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Abstract

Druet (Ann. Inst. H. Poincar0e Anal. Non Lin2eaire 19(2) (2002) 125) solved two conjectures
proposed by Ha$%m Brezis (Comm. Pure Appl. Math. 39 (1986) 17) about “low”-dimension
phenomena for some elliptic problem with critical Sobolev exponent. In Druet (Ann. Inst.
H. Poincar0e Anal. Non Lin2eaire 19(2) (2002) 125), the proof of one of the two conjectures
is reduced to an asymptotic analysis which is carried over with very general techniques in-
volving pointwise estimates. We propose here a diBerent and simpler approach in the blow-up
analysis based on integral estimates and on a careful expansion of the energy functional.
? 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Let � be a smooth bounded domain in RN , N¿ 3, and a(x) be a continuous function
in C�. We consider the problem

(P)




−Du+ au= up in �;

u¿ 0 in �;

u= 0 on @�;

where p=(N +2)=(N − 2) is the critical Sobolev exponent. Solutions for Eq. (P) can
be found by studying the minimization problem for the functional

Ja(u) =

∫
� |∇u|2 + ∫� a(x)u2(∫

� |u|p+1
)2=(p+1) ; u∈H 1

0 (�) \ {0}: (1)
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In fact, by standard elliptic regularity theory, any minimum ua for Ja provides a smooth
solution for problem (P), up to rescaling the Lagrange multiplier and changing ua into
|ua|. Remarking that the solvability of (P) implies the coercivity of the operator −�+a
on H 1

0 (�), i.e. the Mrst eigenvalue �1 is positive, we can assume from now on that
−�+ a is coercive on H 1

0 (�).
Denoting Sa the inMmum of Ja, it is well known that Sa6 S, S = S0 being the

Sobolev constant, and Sa ¡S implies Sa achieved (see for instance [2]).
For N¿ 4, in [2] it is also proved that a(x) negative somewhere implies Sa ¡S

and, since S is never attained, the properties

(i) a(x) negative somewhere,
(ii) Sa ¡S,
(iii) Sa is achieved

are equivalent. So the problem turns out to be completely characterized by the local
nature of a(x).
On the other hand, in dimension N =3, the global nature of a(x) becomes signiMca-

tive: in [2] it was discussed the particular case of the unit ball and a(x) ≡ const. Some
notations are in order to state the general result: let us deMne Ga(x; y), x∈� \ {y},
the Green function in y∈� of −�+ a in � with Dirichlet boundary condition, as the
distributional solution for{−�xGa(x; y) + a(x)Ga(x; y) = �y in �;

Ga(x; y) = 0 on @�;

where �y is the Dirac measure in y, and let us set Ha(x; y)=Ga(x; y)−1=(!2|x−y|) the
regular part of the Green function Ga(x; y), where Ha(x; y)∈C(�×�) is a distributional
solution for{−�xHa(x; y) + a(x)Ga(x; y) = 0 in �;

Ha(x; y) =− 1
!2|x−y| on @�:

For the general case, the following result was conjectured in [1] and proved in [4]:

Theorem 1.1. Let � be a bounded domain in R3 and let a(x)∈C( C�) be such that
−�+ a is coercive. The properties:

(i) ∃y∈� such that Ha(y; y)¿ 0,
(ii) Sa ¡S,
(iii) Sa is achieved

are equivalent.

By test functions computations (see [13]), one gets (i) ⇒ (ii). The fact that (ii) ⇒
(iii) is well-known and is already present for instance in [2]. Brezis, in [1], proposed
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the two following conjectures:

(a) the implication (iii) ⇒ (ii) does hold;
(b) the implication (ii) ⇒ (i) does hold.

Druet proved these two conjectures and thus Theorem 1.1 in [4]. The proof of the
conjecture (a) makes use of the minimality condition D2Ja(ua)¿ 0. Thanks to (a), the
proof that (ii) ⇒ (i) is reduced in [4] to some asymptotic analysis in the following
way: let a∈C( C�) such that Sa ¡S. By continuity and monotonicity of Sa+� with
respect to �¿ 0, we get Sa+� ¡S for 0¡�¡�0 and Sa+� = S for �¿ �0, �0 some
positive real number. Since Sa+� ¡S for 0¡�¡�0, there exists ua+� a smooth positive
function achieving Sa+� for 0¡�¡�0 and satisfying the renormalization

∫
� u6a+� =

(Sa+�)3=2. By uniform coercivity of −� + (a + �) on H 1
0 (�), it is easily seen that

sup�∈(0; �0)

∫
� |∇ua+�|2 ¡+∞ and then, up to a subsequence, we can assume ua+� * u

as � → �0 in H 1
0 (�). Since, by (a), Sa+�0 is not achieved, u ≡ 0 and then we have

ua+� * 0 as � → �0 weakly but not strongly in H 1
0 (�). Hence ua+� must blow-up as

� → �0. In view of the compactness of the embedding of H 1
0 (�) into L2(�), we have

lim
�→�0

∫
�
|∇ua+�|2 = lim

�→�0

∫
�
u6a+� = (Sa+�0 )

3=2 = S3=2

and then we obtain |∇ua+�|2 * S3=2�y0 as � → �0 weakly in the sense of measures
for some y0 ∈ C� (see [14]). In [4], Druet carried over an asymptotic analysis based on
pointwise estimates of ua+� as � → �0 and proved that y0 ∈� and Ha+�0 (y0; y0) = 0.
This proves (b) thanks to the monotonicity Ha(y; y)¿Ha+�0 (y; y).
The aim of this paper is to give an alternative and more direct proof that y0 ∈�

and Ha+�0 (y0; y0)¿ 0 by exploiting integral estimates and a careful expansion of
Sa+� = Ja+�(ua+�). Moreover, the same computations lead to the implication (i) ⇒
(ii): in particular we get Ha+�0 (y0; y0)=0. Hence, assuming (ii) ⇔ (iii), we prove the
equivalence (i) ⇔ (ii).
Related problems can be found in [3,5–12] concerning the Euclidean and Riemannian

case.

2. Expansion of the energy functional

Replacing a(x) + �0 with a(x), we are led to study the asymptotic behaviour for
{u�}, where u� achieves Sa−� and is a smooth positive solution of{−�u� + (a− �)u� = u5� in �;

u� = 0 on @�;
(2)

such that |∇u�|2 * S3=2�y0 as � → 0+ weakly in the sense of measures, y0 ∈ C�.
Moreover, we assume −�+ a coercive on H 1

0 (�).
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Let us deMne for (�; y)∈ (0;+∞)× �

U�;y(x) = �−1=2U
(
x − y

�

)
; U (x) =

31=4

(1 + |x|2)1=2

and P :H 1(�) → H 1
0 (�) the orthogonal projection deMned for ’∈H 1(�) as∫

�
∇P’∇ =

∫
�
∇’∇ ∀ ∈H 1

0 (�);

where H 1
0 (�) is endowed with the inner product ¡u; v¿=

∫
� ∇u∇v and the induced

norm ‖ · ‖.
Let us set  �;y=U�;y−PU�;y, f�;y= �;y+31=4!2�1=2H (·; y) and H (x; y) := H0(x; y),

where H0(x; y) is the regular part of the Green function of −� in � with Dirichlet
boundary condition. We have the following properties (see the Appendix in [10]):

06PU�;y6U�;y; ‖ �;y‖∞ = O
(
�1=2

d

)
; ‖ �;y‖L6(�) = O

(( �
d

)1=2)
; (3)

‖f�;y‖∞ = O
(
�5=2

d3

)
; sup

y∈�
dH (y; y)¡ 0; sup

x∈�
|∇H (x; y)|= O

(
1
d2

)
; (4)

where d= dist(y; @�).
We follow now [10]: for � small, we can decompose u� in the form

u� = #�PU��;y� + w�

for #�, �� ¿ 0, y� ∈�, w� ∈T� such that

#� → 1; �� → 0; y� → y0;
��
d�

→ 0; w� → 0 in H 1
0 (�) as � → 0;

where

T� = Span
{
PU��;y� ;

@PU��;y�

@�
;
@PU��;y�

@yi
: i = 1; : : : ; 3

}⊥
:

From now on we will omit the dependence on �. We need to estimate the rate of
convergence of # and w. First we prove

Lemma 2.1. There exists C ¿ 0 such that∫
�
|∇v|2 +

∫
�
a(x)v2 − 5

∫
�
U 4

�;yv
2¿C

∫
�
|∇v|2; ∀ v∈T� (5)

for � small.

Proof. The proof is based on a well-known inequality (see [10]):∫
�
|∇v|2 − 5

∫
�
U 4

�;yv
2¿

4
7

∫
�
|∇v|2; ∀ v∈T�: (6)
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We proceed in the following way. Setting

C� = inf
v∈T�:

∫
�
|∇v|2=1

{
1 +

∫
�
a(x)v2 − 5

∫
�
U 4

�;yv
2
}

;

we have that C� is attained if C� ¡ 1. In fact, let C� ¡ 1 and let vn be a minimizing
sequence: up to a subsequence, we can assume that vn * v� as n → +∞ weakly in
H 1

0 (�) and v� ∈T�,
∫
� |∇v�|26 1 and 1 +

∫
� a(x)v2� − 5

∫
� U 4

�;yv
2
� = C�.

Since C� ¡ 1, we get v� �= 0 and the inequality

(1− C�)
∫
�
|∇v�|2 +

∫
�
a(x)v2� − 5

∫
�
U 4

�;yv
2
�6 (1− C�)

+
∫
�
a(x)v2� − 5

∫
�
U 4

�;yv
2
� = 0

holds. By the minimality of C�, the previous inequality must be an equality and∫
� |∇v�|2 = 1. Hence, C� is achieved by v�.
Now we show that lim inf �→0 C� ¿ 0. Otherwise, we could Mnd a subsequence of

minimizers v� for C� such that C� → L6 0 and v� * v, as � → 0, weakly in H 1
0 (�).

Hence, v solves −(1 − L)�v + av = 0 in (H 1
0 (�))

′ and, by coercivity of −� + a, we
get v= 0. In view of the compactness of the embedding of H 1

0 (�) into L2(�), by (6)
we get

C� =
∫
�
|∇v�|2 − 5

∫
�
U 4

�;yv
2
� + o(‖v�‖2)¿ 3

7

∫
�
|∇v�|2 = 3

7

contradicting L6 0. Finally, we set C = 1
2 lim inf �→0 C� ¿ 0.

From this Lemma, we derive now the exact behaviour of w:

Lemma 2.2. We have the estimate

‖w‖= O
( �
d
+ �1=2

)
(7)

and there holds the formula∫
�
|∇w|2 +

∫
�
a(x)w2 − 5

∫
�
U 4

�;yw
2 =−

∫
�
a(x)PU�;yw + o

( �
d

)
: (8)

Proof. The function w satisMes the equation{−�w = (#PU�;y + w)5 − #U 5
�;y − (a(x)− �)(#PU�;y + w) in �

w = 0 on @�:
(9)

By Sobolev inequality, multiplying (9) for w and integrating by parts we get∫
�
|∇w|2 +

∫
�
a(x)w2 − 5

∫
�
U 4

�;yw
2 =−#

∫
�
(a(x)− �)PU�;yw

+ o(‖w‖2) + O
(
‖w‖‖ �;y‖2L6(�) +

∫
�
U 4

�;y| �;y‖w|
)

(10)

because
∫
� U 5

�;yw =¡PU�;y; w¿= 0.
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By (3) and Sobolev inequality we get

∫
�
U 4

�;y �;y|w|=O(‖w‖)

 �1=2

d

(∫
Bd(y)

U 24=5
�;y

)5=6
+
( �
d

)1=2(∫
�\Bd(y)

U 6
�;y

)2=3

=O
( �
d
‖w‖

)
and ∫

�
PU�;y|w|= O(‖w‖)

(∫
�
U 6=5

�;y

)5=6
= O(�1=2‖w‖):

We insert these estimates in (10): using the coercivity (5), Mrst we get (7) and in turn
we obtain (8).

We are now in position to prove Theorem 1.1 expanding the energy functional.

Proof of Theorem 1.1. With the aid of (7) and (8), we expand now

Sa−� =

∫
� |∇u�|2 +

∫
�(a(x)− �)u2�(∫

� u6�
)1=3

=
#2
∫
� |∇PU�;y|2 +

∫
� a(x)PU 2

�;y + 5
∫
� U 4

�;yw
2 +

∫
� a(x)PU�;yw + o( �

d)[
#6
∫
� U 6

�;y − 6
∫
� U 5

�;y �;y + 15
∫
� U 4

�;yw2 + o( �
d)
]1=3

because, as in Lemma 2.2,∫
�
U 4

�;y|w| �;y = O
( �
d
‖w‖

)
= o

( �
d

)

and similarly∫
�
U 4

�;y 
2
�;y = O

( �
d
‖ �;y‖L6(�)

)
= o

( �
d

)
:

Since
∫
� U 6

�;y = S3=2 + o( �
d) and

∫
� |∇PU�;y|2 = S3=2 − ∫� U 5

�;y �;y + o(
�
d
), we obtain

Sa−� = S + S−1=2
(∫

�
U 5

�;y �;y +
∫
�
a(x)PU 2

�;y +
∫
�
a(x)PU�;yw

)
+ o

( �
d

)
:

By (4) and a Taylor expansion for H (x; y) we get

 �;y(x) =−31=4!2�1=2H (y; y) + O
(
�1=2|x − y| sup

x∈�
|∇H (x; y)|+ �5=2

d3

)

=−31=4!2�1=2H (y; y) + O
(
�1=2|x − y|

d2 +
�5=2

d3

)
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and hence∫
�
U 5

�;y �;y =
∫
�
U 5

�;y

[
−31=4!2�1=2H (y; y) + O

(
�1=2|x − y|

d2 +
�5=2

d3

)]

=−33=2!2�H (y; y)
∫
R3

dx
(1 + |x|2)5=2 + o

( �
d

)
:

If d → 0, then

Sa−� = S − S−1=231=2!2
2�H(y; y) + o

( �
d

)
because

∫
R3 dx=(1 + |x|2)5=2 = !2=3 and∫

�
a(x)PU 2

�;y +
∫
�
a(x)PU�;yw = O(�) = o

( �
d

)
:

Since supy∈� dH (y; y)¡ 0 (see (4)), we conclude Sa−� ¿S. A contradiction.
So we can exclude the boundary concentration: y0 ∈�. The expansion for Sa−�

becomes

Sa−� = S + S−1=2�

[
−31=2!2

2H (y0; y0) +
∫
�
a(x)

(
PU�;y

�1=2

)2

+
∫
�
a(x)

(
PU�;y

�1=2

)( w
�1=2

)]
+ o(�):

By (4) we get

PU�;y

�1=2
=

31=4

(�2 + |x − y|2)1=2 + 31=4!2H (x; y)− f�;y

�1=2
→ 31=4!2G(x; y0) as � → 0

in Ls(�) for any s¡ 3
2 and uniformly in any compact set of �\{0}, where G(x; y) :=

G0(x; y). Moreover there holds∫
�
a(x)

31=2

�2 + |x − y|2 →
∫
�
a(x)

31=2

|x − y0|2 as � → 0:

By (7), the functions w̃=w=�1=2 are uniformly bounded in H 1
0 (�) and solve the equation


−�w̃ + (a(x)− �)

(
#
PU�;y

�1=2
+ w̃

)
= �2

(
#
PU�;y

�1=2
+ w̃

)5
− �2#

(
U�;y

�1=2

)5
in �

w̃ = 0 on @�:

Up to a subsequence, we can assume that w̃ * f as � → 0 weakly in H 1
0 (�). Hence

f satisMes for any +∈C∞
0 (� \ {y0})∫

�
∇f∇++

∫
�
a(x)f+=−31=4!2

∫
�
a(x)G(x; y0)+: (11)
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Since f∈H 1
0 (�), it can be easily seen that (11) holds for any +∈H 1

0 (�) and hence
f(x) = 31=4!2(Ha(x; y0)−H (x; y0)). In view of the compactness of the embedding of
H 1

0 (�) into Ls(�) for any 16 s¡ 6, we get∫
�
a(x)PU 2

�;y +
∫
�
a(x)PU�;yw= 31=2!2

2�
∫
�
a(x)G(x; y0)2

+ 31=4!2�
∫
�
a(x)G(x; y0)f + o(�):

Since f∈W 2; s ∩C( C�) and G(x; y0)∈Ls for any 16 s¡ 3, we get that G(x; y0) is an
admissible test function in (11) and then

31=4!2

∫
�
a(x)G(x; y0)2 +

∫
�
a(x)G(x; y0)f=

∫
�
�fG(x; y0) =−f(y0)

= 31=4!2(H (y0; y0)− Ha(y0; y0)):

Finally, we get

Sa−� = S − 31=2!2
2S

−1=2�Ha(y0; y0) + o(�)¡S

and then Ha(y0; y0)¿ 0. Hence (ii) ⇒ (i).

To prove the converse, let us remark that the expansion for Sa−� = Ja−�(u�), u� =
#�PU��;y� + w�, is based on (7) and on∫

�
|∇w�|2 +

∫
�
a(x)w2

� − 5
∫
�
U 4

��;y�
w2

�

=− 31=4!2��

∫
�
a(x)G(x; y0)f + o(��) (8′)

and not on the equations satisMed by u� and w�.
Let us assume Ha(y0; y0)¿ 0 and let us consider test functions in the form u� =

PU�;y0 + �1=2f, �¿ 0. Since
∫
� U 4

�;y0
f2 =O

(‖f‖2∞ ∫� U 4
�;y0

)→ 0 as � → 0, we get that
(7) and (8′) hold for w = �1=2f and then the expansion

Ja(u�) = S − 31=2!2
2S

−1=2�Ha(y0; y0) + o(�)

follows. Hence Sa ¡S and (i) ⇒ (ii) is proved.
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