
ar
X

iv
:1

21
0.

63
15

v1
  [

m
at

h.
A

P]
  2

3 
O

ct
 2

01
2

SOME REMARKS CONCERNING SYMMETRY-BREAKING FOR THE

GINZBURG-LANDAU EQUATION

PIERPAOLO ESPOSITO

Abstract. The correlation term, introduced in [13] to describe the interaction between very
far apart vortices, governs symmetry-breaking for the Ginzburg-Landau equation in R

2 or
bounded domains. It is a homogeneous function of degree (−2), and then for 2π

N
−symmetric

vortex configurations can be expressed in terms of the so-called correlation coefficient. Ovchin-
nikov and Sigal [13] have computed it in few cases and conjectured its value to be an integer
multiple of π

4
. We will disprove this conjecture by showing that the correlation coefficient

always vanishes, and will discuss some of its consequences.
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1. Introduction

The Ginzburg-Landau theory is a very popular model in super-conductivity [6]. Stationary
states are described by complex-valued solutions u of the planar equation

−∆u = k2u(1− |u|2),
where k > 0 is the Ginzburg-Landau parameter. The condensate wave function u describes
the superconductive regime in the sample by simply interpreting |u|2 as the density of Cooper
electrons pairs. The zeroes of u, where the normal state is restored, are called vortices. The
parameter k depends on the physical properties of the material and distinguishes between Type
I superconductors k < 1√

2
(in this normalization of constants) and Type II superconductors

k > 1√
2
.

In the entire plane R2 the parameter k does not play any role, as we can reduce to the case
k = 1 by simply changing u into u(x

k
). Supplemented by the correct asymptotic behavior at

infinity, the Ginzburg-Landau equation now reads as
{

−∆U = U(1 − |U |2) in R2

|U | → 1 as |x| → ∞.
(1.1)

The condition |U | → 1 as |x| → ∞ allows to define the (topological) degree deg U of U as the
winding number of U at ∞:

deg U =
1

2π

∫

|x|=R
d(arg U),

where R > 0 is chosen large so that |U | ≥ 1
2
in R2 \ BR(0). Given n ∈ Z, the only known

solution of (1.1) with deg U = n is the “radially symmetric” one Un(x) = Sn(|x|)( x|x|)n (in

complex notations with x ∈ C), where Sn is the solution of the following ODE:
{

S̈n +
1
r
Ṡn − n2

r2
Sn + Sn(1− S2

n) = 0 in (0,+∞)
Sn(0) = 0 , lim

r→+∞
Sn = 1.
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Existence and uniqueness of Sn is shown in [4,7]. Moreover, the solution Un is stable for |n| ≤ 1
and unstable for |n| > 1 [11]. When n = ±1, the solution U±1 is unique, modulo translations
and rotations, in the class of functions U with deg U = ±1 and

∫

R2(|U |2 − 1)2dx < +∞ [10].

One of the open problems (Problem 1)– that Brezis-Merle-Rivière raise out in [3]– concerns the
existence of solutions U of (1.1) with deg U = n, |n| > 1, which are not “radially symmetric”
around any point. So far there is no rigorous answer, but a strategy to find them has been
proposed in [12]. Formally, a solution U of (1.1) is a critical point of the functional

E(Ψ) =
1

2

∫

R2

|∇Ψ|2dx+ 1

4

∫

R2

(|Ψ|2 − 1)2dx.

Since E(Ψ) = +∞ for any C1−map Ψ so that |Ψ| → 1 as |x| → +∞ and deg (Ψ) 6= 0,
Ovchinnikov and Sigal [11] have proposed to correct E into

Eren(Ψ) =

∫

R2

(

1

2
|∇Ψ|2 − (deg Ψ)2

|x|2 χ+
1

4
(|Ψ|2 − 1)2

)

dx,

where χ is a smooth cut-off function with χ = 0 when |x| ≤ R and χ = 1 when |x| ≥
R+R−1, and R >> 1 is given. Given a vortex configuration (a, n) = (a1, . . . , aK , n1, . . . , nK),
a C1−map Ψ so that |Ψ| → 1 as |x| → +∞ has vortex configuration (a, n) if a1, . . . , aK are
the only zeroes of Ψ with local indices n1, . . . , nK , denoted for short as conf Ψ = (a, n). Given
n0, Ovchinnikov and Sigal [12] introduce the “intervortex energy” E given by

E(a) = inf{Eren(Ψ) : conf Ψ = (a, n0)},
and conjecture that a0 is a critical point of E if and only if there is a minimizer U for E(a0),
yielding to a solution of (1.1) with conf U = (a0, n0) which is not “radially symmetric” around
any point by construction. Letting da = min

i 6=j
|ai − aj |, the following asymptotic expression is

established [12]:

E(a) =
K
∑

j=1

Eren(Uni
) +H(

a

R
) + Rem (1.2)

with Rem = O(d−1
a ) as da → +∞, where H(a) = −π

∑

i 6=j
ninj ln |ai − aj | is the energy of the

vortex pairs interactions. When ∇H(a) = 0, the estimate in (1.2) improves up to Rem =
O(d−2

a ).

When∇H(a) = 0 (a so-called forceless vortex configuration), by choosing refined test functions
the asymptotic expression (1.2) is improved [13] in the form of the following upper bound:

E(a) ≤
K
∑

j=1

Eren(Uni
) +H(

a

R
)− A(a) + Rem (1.3)

with Rem = O(d−2
a + R−2) as da → +∞, where the correlation term A(a) is a homogeneous

function of degree (−2) given as

A(a) =
1

4

∫

R2

[

|
K
∑

j=1

∇ϕj|4 −
K
∑

j=1

|∇ϕj|4
]

,

with ϕj(x) = njθ(x− aj), j = 1, . . . , K, and θ(x) the polar angle of x ∈ R
2.

To push further the analysis, in [13] the attention is restricted to symmetric vortex config-
urations in order to reduce the number of independent variables in E(a). In particular, the
simplest 2π

N
−symmetric vortex configurations (a, n) (which are invariant under 2π

N
−rotations
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and reflections w.r.t. the real axis) have the form: a0 = 0, a1, . . . , aN are the vertices of a
regular N−polygon with a1 = 1 and n1 = · · · = nN = m. We impose also the forceless
condition ∇H(a) = 0, which simply reads as n0 = −N−1

2
m.

Since |a1| = · · · = |aN |, the only variable is the size a = |a1| of the polygon, and then the
intervortex energy will be in the form E(a). Since A(a) is homogeneous of degree −2, we have
that A(a) = A0

a2
, where

A0 := A(1, e
2πi
N , . . . , e

2πi(N−1)
N ) (1.4)

is the correlation coefficient for given n0 = −N−1
2
m and n1 = · · · = nN = m. In [13] the

existence of c.p.’s of E(a) is shown for the cases (N,m) = (2, 2) and (N,m) = (4, 2) by
comparing E(a) for a small and large, and using the positive sign of A0 (the correlation
coefficient has value 8π and 80π, respectively). It is also conjectured [13] that the correlation
coefficient has values which are integer multiples of π

4
. With a long but tricky computation,

in the next section we will disprove such a conjecture by showing

Theorem 1.1. The correlation coefficient in (1.4) always vanishes: A0 = 0, for all N ≥ 2
and m ∈ Z.

Beside the role of A0 in symmetry-breaking phenomena for (1.1) in R2, as already discussed,
we will also explain its connection with the Ginzburg-Landau equation

{

−∆u = k2u(1− |u|2) in Ω
u = g on ∂Ω

(1.5)

on a bounded domain Ω for strongly Type II superconductors k → +∞, where g : ∂Ω → S1

is a smooth map.

The energy functional for (1.5)

Ek(u) =
1

2

∫

Ω

|∇u|2 + k2

4

∫

Ω

(1− |u|2)2

has always a minimizer ūk in the space H = {u ∈ H1(Ω,C) : u = g on ∂Ω}. When d =
deg g 6= 0, by [2, 15, 16] we know that on simply connected domains ūk has exactly |d| simple
zeroes a1, . . . , a|d| for k large, where (a1, . . . , a|d|) is a critical point for a suitable “renormalized
energy” W (a1, . . . , a|d|). The symmetry-breaking phenomenon here takes place, driven by an
external mechanism like the boundary condition that forces the confinement of vortices in
some equilibrium configuration. A similar result does hold [2] on star-shaped domains for any
solutions sequence uk of (1.5). Near any vortex ai, the function u(x

k
+ ai) behaves like Uni

(x).

Once the asymptotic behavior is well understood, a natural question concerns the construction
of such solutions for any given c.p. (a1, . . . , aK) of W , and a positive answer has been given
by a heat-flow approach [8,9], by topological methods [1] and by perturbative methods [5,14]
in case n1 = · · · = nK = ±1. In [14], page 12, it is presented as an open problem to know
whether or not there are solutions having vortices collapsing as k → ∞, the simplest situation
being problem (1.5) on the unit ball B with boundary value g0 =

x2

|x|2 :

{

−∆u = k2u(1− |u|2) in B
u = g0 on ∂B.

(1.6)

It is conjectured the existence of solutions to (1.6) having a vortex of degree −1 at the origin

a0 = 0 and three vortices of degrees +1 at the vertices laj , aj = e
2πi
3

(j−1) for j = 1, 2, 3, of a
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small (l << 1) equilateral triangle centered at 0. This vortex configuration is 2π
3
−symmetric,

forceless and has “renormalized energy”

W (l) = −6π ln 3− 6π ln(1− l6) +O(l9) , l > 0. (1.7)

In collaboration with J. Wei, we were working on this problem. Inspired by [5], we were aiming
to use a reduction argument of Lyapunov-Schmidt type, starting from the approximating
solutions Uk for (1.6) given by

Uk(x) = eiϕk(x)U−1(kx)

3
∏

j=1

U1

(

k(x− le
2πi
3

(j−1))
)

with l → 0 and lk → +∞, where the function ϕk is an harmonic function so that Uk |∂B= g0.
The interaction due to the collapsing of three vortices onto 0 gives at main order a term (lk)−2

with the plus sign, i.e. for some J0 > 0 there holds the energy expansion

Ek(Uk) = 4π ln k + I +
1

2
W (l) + J0(lk)

−2 + o((lk)−2)

= 4π ln k + I − 3π ln 3 + 3πl6 + J0(lk)
−2 + o

(

l6 + (lk)−2
)

, (1.8)

in view of (1.7). The aim is to construct a solution uk in the form Uk[η(1 + ψ) + (1 − η)eψ],
where ψ = ψ(k) is a remainder term small in a weighted L∞(B)−norm and l = l(k) as
k → +∞. The function η is a smooth cut-off function with η = 1 in ∪3

j=0B1/k(laj) and η = 0

in B \ ∪3
j=0B2/k(laj). The function ψ = ψ(k) is found thanks to the solvability theory (up to

a finite-dimensional kernel) of the linearized operator for (1.6) at Uk as l → 0 and lk → +∞,
and by the Lyapunov-Schimdt reduction the existence of l(k) follows as a c.p. of

Ẽk := Ek
(

Uk[η(1 + ψ(k)) + (1− η)eψ(k)]
)

.

If Uk is sufficiently good as an approximating solution of (1.6), we have that Ẽk = Ek(Uk) +

o((lk)−2). Since 3πl6 + J0(lk)
−2 has always a minimum point of order k−

1
4 as k → +∞, by

(1.8) we get the existence of l = l(k) in view of the persistence of minimum points under small
perturbations.

Unfortunately, this is not the case. Pushing further the analysis, we were able to identify the
leading term ψ0 = ψ0(k) of ψ = ψ(k), and compute its contribution into the energy expansion,
yielding to a correction in the form:

Ẽk = 4π ln k + I +
1

2
W (l) + J1(lk)

−2 + o((lk)−2). (1.9)

By (1.7) and (1.9) a c.p. l(k) of Ẽk always exists provided J1 > 0. First numerically, and then
rigorously, we were disappointed to find that J1 = 0.

Later on, we realized that −J1 is exactly the correlation coefficient A0 in (1.4) (with N = 3
and m = 1) introduced by Ovchinnikov and Sigal [13]. If u is a solution of (1.6) with vortices

a0 = 0 and laj , aj = e
2πi
3

(j−1) for j = 1, 2, 3, with n0 = −1 and n1 = n2 = n3 = 1, then the
function U(x) = u(x

k
) does solve

{

−∆U = U(1− |U |2) in Bk

U = g0 on ∂Bk
(1.10)

with vortices a0 and lkaj of vorticities n0 = −1, n1 = n2 = n3 = 1. Since (1.1) and (1.10)
formally coincide when k = +∞, it is natural to find a correlation term in the energy expansion
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Ẽk in the form −A0

a2
= J1(lk)

−2, where a = lk is the modulus of the lkaj ’s for j = 1, 2, 3. Even

more and not surprisingly, the function Ũk(
x
k
), where

Uk[η(1 + ψ0(k)) + (1− η)eψ0(k)]

is a very good approximating solution for (1.6) which improves the approximation rate of Uk,
does coincide with the refined test functions used by Ovchinnikov and Sigal [13] to get the
improved upper bound (1.3).

In conclusion, the vanishing of the correlation coefficient A0 does not support any conjecture
concerning symmetry-breaking phenomena for (1.1) or the existence of collapsing vortices for
(1.6) when k → +∞. Higher-order expansions would be needed in their study.

2. The correlation coefficient

Let N ≥ 2. Let aj = e
2πi(j−1)

N , j = 1, . . . , N , be the N−roots of unity, and set nj = m ∈ Z

for all j = 1, . . . , N , a0 = 0 and n0 = −N−1
2
m. We aim to compute the correlation coefficient

A0 = A0(m) given in (1.4). Since (in complex notation) ∇θ(x) = |x|−2(−x2, x1) has the same
modulus as 1

x
= x̄

|x|2 , the correlation coefficient takes the form

A0 =
1

4

∫

R2

[

|
N
∑

j=0

nj

x− aj
|4 −

N
∑

j=0

| nj

x− aj
|4
]

. (2.1)

Since the integerm comes out asm4 from the expression (2.1), we have that A0(m) = m4A0(1).
Hereafter, we will assume m = 1 and simply denote A0(1) as A0.

Let us first notice that A0 is not well-defined without further specifications, because the integral
function in (2.1) is not integrable near the points aj , j = 0, . . . , N . Recall that the N−roots
of unity a1, . . . , aN do satisfy the following symmetry properties:

N
∑

j=1

alj = 0 ∀ |l| ≤ N, l 6= 0, (2.2)

as it can be easily deduced by the relation xN − 1 =
N
∏

j=1

(x − aj). A first application of (2.2)

is the validity of

N
∑

j=1

1

x− aj
=

N
∑

j=1

xN−1 + ajx
N−2 + · · ·+ aN−1

j

xN − 1
=
NxN−1

xN − 1
, (2.3)

which implies that the integral function in (2.1) near 0 has the form

|
N
∑

j=0

nj

x− aj
|4 −

N
∑

j=0

| nj

x− aj
|4 = −N(N − 1)3

2
Re(

xN

(xN − 1)|x|4 ) +O(1) (2.4)
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and is not integrable at 0 when N = 2. Similarly, setting αk(x) = −N−1
2x

+
N
∑

j=1
j 6=k

1
x−aj for

k = 1, . . . , N , near ak we have that

|
N
∑

j=0

nj

x− aj
|4 −

N
∑

j=0

| nj

x− aj
|4 = 4

|x− ak|4
Re[(x− ak)αk(x)] +

2

|x− ak|2
|αk(x)|2 (2.5)

+

(

2Re
(x− ak)αk(x)

|x− ak|2
+ |αk(x)|2

)2

− (N − 1)4

16|x|4 −
N
∑

j=1
j 6=k

1

|x− aj|4
.

The function αk can not be computed explicitly, but we know that

αk(ak) = −N − 1

2ak
+

N
∑

j=1
j 6=k

1

ak − aj
= aN−1

k

(

−N − 1

2
+

N
∑

j=2

1

1− aj

)

(2.6)

= aN−1
k

(

−N − 1

2
+

N
∑

j=2

1− cos 2π(j−1)
N

+ i sin 2π(j−1)
N

2(1− cos 2π(j−1)
N

)

)

= iaN−1
k

N
∑

j=2

sin 2π(j−1)
N

2(1− cos 2π(j−1)
N

)
= 0

in view of {ajaN−1
k : j = 1, . . . , N, j 6= k} = {a2, . . . , aN} and the symmetry of {a1, . . . , aN}

under reflections w.r.t. the real axis. By inserting (2.6) into (2.5) we deduce that the integral
function in (2.1) near ak has the form

|
N
∑

j=0

nj

x− aj
|4 −

N
∑

j=0

| nj

x− aj
|4 = 4

|x− ak|4
Re[α′

k(ak)(x− ak)
2] +O(

1

|x− ak|
) (2.7)

and is not integrable at ak when α′
k(ak) 6= 0. Since the (possible) singular term in (2.4), (2.7)

has vanishing integrals on circles, the meaning of A0 is in terms of a principal value:

A0 =
1

4
lim
ǫ→0

∫

R2\∪N
k=0Bǫ(ak)

[

|
N
∑

j=0

nj

x− aj
|4 −

N
∑

j=0

| nj

x− aj
|4
]

. (2.8)

We would like to compute A0 in polar coordinates, even tough the set R2 \ ∪Nk=0Bǫ(ak) is not
radially symmetric. The key idea is to make the integral function in (2.8) integrable near any
aj , j = 1, . . . , N , by adding suitable singular terms, in such a way that the integral in (2.8)
will have to be computed just on the radially symmetric set R2 \ Bǫ(a0). To this aim, it is
crucial to compute α′

k(ak). Arguing as before, we get that

α′
k(ak) =

N − 1

2a2k
−

N
∑

j=1
j 6=k

1

(ak − aj)2
= aN−2

k

(

N − 1

2
−

N
∑

j=2

1

(1− aj)2

)

= aN−2
k

(

N − 1

2
−

N
∑

j=2

(1− cos 2π(j−1)
N

)2 − sin2 2π(j−1)
N

4(1− cos 2π(j−1)
N

)2

)

= aN−2
k

N
∑

j=2

1

2(1− cos 2π(j−1)
N

)
= aN−2

k

N
∑

j=2

1

|1− aj|2
. (2.9)
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Since there holds
N−1
∑

j=1

a
j
k =

N
∑

j=2

aj = −1 for all k = 2, . . . , N in view of (2.2), we have that

N
∏

j=2

(z − aj) =
zN − 1

z − 1
=

N−1
∑

p=0

zp ,

N
∏

j=2
j 6=k

(z − aj) =

N−1
∑

p=0

zp

z − ak
=

N−2
∑

p=0

zp
N−2−p
∑

l=0

alk,

and then

N
∏

j=2

(1− aj) = N ,

N
∏

j=2
j 6=k

(1− aj) =

N−2
∑

l=0

(N − l − 1)alk. (2.10)

By (2.10) we get that

βN :=

N
∑

j=2

4

|1− aj |2
=

N
∑

j=2

4

N2

N
∏

k=2
k 6=j

|1− ak|2 =
N
∑

j=2

4

N2

N−2
∑

l,p=0

(N − l − 1)(N − p− 1)al−pj

= 4
N − 1

N2

N−1
∑

l=1

l2 − 4

N2

N−1
∑

l,p=1
l 6=p

lp =
4

N

N−1
∑

l=1

l2 − 4

N2
(
N−1
∑

l=1

l)2 =
2(N − 1)(2N − 1)

3
− (N − 1)2

=
N2 − 1

3

in view of (2.2). Since by (2.9) α′
k(ak) =

βN
4
aN−2
k , by (2.7) we have that

|
N
∑

j=0

nj

x− aj
|4 −

N
∑

j=0

| nj

x− aj
|4 −

N
∑

j=1

Re[
βNa

2
j

(x− aj)2(1 + |x− aj|2)
] ∈ L1(R2 \ {0}).

Since

lim
ǫ→0

∫

R2\∪N
k=0Bǫ(ak)

a2j

(x− aj)2(1 + |x− aj |2)
= lim

ǫ→0

∫

R2\Bǫ(aj)

a2j

(x− aj)2(1 + |x− aj|2)
= 0,

we can re-write A0 as

A0 =
1

4
lim
ǫ→0

∫

R2\Bǫ(0)

[

|(N + 1)xN + (N − 1)

2x(xN − 1)
|4 − (N − 1)4

16|x|4 −
N
∑

j=1

1

|x− aj|4

−
N
∑

j=1

Re[
βNa

2
j

(x− aj)2(1 + |x− aj |2)
]

]

=
1

4
lim
ǫ→0

∫

R2\(Bǫ(0)∪{1−ǫ≤|x|≤ 1
1−ǫ

})

[

|(N + 1)xN + (N − 1)

2x(xN − 1)
|4 − (N − 1)4

16|x|4 −
N
∑

j=1

1

|x− aj |4

]

−1

4
Re

[

lim
ǫ→0

∫

R2\(Bǫ(0)∪{1−ǫ≤|x|≤ 1
1−ǫ

})

N
∑

j=1

βNa
2
j

(x− aj)2(1 + |x− aj |2)

]

=:
1

4
I− 1

4
II (2.11)

in view of (2.3).
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As far as I, let us write the following Taylor expansions: for |x| < 1 there hold

((N + 1)xN + (N − 1))2

(1− xN )2
=

(

(N − 1)2 + 2(N2 − 1)xN + (N + 1)2x2N
)

∑

k≥0

(k + 1)xkN

= (N − 1)2 +
∑

k≥1

4N(kN − 1)xkN =
∑

k≥0

ckx
kN (2.12)

and

((N − 1)xN + (N + 1))2

(1− xN )2
=

(

(N + 1)2 + 2(N2 − 1)xN + (N − 1)2x2N
)

∑

k≥0

(k + 1)xkN

= (N + 1)2 +
∑

k≥1

4N(kN + 1)xkN =
∑

k≥0

dkx
kN , (2.13)

where ck = max{4N(kN − 1), (N − 1)2} and dk = max{4N(kN +1), (N +1)2}. Letting ǫ > 0
small, by (2.12)-(2.13) we have that in polar coordinates (w.r.t. to the origin) I writes as

I =

∫ 1−ǫ

ǫ

ρdρ

∫ 2π

0

dθ

[

1

16ρ4
|
∑

k≥0

ckρ
kNeikNθ|2 − (N − 1)4

16ρ4
−

N
∑

j=1

|
∑

k≥0

(k + 1)a
k(N−1)
j ρkeikθ|2

]

+

∫ ∞

1
1−ǫ

ρdρ

∫ 2π

0

dθ

[

1

16ρ4
|
∑

k≥0

dkρ
−kNe−ikNθ|2 − (N − 1)4

16ρ4
− 1

ρ4

N
∑

j=1

|
∑

k≥0

(k + 1)akjρ
−ke−ikθ|2

]

+oǫ(1)

with oǫ(1) → 0 as ǫ→ 0, in view of

|x− aj |−4 = |aN−1
j x− 1|−4 = |

∑

k≥0

(k + 1)a
k(N−1)
j xk|2, |1− ajx|−4 = |

∑

k≥0

(k + 1)akjx
k|2

for |x| < 1. By the Parseval’s Theorem we get that

I = 2π

∫ 1−ǫ

ǫ

[

1

16

∑

k≥1

|ck|2ρ2kN−3 −N
∑

k≥0

(k + 1)2ρ2k+1

]

dρ

+2π

∫ ∞

1
1−ǫ

[

1

16

∑

k≥1

|dk|2ρ−2KN−3 +
(N + 1)4 − (N − 1)4

16ρ3
−N

∑

k≥0

(k + 1)2ρ−2k−3

]

dρ+ oǫ(1)

= 2πN

∫ 1−ǫ

0

[

N
∑

k≥0

(kN +N − 1)2ρ2kN+2N−3 −
∑

k≥0

(k + 1)2ρ2k+1

]

dρ

+2πN

∫ ∞

1
1−ǫ

[

N
∑

k≥0

(kN +N + 1)2ρ−2kN−2N−3 −
∑

k≥0

(k + 1)2ρ−2k−3

]

dρ+N(N2 + 1)
π

2

+oǫ(1) = 2πN

∫ 1−ǫ

0

[

N
∑

k≥0

(kN +N − 1)2ρ2kN+2N−3 +N
∑

k≥0

(kN +N + 1)2ρ2kN+2N+1

−2
∑

k≥0

(k + 1)2ρ2k+1

]

dρ+N(N2 + 1)
π

2
+ oǫ(1)
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as ǫ→ 0. We compute now the integrals and let ǫ→ 0 to end up with

I = 2πN

[

N

2

∑

k≥0

(kN +N − 1)ρ2kN+2N−2 +
N

2

∑

k≥0

(kN +N + 1)ρ2kN+2N+2 −
∑

k≥0

(k + 1)ρ2k+2

]

∣

∣

∣

1

0

+N(N2 + 1)
π

2
.

Denoting the function inside brackets as f(ρ), we need now to determine the explicit expression
of f(ρ) for ρ < 1:

f(ρ) =
N2

2
ρ2N−2(1 + ρ4)

∑

k≥0

(k + 1)(ρ2N)k − N

2
ρ2N−2(1− ρ4)

∑

k≥0

(ρ2N )k − ρ2
∑

k≥0

(k + 1)(ρ2)k

=
N2

2
ρ2N−2 1 + ρ4

(1− ρ2N )2
− N

2
ρ2N−2 1− ρ4

1− ρ2N
− ρ2

(1− ρ2)2

=
1

2

N2ρ2N−2(1 + ρ4)−Nρ2N−2(1− ρ4)(1− ρ2N )− 2ρ2(
N−1
∑

j=0

ρ2j)2

(1− ρ2N)2
,

and then by the l’Hôpital’s rule we get that

4N2f(1) = 2 lim
ρ→1

N(N − 1)ρN−1 +N(N + 1)ρN+1 − 2ρ(
N−1
∑

j=0

ρj)2 +Nρ2N−1 −Nρ2N+1

(1− ρ)2

= lim
ρ→1

−N2(N − 2)ρN−2 −N2(N + 2)ρN + 2(
N−1
∑

j=0

ρj)2 + 4ρ(
N−1
∑

j=0

ρj)(
N−2
∑

j=0

(j + 1)ρj)

1− ρ

+N lim
ρ→1

(2N + 1)ρ2N − (2N − 1)ρ2N−2 − ρN−2 − ρN

1− ρ
= −N

2(N2 + 5)

3
.

In conclusion, for I we get the value

I =
π

3
N(N2 − 1). (2.14)

Remark 2.1. In [13] the value of A0 was computed neglecting the term II in (2.11). By (2.14)

notice that m4

4
I = π

12
m4N(N2 − 1) does coincide with 8π when (N,m) = (2, 2) and 80π when

(N,m) = (4, 2), in agreement with the computations in [13].

As far as II, let us compute in polar coordinates the value of

lim
ǫ→0

N
∑

j=1

∫

R2\(Bǫ(0)∪{1−ǫ≤|x|≤ 1
1−ǫ

})

a2j

(x− aj)2(1 + |x− aj|2)
= lim

ǫ→0

∫

(0,1−ǫ)∪( 1
1−ǫ

,+∞)

ρΓ(ρ)dρ,

where the function Γ is defined in the following way:

Γ(ρ) =
N
∑

j=1

∫ 2π

0

a2j

(ρeiθ − aj)2(2 + ρ2 − ajρe−iθ − aN−1
j ρeiθ)

dθ

=
i

ρ

N
∑

j=1

a3j

∫

γ

dw

(ρw − aj)2(w2 − 2+ρ2

ρ
ajw + a2j )

,
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with γ the counterclockwise unit circle around the origin. Since

w2 − 2 + ρ2

ρ
ajw + a2j =

(

w − 2 + ρ2

2ρ
aj

)2

+ a2j

(

1− (
2 + ρ2

2ρ
)2
)

,

observe that w2 − 2+ρ2

ρ
ajw + a2j vanishes at ρ±aj , with

ρ± =
2 + ρ2

2ρ
±
√

(
2 + ρ2

2ρ
)2 − 1

satisfying ρ− < 1 < ρ+ in view of 2+ρ2

2ρ
≥

√
2. Since

(
1

w2 − 2+ρ2

ρ
ajw + a2j

)′(
aj

ρ
) = aN−3

j ρ5,

by the Cauchy’s residue Theorem the function Γ(ρ) can now be computed explicitly as

Γ(ρ) =
i

ρ3

N
∑

j=1

a3j

∫

γ

dw

(w − aj
ρ
)2(w − ρ−aj)(w − ρ+aj)

= 2πN

{

(ρρ− − 1)−2(ρρ+ − ρρ−)
−1 if ρ < 1

(ρρ− − 1)−2(ρρ+ − ρρ−)
−1 − ρ2 if ρ > 1.

Since we have that

(ρρ− − 1)2 =
1

4
(ρ2 −

√

ρ4 + 4)2 =
1

2
(ρ4 + 2− ρ2

√

ρ4 + 4), ρρ+ − ρρ− =
√

ρ4 + 4,

we get that

(ρρ− − 1)−2(ρρ+ − ρρ−)
−1 =

2

(ρ4 + 2)
√

ρ4 + 4− ρ2(ρ4 + 4)
=

ρ4 + 2

2
√

ρ4 + 4
+
ρ2

2
,

and the expression of Γ(ρ) now follows in the form

Γ(ρ) = πN
ρ4 + 2
√

ρ4 + 4
− πNρ2 +

{

2πNρ2 if ρ < 1
0 if ρ > 1.

(2.15)

Note that

ρ

(

ρ4 + 2
√

ρ4 + 4
− ρ2

)

=
4ρ

(ρ4 + 2)
√

ρ4 + 4 + ρ2(ρ4 + 4)

is integrable in (0,∞), and we have that
∫ ∞

0

ρ(
ρ4 + 2
√

ρ4 + 4
− ρ2)dρ = lim

M→+∞

1

2

∫ M

0

(
s2 + 2√
s2 + 4

− s)ds (2.16)

= lim
M→+∞

[

s

4

√
s2 + 4 |M0 −M

2

4

]

= lim
M→+∞

M

4
(
√
M2 + 4−M) =

1

2
.

Thanks to (2.15)-(2.16) we can compute

lim
ǫ→0

∫

(0,1−ǫ)∪( 1
1−ǫ

,+∞)

ρΓ(ρ)dρ =

∫ +∞

0

ρΓ(ρ)dρ = πN,

and for II we get the value

II =
π

3
N(N2 − 1). (2.17)
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Finally, inserting (2.14) and (2.17) into (2.11) we get that the correlation coefficient vanishes:
A0 = 0. Then, there holds A0(m) = 0 for all m ∈ Z, as claimed.
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