SOME REMARKS CONCERNING SYMMETRY-BREAKING FOR THE GINZBURG-LANDAU EQUATION

PIERPAOLO ESPOSITO

Abstract

The correlation term, introduced in [13 to describe the interaction between very far apart vortices, governs symmetry-breaking for the Ginzburg-Landau equation in \mathbb{R}^{2} or bounded domains. It is a homogeneous function of degree (-2), and then for $\frac{2 \pi}{N}-$ symmetric vortex configurations can be expressed in terms of the so-called correlation coefficient. Ovchinnikov and Sigal [13] have computed it in few cases and conjectured its value to be an integer multiple of $\frac{\pi}{4}$. We will disprove this conjecture by showing that the correlation coefficient always vanishes, and will discuss some of its consequences.

Keywords: Ginzburg-Landau equation, Symmetry-breaking, correlation term
2010 AMS Subject Classification: 35Q56, 35J61, 82D55

1. Introduction

The Ginzburg-Landau theory is a very popular model in super-conductivity [6]. Stationary states are described by complex-valued solutions u of the planar equation

$$
-\Delta u=k^{2} u\left(1-|u|^{2}\right),
$$

where $k>0$ is the Ginzburg-Landau parameter. The condensate wave function u describes the superconductive regime in the sample by simply interpreting $|u|^{2}$ as the density of Cooper electrons pairs. The zeroes of u, where the normal state is restored, are called vortices. The parameter k depends on the physical properties of the material and distinguishes between Type I superconductors $k<\frac{1}{\sqrt{2}}$ (in this normalization of constants) and Type II superconductors $k>\frac{1}{\sqrt{2}}$.
In the entire plane \mathbb{R}^{2} the parameter k does not play any role, as we can reduce to the case $k=1$ by simply changing u into $u\left(\frac{x}{k}\right)$. Supplemented by the correct asymptotic behavior at infinity, the Ginzburg-Landau equation now reads as

$$
\left\{\begin{array}{l}
-\Delta U=U\left(1-|U|^{2}\right) \quad \text { in } \mathbb{R}^{2} \tag{1.1}\\
|U| \rightarrow 1 \text { as }|x| \rightarrow \infty .
\end{array}\right.
$$

The condition $|U| \rightarrow 1$ as $|x| \rightarrow \infty$ allows to define the (topological) degree $\operatorname{deg} U$ of U as the winding number of U at ∞ :

$$
\operatorname{deg} U=\frac{1}{2 \pi} \int_{|x|=R} d(\arg U),
$$

where $R>0$ is chosen large so that $|U| \geq \frac{1}{2}$ in $\mathbb{R}^{2} \backslash B_{R}(0)$. Given $n \in \mathbb{Z}$, the only known solution of (1.1) with $\operatorname{deg} U=n$ is the "radially symmetric" one $U_{n}(x)=S_{n}(|x|)\left(\frac{x}{|x|}\right)^{n}$ (in complex notations with $x \in \mathbb{C}$), where S_{n} is the solution of the following ODE:

$$
\left\{\begin{array}{l}
\ddot{S}_{n}+\frac{1}{r} \dot{S}_{n}-\frac{n^{2}}{r^{2}} S_{n}+S_{n}\left(1-S_{n}^{2}\right)=0 \quad \text { in }(0,+\infty) \\
S_{n}(0)=0, \lim _{r \rightarrow+\infty} S_{n}=1
\end{array}\right.
$$

Date: July 16, 2018.

Existence and uniqueness of S_{n} is shown in [4,7]. Moreover, the solution U_{n} is stable for $|n| \leq 1$ and unstable for $|n|>1$ [11. When $n= \pm 1$, the solution $U_{ \pm 1}$ is unique, modulo translations and rotations, in the class of functions U with deg $U= \pm 1$ and $\int_{\mathbb{R}^{2}}\left(|U|^{2}-1\right)^{2} d x<+\infty$ [10].
One of the open problems (Problem 1)- that Brezis-Merle-Rivière raise out in [3]-concerns the existence of solutions U of (1.1) with $\operatorname{deg} U=n,|n|>1$, which are not "radially symmetric" around any point. So far there is no rigorous answer, but a strategy to find them has been proposed in [12]. Formally, a solution U of (1.1) is a critical point of the functional

$$
\mathcal{E}(\Psi)=\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla \Psi|^{2} d x+\frac{1}{4} \int_{\mathbb{R}^{2}}\left(|\Psi|^{2}-1\right)^{2} d x .
$$

Since $\mathcal{E}(\Psi)=+\infty$ for any C^{1}-map Ψ so that $|\Psi| \rightarrow 1$ as $|x| \rightarrow+\infty$ and $\operatorname{deg}(\Psi) \neq 0$, Ovchinnikov and Sigal [11 have proposed to correct \mathcal{E} into

$$
\mathcal{E}_{\operatorname{ren}}(\Psi)=\int_{\mathbb{R}^{2}}\left(\frac{1}{2}|\nabla \Psi|^{2}-\frac{(\operatorname{deg} \Psi)^{2}}{|x|^{2}} \chi+\frac{1}{4}\left(|\Psi|^{2}-1\right)^{2}\right) d x,
$$

where χ is a smooth cut-off function with $\chi=0$ when $|x| \leq R$ and $\chi=1$ when $|x| \geq$ $R+R^{-1}$, and $R \gg 1$ is given. Given a vortex configuration $(\underline{a}, \underline{n})=\left(a_{1}, \ldots, a_{K}, n_{1}, \ldots, n_{K}\right)$, a C^{1}-map Ψ so that $|\Psi| \rightarrow 1$ as $|x| \rightarrow+\infty$ has vortex configuration $(\underline{a}, \underline{n})$ if a_{1}, \ldots, a_{K} are the only zeroes of Ψ with local indices n_{1}, \ldots, n_{K}, denoted for short as $\operatorname{conf} \Psi=(\underline{a}, \underline{n})$. Given \underline{n}_{0}, Ovchinnikov and Sigal [12] introduce the "intervortex energy" E given by

$$
E(\underline{a})=\inf \left\{\mathcal{E}_{\mathrm{ren}}(\Psi): \operatorname{conf} \Psi=\left(\underline{a}, \underline{n}_{0}\right)\right\},
$$

and conjecture that \underline{a}_{0} is a critical point of E if and only if there is a minimizer U for $E\left(\underline{a}_{0}\right)$, yielding to a solution of (1.1) with conf $U=\left(\underline{a}_{0}, \underline{n}_{0}\right)$ which is not "radially symmetric" around any point by construction. Letting $d_{\underline{a}}=\min _{i \neq j}\left|a_{i}-a_{j}\right|$, the following asymptotic expression is established [12]:

$$
\begin{equation*}
E(\underline{a})=\sum_{j=1}^{K} \mathcal{E}_{\operatorname{ren}}\left(U_{n_{i}}\right)+H\left(\frac{\underline{a}}{R}\right)+\operatorname{Rem} \tag{1.2}
\end{equation*}
$$

with Rem $=O\left(d_{\underline{a}}^{-1}\right)$ as $d_{\underline{a}} \rightarrow+\infty$, where $H(\underline{a})=-\pi \sum_{i \neq j} n_{i} n_{j} \ln \left|a_{i}-a_{j}\right|$ is the energy of the vortex pairs interactions. When $\nabla H(\underline{a})=0$, the estimate in (1.2) improves up to Rem $=$ $O\left(d_{\underline{a}}^{-2}\right)$.
When $\nabla H(\underline{a})=0$ (a so-called forceless vortex configuration), by choosing refined test functions the asymptotic expression (1.2) is improved [13] in the form of the following upper bound:

$$
\begin{equation*}
E(\underline{a}) \leq \sum_{j=1}^{K} \mathcal{E}_{\operatorname{ren}}\left(U_{n_{i}}\right)+H\left(\frac{\underline{a}}{R}\right)-A(\underline{a})+\operatorname{Rem} \tag{1.3}
\end{equation*}
$$

with Rem $=O\left(d_{\underline{a}}^{-2}+R^{-2}\right)$ as $d_{\underline{a}} \rightarrow+\infty$, where the correlation term $A(\underline{a})$ is a homogeneous function of degree (-2) given as

$$
A(\underline{a})=\frac{1}{4} \int_{\mathbb{R}^{2}}\left[\left|\sum_{j=1}^{K} \nabla \varphi_{j}\right|^{4}-\sum_{j=1}^{K}\left|\nabla \varphi_{j}\right|^{4}\right],
$$

with $\varphi_{j}(x)=n_{j} \theta\left(x-a_{j}\right), j=1, \ldots, K$, and $\theta(x)$ the polar angle of $x \in \mathbb{R}^{2}$.
To push further the analysis, in [13] the attention is restricted to symmetric vortex configurations in order to reduce the number of independent variables in $E(\underline{a})$. In particular, the simplest $\frac{2 \pi}{N}$-symmetric vortex configurations ($\underline{a}, \underline{n}$) (which are invariant under $\frac{2 \pi}{N}$-rotations
and reflections w.r.t. the real axis) have the form: $a_{0}=0, a_{1}, \ldots, a_{N}$ are the vertices of a regular N-polygon with $a_{1}=1$ and $n_{1}=\cdots=n_{N}=m$. We impose also the forceless condition $\nabla H(\underline{a})=0$, which simply reads as $n_{0}=-\frac{N-1}{2} m$.
Since $\left|a_{1}\right|=\cdots=\left|a_{N}\right|$, the only variable is the size $a=\left|a_{1}\right|$ of the polygon, and then the intervortex energy will be in the form $E(a)$. Since $A(\underline{a})$ is homogeneous of degree -2 , we have that $A(\underline{a})=\frac{A_{0}}{a^{2}}$, where

$$
\begin{equation*}
A_{0}:=A\left(1, e^{\frac{2 \pi i}{N}}, \ldots, e^{\frac{2 \pi i(N-1)}{N}}\right) \tag{1.4}
\end{equation*}
$$

is the correlation coefficient for given $n_{0}=-\frac{N-1}{2} m$ and $n_{1}=\cdots=n_{N}=m$. In [13] the existence of c.p.'s of $E(a)$ is shown for the cases $(N, m)=(2,2)$ and $(N, m)=(4,2)$ by comparing $E(a)$ for a small and large, and using the positive sign of A_{0} (the correlation coefficient has value 8π and 80π, respectively). It is also conjectured [13] that the correlation coefficient has values which are integer multiples of $\frac{\pi}{4}$. With a long but tricky computation, in the next section we will disprove such a conjecture by showing

Theorem 1.1. The correlation coefficient in (1.4) always vanishes: $A_{0}=0$, for all $N \geq 2$ and $m \in \mathbb{Z}$.

Beside the role of A_{0} in symmetry-breaking phenomena for (1.1) in \mathbb{R}^{2}, as already discussed, we will also explain its connection with the Ginzburg-Landau equation

$$
\begin{cases}-\Delta u=k^{2} u\left(1-|u|^{2}\right) & \text { in } \Omega \tag{1.5}\\ u=g & \text { on } \partial \Omega\end{cases}
$$

on a bounded domain Ω for strongly Type II superconductors $k \rightarrow+\infty$, where $g: \partial \Omega \rightarrow S^{1}$ is a smooth map.

The energy functional for (1.5)

$$
E_{k}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{k^{2}}{4} \int_{\Omega}\left(1-|u|^{2}\right)^{2}
$$

has always a minimizer \bar{u}_{k} in the space $H=\left\{u \in H^{1}(\Omega, \mathbb{C}): u=g\right.$ on $\left.\partial \Omega\right\}$. When $d=$ $\operatorname{deg} g \neq 0$, by [2, 15, 16] we know that on simply connected domains \bar{u}_{k} has exactly $|d|$ simple zeroes $a_{1}, \ldots, a_{|d|}$ for k large, where $\left(a_{1}, \ldots, a_{|d|}\right)$ is a critical point for a suitable "renormalized energy" $W\left(a_{1}, \ldots, a_{|d|}\right)$. The symmetry-breaking phenomenon here takes place, driven by an external mechanism like the boundary condition that forces the confinement of vortices in some equilibrium configuration. A similar result does hold [2] on star-shaped domains for any solutions sequence u_{k} of (1.5). Near any vortex a_{i}, the function $u\left(\frac{x}{k}+a_{i}\right)$ behaves like $U_{n_{i}}(x)$.

Once the asymptotic behavior is well understood, a natural question concerns the construction of such solutions for any given c.p. $\left(a_{1}, \ldots, a_{K}\right)$ of W, and a positive answer has been given by a heat-flow approach [8, 9], by topological methods [1] and by perturbative methods [5, [4] in case $n_{1}=\cdots=n_{K}= \pm 1$. In [14, page 12, it is presented as an open problem to know whether or not there are solutions having vortices collapsing as $k \rightarrow \infty$, the simplest situation being problem (1.5) on the unit ball B with boundary value $g_{0}=\frac{x^{2}}{|x|^{2}}$:

$$
\begin{cases}-\Delta u=k^{2} u\left(1-|u|^{2}\right) & \text { in } B \tag{1.6}\\ u=g_{0} & \text { on } \partial B .\end{cases}
$$

It is conjectured the existence of solutions to (1.6) having a vortex of degree -1 at the origin $a_{0}=0$ and three vortices of degrees +1 at the vertices $l a_{j}, a_{j}=e^{\frac{2 \pi i}{3}(j-1)}$ for $j=1,2,3$, of a
small $(l \ll 1)$ equilateral triangle centered at 0 . This vortex configuration is $\frac{2 \pi}{3}$-symmetric, forceless and has "renormalized energy"

$$
\begin{equation*}
W(l)=-6 \pi \ln 3-6 \pi \ln \left(1-l^{6}\right)+O\left(l^{9}\right), \quad l>0 . \tag{1.7}
\end{equation*}
$$

In collaboration with J. Wei, we were working on this problem. Inspired by [5], we were aiming to use a reduction argument of Lyapunov-Schmidt type, starting from the approximating solutions U_{k} for (1.6) given by

$$
U_{k}(x)=e^{i \varphi_{k}(x)} U_{-1}(k x) \prod_{j=1}^{3} U_{1}\left(k\left(x-l e^{\frac{2 \pi i}{3}(j-1)}\right)\right)
$$

with $l \rightarrow 0$ and $l k \rightarrow+\infty$, where the function φ_{k} is an harmonic function so that $\left.U_{k}\right|_{\partial B}=g_{0}$. The interaction due to the collapsing of three vortices onto 0 gives at main order a term $(l k)^{-2}$ with the plus sign, i.e. for some $J_{0}>0$ there holds the energy expansion

$$
\begin{align*}
E_{k}\left(U_{k}\right) & =4 \pi \ln k+I+\frac{1}{2} W(l)+J_{0}(l k)^{-2}+o\left((l k)^{-2}\right) \\
& =4 \pi \ln k+I-3 \pi \ln 3+3 \pi l^{6}+J_{0}(l k)^{-2}+o\left(l^{6}+(l k)^{-2}\right) \tag{1.8}
\end{align*}
$$

in view of (1.7). The aim is to construct a solution u_{k} in the form $U_{k}\left[\eta(1+\psi)+(1-\eta) e^{\psi}\right]$, where $\psi=\psi(k)$ is a remainder term small in a weighted $L^{\infty}(B)-$ norm and $l=l(k)$ as $k \rightarrow+\infty$. The function η is a smooth cut-off function with $\eta=1$ in $\cup_{j=0}^{3} B_{1 / k}\left(l a_{j}\right)$ and $\eta=0$ in $B \backslash \cup_{j=0}^{3} B_{2 / k}\left(l a_{j}\right)$. The function $\psi=\psi(k)$ is found thanks to the solvability theory (up to a finite-dimensional kernel) of the linearized operator for (1.6) at U_{k} as $l \rightarrow 0$ and $l k \rightarrow+\infty$, and by the Lyapunov-Schimdt reduction the existence of $l(k)$ follows as a c.p. of

$$
\tilde{E}_{k}:=E_{k}\left(U_{k}\left[\eta(1+\psi(k))+(1-\eta) e^{\psi(k)}\right]\right) .
$$

If U_{k} is sufficiently good as an approximating solution of (1.6), we have that $\tilde{E}_{k}=E_{k}\left(U_{k}\right)+$ $o\left((l k)^{-2}\right)$. Since $3 \pi l^{6}+J_{0}(l k)^{-2}$ has always a minimum point of order $k^{-\frac{1}{4}}$ as $k \rightarrow+\infty$, by (1.8) we get the existence of $l=l(k)$ in view of the persistence of minimum points under small perturbations.

Unfortunately, this is not the case. Pushing further the analysis, we were able to identify the leading term $\psi_{0}=\psi_{0}(k)$ of $\psi=\psi(k)$, and compute its contribution into the energy expansion, yielding to a correction in the form:

$$
\begin{equation*}
\tilde{E}_{k}=4 \pi \ln k+I+\frac{1}{2} W(l)+J_{1}(l k)^{-2}+o\left((l k)^{-2}\right) . \tag{1.9}
\end{equation*}
$$

By (1.7) and (1.9) a c.p. $l(k)$ of \tilde{E}_{k} always exists provided $J_{1}>0$. First numerically, and then rigorously, we were disappointed to find that $J_{1}=0$.

Later on, we realized that $-J_{1}$ is exactly the correlation coefficient A_{0} in (1.4) (with $N=3$ and $m=1$) introduced by Ovchinnikov and Sigal [13]. If u is a solution of (1.6) with vortices $a_{0}=0$ and $l a_{j}, a_{j}=e^{\frac{2 \pi i}{3}(j-1)}$ for $j=1,2,3$, with $n_{0}=-1$ and $n_{1}=n_{2}=n_{3}=1$, then the function $U(x)=u\left(\frac{x}{k}\right)$ does solve

$$
\begin{cases}-\Delta U=U\left(1-|U|^{2}\right) & \text { in } B_{k} \tag{1.10}\\ U=g_{0} & \text { on } \partial B_{k}\end{cases}
$$

with vortices a_{0} and $l k a_{j}$ of vorticities $n_{0}=-1, n_{1}=n_{2}=n_{3}=1$. Since (1.1) and (1.10) formally coincide when $k=+\infty$, it is natural to find a correlation term in the energy expansion
\tilde{E}_{k} in the form $-\frac{A_{0}}{a^{2}}=J_{1}(l k)^{-2}$, where $a=l k$ is the modulus of the $l k a_{j}$'s for $j=1,2,3$. Even more and not surprisingly, the function $\tilde{U}_{k}\left(\frac{x}{k}\right)$, where

$$
U_{k}\left[\eta\left(1+\psi_{0}(k)\right)+(1-\eta) e^{\psi_{0}(k)}\right]
$$

is a very good approximating solution for (1.6) which improves the approximation rate of U_{k}, does coincide with the refined test functions used by Ovchinnikov and Sigal [13] to get the improved upper bound (1.3).

In conclusion, the vanishing of the correlation coefficient A_{0} does not support any conjecture concerning symmetry-breaking phenomena for (1.1) or the existence of collapsing vortices for (1.6) when $k \rightarrow+\infty$. Higher-order expansions would be needed in their study.

2. The correlation coefficient

Let $N \geq 2$. Let $a_{j}=e^{\frac{2 \pi i(j-1)}{N}}, j=1, \ldots, N$, be the N-roots of unity, and set $n_{j}=m \in \mathbb{Z}$ for all $j=1, \ldots, N, a_{0}=0$ and $n_{0}=-\frac{N-1}{2} m$. We aim to compute the correlation coefficient $A_{0}=A_{0}(m)$ given in (1.4). Since (in complex notation) $\nabla \theta(x)=|x|^{-2}\left(-x_{2}, x_{1}\right)$ has the same modulus as $\frac{1}{x}=\frac{\bar{x}}{|x|^{2}}$, the correlation coefficient takes the form

$$
\begin{equation*}
A_{0}=\frac{1}{4} \int_{\mathbb{R}^{2}}\left[\left|\sum_{j=0}^{N} \frac{n_{j}}{x-a_{j}}\right|^{4}-\sum_{j=0}^{N}\left|\frac{n_{j}}{x-a_{j}}\right|^{4}\right] . \tag{2.1}
\end{equation*}
$$

Since the integer m comes out as m^{4} from the expression (2.1), we have that $A_{0}(m)=m^{4} A_{0}(1)$. Hereafter, we will assume $m=1$ and simply denote $A_{0}(1)$ as A_{0}.

Let us first notice that A_{0} is not well-defined without further specifications, because the integral function in (2.1) is not integrable near the points $a_{j}, j=0, \ldots, N$. Recall that the N-roots of unity a_{1}, \ldots, a_{N} do satisfy the following symmetry properties:

$$
\begin{equation*}
\sum_{j=1}^{N} a_{j}^{l}=0 \quad \forall|l| \leq N, l \neq 0 \tag{2.2}
\end{equation*}
$$

as it can be easily deduced by the relation $x^{N}-1=\prod_{j=1}^{N}\left(x-a_{j}\right)$. A first application of (2.2) is the validity of

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{1}{x-a_{j}}=\sum_{j=1}^{N} \frac{x^{N-1}+a_{j} x^{N-2}+\cdots+a_{j}^{N-1}}{x^{N}-1}=\frac{N x^{N-1}}{x^{N}-1} \tag{2.3}
\end{equation*}
$$

which implies that the integral function in (2.1) near 0 has the form

$$
\begin{equation*}
\left|\sum_{j=0}^{N} \frac{n_{j}}{x-a_{j}}\right|^{4}-\sum_{j=0}^{N}\left|\frac{n_{j}}{x-a_{j}}\right|^{4}=-\frac{N(N-1)^{3}}{2} \operatorname{Re}\left(\frac{x^{N}}{\left(x^{N}-1\right)|x|^{4}}\right)+O(1) \tag{2.4}
\end{equation*}
$$

and is not integrable at 0 when $N=2$. Similarly, setting $\alpha_{k}(x)=-\frac{N-1}{2 x}+\sum_{\substack{j=1 \\ j \neq k}}^{N} \frac{1}{x-a_{j}}$ for $k=1, \ldots, N$, near a_{k} we have that

$$
\begin{align*}
& \left|\sum_{j=0}^{N} \frac{n_{j}}{x-a_{j}}\right|^{4}-\sum_{j=0}^{N}\left|\frac{n_{j}}{x-a_{j}}\right|^{4}=\frac{4}{\left|x-a_{k}\right|^{4}} \operatorname{Re}\left[\left(x-a_{k}\right) \alpha_{k}(x)\right]+\frac{2}{\left|x-a_{k}\right|^{2}}\left|\alpha_{k}(x)\right|^{2} \tag{2.5}\\
& +\left(2 \operatorname{Re} \frac{\left(x-a_{k}\right) \alpha_{k}(x)}{\left|x-a_{k}\right|^{2}}+\left|\alpha_{k}(x)\right|^{2}\right)^{2}-\frac{(N-1)^{4}}{16|x|^{4}}-\sum_{\substack{j=1 \\
j \neq k}}^{N} \frac{1}{\left|x-a_{j}\right|^{4}}
\end{align*}
$$

The function α_{k} can not be computed explicitly, but we know that

$$
\begin{align*}
\alpha_{k}\left(a_{k}\right) & =-\frac{N-1}{2 a_{k}}+\sum_{\substack{j=1 \\
j \neq k}}^{N} \frac{1}{a_{k}-a_{j}}=a_{k}^{N-1}\left(-\frac{N-1}{2}+\sum_{j=2}^{N} \frac{1}{1-a_{j}}\right) \tag{2.6}\\
& =a_{k}^{N-1}\left(-\frac{N-1}{2}+\sum_{j=2}^{N} \frac{1-\cos \frac{2 \pi(j-1)}{N}+i \sin \frac{2 \pi(j-1)}{N}}{2\left(1-\cos \frac{2 \pi(j-1)}{N}\right)}\right) \\
& =i a_{k}^{N-1} \sum_{j=2}^{N} \frac{\sin \frac{2 \pi(j-1)}{N}}{2\left(1-\cos \frac{2 \pi(j-1)}{N}\right)}=0
\end{align*}
$$

in view of $\left\{a_{j} a_{k}^{N-1}: j=1, \ldots, N, j \neq k\right\}=\left\{a_{2}, \ldots, a_{N}\right\}$ and the symmetry of $\left\{a_{1}, \ldots, a_{N}\right\}$ under reflections w.r.t. the real axis. By inserting (2.6) into (2.5) we deduce that the integral function in (2.1) near a_{k} has the form

$$
\begin{equation*}
\left|\sum_{j=0}^{N} \frac{n_{j}}{x-a_{j}}\right|^{4}-\sum_{j=0}^{N}\left|\frac{n_{j}}{x-a_{j}}\right|^{4}=\frac{4}{\left|x-a_{k}\right|^{4}} \operatorname{Re}\left[\alpha_{k}^{\prime}\left(a_{k}\right)\left(x-a_{k}\right)^{2}\right]+O\left(\frac{1}{\left|x-a_{k}\right|}\right) \tag{2.7}
\end{equation*}
$$

and is not integrable at a_{k} when $\alpha_{k}^{\prime}\left(a_{k}\right) \neq 0$. Since the (possible) singular term in (2.4), (2.7) has vanishing integrals on circles, the meaning of A_{0} is in terms of a principal value:

$$
\begin{equation*}
A_{0}=\frac{1}{4} \lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash \cup_{k=0}^{N} B_{\epsilon}\left(a_{k}\right)}\left[\left|\sum_{j=0}^{N} \frac{n_{j}}{x-a_{j}}\right|^{4}-\sum_{j=0}^{N}\left|\frac{n_{j}}{x-a_{j}}\right|^{4}\right] \tag{2.8}
\end{equation*}
$$

We would like to compute A_{0} in polar coordinates, even tough the set $\mathbb{R}^{2} \backslash \cup_{k=0}^{N} B_{\epsilon}\left(a_{k}\right)$ is not radially symmetric. The key idea is to make the integral function in (2.8) integrable near any $a_{j}, j=1, \ldots, N$, by adding suitable singular terms, in such a way that the integral in (2.8) will have to be computed just on the radially symmetric set $\mathbb{R}^{2} \backslash B_{\epsilon}\left(a_{0}\right)$. To this aim, it is crucial to compute $\alpha_{k}^{\prime}\left(a_{k}\right)$. Arguing as before, we get that

$$
\begin{align*}
\alpha_{k}^{\prime}\left(a_{k}\right) & =\frac{N-1}{2 a_{k}^{2}}-\sum_{\substack{j=1 \\
j \neq k}}^{N} \frac{1}{\left(a_{k}-a_{j}\right)^{2}}=a_{k}^{N-2}\left(\frac{N-1}{2}-\sum_{j=2}^{N} \frac{1}{\left(1-a_{j}\right)^{2}}\right) \\
& =a_{k}^{N-2}\left(\frac{N-1}{2}-\sum_{j=2}^{N} \frac{\left(1-\cos \frac{2 \pi(j-1)}{N}\right)^{2}-\sin ^{2} \frac{2 \pi(j-1)}{N}}{4\left(1-\cos \frac{2 \pi(j-1)}{N}\right)^{2}}\right) \\
& =a_{k}^{N-2} \sum_{j=2}^{N} \frac{1}{2\left(1-\cos \frac{2 \pi(j-1)}{N}\right)}=a_{k}^{N-2} \sum_{j=2}^{N} \frac{1}{\left|1-a_{j}\right|^{2}} . \tag{2.9}
\end{align*}
$$

Since there holds $\sum_{j=1}^{N-1} a_{k}^{j}=\sum_{j=2}^{N} a_{j}=-1$ for all $k=2, \ldots, N$ in view of (2.2), we have that

$$
\prod_{j=2}^{N}\left(z-a_{j}\right)=\frac{z^{N}-1}{z-1}=\sum_{p=0}^{N-1} z^{p}, \quad \prod_{\substack{j=2 \\ j \neq k}}^{N}\left(z-a_{j}\right)=\frac{\sum_{p=0}^{N-1} z^{p}}{z-a_{k}}=\sum_{p=0}^{N-2} z^{p} \sum_{l=0}^{N-2-p} a_{k}^{l},
$$

and then

$$
\begin{equation*}
\prod_{j=2}^{N}\left(1-a_{j}\right)=N, \quad \prod_{\substack{j=2 \\ j \neq k}}^{N}\left(1-a_{j}\right)=\sum_{l=0}^{N-2}(N-l-1) a_{k}^{l} \tag{2.10}
\end{equation*}
$$

By (2.10) we get that

$$
\begin{aligned}
\beta_{N} & :=\sum_{j=2}^{N} \frac{4}{\left|1-a_{j}\right|^{2}}=\sum_{j=2}^{N} \frac{4}{N^{2}} \prod_{\substack{k=2 \\
k \neq j}}^{N}\left|1-a_{k}\right|^{2}=\sum_{j=2}^{N} \frac{4}{N^{2}} \sum_{l, p=0}^{N-2}(N-l-1)(N-p-1) a_{j}^{l-p} \\
& =4 \frac{N-1}{N^{2}} \sum_{l=1}^{N-1} l^{2}-\frac{4}{N^{2}} \sum_{\substack{l, p=1 \\
l \neq p}}^{N-1} l p=\frac{4}{N} \sum_{l=1}^{N-1} l^{2}-\frac{4}{N^{2}}\left(\sum_{l=1}^{N-1} l\right)^{2}=\frac{2(N-1)(2 N-1)}{3}-(N-1)^{2} \\
& =\frac{N^{2}-1}{3}
\end{aligned}
$$

in view of (2.2). Since by (2.9) $\alpha_{k}^{\prime}\left(a_{k}\right)=\frac{\beta_{N}}{4} a_{k}^{N-2}$, by (2.7) we have that

$$
\left|\sum_{j=0}^{N} \frac{n_{j}}{x-a_{j}}\right|^{4}-\sum_{j=0}^{N}\left|\frac{n_{j}}{x-a_{j}}\right|^{4}-\sum_{j=1}^{N} \operatorname{Re}\left[\frac{\beta_{N} a_{j}^{2}}{\left(x-a_{j}\right)^{2}\left(1+\left|x-a_{j}\right|^{2}\right)^{2}}\right] \in L^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right) .
$$

Since

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash \cup_{k=0}^{N} B_{\epsilon}\left(a_{k}\right)} \frac{a_{j}^{2}}{\left(x-a_{j}\right)^{2}\left(1+\left|x-a_{j}\right|^{2}\right)}=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash B_{\epsilon}\left(a_{j}\right)} \frac{a_{j}^{2}}{\left(x-a_{j}\right)^{2}\left(1+\left|x-a_{j}\right|^{2}\right)}=0,
$$

we can re-write A_{0} as

$$
\begin{align*}
A_{0}= & \frac{1}{4} \lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash B_{\epsilon}(0)}\left[\left|\frac{(N+1) x^{N}+(N-1)}{2 x\left(x^{N}-1\right)}\right|^{4}-\frac{(N-1)^{4}}{16|x|^{4}}-\sum_{j=1}^{N} \frac{1}{\left|x-a_{j}\right|^{4}}\right. \\
& \left.-\sum_{j=1}^{N} \operatorname{Re}\left[\frac{\beta_{N} a_{j}^{2}}{\left(x-a_{j}\right)^{2}\left(1+\left|x-a_{j}\right|^{2}\right)}\right]\right] \\
= & \frac{1}{4} \lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash\left(B_{\epsilon}(0) \cup\left\{1-\epsilon \leq|x| \leq \frac{1}{1-\epsilon}\right\}\right)}\left[\left|\frac{(N+1) x^{N}+(N-1)}{2 x\left(x^{N}-1\right)}\right|^{4}-\frac{(N-1)^{4}}{16|x|^{4}}-\sum_{j=1}^{N} \frac{1}{\left|x-a_{j}\right|^{4}}\right] \\
& -\frac{1}{4} \operatorname{Re}\left[\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash\left(B_{\epsilon}(0) \cup\left\{1-\epsilon \leq|x| \leq \frac{1}{1-\epsilon}\right\}\right)} \sum_{j=1}^{N} \frac{\beta_{N} a_{j}^{2}}{\left(x-a_{j}\right)^{2}\left(1+\left|x-a_{j}\right|^{2}\right)}\right]=: \frac{1}{4} \mathrm{I}-\frac{1}{4} \mathrm{II} \quad(2.11 \tag{2.11}
\end{align*}
$$

in view of (2.3).

As far as I, let us write the following Taylor expansions: for $|x|<1$ there hold

$$
\begin{align*}
\frac{\left((N+1) x^{N}+(N-1)\right)^{2}}{\left(1-x^{N}\right)^{2}} & =\left((N-1)^{2}+2\left(N^{2}-1\right) x^{N}+(N+1)^{2} x^{2 N}\right) \sum_{k \geq 0}(k+1) x^{k N} \\
& =(N-1)^{2}+\sum_{k \geq 1} 4 N(k N-1) x^{k N}=\sum_{k \geq 0} c_{k} x^{k N} \tag{2.12}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\left((N-1) x^{N}+(N+1)\right)^{2}}{\left(1-x^{N}\right)^{2}} & =\left((N+1)^{2}+2\left(N^{2}-1\right) x^{N}+(N-1)^{2} x^{2 N}\right) \sum_{k \geq 0}(k+1) x^{k N} \\
& =(N+1)^{2}+\sum_{k \geq 1} 4 N(k N+1) x^{k N}=\sum_{k \geq 0} d_{k} x^{k N} \tag{2.13}
\end{align*}
$$

where $c_{k}=\max \left\{4 N(k N-1),(N-1)^{2}\right\}$ and $d_{k}=\max \left\{4 N(k N+1),(N+1)^{2}\right\}$. Letting $\epsilon>0$ small, by (2.12)-(2.13) we have that in polar coordinates (w.r.t. to the origin) I writes as

$$
\begin{aligned}
\mathrm{I}= & \int_{\epsilon}^{1-\epsilon} \rho d \rho \int_{0}^{2 \pi} d \theta\left[\frac{1}{16 \rho^{4}}\left|\sum_{k \geq 0} c_{k} \rho^{k N} e^{i k N \theta}\right|^{2}-\frac{(N-1)^{4}}{16 \rho^{4}}-\sum_{j=1}^{N}\left|\sum_{k \geq 0}(k+1) a_{j}^{k(N-1)} \rho^{k} e^{i k \theta}\right|^{2}\right] \\
& +\int_{\frac{1}{1-\epsilon}}^{\infty} \rho d \rho \int_{0}^{2 \pi} d \theta\left[\frac{1}{16 \rho^{4}}\left|\sum_{k \geq 0} d_{k} \rho^{-k N} e^{-i k N \theta}\right|^{2}-\frac{(N-1)^{4}}{16 \rho^{4}}-\frac{1}{\rho^{4}} \sum_{j=1}^{N}\left|\sum_{k \geq 0}(k+1) a_{j}^{k} \rho^{-k} e^{-i k \theta}\right|^{2}\right] \\
& +o_{\epsilon}(1)
\end{aligned}
$$

with $o_{\epsilon}(1) \rightarrow 0$ as $\epsilon \rightarrow 0$, in view of

$$
\left|x-a_{j}\right|^{-4}=\left|a_{j}^{N-1} x-1\right|^{-4}=\left|\sum_{k \geq 0}(k+1) a_{j}^{k(N-1)} x^{k}\right|^{2}, \quad\left|1-a_{j} x\right|^{-4}=\left|\sum_{k \geq 0}(k+1) a_{j}^{k} x^{k}\right|^{2}
$$

for $|x|<1$. By the Parseval's Theorem we get that

$$
\begin{aligned}
\mathrm{I}= & 2 \pi \int_{\epsilon}^{1-\epsilon}\left[\frac{1}{16} \sum_{k \geq 1}\left|c_{k}\right|^{2} \rho^{2 k N-3}-N \sum_{k \geq 0}(k+1)^{2} \rho^{2 k+1}\right] d \rho \\
& +2 \pi \int_{\frac{1}{1-\epsilon}}^{\infty}\left[\frac{1}{16} \sum_{k \geq 1}\left|d_{k}\right|^{2} \rho^{-2 K N-3}+\frac{(N+1)^{4}-(N-1)^{4}}{16 \rho^{3}}-N \sum_{k \geq 0}(k+1)^{2} \rho^{-2 k-3}\right] d \rho+o_{\epsilon}(1) \\
= & 2 \pi N \int_{0}^{1-\epsilon}\left[N \sum_{k \geq 0}(k N+N-1)^{2} \rho^{2 k N+2 N-3}-\sum_{k \geq 0}(k+1)^{2} \rho^{2 k+1}\right] d \rho \\
& +2 \pi N \int_{\frac{1}{1-\epsilon}}^{\infty}\left[N \sum_{k \geq 0}(k N+N+1)^{2} \rho^{-2 k N-2 N-3}-\sum_{k \geq 0}(k+1)^{2} \rho^{-2 k-3}\right] d \rho+N\left(N^{2}+1\right) \frac{\pi}{2} \\
& +o_{\epsilon}(1)=2 \pi N \int_{0}^{1-\epsilon}\left[N \sum_{k \geq 0}(k N+N-1)^{2} \rho^{2 k N+2 N-3}+N \sum_{k \geq 0}(k N+N+1)^{2} \rho^{2 k N+2 N+1}\right. \\
& \left.-2 \sum_{k \geq 0}(k+1)^{2} \rho^{2 k+1}\right] d \rho+N\left(N^{2}+1\right) \frac{\pi}{2}+o_{\epsilon}(1)
\end{aligned}
$$ as $\epsilon \rightarrow 0$. We compute now the integrals and let $\epsilon \rightarrow 0$ to end up with

$$
\begin{aligned}
\mathrm{I}= & \left.2 \pi N\left[\frac{N}{2} \sum_{k \geq 0}(k N+N-1) \rho^{2 k N+2 N-2}+\frac{N}{2} \sum_{k \geq 0}(k N+N+1) \rho^{2 k N+2 N+2}-\sum_{k \geq 0}(k+1) \rho^{2 k+2}\right]\right|_{0} ^{1} \\
& +N\left(N^{2}+1\right) \frac{\pi}{2} .
\end{aligned}
$$

Denoting the function inside brackets as $f(\rho)$, we need now to determine the explicit expression of $f(\rho)$ for $\rho<1$:

$$
\begin{aligned}
f(\rho) & =\frac{N^{2}}{2} \rho^{2 N-2}\left(1+\rho^{4}\right) \sum_{k \geq 0}(k+1)\left(\rho^{2 N}\right)^{k}-\frac{N}{2} \rho^{2 N-2}\left(1-\rho^{4}\right) \sum_{k \geq 0}\left(\rho^{2 N}\right)^{k}-\rho^{2} \sum_{k \geq 0}(k+1)\left(\rho^{2}\right)^{k} \\
& =\frac{N^{2}}{2} \rho^{2 N-2} \frac{1+\rho^{4}}{\left(1-\rho^{2 N}\right)^{2}}-\frac{N}{2} \rho^{2 N-2} \frac{1-\rho^{4}}{1-\rho^{2 N}}-\frac{\rho^{2}}{\left(1-\rho^{2}\right)^{2}} \\
& =\frac{1}{2} \frac{N^{2} \rho^{2 N-2}\left(1+\rho^{4}\right)-N \rho^{2 N-2}\left(1-\rho^{4}\right)\left(1-\rho^{2 N}\right)-2 \rho^{2}\left(\sum_{j=0}^{N-1} \rho^{2 j}\right)^{2}}{\left(1-\rho^{2 N}\right)^{2}}
\end{aligned}
$$

and then by the l'Hôpital's rule we get that

$$
\begin{aligned}
4 N^{2} f(1)= & 2 \lim _{\rho \rightarrow 1} \frac{N(N-1) \rho^{N-1}+N(N+1) \rho^{N+1}-2 \rho\left(\sum_{j=0}^{N-1} \rho^{j}\right)^{2}+N \rho^{2 N-1}-N \rho^{2 N+1}}{(1-\rho)^{2}} \\
= & \lim _{\rho \rightarrow 1} \frac{-N^{2}(N-2) \rho^{N-2}-N^{2}(N+2) \rho^{N}+2\left(\sum_{j=0}^{N-1} \rho^{j}\right)^{2}+4 \rho\left(\sum_{j=0}^{N-1} \rho^{j}\right)\left(\sum_{j=0}^{N-2}(j+1) \rho^{j}\right)}{1-\rho} \\
& +N \lim _{\rho \rightarrow 1} \frac{(2 N+1) \rho^{2 N}-(2 N-1) \rho^{2 N-2}-\rho^{N-2}-\rho^{N}}{1-\rho}=-\frac{N^{2}\left(N^{2}+5\right)}{3} .
\end{aligned}
$$

In conclusion, for I we get the value

$$
\begin{equation*}
\mathrm{I}=\frac{\pi}{3} N\left(N^{2}-1\right) \tag{2.14}
\end{equation*}
$$

Remark 2.1. In 13 the value of A_{0} was computed neglecting the term II in (2.11). By (2.14) notice that $\frac{m^{4}}{4} I=\frac{\pi}{12} m^{4} N\left(N^{2}-1\right)$ does coincide with 8π when $(N, m)=(2,2)$ and 80π when $(N, m)=(4,2)$, in agreement with the computations in [13].

As far as II, let us compute in polar coordinates the value of

$$
\lim _{\epsilon \rightarrow 0} \sum_{j=1}^{N} \int_{\mathbb{R}^{2} \backslash\left(B_{\epsilon}(0) \cup\left\{1-\epsilon \leq|x| \leq \frac{1}{1-\epsilon}\right\}\right)} \frac{a_{j}^{2}}{\left(x-a_{j}\right)^{2}\left(1+\left|x-a_{j}\right|^{2}\right)}=\lim _{\epsilon \rightarrow 0} \int_{(0,1-\epsilon) \cup\left(\frac{1}{1-\epsilon},+\infty\right)} \rho \Gamma(\rho) d \rho,
$$

where the function Γ is defined in the following way:

$$
\begin{aligned}
\Gamma(\rho) & =\sum_{j=1}^{N} \int_{0}^{2 \pi} \frac{a_{j}^{2}}{\left(\rho e^{i \theta}-a_{j}\right)^{2}\left(2+\rho^{2}-a_{j} \rho e^{-i \theta}-a_{j}^{N-1} \rho e^{i \theta}\right)} d \theta \\
& =\frac{i}{\rho} \sum_{j=1}^{N} a_{j}^{3} \int_{\gamma} \frac{d w}{\left(\rho w-a_{j}\right)^{2}\left(w^{2}-\frac{2+\rho^{2}}{\rho} a_{j} w+a_{j}^{2}\right)}
\end{aligned}
$$

with γ the counterclockwise unit circle around the origin. Since

$$
w^{2}-\frac{2+\rho^{2}}{\rho} a_{j} w+a_{j}^{2}=\left(w-\frac{2+\rho^{2}}{2 \rho} a_{j}\right)^{2}+a_{j}^{2}\left(1-\left(\frac{2+\rho^{2}}{2 \rho}\right)^{2}\right),
$$

observe that $w^{2}-\frac{2+\rho^{2}}{\rho} a_{j} w+a_{j}^{2}$ vanishes at $\rho_{ \pm} a_{j}$, with

$$
\rho_{ \pm}=\frac{2+\rho^{2}}{2 \rho} \pm \sqrt{\left(\frac{2+\rho^{2}}{2 \rho}\right)^{2}-1}
$$

satisfying $\rho_{-}<1<\rho_{+}$in view of $\frac{2+\rho^{2}}{2 \rho} \geq \sqrt{2}$. Since

$$
\left(\frac{1}{w^{2}-\frac{2+\rho^{2}}{\rho} a_{j} w+a_{j}^{2}}\right)^{\prime}\left(\frac{a_{j}}{\rho}\right)=a_{j}^{N-3} \rho^{5},
$$

by the Cauchy's residue Theorem the function $\Gamma(\rho)$ can now be computed explicitly as

$$
\begin{aligned}
\Gamma(\rho) & =\frac{i}{\rho^{3}} \sum_{j=1}^{N} a_{j}^{3} \int_{\gamma} \frac{d w}{\left(w-\frac{a_{j}}{\rho}\right)^{2}\left(w-\rho_{-} a_{j}\right)\left(w-\rho_{+} a_{j}\right)} \\
& =2 \pi N \begin{cases}\left(\rho \rho_{-}-1\right)^{-2}\left(\rho \rho_{+}-\rho \rho_{-}\right)^{-1} & \text { if } \rho<1 \\
\left(\rho \rho_{-}-1\right)^{-2}\left(\rho \rho_{+}-\rho \rho_{-}\right)^{-1}-\rho^{2} & \text { if } \rho>1 .\end{cases}
\end{aligned}
$$

Since we have that

$$
\left(\rho \rho_{-}-1\right)^{2}=\frac{1}{4}\left(\rho^{2}-\sqrt{\rho^{4}+4}\right)^{2}=\frac{1}{2}\left(\rho^{4}+2-\rho^{2} \sqrt{\rho^{4}+4}\right), \quad \rho \rho_{+}-\rho \rho_{-}=\sqrt{\rho^{4}+4}
$$

we get that

$$
\left(\rho \rho_{-}-1\right)^{-2}\left(\rho \rho_{+}-\rho \rho_{-}\right)^{-1}=\frac{2}{\left(\rho^{4}+2\right) \sqrt{\rho^{4}+4}-\rho^{2}\left(\rho^{4}+4\right)}=\frac{\rho^{4}+2}{2 \sqrt{\rho^{4}+4}}+\frac{\rho^{2}}{2}
$$

and the expression of $\Gamma(\rho)$ now follows in the form

$$
\Gamma(\rho)=\pi N \frac{\rho^{4}+2}{\sqrt{\rho^{4}+4}}-\pi N \rho^{2}+ \begin{cases}2 \pi N \rho^{2} & \text { if } \rho<1 \tag{2.15}\\ 0 & \text { if } \rho>1 .\end{cases}
$$

Note that

$$
\rho\left(\frac{\rho^{4}+2}{\sqrt{\rho^{4}+4}}-\rho^{2}\right)=\frac{4 \rho}{\left(\rho^{4}+2\right) \sqrt{\rho^{4}+4}+\rho^{2}\left(\rho^{4}+4\right)}
$$

is integrable in $(0, \infty)$, and we have that

$$
\begin{align*}
& \int_{0}^{\infty} \rho\left(\frac{\rho^{4}+2}{\sqrt{\rho^{4}+4}}-\rho^{2}\right) d \rho=\lim _{M \rightarrow+\infty} \frac{1}{2} \int_{0}^{M}\left(\frac{s^{2}+2}{\sqrt{s^{2}+4}}-s\right) d s \tag{2.16}\\
& =\lim _{M \rightarrow+\infty}\left[\left.\frac{s}{4} \sqrt{s^{2}+4}\right|_{0} ^{M}-\frac{M^{2}}{4}\right]=\lim _{M \rightarrow+\infty} \frac{M}{4}\left(\sqrt{M^{2}+4}-M\right)=\frac{1}{2} .
\end{align*}
$$

Thanks to (2.15)-(2.16) we can compute

$$
\lim _{\epsilon \rightarrow 0} \int_{(0,1-\epsilon) \cup\left(\frac{1}{1-\epsilon},+\infty\right)} \rho \Gamma(\rho) d \rho=\int_{0}^{+\infty} \rho \Gamma(\rho) d \rho=\pi N,
$$

and for II we get the value

$$
\begin{equation*}
\mathrm{II}=\frac{\pi}{3} N\left(N^{2}-1\right) \tag{2.17}
\end{equation*}
$$

Finally, inserting (2.14) and (2.17) into (2.11) we get that the correlation coefficient vanishes: $A_{0}=0$. Then, there holds $A_{0}(m)=0$ for all $m \in \mathbb{Z}$, as claimed.

References

[1] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. (9) 77 (1998), no. 1, 1-49.
[2] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser, Boston, 1994.
[3] H. Brezis, F. Merle, and T. Rivière, Quantization effects for $-\Delta u=u\left(1-|u|^{2}\right)$ in \mathbb{R}^{2}, Arch. Rat. Mech. Anal. 126 (1994), no. 1, 35-58.
[4] X. Chen, C.M. Elliott, and T. Qi, Shooting method for vortex solutions of a complex-valued GinzburgLandau equation, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 6, 1075-1088.
[5] M. del Pino, M. Kowalczyk, and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal. 239 (2006), no. 2, 497-541.
[6] V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, J. Exp. Theor. Phys. 20 (1950), 1064-1082.
[7] R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), no. 4, 427-440.
[8] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 5, 599-622.
[9] F.H. Lin and T.-C. Lin, Minimax solutions of the Ginzburg-Landau equations, Selecta Math. (N.S.) 3 (1997), no. 1, 99-113.
[10] P. Mironescu, Local minimizers for the Ginzburg-Landau equation are radially symmetric, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 6, 593-598.
[11] Yu.N. Ovchinnikov and I.M. Sigal, Ginzburg-Landau equation. I. Static vortices, CRM Proc. Lecture Notes, Partial differential equations and their applications (Toronto, ON, 1995), Amer. Math. Soc., Providence, RI, 1997.
[12] _, The energy of Ginzburg-Landau vortices, European J. Appl. Math. 13 (2002), no. 2, 153-178.
[13] _, Symmetry-breaking solutions of the Ginzburg-Landau equation, J. Exp. Theor. Phys. 99 (2004), no. 5, 1090-1107.
[14] F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 39, Birkhäuser, Boston, 2000.
[15] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), no. 5-6, 1613-1624.
[16] _ Erratum: "On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions", Differential Integral Equations 8 (1995), no. 1, 224.

Pierpaolo Esposito, Dipartimento di Matematica, Università degli Studi "Roma Tre", Largo
S. Leonardo Murialdo 1, 00146 Roma, Italy

E-mail address: esposito@mat.uniroma3.it

