ and $U_{\epsilon, x_{0}}^{p^{*}-1}$, respectively, in such a way that $f_{\epsilon, x_{0}} \nabla G_{\epsilon, x_{0}}$ allows for a further integration by parts of the R.H.S. in (3.9). The function $H_{\epsilon, x_{0}}$ appears in the remaining lower-order terms and explains why in the limit $\epsilon \rightarrow 0$ an additional term containing $H_{\lambda}\left(x_{0}, x_{0}\right)$ will appear in (3.8). The identity

$$
\begin{aligned}
& \int_{B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-2} G_{\epsilon, x_{0}}\left\langle x-x_{0}, \nabla U_{\epsilon, x_{0}}\right\rangle \\
= & \int_{B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-1}\left\langle x-x_{0}, \nabla G_{\epsilon, x_{0}}-\nabla H_{\epsilon, x_{0}}+H_{\epsilon, x_{0}} \frac{\nabla U_{\epsilon, x_{0}}}{U_{\epsilon, x_{0}}}\right\rangle \\
= & \int_{B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-1}\left\langle x-x_{0}, \nabla G_{\epsilon, x_{0}}+p^{*} H_{\epsilon, x_{0}} \frac{\nabla U_{\epsilon, x_{0}}}{U_{\epsilon, x_{0}}}\right\rangle
\end{aligned}
$$

$$
-\delta \int_{\partial B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-1} H_{\epsilon, x_{0}}+N \int_{B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-1} H_{\epsilon, x_{0}}
$$

does hold thanks to $G_{\epsilon, x_{0}}=\Gamma_{\epsilon, x_{0}}+H_{\epsilon, x_{0}}$ and $\Gamma_{\epsilon, x_{0}} \nabla U_{\epsilon, x_{0}}=U_{\epsilon, x_{0}}\left(\nabla G_{\epsilon, x_{0}}-\nabla H_{\epsilon, x_{0}}\right)$, which inserted into

$$
\begin{aligned}
& \int_{B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-1}\left\langle x-x_{0}, \nabla G_{\epsilon, x_{0}}\right\rangle \\
= & \delta \int_{\partial B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-1} G_{\epsilon, x_{0}}-\left(p^{*}-1\right) \int_{B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-2} G_{\epsilon, x_{0}}\left\langle x-x_{0}, \nabla U_{\epsilon, x_{0}}\right\rangle \\
& -N \int_{B_{\delta}\left(x_{0}\right)} U_{\epsilon, x_{0}}^{p^{*}-1} G_{\epsilon, x_{0}}
\end{aligned}
$$

leads to

$$
\begin{align*}
\int_{B_{\delta}\left(x_{0}\right)} f_{\epsilon, x_{0}}\left\langle x-x_{0}, \nabla G_{\epsilon, x_{0}}\right\rangle= & -\left(p^{*}-1\right) \int_{B_{\delta}\left(x_{0}\right)} f_{\epsilon, x_{0}} H_{\epsilon, x_{0}}\left[\left\langle x-x_{0}, \frac{\nabla U_{\epsilon, x_{0}}}{U_{\epsilon, x_{0}}}\right\rangle+\frac{N-p}{p}\right] \\
& -\frac{N-p}{p} \int_{B_{\delta}\left(x_{0}\right)} f_{\epsilon, x_{0}} G_{\epsilon, x_{0}}+o_{\epsilon}(1) \tag{3.10}
\end{align*}
$$

as $\epsilon \rightarrow 0$ in view of (2.8)-(2.9) and (2.11). Since there holds

$$
\begin{aligned}
& \frac{p(p-1)}{N-p} C_{0}^{1-p} C_{1}^{-\frac{p^{2}}{N-p}} \int_{B_{\delta}\left(x_{0}\right)} f_{\epsilon, x_{0}} H_{\epsilon, x_{0}}\left[\left\langle x-x_{0}, \frac{\nabla U_{\epsilon, x_{0}}}{U_{\epsilon, x_{0}}}\right\rangle+\frac{N-p}{p}\right] \\
& =\epsilon^{p} \int_{B_{\delta}\left(x_{0}\right)} H_{\epsilon, x_{0}} \frac{(p-1) \epsilon^{p}-\left\lvert\, x-x_{0} \frac{p}{p-1}\right.}{\left(\epsilon^{p}+\left|x-x_{0}\right|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}} \\
& =\int_{B \delta_{\epsilon^{p}-1}^{p}} H_{\epsilon, x_{0}}\left(\epsilon^{p-1} y+x_{0}\right) \frac{(p-1)-|y|^{\frac{p}{p-1}}}{\left(1+|y|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}} \\
& \rightarrow \int_{\mathbb{R}^{N}} \frac{(p-1)-|y|^{\frac{p}{p-1}}}{\left(1+|y|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}} H_{\lambda}\left(x_{0}, x_{0}\right)
\end{aligned}
$$

as $\epsilon \rightarrow 0$ in view of (2.4), (2.11) and the Lebesgue convergence Theorem, we can insert (3.10) into (3.9) and as $\epsilon \rightarrow 0$ get the validity of

$$
C_{0} H_{\lambda}\left(x_{0}, x_{0}\right)=\int_{B_{\delta}\left(x_{0}\right)} \lambda G_{\lambda}\left(x, x_{0}\right)^{p} d x
$$

$$
\begin{aligned}
& +\int_{\partial B_{\delta}\left(x_{0}\right)}\left(\frac{\delta}{p}\left|\nabla G_{\lambda}\left(x, x_{0}\right)\right|^{p}-\delta\left|\nabla G_{\lambda}\left(x, x_{0}\right)\right|^{p-2}\left(\partial_{\nu} G_{\lambda}\left(x, x_{0}\right)\right)^{2}\right. \\
& \left.-\frac{\lambda \delta}{p} G_{\lambda}^{p}\left(x, x_{0}\right)-\frac{N-p}{p} G_{\lambda}\left(x, x_{0}\right)\left|\nabla G_{\lambda}\left(x, x_{0}\right)\right|^{p-2} \partial_{\nu} G_{\lambda}\left(x, x_{0}\right)\right) d \sigma(x)
\end{aligned}
$$

in view of (2.20) and $\lim _{\epsilon \rightarrow 0} G_{\epsilon, x_{0}}=G_{\lambda}\left(\cdot, x_{0}\right)$ in $L^{p}(\Omega)$ if $\lambda \neq 0$, as it follows by (2.18) and $\bar{q}^{*}>p$ thanks to $N<2 p \leq p^{2}$, where

$$
C_{0}=\left(p^{*}-1\right) \frac{N-p}{p(p-1)} C_{0}^{p-1} C_{1}^{\frac{p^{2}}{N-p}} \int_{\mathbb{R}^{N}} \frac{|y|^{\frac{p}{p-1}}-(p-1)}{\left(1+|y|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}}
$$

Concerning the sign of the constant C_{0}, observe that

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \frac{|y|^{\frac{p}{p-1}}}{\left(1+|y|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}} & =-\frac{p-1}{p N+p-N} \int_{\mathbb{R}^{N}}\left\langle y, \nabla\left(1+|y|^{\frac{p}{p-1}}\right)^{\frac{N}{p}-N-1}\right\rangle \\
& =\frac{N(p-1)}{p N+p-N} \int_{\mathbb{R}^{N}}\left(1+|y|^{\frac{p}{p-1}}\right)^{\frac{N}{p}-N-1}
\end{aligned}
$$

and then

$$
\int_{\mathbb{R}^{N}} \frac{|y|^{\frac{p}{p-1}}}{\left(1+|y|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}}=\frac{N(p-1)}{p} \int_{\mathbb{R}^{N}} \frac{1}{\left(1+|y|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}},
$$

which implies $C_{0}>0$ in view of

$$
\int_{\mathbb{R}^{N}} \frac{|y|^{\frac{p}{p-1}}-(p-1)}{\left(1+|y|^{\frac{p}{p-1}}\right)^{N+2-\frac{N}{p}}}=\frac{(N-p)(p-1)}{p} \int_{\mathbb{R}^{N}}\left(1+|y|^{\frac{p}{p-1}}\right)^{\frac{N}{p}-N-2}>0 .
$$

The proof of (3.8) is complete.

4. The blow-up approach

Following [9] let us introduce the following blow-up procedure. Letting $\lambda_{n}=\lambda_{*}+\frac{1}{n}$, we have that $S_{\lambda_{n}}<S_{0}=S_{\lambda_{*}}$ and then $S_{\lambda_{n}}$ is achieved by a nonnegative $u_{n} \in W_{0}^{1, p}(\Omega)$ which, up to a normalization, satisfies

$$
\begin{equation*}
-\Delta_{p} u_{n}=\lambda_{n} u_{n}^{p-1}+u_{n}^{p^{*}-1} \text { in } \Omega, \quad \int_{\Omega} u_{n}^{p^{*}}=S_{\lambda_{n}}^{\frac{N}{p}} \tag{4.1}
\end{equation*}
$$

Since $\lambda_{*}<\lambda_{1}$, by (4.1) the sequence u_{n} is uniformly bounded in $W_{0}^{1, p}(\Omega)$ and then, up to a subsequence, $u_{n} \rightharpoonup u_{0} \geq 0$ in $W_{0}^{1, p}(\Omega)$ and a.e. in Ω as $n \rightarrow+\infty$. Since

$$
Q_{\lambda_{n}}(u)=Q_{\lambda_{*}}(u)-\frac{1}{n} \frac{\left\|u_{n}\right\|_{p}^{p}}{\left\|u_{n}\right\|_{p^{*}}^{p}} \geq S_{0}-\frac{C}{n}
$$

for some $C>0$ thanks to the Hölder's inequality, we deduce that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} S_{\lambda_{n}}=S_{0} \tag{4.2}
\end{equation*}
$$

By letting $n \rightarrow+\infty$ in (4.1) we deduce that $u_{0} \in W_{0}^{1, p}(\Omega)$ solves

$$
-\Delta_{p} u_{0}=\lambda_{*} u_{0}^{p-1}+u_{0}^{p^{*}-1} \text { in } \Omega, \quad \int_{\Omega} u_{0}^{p^{*}} \leq S_{0}^{\frac{N}{p}},
$$

thanks to $u_{n} \rightarrow u_{0}$ a.e. in Ω as $n \rightarrow+\infty$ and the Fatou convergence Theorem, and then

$$
S_{0} \leq Q_{\lambda_{*}}\left(u_{0}\right)=\left(\int_{\Omega} u_{0}^{p^{*}}\right)^{\frac{p}{N}} \leq S_{0}
$$

if $u_{0} \neq 0$. Since $S_{\lambda_{*}}=S_{0}$ would be achieved by u_{0} if $u_{0} \neq 0$, assumption (1.2) is crucial to guarantee $u_{0}=0$ and then

$$
\begin{equation*}
u_{n} \rightharpoonup 0 \text { in } W_{0}^{1, p}(\Omega), \quad u_{n} \rightarrow 0 \text { in } L^{q}(\Omega) \text { for } 1 \leq q<p^{*} \text { and a.e. in } \Omega \tag{4.3}
\end{equation*}
$$

in view of the Sobolev embedding Theorem. Since by elliptic regularity theory [6,16,22,23] and the strong maximum principle $[24] 0<u_{n} \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$, we can start a blow-up approach to describe the behavior of u_{n} since $\left\|u_{n}\right\|_{\infty} \rightarrow+\infty$ as $n \rightarrow+\infty$, as it follows by (4.3) and $\int_{\Omega} u_{n}^{p^{*}}=S_{\lambda_{n}}^{\frac{N}{p}} \rightarrow S_{0}^{\frac{N}{p}}$ as $n \rightarrow+\infty$.

Letting $x_{n} \in \Omega$ so that $u_{n}\left(x_{n}\right)=\max _{\Omega} u_{n}$, define the blow-up speed as $\mu_{n}=$ $\left[u_{n}\left(x_{n}\right)\right]^{-\frac{p}{N-p}} \rightarrow 0$ as $n \rightarrow+\infty$ and the blow-up profile

$$
\begin{equation*}
U_{n}(y)=\mu_{n}^{\frac{N-p}{p}} u_{n}\left(\mu_{n} y+x_{n}\right), \quad y \in \Omega_{n}=\frac{\Omega-x_{n}}{\mu_{n}}, \tag{4.4}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
-\Delta_{p} U_{n}=\lambda_{n} \mu_{n}^{p} U_{n}^{p-1}+U_{n}^{p^{*}-1} \text { in } \Omega_{n}, \quad U_{n}=0 \text { on } \partial \Omega_{n} \tag{4.5}
\end{equation*}
$$

with $0<U_{n} \leq U_{n}(0)=1$ in Ω_{n} and

$$
\sup _{n \in \mathbb{N}}\left[\int_{\Omega_{n}}\left|\nabla U_{n}\right|^{p}+\int_{\Omega_{n}} U_{n}^{p^{*}}\right]<+\infty
$$

Since U_{n} is uniformly bounded in $C^{1, \alpha}\left(A \cap \Omega_{n}\right)$ for all $A \subset \subset \mathbb{R}^{N}$ by elliptic estimates $[6,16,22,23]$, we get that, up to a subsequence, $U_{n} \rightarrow U$ in $C_{\text {loc }}^{1}\left(\bar{\Omega}_{\infty}\right)$, where Ω_{∞} is an
half-space with $\operatorname{dist}\left(0, \partial \Omega_{\infty}\right)=L \in(0, \infty]$ in view of $1=U_{n}(0)-U_{n}(y) \leq C|y|$ for $y \in B_{2}(0) \cap \partial \Omega_{n}$ and $U \in D^{1, p}\left(\Omega_{\infty}\right)$ solves

$$
-\Delta_{p} U=U^{p^{*}-1} \text { in } \Omega_{\infty}, \quad U=0 \text { on } \partial \Omega_{\infty}, \quad 0<U \leq U(0)=1 \text { in } \Omega_{\infty}
$$

Since $L<+\infty$ would provide $U \in D_{0}^{1, p}\left(\Omega_{\infty}\right)$, by [17] one would get $U=0$, in contradiction with $U(0)=1$. Since

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\operatorname{dist}\left(x_{n}, \partial \Omega\right)}{\mu_{n}}=\lim _{n \rightarrow+\infty} \operatorname{dist}\left(0, \partial \Omega_{n}\right)=+\infty \tag{4.6}
\end{equation*}
$$

by $[5,21,25]$ we have that U coincides with $U_{\infty}=\left(1+\Lambda|y|^{\frac{p}{p-1}}\right)^{-\frac{N-p}{p}}, \Lambda=C_{1}^{-\frac{p^{2}}{(N-p)(p-1)}}$ (by (2.5) with $x_{0}=0$ and $\epsilon=C_{1}^{\frac{p}{(N-p)(p-1)}}$ to have $U_{\infty}(0)=1$). Since

$$
\begin{equation*}
U_{n}(y)=\mu_{n}^{\frac{N-p}{p}} u_{n}\left(\mu_{n} y+x_{n}\right) \rightarrow\left(1+\Lambda|y|^{\frac{p}{p-1}}\right)^{-\frac{N-p}{p}} \text { uniformly in } B_{R}(0) \tag{4.7}
\end{equation*}
$$

as $n \rightarrow+\infty$ for all $R>0$, in particular there holds

$$
\begin{equation*}
\lim _{R \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{B_{R \mu_{n}}\left(x_{n}\right)} u_{n}^{p^{*}}=\int_{\mathbb{R}^{N}} U_{\infty}^{p^{*}}=S_{0}^{\frac{N}{p}} . \tag{4.8}
\end{equation*}
$$

Contained in (4.1)-(4.2), the energy information $\lim _{n \rightarrow+\infty} \int_{\Omega} u_{n}^{p^{*}}=S_{0}^{\frac{N}{p}}$ combines with (4.8) to give

$$
\begin{equation*}
\lim _{R \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)} u_{n}^{p^{*}}=0 \tag{4.9}
\end{equation*}
$$

a property which will simplify the blow-up description of u_{n}. Up to a subsequence, let us assume $x_{n} \rightarrow x_{0} \in \bar{\Omega}$ as $n \rightarrow+\infty$.

The proof of the implication $(i i i) \Rightarrow(i)$ in Theorem 1.1 proceeds through the 5 steps that will be developed below. The main technical point is to establish a comparison between u_{n} and the bubble

$$
U_{n}(x)=\frac{\mu_{n}^{\frac{N-p}{p(p-1)}}}{\left(\mu_{n}^{\frac{p}{p-1}}+\Lambda\left|x-x_{n}\right|^{\frac{p}{p-1}}\right)^{\frac{N-p}{p}}}
$$

in the form $u_{n} \leq C U_{n}$ in Ω, no matter x_{n} tends to $\partial \Omega$ or not. Thanks to such a fundamental estimate, we will first apply some Pohozaev identity in the whole Ω_{n} to exclude the boundary blow-up $d_{n}=\operatorname{dist}\left(x_{n}, \partial \Omega\right) \rightarrow 0$ as $n \rightarrow+\infty$. In the interior case, still by a Pohozaev identity on $B_{\delta}\left(x_{n}\right)$ as $n \rightarrow+\infty$ and $\delta \rightarrow 0$, we will obtain an
information on the limiting blow-up point $x_{0}=\lim _{n \rightarrow+\infty} x_{n} \in \Omega$ in the form $H_{\lambda_{*}}\left(x_{0}, x_{0}\right)=$ 0 and then the property $H_{\lambda}\left(x_{0}, x_{0}\right)>H_{\lambda_{*}}\left(x_{0}, x_{0}\right)=0$ for $\lambda>\lambda_{*}$ will follow by the monotonicity of $H_{\lambda}\left(x_{0}, x_{0}\right)$.

Step 1. There holds $u_{n} \rightarrow 0$ in $C_{\mathrm{loc}}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ as $n \rightarrow+\infty$, where $x_{0}=\lim _{n \rightarrow+\infty} x_{n} \in \bar{\Omega}$.
First observe that

$$
\begin{equation*}
u_{n} \rightarrow 0 \text { in } L_{\mathrm{loc}}^{p^{*}}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right) \tag{4.10}
\end{equation*}
$$

as $n \rightarrow+\infty$ in view of (4.9) and we are then concerned with establishing the uniform convergence by a Moser iterative argument. Given a compact set $K \subset \bar{\Omega} \backslash\left\{x_{0}\right\}$, consider $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{N} \backslash\left\{x_{0}\right\}\right)$ be a cut-off function with $0 \leq \eta \leq 1$ and $\eta=1$ in K. Since $u_{n}=0$ on $\partial \Omega$, use $\eta^{p} u_{n}^{\beta}, \beta \geq 1$, as a test function in (4.1) to get

$$
\begin{aligned}
\frac{\beta p^{p}}{(\beta-1+p)^{p}} \int_{\Omega} \eta^{p}\left|\nabla w_{n}\right|^{p} \leq & \frac{p^{p}}{(\beta-1+p)^{p-1}} \int_{\Omega} \eta^{p-1}|\nabla \eta| w_{n}\left|\nabla w_{n}\right|^{p-1} \\
& +\int_{\Omega} \lambda_{n} \eta^{p} w_{n}^{p}+\int_{\Omega} \eta^{p} u_{n}^{p^{*}-p} w_{n}^{p}
\end{aligned}
$$

in terms of $w_{n}=u_{n}^{\frac{\beta-1+p}{p}}$ and then by the Young inequality

$$
\begin{equation*}
\int_{\Omega} \eta^{p}\left|\nabla w_{n}\right|^{p} \leq C \beta^{p}\left(\int_{\Omega}|\nabla \eta|^{p} w_{n}^{p}+\int_{\Omega} \eta^{p} w_{n}^{p}+\int_{\Omega} \eta^{p} u_{n}^{p^{*}-p} w_{n}^{p}\right) \tag{4.11}
\end{equation*}
$$

for some $C>0$. Since by the Hölder inequality

$$
\int_{\Omega} \eta^{p} u_{n}^{p^{*}-p} w_{n}^{p} \leq C\left(\int_{\Omega \cap \operatorname{supp} \eta} u_{n}^{p^{*}}\right)^{\frac{p}{N}}\left\|\eta w_{n}\right\|_{p^{*}}^{p}=o\left(\left\|\eta w_{n}\right\|_{p^{*}}^{p}\right)
$$

as $n \rightarrow+\infty$ in view of (4.10) and $\Omega \cap \operatorname{supp} \eta \subset \subset \bar{\Omega} \backslash\left\{x_{0}\right\}$, by (4.11) and the Sobolev embedding Theorem we deduce that

$$
\left\|\eta w_{n}\right\|_{p^{*}}^{p} \leq C\left\|w_{n}\right\|_{p}^{p}=C \int_{\Omega} u_{n}^{\beta-1+p} \rightarrow 0
$$

for all $1 \leq \beta<p^{*}-p+1$ in view of (4.3) and then $u_{n} \rightarrow 0$ in $L^{q}(K)$ for all $1 \leq q<\frac{N p^{*}}{N-p}$ as $n \rightarrow+\infty$. We have then established that

$$
\begin{equation*}
u_{n} \rightarrow 0 \text { in } L_{\mathrm{loc}}^{q}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right) \tag{4.12}
\end{equation*}
$$

as $n \rightarrow+\infty$ for all $1 \leq q<\frac{N p^{*}}{N-p}$. Since $\frac{N}{p}\left(p^{*}-p\right)=p^{*}<\frac{N p^{*}}{N-p}$, observe that (4.12) now provides that the R.H.S. in the equation (4.1) can be written as $\left(\lambda_{n}+u_{n}^{p^{*}-p}\right) u_{n}^{p-1}$ with a bound on the coefficient $\lambda_{n}+u_{n}^{p^{*}-p}$ in $L_{\text {loc }}^{q_{0}}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ for some $q_{0}>\frac{N}{p}$. Given compact sets $K \subset \tilde{K} \subset \bar{\Omega} \backslash\left\{x_{0}\right\}$ with dist $(K, \partial \tilde{K})>0$, by [22] we have the estimate $\left\|u_{n}\right\|_{\infty, K} \leq C\left\|u_{n}\right\|_{p, \tilde{K}}$ and then $u_{n} \rightarrow 0$ in $C(K)$ as $n \rightarrow+\infty$ in view of (4.12) and $p<\frac{N p^{*}}{N-p}$. The convergence $u_{n} \rightarrow 0$ in $C_{\mathrm{loc}}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ has been then established as $n \rightarrow+\infty$.

Step 2. The following pointwise estimates

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \max _{\Omega}\left|x-x_{n}\right|^{\frac{N-p}{p}} u_{n}<\infty, \quad \lim _{R \rightarrow+\infty} \lim _{n \rightarrow+\infty} \max _{\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)}\left|x-x_{n}\right|^{\frac{N-p}{p}} u_{n}=0 \tag{4.13}
\end{equation*}
$$

do hold.
By contradiction and up to a subsequence, assume the existence of $y_{n} \in \Omega$ such that either

$$
\begin{equation*}
\left|x_{n}-y_{n}\right|^{\frac{N-p}{p}} u_{n}\left(y_{n}\right)=\max _{\Omega}\left|x-x_{n}\right|^{\frac{N-p}{p}} u_{n} \rightarrow+\infty \tag{4.14}
\end{equation*}
$$

as $n \rightarrow+\infty$ or

$$
\begin{equation*}
\max _{\Omega}\left|x-x_{n}\right|^{\frac{N-p}{p}} u_{n} \leq C_{0}, \quad\left|x_{n}-y_{n}\right|^{\frac{N-p}{p}} u_{n}\left(y_{n}\right)=\max _{\Omega \backslash B_{R_{n} \mu_{n}}\left(x_{n}\right)}\left|x-x_{n}\right|^{\frac{N-p}{p}} u_{n} \geq \delta>0 \tag{4.15}
\end{equation*}
$$

for some $R_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. Setting $\nu_{n}=\left[u_{n}\left(y_{n}\right)\right]^{-\frac{p}{N-p}}$, there hold $\frac{\left|x_{n}-y_{n}\right|}{\nu_{n}} \rightarrow+\infty$ in case (4.14), $\frac{\left|x_{n}-y_{n}\right|}{\nu_{n}} \in\left[\delta^{\frac{p}{N-p}}, C_{0}^{\frac{p}{N-p}}\right]$ in case (4.15) and $\nu_{n} \rightarrow 0$ as $n \rightarrow+\infty$, since $x_{n}-y_{n} \rightarrow 0$ as $n \rightarrow+\infty$ when (4.15) holds thanks to Step 1. Up to a further subsequence, let us assume that $\frac{x_{n}-y_{n}}{\nu_{n}} \rightarrow p$ as $n \rightarrow+\infty$, where $p=+\infty$ in case (4.14) and $p \in \mathbb{R}^{N} \backslash\{0\}$ in case (4.15). Since $\left(\frac{\left|x_{n}-y_{n}\right|}{\mu_{n}}\right)^{\frac{N-p}{p}} \geq\left(\frac{\left|x_{n}-y_{n}\right|}{\mu_{n}}\right)^{\frac{N-p}{p}} U_{n}\left(\frac{y_{n}-x_{n}}{\mu_{n}}\right)=\left|x_{n}-y_{n}\right|^{\frac{N-p}{p}} u_{n}\left(y_{n}\right)$ in view of (4.5), where U_{n} is given by (4.4), then $\frac{\left|x_{n}-y_{n}\right|}{\mu_{n}} \rightarrow+\infty$ as $n \rightarrow+\infty$ also in case (4.14). Setting $V_{n}(y)=\nu_{n}^{\frac{N-p}{p}} u_{n}\left(\nu_{n} y+y_{n}\right)$ for $y \in \tilde{\Omega}_{n}=\frac{\Omega-y_{n}}{\nu_{n}}$, then $V_{n}(0)=1$ and in $\tilde{\Omega}_{n}$ there hold:

$$
\begin{align*}
V_{n}(y) & \leq \nu_{n}^{\frac{N-p}{p}}\left|\nu_{n} y+y_{n}-x_{n}\right|^{-\frac{N-p}{p}}\left|x_{n}-y_{n}\right|^{\frac{N-p}{p}} u_{n}\left(y_{n}\right)=\left(\frac{\left|x_{n}-y_{n}\right|}{\left|\nu_{n} y+y_{n}-x_{n}\right|}\right)^{\frac{N-p}{p}} \\
& \leq 2^{\frac{N-p}{p}} \tag{4.16}
\end{align*}
$$

for $|y| \leq \frac{1}{2} \frac{\left|x_{n}-y_{n}\right|}{\nu_{n}}$ in case (4.14) and

$$
\begin{equation*}
\left|y-\frac{x_{n}-y_{n}}{\nu_{n}}\right|^{\frac{N-p}{p}} V_{n}(y)=\left|\nu_{n} y+y_{n}-x_{n}\right|^{\frac{N-p}{p}} u_{n}\left(\nu_{n} y+y_{n}\right) \leq C_{0} \tag{4.17}
\end{equation*}
$$

in case (4.15). Since

$$
-\Delta_{p} V_{n}=\lambda_{n} \nu_{n}^{p} V_{n}^{p-1}+V_{n}^{p^{*}-1} \text { in } \tilde{\Omega}_{n}, \quad V_{n}=0 \text { on } \partial \tilde{\Omega}_{n}
$$

by (4.16)-(4.17) and standard elliptic estimates $[6,16,22,23]$ we get that V_{n} is uniformly bounded in $C^{1, \alpha}\left(A \cap \tilde{\Omega}_{n}\right)$ for all $A \subset \subset \mathbb{R}^{N} \backslash\{p\}$. Up to a subsequence, we have that $V_{n} \rightarrow V$ in $C_{\mathrm{loc}}^{1}\left(\bar{\Omega}_{\infty} \backslash\{p\}\right)$, where Ω_{∞} is an half-space with $\operatorname{dist}\left(0, \partial \Omega_{\infty}\right)=L$. Since $p \neq 0$, there hold $B_{\frac{|p|}{2}}(0) \subset \subset \mathbb{R}^{N} \backslash\{p\}$ and $1=V_{n}(0)-V_{n}(y) \leq C|y|$ for $y \in B_{\frac{|p|}{2}}(0) \cap \partial \tilde{\Omega}_{n}$, leading to $L \in(0, \infty]$. Since $V \geq 0$ solves $-\Delta_{p} V=V^{p^{*}-1}$ in Ω_{∞}, by the strong maximum principle [24] we deduce that $V>0$ in Ω_{∞} in view of $V(0)=1$ thanks to $0 \in \Omega_{\infty}$. Setting $M=\min \{L,|p|\}$, by $\frac{\left|x_{n}-y_{n}\right|}{\mu_{n}} \rightarrow+\infty$ as $n \rightarrow+\infty$ we have that $B_{\frac{M}{2} \nu_{n}}\left(y_{n}\right) \subset \Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)$ for all $R>0$ provided n is sufficiently large (depending on R) and then

$$
\int_{\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)} u_{n}^{p^{*}} \geq \int_{B_{\frac{M}{2} \nu_{n}}\left(y_{n}\right)} u_{n}^{p^{*}}=\int_{B_{\frac{M}{2}}(0)} V_{n}^{p^{*}} \rightarrow \int_{B_{\frac{M}{2}}(0)} V^{p^{*}}>0
$$

in contradiction with (4.9). The proof of (4.13) is complete.
Step 3. There exists $C>0$ so that

$$
\begin{equation*}
u_{n} \leq \frac{C \mu_{n}^{\frac{N-p}{p(p-1)}}}{\left(\mu_{n}^{\frac{p}{p-1}}+\Lambda\left|x-x_{n}\right|^{\frac{p}{p-1}}\right)^{\frac{N-p}{p}}} \quad \text { in } \Omega \tag{4.18}
\end{equation*}
$$

does hold for all $n \in \mathbb{N}$.
Since (4.18) does already hold in $B_{R \mu_{n}}\left(x_{n}\right)$ for all $R>0$ thanks to (4.7), notice that (4.18) is equivalent to establish the estimate

$$
\begin{equation*}
u_{n} \leq \frac{C \mu_{n}^{\frac{N-p}{p(p-1)}}}{\left|x-x_{n}\right|^{\frac{N-p}{p-1}}} \quad \text { in } \Omega \backslash B_{R \mu_{n}}\left(x_{n}\right) \tag{4.19}
\end{equation*}
$$

for some $C, R>0$ and all $n \in N$. Let us first prove the following weaker form of (4.19): given $0<\eta<\frac{N-p}{p(p-1)}$ there exist $C, R>0$ so that

$$
\begin{equation*}
u_{n} \leq \frac{C \mu_{n}^{\frac{N-p}{p(p-1)}-\eta}}{\left|x-x_{n}\right|^{\frac{N-p}{p-1}-\eta}} \quad \text { in } \Omega \backslash B_{R \mu_{n}}\left(x_{n}\right) \tag{4.20}
\end{equation*}
$$

does hold for all $n \in N$. Since $\left|x-x_{n}\right|^{\eta-\frac{N-p}{p-1}}$ satisfies

$$
-\Delta_{p}\left|x-x_{n}\right|^{\eta-\frac{N-p}{p-1}}=\eta(p-1)\left(\frac{N-p}{p-1}-\eta\right)^{p-1}\left|x-x_{n}\right|^{\eta(p-1)-N},
$$

we have that $\Phi_{n}=C \frac{\mu_{n}^{\frac{N-p}{p(p-1)}-\eta}+M_{n}}{\left|x-x_{n}\right|^{\frac{N-p}{p-1}-\eta}}$, where $\rho, C>0$ and $M_{n}=\sup _{\Omega \cap \partial B_{\rho}\left(x_{0}\right)} u_{n}$, satisfies

$$
\begin{aligned}
& -\Delta_{p} \Phi_{n}-\left(\lambda_{n}+\frac{\delta}{\left|x-x_{n}\right|^{p}}\right) \Phi_{n}^{p-1} \\
& \quad=\left[\eta(p-1)\left(\frac{N-p}{p-1}-\eta\right)^{p-1}-\left(\lambda_{n}\left|x-x_{n}\right|^{p}+\delta\right)\right] \frac{\Phi_{n}^{p-1}}{\left|x-x_{n}\right|^{p}} \\
& \quad \geq 0 \quad \text { in } \Omega \cap B_{\rho}\left(x_{0}\right) \backslash\left\{x_{n}\right\}
\end{aligned}
$$

provided ρ and δ are sufficiently small (depending on η). Taking $R>0$ large so that $u_{n}^{p^{*}-p} \leq \frac{\delta}{\left|x-x_{n}\right|^{p}}$ in $\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)$ for all n large thanks to (4.13), we have that

$$
-\Delta_{p} u_{n}-\left(\lambda_{n}+\frac{\delta}{\left|x-x_{n}\right|^{p}}\right) u_{n}^{p-1}=\left(u_{n}^{p^{*}-p}-\frac{\delta}{\left|x-x_{n}\right|^{p}}\right) u_{n}^{p-1} \leq 0 \quad \text { in } \Omega \backslash B_{R \mu_{n}}\left(x_{n}\right) .
$$

By (4.7) on $\partial B_{R \mu_{n}}\left(x_{n}\right)$ it is easily seen that $u_{n} \leq \Phi_{n}$ on the boundary of $\Omega \cap B_{\rho}\left(x_{0}\right) \backslash$ $B_{R \mu_{n}}\left(x_{n}\right)$ for some $C>0$, and then by Proposition 2.3 one deduces the validity of

$$
\begin{equation*}
u_{n} \leq C \frac{\mu_{n}^{\frac{N-p}{p(p-1)}-\eta}+M_{n}}{\left|x-x_{n}\right|^{\frac{N-p}{p-1}-\eta}} \tag{4.21}
\end{equation*}
$$

in $\Omega \cap B_{\rho}\left(x_{0}\right) \backslash B_{R \mu_{n}}\left(x_{n}\right)$. Setting $A=\Omega \backslash B_{\rho}\left(x_{0}\right)$, observe that the function $v_{n}=\frac{u_{n}}{M_{n}}$ satisfies

$$
\begin{equation*}
-\Delta_{p} v_{n}-\lambda_{n} v_{n}^{p-1}=f_{n} \text { in } \Omega, \quad v_{n}=0 \text { on } \partial \Omega, \quad \sup _{\Omega \cap \partial B_{\rho}\left(x_{0}\right)} v_{n}=1 \tag{4.22}
\end{equation*}
$$

where $f_{n}=\frac{u_{n}^{p^{*}-1}}{M_{n}^{p-1}}=u_{n}^{\frac{p^{2}}{N-p}} v_{n}^{p-1}$. Letting g_{n} be the p-harmonic function in A so that $g_{n}=v_{n}$ on ∂A, observe that $\left\|g_{n}\right\|_{\infty}=1$ in view of $0 \leq v_{n} \leq 1$ on ∂A. Since by Step 1 there holds

$$
a_{n}=\lambda_{n}+u_{n}^{\frac{p^{2}}{N-p}} \rightarrow \lambda_{*} \quad \text { in } L^{\infty}(A)
$$

as $n \rightarrow+\infty$ with $\lambda_{*}<\lambda_{1}(\Omega)<\lambda_{1}(A)$, by Proposition 2.2 we deduce that $\sup _{n \in \mathbb{N}}\left\|v_{n}\right\|_{p-1, A}<+\infty$ and then $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{1, A}<+\infty$ in view of Step 1. Letting w_{n} the solution of

$$
-\Delta_{p} w_{n}=f_{n} \text { in } A, \quad w_{n}=0 \text { on } \partial A,
$$

by Proposition 2.2 we also deduce that $\sup _{n \in \mathbb{N}}\left\|v_{n}-w_{n}\right\|_{\infty, A}<+\infty$ thanks to $N<2 p$. Since by the Sobolev embedding Theorem $\sup _{n \in \mathbb{N}}\left\|w_{n}\right\|_{q, A}<+\infty$ for all $1 \leq q<\bar{q}^{*}$ in view of Proposition 2.2 and $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{1, A}<+\infty$, similar estimates hold for v_{n} and then $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{q_{0}, A}<+\infty$ for some $q_{0}>\frac{N}{p}$ in view of $N<2 p$. By elliptic estimates [22] we get that $\sup _{n \in \mathbb{N}}\left\|w_{n}\right\|_{\infty, A}<+\infty$ and in turn $\sup _{n \in \mathbb{N}}\left\|v_{n}\right\|_{\infty, A}<+\infty$, or equivalently

$$
\begin{equation*}
\sup _{\Omega \backslash B_{\rho}\left(x_{0}\right)} u_{n} \leq C \sup _{\Omega \cap \partial B_{\rho}\left(x_{0}\right)} u_{n} \tag{4.23}
\end{equation*}
$$

for some $C>0$. Thanks to (4.23) one can extend the validity of (4.21) from $\Omega \cap B_{\rho}\left(x_{0}\right) \backslash$ $B_{R \mu_{n}}\left(x_{n}\right)$ to $\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)$. In order to establish (4.20), we claim that M_{n} in (4.21) satisfies

$$
\begin{equation*}
M_{n}=o\left(\mu_{n}^{\frac{N-p}{p(p-1)}-\eta}\right) \tag{4.24}
\end{equation*}
$$

for all $0<\eta<\frac{N-p}{p(p-1)}$.
Indeed, by contradiction assume that there exist $0<\bar{\eta}<\frac{N-p}{p(p-1)}$ and a subsequence so that

$$
\begin{equation*}
\mu_{n}^{\frac{N-p}{p(p-1)}-\bar{\eta}} \leq C M_{n} \tag{4.25}
\end{equation*}
$$

for some $C>0$. Since $v_{n}=O\left(\left|x-x_{n}\right|^{-\frac{N-p}{p-1}+\bar{\eta}}\right)$ uniformly in $\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)$ in view of (4.21) and (4.25), we have that v_{n} and then $f_{n}=u_{n}^{\frac{p^{2}}{N-p}} v_{n}^{p-1}$ are uniformly bounded in $C_{\text {loc }}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ and by elliptic estimates $[6,16,22,23] v_{n} \rightarrow v$ in $C_{\text {loc }}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ as $n \rightarrow+\infty$, up to a further subsequence, where $v \neq 0$ in view of $\sup _{\Omega \cap \partial B_{\rho}\left(x_{0}\right)} v=\lim _{n \rightarrow+\infty} \sup _{\Omega \cap \partial B_{\rho}\left(x_{0}\right)} v_{n}=1$. Moreover, notice that $\lim _{n \rightarrow+\infty}\left\|f_{n}\right\|_{1}=0$ would imply $v_{n} \rightarrow v$ in $W_{0}^{1, q}(\Omega)$ for all $1 \leq q<\bar{q}$ and in $L^{s}(\Omega)$ for all $1 \leq s<\bar{q}^{*}$ as $n \rightarrow+\infty$ in view of Proposition 2.2, where v is a solution of

$$
\begin{equation*}
-\Delta_{p} v-\lambda_{*} v^{p-1}=0 \quad \text { in } \Omega . \tag{4.26}
\end{equation*}
$$

Letting

$$
T_{l}(s)= \begin{cases}|s| & \text { if }|s| \leq l \\ \pm l & \text { if } \pm s>l\end{cases}
$$

and using $T_{l}\left(v_{n}\right) \in W_{0}^{1, p}(\Omega)$ as a test function in (4.22), one would get

$$
\int_{\left\{\left|v_{n}\right| \leq l\right\}}\left|\nabla v_{n}\right|^{p} \leq \lambda_{n} \int_{\Omega} v_{n}^{p}+l\left\|f_{n}\right\|_{1} \rightarrow \lambda_{*} \int_{\Omega} v^{p}
$$

as $n \rightarrow+\infty$ in view of $\bar{q}^{*}>p$ and then deduce

$$
\int_{\Omega}|\nabla v|^{p} \leq \lambda_{*} \int_{\Omega} v^{p}<+\infty
$$

as $l \rightarrow+\infty$. Since $v \in W_{0}^{1, p}(\Omega)$ solves (4.26) with $\lambda_{*}<\lambda_{1}$, one would have $v=0$, in contradiction with $\sup _{\Omega \cap \partial B_{\rho}\left(x_{0}\right)} v=1$. Once

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty}\left\|f_{n}\right\|_{1}>0 \tag{4.27}
\end{equation*}
$$

has been established, by (4.4), (4.7) and (4.21) observe that

$$
\begin{equation*}
\int_{B_{R \mu_{n}}\left(x_{n}\right)} f_{n}=\int_{B_{R \mu_{n}}\left(x_{n}\right)} \frac{u_{n}^{p^{*}-1}}{M_{n}^{p-1}}=\frac{\mu_{n}^{\frac{N-p}{p}}}{M_{n}^{p-1}} \int_{B_{R}(0)} U_{n}^{p^{*}-1}=O\left(\frac{\mu_{n}^{\frac{N-p}{p}}}{M_{n}^{p-1}}\right) \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)} f_{n}=L_{n}^{\frac{p^{2}}{N-p}}\left(\frac{L_{n}}{M_{n}}\right)^{p-1} O\left(\mu_{n}^{\left(p^{*}-1\right) \eta-\frac{p}{p-1}} \log \frac{1}{\mu_{n}}+1\right) \tag{4.29}
\end{equation*}
$$

where $L_{n}=\mu_{n}^{\frac{N-p}{p(p-1)}-\eta}+M_{n}$. Setting $\eta_{0}=\frac{p}{(p-1)\left(p^{*}-1\right)}$, then (4.24) necessarily holds for $\eta \in\left(\eta_{0}, \frac{N-p}{p(p-1)}\right)$ since otherwise $L_{n}=O\left(M_{n}\right)$ and (4.28)-(4.29) would provide $\lim _{n \rightarrow+\infty}\left\|f_{n}\right\|=0$ along a subsequence thanks to $\lim _{n \rightarrow+\infty} M_{n}=0$, in contradiction with (4.27). Notice that (4.24) holds for $\eta=\eta_{0}$ too, since otherwise the conclusion $\lim _{n \rightarrow+\infty}\left\|f_{n}\right\|=0$ would follow as above thanks to $L_{n}=O\left(\mu_{n}^{\frac{N-p}{p(p-1)}-\eta}\right)$ for $\eta \in\left(\eta_{0}, \frac{N-p}{p(p-1)}\right)$. Setting $\eta_{k}=\left(\frac{p^{2}}{N p-N+p}\right)^{k} \eta_{0}$, arguing as above (4.24) can be established for $\eta \in\left[\eta_{k+1}, \eta_{k}\right)$, $k \geq 0$, by using the validity of (4.24) for $\eta \in\left[\eta_{k}, \frac{N-p}{p-1}\right)$ in view of the relation

$$
\left(p^{*}-1\right) \eta_{k+1}-\frac{p}{p-1}+\frac{p^{2}}{N-p}\left[\frac{N-p}{p(p-1)}-\eta_{k}\right]=0
$$

Since $\frac{p^{2}}{N p-N+p}<1$ for $p<N$, we have that $\eta_{k} \rightarrow 0$ as $k \rightarrow+\infty$ and then (4.24) is proved for all $0<\eta<\frac{N-p}{p(p-1)}$, in contradiction with (4.25). Therefore, we have established (4.24) and the validity of (4.20) follows.

In order to establish (4.19), let us repeat the previous argument for $v_{n}=\mu_{n}^{-\frac{N-p}{p(p-1)}} u_{n}$, where v_{n} solves

$$
\begin{equation*}
-\Delta_{p} v_{n}-\lambda_{n} v_{n}^{p-1}=f_{n} \text { in } \Omega, \quad v_{n}=0 \text { on } \partial \Omega \tag{4.30}
\end{equation*}
$$

with $f_{n}=\mu_{n}^{-\frac{N-p}{p}} u_{n}^{p^{*}-1}$. Notice that f_{n} satisfies

$$
\begin{equation*}
f_{n} \leq \frac{C_{0} \mu_{n}^{\frac{p}{p-1}-\left(p^{*}-1\right) \eta}}{\left|x-x_{n}\right|^{N+\frac{p}{p-1}-\left(p^{*}-1\right) \eta}} \quad \text { in } \Omega \backslash B_{R \mu_{n}}\left(x_{n}\right) \tag{4.31}
\end{equation*}
$$

for some $C_{0}>0$ in view of (4.20) and then, by arguing as in (4.28),

$$
\begin{equation*}
\int_{\Omega} f_{n}=O(1)+O\left(\int_{\Omega \backslash B_{R \mu_{n}}\left(x_{n}\right)} \frac{\mu_{n}^{\frac{p}{p-1}-\left(p^{*}-1\right) \eta}}{\left|x-x_{n}\right|^{N+\frac{p}{p-1}-\left(p^{*}-1\right) \eta}}\right)=O(1) \tag{4.32}
\end{equation*}
$$

for $0<\eta<\frac{p}{(p-1)\left(p^{*}-1\right)}=\frac{p(N-p)}{(p-1)(N p-N+p)}$. Letting h_{n} be the solution of

$$
-\Delta_{p} h_{n}=f_{n} \text { in } \Omega, \quad h_{n}=0 \text { on } \partial \Omega,
$$

by (4.32) and Proposition 2.2 we deduce that $\sup _{n \in \mathbb{N}}\left\|v_{n}-h_{n}\right\|_{\infty}<+\infty$ thanks to $N<2 p$, or equivalently

$$
\begin{equation*}
\left\|u_{n}-\mu_{n}^{\frac{N-p}{p(p-1)}} h_{n}\right\|_{\infty}=O\left(\mu_{n}^{\frac{N-p}{p(p-1)}}\right) . \tag{4.33}
\end{equation*}
$$

For $\alpha>N$ the radial function

$$
W(y)=(\alpha-N)^{-\frac{1}{p-1}} \int_{|y|}^{\infty} \frac{\left(t^{\alpha-N}-1\right)^{\frac{1}{p-1}}}{t^{\frac{\alpha-1}{p-1}}} d t
$$

is a positive and strictly decreasing solution of $-\Delta_{p} W=|y|^{-\alpha}$ in $\mathbb{R}^{N} \backslash B_{1}(0)$ so that

$$
\begin{equation*}
\lim _{|y| \rightarrow \infty}|y|^{\frac{N-p}{p-1}} W(y)=\frac{p-1}{N-p}(\alpha-N)^{-\frac{1}{p-1}}>0 . \tag{4.34}
\end{equation*}
$$

Taking $0<\eta<\frac{p}{(p-1)\left(p^{*}-1\right)}$ to ensure $\alpha:=N+\frac{p}{p-1}-\left(p^{*}-1\right) \eta>N$, then $w_{n}(x)=$ $\mu_{n}^{-\frac{N-p}{p-1}} W\left(\frac{x-x_{n}}{\mu_{n}}\right)$ satisfies

$$
-\Delta_{p} w_{n}=\frac{\mu_{n}^{\frac{p}{p-1}-\left(p^{*}-1\right) \eta}}{\left|x-x_{n}\right|^{N+\frac{p}{p-1}-\left(p^{*}-1\right) \eta}} \quad \text { in } \mathbb{R}^{N} \backslash B_{1}\left(x_{n}\right)
$$

Since

$$
h_{n}(x)=\mu_{n}^{-\frac{N-p}{p(p-1)}} u_{n}(x)+O(1)=\mu_{n}^{-\frac{N-p}{p-1}} U_{n}\left(\frac{x-x_{n}}{\mu_{n}}\right)+O(1) \leq C_{1} w_{n}(x)
$$

for some $C_{1}>0$ and for all $x \in \partial B_{R \mu_{n}}\left(x_{n}\right)$ in view of (4.7), (4.33) and $W(R)>0$, we have that $\Phi_{n}=C w_{n}$ satisfies

$$
-\Delta_{p} \Phi_{n} \geq f_{n} \text { in } \Omega \backslash B_{R \mu_{n}}\left(x_{n}\right), \quad \Phi_{n} \geq h_{n} \text { on } \partial \Omega \cup \partial B_{R \mu_{n}}\left(x_{n}\right)
$$

for $C=C_{0}^{\frac{1}{p-1}}+C_{1}$ thanks to (4.31), and then by weak comparison principle we deduce that

$$
\begin{equation*}
h_{n} \leq \Phi_{n} \leq \frac{C}{\left|x-x_{n}\right|^{\frac{N-p}{p-1}}} \quad \text { in } \Omega \backslash B_{R \mu_{n}}\left(x_{n}\right) \tag{4.35}
\end{equation*}
$$

for some $C>0$ in view of (4.34). Inserting (4.35) into (4.33) we finally deduce the validity of (4.19)

Step 4. There holds $x_{0} \notin \partial \Omega$.
Assume by contradiction $x_{0} \in \partial \Omega$ and set $\hat{x}=x_{0}-\nu\left(x_{0}\right)$. Let us apply the Pohozaev identity (3.6) to u_{n} with $c=1, f=0$ and $x_{0}=\hat{x}$ on $D=\Omega$, together with (3.7), to get

$$
\begin{equation*}
\int_{\partial \Omega}\left|\nabla u_{n}\right|^{p}\langle x-\hat{x}, \nu\rangle=\frac{p}{p-1} \lambda_{n} \int_{\Omega} u_{n}^{p} \tag{4.36}
\end{equation*}
$$

in view of $u_{n}=0$ and $\nabla u_{n}=\left(\partial_{\nu} u_{n}\right) \nu$ on $\partial \Omega$. Since $v_{n}=\mu_{n}^{-\frac{N-p}{p(p-1)}} u_{n}$ solves (4.30) and v_{n}, f_{n} are uniformly bounded in $C_{\mathrm{loc}}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ in view of (4.18) and (4.31) with $\eta=0$, by elliptic estimates $[6,16,22,23]$ we deduce that v_{n} is uniformly bounded in $C_{\text {loc }}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$. Fixing $\rho>0$ small so that $\langle x-\hat{x}, \nu(x)\rangle \geq \frac{1}{2}$ for all $x \in \partial \Omega \cap B_{\rho}\left(x_{0}\right)$, by (4.18), (4.36) and the C^{1}-bound on v_{n} we have that

$$
\begin{equation*}
\int_{\partial \Omega \cap B_{\rho}\left(x_{0}\right)}\left|\nabla u_{n}\right|^{p}=O\left(\lambda_{n} \int_{\Omega} u_{n}^{p}+\int_{\partial \Omega \backslash B_{\rho}\left(x_{0}\right)}\left|\nabla u_{n}\right|^{p}\right)=O\left(\mu_{n}^{\frac{N-p}{p-1}}\right) \tag{4.37}
\end{equation*}
$$

since $\frac{p(N-p)}{p-1}<N$ thanks $N<2 p \leq p^{2}$. Setting $d_{n}=\operatorname{dist}\left(x_{n}, \partial \Omega\right)$ and $W_{n}(y)=$ $d_{n}^{\frac{N-p}{p}} u_{n}\left(d_{n} y+x_{n}\right)$ for $y \in \Omega_{n}=\frac{\Omega-x_{n}}{d_{n}}$, we have that $d_{n} \rightarrow 0$ and $\Omega_{n} \rightarrow \Omega_{\infty}$ as $n \rightarrow+\infty$ where Ω_{∞} is an halfspace containing 0 with $\operatorname{dist}\left(0, \partial \Omega_{\infty}\right)=1$. Setting $\delta_{n}=\frac{\mu_{n}}{d_{n}} \rightarrow 0$ as $n \rightarrow+\infty$ in view of (4.6), the function $G_{n}=\delta_{n}^{-\frac{N-p}{p(p-1)}} W_{n}=\mu_{n}^{-\frac{N-p}{p(p-1)}} d_{n}^{\frac{N-p}{p-1}} u_{n}\left(d_{n} y+x_{n}\right) \geq$ 0 solves

$$
\begin{equation*}
-\Delta_{p} G_{n}-\lambda_{n} d_{n}^{p} G_{n}^{p-1}=\tilde{f}_{n} \text { in } \Omega_{n}, \quad G_{n}=0 \text { on } \partial \Omega_{n} \tag{4.38}
\end{equation*}
$$

with $\tilde{f}_{n}=\mu_{n}^{-\frac{N-p}{p}} d_{n}^{N} u_{n}^{p^{*}-1}\left(d_{n} y+x_{n}\right)=d_{n}^{N} f_{n}\left(d_{n} y+x_{n}\right)$ so that

$$
\begin{equation*}
\tilde{f}_{n} \leq \frac{C \delta_{n}^{\frac{p}{p-1}}}{|y|^{N+\frac{p}{p-1}}}, G_{n} \leq \frac{C}{|y|^{\frac{N-p}{p-1}}} \quad \text { in } \Omega_{n} \tag{4.39}
\end{equation*}
$$

in view of (4.18) and (4.31) with $\eta=0$. By (4.39) and elliptic estimates [6,16,22,23] we deduce that $G_{n} \rightarrow G$ in $C_{\text {loc }}^{1}\left(\bar{\Omega}_{\infty} \backslash\{0\}\right)$ as $n \rightarrow+\infty$, where $G \geq 0$ does solve

$$
-\Delta_{p} G=\left(\int_{\mathbb{R}^{N}} U^{p^{*}-1}\right) \delta_{0} \text { in } \Omega_{\infty}, \quad G=0 \text { on } \partial \Omega_{\infty}
$$

in view of (4.38) and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{B_{\epsilon}(0)} \tilde{f}_{n}=\lim _{n \rightarrow+\infty} \int_{B_{\epsilon} \frac{d_{n}}{\mu_{n}}} U_{n}^{p^{*}-1}=\int_{\mathbb{R}^{N}} U^{p^{*}-1} \tag{4.40}
\end{equation*}
$$

for all $\epsilon>0$ in view of (4.6)-(4.7) and (4.18). By the strong maximum principle [24] we then have that $G>0$ in Ω_{∞} and $\partial_{\nu} G<0$ on $\partial \Omega_{\infty}$. On the other hand, for any $R>0$ there holds

$$
\int_{\partial \Omega_{n} \cap B_{R}(0)}\left|\nabla G_{n}\right|^{p}=\mu_{n}^{-\frac{N-p}{p-1}} d_{n}^{\frac{N-1}{p-1}} \int_{\partial \Omega \cap B_{R d_{n}}\left(x_{n}\right)}\left|\nabla u_{n}\right|^{p}=O\left(d_{n}^{\frac{N-1}{p-1}}\right)
$$

in view of (4.37) and then as $n \rightarrow+\infty$

$$
\int_{\partial \Omega_{\infty} \cap B_{R}(0)}|\nabla G|^{p}=0
$$

We end up with the contradictory conclusion $\nabla G=0$ on $\partial \Omega_{\infty}$, and then $x_{0} \notin \partial \Omega$.
Step 5. There holds $H_{\lambda_{*}}\left(x_{0}, x_{0}\right)=0$.
Let us apply the Pohozaev identity (3.6) to u_{n} with $c=1$ and $f=0$ on $D=B_{\delta}\left(x_{0}\right) \subset$ Ω and (3.7) to get

$$
\begin{align*}
\lambda_{n} \int_{B_{\delta}\left(x_{0}\right)} u_{n}^{p} & +\int_{\partial B_{\delta}\left(x_{0}\right)}\left(\frac{\delta}{p}\left|\nabla u_{n}\right|^{p}-\delta\left|\nabla u_{n}\right|^{p-2}\left(\partial_{\nu} u_{n}\right)^{2}\right. \\
& \left.-\frac{\lambda_{n} \delta}{p} u_{n}^{p}-\frac{N-p}{p} u_{n}\left|\nabla u_{n}\right|^{p-2} \partial_{\nu} u_{n}\right)-\frac{N-p}{N p} \delta \int_{\partial B_{\delta}\left(x_{0}\right)} u_{n}^{p^{*}}=0 . \tag{4.41}
\end{align*}
$$

As in the previous Step, up to a subsequence, there holds $G_{n}=\mu_{n}^{-\frac{N-p}{p(p-1)}} u_{n} \rightarrow G$ in $C_{\mathrm{loc}}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ as $n \rightarrow+\infty$, where $G \geq 0$ satisfies

$$
-\Delta_{p} G-\lambda_{*} G^{p-1}=\left(\int_{\mathbb{R}^{N}} U^{p^{*}-1}\right) \delta_{x_{0}} \text { in } \Omega, \quad G=0 \text { on } \partial \Omega
$$

as it follows by (4.38) and (4.40) with $d_{n}=1$. Arguing as in Proposition 2.4, we can prove that $H=G-\Gamma$ satisfies (2.1) and by Theorem 2.1 it follows that $G=\left(\int_{\mathbb{R}^{N}} U^{p^{*}-1}\right)^{\frac{1}{p-1}} G_{\lambda_{*}}\left(\cdot, x_{0}\right)$. Since $\mu_{n}^{-\frac{N-p}{p(p-1)}} u_{n} \rightarrow\left(\int_{\mathbb{R}^{N}} U^{p^{*}-1}\right)^{\frac{1}{p-1}} G_{\lambda_{*}}\left(\cdot, x_{0}\right)$ in $C_{\text {loc }}^{1}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ as $n \rightarrow+\infty$, by letting $n \rightarrow+\infty$ in (4.41) we finally get

$$
\begin{aligned}
& \lambda_{*} \int_{B_{\delta}\left(x_{0}\right)} G_{\lambda_{*}}^{p}\left(x, x_{0}\right) d x+\int_{\partial B_{\delta}\left(x_{0}\right)}\left(\frac{\delta}{p}\left|\nabla G_{\lambda_{*}}\left(x, x_{0}\right)\right|^{p}-\delta\left|\nabla G_{\lambda_{*}}\left(x, x_{0}\right)\right|^{p-2}\left(\partial_{\nu} G_{\lambda_{*}}\left(x, x_{0}\right)\right)^{2}\right. \\
& \left.-\frac{\lambda_{*} \delta}{p} G_{\lambda_{*}}^{p}\left(x, x_{0}\right)-\frac{N-p}{p} G_{\lambda_{*}}\left(x, x_{0}\right)\left|\nabla G_{\lambda_{*}}\left(x, x_{0}\right)\right|^{p-2} \partial_{\nu} G_{\lambda_{*}}\left(x, x_{0}\right)\right) d \sigma(x)=0
\end{aligned}
$$

and then $H_{\lambda_{*}}\left(x_{0}, x_{0}\right)=0$ by (3.8).

Data availability

No data was used for the research described in the article.

References

[1] S. Angeloni, P. Esposito, The Green function for p-Laplace operators, preprint, arXiv:2203.01206.
[2] T. Aubin, Y.Y. Li, On the best Sobolev inequality, J. Math. Pures Appl. (9) 78 (4) (1999) 353-387.
[3] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983) 437-477.
[4] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for m-Laplace equations of Lame-Emden-Fowler type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (4) (2009) 1099-1119.
[5] L. Damascelli, S. Merchán, L. Montoro, B. Sciunzi, Radial symmetry and applications for a problem involving the $-\Delta_{p}(\cdot)$ operator and critical nonlinearity in \mathbb{R}^{N}, Adv. Math. 265 (10) (2014) 313-335.
[6] E. Dibenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (8) (1983) 827-850.
[7] Z. Djadli, O. Druet, Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var. Partial Differ. Equ. 12 (1) (2001) 59-84.
[8] O. Druet, The best constants problem in Sobolev inequalities, Math. Ann. 314 (2) (1999) 327-346.
[9] O. Druet, Elliptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2) (2002) 125-142.
[10] O. Druet, F. Robert, E. Hebey, Blow-Up Theory for Elliptic PDEs in Riemannian Geometry, Mathematical Notes, vol. 45, Princeton University Press, Princeton, NJ, 2004.
[11] P. Esposito, On some conjectures proposed by Haïm Brezis, Nonlinear Anal. 54 (5) (2004) 751-759.
[12] N. Ghoussoub, F. Robert, Hardy-singular boundary mass and Sobolev-critical variational problems, Anal. PDE 10 (5) (2017) 1017-1079.
[13] N. Ghoussoub, F. Robert, The Hardy-Schrödinger operator with interior singularity: the remaining cases, Calc. Var. Partial Differ. Equ. 56 (5) (2017) 149.
[14] M. Guedda, L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (8) (1989) 879-902.
[15] S. Kichenassamy, L. Veron, Singular solutions of the p-Laplace equation, Math. Ann. 275 (1986) 599-616.
[16] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (11) (1988) 1203-1219.
[17] C. Mercuri, M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst. 28 (2) (2010) 469-493.
[18] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom. 20 (2) (1984) 479-495.
[19] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1) (1979) 45-76.
[20] R. Schoen, S.T. Yau, Proof of the positive mass theorem. II, Commun. Math. Phys. 79 (2) (1981) 231-260.
[21] B. Sciunzi, Classification of positive $\mathcal{D}^{1, p}\left(\mathbb{R}^{N}\right)$-solutions to the critical p-Laplace equation in \mathbb{R}^{N}, Adv. Math. 291 (2016) 12-23.
[22] J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math. 111 (1964) 247-302.
[23] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ. 51 (1984) 126-150.
[24] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191-202.
[25] J. Vétois, A priori estimates and application to the symmetry of solutions for critical p-Laplace equations, J. Differ. Equ. 260 (1) (2016) 149-161.

[^0]: Partially supported by Gruppo Nazionale per l'Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

 * Corresponding author.

 E-mail addresses: sabina.angeloni@uniroma3.it (S. Angeloni), esposito@mat.uniroma3.it (P. Esposito).

