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p-MEMS EQUATION ON A BALL∗

D. CASTORINA† , P. ESPOSITO‡ , AND B. SCIUNZI§

Abstract. We investigate qualitative properties of the MEMS equation involving the p−Laplace
operator, 1 < p ≤ 2, on a ball B in R

N , N ≥ 2. We establish uniqueness results for semi-stable
solutions and stability (in a strict sense) of minimal solutions. In particular, along the minimal
branch we show monotonicity of the first eigenvalue for the corresponding linearized operator and
radial symmetry of the first eigenfunction.
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1. Introduction and statement of the main results. Let us consider the
problem

(1)











−∆pu = λ
(1−u)2 in Ω

u < 1 in Ω

u = 0 on ∂Ω

where ∆p(·) = div (|∇(·)|p−2∇(·)), p > 1, denotes the p-Laplace operator, λ > 0 and
Ω ⊂ R

N , N ≥ 2, is a smooth domain.

For p = 2 equation (1) arises in the study of Micro-Electromechanical Systems
(MEMS), where electronics combines with micro-size mechanical devices to design
various types of microscopic components of modern sensors in various areas. Math-
ematical modeling of MEMS devices has been studied rigourously just recently, see
[7, 8, 9, 14, 15, 16, 19] and [10, 11, 12, 13] for the corresponding parabolic version.

We are interested here to establish some qualitative properties of semi-stable
solutions of the quasilinear version (1) of the MEMS equation. In the semilinear
context, this follows by comparison arguments which become highly non trivial when
p−Laplace operator, p 6= 2, is involved.

Due to the singular/degenerate character of the elliptic operator ∆p, by [6, 17, 20]
the best regularity for a weak-solution u of (1) is u ∈ C1,α(Ω), for some α ∈ (0, 1). A
classical solution u of (1) then will be a C1,α(Ω)−function, α ∈ (0, 1), which satisfies
the equation in a weak sense

(2)

∫

Ω

|∇u|p−2(∇u,∇φ) dx = λ

∫

Ω

φ

(1 − u)2
dx ∀ φ ∈W

1,p
0 (Ω).

Throughout the paper, a solution u of (1) is always assumed to be in a classical sense
as specified here. Let us remark that for 1 < p < 2 solutions might be of class C2
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but the term |∇u|p−2 is singular where ∇u vanishes. Therefore, also in this case, a
classical solution is meant to satisfy the equation just in a weak sense.

We continue here the investigation of (1) we started in [2]. Setting

λ∗ = sup{λ > 0 : (1) has a solution},

in [2] we showed that λ∗ < +∞ and for every λ ∈ (0, λ∗) there is a minimal (and
semi-stable) solution uλ (i.e. uλ is the smallest positive solution of (1) in a pointwise
sense). Further, the family {uλ} is non-decreasing in λ and the function

u∗ = lim
λ↑λ∗

uλ

is a weak solution (in a suitable sense) of (1) at λ = λ∗. In low dimensions the function
u∗ satisfies ‖u∗‖∞ < 1 and is then a classical solution.

To make things more precise, let us recall a few definitions. For 1 < p ≤ 2
(the case we will be later concerned with) let ρ = |∇u|p−2 and introduce a weighted

L2−norm of the gradient: |φ| =
(∫

Ω
ρ|∇φ|2

)
1

2 . According to [4, 5], define Au as the
following subspace of H1

0 (Ω):

Au = {φ ∈ H1
0 (Ω) : |φ| < +∞}.

Since
∫

Ω
|∇φ|2 ≤ ‖∇u‖2−p

∞ |φ|2, the space (Au, | · |) is an Hilbert space. We can then
give the following

Definition 1.1. A solution u of (1) is semi-stable (resp. stable) if
∫

Ω

|∇u|p−2|∇φ|2 dx+ (p− 2)

∫

Ω

|∇u|p−4(∇u,∇φ)2 dx− 2λ

∫

Ω

φ2

(1 − u)3
dx

≥ 0 (resp. > 0)

for every φ ∈ Au \ {0}.

The space Au allows to define the pair first eigenvalue/eigenfunction in the p-
Laplace context as given by the following

Theorem 1.2. ([2]) Let u be a solution of (1). The infimum

µ1,λ(u)

:= inf
φ∈Au\{0}

∫

Ω
|∇u|p−2|∇φ|2 dx+ (p− 2)

∫

Ω
|∇u|p−4(∇u,∇φ)2 dx− 2λ

∫

Ω
φ2

(1−u)3 dx
∫

Ω φ
2

is attained at some function φ1 = φ1,λ,u > 0 a.e. in Ω, and any other minimizer is
proportional to φ1.

By duality a linearized operator Lu can be defined as an operator from Au into
itself. The first eigenfunction solves Lu(φ1) = µ1,λ(u)φ1 in a weak sense:

Lu(φ1)[ψ] :=

∫

Ω

|∇u|p−2 (∇φ1,∇ψ) dx+ (p− 2)

∫

Ω

|∇u|p−4 (∇u,∇φ1) (∇u,∇ψ) dx

−2λ

∫

Ω

φ1ψ

(1 − u)3
dx

= µ1,λ(u)

∫

Ω

φ1ψ dx.

There are the following issues which were left open in [2]:
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• uniqueness of uλ among the semi-stable solutions of (1);
• stability of the minimal solution uλ.

On the ball B := B(0, 1) there is a positive answer to these questions for 1 < p ≤ 2.
In this case, by [3] any solution of (1) is radial and radially decreasing. Since u′ ≤ 0,
the key property will be that the function s → g(s) := |s|p−2s is convex in (−∞, 0]
whenever 1 < p ≤ 2.
Some of our results make use of first eigenfunctions for the linearized operator. This
is a first application of theorem 1.2 which in our opinion might have other useful
consequences.

Our arguments work as well if we replace (1− u)−2 with a general nondecreasing
and nonnegative convex nonlinearity f(u):

(3)

{

−∆pu = λf(u) in B

u = 0 on ∂B.

The function f(u) can be either smooth on [0,+∞) or singular at u = 1. A classical
solution u of (3) is meant to be bounded in the first case and to be < 1 in the second
one. Moreover, in the definition 1.1 we have to replace 2(1− u)−3 with f ′(u).

We have the following uniqueness result

Theorem 1.3. Let us assume 1 < p ≤ 2 and let u be a semi-stable solution of
problem (3) on B. Then u ≡ uλ where uλ is the minimal solution.

We now investigate the properties of the first eigenvalue µ1,λ(u) and the corre-
sponding eigenfunction φ1,λ,u, which is the content of the following

Theorem 1.4. On B φ1,λ,u is radial and radially decreasing with φ′1,λ,u(r) < 0
for r ∈ (0, 1]. The first eigenvalue is strictly decreasing along the minimal branch:
µλ := µ1,λ(uλ) ↓ as λ ↑ λ∗. In particular, µλ > 0 for every 0 < λ < λ∗ and uλ is a
stable solution of (3) on B.

We are able to prove a stronger uniqueness property for problem (3) when the
first egenvalue is zero, as highlighted by this

Theorem 1.5. Let 1 < p ≤ 2. Let u be a solution of problem (3) so that
µ1,λ(u) = 0. Then, λ = λ∗, u = u∗ and any other solution v of (3) coincides with u.

Let us stress that theorem 1.5 might be established in a more general way by the
arguments in [1, 18] based directly on the definition of λ∗. We do not pursue this
approach since we prefer a more classical one based on comparison arguments.

In the next sections we will give the proofs of theorems 1.3 through 1.5.

2. Proof of theorem 1.3. Let u be a semi-stable solution of (3). By [3] we
know that u is radial, radially decreasing and have an unique critical point at the

origin with u′(r) ≈ r
1

p−1 as r → 0. In particular, u′ < 0 in (0, 1).

Since u′λ and u′ behave as r
1

p−1 as r → 0, it is easily seen that u, uλ ∈ Au ∩W 1,p
0 (B).

Therefore, uλ − u can be used as a test function both in the equation and in the
linearized operator at u.

By taking uλ − u as test function in (2) we get
∫

B

|∇u|p−2(∇u,∇(uλ − u)) dx = λ

∫

B

f(u)(uλ − u) dx



280 D. CASTORINA, P. ESPOSITO AND B. SCIUNZI

and
∫

B

|∇uλ|
p−2(∇uλ,∇(uλ − u)) dx = λ

∫

B

f(uλ)(uλ − u) dx.

Taking into account radial symmetry, the difference leads to

0 =

∫

B

(|u′λ|
p−2u′λ − |u′|p−2u′)(u′λ − u′) dx− λ

∫

B

(f(uλ) − f(u))(uλ − u) dx.

Since f(uλ) ≥ f(u) + f ′(u)(uλ − u) by convexity, we have that

0 ≥

∫

B

(|u′λ|
p−2u′λ − |u′|p−2u′)(u′λ − u′) dx− λ

∫

B

f ′(u)(uλ − u)2 dx

in view of uλ ≤ u by minimality of uλ. Since in (0, 1)

−(rN−1|u′λ|
p−2u′λ)′ = λrN−1f(uλ) 6 λrN−1f(u) = −(rN−1|u′|p−2u′)′,

for 0 < ε < r < 1 we get

rN−1|u′(r)|p−2u′(r) − εN−1|u′(ε)|p−2u′(ε)

6 rN−1|u′λ(r)|p−2u′λ(r) − εN−1|u′λ(ε)|p−2u′λ(ε)

and by letting ε→ 0 it follows

(4) |u′(r)|p−2u′(r) 6 |u′λ(r)|p−2u′λ(r) in (0, 1).

Since u′, u′λ < 0 in (0, 1), it gives |u′(r)| > |u′λ(r)| or equivalently u′(r) 6 u′λ(r) for
every r ∈ (0, 1).

We now take into account that the function g(s) = |s|p−2s is strictly convex in
(−∞, 0) for 1 < p < 2. Therefore, in (0, 1) we have

(|u′λ|
p−2u′λ − |u′|p−2u′)(u′ − u′λ) > (p− 1)|u′|p−2(u′λ − u′)

whenever u′ < u′λ. Since u′ 6 u′λ in (0, 1), if u 6= uλ in turn we get

(5) 0 >

∫

B

(p− 1)|u′|p−2(u′λ − u′)2 − λf ′(u)(uλ − u)2 dx.

At the same time, by the semi-stability of u we have

(6)

∫

B

(p− 1)|u′|p−2(u′λ − u′)2 − λf ′(u)(uλ − u)2 dx > 0

and a contradiction arises unless u = uλ.

Consider now the case p = 2. Since now g(s) is linear, we have only ≥ in (5).
However, if µ1,λ(u) > 0 we have a strict inequality in (6) and a contradiction still
arises unless u = uλ.

We have therefore to deal with the case p = 2, µ1,λ(u) = 0 and u 6= uλ: by the
variational characterization of the first eigenvalue it follows that u−uλ = βφ1, β > 0,
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where φ1 is the (positive) first eigenfunction of the linearized operator Lu. We define
in this case

G(t) = −∆(tu+(1−t)uλ)−λf(tu+(1−t)uλ) = λ
[

tf(u)+(1−t)f(uλ)−f(tu+(1−t)uλ)
]

.

Since f is convex, then G(t) > 0. Since

G′(t) = −∆(u− uλ) − λf ′(tu+ (1 − t)uλ)(u − uλ)

and u− uλ = βφ1, we have that

G′(1) = −∆(u− uλ) − λf ′(u)(u− uλ) = 0.

Also, G′′(t) = −λf ′′(tu + (1 − t)uλ)(u − uλ)2 < 0 thanks to the convexity of f . But
this is not consistent with G(1) = 0, G′(1) = 0 and G(t) > 0. The proof is done.

3. Proof of theorem 1.4. Let us consider a hyperplane P , passing trough
the origin. Setting for simplicity φ1 = φ1,λ,u, define φP

1 (x) = φ1(xP ) where xP is
symmetric to x with respect to the hyperplane P . Since u is radial, it follows that φP

1

still minimizes the quotient in theorem 1.2 and is then proportional to φ1: φ
P
1 = βφ1.

Since φP
1 and φ1 coincide on P , it follows that β = 1 and φP

1 = φ1, that is φ1 is
symmetric with respect to P . Since P is arbitrary chosen, it follows that φ1 is radial.

Let us now show that φ′1(r) < 0 for r ∈ (0, 1].
Note that, since φ1 is radial as we showed above, then it fulfills the following equation

(7) −(p− 1)(rN−1|u′(r)|p−2φ′1(r))
′ = rN−1(λf ′(u(r))φ1(r) + µλφ1(r))

where µλ := µ1,λ(uλ) > 0. Since f ′ is positive, we therefore have that
the term rN−1|u′(r)|p−2φ′1(r) is decreasing for r ∈ (0, 1].

Also by (7), we get

(8)
(rN−1|u′(r)|p−2φ′1(r))

′

rN−1
−→
r→0

c,

and exploiting de l’Hôpital we get that

(9)
rN−1|u′(r)|p−2φ′1(r)

rN
−→
r→0

c,

and therefore
the term rN−1|u′(r)|p−2φ′1(r) → 0 for r → 0.

Since as showed above rN−1|u′(r)|p−2φ′1(r) is decreasing for r ∈ (0, 1], then
rN−1|u′(r)|p−2φ′1(r) < εN−1|u′(ε)|p−2φ′1(ε) for 0 < ε < r 6 1. Letting ε → 0,
we get

rN−1|u′(r)|p−2φ′1(r) < 0

for r ∈ (0, 1], showing the thesis.

To prove monotonicity of the first eigenvalue , we start noticing that uλ 6 uβ

for λ < β yields to u′β ≤ u′λ < 0 in (0, 1) with the same argument as in (4). Let us
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assume that the first eigenfunctions φλ := φ1,λ,uλ
and φβ := φ1,β,uβ

are normalized
to have

∫

B

φ2
λ =

∫

B

φ2
β = 1.

Since uλ, uβ, φλ and φβ are radial, we now have that

µβ ≤ (p− 1)

∫

B

|u′β|
p−2(φ′λ)2 dx− β

∫

B

f ′(uβ)φ2
λ dx

< (p− 1)

∫

B

|u′λ|
p−2|(φ′λ)2 − λ

∫

B

f ′(uλ)φ2
λ dx = µλ

in view of uλ 6= uβ, and the thesis follows.

4. Proof of theorem 1.5. Let u be a solution of (3) so that µ1,λ(u) = 0. First,
we have that λ ≥ λ∗. Indeed, for λ < λ∗ by theorem 1.3 we would have that u ≡ uλ

and then µ1,λ(u) > 0 by theorem 1.4. Since by the defintion of λ∗ λ ≤ λ∗, we get that
λ = λ∗. Since u∗ ≤ u and u is a classical solution, we get that also u∗ is a classical
solution and by theorem 1.3 u = u∗.

Let v be another solution of (3) and let φ1 be the first eigenfunction of Lu. Define

Ĝ(t) :=

∫

B

|tv′ + (1 − t)u′|p−2(tv′ + (1 − t)u′)φ′1 dx− λ

∫

B

f(tv + (1 − t)u)φ1 dx.

By the radial symmetry of u, v, φ1 and the convexity of g(s) = |s|p−2s in (−∞, 0) for
1 < p ≤ 2, we get that

Ĝ(t) =

∫

B

g(tv′ + (1 − t)u′)φ′1 dx − λ

∫

B

f(tv + (1 − t)u)φ1 dx

≥ t

∫

B

g(v′)φ′1 dx + (1 − t)

∫

B

g(u′)φ′1 dx− λ

∫

B

f(tv + (1 − t)u)φ1 dx

= λ

∫

B

[tf(v) + (1 − t)f(u) − f(tv + (1 − t)u)]φ1 dx > 0

in view of φ′1 ≤ 0 by theorem 1.4. Let us now note that Ĝ(0) = 0 by the equation
satisfied by u. Compute now the first derivative

Ĝ′(t) = (p− 1)

∫

B

|tv′ + (1 − t)u′|p−2(v′ − u′)φ′1 dx− λf ′(tv + (1 − t)u)(v − u)φ1 dx.

Since Lu(φ1) = µ1,λ(u)φ1 = 0 and v − u ∈ Au, we get that Ĝ′(0) = 0. By Ĝ(0) =

Ĝ′(0) = 0 and Ĝ(t) > 0, it follows Ĝ′′(0) > 0. But

Ĝ′′(0) = (p− 1)(p− 2)

∫

B

|u′|p−4u′(v′ − u′)2φ′1 − λf ′′(u)(v − u)2φ1 dx

≤ −λ

∫

B

f ′′(u)(v − u)2φ1 dx

in view of u′, φ′1 ≤ 0 and 1 < p ≤ 2. Since f ′′ > 0, λ > 0 and φ1 > 0 a.e. in B it
follows that Ĝ′′(0) < 0 unless u = v. Therefore the thesis follows.
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