CHAPTER 1

Introduction

Condensed information storage in miniature computers, infinitesimal machin-
ery for space exploration, microscopic surgical tools, and modern telecommuni-
cations are only a few of the vast number of applications that lie at the roots of
microsystem technology. Richard Feynman may not have been the only one to
anticipate the need to develop this important area of modern technology, but he is
definitely one of the pioneers in describing possible ways of locomotion for such
microdevices, by advocating for techniques and ideas based on fundamental prin-
ciples of physics, chemistry, and biology, and ranging from electrostatic actuation
to quantum computation at the atomic electron levels [68, 69].

Microelectromechanical systems (MEMS) and nanoelectromechanical systems
(NEMS) are now a well-established sector of contemporary technology. A com-
prehensive overview of their rapidly developing field can be found in the relatively
recent monograph of Pelesko and Bernstein [140], which is a good source of infor-
mation about the various areas of applications of MEMS. It also contains justifi-
cations and derivations of the fundamental partial differential equations that model
such devices. More complicated models have also been proposed by E. M. Abdel-
Rahman, M. 1. Younis, and A. H. Nayfeh (see, for example, [1, 137, 162]).

It is the mathematical analysis of some of these equations that concerns us in
this monograph. We shall therefore settle in this introduction on a quick derivation
of one of the most basic PDEs modeling electrostatic MEMS devices, and then
proceed towards stating some of the problems that interest applied analysts and
engineers, while giving some numerical and heuristic evidence for various conjec-
tures that will be addressed rigorously throughout this book.

1.1. Electrostatic Actuations and Nonlinear PDEs

A key component of some MEMS systems is the simple idealized electrostatic
device shown in Figure 1.1. The upper part of this device consists of a thin and de-
formable microplate that is held fixed along its boundary €2, where 2 is a bounded
domain in R2. The dielectric elastic microplate lies above a parallel rigid grounded
plate, say at level z = —d, and has an upper surface that is coated with a negligi-
bly thin metallic conducting film. When a voltage V' is applied to the conducting
film, it deflects towards the bottom plate, and if the applied voltage V is increased
beyond a certain critical value V'*, then the mechanical forces defined by the de-
formable plate can no longer resist the opposing electrostatic force, thereby leading
it to touch the grounded plate. The steady state of the system is then lost, and we
have a snap-through at a finite time creating the so-called pull-in instability.
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Dielectric Membrane with Conducting

Supported Boundary Film at Potential V

Fixed Ground Plate” g X
L

FIGURE 1.1. The simple electrostatic MEMS device.

A mathematical model of this physical phenomenon when the plate is one di-
mensional, i.e., a beam of length L, already leads to the following interesting par-
tial differential equation for its dimensionless dynamic deflection:

0%u u 5 0%u M an f(1)?
— — = Ie——-B————=,
oz TG =@l + Do = By g — e
0 0
w(©0,0) = u(L, 1) =0, 2©0,1)=2(L,1)=0,
ox ox

which was already derived by several authors. All the constants above—a, a1, T,
B, and op—are assumed to be nonnegative. See for example, the survey paper
of Marques-Castello-Shkel [63], Pelesko-Bernstein [140], or [20, 73, 152] and the
references therein.

The case of a capacitively actuated, two-dimensional microplate is much more
complicated as described by Nayfeh et al. in [137], especially if one accounts for
moderately large deflections, since one needs to use the dynamic analogue of the
von Karman equations. We shall therefore only consider the case where the defor-
mations are small, so that each material point moves vertically over its reference
position, and so that the material response is essentially linear. In this case the
dynamic deflection u = u(x, ¢) of the membrane on a bounded domain €2 in R? is
assumed to satisfy the following evolution equation:

(1.1a) pA?;TZ —i—a%—?:TAu—BAzu—% forx € Q,t > 0,
(1.1b) — 1 <u(x,1) <0 forx €e Q,t >0,
(1.1¢)  u(x,t) = Bg—z(x,t) =0 forx € 02,1 > 0,
(1.1d)  u(x,0) =0 and us(x,0)>0 for x € Q,

where A? := —A(—A -) denotes the biharmonic operator, 7 denotes the outward

pointing unit normal to d€2, and
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e p is the mass density per unit volume of the membrane and A4 is its thick-
ness,

e ¢ is a damping intensity,

e T is the tension constant in the stretching component of the energy,
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m where

e B accounts for the bending energy and is given by B =
Y is the Young modulus and v is the Poisson ratio,

o the uniformly distributed charges over the membrane and the bottom plate
are subjected to a capacitive influence of capacitance C and a fixed elec-
tric voltage V,

o the initial condition in (1.1d) assumes that the membrane is initially un-
deflected and the voltage is suddenly applied to the upper surface of the
membrane at time ¢t = 0,

e the boundary condition (1.1c) reflects the fact that the membrane is held
fixed along its boundary 92 on the level z = 0.

Even then we have neglected several factors in the system. Indeed, while we in-
clude an external viscous damping (linked to air friction), we have disregarded
internal structural damping generated by the molecular interaction in the material
due to deformations; see [63]. We have also assumed the tension to be constant by
considering only a small aspect ratio % < 1.

There are several issues that must be considered in the actual design of MEMS
devices. Typically one of the primary goals is to achieve the maximum possible
stable deflection before touchdown occurs, which is referred to as pull-in distance
(cf. [99, 139]). Another consideration is to increase the stable operating range
of the device by improving the pull-in voltage V* subject to the constraint that
the range of the applied voltage is limited by the available power supply. Such
improvements in the stable operating range are important for the design of certain
MEMS devices, such as microresonators. One way of achieving larger values of
V* while simultaneously increasing the pull-in distance consists of introducing a
spatially varying dielectric permittivity &2 (x) of the membrane. We shall see in
Section 1.3 that the equation becomes of the form

0%u du

bt
(12) pAs— + a2 = TAu— BA?u — £0

= — — f Q,t>0,
0z Y a)d +u)z ree =

where &g is the permittivity of free space, and A is a positive constant that is pro-
portional to the square of the supply voltage.

In other situations, cf. [140, 141, 142], the capacitance C of the actuator may
depend on the deformation variable u according to the relation

1
Q

As aresult, the voltage drop V' at the actuator can no longer be kept at the constant
supply voltage V;, but is instead given by the series circuit formula V' = (Hg%
where C ¢ is the circuit series capacitance. Therefore, in view of (1.3), V depends
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on the deformation variable u according to

Vs
V= I
(1+é§f9mdx)

’

where £ = CLf reflects the influence of the circuit series capacitance, and we

eventually arrive at the nonlocal equation
0%u u A

(14) pA— +a— = TAu— BA*u — ,
Po%2 T 9% (d +102(1+§ [ g d2)?

where A = C2V2 > 0 is a constant that is proportional to the square of the supply
voltage V.

1.2. Derivation of the Model for Homogeneous Systems

A typical MEMS device is subject to electrostatic, elastic, and dynamic forces.
We first deal with the case of a membrane with constant permittivity profile.

1.2.1. Analysis of the Simplified Electrostatic Problem. The Coulomb law
states that the electrostatic force F' between two charges g1 and g, placed at a
distance r apart is given in normalized units by

q192

F= .
r2

If the two charges are uniformly distributed over two parallel plates subject to a
capacitive influence of capacitance C and a fixed electric voltage V, then we can
write g1 and g2 as ¢ = ¢ = CV = —g, and F becomes F = —C?V?/r?. If
now one of the plates stretches a small vertical distance dr, then the work done is
F dr, which decreases the electric potential stored in the capacitor. As a conse-
quence, the electric potential W can be expressed as

c?v?

(1.5) W =— .
r

In the more general situation, when the electric charges are not uniformly dis-
tributed as a result of a varying distance r = 1 +u(x), where d = 1 is the distance
between the two plates in the absence of plate deformation, and u(x) is the plate
deformation variable, the electric potential (1.5) becomes

Cc2y?
Q

where Q is the domain in R? limiting the membrane.
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1.2.2. Analysis of Elastic Forces. On the other hand, in the presence of a
plate deformation characterized by u # 0, the elastic energy has two components:
the stretching energy sector given by

(1.7) Es(u) = / §|Vu|2dx,
Q

where 7' > 0 is the tension constant, and the bending energy given by

B
(1.8) Eg(u) = / E(Au)2 dx,
Q
where B = 24°Y in which A is the plate thickness, Y is the Young modulus,

) 3(1—v2)”
and v is the Poisson ratio.

Indeed, the stretching energy in the elastic membrane is proportional to the
changes in the area of the membrane from its unstretched configuration. Since we
assume the membrane is held fixed at its boundary, we may then write it as

(1.9) stretching energy := T/ V14 |[Vul?dx,
Q

where the proportionality constant 7" is simply the tension in the membrane. Our
expression for Eg is then nothing but the linearization of the stretching energy. On
the other hand, the bending energy is assumed to be proportional to the linearized
curvature of the membrane, hence the expression for £ g, where the constant B is
the flexural rigidity of the membrane.

Consequently, the total energy £ = Eg + Ep + Ew may be represented as

T B Cc2y?
1.10 Ew) = [ {=|Vul®> + =|Aul®> - dx,
(110 o= [ 3w+ F1aup - s
so that its Euler-Lagrange equation is
Cc?y?
(1.11) TAu—BA*u—————— =0 inQ.
(I +u)?

1.2.3. Analysis of the Dynamic Problem. For the dynamic deflection u(x, t)

of the membrane, we use Newton’s second law to write
0%u
(1.12) pA= S = > forces,
where p is the mass density per unit volume of the membrane and A is its thickness.
As to the forces, we combine the superposition of the elastic and electrostatic forces
assembled in (1.11) with a damping force Fj; that is linearly proportional to the
velocity, that is,
ou

1.13 F;=—a—.
(1.13) d as



6 1. INTRODUCTION
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FIGURE 1.2. The key component of an electrostatic MEMS.

We finally obtain the equation

32 d c?v?
Y a2 TAu - BA%u—

1.14 — —_—.
(1.14) ar? ot (1 4+ u)?

1.3. MEMS Models with Variable Permittivity Profiles

We now allow the elastic membrane to exhibit a spatial variation reflecting a
varying dielectric permittivity. For that, we first need to formulate the equations
governing the electrostatic field within the device components and around it.

1.3.1. Tailored Permittivity Profiles. For simplicity, we shall consider a two-
dimensional case where both the membrane and the ground plate have width and
length equal to L, and, in the undeformed state, are separated by a gap of length d;
see Figure 1.2. We assume that the ground plate, located now at z’ = 0, is a perfect
conductor. The elastic membrane is assumed to be of uniform thickness A = 2.
The deflection of the membrane is specified by the deflection of its center plane,
located at z’ = u(x’, y’). Hence the top surface is located at z/ = u(x’, y’) + ,
while the bottom of the membrane is located at z’ = u(x’, y’) — 7.

We assume that the elastic membrane is held at potential V', while the fixed
ground plate is held at zero potential. The electrostatic potential ¢ in the whole
region D’ between the elastic plate, the ground plate, and the lateral region sur-
rounding the device must satisfy the Laplace equation on D’, with boundary con-
ditions ¢; = 0 on the ground plate. In other words,

(1.15) A¢r =0 onD’,
(1.16) $1(x'.,y,0) =0 inQ’.

Denote by &5 (x’, y") the varying permittivity of the membrane; the potential ¢»
inside the membrane must then satisfy

(1.17) V- (e2Ve) =0 foru(x',y)—t <z <u(',y)+r,
(1.18) p(x'. Yy u+1)=V inQ.
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At the interface between the gap and the membrane, the potential and the displace-
ment fields must be continuous; hence we impose

(119) ¢1 (xlv y,?/u\(xlv y,) - ‘L') = ¢2(X/, ylvﬁ(xl’ y/) - T)’
and
(1.20) e2(x",y )V -m =gV -n atz' =ux',y)—r,

where &g is the permittivity of free space and n is an outward unit normal.
Now, introduce dimensionless variables

b1 $2 U x! y' z'
1.21 = —, = —, = —, =, ==, =,
(1.21) Y1 % (%) o U= XY= Y= =
to see that the electrostatic problem reduces to
Pyr | (Y1 | %Y T
(1.22a) 3.2 + ¢ (8x2 + 3y2 ) =0, OSZSM_E’
92 ad ad ad ad
(1220) e2r )2 162 (o200 22 1 2 (a0, D2 ) ) =0,
0z2 dx dx dy dy
T n T
U——<z<u+—,
d— ~ d
(1.23) Y1 = 0 on the ground plate z = 0,
(1.24) ¥ =1 on the upper membrane surface z = u + 1,

d

together with the continuity property of the potential and the displacement fields
across z = u — 5, that is,

(125) W1(X,y,u(x,y)—§) = wz(x’y,u(x’y)_g),

0 d
(1.26)  &*(e2(x, y)Viv2 —eoViY1)Viu = ea(x, Y)% - 80%

on the set z = u(x, y) — 5
Here v, given by ¥, ¥», is the dimensionless potential scaled with respect to the
applied voltage V', and ¢ = d/L is the so-called aspect ratio of the device. We
are using the notation A ; to distinguish the differentiation in the domain variables
(x, y) € Q from the differentiation in the space variables (x, y, z) in Q x R.

In general, one has little hope of finding an exact solution v from (1.22a)—
(1.26). However, we can simplify the system by examining a restricted parameter
regime. In particular, we consider the small-aspect ratio limit ¢ = % < 1. Phys-
ically, this means that the lateral dimensions of the device in Figure 1.2 are larger
compared to the size of the gap between the undeflected membrane and ground
plate. In this case, equation (1.22) gives 3%v1/9z% = 0 and 0%v,/9z% = 0. It
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follows that y; and v, are linear in z. Combined with the continuity of ¥ across
z=w— 5, it means that there exists a function ¥ (x, y) such that

V1 = Vo=, 0<z=<u-r,

(1.27) 1#:{1#2:14‘%(2_(“4'1))’ u-—rT=z=u+rt

Now to ensure that the displacement field is continuous across z = u — 7, we need
from (1.26) that

T

onz =u(x,y)——,

+ d
where the plus or minus signs indicate that %—VZ’ is to be evaluated on the upper or
lower side of the bottom surface z = u — 7 of the membrane, respectively. This
condition determines ¥ in (1.27)

(1.28) Yolx )—[1+ 2t ( £0 )}_1
‘ e T R A YENy VA

From (1.27) and (1.28), we observe that the electric field in the z-direction inside
the membrane is independent of z and is given by

8_1//_ €o |:1+ 2T 8_():|_1~ €0

= — forr « 1.
0z e —r1) U—Te

W] _ g™
8082 _—szx,y 9z

(1.29)
U

In other words, in the small-aspect ratio limit ¢ << 1 and for a very thin membrane

7 < 1 and a ground plate located at z = —1, we have that the electric field in the
z-direction at any point of the membrane is given by

ad
(1.30) W _ £0

0z ex(x,y)(1 +u)

1.3.2. MEMS Models with a Varying Permittivity Profile. In cases where
the membrane has a varying permittivity profile, we have in view of (1.14) the
following system of equations for the membrane’s deflection % and the potential ¢,
which couples the solution of the elastic problem to the solution of the electrostatic
problem
0% ou &

7 tag, —TALI+ BA2T = —52|V¢(x’, v )2

We are again using the notation A to distinguish the Laplacian in the domain
variables (x’,y’) € Q' from the Laplacian in the space variables (x’, y’,z’) in
Q' x R. The term on the right-hand side of (1.31) denotes the force on the elastic
membrane induced by the electric field with potential ¢ (x/, y’, z’), where &5 is the
permittivity of the membrane. We have assumed that such a force is proportional
to the norm squared of the gradient of the potential. A derivation of such source
term may be found in [114]. Note that ¢ is coupled to the elastic problem via the
boundary condition, which depends on the deformation of the membrane.

We now apply again dimensionless analysis to equation (1.31). We scale the
electrostatic potential with the applied voltage V', time with a damping timescale

(1.31) pA
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of the system, the x" (resp., y") variable with a characteristic length and width of
the device equal to L, and z” and % with the size of the gap d between the ground
plate and the undeflected elastic membrane. So we define

E ¢ x/ y/ Z/ . Tt/

132 LT
(132 w=5. v=y =7

and substitute these into equation (1.31) to find

Zu  du & oy 2
1.33) y>*— —A SATu = -A=| 2|V iy |* + [ — in Q,
(1.33) y 5z T ~ALu+oATu = o |:8 IViy|* + R
where 2 is the dimensionless domain of the elastic membrane. Here the parame-
ter y is defined as

pTA

1.34 —
(1.34) Y aL

’

while § measures the relative importance of tension and rigidity, defined by

B

The parameter ¢ is the aspect ratio of the system
(1.36) £=—

and the parameter A is a ratio of the reference electrostatic force to the reference
elastic force, defined by

. V2 L280

- 2Td3

(1.37)

Therefore, in the small-aspect ratio limit ¢ << 1 we can use expression (1.30) for
the field, and the governing equation (1.33) then reduces to

82 ou A€o

1.38 oL ZZ A SAZy =
(1.38) yaz2+a L oAU = ea(x, y)(1 4 u)?

We now call f(x,y) = 82(x ) the permittivity profile of the device and A the
applied voltage, and we end up with

,%u 0 Af(x,
C o ALu+8A%u S(x,7)

139 ety T tw?

Q x (0, +00).

Since the membrane is undeflected at the initial time, we must have u(x, y,0) = 0,
and since the boundary of the membrane is held fixed, we also have u(x, y,t) = 0
on the boundary of 2 at any time ¢ > 0.
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1.3.3. The Mathematical Equations under Study. The stationary state of
equation (1.39) will be considered in Part III of this monograph, where we assume
the deflection is upwards towards a ground plate at z = 1. We therefore con-
sider the following fourth-order equation describing the deflection ¥ = u(x) of the
membrane on a bounded domain €2 with a clamped boundary condition

A%y = (/}{54)6))2 in Q,
(Ca, 1) O0<u<l in 2,

u=g—”=0 on 0€2,
n

with 7 being the outward pointing unit normal to €2, and B and T are positive
constants. We shall also consider the case of a pinned boundary, that is,
A .
BA2u — TAu = (1{(;))2 inQ,
(Pr.f) 0<u<l in Q,

Uu=Au=0 on 0%2.

In the first part of the monograph, we shall actually consider the stationary
equation in the case where the membrane is assumed to be perfectly elastic and has
no rigidity, which means that 6 = 0 in view of (1.35). In other words, we shall
focus on the familiar second-order nonlinear eigenvalue problem:

- M)
—Au = m m Q,
(Sa,7) 0<u<l1 in Q,
u=0 on 0%2.

The dynamic deflection u = u(x, t) will be considered in Part II, but not before
we make a huge simplification to the model by ignoring rotational inertia, which
would have given the equation a hyperbolic character. In other words, we assume
that the membrane thickness A = 27 is negligible, which gives y < 1 in view
of (1.34). We therefore end up with the following parabolic equation on a time
interval (0, T'):

A
%_?_Au: (1']:(;;)2, (X,t)EQX(OaT)’

(Dy,r) u(x,t) =0, (x,t) € 02 x (0, T),
u(x,0) =0, x € Q.

‘We note that this type of nonlinearities (with negative exponents) have also ap-
peared in other models, especially those concerned with the dynamics of thin films
of viscous fluids; see, for example, Bertozzi, Laugesen, Pugh [21, 22, 122, 123]
and the references therein. Earlier work dealt with the determination of the equi-
librium state of two neighboring charged liquid drops suspended over two circular
rings that is governed by the equation

(1.40) Av:a—i—% inQ,
U

where «, B > 0 are constants reflecting fluid-mechanical and electrostatic proper-
ties of the drops, respectively, so that « = 0 corresponds to the situation where
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uncharged drops are flat (see Taylor [157] and also [33, 113, 120, 136]). The equa-
tions

1
(1.41) Av=— 0<p<1,
vP

have also been studied in the literature. The case where p = 1 is related to the
study of singular minimal hypersurfaces with symmetry; see Meadows [131], Si-
mon [153], and the references therein.

We shall concentrate in this monograph on the case when p = 2, but most of
the results can be extended to more general nonlinearities of the form F(x,u) =
()IU: %)p , where p > 0. We encourage the interested reader to work out these exten-
sions.

Particular attention will be given to the much less studied case of a varying
permittivity profile . Some of the results are straightforward extensions of the
case where f is a constant already considered in [26, 135] such as the case when
f is assumed to be bounded away from zero. More interesting situations deal with
somewhere vanishing profiles, the easiest of which are power-law permittivities of
the form f(x) = |x|%. We shall see that they can sometimes dramatically change
the picture. We often try to cover both situations at once by considering profiles of
the form

k
142 s =(JTx=pil")e. gx)=C>0ing.

i=1
1.4. Bifurcation Diagrams and Numerical Evidence

In order to get an initial idea of what issues need to be addressed, we start by
considering the equation

—Au = # in Q,
(S3) 0<u<l in Q.
u=0 on 02,

where  is the unit ball B;(0) C RY (N > 1). In this case, (S;) possesses only
radially symmetric solutions [85], in which case the equation reduces to

N—-1 _ _A
(1.43) TUrr = Tt = e O<r= b
u'(0) = 0, u(1) =0,
Here r = |x|and 0 < u = u(r) < 1 for 0 < r < 1. This problem was studied

in depth by Joseph-Lundgren [116]. The ODE analysis of (S)) points to a set
of solutions that varies considerably with the dimension. It is illustrated in the
bifurcation diagram Figure 1.3, which describes the graph

(1.44) G = {(A,u(0)) € (0,400) x [0,1) : u is a solution of (S))}.

Note that in this case, the maximum of a solution u necessarily occurs at the origin
[79]. This diagram suggests the following structure for the solution set in more



12

u(0)
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f(x)= 1 with different ranges of N

o M ;
A A A= (6N-8)/9

FIGURE 1.3. Plots of u(0) versus A for profile f(x) = 1 defined in the
unit ball B;(0) C RY with different ranges of N.

general domains Q2 and permittivity profiles f, and a substantial part of this mono-
graph investigates the extent to which these properties of the global set of solutions
can be established mathematically in more general situations. Here are some of the
issues that we address.

L.

IL.

III.

(1.45)

Iv.

Estimate the pull-in voltage A*(2, f), which is the parameter A* > 0
such that (S r) has at least one solution if A < A*, while it has none
if A > A*. What is the effect of the geometry of the domain and the
permittivity profile on the value of A*(2, f)?

In dimension 1, there exist exactly two branches of solutions for 0 < A <
A*, and one solution for A = A*. The bifurcation diagram disappears
(goes back to (0, 1)) when it returns to A = 0.

For dimensions 2 < N < 7, there exists a curve (A(t),u(t))s>o0 in the
solution set

V = {(A,u) € (0, +00) x C1(Q) : u is a solution of (Sa, 1)}

starting from (0,0) at # = 0 and going to “infinity”: ||u(?)||cc — 1 as
t — o0, with infinitely many bifurcation or turning points in V.

In dimension N > 2 and for any profile f, there exists a unique solution
for small voltages A.

There is at most one solution at A *—the so-called extremal solution u*—
and in dimensions 2 < N < 7, there exist exactly two solutions for A in
a small left neighborhood of A*.
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VI. Estimate the pull-in distance, which is the maximum of the extremal so-
lution at A* (i.e., ||u™||co) in terms of the geometry of the domain and the
permittivity profile f.

1.4.1. Bifurcation Diagrams for Power-Law Profiles. By carrying out the
analysis of Joseph and Lundgren for radially symmetric solutions, but in the case
of a power-law permittivity profile f(x) = |x|%, that is for

— Alxl*
—Au=G55 inQ,
(Sx,a) 0<u<l in §2,

u=20 on 092,

where € is the unit ball B;(0) € R¥, one can already see a much richer situation
induced by the nonconstant profile. We shall do that, so as to present analytical and
numerical evidence for various conjectures relating to these profiles, some of which
will be further discussed and proved for general domains in the next chapters. In
this case, (S, o) for radially symmetric solutions reduces to

_ o
%—urr—N Ly Ar 0<r <1,

AT w2

u’(0) =0 = u(l).

Equivalently, we can consider the initial value problem

(1.46)

U+ MU = >0,

(1.47)
U’(0) = 0, U©) = 1.

Observe that U > 11in (0, +00). For any y > 0, we can define a solution u, (r) of
(1.46) as

uy(r)=1- k%y_HTa U(yr).
The parameter A and the maximum value u, (0) of u,, depend on y in the following
way:

Uy (0) = 1 — 7,
(1.48) {Ay_ e 0
T U3Ny)’

where the second relation guarantees the boundary condition u,, (1) = 0.

One can numerically integrate the initial value problem (1.47) and use the re-
sults to compute the complete bifurcation diagram for (1.46). We show such a
computation of u(0) versus A defined in (1.48) for the slab domain (N = 1) in Fig-
ure 1.4. In this case, one observes from the numerical results that when N = 1 and
0 < o < 1, there exist exactly two solutions for (S, o) whenever A € (0,1*). On
the other hand, the situation becomes more complex for « > 1 as u(0) — 1. This
leads to the question of determining the asymptotic behavior of U(r) as r — oo.
Towards this end, we proceed as follows:

Setting v(s) = r~@*t9/3y(r) > 0, r = ¢*, we have that

2 2o 24+« 4 «
1.49 " N=Z+ =) N—-+4+—|v=0v"2
( ) v +( 3+3)v+ 3 ( 3+3)v v
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N = 1 and f(x) = [ * with different ranges of ot

Tu(O)1

< >0,

I<0c<:(x|

o<=1

FIGURE 1.4. Plots of u(0) versus A for profile f(x) = |x|* (¢ > 0)
defined in the slab domain (N = 1). The numerical experiments point to
a constant «; > 1 (analytically given in (1.50)) such that the bifurcation
diagrams are greatly different for different ranges of «: 0 < o < 1,
l<o<oj,anda > «a;.

We can already id entify from this equation the following regimes:

Case 1. Assumethat N =1land0 <o < 1.

In this case, there is no positive equilibrium point for (1.49), which means
that the bifurcation diagram disappears at A = 0. Then one infers that there exist
exactly two solutions for A € (0, A*) and just one for A = A*.

Case 2. N and « satisfy either one of the following conditions: N = 1 and
a>1,orN > 2.

There exists then a positive equilibrium point v, of (1.49),

9
Ve = i/(2+oz)(3N Ta—n Y
Linearizing around this equilibrium point by writing
v=uv,+8°7, 0<8<KIl,
we obtain that
o2 4+ 3N +32a—20+ (2+oz)(3];l+a—4) _0

Such an equation admits the following solutions:

3N+2a—2iﬂ
6 6’

o4+ =
with
A = —8a? — (24N — 16)a 4+ (OIN? — 84N + 100).
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We note that 0+ < 0 whenever A > 0. Now define
3N — 14— 446

4426
Next, we discuss the ranges of N and « such that A > 0 or A < 0.

1 3
(1.50) o =-2+ Z\/E, ay = (N > 8).

Case 2A. N and « satisfy one of the following two conditions:
(1.51a) N =1 withl <« <ay,
(1.51b) N >8 with0 <o <ay.
In this case, we have A > 0 and
9 3 _3N+2a—2-VA
U(S)N((2+a)(3N+oz—4)) + d1e 6 4.+ ass — 4oo.
Further, we conclude that

2+a 9 3 N—2 , /A
Ur) ~r—3 Sir— 2 toe ... .
(ry~r ((2+a)(3N+a—4)) + 017 + asr — +oo

In both cases, the branch monotonically approaches the value 1 as y — 400
(uy(0) 1 1asy — +00). Moreover, since A = y21%/U3(y), we have

2 3N —4
(1.52) )LT)L*=( +a)(9+a ) as y — o0,
which is an important critical threshold for the voltage. In the case (1.51a) illus-
trated by Figure 1.4, we have A, < A*, and the number of solutions increases but
remains finite as A approaches A . On the other hand, in the case of (1.51b) illus-
trated by Figure 1.5(b), we have A, = A*, and there seems to be only one branch
of solutions.

Case 2B. N and « satisfy one of the following conditions:

(1.53a) N =1 witha > «aj,
(1.53b) 2<N <7 witha >0,
(1.53¢) N >8 witha > ay.

In this case, we have A < 0 and

1
9 3 3N +20—2 v —=A
~ 5 - 6 s C
v(s) ((2+a)(3N+a—4)) + o1e cos( 5 s+ 2)

+ .- ass = 4o0.

We also have for r — +o00,

240 9 3 _N=2 v=A
(1.54) Ur) ~r 3 ((2+(X)(3N+Ol—4)) + &1 cos( 6 lnr+C2)

_l’_ e
and from the fact that 1 = y2+%/U3(y) we get again that
_ 2+a)BN +a—4)

A~y = 5 asy — oo.
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(a). 2<:N<:7andf(x):|x|(x for any 0. >=0
1r

[u(0)]

(b). N >= 8 and £(x) = || with different ranges of o

1

[u(0)|

FIGURE 1.5. Top: Plots of u(0) versus A for 2 < N < 7, where u(0)
oscillates around the value A, defined in (1.52) and u* is regular. Bot-
tom: Plots of u(0) versus A for N > 8: when 0 < o < ay, there exists
a unique solution for (S); with A € (0,A*) and u* is singular; when

a > apy, u(0) oscillates around the value A, defined in (1.52) and u* is
regular.

Note the oscillatory behavior of U(r) in (1.54) for large r, which means that A is
expected to oscillate around the value A, = w and uy (0) 1 1 as
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y — oo. The diagrams above point to the existence of a sequence {A; } satisfying

A =0, Ay A ask — oo,
A =A% Aop—1 N\ A« ask — oo,

such that exactly 2k + 1 solutions for (S o) exist when A € (Axk, Azx42), while
there are exactly 2k solutions when A € (Azx41.,A2k—1). Furthermore, (S )
has infinitely many solutions at A = A.. The three cases (1.53a), (1.53b), and
(1.53c¢) considered here for N and « are illustrated by the diagrams in Figure 1.4,
Figure 1.5(a), and Figure 1.5(b), respectively.

We now infer from the above that the bifurcation diagrams show four possible
regimes—at least if the domain is a ball:

VII. There is exactly one branch of solutions for 0 < A < A*. This regime oc-

curs when N > 8and 0 <o < ay = %. The above observa-

tions actually show that in this range, the first branch of solutions “disap-
pears” at A*, which happens to be equal to A« (x, N) = w.
VIII. There exists an infinite number of branches of solutions. This regime

occurs when

° N:landaZalz—%—i-%\/g;

e 2< N <T7anda > 0;

e N>8ando > ay.
In this case, A« (o, N) < A* and the multiplicity becomes arbitrarily large
as A approaches—from either side—A« (o, N), at which there is a touch-
down solution u (i.e., ||u|lco = 1).

IX. There exists a finite number of branches of solutions. In this case, we have
again that A«(a, N) < A*, but now the branch approaches the value 1
monotonically, and the number of solutions increases but remains finite
as A approaches A (o, N). This regime occurs when N = 1 and 1 <
o <o.

X. There exist exactly two branches of solutions for 0 < A < A* and one
solution for A = A*. The bifurcation diagram disappears when it returns
to A = 0. This regime occurs when N = land 0 <« < 1.

1.4.2. Asymptotic Analysis of Dynamic Quenching Profiles. Consider now
the dynamic problem (Dj, r) on a domain €. Numerical evidence shows that
for small voltages A, a solution exists for all time and eventually converges to the
corresponding minimal solution of the stationary equation. On the other hand, for
large voltages A, the solution must quench (i.e., touch the ground plate) at a finite
time 7} (€2, f). This naturally leads to the following queries:

XI. Is the pull-in voltage A* the exact cutoff between a regime of globally
convergent solutions, and the one where we have quenching in finite
time? Moreover, what is the mode of deflection when A = A™*, and can
we have quenching in infinite time?

XII. Estimate the quenching time T} (€2, f) in terms of the geometry of the
domain, the permittivity profile f, and the excess voltage A — A*.
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Besides the qualitative behavior of the solutions for various A, and the esti-
mates on the quenching time T (€2, f), one is also interested in describing the
quenching profile of the deflection, including the information on quenching rates
as well as quenching locations and how they are affected by the permittivity. With
this in mind, we now use elementary asymptotic analysis to identify the issues and
the facts that need to be established. We start with the simplest case.

Quenching Profile When f(x) = 1. We also assume that quenching occurs
atx = Oand ¢t = T. In the absence of diffusion, the time-dependent behavior
of solutions for (D} ;) is given by u; = A(1 — u)~2. Integrating this differential
equation and setting u(7) = 1, we get (1 — u)> = —3A(t — T). This solution
motivates the introduction of a new variable v(x, ¢) defined by

_ s
(1.55) v—3k(1 u)’.

A simple calculation shows that (D} ;) transforms to the following problem for v:

2
(1.56a) vt=Av—3—|Vv|2—1, xeQ,t>0;
1)

1
(1.56b) v(x, k) = N on (02 x (0, +00)) U (2 x {0}).
Notice that ¥ = 1 maps to v = 0. We will find a formal power series for a radially
symmetric solution to (1.56a) near v = 0, in the form

2 4
(1.57) v(x, 1) = vo(t) + r2—'v2(t) n 2—,v4(z) T

where r = |x|. We then substitute (1.57) into (1.56a) and collect coefficients in r.
In this way, we obtain the following coupled ordinary differential equations for vg
and vjy:

EECINOEN
31)() 2 4

3
We are interested in the solution to this system for which vo(7") = 0, with vy, < 0
andvy > 0for7T —¢ > Owith 7T —¢ <« 1. System (1.58) has a closure problem
in that v, depends on v4. However, we will assume that v4 < v% /vo near the
singularity. With this assumption, (1.58) reduces to

(1.58) vy =—14+ Nva, vh=-—

’ / 4 2
31)0
We now solve system (1.59) asymptotically as ¢ — 7. We first assume that
Nvy, < 1neart = T. This leads to vg ~ T — ¢, and the following differential

equation for v;:
—4

1.60 [~ ————3
( ) vZ 3(T—I)U2

ast — T .
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By integrating (1.60), we obtain that

3 By
Taflog(T — )] fogT — 0P T
for some unknown constant Bg. From (1.61), we observe that the consistency

condition that Nv, < 1 ast — T~ is indeed satisfied. Substituting (1.61) into the
equation (1.59) for vy, we obtain for t — T~ that

1.62 = 14+ N 3 Bo
(162 o =-1+ (_4[log(T—r>1+[log(T—r)12+”')‘

Using the method of dominant balance, we look for a solution to (1.62) ast — T~
in the form

(L.el) V2 ~ ast - T~

Co C
(1.63) vo ~ (T —1t) + (T — t)[[log(T —1 " s <0 T }

for some Cyp and C to be found. A simple calculation yields that
—3N(T —t) —N(Bo—3)(T —t
vo~ (T —1)+ ( ) (Bo 4)(2 )
(1.64) 4|log(T —1)| [log(T —t)|
4+ ast—>T7.

The local form for v near quenching is v ~ vg +r2v,/2. Using the leading term in
v, from (1.61) and the first two terms in vg from (1.64), we obtain the local form
3N 4 3r? n
dlog(T —1)|  8&(T —t)|log(T —1)|
forr < 1andt — T <« 1. Finally, using the relation (1.55) between u and v, we
conclude that

(1.65) v~ (T — t)[l

1 3N 32 3
1.66 ~ 11— —_ 13 _
(100 u~1-par ”]3(1 dog(T —0)] T BT —Dlloe —1)] T )

An important question is then:
XIII. To what extent does (1.66) describe the profile of a quenching solution,
and how valid is this description for general permittivities?

Before going further, we note that numerical experiments can be performed
thanks to the following observation, which will also have a theoretical relevance
as well. Indeed, we observe that if we use the local behavior v ~ (T —t) +
3r2/[8|log(T — t)|], we get that

Vv|?

_ —_n217!
(1.67) 16(T — t)|log(T t)|] .

9r2

Hence, the term |Vv|?/v in (1.56a) is bounded for any r, even as t — T ~. This
allows us to use a simple finite-difference scheme to compute numerical solutions
for the transformed problem (1.56).

For the slab domain (—%, %), we define v;.” for j = 1,..., N 4+ 2 to be the
discrete approximation to v(mAt, —% +(j—1)h), where h = ﬁ and At are the

2
~ |:§|log(T -+



20

—_

. INTRODUCTION
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-0.5 -0.25 0 0.25 0.5

FIGURE 1.6. Plots of 1 —u(x, t) versus x with A = 1 at different times.
Here it is observed that the dynamic solution approaches a steady state
as the time 7 is increased.

spatial and temporal mesh sizes, respectively. A second-order accurate-in-space,
and a first-order accurate-in-time discretization of (1.56) is

W7 =207 + 07 L W7y — v;f’_l)z
h? vt h? ’

m+1 _ m

j=2.....N+1,

with o' = vy, = (3A)~! for m > 0. The initial condition is v? = (317!
for j = 1,..., N + 2. The time step At is chosen to satisfy At < h?/4 for the
stability of the discrete scheme. Using this argument, one can get useful numerical

results for the dynamic deflection u; see Figures 1.6, 1.7, and 1.8.

Quenching Profile for a Variable Permittivity. Suppose we are now dealing
with a spatially variable permittivity profile in a slab domain. Let u again be a
quenching solution of (D, r) at finite time T, and let x = xo be a quenching
point of u. With the transformation

1

1.69 = —(1—-u)’,
(1.69) v= (-
problem (D} ) in the slab domain transforms to

2 1 1

(1.70a) Uy =vxx—§v§—f(x), —3 <x < x t >0,
(1.70b) ! :I:1 ! t=0

. vV = I X = _s V= P = )

31 2 31

where f(x) is the permittivity profile.
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0.85 4

0.7 B

0.55 L L
-05 -0.25 0 0.25 05

FIGURE 1.7. Plots of 1 — u(x,t) versus x with A = 1.3 at different
times. Here it is observed that the dynamic solution approaches a steady
state as the time 7 is increased.

I I
-0.5 -0.25 0 0.25 0.5

FIGURE 1.8. Plots of 1 —u(x, t) versus x with A = 6 at different times.
Here the quenching behavior is observed at finite time.

Look now for a quenching profile for (1.70) near x = x¢ at time 7" in the form

(x — x0)? (x — x0)?

v(x,1) = vo(r) + 5 va(t) + 3 v3(t)

(1.71) 4
+ (X—4'X0) va(t) + -+
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In order for v to be a quenching profile, it is clear that we must require
172 1ir7r}_ vo=0, v9g>0 forrt<T,
(1.72) e v >0 fort—T <K 1.

We first discuss the case where f(x) is analytic at x = xo with f(xg) > 0.
Therefore, for x — xg < 1, f itself has the convergent power series expansion

(v _ 2
(1.73) f(x)=f0+fo/(x—xo)+M+m,

where fo := f(xo0), fy = f'(x0), and f§’ := f”(xo). Substituting (1.71) and
(1.73) into (1.70), we equate the powers of x — x¢ to obtain

(1.74a) vy = —fo + v2,

4v2
1.74b [ =——2 —
( ) Uy 300 + va 0
(1.74c) vz = fq.

We now assume that v, < 1 and v4 < 1 ast — T~. This yields that vy ~
fo(T —t), and
v~ — 4U% _
20 3fo(m—1) 70
Fort — T, we obtain from a simple dominant balance argument that
3
B
4llog(T —1)]
Substituting (1.76) into (1.74a) and integrating, we obtain that

—3/o(T —1) _
1.77 ~ T—t)+ ————" 4 t—>T".
(1.77) vo ~ fol( ) Hlog(T —1)] as
Next, we substitute (1.76), (1.77), and (1.74c) into (1.71) to obtain the local
quenching behavior

v~ fo(T —f)[l

(1.75)

(1.76) vy ~ ast —> 1.

3 3(x — x0)?
" Hlog(T —0)]  8(T —n)log(T —1)
L Jo—x0)® }
6fo(T —1)
for (x —x9) < land ¢t — T < 1. Finally, using the relation (1.69) between u
and v, we conclude that

(1.78)

(1.79) u ~ 1 —[Bf(x)A(T —1)]3

1

'(1_ 3 N 3(x — x0)? n J' (o) (x — x0)* +...)§‘
4log(T — )|~ 8(T —1)[log(T — 1) 6fo(T —1)

This formal analysis is obviously not satisfactory if the quenching point xo hap-

pens to be a zero of the profile f (i.e., if f(xo) = 0), and leads to the following

important question:
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XIV. Can finite-time quenching occur at the zero set of permittivity profile f?

Again, formal asymptotic analysis points towards a negative answer to this
question by showing how to exclude the possibility that f(x¢) = 0. Indeed, as-
sume f(x) is analytic at x = xg, with f(x9) = 0 and f’(x¢) = 0, so that
f(x) = ap(x — x9)®> + O((x — x0)3) as x — xo with ag > 0. We then look
for a power series solution to (1.70) as in (1.71). In place of (1.74) for vs, we get
v3 = 0, and

4v2

(1.80) vy = V2, U =——2 +v4—2ay.
31)0

Assuming that v4 < 1 as before, we can combine the equations in (1.80) to get
4(vy)?
31)0

(1.81) vy = — — 2a.

By solving (1.81) with vo(7) = 0, we obtain the exact solution

3 6
(1.82) vo = —%(T )2 <0, vy = %(T —1).

Since the criteria (1.72) are not satisfied, the form (1.82) does not represent a
quenching profile centered at x = xg. Therefore, the above asymptotical anal-
ysis also shows that the point x = x¢ satisfying f(xo) = 0 is not a quenching
point of u.

1.4.3. Evidence and Conjectures for Fourth-Order MEMS Models. The
case where the rigidity is not neglected leads to a substantial number of mathemat-
ical challenges. The equation is then of the fourth order in space and one has to
deal with the biharmonic operator, which is not as well understood mathematically
as the Laplacian. For one, A2 does not satisfy the maximum principle on general
domains when we are dealing with the physically relevant clamped boundary con-
ditions. However, if the domain is a ball where A? satisfies a comparison principle
and minimal solutions are radially symmetric, numerical and analytical evidence
points towards a strong analogy with the corresponding second-order model, pro-
vided we increase all critical dimensions by 1. Specifically, the following picture
emerges for equation (Cj 1), at least when 2 is a ball:

There exists again a pull-in voltage A* > 0 such that (Cj) has at least one
solution if A < A*, while it has none if A > A*. However, the dependence of the
bifurcation diagrams on the dimension changes as follows:

XV. In dimensions 1 and 2 there exist exactly two branches of solutions for
0 < A < A* and one solution for A = A*. The second (unstable) solution
heads towards a quenching state when the bifurcation diagram returns to
A =0.

XVI. There exists at most one solution at A* in any dimension, while the
uniqueness of solutions also occurs at small voltages A whenever N > 3.
XVIL In dimensions 3 < N < 8§ there exist exactly two solutions for A in a
small left neighborhood of A*, as well as a curve (A(7), u(t));>o in the
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solution set
(1.83) VY = {(A,u) € (0, +00) x C%(Q) : u is a solution of (Ca,1)}

starting from (0,0) at ¢ = 0 with ||u(?)||lcc — 1 ast — 400, while
having infinitely many turning points.
XVIIIL. Describe the situation in more general domains.

Queries I to XVIII and many more will be addressed throughout this mono-
graph under various levels of generality.

1.5. Brief Outline

This text is divided into three major parts. The first one covers the simplest
situation, which deals with the stationary case when one ignores bending. The
results here are the most satisfying from the mathematical point of view. The
stationary case for a nonelastic model is dealt with in Part III, where the results are
satisfactory only in the case of a radially symmetric domain. The dynamic model is
covered in Part II, but only in the parabolic case where we ignore rotational inertia,
which would have given the equation a hyperbolic character.

Part I: Second-Order Equations with Singular Nonlinearities Modeling
Stationary MEMS. This part deals with the stationary deflection of an elastic
membrane satisfying the elliptic problem (Sy, r), where A > 0 represents the ap-
plied voltage. The nonnegative function f(x) will describe the varying permittivity
profile of the elastic membrane, which will be allowed to vanish somewhere, but
will always be assumed to satisfy

(1.84) feCP(Q) forsomeBe(0,1,0< f <1, and f 0.

Chapter 2. We start by considering the pull-in voltage for (S, r), which is
defined as

(1.85) A*(Q, f) = sup{A > 0] (S, s) possesses at least one solution}.

Our goal is to establish the basic properties of the pull-in voltage A* and to an-
alyze its dependence on the size and the shape of the domain, as well as on the
permittivity profile.

Chapter 3. We study the branch A + uy of minimal solutions for (Sy, r),
i.e., those that are below any other solution. We include a detailed analysis of
the monotonicity, differentiability, and compactness properties of this branch with
respect to the voltage A. The stability and regularity properties of such minimal
solutions are also investigated, with a particular emphasis on the extremal solution,
i.e., the one that corresponds to the pull-in voltage A*. The results confirm the
complexity and richness of the problem and its dependence on the dimension of
the ambient space and on the permittivity profile, as suggested by the bifurcation
diagrams (Figures 1.3-1.5). In particular, there is a critical dimension (N = 7)
below which all minimal solutions—including the solution at the pull-in voltage
u j»—are regular, while u 3« may “touch the plate” (i.e., u = (x) = 1 at some point
x € Q) for dimension N > 8.
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On the other hand, a closer study of the minimal branch for powerlike profiles
on the unit ball uncovers a new and interesting phenomenon: certain permittivity
profiles can restore compactness and regularity to the problem at the pull-in volt-
age. This analysis is done through a blowup procedure that we introduce in this
chapter, but which we will explore more deeply in the following ones.

Chapter 4. One of the primary goals in the design of MEMS devices is to
optimize the pull-in distance over a certain allowable voltage range that is set by the
power supply. Here the pull-in distance refers to the maximum stable deflection of
the elastic membrane before quenching occurs. It will be denoted by P (2, f, N).
Since the L°°-norm of the minimal solutions u for (S ) is strictly increasing
in A, the pull-in distance is achieved exactly at A = A*, that is P(Q2, f,N) =
[ || Loo (), Where u™ is the unique extremal steady state of (S, r). Our first goal
in this chapter is to give upper and lower bounds for P(S2, f, N) in terms of the
permittivity f, the dimension N, and the geometry of the domain. We also study
the effect of powerlike permittivity profiles f(x) = |x|* and the dimension N on
both the pull-in voltage and the pull-in distance. In particular, we give rigorous
proofs that explain various numerically observed phenomena, such as the curious
fact noted in [99], that on a two-dimensional disk, a change in the power law has
no effect on the pull-in distance, as well as the “rule of thumb” that the pull-in
distance is about one-third the size of the zero voltage gap [140, p. 214].

Chapter 5. We continue the analysis of problem (S r) by considering the lin-
earized operator L,, , = —A—=2Af(x)/(1 —u)3, at a solution u, and its eigenvalues
g a(u):k =1,2,...}, the first one of which is simple and given by

(1.86) m(u)=inf{<Lu,m,¢>Lz(m:¢eco°°(sz>, / ¢2dx=1}.
Q

When the infimum is attained at a first, positive eigenfunction ¢, the second eigen-
value is then given by the formula

(1.87) M2, () = inf

(b #) 120y # € @, [ 02 dr = Land [ g1 dx = of.
Q Q

This construction can be iterated to obtain the k™ eigenvalue k,2 (1) with the
convention that eigenvalues are repeated according to their multiplicities [23]. The
Morse index m(u, A) of a solution u is the largest k for which py 5 (u) is negative.

The compactness—in dimensions 1 < N < 7—of the minimal branch of semi-
stable solutions, i.e., those with zero Morse index (or those verifying 111 (1) > 0),
gives rise to a second unstable solution Uy of (S, ) for A in a small deleted
left neighborhood of A*. We give a “mountain pass” variational construction of
this second solution for A close to A* whenever the minimal branch is compact.
We then establish, in the right dimensions, the compactness of this first branch of
unstable solutions whose Morse index is equal to 1, i.e., those such that

(1.88) pi () <0 but  pya(u) > 0.

This eventually leads to the identification of a second bifurcation point. The main
tool here for controlling the blowup behavior of a possible noncompact sequence
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of solutions is a linear instability result which states that there is no stable solution
for the limiting problem (on RN Jifeither ] < N < 7orif N > 8and o >
o. Roughly speaking, compactness is deduced from the fact that a blown-up
sequence of solutions whose Morse indices do not exceed 1 cannot account for
such instability at infinity.

Chapter 6. We investigate here the extent to which the properties of the global
set of solutions—as illustrated in the bifurcation diagram of Figure 1.3—can be
established mathematically in more general situations. We start by extending the
results of the previous chapters and establishing the compactness of any set of
solutions of (S, 7), provided their Morse indices are uniformly bounded and not
just equal to O as in Chapter 3 or less than or equal to 1 as in Chapter 4. The result
will again be true for dimensions 2 < N < 7 and for permittivity profiles f* of
the form (1.42). This will follow from a detailed blowup analysis of noncompact
sequences of solutions, combined with a result stating that a solution u of finite
Morse index is either regular or “badly singular,” meaning that the set {x € Q :
u(x) = 1} has no isolated points. As a by-product, we show the existence of a
quenching branch of solutions with an infinite number of turns (i.e., solutions with
arbitrarily large Morse indices) as long as the extremal solution u+ is a classical
solution, and in particular for dimensions 2 < N < 7. On the other hand, we show
a uniqueness result for small voltage in the case of power-law profiles—without
any restriction on the energy or on the Morse index—provided the domain €2 is
star-shaped and N > 3, or when it is strictly convex (or suitably symmetric) in the
two-dimensional case.

Chapter 7. We consider in this chapter the particular case of a MEMS device
with a power-law profile and whose domain satisfies various symmetry conditions.
More information about the set of solutions can be given in this situation, which is
still complex—even in the radially symmetric case—as shown in the above bifur-
cation diagrams.

Our main purpose here, however, is to introduce mathematical techniques that
have not been used so far. The first section includes an interesting and nonstandard
one-dimensional Sobolev inequality. This will be followed by a powerful mono-
tonicity formula that should have many applications. Section 3 deals with the
counterpart of the last chapter’s compactness result in the case of radially sym-
metric solutions, where the role of the radial Morse indices is investigated. This
will allow for a more detailed description of the branches of radially symmetric so-
lutions that closely reflects the numerical evidence. We finally pay special attention
to the two-dimensional case, which arguably is the most relevant for engineering
applications.

Part II: Parabolic Equations with Singular Nonlinearities Modeling
MEMS Dynamic Deflections. The second part of this monograph is devoted to
the study of dynamic deflection of (D, r). We note that the case when the per-
mittivity profile f(x) = 1 was studied in the 1980s (see [95, 96] and references
therein). However, the case of a varying and somewhere vanishing profile turned
out to be a rich source of new and interesting mathematical phenomena.
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Chapter 8. Tt is shown here that whenever A < A*(Q2, f), the unique solution
u of (D, r) exists for all time and must globally converge as 1 — +00 to its
corresponding unique minimal steady state. On the other hand, if A > A*(Q2, f)
the unique solution u of (D, ) must quench at finite time 7 (€2, f) in the sense
that u(x, t) reaches 1 at time T (2, f).

We also study the set of finite-time quenching points, and we show among
other things that generically they cannot occur at zero points of the varying permit-
tivity profile f(x), a fact first observed numerically and conjectured in [99]. We
then study the case of convex domains and also the particular case of radially sym-
metric solutions on the ball, where often the only location of finite-time quenching
points is at the origin.

Chapter 9. We analyze and estimate the finite quenching time 7} (€2, f) of the
dynamic solutions of (D, r). This often translates into useful information con-
cerning the speed of the operation for many MEMS devices, such as RF switches
and microvalves. We start by giving comparison results for the quenching time
T, (€2, f) in terms of the profile f and the voltage A. We then obtain various ana-
lytic estimates for quenching times for large voltages A, while in the third section
we give analytic and numerical estimates on the quenching time for any A above
the pull-in voltage A*. The last section deals with the particular but important case
when the extremal steady state is regular, which occurs at least in low dimensions
(1<N <.

Chapter 10. The focus here is on the quenching profiles of the dynamic solu-
tions of (D} r), when A exceeds the pull-in voltage A*. Since such solutions must
quench at a finite time T = T} (2, f), we obtain—by adapting self-similarity
methods and center manifold analysis—estimates on the quenching rate and a rela-
tively precise description of the solution near time 7" and around a given quenching
point a. Under a compactness assumption on the quenching set, we establish en-
ergy quenching rates such as

(1.89) lim / a _f( *) dx = 400

t—>T~ u(x, 1))

for any y > %N . On the other hand, we show that in the radially symmetric case,
a solution quenching at 0 must do so in such a way that for any C > 0,
(1.90) lim M — (3A£(0))3
t—>T— (T — )
uniformly on |x| < C~/T —t.

More precise quenching behavior is given in dimension N = 1. For example,
it is shown that for sufficiently large voltage A, finite-time quenching necessarily
occurs near the maximum points of the profile f, which refines considerably the
results obtained in Chapter 8 about finite-time quenching not occurring at the zero
points of the permittivity profile f.

Part III: Fourth-Order Equations Modeling Nonelastic MEMS. The third
part of this monograph is devoted to the study of nonelastic MEMS models where
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bending effects are taken into consideration. Specifically, we shall consider equa-
tion (C, r) where we suppose a clamped boundary condition, as well as (P, r)
where a pinned boundary is assumed.

Chapter 11. We study here the fourth-order nonlinear boundary value problem

A%y = - u)2 on a ball B ¢ R¥, again under Dirichlet boundary conditions
du

u = g = 0 on dB; there exists A* > 0 such that for A € (0,1%), the equation
has a mlnlmal (classical) solution 1 that satisfies 0 < u < 1. For A > A* there
are no solutions of any kind. In the extremal case A = A*; we prove the existence
of a weak solution that has finite energy and that is the unique solution even in a
very weak sense. The main result asserts that the extremal solution u y+ is regular
(supg uy+ < 1) provided N < 8, while u« is singular (supg uy» = 1)for N > 9,
in which case 1 — Co|x|*/3 < uy=(x) < 1 —|x|*/3 on the unit ball, where

1
A%\ 3 - 8(N-2%H(N-&
Co := (T) and A := ( 3)( 3).

9

Estimates on A*, as well as stability properties of minimal solutions, are also es-
tablished.

Chapter 12. We consider here the fourth-order nonlinear equation BA%u —
TAu = - )2 on a bounded smooth domain  C R, with the Navier boundary
conditions ¥ = Au = 0 on 92, and where A > 0 is a parameter, and 7" > 0
and B > O are fixed constants. There again exists a well-defined pull-in voltage
A* > 0 such that for A < A*, there is a branch of minimal solutions that are also
stable. The minimal solution is unique at A = A* and is regular in dimensions
N < 4. The novelty here is that, unlike the case when B = 0, there exists, at least
on a two-dimensional convex smooth domain, a second mountain pass solution for
all A € (0, A*), which shows that the two-dimensional bifurcation diagram of (P;)
changes drastically when B > 0. The asymptotic behavior of the second solution
as A — 0 is also studied. The situation is again much clearer on a radially symmet-
ric domain where the extremal solution u« is regular (supg u» < 1) provided
N < 8, while u = is singular (supg up+ = 1) for N > 9 and % is small enough.
Key ingredients for proving the singularity of the extremal solution in higher di-
mensions (above N = 9) are the new Hardy-Rellich inequalities described in the
Appendix.

Glossary of Notation. The following list of notation and abbreviations will
be used throughout this book. Let 2 be a smooth domain of R”.

o C(Q2,R") (resp., C5° (2, R™)) will denote the space of infinitely dif-
ferentiable functions (resp., the space of infinitely differentiable functions
with compact support) on €.

e For 1 < p < 400, LP(2) will be the space of all integrable functions

u : 2 — R with norm
1

ully = (/ |u<x>|de)”
Q
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For p = +o0, L°°(2) will be the space of all measurable functions
u : Q — R such that

|l]lco = esssup lim |u(x)| < +oo.
xX€EQ

e Form e Nand 1 < p < 400, W™P(Q) will be the Banach space of
(classes of) measurable functions u : Q2 — R such that D%u € L?(Q2)
in the sense of distributions, for every multi-index o with || < m. The
space WP (Q2) will be equipped with the norm

lullwm.riy =) lim [D%up.
la|<m
Wom’p(Q) will be the closure of C5° (€2, R) in WP (Q2), and W~"9(Q2)
will denote the Banach space dual of WOm’p (€2), where % + % =1.
o WM™2(Q) (resp., Wom’z(Q)) will be denoted by H™ () (resp., H}' (2)).
They will be Hilbert spaces once equipped with the scalar product

(u,v) = / u(x)v(x)dx.
Q
The dual of H;™(£2) will be denoted by H ™" (£2).



