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ON A QUASILINEAR MEAN FIELD EQUATION WITH AN EXPONENTIAL
NONLINEARITY

PIERPAOLO ESPOSITO AND FABRIZIO MORLANDO

ABSTRACT. The mean field equation involving the N —Laplace operator and an exponential nonlinearity is considered
in dimension N > 2 on bounded domains with homogenoeus Dirichlet boundary condition. By a detailed asymptotic
analysis we derive a quantization property in the non-compact case, yielding to the compactness of the solutions set
in the so-called non-resonant regime. In such a regime, an existence result is then provided by a variational approach.

1. INTRODUCTION

We are concerned with the following quasilinear mean field equation

{ _ANU = )\fn“//ieezdm in

1.1
u=~0 on 0f2 (1.1)

on a smooth bounded domain Q € RY, N > 2, where Anu = div (|Vu|Y “?Vu) denotes the N —Laplace operator, V is
a smooth nonnegative function and A € R. In the sequel, (II]) will be referred to as the N-mean field equation.

In terms of A or p = IV%’ the planar case N = 2 on Euclidean domains or on closed Riemannian surfaces has
strongly attracted the mathematical interest, as it arises in conformal geometry [18] [T9] [44], in statistical mechanics
[16] 17, 20, [46], in the study of turbulent Euler flows [29] [64] and in connection with self-dual condensates for some
Chern-Simons-Higgs model [25] 28] [32] [37) 51}, 52| 58].

For N = 2 Brézis and Merle [I5] initiated the study of the asymptotic behavior for solutions of (LLI)) by providing
a concentration-compactness result in €2 without requiring any boundary condition. A quantization property for
concentration masses has been later given in [48], and a very refined asymptotic description has been achieved in [23] [47].
A first natural question concerns the validity of a similar asymptotic behavior in the quasilinear case N > 2, where the
nonlinearity of the differential operator creates an additional difficulty. The only available result is a concentration-
compactness result |2 [61], which provides a too weak compactness property towards existence issues for (ILI). Since a
complete classification for the limiting problem

{ —ANU =Y in RY

e < (1.2)

is not available for N > 2 (except for extremals of the corresponding Moser-Trudinger’s inequality [43] [50]) as opposite
to the case N = 2 [21], the starting point of Li-Shafrir’s analysis [48] fails and a general quantization property is
completely missing. Under a “mild” control on the boundary values of u, Y.Y.Li and independently Wolanski have
proposed for N = 2 an alternative approach based on Pohozaev identities, successfully applied also in other contexts
[6l [7, [66]. The typical assumption on V' is the following;:

Ci <V(£)<Coand |VV(2)| < Co  VaeQ (1.3)
0

for some Cy > 0.

Pushing the analysis of [2] [6I] up to the boundary and making use of the above approach, our first main result is the
following;:

Theorem 1.1. Let ux € CV*(Q), a € (0,1), be a sequence of weak solutions to

— ANuk = Vkeuk m Q, (1.4)
where Vi, satisfies (L3) for all k € N. Assume that
sup/ e"* < 400 (1.5)
keN Jo

and
0scopquy = sup ur — inf up, < M
Ere) o0
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for some M € R. Then, up to a subsequence, uy verifies one of the following alternatives: either
(i) ui is uniformly bounded in Lis,(€2)

or
(1) ur, — —oo as k — 400 uniformly in L;5, ()
or

(i3i) there exists a finite, non-empty set S = {p1,...,pm} C Q such that upy — —oo uniformly in Li,.(2\ S) and

Vie" — cen Zé . (1.6)

i=1

weakly in the sense of measures in Q) as k — +oo, where cny = N(NN—jl)N_le with wy = |B1(0)|. In addition, if

oscoqui, = 0 for all k, alternatives (i)-(iii) do hold in Q, with S C Q in case (idi).

Without an uniform control on the oscillation of ui on 9%, in general the concentration mass «; in (6] at each p;,
i=1,...,m, just satisfies a; > N™wx, see [2 [61] for details. Moreover, the assumption oscanui = 0 is used here to
rule out boundary blow-up. For strictly convex domains, one could simply use the moving-plane method to exclude
maximum points of ux near 9Q as in [6I]. For N = 2 this extra assumption can be removed by using the Kelvin
transform to take care of non-convex domains, see [54} [60]. Although N—harmonic functions in R" are invariant under
Kelvin transform, such a property does not carry over to (L4) due to the nonlinearity of —Ay. To overcome such
a difficulty, we still make use of the Pohozaev identity near boundary points, to exclude the boundary blow-up as in

56} 62].

Problem (2) has a (N + 1)—dimensional family of explicit solutions Ue ,(z) = U(%2) — Nloge, € > 0 and p € RY,
where

Fn
(L+ [z )N
with Fny = N( N )N_l. As € — 07, a description of the blow-up behavior at p is well illustrated by Ue,. Since

N-1
Ue,p
e P = CN,
RN

in analogy with Li-Shafrir’s result it is expected that the concentration mass «; in (L) at each p;, ¢ = 1,...,m, should
be an integer multiple of c¢ny. The additional assumption sup, oscoqur < 400 allows us to prove that all the blow-up
points p;, i = 1,...,m, are “simple” in the sense a; = cn.

U(z) = log zeRY, (1.7)

Concerning the N-mean field equation ([LI]), as a simple consequence of Theorem [T we deduce the following crucial
compactness property:

Corollary 1.2. Let A C [0,+00) \ cnN be a compact set. Then, there exists a constant C'> 0 such that |lullec < C
does hold for all X € A, all weak solution u € CH*(Q), a € (0,1), of (I and all V satisfying [L3J).

In the sequel, we will refer to the case A # cnyN as the non-resonant regime. FExistence issues can be attacked by
variational methods: solutions of (LI can be found as critical points of

Ia(u) = %/Q|Vu|N — Alog </QV6"), uwe WyN(Q). (1.8)

The Moser-Trudinger inequality [57] guarantees that the functional Jy is well-defined and C*'-Fréchet differentiable on
Wol’N(Q) for any A € R. Moreover, if A < ¢y the functional Jy is coercive and then attains the global minimum. For
A = cn Jy still has a lower bound but is not coercive anymore: in general, in the resonant regime A € cyN existence
issues are very delicate. When A > ¢y the functional Jy is unbounded both from below and from above, and critical
points have to be found among saddle points. Moreover, the Palais-Smale condition for Jy is not globally available,
see [53], but holds only for bounded sequences in W, '™ (£2).

The second main result is the following:

Theorem 1.3. Assume that the space of formal barycenters Bm (Q) of Q with order m > 1 is non contractible. Then
equation (L) has a solution in CV*(Q), a € (0,1), for all X € (cxm,en(m + 1)).

For mean-field equations, such a variational approach has been introduced in [33] and fully exploited later by Djadli and
Malchiodi [35] in their study of constant Q-curvature metrics on four manifolds. It has revelead to be very powerful in
many contexts, see for example [I} [8 34} [55] and refences therein. Alternative approaches are available: the computation
of the corresponding Leray-Schauder degree [23] 24], based on a very refined asymptotic analysis of blow-up solutions;
perturbative constructions of Lyapunov-Schimdt in the almost resonant regime [B] 241 28 29] [30] 37, 38, (2]. For
our problem a refined asymptotic analysis for blow-up solutions is still missing, and perturbation arguments are very
difficult due to the nonlinearity of Ay . A variational approach is the only reasonable way to attack existence issues, and
in this way the analytic problem is reduced to a topological one concerning the non-contractibility of a model space, the
so-called space of formal barycenters, characterizing the very low sublevels of .J,. We refer to Section [3] for a definition
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of 9B,,,(€2). To have non-contractibility of B,,(€2) for domains Q2 homotopically equivalent to a finite simplicial complex,
a sufficient condition is the non-triviality of the Z-homology, see [41]. Let us emphasize that the variational approach
produces solutions a.e. A € (cNm, en(m+ 1))7 m > 1, and Corollary is crucial to get the validity of Theorem [L3]
for all A in such a range.

The paper is organized as follows. In Section 2] we show how to push the concentration-compactness analysis [2 [61] up
to the boundary, by discussing boundary blow-up and mass quantization. Section[Blis devoted to Theorem[[3 and some

comments concerning B, (£2). In the appendix, we collect some basic results that will be used frequently throughout
the paper.
2. CONCENTRATION-COMPACTNESS ANALYSIS

Even though representation formulas are not available for Ay, the Brézis-Merle’s inequality [15] can be extended to
N > 2 by different means:

Lemma 2.1. [2161] Let u € C"*(Q2) be a weak solution of
—Anu=f inQ
with f € L'(Q). Let ¢ be a N-harmonic function in Q with ¢ = u on dQ. Then, for every o € (0,an) there exists a

constant C = C(a, |Q|) such that
R o
¢ I
where any = (]\de]\m.u\z)ﬁ and

) < XPNTEX - YNV, X - Y >
dy = inf

> 0.
X#YERN X Y|V

1
In addition, if u =0 on 0Q inequality &I does hold with an = (NN wn)N-1.
Under some smallness uniform condition on the nonlinear term, a-priori estimates hold true as follows:

Lemma 2.2. Let ux € CV*(Q), a € (0,1), be a sequence of weak solutions to (L), where Vi satisfies (L3) for all
k € N. Assume that

sup/ Vie't < NNdywn (2.2)
k JQNBygr

does hold for some R > 0, and uy, satisfies ux = cx on OQLN Bag, ug > ci in QN Byg forc, € R if 00N Bar # 0. Then

Sl;p”u;:HLoo(QﬁBR) < +o00. (2.3)
Proof. Let @i be the N—harmonic function in Q N Bagr so that ¢, = ux on 9(2 N Bar). Choosing

1
a€ ((sup/ Vkeuk)N*I,aN>
k JQNByg

in view of ([Z2)), by Lemma 2] we get that elur—exl g uniformly bounded in L?(2 N Bag), for some ¢ > 1. Since
Vi > 0, by the weak comparison principle we get that ¢, < ¢r < ug in QN Byg. Since pr = ¢, on 92N Bag and

SI;P H902||LN(QOB4R) < S‘;P HU;FHLN(QOBALR) < 400 (2.4)

in view of (3] and ([Z2), by Theorem [AJ] we get that ¢r < Cp in QN Bag uniformly in k, for some Cp. Since
et < eCOe‘“kf"’k‘, we get that e** is uniformly bounded in L?(Q2N Bzg). Since ¢ > 1, by Theorem [A-J] we deduce the
validity of (Z3)) in view of ([24). O

We can now prove our first main result:

Proof (of Theorem [11]).
First of all, by (L3) for Vi and (L5) we deduce that Vie"* is uniformly bounded in L'(Q). Up to a subsequence, by
the Prokhorov Theorem we can assume that Vie“* — 1 € M™ () as k — +o00 in the sense of measures in 2, i.e.

/Vkeukwﬁ/wduask%—&—oo Yo Q).
Q Q

A point p € Q is said a regular point for u if u({p}) < NNwy, and let us denote the set of non-regular points as:
S={pe@: u({p}) > N¥un}.

Since p is a bounded measure, it follows that 3 is a finite set. We complete the argument through the following five
steps.

Step 1 Letting

S = {peﬁz limsup sup wup =+ VR>0}7
k—+occ QNBR(p)
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there holds SNQ =X NQ (S =X if oscoour = 0 for all k).

Letting po € S, assume that pg € Q or ux = cx on 92 for some cx € R. In the latter case, notice that ux > ¢ in Q in
view of the weak comparison principle. Setting

¥ = {p €Q: u({p}) > NNdNWN}v

by Lemma 22 we know that po € ¥'. Indeed, if po ¢ ¥, then ([Z2) would hold for some R > 0 small, and then by
Lemma it would follow that wuj is uniformly bounded from above in ©Q N Br(po), contradicting po € S. To show
that po € X, the key point is to recover a good control of uy on G(Q N BR(po)), for some R > 0, in order to drop dn.
Assume that po ¢ X, in such a way that

sup/ Vie"* < NNy (2.5)
kJanBzgr(po)

for some R > 0 small. Since ¥’ is a finite set, up to take R smaller, let us assume that 9(Q2 N Bar(po)) N X' C {po},
and then by compactness we have that

Uk S M in 8(Q N BQR(pQ)) \ BR(pO) (26)

in view of SNQ C ¥ NQ and S C ¥/ if oscoqur = 0 for all k. If pg € Q, we can also assume that Bar(po) C Q. If
po € 9, up = ¢, on IN yields to ¢, < M in view of (Z6]). In both cases, we have shown that (Z.6) does hold in the
stronger way:

Letting wy, € W'V (2N Bar(po)) be the weak solution of

—Anwg = Vie" s in QN Bar(po)
wr =0 on 8(QﬂB2R(p0)),

by (27 and the weak comparison principle we get that
up <wk + M in QN Bar(po).
Applying Lemma 2] to wy, in view of (Z3)), it follows that

/ equk S 6qk{/ eqwk S C
QNB2r (o) QNB2r(po)

for all k, for some ¢ > 1 and C' > 0. In particular, u{ is uniformly bounded in N (QﬂBgR(po)) and Vie"* is uniformly
bounded in L? (Q N BzR(po)). By Theorem [A1] it follows that uy is uniformly bounded from above in QN Bgr(po), in
contradiction with po ¢ S. So, we have shown that po € X, which yields to SNQ C XN Q and S C ¥ if oscoour =0
for all .

Conversely, let po € X. If po ¢ S, one could find Ry > 0 so that ur < M in Q2N Bgr,(po), for some M € R, yielding to

/ Vie™ < Coe™RY, R < Ry,
QNBR(po)

in view of (L3). In particular, u({po}) = 0, contradicting po € X. Hence ¥ C S, and the proof of Step 1 is complete.
Step 2 SNQ =0 (S = 0) implies the validity of alternative (i) or (ii) in Q (in Q if oscoqur = 0 for all k).

Since uy is uniformly bounded from above in Lf5.(§2), then either uy is uniformly bounded in L. (£2) or there exists, up
to a subsequence, a compact set K C 2 so that ming ur — —o0 as k — +o00. The set Q5 = {z € Q : dist(z,9Q) > 4}
is a compact connected set so that K C s, for 6 > 0 small. Since uyr < M in Q for some M > 0, the function
sk = M — uy is a nonnegative weak solution of —Ans, = —Vie"* in Q. By the Harnack inequality in Theorem [A2]
we have that

rr{lzzzxsk < C(rgiéns;C + 1)

in view of
||Vkeuk ||LOO(Q) S CoeM.

In terms of uy, it reads as

rr(lzaaxukgM(lfé)+1+émlinuk%foo

as k — oo for all § > 0 small, yielding to the validity of alternative (ii) in €. Assume in addition that ur = ¢, on 99
for some ¢, € R. Notice that ¢y < ux < M in Q for all k. If alternative (i) does not hold in ©, up to a subsequence,
we get that ¢, — —o0. Since Vie"* is uniformly bounded in Q, we apply Corollary [A3]to s, = ui — ¢k, a nonnegative
solution of —Ayns, = Vie"* with sp = 0 on 09, to get s, < M’ in Q for some M’ € R. Hence, ux < M’ +cp — —oc0 in
Q as k — +o0, yielding to the validity of alternative (ii) in Q. The proof of Step 2 is complete.
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Step 3 SNQ # () implies the validity of alternative (iii) in Q (in Q if oscoqur = 0 for all k) with (I8) replaced by the
property:

Vkeuk — Zalﬁpi (28)
i=1

weakly in the sense of measures in Q (in Q) as k — +oo, with a; > NVwx and SNQ = {p1,...,pm} (S = {p1,...,Dm}).
Let us first consider the case that ux is uniformly bounded in L{;.(©2\ S). Fix po € S and R > 0 small so that

Br(po) NS = {po}. Arguing as in (Z0)-(271), we have that ur > m on (22N Br(po)) for some m € R. Since uy is
uniformly bounded in L$2,(Q\S), by Theorem [AAlit follows that uy, is uniformly bounded in C2%(Q N Br(po)\{po}), for

loc
some a € (0,1), and, up to a subsequence and a diagonal process, we can assume that uy, — u in C1,.(2 N Br(po) \{po})
as k — 4o00. By ([L3) on each Vi, we can also assume that Vi — V uniformly in Q as k — +o00. Hence, there holds

Vie"t — p=Ve" dr + aolp, (2.9)

weakly in the sense of measures in QN Br(po) as k — +oo, where ag > NNwn. Since

lim Vet = / Ve' +ap > aop
k=400 JanBr(po) QNBR(po)

in view of (29, for k large we can find a unique 0 < r; < R so that

/ Vie" = ao. (2.10)
Q2N By, (po)

Notice that r, — 0 as k — +o0. Indeed, if r, > § > 0 were true along a subsequence, one would reach the contradiction
ap > / Vet — Ve' +ap > ao
QNBs(po) QNBs(po)

as k — +oo in view of (29)-(2I0). Denoting by xa the characteristic function of a set A, we have the following crucial
property:
XBy, (po) V€™ — atodp,

weakly in the sense of measures in QN Br(po) as k — +00, as it easily follows by (2I0) and klirf . = 0.
—+4oo

We can now specialize the argument to deal with the case po € S N Q. Assume that R is small so that Br(po) C Q.
Letting wy € Wy~ (Br(po)) be the weak solution of

—ANU}k = XBTk (pO)Vkeuk in BR(pO)
wg =0 on dBr(po),
by the weak comparison principle there holds 0 < wy < uyp — m in Br(po) in view of 0 < XB,, (po) Vee"® < Vietr.

Arguing as before, up to a subsequence, by Theorem [A4] we can assume that wy — w in CL.(Br(po) \ {po}) as
k — 400, where w > 0 is a N—harmonic and continous function in Br(po) \ {po} which solves

—ANw = apdp, in Bgr(po)
in a distributional sense. By Theorem we deduce that
1 1
——+(C>Nlog——+C in By (po) (2.11)
|z — pol |z — pol

in view of ap > NNwy, for some C € R and 0 < r < min{1, R}. Since

/ eVt <e ™ sup/ e"r < +o0
Br(po) k Ja

in view of (LH), as k — 400 we get that fBR(pO) €V < +00, in contradiction with II)):

1
/ e’ > 60/ —— 5 = too.
Br(po) B (po) |x —pol

Since uy is uniformly bounded from above and not from below in L. (Q2\ S), there exists, up to a subsequence, a
compact set K C ©\ S so that ming ur — —oo as k — +o00. Arguing as in Step 2 by simply replacing dist(-, 9Q) with
dist(-, 9QN.S), we can show that ur, — —oo in L75,(Q\S) as k — 400, and (Z8)) does hold in Q with {p1,...,pm} = SNQ.
If in addition ux = ¢, on 9N for some ¢, € R, we can argue as in the end of Step 2 (by using Theorem instead
of Corollary [A3) to get that uxy — —oo in LS, (Q\ S) as k — 4oo, yielding to the validity of ) in Q with
{p1,...,pm} = S. The proof of Step 3 is complete.

To proceed further we make use of Pohozaev identities. Let us emphasize that u, € CH (Q), « € (0,1), and the
classical Pohozaev identities usually require more regularity. In [27] a self-contained proof is provided in the quasilinear
case, which reads in our case as:
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Lemma 2.3. Let Q1 C RY, N > 2, be a smooth bounded domain, f be a locally Lipschitz continuous function and

0<V € CQ). Then, there holds

NV = N2 [vul™

t -y YVIFW = [V F@) - y.0) + 1Vl ey, Vo - 0
Q 20

(x—y,v)

¢
for all weak solution v € CV*(Q), a € (0,1), of —Anu =V f(u) in Q and all y € RY, where F(t) = / f(s)ds and v
is the unit outward normal vector at OS). e

Thanks to Lemma [23] in the next two Steps we can now describe the interior blow-up phenomenon and exclude the
occurence of boundary blow-up:

Step 4 If oscoqur < M for some M € R, then a; = cn for all p; € SN Q.
Since 0 < ug — infpq ur < M on OS2, we have that s = ur — infaq ur > 0 satisfies

—AnsE = Wie®s  in Q

0<sp <M on 012,
where Wy, = Vie™09 Uk Letting now ¢ be the N—harmonic function in Q with ¢, = sx on 99, by the weak
comparison principle we have that 0 < ¢, < M in 2. Since sup,, fQ Wie't < 400 and €7 > §s™ for all s > 0, for some
d > 0, by Lemma 2] we deduce that s — ¢ and then s; are uniformly bounded in LN(Q). Since Wye®t = Viek
is uniformly bounded in L{5.(€2\ S), by Theorem [A4] it follows as in Step 3 that, up to a subsequence, s — s in

CL(Q\S). Fix po € SNQ and take Ry > 0 small so that B = Br,(po) CC Q and BNS = {po}. The limiting function
s > 0 is a N-harmonic and continuous function in B\ {po} which solves

—ANS = by, in B,

1
where ap > NYwy. By Theorem [A5 we have that s = al ' I'(|z — po|) + H, where H € L5.(B) does satisfy

lim |z — po||VH(z)| = 0. (2.12)
Applying the Pohozaev identity to sx on Br(po), 0 < R < Ry, with y = po, we get that
N
/ [NWi + (x — po, VW) ]e™* = R {W;@es" + | Vsr| V2 (0usk)? — M} .
Br(po) 9BR(po) N

Since SN Q # ) and Vie"* = Wye®*, by Step 3 we get that faBR(PO) Wie®t — 0 and

/ [NWi + (2 = po, VWi)]e™ = N Viet +0 </ |xp0|VkGUk> — Nag
Br(po) Br(po) Br(po)

as k — +oo. Letting k — oo we get that

@o L_ T—Po N-2 (o) 1 1 9
Noay = R VH — N-1 O, H — N-1
BBR(P0)| Nn |9r»’—po|2| [ (Now Il’—pol]
R o 1 T —po N
- [VH — ( ) N1 |
N 9BR(po) Nwn | — po?
N
N -1 Qo 2 1 1 %
0Br(po) L NWN |z — pol |2 — pol
= R 0y L (14 O(e - poll VH]| + |« — po *|VH[)]
N Joppo) Nwwn |z — polV

1 _
in view of sy — s =l 'T(|Jz —po|) + H in CL.(B\ {po}) as k — +oo. Letting R — 0 we get that

N -1 (7))

Nag = ~—=
ao v Now

N
)N—l NUJN,

in view of (2I2)). Therefore, there holds

N? )N71
N-—1
for all po € SN, and the proof of Step 4 is complete.

Step 5 If oscaqur = 0 for all k, then S C €.

OéOIN(

Assume now that ur = ¢x on 9€2. Since by the weak comparison principle ¢, < ug in Q for all k, the function
Sk = u — ¢k is a nonnegative weak solution of

—ANsE = Wie®s in Q

s =0 on 012,
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where Wy, = Vie®. Since Wye* = Vie"* is uniformly bounded in L'(Q), by Lemma ] we have that sy, is uniformly
bounded in LY (). Since Wye®* = Vie"* is uniformly bounded in LS. (€2 \ S), arguing as in Step 3, by Theorem [A4]
it follows that sy, is uniformly bounded in C;%(Q\ S), @ € (0,1), and, up to a subsequence, s — s in C1,(Q\ S). We
claim that s € C*(Q).

If ¢4 — —oo, we have that s € CL.(Q\ S) is a nonnegative N-harmonic function in Q\ S with s = 0 on 9Q\ S.
By Theorem we deduce that s = 0 in ©Q, and then s € C! (ﬁ) Up to a subsequence, we can now assume that
ek +cE€Rask — +ooand S = {p1,...,pm} C IQ in view of Step 3. By [I2 [13] s € W, 9 (Q) for all ¢ < N and is a
distributional solution of

s=0 on 02 (213)

(referred to as SOLA, Solution Obtained as Limit of Approximations), where W = Ve® and We® € L'(Q). By
considering different L' —approximations or even L'—weak approximations of We® € Ll(Q) one always get the same
limiting SOLA [26], which is then unique in the sense explained right now. Unfortunately, the sequence Wye®r does
not converge L'—weak to We® as k — +oo since it keeps track that some mass is concentrating near the boundary
points p1,...,pm. Given p = p; € S and a = a4, arguing as in ([ZI0) we can find a radius r, — 0 as k — 400 so that

/ Wie = a. (2.14)
QN By, (p)

Let wy € Wy (2N Br(p)) be the weak solution of

—Anwy = XQnB,, mWre® in QN Br(p)
wg =0 on (2N Br(p)),

{ —Ans=We® in

where R < 1dist (p, S\ {p}). Arguing as in Step 3, up to a subsequence, we have that wx — w in Cj,.(2 N Br(p)\ {p})
as k — 400, where w > 0 is N—harmonic and continous in Q N Br(p) \ {p}. If w > 0in QN Br(p), by [11} [14] we have
that

lim rw(or +p) = —(o,v(p)) (2.15)

r—0+
uniformly for o with (o,v(p)) < —§ < 0. Thanks to (2I3)), as in Step 3 we still end up with the contradiction
meBR(p) e" = 4o00. Therefore, by the strong maximum principle we necessarily have that w = 0 in QN Bg(p). Since wy,
is the part of s; which carries the information on the concentration phenomenon at p and tends to disappear as k — 400,
we can expect that s in the limit does not develop any singularities. We aim to show that e® € L4(Q N Br(p)) for all
q > 1, by mimicking some arguments in [2]. Letting ¢ be the N—harmonic extension in QN Br(p) of sk |snBgr ()
for M,a > 0 we have that

/ (Vsk|N 2 Vsk — [Vwr) YN 2 Vwr — [Vor| N > Ver, V[Tata(sk — wi — @) — T (sx — wi — ©1)])
QNBR(p)

= / (1 = X@nB.,, ) Wke™ [Tarta(sk — wi — ) — Tar (s — we — ¢x)]
QNBR(p)

S a/ (1 — XQQBTk (p))Wkesk, (2.16)
{lsk—wk—pr|>M}
where the truncature operator Thr, M > 0, is defined as
-M ifu<-M
Tv(u) =< u if |ul <M

M if u > M.

The crucial property we will take advantage of is the following:

sup/ (1 = XonB,, (»)Wke™ =0 as M — +oo. (2.17)
ko J{lsk—w—ei|>M}

Indeed, by 9] notice that, up to a subsequence, we can assume that px — ¢ in C*'(QN Br(p)) as k — +oo, where

¢ is the N—harmonic function in QN Bgr(p) with ¢ = s on (2 N Br(p)). Since s — wi — @r — s — ¢ uniformly in

QN (Br(p) \ Br(p)) as k — +oo for any given r € (0, R), we can find M, > 0 large so that
Uk{|3kf’wk7tpk|>M}CQﬂBr(p) VM>M,,

and then

sup/ (1= Xens,, () Wke™ < Sup/ (1= xanB,, @) Wee™
ko J{lsg—wp—pp|>M} k JQNB,(p)

for all M > M,. Since by (Z9) and 2I4])

/ (1 — XQQB% (p))Wkesk — Wes
QNBr(p) QN By (p)
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as k — 400 and We* € L'(Q), for all ¢ > 0 we can find 7. > 0 small so that

SUP/ (1 — XQnBy, (IJ))VVkeS’C <g,
k JQNB. (p)

yielding to the validity of (ZI7). Inserting ([ZI7) into (ZI6) we get that, for all € > 0, there exists M. so that

(IVsu|N2Vsy — [Vwr| N > Vwr — [Vor| N > Ver, V(sk — wr — ¢i)) < ae (2.18)

/{M<\Sk*wk*¢k\§M+a} B
for all M > M. and a > 0. Recall that wy — 0, sx — s in CL.(QN Br(p)\ {p}) and in WH9(QN Br(p)) for all ¢ < N
as k — o0 in view of [12] [I3]. Since

(|Vsr|N2Vsp — |Vwr|N > Vwy, V(sg —wi)) >0
and Vyj, behaves well, we can let k — +oo in ([2I8)) and by the Fatou Lemma get

1
V(s —o)Y <=

dn /
@ J{M<|s—p|<M+a} @ J{M<|s—p|<M+ta)

(IVs|N72Vs — |Vo|V 2Vp, V(s — ¢)) < e (2.19)

for some dy > 0 and all M > M.. Introducing Has,q(s) = TM*“(S_(P:TM(S_(P) and the distribution ®;_,(M) = [{z €
QN Br(p) : |s — ¢|(z) > M} of |s — ¢|, we have that

N—-1

By p(M+a) 7 < </ ()|HM,a<s>|NN1> < (WVuw) F / IV Hara(s)

QNBR(p)

AN
=
2
&
z
|
2)
I

3 V(s — o)
{M<|s—p|<M+a}

in view of the Sobolev embedding W' (Q N Br(p)) < L%(Q N Br(p)) with sharp constant (NNwN)fﬁ, see [39].

By the Holder inequality and (2I9]) we then deduce that

N J—
By (M +a) < (NN )by Do (M) = oo (M + )

€ a

for all M > M.. By letting a — 07 it follows that

NNdeN __1
@, (M) <~ ) ()
for a.e. M > M., and by integration in (M, M)
NN
Bur o (M) < 191 Ba(p)| exp | (T2 5 o

for all M > M., in view of ®s_,(M.) < |Q2N Br(p)|. Given ¢ > 1 we can argue as follows:

[s(z) =@ ()] oo
/ e?*=¢l _|Q N Br(p)| = q/ dx/ e™an = q/ e™o,_(M)dM
QNBR(p) QNBR(p) 0 0

oo N
<|22N Br(p)| {eqME +q/ exp ((q — (W)NEI)MH dM < +oo

by taking ¢ sufficiently small. Since ¢ € C'(Q N Br(p)), we get that e® is a L?—function near any p € S, and then
e® € LY(Q) for all ¢ > 1. By the uniqueness result in [36] and by Theorems [AT] A4 we get that s € C1*(Q), for some
a€(0,1).

Remark 2.4. The proof of s € C»*(Q), a € (0,1), might be carried over in a shorter way. Indeed, the function
We* € L'(Q) can be approzimated either in a strong L'—sense or in a weak measure-sense. In the former case, the
limiting function z is an entropy solution of

—Anz=We® inQ
z=0 on 012,

while in the latter we end up with s by choosing Wie®r as the approximation in measure-sense. As consequence of the
impressive uniqueness result in [36], s = z and then s is a entropy solution of [ZI3) (see |2, [10] for the definition of
entropy solution). Lemma 2] is proved in [2] for entropy solutions, and has been used there, among other things, to
show that a entropy solution s of ZI3) is necessarily in C*(Q), for some a € (0,1). We have preferred a longer
proof to give a self-contained argument which does not require to introduce special notions of distributional solutions
(like SOLA, entropy and renormalized solutions, just to quote some of them).
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Fix any po € 9 and take Rg > 0 small so that Br,(po) NS = {po}. Setting yr = po + pr,rv(po) with 0 < R < Ro and

/ (z — po, 1) [Vus|™
9QNBR(po)

b
/ (w(po), 1) Ve ¥
IQNBR(po)

Pk,R =

we have that
/ (@ — yr, )| Vur| ¥ = 0. (2.20)
9QNBR(pro)

Up to take R smaller, we can assume that |py,r| < 2R. Applying Lemma 23] to sx on Q N Br(po) with y = yx, we
obtain that

/ [INWy + (x — yp, VIWi)]e’F = / Wie  (x — yy, V) (2.21)
QNBR(po) 9(QNBR(po))

v N
ﬂ(x,y,ﬁy) )

+/ [|Vsk|N72<x — Yk, VSk)Ousk —
9(2NBRr(po))

We would like to let k& — 400, but (2 N Br(po)) contains the portion 9 N Br(po) where the convergence s — s
might fail. The clever choice of p, g, as illustrated by ([2Z20]), leads to

|Vsk|N 1

/ 752 s Vsgos - o -] - ) [ Vsl (@ = o) = 0
0NBR(po) 0QNBR(po)

in view of Vs, = Vuy, and Vsi = —|Vsg|v on 9Q by means of s, = 0 on 992. Hence, ([Z2]]) reduces to

N Vie"t = —/ (T =y, m)Vke“’c +/ Vie"  (x — yi, v) (2.22)
NB (po) NB (po) Vi (N B R (po))
N2 [Vsi|™
+ Vsl “(x — yr, Vsi)Ovsi — T(m—yk,w )
Q2NOBR(po)
Since |z — yx| < 3R and |VT‘;"| < C2 in QN Br(po) in view of [3), by letting k — 400 in Z22) we get that

1
Nps (90 Br(po) < 3RC3 (20 Ba(po)) + 3CaRe 0@ 1 Balpo)| + 3R(1+ ) [ Vs

QNOBR(po)

in view of s — s in CL.(Q\ S). Since s € C*(Q), by letting R — 0 we deduce that u({po}) = 0, and then po ¢ ¥ = S.
Since this is true for all po € 92, we have shown that S C €2, and the proof of Step 5 is complete.

The combination of the previous 5 Steps provides us with a complete proof of Theorem [T}

Once Theorem [[T] has been established, we can derive the following:

Proof (of Corollary[L3).

By contradiction, assume the existence of sequences A\, € A, Vi satisfying (L3) and ux € CV*(Q), a € (0,1), weak
solutions to (L)) so that ||uk|lec — +00 as k — +oo. First of all, we can assume A\, > 0 (otherwise u, = 0) and

max Vipe"t ™% — +oo (2.23)

fQ Vi ek

as k — +oo in view of Corollary where ay = log (=5~

). The function 4, = ur — ay solves

7AN1AJ,]€ = Vkeﬂk in Q,
Up = —Q on 0.

Since A\, € A and A is a compact set, we have that sup, fQ Vie™ = sup, Ak, < +00, and then sup, fQ e™ < +oo in

view of ([L3). Since oscon(tr) = 0, we can apply Theorem [Tl to k. Since maxq @ — +00 as k — +oo in view of
([@3) and ([Z23), alternative (iii) in Theorem [Tl occurs for 4x. By (LG) we get that

A = / Ve — exnm
Q

as k — 400, for some m € N. Hence, cym € A, in contradiction with A C [0, +00) \ exN.
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3. A GENERAL EXISTENCE RESULT

The Moser-Trudinger inequality [57] states that, for some Cq > 0, there holds

/ exp(a|u|%)dx < Cq (3.1)
Q
for all u € Wy ™ (Q) with HUHWLN(Q) <landal a<ay = (NNWN)ﬁ7 whereas ([BJ)) is false when o > an. A
0
simple consequence of ([B]), always referred to as the Moser-Trudinger inequality, is the following:
u 1 N

log </Qe daz) < NcNHuHWol’N(Q) +log Ca (3.2)

for all u € W™ (Q), where ¢y is defined in Theorem [Il Indeed, [32) follows by B by noticing
Nay _nN-1 Nay \~-1 | u N

< N < N N-
w < ()T Ml v o) % () )< oo g oy + vl ks

||u||W[}'N(Q) W&’N(Q)
in view of the Young’s inequality. By ([B3.2)) it follows that:
A

CN

1
Ia() > (= )l 1.x g — Aog(CoCr)

for all uw € W'V (Q) in view of (3, where Jy is given in (L8). Hence, Jy is bounded from below for A < ¢y and
coercive for A < ¢n. Since the map u € WV (Q) — Ve* € LY(Q) is compact in view of (32) and the embedding
Wi N(Q) < L*(Q) is compact, for A < ¢y we have that Jy attains the global minimum in Wy ™ (Q), and then ()
is solvable. In Theorem [[3] we just consider the difficult case A > cy. Notice that a solution u € Wy () of (I)
belongs to C1*(Q) for some «a € (0, 1), in view of (2] and Theorems [AT] A4

The constant N—:‘:N in ([32) is optimal as it follows by evaluating the inequality along
2

T—p,
u( € ) N -1

as € — 0, up to make a cut-off away from p so to have a function in WolN(Q) The function U is given in (7)) and, as
already mentioned in the Introduction, satisfies
L=
€ = CN.
RN

Indeed, the equation —AxU = eV does hold pointwise in R™ \ {0}, and then can be integrated in Br(0) \ B.(0),

0 <e< R, to get
/ eV = f/ [vU|IN2(vU,v) +/ |VU|N"2(VU, v,
BR(0)\B:(0) oBR(0) 9B.(0)

where v(z) = Ta1- Letting € = 0 and R — 400, we get that

N? no
/ eV = N( Woloy =en
RN

loge, peQ,

N-—-1
in view of .
N2 |g|F-17 2
vo=- N kT e
N—-174 || ¥ =T
Since N}:N in (32) is optimal, the functional Jy is unbounded from below for A > ¢y, and our goal is to develop a

global variational strategy to find a critical point of saddle type. The classical Morse theory states that a sublevel is a
deformation retract of an higher sublevel unless there are critical points in between, and the crucial assumption on the
functional is the validity of the so-called Palais-Smale condition. Unfortunately, in our context such assumption fails
since Jy admits unbounded Palais-Smale sequences for A > ¢n, see [40, [53]. This technical difficulty can be overcome
by using a method introduced by Struwe that exploits the monotonicity of the functional %A in A. An alternative
approach has been found in [53], which provides a deformation between two sublevels unless Jy, has critical points
in the energy strip for some sequence A\ — A. Thanks to the compactness result in Corollary and the a-priori

estimates in Theorem [A4] we have at hands the following crucial tool:

Lemma 3.1. Let A € (en,+00) \ enN. If Jx has no critical levels uw with a < Jx(u) < b, then JY is a deformation
retract of J%, where
Ty ={ue Wy (Q): Ja(u) <t}

To attack existence issues for (L) when X € (cn,+00) \ enxN, it is enough to find any two sublevels J§ and J? which
are not homotopically equivalent.

Hereafter, the parameter A is fixed in (¢n,400) \ enN. By Corollary and Theorem [A.4] we have that .J) does not
have critical points with large energy. Exactly as in [55], Lemma Bl can be used to construct a deformation retract of
WO1 N(Q) onto very high sublevels of Jx. More precisely, we have the following
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Lemma 3.2. There exists L > 0 large so that J¥ is a deformation retract of WolN(Q) In particular, JE is contractible.

For the sake of completeness, we give some details of the proof.

Proof. Take L € N large so that Jx has no critical points v with Jx(u) > L. By Lemma Bl JY is a deformation retract
of JP for all n > L, and 5, will denote the corresponding retraction map. Given u € Wy (Q) with Jy(u) > L, by
setting recursively

n (s, ) = (s, 0)
N (s, u) =nn-1(s — Lnn(1, u)

T = (s — ko™ (k, ),
for s > 0 we consider the following map

(s, u) = T (s,u) ifn < Ja(u) <n+1forn>L,s € [k k+1]
S = if Jy(u) < L.

Next, define s, as the first s > 0 such that Jx(7j(s,u)) = L if Jx(u) > L and as 0 if Jx(u) < L. The map n(t,u) =
Atsu, u) : [0,1] x W™V (Q) — WV (Q) satisfies n(1,u) € J& for u € Wy ™ (Q) and 5(t,u) = u for (t,u) € [0,1] x JE.
Since s, depends continuously in u, the map 7 is continuous in both variables, providing us with the required deformation
retract. 0

Thanks to Lemmas[3Jland 32 we are led to study the topology of sublevels for J, with very low energy. The real core of
such a global variational approach is an improved form [22] of the Moser-Trudinger inequality for functions u € I/VO1 N(Q)

u . .
fv‘e,eu concentrated on several subomains in . As a consequence, when A\ € (ecym,cn(m + 1)) and
Q

Jx(u) is very negative, the measure fv% can be concentrated near at most m points of §, and can be naturally
Q

with a measure

associated to an element o € B,,(Q), where

’Bm(ﬁ) = {Ztiém t; >0, Zti =1, pi € ﬁ}
i=1

i=1

has been first introduced by Bahri and Coron in [3| 4] and is known in literature as the space of formal barycenters of
Q with order m. The topological structure of JA_L7 L > 0 large, is completely characterized in terms of B,,(Q). The
non-contractibility of B, () let us see a change in topology between J+ and J N L for L > 0 large, and by Lemma 3]
we obtain the existence result claimed in Theorem [[13l Notice that our approach is simpler than the one in [33] [34] [35]

(see also [9]), by using [53] instead of the Struwe’s monotonicity trick to bypass the general failure of PS-condition for
Ix.

As already explained, the key point is the following improvement of the Moser-Trudinger inequality:
Lemma 3.3. Let Q;, i =1,...,1+ 1, be subsets of Q so that dist(Q,Q;) > 8o > 0, fori # j, and v € (0, H%) Then,
for any € > 0 there exists a constant C = C(e,d0,v0) such that there holds
o (/ Veld) < —  jju|¥ e
&), = New(+1—¢) MwgN@
for all w € Wy (Q) with

Ve
f“iieuzyo i=1,...,0+1. (3.3)

Proof. Let gi,...,gqi+1 be cut-off functions so that 0 < ¢; < 1, ¢; = 1 in Q;, ¢ = 0 in {dist(z, ;) > %“} and
llgill o= @ = Cs,. Since g, @ = 1, ..., 1, have disjoint supports, for all u € WOI’N(Q) there exists ¢ = 1,...,l+4 1 such that
1 N 1 N
(@vu)™ < 75 [ Vel < v gy (3.4
/ﬂ I+ 1 /Uit isuppg: [+ 17T W
Since by the Young’s inequality
V(g™ < (il Vul + [Vgillu)™ < (i Va)™ + C1[(g:Vul) ¥ ! [Vaillul + (IVgil[u)™]

m](gilvuwv + Ca(|Vgillul)™

for all € > 0 and some C1 > 0, C> = C2(€) > 0, we have that

IN

1+

€

N N N
||9iu||W01,N(Q) < /Q(gi|Vu|) + ml\U|\W3,N(Q) + Nen Csllullon )
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Ca

CN
ch,o . Since giu € Wy (Q), by B2) and B2 it follows that

e < e (Gogg—g g v + Ol ) (35)

does hold for all u € W3V (Q) and some i = 1,...,1+ 1.
Let n € (0,|92|) be given. Since {|u| > 0} = Q and lirf {lu] > a}| =0, the set
a—+ 00

where C3 =

Ay ={a>0: [{[ul > a}| > n}
is non-empty and bounded from above. Letting a, = sup A, we have that a,, > 0 is a finite number so that
Hlul > an} = n,  Hlul > a} <n Va>a, (3.6)

in view of the left-continuity of the map a — |{|u| > a}|. Given n > 0 and u € W, (Q) satisfying ([B3), we can fix
a=ayandi=1,...,1+1 so that (3) applies to (Ju] — 2a)+ yielding to

1 Coe?® (lul—2 CoCq 3 N N
ver < L [ pelul < / gi(lul-2a)4 < %+ C _9
/Q © = /m- R <=0 P\ Fen@ 13- Mlwg i T 20+ Csll(lul = 2)4lox o)
in view of (I3). By the Poincaré and Young inequalities and the first property in (3] it follows that

Cs 3e
2a < — ul < —llu , <
= /{Mza}' =5l < Fer@res—amrs—20

for some C5 > 0 and Cs = Cg(€,m) > 0, and there holds

N
|u||W01!N(Q) + Cos

N 1 N 1 N
I(ful = 2a)+llLv @) < 02 [[(Jul = 2a)+[IL2n (@) < Can? [lullyav g
for some C4 > 0 in view of the Holder and Sobolev inequalities and the second property in ([6]). Choosing 7 small as

2
€
= <0304NCN(31 F3-20(+1- e)> ’

we finally get that

u _ CoCo 1 N
<
/QV@ < exp<NCN(Z+1*E)HUHWULN(Q) +C’)
for some C' = C(e, do, Y0)- d

A criterium for the occurrence of (B3] is the following:

Lemma 3.4. Letl € N and 0 < ¢,7 < 1. There exist € > 0 and 7 > 0 such that, for every 0 < f € L'(Q) with
1l =1 . / feloc Vp.. .meq. (3.7)
QQUZI By (pi)
there exist | + 1 points Py, ..., pis1 € Q so that
[ fzes Bap)nBrp)=0 Vi
QNBr(pi)

Proof. By contradiction, for all &7 > 0 we can find 0 < f € L*(Q) satisfying (1) such that, for every (I 4 1)-tuple of
points pi, ..., pi+1 € ) the statement

[ fze. BulponBa(p)=0 Vit (3.8)
QNBr(p;)

is false. Setting 7 = ¢, by compactness we can find h points z; € Q,i=1,... h, such that Q C U?:I By (x;). Setting
there exists ¢ = 1, ..., h such that fQﬁB;(zi) f >¢€ Let {Z1,...,2;} C{z1,..., xn} be the maximal set with respect

£
2h7

to the property meB—(i-) f > € Set j1 =1 and let X; denote the set

€ =

X1 =00 | J Be(#) C QN Ber(d,), A ={i=1,.,5: Bar(#:)N Bar(&y,) # 0}.
i€h;
If non empty, choose j2 € {1,...,5} \ A1, i.e. Bar(Zj,) N Bar(Zj,) = 0. Let X> denote the set
Xo=Qn |J Br(#:) SN Ber(ds,), Ao={i=1,...5: Bor(i) N Bos(iy,) # 0}.
i€ho
Iterating this process, if non empty, at the [—th step we choose j; € {1,...,5}\ U§;11 Aj, ie. Bar(Zj,) N Bar(Zy,) =0

for alli=1,...,l — 1, and we define

Xl = Q N U Bf(i,) Q Q ﬂBG;(ijl), Al = {7, = 1, ,] : BQ;(@Z) ﬂBQ;(ijl) ;é @}
1EN
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By ([338) the process has to stop at the s—th step with s < [. By the definition of 7 we obtain

j S S S
anlJB:#) c|JXicanlBs(i;) canl B (i)
i=1

i=1 i=1 i=1

in view of {1,...,j} = Ui, Ai. Therefore, we have that

f<(h—ji<

no|

< / . f f— / .
/Q\Ule Br(%4,) QU Br () (QNUL_, Br(z,)\(UI_, Br(%,))

in view of the definition of Zi,...,Z;. Define p; as Z;, for ¢ = 1,...,s and as z;, for ¢ = s+ 1,...,l. Since
fQ\Uz By (pi) f < 5, we deduce that
=1 T\

/ f=[r-] fr1-fs1-
QnUi_, Br(pi) Q QUL Br(pi)

contradicting the second property in (). The proof is complete. a

As a consequence, we get that

Lemma 3.5. Let \ € (cNm, env(m+ 1)), m € N. For any 0 < e,7 < 1 there exists a large L = L(e,r) > 0 such that,
for every u € WolN(Q) with Jx(u) < —L, we can find m points p;, € Q, i =1,...,m, satisfying

/ Ve" < e/ Ve".
Q\UI, Br(pi ) Q

Proof. By contradiction there exist €, 7 € (0,1) and functions ux € Wy~ (Q) so that Jy(ux) — —oo as k — +oo and

/ Vet > e (3.9)
Q\UI, Br(pi)

for all p1,..., pm € Q, where @ = up — log fQ Vek. Since

/ Vet = / Vel 7/ Vet =1 7/ Ve,
Q\U™, Br(p;) Q2 QU Br(p;) QAU Br(p;)

by B33) we get that

/ Ve < 1—¢
QMU By (p;)

for all m-tuple p1,...,pm € Q. Applying Lemma B with | = m and f = Ve®, we find €,7 > 0 and p1, ..., pms1 € Q
so that

/ Vet > E/ Ve“’“y Bgf(ﬁl) n BQF(ﬁj) =0 Vi * j.
QNBr(p;) Q

Applying Lemma B3 with Q; = QN Bx(p;) for i = 1,...,m + 1, do = 27 and o = €, it now follows that

1 N
1 L [ —
0g</QVe ) - NCN(m—&-l—??)HuHWol’N(Q)—'_C

for all n > 0, for some C' = C(n, do,70,a,b). Since X\ < cn(m + 1), we get that
_ 1 N U 1 A N

for 7 > 0 small, in contradiction with Jx(ur) — —o0 as k — +oo. O

The set M(R2) of all Radon measures on  is a metric space with the Kantorovich-Rubinstein distance, which is induced
by the norm

el = sup /¢du, pe M)
Q

¢||L'Lp(§) Sl
Lemma [3.5] can be re-phrased as
Lemma 3.6. Let A € (exm,en(m+1)), m € N. For any e > 0 small there exists a large L = L(g) > 0 such that, for
every u € Wo N (Q) with J(u) < —L, we have

dist(kv—‘i;, %m(§)> <e (3.10)
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Proof. Givene € (0,2) andr = £, let L = L(%,r) > 0 be as given in Lemmal[335l For all u € Wi N (Q) with Jy(u) < —L,
let us denote for simplicity as p1,...,pm € Q the corresponding points Dl,u, - - -, Pn,u Such that

/ Ve' < 5/ Ve (3.11)
AU, Br(pi) 4 Ja

fA Vet

T,

Define o € B,,(Q) as

g = Zt,ﬂp“ t; =
i=1

where A,.; = (2N Br(ps)) \ UZ | Br(p;). Since Ay, i =1,...,m, are disjoint sets with (JI", A.; = QN U, Br(ps),
we have that > t; = 1 and

w’

’/ qﬁ{Veudx—(/ Veu)da] < ‘/ +‘/ V€u¢_(/ Veu)zti¢(27i)
Q Q Q\UL, Br(pi) QNUL, Br(pi) Q2 i=1
< < *(/ Ve*)tio(p:)
o
< Z/Ve +Z/ Ve'|p — ¢(pi)] + Jo
Q i=17Ari meUm Br(m)
€
< = u
< () [

in view of @11, (¢l ip@) < 1 and
JoVe"

Jorum | B Ve

Vetdx
ol -l =

for all ¢ € Lip(Q) with 19l Lip@) < 1, we have that

Since there holds

ol <e

[
fQ Veu

for some o € B,,(Q), and then

The proof is complete. O

When BI0) does hold, one would like to project T ver L

in the construction of the map ® below) we replace Q2 by its retract of deformation K = {x € Q : dist(x,9Q) > 6},
§ > 0 small. Since B,,(K) is a retract of deformation of B,,(2), by [§] there exists a projection map

onto B,,(Q). To avoid boundary points (which cause troubles

Iy : {0 € M(Q): dist(0,Bm(Q)) < e} — Bm(K), e >0 small,

which is continuous with respect to the Kantorovich-Rubinstein distance. Thanks to IL,, and Lemma [3.6] for ¢ < ¢
there exist L = L(e) > 0 large and a continuous map

L B (K)
u — I, (f Veu)'

The key point now is to construct a continuous map @ : B, (K) — J;L so that W o @ is homotopically equivalent to
Idss,, (). When 9B,,,(Q) is non contractible, the same is true for B,,(K) and then for J; ” for L > 0 large. Theorem
[[3] then follows by Lemmas [3.1] and

The construction of ® relies on an appropriate choice of a one-parameter family of functions ¢e o, o € B,,(K), modeled

on the standard bubbles Ue p, see (7). Letting x € C5°(2) be so that x = 1in Q; = {z € Q: dist(z,99) > £}, we
2

define

Peo(x) = logzt < i

Tt o —pi ¥ I)NV(pz))
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where o = Zt,ﬂpi € B,,(K) and € > 0. Since ¢, € W'V (Q), the map ® can be constructed as ®.,, €o > 0 small,
i=1
where
i Bp(K) — JF
o - Yeo-
To map B, (K) into the very low sublevel JA_L7 the difficult point is to produce uniform estimates in o as ¢ — 0. We
have

Lemma 3.7. There hold
(1) there exist Co > 0 and eg > 0 so that

Pe,o
Ve ol < e
fQ V@‘Pe,a .
for all0 < e<e and o € By (K);
(2) Ir(pe,oc) = —00 as € = 0 uniformly in o € By (K).
Proof. Recall that
Fne N]\il

Uep(z) =log ( ~ —— )
(¥ 4 Jo = pl )Y

Fix ¢ € Lip(Q) with 91l Lip) < 1. Since e is bounded from above in O\ Q% uniformly in o, we have that
S t
[veso = Y / Feven p o) (3.12)
Q2 Qs i=17Bs(

s Vi)
= v (cN/Q¢dJ+O(e))

as € — 0 uniformly in ¢ and 0. We have used that

/B 5 )V‘ﬁ) elon :/B (0)(¢(Pi)+0(6|y|))e’] = end(pi) + Ole)

tV¢ Uens +o(

2

does hold as € — 0, uniformly in ¢ and o, in view of ([3)). Therefore, there holds

Pe,o
o (vt ar) | <cn
e¥eo
Q
for all ¢ € Lip(Q) with 19l Lip@) < 1, and then
”W —oll« < Coe
Q
for all 0 € By (K). Part (1) is proved.
For part (2), it is enough to show that
log/ Vefer = log L +0(1) (3.13)
N / VeV cleog +0(1) (3.14)

as € — 0 uniformly in o € B,,(K), in view of A > mcy. Estimate (BI3)) follows by (B12) with ¢ = 1. As far as ([3.14)
is concerned, let us set @e,o = xPe,o. All the estimates below are uniform in o. Since

N N N
N? S 6V () (€N Ao —pi M) "N e — i N1 (@ — )
— N _N )
Mot SV () T o i)
we have that ||@e,0||c1(\a,) = O(1) and then
3

v@e,o’ - -

[Vpe,o| = O(1)

in Q\ Qs. Therefore we can write that
2

5 [ Vel N/ Vel +O(). (3.15)
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We estimate |V @, a| in two different ways:
(1) |V@e,ol(z) < 1\1{\7 T d(z)7 where d(z) = min{|z — p;| ;,7 = 1,...,m};
(il) |V@e,o| < ﬁC’oe_l in view of

ele —pi| ¥

N —— < Co
eN-T 4 |l’ _ pi| N-1
by the Young’s inequality. By estimate (ii) we have that
[ el = Voeol¥ +00) 3 / Vgeol” +0(1) (3.16)
2 g \UPL, Be(py) = ap\Be@;)

in view of Q% \Ujz, Be(p;) C UjL, (Aj \Be(;vj))7 where A; = {z € Q% : |z — pj| =d(x)}. Since by estimate (i) we
have that

N? N 1 N? N ! N? 1
Voeol¥ < (" | < " [ e+ 0(1) = e log £ + O(1)
/Aj\Be(pﬂ N=1" Japs.owy 1o =0V 7 "N=1"" Jp ons. 0 21V N -1 €

in terms of R = diam Q, by BI5)-(3I6]) we deduce the validity of ([3I4). The proof is complete. O

In order to prove that ¥ o @ is homotopically equivalent to Ids,, (x), we construct an explicit homotopy H as follows
H:(0,1] — C((Bm(K), || - [[1); (B (K), ||‘||*)) t H(t) = Wo Py

The map H is continuous in (0, 1] with respect to the norm || - ||oo,0,, (k) In order to conclude, we need to prove that
there holds

where € = tep. Since I, (0) = o and B,,(K) is a compact set in ( (Q), 1 [l+), by the continuity of IL, in || - ||+ and
Lemma [37}(1) we deduce that

V6<Pe o

1% 0@ (0) — o]l = [TIm (—fﬂ ) =Tl 0

as € — 0, uniformly in o € B,,(K). Finally, we extend H(t) at t = 0 in a continuous way by setting H(0) = idsys,, (k)-

Let us now discuss the main assumption in Theorem [[3 In [I] it is claimed that 9B,,(£2) is non contractible for all
m > 1 if  is non contractible too, as it arises for closed manifolds [35]. However, by the techniques in [42] it is
shown in [41] that %B,,(X) is contractible for all m > 1, for a non contractible topological and acyclic (i.e. with trivial
Z—homology) space X. A concrete example is represented by the punctured Poincaré sphere, and it is enough to
take a tubular neighborhood Q of it to find a counterexample to the claim in [I]. A sufficient condition for the main
assumption in Theorem [[L3] is the following:

Theorem 3.8. [41] Assume that X is homotopically equivalent to a finite simplicial complex. Then B, (X) is non
contractible for all m > 2 if and only if X is not acyclic (i.e. with non trivial Z-homology).
APPENDIX

Let us collect here some useful regularity estimates which have been frequently used throughout the paper. Concerning
L —estimates, the general interior estimates in [63] are used here to derive also boundary estimates for solutions
u € WEN(Q) = {fu e WM (Q) : u |pa= c}, c € R, through the Schwarz reflection principle.

Given zo € 09, we can find a smooth diffeomorphism v from a small ball B ¢ RY, 0 € B, into a neighborhood V of
xo in RY so that (BN {yx =0}) =V NoQ and ¢»(BT) =V NQ, where BT = BN {yx > 0}. Letting uop € W ()

be a critical point of
1
5/ |Vu|N_/fu7 ueWcl’N(Q%
Q Q
then vo = up 0 ¥ is a critical point of

10 = [ |§Ha@vel - o] laeevel, vev.

in view of |[Vu|Y ot = |[AVw|Y in BT for v = u o, where A(y) = (D) (¥(y)) is an invertible N x N matrix for
all y € BT and
V={veW"VN(BY):v=conyny =0and v=mupov on dBN {yx > 0}}.

In the sequel, g; and ¢* denote the odd and even extension in B of a function g defined on BT, respectively. Decomposing

the matrix A as
Al
1= (o)
az aANN
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with a1,a2 : BT — RY7! for y € B let us introduce
At ( (A | (a1): )
(a2)s | (ann)
The odd reflection (vo — ¢)y + ¢ € WHYN(B) is a weak solution in B of
—div A(y, Vo) = (f[det Vb )y,

where A : (y,p) € B x RY — |det Vop[*| A (y)p|Y 2[(A%)' A¥](y)p € RY. In view of the invertibility of A(y) for all
y € BT, the map A satisfies

Ay, p)| < alpl™™", (0, A(y,p)) > a ' |p|Y (A.1)

for all y € B and p € RY, for some a > 0. Since 2¢ — u < u when u > ¢, thanks to (A1) we can now apply the general
local interior estimates of J. Serrin in [63] to get:

Theorem A.1. Let u € W,5N(Q) be a weak solution of
—Anu=f in. (A.2)

Assume that f € LNALE (2N Br),0<e<1, andue€ Wl’N(Q N Bar) satisfies u = ¢ on 92N Bar, u > ¢ in QN Bagr
for some c € R if 9Q N Bar # 0. Then, the following estimates do hold:

[l @nBr) < CUlu’ llox @npyp) + 1)
HUHLOO(QQBR) < C(||u||LN(QﬁBQR) + 1) (ch = O)
forsomeC:C<N7a767R7||fH - )
LN=¢<(QNB3R)

Since the Harnack inequality in [63] is very general, it can be applied in particular when A satisfies (A1), by allowing
us to treat also boundary points through the Schwarz reflection principle. The following statement is borrowed from

[59]:

Theorem A.2. Let u € WEN(Q) be a nonnegative weak solution of (A2), where f € L¥= (Q),0<e<1. Lt QY CQ

loc

be a sub-domain of Q. Assume that u € WY (QN Q') satisfies u =0 on INN QY. Then, there exists C = C(N,¢,Q')
so that

1
supuSC’(infu—&—HfHN}l, )
Q Qf

I, N—e (Q)
By choosing ' = Q we deduce that

Corollary A.3. Let u € W' N(Q) be a weak solution of —Anu = f in Q, where f € LV (), 0 <e<1. Then, there
exists a constant C = C(N,€,8) such that

1
lullLo ) < CIFAIY % -
LN—¢(Q)

Thanks to Theorem [AT] by the estimates in [31, [49] [65] we now have that

Theorem A.4. Let u € WL (Q) be a weak solution of (A2). Assume that f € L°(QN Bzr), and u € WY (QN Bag)

satisfies u =0 on 0Q N Bar. Then, there holds |[ullc1.0(onpy) < C = C = C(N,a, R, || fllco,0nBar, Ul LN (0B p))s for
some a € (0,1).

We will now consider (A22)) with a Dirac measure d,, as R.H.S. In our situation, the fundamental solution I' takes the
form

1 1
D(fe) = (Now) % log 1.
x
In a very general framework, Serrin has described in [63] the behavior of solutions near a singularity. In particular,
every N-harmonic and continuous function w in €\ {0}, which is bounded from below in €2, has either a removable

singularity at 0 or there holds
ér <u<Cr (A.3)

in a neighborhood of 0, for some C' > 1. For the p—Laplace operator Kichenassamy and Veron [45] have later improved
(AZ3) by expressing u in terms of I'. A combination of [45] [63] leads in our situation to:

Theorem A.5. Let u be a N-harmonic continuous function in Q@ — {0}, which is bounded from below in Q2. Then there
ezists v € R such that
u—~I' € Li5.(92)
and u is a distributional solution in Q0 of
N—2
—Anu=7y|"""do
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with |Vu|N =" € L},.(Q). Moreover, for v # 0 there holds
lim |z|'*' D' (u — AT) (z) = 0
z—0
for all multi-indices a = (aa, ..., an) with length |a| = a1 + ... + an > 1.
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