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Abstract. We study the existence of multiple blowup solutions for a semilinear elliptic equation
with homogeneous Dirichlet boundary condition, exponential nonlinearity, and a singular source term
given by Dirac masses. In particular, we extend the result of Baraket and Pacard [Calc. Var. Partial
Differential Equations, 6 (1998), pp. 1-38] by allowing the presence, in the equation, of a weight
function possibly vanishing in some points.
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1. Main results and examples. Let Q C R? be a smooth bounded open set.
We are concerned with the existence of solutions in the distributional sense for the
problem
(1) { —Au=pPe* — 4 N a6, inQ,

u=20 on 0N
with the property that p?e* “concentrates” when the parameter p — 0. Here {ay, ...,
an} are positive numbers, ¢, defines the Dirac mass at p, and T’ := {p1,...,pn}
C Q is the set of singular sources in (1).

Problem (1) with I' = () has been largely studied in connection with many physical
models such as thermionic emission [21], the theory of the isothermal gas sphere [14],
gas combustion [25], and in the context of statistical mechanics in [11], [12], and [23].
The asymptotic analysis for blowup solutions to problem (1) as p — 0 is contained in
[36] (see also [27]) and alternatively it can be obtained as a by-product of the general
blowup analysis of [8]: it leads in the limit to a quantization property of the energy
p? Jo e in terms of the number of blowup points and to a characterization of the
location of the blowup points. For the converse question, namely, the construction of
solutions to (1) which do blow up at the “admissible” points as p — 0, the first result
is due to Weston [38] who constructed a sequence of solutions on simply connected
domains “concentrating” on a single blowup point according to [36] (see also [26] for
more general nonlinearities). The general case of the existence of multiple blowup
solutions has been treated only in the beautiful paper [4]. Subsequently Chen and
Lin in [17] have given an alternative proof in the special case of an annulus. Thus,
perturbative problems with exponential nonlinearities in dimension two seem to be
very difficult to handle. So far only a few results have been derived that cover some
special cases (beside [4] and its extensions [2], [3], and [5], see also [13] and [29]) in
contrast to the vast literature available in higher dimensions; see, for example, [1],
[15], [28], and [32].
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Motivated by some singular elliptic equations arising in the study of Chern—
Simons vortex theory (we refer the reader to [39] and the references therein), we
are interested in analyzing (1) with T' # (). We mention that some of the progress
made about condensates in Chern—Simons models is contained in [10], [30], [33], [34],
[35], and [37] to quote a few.

Let G(z,2') denote the Green’s function of —A on Q with Dirichlet boundary
condition, namely,

—N,G(z,2') =6, inQ,
G(z,2/)=0 on 09,

and let H(z,2') = = In|z — 2| + G(z,7’) be the regular part of G(z,2’). Problem
(1) is equivalent to solving for v = u + 47 Ef\il a;G(z,p;), the regular part of u, the
equation

N
(@) | —Ov=plzmpPer ez pyfPeve T e @,
v=20 on 0f2.

Thus, we may consider the following general model problem:

(Q) Lo =Pz —pi o |z = pa PN f2)e? i Q,
P v=0 on 99,
where I' = {p1,...,pn} C Q and {a1,...,an} are positive numbers, f : Q@ — R is

a smooth function such that f(p;) > 0 for any ¢« = 1,...,N. An extension to the
singular case of the blowup analysis in [8] is due to [7] (see also [6]). It permits us
to perform an asymptotic analysis in the spirit of [36] (see [20] for a proof). To this
purpose, set I' = {p1,...,pn} and ' = QN {f > 0}, and for given m € N and
se{l,...,N} define

m

F(21,y s 2m) = ZH(Z“ZZ) +ZG(21',ZJ')

i=1 i#]

1 m
+E Zln (|zZ —pPre —PN|2aNf(Zi))
i—1

which is well defined in (' \ I')"™ for z; # z; whenever ¢ # j, and let

1 m S
G(21y oy Zm, W1, - o Ws) = o ZZSW(l + )G (2, w;)

i=1j=1

be well defined for z; # w;, with 2; € Q,w; € C,i=1,...,m, j=1,...,s.
THEOREM 1.1. Let Q C R? be a smooth bounded open set and let f be a smooth
positive function. Let v, be a sequence of solutions of (Q), such that sup, T, < 400,
T, = p? [o 1z = p1|*™ -+ |z — pN PN f(2)eve. If T, — 0 as p — 0, then v, — 0 in
C%8(Q) and, for p small, v, coincides with the unique minimal solution of (Q),.
If T, - L # 0, then (up to a subsequence) there exists a nonempty finite set
S ={q,...,qx} C Q (blowup set) such that p*|z — p1|** --- |z — pn|?*N f(2)e?r —
ZiKzl bibq, in the sense of measures and v, — Zfil biG(z,q;) in CE2 (Q\S) for some

loc

B € (0,1), with b; =8x if ¢; ¢ T', or b; = 8w(1+ «;) if ¢; = p; for some j=1,...,N.
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Moreover, if SNT =0, then (q1,...,qx) is a critical point for the function F; if
SN ={pj,,...,p;.} and S\T' ={q;,,..., ¢, } withm+s=K, then (¢;,,...,¢,,)
is a critical point for the function F + G, Py D))

For the existence of a minimal solution of (Q),, we refer the reader to [19]. As a
vice versa of Theorem 1.1, we establish the following result.

THEOREM 1.2. Let Q C R? be a smooth bounded open set, f be a smooth function,
and {aq,...,an} C (0,400) \ N be real numbers. We have

(a) let S = {pj,,---.pj.} C T, then there exist pg > 0 small and a family
{vpto<pep, Of solutions for equation (Q), such that p*lz — p1[***---|z — py|?*N
f(z)evr — 3771 8n(1 + aj, )6, in the sense of measures and v, — Y 7_; 8w(1 +
a;,)G(z,p;,) in C2P(Q\ S) for some 3 € (0,1);

loc
(b) let S ={q1,..-,qm} CU\I and (q1,...,qmn) be a nondegenerate critical point
of F such that Aln f(q1) =--- = Aln f(gm) = 0, then there exist pg > 0 small and a

family {v,}o<p<py Of solutions for (Q), such that p*|z—p1|?®t -+ - |z—pn [**N f(2)evr —
S 816, in the sense of measures and v, — Y1, 87G(z,q;) in C2F (Q\ S) for
some B € (0,1);

(c) let S be such that SNT' = {p;,,...,p;.}, S\I' ={aq1,...,am}, and (¢1,...,qm)
is a critical point of F+G(-,pjy, -, pj.) such that Aln f(q1) = --- = Aln f(gm) =0,
then there exist pg > 0 small and a family {v,}o<p<p, of solutions for (Q), such that
PPz —pi**t - [z —pN [P f(z)etr — > r 8m(1+ 0, )op;, —|—Z§n:1 8mdy, in the sense
of measures and v, — Sy S7(1+ 5, )G(z,3,) + Yy 87G(z,0p) in C2F (@ S)
for some B € (0,1).

Let us point out that the assumption Aln f(g;) = 0 for any ¢; € S\ T is always
fulfilled by the original problem (2), so in some sense it seems a “natural” assumption
from a physical point of view. In case I' = (), part (b) in Theorem 1.2 gives a
direct extension of the result in [4], which has largely motivated our approach. More
precisely, it states the following.

COROLLARY 1.3. Let Q C R? be a smooth bounded open set, f be a smooth
function, and S = {q1,...,qm} C Q' be a nonempty set. Assume that (qu,...,qm) is
a nondegenerate critical point of F(z1, ..., 2m) = Sorey H(zi,2:1) + >oinj G20, 25) +
=50 In f(z) in ()™ such that Aln f(q1) = -+ = Aln f(gm) = 0. There exist
po > 0 small and a family {v,}o<p<p, of solutions for the equation

—Av=p?f(z)e" inQ,
v=0 on 052,

such that p? f(z)evs — Y1 | 8mby, in the sense of measures and v, — > v, 87G(z,q;)
in C?O’C’B (Q\S) for some B € (0,1).

Thus, from Corollary 1.3 the result in [4] is recovered by taking f = const > 0.

To avoid technicalities, we derive the proof of Theorem 1.2 only in the following
significant cases: (a) holds with S = {p} and p € T', (b) holds with S = {q} and
g ¢ T, and (c) holds with S = {p,q}, p € T, and ¢ ¢ I". Our approach generalizes to
any number of “peaks,” the technical details are worked out in [20]. So we restrict
our attention to the problem

{ —Av = p?lz — pl**f(2)e? in Q,

(P)y v=20 on 01},

where a € (0,400) \ N is a real number and f : @ — R is a smooth function not
necessarily positive. We will prove the following result.
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THEOREM 1.4. Under the above assumptions we have

(a) if p € Q with f(p) > 0, there exist po > 0 small and a family {v,}o<p<p, Of
solutions for (P), such that p*|z—p|*® f(z)e» — 87 (14 a)é, in the sense of measures
and v, — 8n(1 + a)G(z,p) in Cfo’f (Q\ {p}) for some B € (0,1);

(b) if g € X'\ {p} is a nondegenerate critical point of F(z) = H(z,z) + 1= In[|z—
pl22f(2)] in Q' \ {p} such that Aln f(q) = 0, then there exist pg > 0 small and a
family {v,}o<p<p, of solutions for (P), such that p?|z — p|**f(z)e% — 8mé, in the
sense of measures and v, — 871G (z,q) in 0120’5 2\ {q}) for some g € (0,1);

_(c) if p € Q with f(p) > 0 and q # p is a nondegenerate critical point of F(z) =
F(2)+G(z,p) = H(z,2) + 1= In(|z — p[** f(2)) + 2(1 + @) G(z,p) in '\ {p} such that
Aln f(q) = 0, then there exist pg > 0 small and a family {v,}o<p<p, 0f solutions for
(P), such that p|z — p|*® f(z)ev» — 8m(1+ )b, + 878, in the sense of measures and
v, = 8m(1 4+ a)G(z,p) + 87G(z,q) in Cfo’f 2\ {p, q}) for some B € (0,1).

We now discuss some applications of the results above. As it is well known, for
a > 0, the problem

I, lz=pl2e f(z)er
v=0 on 0B(0,1)

) {_AU:A Ess mBO.,

with p = 0 and f(z) = 1 possesses a radial solution for 0 < A\ < 8r(a + 1) and, as a
consequence of a Pohozaev identity, has no solution for A > 87 (a + 1). By means of
Theorem 1.4, we can show that such a threshold for existence of (3) is no longer valid
if we perturb (3) either by replacing f = 1 with a suitable nonconstant function or
by moving p close to 0B(0,1). In fact we will be able to produce solutions v, for (3)
with A, = p? [, |z — p|**f(2)e” — 8m(a+ 1) + 87 > 8m(a + 1) concentrating on two
points. According to Theorem 1.4, for this purpose we need to exhibit a nondegenerate
critical point ¢ for F(z) = H(z,2) — 2% In |z — p| + 2(1 + a)H(z,p) + £ In f(2) such
that Alnf(g) = 0. Let us recall that H(z,p) = 5= In(|p|*|z|> — 2(p,z) + 1) and
H(z,z) = 3~In(1—|z[%), where (-,-) denotes the inner product in R%. Hence we
obtain for F(z) the expression

2+« 1+«

1
]—'(z)zﬁln(l—|z|2) —?ln|z—p\+ o

1

Ezample 1.5. We study now the case p = 0. For fixed ¢ € B(0,1) \ {0}, we can
define a function f(z) such that in a small neighborhood of ¢ it takes the form

f(z) =exp ((zl —q)? - cq(z2 — ) —2In (1 — |z|2) +2(24+a)ln |z|),

where ¢c; = 1+ W > 0. For such a function f(z), the function F(z) near g takes

In (|p*|2* = 2(p, 2) +1)

the form F(z) = £ [(21 — q1)* — ¢4(22 — ¢2)?] and hence g is a nondegenerate critical
point of F(z) such that Aln f(q) =2 — 2¢, + W = 0. Moreover, if we choose ¢
such that |q| = 74, with r, € (0,1) satisfying r2t® + r2 — 1 = 0, then such an f may
be constructed as a small perturbation of the constant function 1. In fact, for € small
we can just take f. of the form

= (i (F9) (59

xexp (€(z1 — q1)° — ce(z2 — q2)> = 2In (1 — [2?) + 2(2 + a) In|2]),
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where ¢, = € + W and 0 < x <1 is a smooth cut-off function such that x =1
in B(0,1) and x = 0 in R?\ B(0,2).
Ezample 1.6. We study now the case f(z) = 1. The function F(z) becomes

1 o 2+ 1+
f(z)zﬂln(l—m )—Tln|z—p|+

o 21,12
- 5 ln(|p\ || —2(p,z>+1).

Let us remark that, according to the nonexistence result stated above, for p = 0 the

function F(z) = 5= In (1 — |2|?) — 22 In|z| has no critical points in B(0,1)\ {0} and

this remains true for p close to zero. On the other hand, we can take p € B(0,1)

such that p — e € 9B(0,1) along a straight line. We consider a point ¢ = se for
€ (—1,1). We have that

VF(q) = (m +0(1)> e asp—e

for |s — 1| bounded away from zero. Let so = — 453 for p close to e we find a point
sp such that VF(spe) = 0 and s, — s as p — e. We evaluate now the determinant
of D2F(spe):

9 (a+2)8
det D .7'-(5[)6) = m —+ 0(1) as p — e.

Hence ¢, = spe is a nondegenerate critical point of F(z) for p close to e such that
qp—>—ai+26 asp —e.

As in [4], Theorem 1.4 is based on the construction of a suitable family of approx-
imate solutions v(p, A, a) for problem (P),, with (A, a) a suitable set of parameters,
such that the linearized operator about v(p, \,a) is invertible. Thus, for p small a
fixed point argument will provide a solution v, close in some sense to v(p, A, a) with
the required asymptotic properties.

2. Construction of approximating solutions. As far as part (a) in Theo-
rem 1.4 is concerned, in view of the expected asymptotic behavior, the approximating
function v(p, 0,0) will be constructed by gluing in a small neighborhood of p the limit
function 87(1 + a)G(z,p) with a suitable local solution of —Av = p?|z — p|?>* f(p)e”.
Using the scale invariance v(z) — v¢(z) = v(tz) + 2(ac + 1) Int¢, ¢ > 0, valid for the
solutions of the equation

(4) —Av = p[2e,

we can construct local solutions which are very concentrated near p in such a way
that the gluing with 87 (1 + «)G(z, p) is sufficiently accurate. This is possible in view
of the fact that 87(1 + «)G(z,p) — +oo as z — p. For part (b) in Theorem 1.4,
we glue in a small neighborhood of ¢ the limit function 87G(z,q) with a suitable
local solution of —Av = p2|q — p|**f(g)e’. The scale invariance involved here is
v(z) = v(z) = v(tz) +21Int, t > 0, valid for solutions of

(5) —Av = pPe’.

Finally, for part (c) in Theorem 1.4 we combine the two previous constructions by
gluing the limit function 87(1+ a)G(z,p) +87G(z, ¢) with a local solution of —Av =
02|z —p|?® f(p)e near p and with a local solution of —Av = p?|q — p|?* f(q)e? near q.
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To this purpose, we recall some known facts. The solutions of —Au = €% in R?
have been completely classified by Liouville in [24] and in complex notations they
satisfy the so-called Liouville formula

8|F" (2)|*

(6) TR EE

for some meromorphic function F with F’(z) # 0 whenever defined.

This representation formula generalizes to solutions in the punctured plane C\ {0},
as proved in [18], by choosing some multivalued meromorphic function F' : C — C,
locally univalent in C \ {0}, satisfying

either F(z)=G(2)z",veR, or F(z)=o(2),

where G and ® are single-valued holomorphic functions away from the origin and
where ®(2)®(—2) = 1.
A complete classification for solutions of

—Au=e* in R?,
0 {

Jge € < F00

can be performed either by the Liouville formula or via the moving plane method (see
[16]) and it leads to the only possible choice of F(z) = az + b, with a,b € C. The
complete classification for solutions of

(8) { —Au=e" —4rad,—g in R?

Jp2 € < F00

is due to [31] and it corresponds to the choice F(z) = az**! + b, with a,b € C and
b=0if « ¢ N. By choosing F(z) = #2(1—1—722), 7> 0, v € C such that |y| < 1, and
F(z)= #za“, we can provide, respectively, solutions for (7) and (8) in B(0,1). By
taking the regular part of this functions and adding a term 2In %7 we obtain a large
class of solutions for (4) and (5) in B(0, 1), respectively, in the form

8(a+1)272
(1202 + |22@+D)2’

872|1 + 3722
(P9 + P+ 727

(9) Vpr =1In Vpry =10

Let h(z) be some smooth function such that h(0) > 0. The function v,, —
In h(0) satisfies the equation —A (v, . — Inh(0)) = p?h(0)|z|>*ev~—1O) in B(0,1).
Similarly v, -0 — Inh(0) is a solution for —A (v,,0 — Inh(0)) = p>h(0)evrro~n ()
in B(0,1). For p > 0 small, they can be viewed as approximating solutions when we
replace h(0) by h(z): such an approximation, however, may not be accurate enough
to carry out our fixed point argument. In fact, we will need to define the local
approximating solution U, . as the difference between, respectively, v, -, v, 0 and a
Taylor expansion of Inh(z) at z = 0, taking into account two basic facts:

(a) Up,r must be a “good” local approximating solution;

(b) translating U, - at some point ¢ € S, the difference between this local function
and the related limit function as p — 0 must be small in a small annulus centered
at q.

In case a > 0, v, » —In h(0) is satisfactory for (a). For (b), if p € SNT', we choose
some 7 > 0 such that the Taylor expansion corresponding to the difference function in



Downloaded 10/17/12 to 209.118.76.29. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1316 PIERPAOLO ESPOSITO

a small annulus centered in p contains powers of z — p of degree 1. In case a = 0 the
situation is more delicate as there is more degeneracy. Assuming Alnh(0) = 0, for
(a) we need to take the local function U,  of the form v, » , —Inh(0)—2Z-0,In h(0) —
z2 . 0,,Inh(0). While for (b) we need the difference function to be an infinitesimal
term of order 3 as z — ¢. This condition will be attained by specifying 7 > 0 and ~
suitably and by the condition d,F(q) = 0. The invertibility of D?F(q) will guarantee
the invertibility of the linearized operator around such an approximating solution at
p=0.

Summarizing, an appropriate approximating solution for our problem near a
blowup point should look like

U, () = Vp,+(2) —Inh(0) if >0,
pr\E) = Vpr~y(2) —Inh(0) — 22 -0, Inh(0) — 22 - 0, Inh(0) ifa=0

with 7 and « suitably chosen. Introduce the differential operators 0, = %(81 —i0a),
d: = 1(01 + i0,), and the notation 2z - 2/ = 2z’ + 2z’ = 2Re (22/). Thus A = 49.0;
and the Taylor expansion in 0 for any smooth function A :  — R takes the form

h(z) = h(0) 4 2z - 9.h(0) + 2% - 9..h(0) + %Ah(()) +O(|z%).

Hence U, - is a solution in B(0,1) of

2|z|2*h(0) eV if a >0,
_AUM:{M (0)

(10) erln h(0)+22-0; Inh(0)+2%-0.: nh(0) LUp,r  if ¢ — 0,

and we see that the right-hand side (RHS) of (10) may be expressed as follows:

P?|z**h(z)esm + O (p?|z>*FLeler) if a >0,
RHS =4 U, 2 U ;
p?h(z)eVem + O (p?|z]3eVrr) ifa=0

provided that when o = 0 we also satisfy Alnh(0) = 0.
By the assumptions in Theorem 1.4, we may translate the function U, ,(z) around
the points p and ¢ by defining

U, (2) = vor (2 = p) = In f(p), -
U2(2) = Vpmay(z = @) —In (]2 = p[**f) (¢) = 22— ¢ - 9. In (]z = p[**f) (q)

—Z=¢-0,,In (Iz = p**f) (q)

with 71, 79, and v to be specified below. Thus, we have

i

0 (02lz - p\2a+1eU3(z)) in B(p, 1),
(11)  AUL(z) + p*lz — [ f(2)e ) =

0o (p2lz - qlseUg(z)) in B(g,1).

Note that the following expansions hold as p — 0:

2,2
Vpr(z—p) =81+ )’ —4(1+a)ln|z —p|+ O <|z;|§(°‘+1)>’

72,2
'Upm’y(z‘l)1n87241nZ‘I|+22q2"Y+O(|ZQ|4+ Z_pq|2>'
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Let us define the limit function L(z) as

87(1+ a)G(z,p) if S ={p},
L(z) = { 87G(z,q) if 5= {q},
8m(l+ a)G(z,p) + 87G(z,q) if S ={p,q}.

Hence in |z — p| < 1 we get

2 2
1 _ 2 2 TP
U,(2) = L(z) = n8(a + 1)1y — F1(p) + O <|z i) + |z — p|),

while for |z — ¢| < 1,

UZ(z) — L(z) = In8r5 — Fa(q) — 22 — ¢ - 0. F2(q)

—2 7'2292 3
—2—q - (0..F2(q) —27)+ O +|z—q]” ),

|z —ql?
where
Fi(2) = {8#(1 +a)H(z,p)+1n f(2) if S = {p},
! 87(1 4 @) H(z,p) + 87G(z,q) + In f(z) if S = {p,q}
and
Fole) = {87rH(z, q) +In (|z — p|2af(z)) if S ={q},
2 8mH(z,q) +1n (|z — p|2°‘f(z)) +87(1+ a)G(z,p) if S={p,q}.

Let us remark that by assumption 9,F>(q) = 0. Now we specify the values for 71, 2,
and ~y to be fixed as follows:

e3F1(p) e3F2(a)
Tn=—]7"—", Tog=
LB+ T B

In such a way we obtain

1
P Y= iazzj:é(q)

722 '
(12) U,}(Z)_L(Z):O(MM‘FV—M) in|z—pl<1
and

72 2 .
(13) Ug(z)—L(z) :O<|z 2_pq‘2 —|—|z—q|3> in|z—gq|l <1

By scaling the variables, we can always assume that B(p,2)NB(q,2) = 0, B(p,2) C €,
B(q,2) C Q, and |7| < 3. For i = 1,2 let r; = r;(p) be a positive smooth function

such that %15 =0(1) as p — 0 and 2 = O(1) as p — 0. Let x be a radial smooth
Ty T2
function such that 0 < xy <1, x = 1in B(0,1), and x = 0 in R?\ B(0,2).
To obtain part (a) in Theorem 1.4, for A; € R, [\;| < 371, we consider the

approximating function

o) = (1-x (222 ) sat1 + )t

1

S (F20) =)~ 0

1
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Sov(p,0) = U} in |z—p| < r1. For part (b) in Theorem 1.4, we need a three-parameter
family of approximating functions and, for (A2,a) € R x C, |A2| < %7-27 la| < %7 and
9(z) = |z fp|2°‘f(z), we consider

v(p, Aoy a)(2) = <1 X <Zq“>> 87G(z,q + a)

T2

zZ—q—a
() e (o - 0 - @) = Ra(2)

where P,(2) =Ing(g+a)+2z2—q¢—a-0.Ing(qg+a) + Z—qg—a -9, In g(g+a). So
v(p,0,0) = Up2 in |z — ¢q| < ro. Finally, for part (c) in Theorem 1.4, we need a four-
parameter family of approximating functions and, for (\,a) € R? x C, A = (A1, \2),
Al < 2 min{ry, 72}, |a| < 3, and g(z) = |z — p|**f(2), we take

vip, N a)(z) = (1 —x (Z _p)> (87(1 + )G(z,p) + 87G(2,q + a))

1

+ X (Z’f'_lp) (”P,Tl+)\1(z _p) - lnf(p)) in B(p’ 1)’

v(p, A a)(z) = (1 —x (W‘)) (87(1 + )G(z,p) + 87G(z,q + a))
() Gnraisan G~ 0= @) = Fafs))in Bla.1)
and

v(p, A a)(z) = 8n(1+ a)G(z,p) +87G(z,g+a)  inQ\(B(p,1)UB(g,1)).

To unify notation, from now on we will use the convention that
e X\ =0,a=0if S = {p},
[ )\1 :OlfS:{q},
e every expression containing p (or ¢) does really exist only if p € S (or g € 5).
We remark that in such a way the last definition of v(p, A, a) contains the previous
ones and (), a) always lie in R? x C.

3. A fixed point argument. In this section we obtain the desired existence
result by means of a fixed point argument. To this end we have postponed the proof
of the most technical aspects necessary to such an approach in the next two sections.

For a € C, |a| < 1, it is possible to construct a diffeomorphism ¥(a,-) : @ — Q,
smoothly depending on a, such that ¥(0,-) =1d, ¥(a,z) = z — a for all z € B(q, %),
and ¥(a,-) = Id for all z € Q\ B(q,2). We can suppose that all derivatives of ¥(a, 2)
in a, @, z, Z up to order 3 are bounded in €.

We define now suitable function spaces of weighted Hélder type appropriate for
our problem, which were introduced for the first time by Caffarelli, Hardt, and Simon
in [9].

DEFINITION 3.1. For any v € R, k € N, 8 € [0,1], define the space

CEF(B(0,1)) := {w e C*F (B(0,1) \ {0}, R) : [w|kp,, < +oo},
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where

k
|wlg,p,p :=supr™" sup rj\ij(z)\
r<1 {z: 5<lzI<r} \ i

Jj=

S s (ka(@_vkw(y”)}

(o, o], yle(3,m)} v —yl?

Let v; € (0,1) and v5 € (1,2) be two real numbers. Set Q@ = Q\ B, B =
B(p,1) U B(q,1), and define

X={weC*(Q\S,R): w=0o0ndQ, |u|x < +oo},

where [w|x = [wly 5.6 + [w]2,6,0,8,1) + [Wl2,6,2,8(,1), and

Y={we Co’ﬁ(Q \S,R): |wl|y < +oo},

where |w|y = ||w||o,,(3,(z + ”wHO,B,Vl—?,B(pJ) + ”w|0757l/2—2,B(q71)'
We can replace the norm in X with an equivalent one (for p fixed) of the form

[wlx = lwly g6+ 71 w2801, Bm1) + 72" [Wl26,02,0,1)

and we will refer to the space X, endowed with the norm | - | x/, as X’.
Finally, we define

E={(w,\a):we X, NeR?* acC}

with the norm |(w, A, a)|e = |w|x + |A| + |a|, and £ as the space £ endowed with
the equivalent norm |(w, A, a)|er = |w|x: + [N + |a]-

We can produce a solution v(p, A,a) +wo¥(a,-), (w,\,a) € &, for problem (P),
if (w, A\, a) is a zero for the nonlinear map

N:&—=Y
(w,\,a) = N(w,\,a) = Av(p, \,a) +wo ¥(a,-)] o ¥(a,-)"

+ ng o \I/(a,’ ')_18’0('0’)‘7&)0‘1/((1,-)714_1”)

where g(2) = |z — p|**f(z). Define Lo,x,a) : & — Y as the linearized operator of N
at (0,\,a). Hence,

[,(0)\7(1)(}17 o, b) =A (h o \I](a’ )) o \I/(a7 ,)—1 + p29 o \Ij(a7 _)—1ev(p,k,a)o\ll(a,‘)*1h
+3 03 [Adx,v(p, A a) + p2g(2)e" MDDy 0(p, A, a)] 0 W(a, )"

+2b- [Adzv(p, N, a) + p*g(2)e" P dzv(p, A, a)] o ¥(a, )
+20; [Av(p, A, a) + p*g(2)e P D] g0 -1 [(b0a + b0g) T(a, ) 7]

In Theorem 4.13 below, we show that the map Lg,0,0) : £ — Y is uniformly invertible
for p small. We can decompose

N(’LU, Aa a) - N(O? 0) O) - L(O,O,O) (U}, )‘7 CI,)
= [N(wa )‘7 a) - N(07 >‘7 a) - L(O,)\,a) (U), Oa O)] + (L(O,)\,a) - L(O,O,O)) (wa Oa 0)
+[N(0,, @) = N(0,0,0) = L(0,0,0)(0, A, a)].
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In the following three steps we estimate in Y each term above. For simplicity, we
show only how to derive the estimates for the L* part in | - |y since the estimates of
the Holder term can be established in a similar way: all along the paper we will use
implicitly this fact to simplify all the computations.

Step 1. Let

fi(w,\,a) = N(w,\,a) = N(0,),a) — L xq)(w,0,0)
= p%go U(a, _)—1ev(p,/\,a)o\11(a,~)’1 (e — 1 —w).
Since

B(g,1) = Blg +a,1)

—1 .
wla, )™ z —z+a,

we obtain the bounds

(14)
O (i) i B,
O (s ,,W) in B(p.1)\ B(p.r1)
|p?g 0 ¥(a, ')_167’(”’A’a)°m(a")71| =40 ( T )2) in B(q,rs),
O<|zpq|4) in B(g,1) \ B(q,r2)
O(p?) in Q,
(15)
0] (W) in B(g,72),
|0 p2g 0 W(a, ) LerPr@ew (@)™ = & o (ﬁ) in B(g, 1)\ B(q,rs),
O(p?) in Q\ B(q,1),
(16)
0 (%) in B(p,2r) if i = 1,
10x, p2g 0 U(a,-) " ter@A@eT(@) ™ — L (W) in B(q,2rs) if i = 2,
0 elsewhere.

Hence, we can derive

| fr(wr, Ar, a1) = fiwe, Az, a2)]o 5.6
=0 {PQ(”wl l2,5.0 + lwa2lly g o) (w1, A, a1) = (w2, Az, az)llg},
[f1 (w1, A, a1) = fi(wa, A, az)
= 0[p#H (Jun

,B.v1—2,B(p,1)

v1,B(p,1)

A= el + a1 = aal) (ol g, 5 + [zl 501) |
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and

||fl(’wl7 A1, a1) - fl(w27 A2, a2)||0,ﬁ,u2—2,B(q,1)
=0 [p” (lwr — wal2,8,05,B(q,1)
+ A1 = A2] + la1 — az]) (Jwil2,8,0s,B(q1) + w2l

2’371/2’3(%1))] :

Since %15 + é = 0O(1), finally we get
Ty T
| fr(wi, A1y ar) = fi(ws, Ag, a2)ly = O [[(wi, A1, a1) — (w2, A2, a2)] e
X (w1, A1, a1)ler + [(w2, A2y az)]er)] -
Step 2. Define
f2(wa )‘7 a’) = (L(O,)\,a) - L(O,O,O)) (’LU, 0, 0) = f21 (w, a‘) + f22(wa )‘7 G,),
where
fr(w,a) = Afwo¥(a,-)] o ¥(a,-)" ' — Aw
and
S3(w, X @) = pPg 0 W(a,-) " e PRI Ty — p2ger 0000y,
Using the identities
Oz (wo W) = (0,wo W) 0¥ + (Q;w o ¥) 9,0,
Awo¥) = (Awo ¥) [|0,¥[* + |9:F|?] + 8Re [(0.,w 0 ¥) 9, VI V]
+8Re [(Q,w 0 ¥) D,; V],
we obtain
f3(wi,a1) = f3 (w2, a2) = A(wy —ws) (10:¥(a1,)|* + [0:¥ (a1, -)|* = 1) lg(ay, )~
+ 8Re (8zz(w1 — wz)azlll(al, ) |\Il(a1,-)—1 ('“)5\11(@1, ) |\Il(a1,-)—1)
+ 8Re (6Z(U)1 - wz)(’?zglll(al, ) |\Il(a1,-)—1)
+A[wp0¥(ar,)]oW(ar, )" = Afws 0 ¥(a, )] oW (az, ).
Therefore
fo(wi,a1) = fy (w2, a2) = O (|D* (w1 — wa)||ar| + |V (w1 — wa)||ay]
+ |D2w2||a1 — a2| + \ngﬂal — a2|)
in B(q,2)\ B(g,1) and f3(w1,a1) — f3(ws,as) = 0 outside this region. Hence
[£2 (w1, a1) = f3 (wa, a2)|y = O [[(w1, A1, a1) = (w2, Ag, az) e
X (w1, A, a1)ler + (w2, Az, az)er)] -
By (14), (15), and (16), for f7 we get
1£3 (w1, A1,y a1) — f3(wa, A2, a2)|y
= O[(Jlwi]x + |w2] x) [(w1, A1, a1) — (w2, A2, a2) e

Hwr = wafx ([(w1, A1, a1)|er + [ (w2, A2, az)]er)] -
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Step 3. Set f3(\,a) = N(0,),a) — N(0,0,0) — L0,0,0)(0, A\, @). Let us write explicitly
N(0,\,a) in B(p,1),

1 — —
N(0, ), a)(z) = Ay <Z p) A+ Sony (Z p) N
ri 1 1 1
z — _
- X <r1p) pPlz = p[rerrmin P

+ P2|Z _ p|2af(Z)68‘”(1+a)G(Z’p)+87rG(z’q+a)+X(%)Al(2)

and in B(g,1)

N0\, a)(z) = %AX (ZT‘ q) A2(z) + %agx (Z - q) L 0.A%(2)

2 T2

- X (Z — q) p26U9172+*2,'Y(Z_Q)

T2

+ p29(z + a)eBTr(1+a)G(z+a,p)+87rG(z+a,q+a)+x(%)Az(z)’

where g(2) = |z — p|**f(z) and

Al(z) VR e N (Z 7p) - hlf(p) - 87T(1 + a)G(va) - 87TG(Zv q+ a) in B(pa 1)7
D2(2) = Upryiagn (2 — @) — Palz+ a) — 87(1 + @)G(z + a,p)
—87G(z + a,q + a) in B(q,1).
In B(p,1) we get

1 - 8 —
A nN(0,X,0)(z) = ZAx (Zmp) 0L (2)851681 + Eagx (Zﬁp> - 0:0Y,.(2)85161
1

- <z—p>p2|z . p‘Qan/J,71+>\1(z—p) (v;(z)v,i(z) + U;k(z)) 8516k1
1

+ pQ‘Z o p|2af(Z)687T(H_a)G(z’p)+8WG(zvq+a)+X(zfp)Al(z)

(28] (b x (22 v;<z>v;<z>)léslam,

z—

Dune N(0, A, a)(2) = p?]z — pl22 f(z)eVoms s CoP) I SR H (R DA )

% (Zr—lp> (X (Zr_lp) _ 1) 0L (2)0a AL (2)841,

1 - 8 -
DuaN (0,7, 0)(2) = — Ax (z p) OualS!(2) + - D:x ('Z p)  Duaz AL (2)
1

and

T1 1

+ 02|z — p|2 f(2)erm +a (z=p)=In f(P)+(x (552) -1 A" (2)

y {(x (Z;lp) —1) DuaA(2) + (x (z;p) - 1>2aaA1<z>aaA1(z>},

where v} (2) := O, Vp,7, 4, (2 — p) and v},,(2) := Ox;,,Vp.r, 47, (2 — p) for any j,m.
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Similarly, in B(q, 1) we get

1 — 8
L ax ( ") V2 ()bsbin + (
) )

2
T3

—x <ZT—2 Q) ervp,Tzﬂz,w(z—q) (vg(z)v,%(z) + U?k(z)) 5490k0

z —

8)\5,\kN(0, /\, a)(z) =

q> . 85’L)§k. (3)5326k2

T2

+ ,029(2 + a)687r(1+a)G(z+a,p)+87‘rG(z+a,q+a)+X(ZT—_;)A2(Z)

(20 (e (1) k) ) e

Bary N (0, X, a)(2) = pelrmatren G-+ O(550- 1)A2(Z)x (ZT_? q) vE(2) 6o

) [ (X (Zr_z q) - 1) 0,0%(2)g(z + a)e~ Pal=+a)

+0, (g(z + a)e’Pa(”“)) ] ,

and
1 _
DaaN (0., 0)(2) = — Ax (ng )&wAz ( ) Oaaz A2(2)
2
+p e“ﬂ o422,y (20) )—1)A%(z { Z 4 a Pa(z+a))

+ (x (zr—z q) a 1) [zaaAi’(z)aa (g(z i a)efPa,(z+a))

+ 003 (2)g(z + a)e P

+(><(Z;q)—1) (0.02(2))2g (2 + a)e Pa<z+a>},

where v2(2) := O, Up ry 4 ag v (2 — q) and 03, (2) 1= Ox;x,, Vp,rat A0y (2 — @) for any j,m
We have that

070,70 (2)| 4 |0r70p,2 (2)| + 2]V Orr0p,2 0 (2)| = O(1)
for A € {0,7}, f(2)e”"™I®) =1+0(|z = p|), g(z + a)e "+ =1+ O(|z — ¢?), and
|6aA1(Z)‘ + |aaaA1( )+ z _p”aaazA (2)] =0(1) in B(p,1),
|0aA%(2)] + |0aa A% (2)| + |2 — ]|00azA%(2)| = O(1)  in B(g, 1),
i (90 + @)e =) | 4 |0 (902 + @)e™ )| = O(1z - o).

So we can derive |9?N (0, \, a) lo,8,01—2,B¢(

py) =O00") 10PN, A a)lo,5,0,—2,8(4,3)
= O(ry"), where 9% denotes some second-order derivative of N(0,\,a) in the vari-
ables \ and a. Since |02N (0, A, a)]o,s = O(p?) in ©, we conclude that 02N (0, X, a)|y
= O(ZZ 177 7). Finally, we obtain

[f3(A1,a1) = f3(A2, a2) |y = ((ZT >|| w1, A1,01) — (wz’)\2ya2)|§f>~
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Step 4. We define

K:&-¢&

(U/,)\,G,)‘* L(_()O())

[N(0,0,0) + (N(w, A, a) — N(0,0,0) — L(g,0,0)(w, A, a))].
Let us remark that (w, A, a) is a zero for N & (w, A, a) is a fixed point for K. Sum-
marizing the previous steps and by means of the uniform estimates derived in Theo-
rem 4.13 below, we have

| K (wi, A1, a1) — K(wa, A2, az) e

2
<y (Z ) (s Al + ez, do,a2)]e)

=1
X (w1, A1, a1) — (we, A2, az)| e

for some constant Cy > 0, where we have taken into account that

i=1

2
[wlx < (Zﬁ”’) N(w, A, a)ler
We can choose v; € (0,1) and v, € (1,2) in such a way that (v1,1 —1v1) N (VQ -
1,2 — vy) # () and let us fix some § > 0 in this set. Define o = 4;”25 +1,r = pdw
and note that N(0,0,0) = n where 5 is the error term defined and estnnated in

section 5 In fact, from the technical estimates contained in sections 4 and 5 we see
that ||L 0,0,0) nler = O(r1 =% +r27%) (see (37) below), and we get

| K (w, A, a)|er < Cy

(Z) l(w, A )l 47170 g

for some constant C; > 0, where we have used the fact that | K (w, A, a)—K(0,0,0)| ¢ <
CO(Zle 77 ") (w, A, @)% . Thus, the suitable choice of r1, 72, as expressed by prop-

K2
erty (38) below, allows us to conclude that for p small the map K is a contraction of

the space
' n{(w,\a): |(w,\a)e <2C (ri° +r37°%)}

into itself. So there exists a unique fixed point (w”, A?, a”) of the map K for 0 < p <
Po, po > 0 small, such that

6
"w ”2 .58, Q+T11|‘wp||2 B,v1,B(p,1) +T2 ”prQ B,v2,B(q,1) + |)‘p| + |ap| <20y ( % + 7‘% ) .

Hence v, = v(p, \?, a”)+wP oW (a”,-) is the solution we are looking for in Theorem 1.4.
It admits the desired properties in view of the definition of v(p, A, a), the fact that

2u+4 + p — 0 as p — 0 and w” — 0 uniformly in  and in Cl B\ S), as follows
by (38).
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4. Invertibility of the linearized operator Lg,0,0)-

4.1. Some local operator. The radial case. We are interested in studying
the linearized operator of the equation

(17) —Av = p?|z]**¢?  in B(0,1), a>0

about the radial solutions v, » defined in (9) in case either a = 0 or a ¢ N. We define
the linearized operator about v, » by setting

_ 21 120 Jvp,
L, w=Aw+ p*|z|**e" w

and we investigate the invertibility of L, under Dirichlet boundary condition. In-
spired by the work of Caffarelli, Hardt, and Simon in [9] also used in [4], we have the
following result.

PROPOSITION 4.1. Let o ¢ N. For all v € (0,1) and 7 > 0, there exist py > 0,
a continuous linear form HY %, (B(0,1)) — R, and a linear operator Gpr:
Y, (B(0,1)) — €2 (B(0,1)), uniformly bounded for 0 < p < po, such that for all
p € (0,p0) and for all f € C°5,(B(0,1)) there exists a unique bounded solution w of

(18) { L,w=f 1inB(0,1),

w=0 on 0B(0,1)
which can be uniquely decomposed as follows:

72p% — |22+ D)

7202 + |20t D)

w(z) = Gpr(f)(2) + Hp ,(f)

Moreover, H) () =0 for any f such that fOQW f(re?®)dd = 0 for all r € (0,1].

PROPOSITION 4.2. Let a = 0, v € (1,2), and 7 > 0. There exist py > 0, two
continuous linear forms HY - %% (B(0,1)) — R, H) %%, (B(0,1)) — C,
and a linear operator G, . : C’B’i (B(0,1)) — C%#(B(0,1)), uniformly bounded for
0 < p < po, such that for all p € (0, po) and for all f € 08162 (B(0,1)) there exists a
unique bounded solution w of

L,-w=f in B(0,1),
w=0 on 0B(0,1)

which can be uniquely decomposed as follows:

7207 — ||
72p% + |2|2

z
w(z) = Gy (F)(2) + HOL(F) P
Moreover, HS)T(f) =0, H;)T(f) = 0 for any f such that fo% f(re?®)dd = 0 and
foh f(rei®)e=do = 0 for all r € (0,1].

By the Liouville formula (6), we get that, for any j € Z and |a| < 7“.'04‘:)‘ 1+1,

. 8(a+ 1)2r2|1 4 Lredlgzi )2
(72p% + [2[2@+ D1 + a27]2)?
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solves (17). Hence by taking its derivative with respect to a, evaluated at a = 0, we
obtain a solution of L, ;w = 0 in the form

1 (G+a+1D)7r2p?+(j —a— 1)zt
a1 7202 1 |2 [B@tD)

2, jel.

Consequently,

(G+a+1)12p2 + (j —a— 1)r2eth
722 4 p2(atl)

rj, JEZL

a;(r) :=

is a solution for the ordinary differential equation

. ) 2 8(ar+1 2,7_2 2,,,2& ]
aj + ;a]— - ;%aj (7('2/72 +)r2(ap+1))2aj =0 in(01).
Let us remark that for j > 0, {a;(r),a_;(r)} is a set of linearly independent solutions
for the same homogeneous equation. Hence any other solution is obtained as a linear
combination of a;(r) and a_;(r). For j = 0, another independent solution can be
explicitly found and it behaves like Inr as r — 0. Since Inr and a_;(r), j > 0, are
not bounded in a neighborhood of » = 0 and a;(1) # 0, j > 0, by means of Fourier
decomposition, it is easy to derive the following lemma.

LEMMA 4.3. Let w be a bounded solution of

L,w=0 1n B(0,1),
w=0 on 0B(0,1).

Then w = 0.
We decompose w and f into Fourier series:

w(z) = wo(r) + 237 wi(r) e, f(2) = folr) + 22727 fi(r) - e
So problem (18) becomes equivalent to

.. . 11272 p2p20 )
(PJ) {wj + %wj - r2 w] + miﬂcﬁl)pwi fj’ m (07 1)7

for j € N. Set j, =min{j e N : j>a+ 1} and m, =max{j e N : j <a+1}.
Step 1. By the variation of constants formula, for j > j, and v > —j,

T ds S
w;(r) = < /1 w0 /0 tay (1) fj(t)dt> a;(r), >0

: i 1)p2(et D)
defines a solution of (Pj). Since 0 < j—a—1 < (j+a+1):2zzi§é(ai1>l)r2 = < Jtatl,
we have that for —j <v < j r=%|w;(r)| < (?4_374_3

rescaled Schauder estimates (see [22]), we find

=== fjlo,8,,—2 and, by classical

(j+a+1)2
(j—a-1)

lwjlep.0 <C

1
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for suitable C' > 0. Finally, for —j, < v < jo, we can define h(z) = 22;”:01 w;(r) -
e~"% and, since | fjfo,5.—2 < | ]

0,3,v—2, there holds the estimate

+o00 +oo .
GG+a+1)2 1
> wilepw <C Y : | lo,g.0—2-

o —1)242_ 2
j=Ja S U)o

So h(z) is a well-defined function in C2# (B(0,1)) and satisfies
Lo-h =235 fi(r)-e7% in B(0,1),
h=0 on 0B(0,1)

together with the estimate |28, < C|flo,8,v—2 for —jo < v < ja.
Step 2. For 0 < j <mg, v>—j,and r > 7 := (%72p2)2a14r?, it is possible to

define
’(I)j(’f’) = (/1T %ﬁs) AS taj(t)fj(t)dt> aj(r).

Note that a;(7) = 0 and hence w,;(r) is not well defined up to 7. To be able to obtain
an extension of w; for r < 7, define ¥;(s, p) = (s — f)Q% [ ta;(t)f;(t)dt and set

19 wi) =apln) | [ A= g ST ).

5—T (1=7)(r—7

The function w; is well defined also for r < 7 and gives an extension of w;. We will
refer to the first and second terms in the expression of w;(r) above as w}(r) and

j
wjz(r), respectively. Since for 0 < r <7 — 6, § > 0, we have

T8 api(s, p) — U7 p)d

1 (s —7)?

+[5 mj(ssp /0 ta; () f;(t)dt + (lir + ;) ¥;(7, p)] ;

the function w;(r) does solve (Pj) for » > 0. Note that for v < j, we have that
suprg(m)r*”|wj(r)| < C|filogy—2. In fact, for r > 27 we find |w;(r)| = |0;(r)| <
C|filo,gy—2r as a%(s) = O(<%;) for s > r. While for 7 < r < 27 there holds

J

527

S

w;(r) = a;(r) [

1 2.2 | 2(at+1)\20—j-1
_ r i (T°p° +s )%s ds
01 = 1001 < Clfiloso (5= 1) 7
lw; (r)| = |w;(r)] < C[fjlo,p,v—2 77 r G+ at+ )22+ (— a— 1)s2(etD]?

27
r | ds
0,8,v—2 (% — 1) T |:7’/ m + 1:| S C”f]
Since |1 (s, )| < CIflon.-a7s" 3~ for s < 7, then (7 )] < Clflo,par 7!
and in turn for s < 7
(s —7)

< C|f;l

l0,8,0—2T".

(20)

0.8.0—2 (Svfjfl 4 fvfjfl) .

\ <l
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For s € [§,27] \ {F}, we decompose

(8, p) — Y;(T, 1 F(25-1) (g _ )2 7
= (Z)— :Z)}Q( 2 lsaz(s) a [(a+1)(2_j2)}2 ]/0 ta;(t)f;(t)dt

J

i [t

sas
and hence, using a homogeneity argument, we get
’%‘(8, p) — (7, p) ‘

(s —7)?

o [1 4 22(@+1)2
< Clfjlosp—2r""’ {(1_Z2(a+1))2Z2j+1

z 2(a+1
1 — t ( )ty+']71dt
1 +t2(°‘+1)

}

\ < Olfilopns” "

(e+1-j)+(at14j)e2tD2 1
(1 _ 22(a+1))2z2j+1 (Z _ 1)2

a=2e[d,2\{1}

< s < 27 we obtain

%‘(Sap) _j/}j(Fa ,0)

(s —7)2

Finally, it is easy to see that for r < 27 and for w]2 there holds

Consequently, for

[Nl

(21)

—v 2 —v+j ‘1 B t?(a+1)|
sup 7w ()] < Clfiloga—z sup 77—

re(0,27)

< Clfilopu—2

in view of the estimate available for ¢;(7, p) and v < j. Since |w}(2r)| < |w;(27)] +
_ _ 27 . — (7 L

w2(27)] < Clfilopu—a”, then | [T LELLTO 45| < C| fi0,5, 279, So we
derive, by splitting the integral in (19) as [ = 12T—|—f2rf and using (20) and (21),
the estimate sup,¢ (o 7 " |wj(r)] < C|fjlosp—2 for v < j. Finally, the estimate
sup,¢0,1) " " [w;(r)| < C|filo,p,,—2 does hold and, using classical rescaled Schauder
estimates, we get the existence of some constant C' > 0 such that |w;|25, <
C|flo,gy—2 for 0 < j <mg and —j <v < j.

Step 3. Analogously, for j = 0 and v > 0, it is possible to consider, for 0 < r <

1

intr) = ([ sy | aal0shar) o)

By defining (s, p) = (s — f)28a+(s) o tao(t) fo(t)dt, we can extend 1y for r > 7 by
0

Wo(r) = ag(r) {/OT 1#0(8,(;)) — wg(F’p)der -

§—7T)

i ()7,

considering

(fr_ T)%(f’ P)}

which defines a solution for (P0), with wg(1) # 0 in general. We have the estimate
supre(oﬂr_”|wo(r)| < C|folo,s,y—2- In fact, for r < T we see that [ig(r)| = |wo(r)| <
C| follo,g,p—2r” since -+~ = O(1) for s <r. While for £ < r < there holds

ag(s)

|t (r)] = |wo(r)] < C fol

T " ds
_ 1—7) *”“/ <C o,
0,8,v—2 ( 7 r 0 (5 — F)Q = "foloﬂﬂf 27
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Furthermore, since [¢o(s, p)| < C| folo,g,,—27%s"~! for s < T, as above for s <

obtain

T ]

(22)

- oios (717,

’1/]0(87p) ,(/10(777 p)‘ < C”f()|
( >

On the other hand, for s > % we have

(23) ‘%(S’é)—jﬁo(?“, P)‘

7)?

In fact, (23) follows as in (21) when s € [5,27] \ {7}. While for s > 27, we have

< Clfollo.pr—2s""".

Yo(s,p) —Yo(7,p)| I 7 7 )
plsphtlrd) [t [t
1 S
+ s [ O n0a
< Clfollo,s,—2 <S + OEIEE e ) '

Finally, since v > 0 it is easy to see that sup,c(1)7r™"|ao(r)io(7, p);(%Fﬂ
P)*wg(T_,P)ds‘

C|folo,s,y—2. While by (22) and (23) for r > 7 we get |ag(r) fOT wo(s’(g_ﬂ
Clfolo,s,y—2r”. Hence sup,.c o1y [wo(r)| < C|folo,p,y—2- Consequently, by clas-
sical rescaled Schauder estimates, we find a suitable constant C' > 0 such that
lol2,8,0 < Clflo,8.—2- We set now

IN

2.2 _ .2(a+1)
. 0 T2 —r
(24) wo(r) = wo(r) + Hp,‘r(f)mu
where H) _(f) € R is such that w(1) = 0. Hence wo(r) is a solution for (P0) and for
v >0,

[HS (/)] < Clio(1)] < Clflop2:

Notice that for @« > 0, @ ¢ N, Steps 1-3 lead to the proof of Proposition 4.1 by
choosing v € (0,1) and G, (f) = 1o (r) + 23755 w;(r) - e,

Step 4. To obtain Proposition 4.2, it remains for problem (P1) to be considered
with a = 0 while for the validity of Steps 1-3 we must specify v € (0,2). To account

also for (P1) we further specify 1 < v < 2. Then it is possible to define

() = ( / ' el tay (t)f1(t)dt) ar(r)

) 2\2 s 12
= 2/ (ijs)ds/ s f1(t)dt.
TEpS + 14 ) S o T°p+t

To estimate [w1(r)[2,6,0, introduce z = = and observe that

Zl*l/ z (1 + 52)2 s v
sup rn ()| < Lfilogwa  sup / ds [t
r€(0,1) g 2€(0,(rp)-1) L+ 22 Jo 53 o 1+12

<Cl|f

l0,5,0—2-
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Set

(25) w1 (T) = 1f)1(7‘) + mm’

r

where H} (f) € C is such that w; (1) = 0. Hence wi(r) is a solution for (P1) and

|H, ()] < Clin(1)] < C|flopw—2

Therefore, for a = 0 Proposition 4.2 also follows with
Gur(f) = bo(r) + 2001 (r ”+2ij e

whenever v € (1,2). Finally, using Lemma 4.3 we can deduce the uniqueness of
w;(r). The uniqueness of the decomposition (24) follows by evaluating wo(r) at r = 0.
Similarly, if @ = 0 the uniqueness of the decomposition (25) follows by evaluating wlT(T)
at r = 0. Hence Propositions 4.1 and 4.2 are completely established.

Remark 4.4. The function G, (f) is the unique solution in C2# (B(0,1)) for

L,,w= fin B(0,1) such that

. If]o(l) if o ¢ N7
Gor(Dlonon = { to(1) + 21 (1) -e7™  if a =0.

4.2. Some local operator. The nonradial case. In case a = 0, we discuss
now the invertibility of the operator

2 v
L, w=Aw+ pe’»mw

under Dirichlet boundary condition. The following result holds.
PROPOSITION 4.5. Let a = 0. For all v € (1 2) and 7 €C |y < i,

there exist po > 0, two continuous linear forms H) (B( 1)—R, H), -
%2, (B(0,1)) — C, and a linear operator Gprmy: OOF 2( (0,1)) — C2P(B(0,1)),
uniformly bounded for 0 < p < po, such that for all p € (0,p9) and for all f €

C%F,(B(0,1)) there exists a unique bounded solution w of

L,r~yw=f in B(0,1),
w=0 on 0B(0,1)

T > 0,

which can be uniquely decomposed as

U)(Z) = GP,T,’Y(f)( ) + HST'y(f)aTUP’Ta’Y + 2H; ‘r'y(f) : ag’l)p’-,—’»y.

Moreover, the following estimates hold:

(26) 1G oo (D2 < C(1Gpr(Fl2p + 0% Hp ()] + [Hy - (H])
(27) [Hp (DI < C (0 1G . (Hl2,50 + [HY () + 0% Hp (D))

(28) 1Hp -1 (D] < C(0°1Gpr (Dl2p + 02 [Hy () + |H, (£)])
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(29) 10-G .z (Dlosonlhs < C(10:Gor(Hloonlis + 02 1Gor (250
+ P Hp (O + 1Hy - (£)])

for some constant C > 0.
Proof. In case a = 0, we compute

li 6 ( ) li 2 |Z‘2|1+722|2_7—2p2 2
im 0,v 2)=1lim [ = .
o0 T p—0 \ T |2|2|1 + v22|2 + 72p?

( 6yz 2(1+~v22)(1 +37z2)>

)
T

iii% Ozvp,ry(2) = lim

p—0 \ 143722 " [2]2|1 + 1222 + 722
I +oo
=67z (Z(_l)k3k7k22k> —2(1+ 3@52) <Z(_1)k7k22k—1>
k=0 k=0

2
= + 272 + 0t (2)

uniformly on compact sets in B(0,1) \ {0}, where n(2) = 23720 (—1)F+1(3k+2 —
2)7F+2z2k+3 is orthogonal to {1,e*™} (in the sense n*(re') is orthogonal to 1 and
e*? in L2([0, 2n]) for any r € (0, 1]) and it is a harmonic function. Set Span{1,e~%*} =
{ag + 2a; - e : ay € R, a; € C} and define 7 as the orthogonal projection over
Span {1,e~"}. Define the mapping ¢, : (ho,h1) € Rx C — (¢} (ho, h1),%2(ho, h1)) €
R x C by setting

¥p(ho, ha) + 202 (ho, ha) - €% =7 (hoDrvp r 0 (€¥) + 201 - Oz, - (7)) .
Note that 1, — 1o as p — 0 in the operatorial norm, where g (ho, h1) = (%ho7 —2h
+ 27k ) is an invertible operator for |y| < 1 with inverse ¢y (ho, h1) = (%ﬁo, —ﬁ~

(Yhy + Zl)) Hence, for p small 1, is invertible with uniformly bounded inverse. Let
f e % (B(0,1)) be a given function and v € (1,2). By Remark 4.4, there exists a
unique wg € C2P (B(0,1)) such that

L,-wy=f in B(0,1),
wo |aB(0,1)= ho + 2hy - €% € Span {1,e~%}.

Let (ho,h1) = ’Qb;l(iLo, h1). We define on dB(0, 1)
B(0) = hodrvprn(€?) + 2hy - Dzv, 7 () — ho — 2Ry -7

in such a way that 7¢ = 0. We extend ¢ in B(0,1) as ¢(z) = o(r)¢(6), where
0 < o < 1is asmooth function with o =1 in [1,1] and 0 = 0 in [0, 1]. Since L, ¢ €
Span {1,e~"}, by Proposition 4.2 we get HS (—L,.¢) =0, H} (=L, ) =0 and
hence wy := G, (—L, +¢) vanishes on 0B(0,1). The function wy := wo + ¢ + w; €
C%8(B(0,1)) solves

{Lp,7w2 =f in B(0,1),
w2 |oB(0,1)= ho0rvp,r~(€") + 21 - Dz 7 (")

with |wa|28. < C|flo,gy—2. Moreover, ws is the unique solution in C28(B(0,1))
for the problem. If wh is a solution in €27 (B(0,1)) with

w/2 ‘83(0,1): hf)afvpﬁﬁ(ew) + 2h/1 ) aivﬂ,‘rﬁ(eia) = BE) + 2]:0/1 e 4 ¢,
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then by the umqueness part in Proposition 4.2 we derive wg = wj — ¢ — wi, ho = ho,
hl = hi, where wj = G, - (—L,, Tgb’) and ¢’ extends gb’ as before. Since v, is injective,
then hj = ho, B, = h1, ¢ = ¢ and hence ¢/ + w| = ¢ + w; and wh = wo.

Then L, -, as an operator between

{w e C’E’B (B(0,1)) : w |pB(0,1)= hoaTvaW(eie)—i—Zhl-3511,77777(61'9), (ho,h1) € RxC}

and C%7, (B(0,1)), is an isomorphism with inverse uniformly bounded with respect to
|-lo.5,,—2 and [ -|2,5,,. We will denote this inverse operator as L. Moreover, we have
the estimate |ho(f)| + |hi(f)] < C|flo,g,v—2. We use now a perturbation argument
to prove Proposition 4.5. Since for z,z,y € B(0,1) we have

(720° + |2]*)?|1 4 37222
(120 + |22|1 4 722]2)?

[Vp,ry — VUp,r|(2) = ‘hl O‘Z|2

(Vp, 79 — Vpyr) (é):y((;pn','y — Up,r) () ’ < 210, (Vprry — Vp2) ()| — y|1—ﬁ

< € (max{[, |y|})*~"

for some point ¢ on the segment joining = and y, we get that |v, .~ — v, -
Hence, for w € C2# (B(0,1)) we have the estimate

(30)  [(Lpry = Lpr) wlopo—2 = p°| (€777 —€”m)w
A solution for the problem

{ LPﬂ'v’Y’w = f in B(07 1)7
w |3B(0,1) H,(U)T 'y(f)aTUP;T,’Y( ) - 2H; T ’y(f) : aszaTv’Y(eiG)

corresponds to a fixed point for the map w — L2 f + L, (L, — L, 7~)w. By (30)
we deduce that this map is a contraction. So it has a unique fixed point w = G, 7 ,(f)
which satisfies |G+ (f)l2,8.0 < C|L, ~(f)]2,3,,- At this point, we deduce (26)-(29):
since

lo,52 < C.

—2 < Cp?|wlzp..

; 2 i i — i
1070577 (€") — ;| +10:0p,r(€7) — (—2e O 297 4t (e 9)) | <Cp?,
there holds the estimate [, — | + 1,1 — 1 '| < Cp*. Therefore

(hoy 1) = g * (hos ha) + O (P [H ()| + p°|H,, - (£)])

(31) = (O(H, ()l +p IHI,T(f)I),O(pQIHS,T(f)I +|H, (1))
as ho = —HY (/)% 2 ;} and hy = —H} _(f) 7. On 9B(0,1) there holds

P(0)= ;ho +2(—2hy + 29hy) e — ho — 2hy - €7 + 2hy - ()
O (p?|ho| + p?Iha]) = 2h1 - (") + O (0| H, - (F)] + p°|H} - (f)])
=0 (p*|H, ()| + |H, . (f)])

and we deduce

(32) [ll2,5, =0 (P*[Hy (D + [H, (H)]) -
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Since G, -~ (f) = L;}f“‘L;ﬁ(Lp,T = Lpr~)Gp 7 (f) with Lpf,if =G,y (f) +¢~5+w1a
we get (26) as follows:

1G o (Dll2,p0 < C(1Gpr (2,50 + 10)2,6,0 + lwrl2,6,0)
< C(IGpr(Nlzpw + p° | Hp (N + [H, - (f)])

and in turn by (32) and (26) we obtain (29).
Letting S = f + (Lj,r — Lypry)Gpr~(f), by (31) and (26) we find

1Hp -1 (N = 1ho($) = O (P*IGpr(Nll2,p + 1 Hp ()] + 0% Hp - ()])
1Hp -1 ()] = 1h1()] = O (PG e (fll2,p0 + p° | Hp ()] + | Hp - ()])

and the proof of Proposition 4.5 is completed. O

4.3. Some global operator. Let a € (0,400) \ N be a fixed number. Let x be
a radial smooth function such that 0 < x <1, x = 1 in B(0,1), x = 0 in R?\ B(0,2).
In Theorem 1.4 we are interested in dealing with three possible cases:

(a) the concentration set S is a single point which is a singular source, that is,
S = {p}, and in this case we consider the associated potential as given by V,(z) =
p*x(z — p)|z — p|>**evrm1(37P) where 7, > 0 is defined in section 2;

(b) the concentration set S is a single point which is not a singular source, that
is, S = {q} with ¢ # p, and the associated potential considered in this case is V,(z) =
p*x(z — q)evr 27>~ where 75 > 0 and 7 are defined in section 2;

(c) the concentration set S = {p,q} and the associated potential is V,(z) =
0*x(z — p)|z — p|>¥evrmiG7P) 4 p2x (2 — q)evr 727379 where 1,75 > 0 and 7 are
defined in section 2.

We are assuming that B(p,2) N B(q,2) = 0, B(p,2) C Q, and B(g,2) C Q. Set
B =DB(p,1)UB(q,1) and Q = Q\ B.

We introduce the operator £, = A 4 V,, where the potential V, is defined above
according to the cases (a), (b), and (c) we wish to deal with. We investigate the
invertibility of £, between X and Y™ (see section 3 for the definition of X and Y). We
will prove the following result.

THEOREM 4.6. There exist pg > 0 small, continuous linear forms 'Hg,l,’Hgg :
Y — R and H;Q 1Y — C, a linear operator G, : Y —, X, uniformly bounded for
p € (0,p0), such that for all f €Y and p € (0, po) there exists a unique solution w(z)
of

Low=f inf,
w=20 on 0f2

which can be decomposed in a unique way in the form
w(z) = Go(f)(2) + x(z = )M} 107 Vp,7, (2 = D)
in case (a), in the form
w(2) = Gp(£)(2) + x(2 = OV 20rvpm, (2 = 0) + 2X(2 = O Hy 5 Ox0p.7, 1 (2 = @)
in case (b), and in the form

w(z) = Go(f)(2) + x(z — P)YH} 10707, (2 — D)
+X(2 = QOHY 20:0pm 7 (2 — @) +2x(2 — OH ) 5 - OsVp7y (2 — )
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in case (c).

We collect some preliminary results which will be crucial to the proof of Theo-
rem 4.6. Since |V,| < Cp? in Q, from classical elliptic theory we have the following
lemma.

LEMMA 4.7. There exists pg > 0 small such that for all f € C’O’B(Q) there exists
a unique solution w € C*5(Q) for the problem

Low=f in Q,
w=20 on 9.

Moreover, [w]y 56 < C|flo 5.0

We introduce now the exterior Dirichlet to Neumann map. Let ® € C*#(0B);
we can extend @ inside 2 in such a way that ® € C*#(2), ® = 0 on 09, and
|2l 5.6 < Cl®[2,808-

By Lemma 4.7 we can find a solution w for

Lyo=—L,> inQ,
w =0 on HN

and hence we = w + ® solves

Lyws =0 inQ,
we =0 on 0F),
we = O on 0B

with [wel, 5.6 < Cl®|c25(8)-
Define

S, : C*?(0B) — C**(0B)

P
D — S,(d) = % 0B

where n is the unit inward normal on 8B to €. If @ denotes the solution of

{Aw =-Ad inQ,

w=0 on 89,
then
A — @) = —V,wp  in €,
W — =0 on 99

and so, by classical Schauder estimates, @ — W[, 56 < Cp*|®|c28(5p). Hence, if

So denotes the Dirichlet to Neumann map corresponding to A on Q, we have that
S, = Sy + O(p?). Summarizing, we have the following lemma.

LEMMA 4.8. There exists pg > 0 small such that for p € (0,po) the map S, is
well defined and S, — So as p — 0 in the operatorial norm.

We introduce now the interior Dirichlet to Neumann map. Let ® € C?#(dB),
which we extend as ® in B in such a way that |®]25., Bp.1) + |Pl2,6.0m. 1) <
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C|®
v of

|2.3,05- By Propositions 4.1 and 4.5, we see that there exists a unique solution

el

L,0= fﬁp@ in B,
=0 on OB

and hence vy = 0 + ® uniquely solves

ﬁpvq> =0 in B,
ve = P on 0B

with |ve [pp1) le; + 1ve [B(g1) lex < Cl®[2,.08-
The space

S ={w=h+Xo;v,.(2—p): he Cf{ﬁ (B(p,1)), A e R}
is endowed with the norm |w|e, = |h]2,5,,,B(p,1) + |A], and the space
E = {w = h+A0rVp ry »(2—q)+2a-050p r, (2—q) : h € C2F (B(q,1)), A € R,a € C}

with the norm [wle, = |h[2,8,,,B(q,1) + Al + |al.
Define

T, : C*?(9B(p,1)) — C*F(0B(p,1))

¢1 — Ty (¢1) = Or,va |oB(p,1)
T? : C*?(9B(q,1)) — C"F(0B(q,1))

$2 — T (d2) = Or,00 |oB(g,1)s

where ® = (¢1,¢2), 11 = |z —p|, and r2 = |z —¢]. Tff is a uniformly bounded operator
such that the following lemma holds.
LEMMA 4.9. T — T§ as p — 0 in the operatorial norm, where

+oo
Topr =2 E na, - e~

n=1

with ¢1 = ag + 2 Z:ﬁ Ay - €70 while
Te¢y = —2ay - (e +7e ) 42 Z nay - e,
n=2

where ¢y = ag + 2ay - (¥ — Fe=) + 2 z:z ay, - e, The variable 6 denotes the
angular variable of ﬁ and ﬁ, respectively.

Remark 4.10. (1) The map a; € C — a3 —~ya; € Cis invertible; see the discussion
for the invertibility of 1. Since a1 - (¢? — Fe™%) = (@, — vya;) - e, the statement
of Lemma 4.9 makes good sense.

(2) The operator T§ is the interior Dirichlet to Neumann map associated with A
on B(q,1)\{q} with a first-order singularity in ¢, since w = ag+2a; - (ﬁ —yz —q)+
257 a4, -z —¢" is a harmonic extension of ¢y in B(g, 1)\ {¢} with ,,w loB(q,1)=
T3 2.
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Proof. Assume for simplicity that p = 0. Write

~ —imo _ (L +T2p?) i6 ~— —ind
¢1(9):a0+22an'€ :Waoﬁrvmn(e )+QZCL”€ .

n=1

Then w = Wuoa Vo (2) + 23272 ra, - e=0 4wy solves

L,w=0 in B(p,1),
w = ¢ on 9B(p,1)

if and only if w; solves

Lp,ﬂwl = fl = *p2|Z 7p|2ae'up,,.1 (2 Z:;z rnan : eiine) in B(p7 1)7
wy =0 on OB(p,1).

The well-known estimate | Z _1r"an g~ ind l2,81 < C|é1]2,8 implies | fi]o,8,0,—2
Cpa+t wH |#1]2,8. Since fo f1(re?)df = 0 for all r € (0,1], by Proposition 4.1 wy (2)

AN

. 1-v
Gori (f1)(2) with [Gp . (f1)]2,80, < Cp=F1 |¢1]2,8. Therefore |0,w1 |opp,) |18 <
1—v
Cp=it |y |2,5 and hence
1 (14 717p%) < —ind v
T,¢1= mao&ﬁwmﬁ (2) loB(p,1) +2 Z nan -e "+ 0 (P SRl (1 ||2,6)
1P n=1
s+ Drip? e
= agp+2 na, -e " —I—O( oFl )
(EEr eI LAY P ik
1 1-vy
=Tidn +0 (p [o1lays)
Assuming for simplicity that ¢ = 0, for ¢ as above we can write
_ T2 i0 273 p? 0
¢2(0)* ana‘rvp#‘z-,’v(e )Jr 72 p2 + ‘1 + ,yegzglg o —am - afvP,sz’Y(e )
272 p? 1+ 3’_)/6*21'9 o) ind
- . - e’ 2 ind
+7-22p2_|_|1_|_,y62u9|2a1 1+,§/€—210 +a1 77 + ZCL
27_2 2 2 27_2 2 2 :722
Let h(Z) = Tgpzjlpljjlzzpao + 7'22p242r|p14|rz’y|22|2a’1 . 1113’_;/22 z, then
T2 =
w(2) = Za00rtpry1(2) = 01 Ostlpryy(2) + h() +an () 42D a2y
n=2
solves
Ly w=0 in B(q,1),
w = ¢ on 0B(q,1)
if and only if w; solves
Ly 7y w1 = fo 1= —p2e¥r2 (2 Zn Ly - 2"+ a0t (2)) — Lyr4h in B(g, 1),
wy =0 on 0B(q,1).
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Since |27 a2 a0t (2)
By Proposition 4.5,

w1(2) = Gpray (F2)(2) + Hy 1, (£2)0r0p,m 1(2) + 2H,, 1, 1 (f2) - OUp.ra 1(2)

with |Gz, (f2) 2,800 + 1 HY 1, o (f2)| + [H) o, (f2)] < Cp*7 2| a]2,5.
Therefore |0,w1 [9p(g,1) |1,8 < Cp* 72| d2]2,4, and so

|2.5,2 < Clal2,8, we get | fallo,g,0n—2 < Cp* 2| 22,5

T2
TP2¢2 = anaraTrUP,Tsz |BB(‘1,1) —az - 87"821}/777'2,7 |5B(q71) tar- 87”77J_ ‘8B(q,1)
+o00 _
+ 2 Z nay - eilna + O (p27l’2 ”(bZ ”276) )
n=2
By direct computation, we find 9,0;v, 7, 4 |aB(g,1)= O(p?) and

2, —i i
0:0z0p 7y loB(a,)= Or (—re"’ +29re™ 1 (re “’)) =1 +0(p%)
=2(e" + 3¢ + 9.t (re'?) |—1 +O0(p?).

Consequently, T3¢2 = T¢¢2 + O(p* 2| p2]2,5) and the proof of the lemma is com-
pleted. 1]
Define

T,: C*#(0B) — C*(9B)
® = (¢1,¢2) = T,® = (T, 61, T, 2)

and similarly the operator Ty. We want to prove the following lemma.

LeEMMA 4.11. There exists po > 0 small such that the operator S,—1T), is invertible
with uniformly bounded inverse for p € (0, po).

Proof. Since S, =T, — Sy —Tp as p — 0 in the operatorial norm, we want to
prove that Sy — Ty is invertible. By an idea of R. Mazzeo used in [4], we claim that
it is enough to prove that Sy — Tj is injective. Regarding Sy — Ty as an operator
from H'(OB) into L?(dB), it is a self-adjoint first-order pseudodifferential operator.
Since Sy and T are elliptic with principal symbols —|£| and |£]|, respectively, the
difference Sy — Tp is also elliptic and semibounded. Hence, Sy — T has a discrete
spectrum and the invertibility reduces to prove injectivity. The invertibility in Holder
spaces then will follow by classical regularity theory. Let ® € H!(dB) such that
(So — Tp)® = 0 € L?(0B). In view of (2) in Remark 4.10, by Lemmas 4.8 and 4.9
there exists a solution wq for the problem

Awg=0 inQ\S,
wy =0 on 092,
wy = P on 0B,

such that
s1+2q1 -z —p+O0(|2 —pl*) as z —p,
= {32+2q2- (i —770) + 0z~ ) asz—g
for some s; € R and ¢; € C. The assumption (Sy — 7p)® = 0 ensures that we are

gluing harmonic functions in Q and B which coincide with their normal derivative on
OB. In this way the resulting function is harmonic in '\ S.
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In case S = {p}, wp is bounded near p and it extends to a harmonic function
in  with homogeneous Dirichlet boundary condition, hence wy = 0, ® = 0, and
the injectivity of Sy — Ty is proved. In the remaining cases S contains the point
q # p, the solution wy must be equal to 8mgs - 0;G(z,q) because their difference
is a harmonic function in Q \ S with removable singularities. Moreover, there holds

20, (q2 - 07 H(2,q)) |.=q= — 4 which can be rewritten as follows:
7. q27
(33) 4202 H(q,q) + G20, H(q,q) = 7427'

Let us recall that, if S = {q}, F(z) = H(z,2) + =In(|]z — p|**f(2)) and v =
4m0..H(q,q) + % [azz (‘Z _p|2af(z))] (q); while if S = {p,q}, F(2) = H(z,2) +
L n(j—pl?® £(2))+2(1+0)G (=, p) and 7 = 40 H (g, g+ [02- (1 — 2 £(2)] (0)+
47(1 + )0,,G(q,p). Hence (33) is equivalent to sz(q)(%) = 0 when we assume
further that Aln f(q) = 0. The assumption that ¢ is a nondegenerate critical point
for F(z) provides g = 0. Then wq is not singular in the points of S and as before
wy = 0, & = 0, and the injectivity of Sy — T follows. 0

We are now in position to give the proof of Theorem 4.6.

Proof of Theorem 4.6. By Lemma 4.7 and Propositions 4.1 and 4.5, for any f € Y
we can find wex € C2P(Q) and wine, i € &, i = 1,2, which solve

LoWext = f in Q, L,wing, 1 = f in B(p,1), Lowing,2 = f in B(q,1),

Wexy = 0 on 0, |Wint,1=0 on 0B(p,1), | wWint,2=0 on 9B(g,1).
Moreover, |wextly 5.6 + 22; [Wint: ile; < C|f[y. By Lemma 4.11, we find ¢ € Cc%h .
(0B) such that

(Sp - Tp)q) = (*arl (wext — Wint, 1) |[‘)B(p,1)7 781“2 (wext — Wint, 2) |8B(q,1))
with [®[c2.698) < C|f]y. At this point, we define wie, € C(Q2\ S) by solving

prker =0 in \ 83,
Wyer = 0 on 0,
Wyer = P on 0B.

Define

wext(z) + wker(z) in Qa
w(z) = { Wing, 1(2) + wrer(2)  in B(p, 1),
Wint, 2(2) + Wker(z)  in B(g, 1).

Since the external and internal normal derivative of w(z) on 0B coincide, we conclude
that w(z) is a solution for the problem

Low=f in ,
(34) w=0 on 052,
we OB\ 9).

It remains to discuss the uniqueness of w: let w’ be another solution of (34). Set
@ = (w' |opp1), W' |oB(g,1)). Then (S, —T,)®" = (S, — T,)® = 0 and, by injectivity
of S, —T,, we deduce ®' = ® and so v’ = w. |
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4.4. The linearized operator. Now we want to pass the information on the
invertibility of £, to A, = A + W,, where W,(2) = p?|z — p|**f(2)e? 00 and
in turn to L,,0). To an element (h,\,a) € £ we associate in a canonical way the
function

w(z) = h(2) + x(2 = P)M10rvp 7, (2 = ) + X(2 = ) A2070p,r, 1 (2 = q)
+x(2 — ¢)2a - 0:vp,r, 4 (2 — q)
(with the understanding that Ay = 0if p ¢ S and Ao =0, a = 0 if ¢ ¢ S) and we
want to evaluate the difference A, — £, on w(z). We have
[(Ap = Lo)wly < CP2(Jhly 5.6 + A+ lal)
+0° 1z = pP(f(2)e"POOE — et T Nl 5o g1y

+10%(12 = pl* f(2)e"POOE) — e a Gl 5, 5 pig1)-
Therefore,

O (p?|z — p>ottevem1(=P))  in B(p, 1),
(AP _'CP)(Z) = ( 2 3 v (z—q) ) .
O (p?|z — qevem2n(z70)) in B(q,1)

in view of (11), (12), and (13). Since |0;v, - x(2)| + |2]|0zv5,-,2(2)| = O(1) in B(0,1)
when A € {0’ 7}’ we deduce “ (Ap _Lp)w||0,6,l/1—2,B(p71) + " (Ap _[’P)wHO,ﬂ,Vz—Q,B(q,l) =
O (r®|(h, A\, a)|e’), where r := max{ry,m2} and s = min{l — v1,2 — 5} > 0. This
implies |(A, — L,)w|y < Cr?|(h, A, a)|e. Note that Theorem 4.6 can be restated as
follows: for any f € Y there exists (hg, A, ap) = 5;1f € & such that

wo(2)= ho(2) + X(2 = P)(A0)1070p,7, (2 — P) + X(2 — ©)(X0)20:Vp,r 4 (2 — @)
+2x(z — q)ao - Ozvp,7, 4 (2 — q)

is a solution for £L,wy = f in Q and |(ho, Ao, a0)|e < C|f|y, provided p > 0 is small
enough.

On the other hand, for given (h, A,a) € £ the associated w(z) solves A,w = f in
Q if and only if it corresponds to a fixed point for the map

E— €&
(h,\ya) — E;lf - E;l (A, — L) w.
Since
1£51 (Ap = Lo)wle < CI (A, = Lo)w) [y < Cre|(h, A, a)le,
there exists pp small such that for 0 < p < pp such a map defines a contraction.
Thus, for any f € Y there exists a unique (h, A, a) € &€ solving A,w = f in Q with

[(h, X a)lle < CILS fle-
We rewrite the solution w(z) in the form

w(z) =N (z) + Z Aidx;v(p,0,0)(2) 4 2(=a) - Bgv(p,0,0)(2)
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with

W(z) = h(z) + x(z = P)A1 (Orvp,r, (2 = p) — Ox,v(p,0,0)(2))
+x(2 = @) A2 (8rVp ry 4 (2 — @) — O, 0(p, 0,0)(2))
+2(1 = x(2 —q))a- dgv(p,0,0)(2)
+2x(2 = q) a- (0z0p,7,~(2 — q) + 9z0(p,0,0)(2)),

where we have taken into account that (1 — x(z —p)) 9x,v(p,0,0)(z) and (1 — x(z —
q))Or,v(p,0,0)(z) are identically zero. Let us compute the derivatives of v(p, A, a):

z —

iS]

I v(p,0,0)(z) = x ( ) Orvp,r (2 — ),

1

S
mwwﬂmx@=x( q)aw@ﬁu—@

T2
and

(1—-x(52))819G(2,9)  in B(p,1),
—0zVp,ry,4(2 —q) — 05P0(2)

0(p, 0,0)(2) = +%82X(?) (87(1 + a)G(z,p) + 87G(z,q) — Ug(z))
(L= x(52)) (870G 2.0)

—1—3 Up.rany(2 = @) + 0aPo(2)) in B(q, 1),
870G (z,q) in €.

Using again that Aln f(q) = 0, we get 9z Py(z) = O(]z — ¢|?), and so

Ix(z = p) (Orvp,r (2 = p) — Ox,v(p; 0,0)(2)) |2,8,01,B(p,1) < C(r
Ix(z —q) (371)%;,72’7(2 —q) — Ox,v(p,0,0)(2)) ”2,[7’,1/2,B(q,1) <C(r
IX(2 — @) (0zvp,75,~ (2 — @) + Fzv(p,0,0)(2)) |2,8,0.B(4,1) <

the last estimate being valid in view of the fact that

8105 G(2,q) + 0s0p 1, (2 —q) =2

2

z— z—q p
Lo +o<)_01
e TOW A O (o ) = oW
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for any z € B(g,1) \ B(q,72). Hence |W'|x» < C|L,"(f)]e for some uniform constant
C > 0. Thus, we have proved the following result.

THEOREM 4.12. There exists pg > 0 small such that for any p € (0, pp), we have
that for any f € Y there exists a unique solution (h,\,a) € &' satisfying

Aw=f inQ,
w=0 on dN,
w(z) = h(z) + 32, Xi0x,v(p,0,0)(2) + 2a - 9zv(p, 0,0)(2)

with [ (h, A, a)|er < CILN(f)le for some uniform constant C > 0.

Let us recall now the definition of L0y : & — Y (see section 3): for any
(h,o0,b) € & we set

Lo,0,0)(h,0,b) = A, <h + Z ai0x,v(p,0,0) + 2b - dzv(p, 0, 0))

+20; [AU(Pa 0,0) + p2|z — p|2af(z)ev(p,070):|
- [(60 +50a) w(0,-)7"].

We have to estimate in Y the term
0z[Av(p,0,0) + p|z — p|** f(2)e" P00 - [(b04 + bOz) W(0,-) ] .

Since ¥(a,z) = z for z € Q\ B(g,2), we have that (b9, + bdz) ¥(0,-)"* = 0 in
0\ B(q,2). In view of (39) and (40) we get

and so using a perturbation argument by Theorem 4.12 we derive the following result.

THEOREM 4.13. There exists pg > 0 small such that for any p € (0,p9) and
f €Y there exists a unique solution (h,o,b) € £ satisfying

0= [A0(p, 0,0) + p?|z = pl** f(2)e” 00 - [ (b0, +b0z) w(0,) ]| = o(1)}b],

L(O’Oyo)w = f m Q7
w=0 on R,
w(2) = h(z) + 32, 0i0x,0(p,0,0)(2) + 2b - Gzv(p, 0,0)(2)

such that ||L(70f0’0)(f)|\g/ < CIL (f)le for some uniform constant C > 0.

5. Some estimates. In order to apply a fixed point argument to K, we used
in a crucial way the fact that K : & — & maps a suitable small ball into itself;
see Step 4 of section 3. To obtain such information we need the estimate contained
in (37) below. For this end, first we estimate the preimage through £, of the error
term 7 = Av(p,0,0) + p?|z — p>* f(2)e?® %0 In Q = Q\ B, v(p,0,0) is a harmonic
function and hence

In(2)] = [z — p|** f(2) exp (8n(1 + @) G(z,p) + 87G(2,q)) | = O(p°)
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in Q. In B(p,1) we have that

1) = 8 (22 (o = ) = 1 0) ~ 8701+ )G (2,p) — $7Gz0)

+ 200 (22) 00t e = )~ ) — 87001+ 0)G(z.) — $7612,0)

1

+ 02|z — p|2evrn (ZP){ “x <Z p) + f(z)e~ i@

1

X exp [ (1 —x (Z;lp» 87(1+ a)G(z, p) + 81G(z,q)
=) + 1) |}

and in B(q,1)

n(z) = %AX (Zr_g q) [Vp 0y (2 —q) — Po(2) — 87(1 + a)G(z,p) — 87G(z,q)]

+ %agx (ZT_Q q) 0= [Up.ry (2 — @) — Po(2) — 87(1 + )Gz, p) — 87G(2, q)]

spperemntemaf oy (220) e o ppeplage

X exp { (1 X (ZT‘Z q)) (87(1 + )G(z,p) + 87G(z,q)
e =)+ i) | |

where P,(z) is defined in section 2. In B(q, 1) there holds

(35) 0z (Vp,ra v (2 — @) — Po(2) — 87(1 + @)G(2,p) — 87G(z,q)) = —0:F2(q)

o - 202 722
a0 =2 O (lz e |z 2—pq|3> =0 (lz —q+ |z 2—pq|3>

in view of the fact that 0,F2(q) = 0 and v = 10..F2(q) (see section 2 for the
definitions of F2(z) and ). Similarly, in B(p,1) we get

7_2 2
0 (s (& = 1) — 0 1 (5) = 871+ Q)G p) — 87G(.0) =0 (14 ).

As far as second derivatives are concerned, in B(g,1) we have the estimate

(36)

2 30
0zz (Vp,ray (2 — @) — Po(2) = 87(1 + )G (2, p) — 87G(2,q)) = O ( [z — g + z—q*)"
Since T?{f% + % = O(1), recalling (11), (12), and (13), for any v € (0,2) we get the
estimates

Inlo.sv—2.801 =0 (17"),  [nlopw-2861 =0 (r5").
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Fix 0 < § < 1 to be specified below. Following the notations of section 4.1, we find

l1.6.0B(p1) = O %)

|H2,7‘1 (77 |B(p,1))‘ + "87"1GP,T1 (77 |B(p,1))

and

|Hp0,7'2 (77 ‘B(q,l))| + |H177'2 (T] |B(q,1))| + ||8T‘2Gp,7'2 (77 |B(q,1))”1,,6’,63(q,1) = O(Tg_é)-
Moreover, choosing v = v1 in B(p,1) and v = v5 in B(q, 1) we get

1—vq 3—v2

2.8.1,80p1) = Or1™"") s |Gy s (0 |Bg1))2.8,00,B(q,1) = O(ry 7).

1Gori (0 1Bl
By Proposition 4.5 we have

-5
1HY o (0 Ba)| + H oy (0 B0, 0)| + 100, Goma iy (0 | Ba,1))1,8,0B(0,1) = O3 %),

l0.8,00—2,B(q.1)) = O(r5 ).

|G o2 (1 [B(a.1))12,8.00.Ba.1) = O(In

Hence, following the notation and the construction of section 4.3, we obtain |wext, 5. ¢

< Clnlosa = 00 10wl ponpy = O ~®), and [0r,wine 2l p.084,1) =
O(r3™°).

Let & = — (Sp - Tp)il (arl (wext - wint,l) |8B(p,1)7ar2 (wext - wint,2) |BB(q,1))'
So |®|c2s95) = O(ri~® + r3~°). Consequently, |wierly 50 + lwker By len +
|wker |B(g,1) e = O(r%ﬂs + 7‘276) which in turn implies ||L:;177||g = O(r%*(5 + r}_"l
+757% 4 #3772) . We can choose v; € (0,1) and v, € (1,2) in such a way that
(v1,1 —v1) N (va — 1,2 — 13) # 0 and we can suppose that § is fixed to belong in this
set. Hence, by Theorem 4.13 we get

-1 1-6 , ,.2-6
(37) ”L(Qo,o)n”f’ =0 (Tl +r5 ) :
Let us define 0 = 4‘2":;5 + 1 and choose r; = pﬁ In this way, we have Tﬁ% =
1
_ 4a+5 _ 5
p2(1 o) —~0asp—0, %2 :p2(1 Tovg ) —0as p— 0, and
2

2 1—6—v 2—6—v
(38) (Zr{ ) (M) =2(p 7 4p ) =0
1=1

as p — 0.
Now, taking the derivative with respect to z in the expression for n = Av(p,0,0)+
0%z — p|** f(2)e?®0.0) and using (13), (35), and (36), we can conclude

39 ‘ag Av(p,0,0) + p2|z — p|2® f(2)e?(P-0:0) H o
(39) (A80(p,0,0) + p2|z = p* f(2) >o,5,3<q,2>\3<q,1> (n)
and

) 2. 20 v(p,0,0) H _ 2 vy
(10)  Jox (806, 0.0) 4 2 —pPr e @OV) | =065,

where we use in a crucial way the fact that |z — p|?® f(2)e~ () —1 = O(|z — ¢|?).
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