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SOME REMARKS CONCERNING SYMMETRY-BREAKING FOR THE
GINZBURG-LANDAU EQUATION

PIERPAOLO ESPOSITO

ABSTRACT. The correlation term, introduced in [I3] to describe the interaction between very

far apart vortices, governs symmetry-breaking for the Ginzburg-Landau equation in R? or

bounded domains. It is a homogeneous function of degree (—2), and then for 2W’T—sylrnmetric

vortex configurations can be expressed in terms of the so-called correlation coefficient. Ovchin-
nikov and Sigal [I3] have computed it in few cases and conjectured its value to be an integer
multiple of . We will disprove this conjecture by showing that the correlation coefficient
always vanishes, and will discuss some of its consequences.
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1. INTRODUCTION

The Ginzburg-Landau theory is a very popular model in super-conductivity [6]. Stationary
states are described by complex-valued solutions u of the planar equation

—Au = k*u(1 — |ul?),

where k£ > 0 is the Ginzburg-Landau parameter. The condensate wave function u describes
the superconductive regime in the sample by simply interpreting |u|? as the density of Cooper
electrons pairs. The zeroes of u, where the normal state is restored, are called vortices. The
parameter k depends on the physical properties of the material and distinguishes between Type
I superconductors k < % (in this normalization of constants) and Type II superconductors

1
k> .
In the entire plane R? the parameter k& does not play any role, as we can reduce to the case

k =1 by simply changing u into u(%). Supplemented by the correct asymptotic behavior at
infinity, the Ginzburg-Landau equation now reads as

—AU =U(1—-|U]*) inR? (1.1)
|U| — 1 as |z| — 0. '

The condition |U| — 1 as |x| — oo allows to define the (topological) degree deg U of U as the

winding number of U at oo:

1
deg U = — d U
eU=or | n (argU),
where R > 0 is chosen large so that [U]| > 3 in R? \ Bg(0). Given n € Z, the only known
solution of ([LI) with deg U = n is the “radially symmetric” one U,(z) = Su(|2()(5;)" (in
complex notations with « € C), where S, is the solution of the following ODE:

Sp+ 18, — 28, +S,(1—52) =0 in (0,+00)
S,(0)=0, lim S, =1.

r—-+00
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Existence and uniqueness of \S,, is shown in [4[7]. Moreover, the solution U, is stable for |n| < 1
and unstable for |n| > 1 [II]. When n = +1, the solution Uy, is unique, modulo translations
and rotations, in the class of functions U with deg U = +1 and 5, (|U]* — 1)*dz < +oc [10].

One of the open problems (Problem 1)— that Brezis-Merle-Riviere raise out in [3]- concerns the
existence of solutions U of (LI]) with deg U = n, |n| > 1, which are not “radially symmetric”
around any point. So far there is no rigorous answer, but a strategy to find them has been
proposed in [12]. Formally, a solution U of ([ILT]) is a critical point of the functional
E(WV) = 1/ IV 2dz + 1/ (|T* - 1)%dz.
2 Jre 4 Jro

Since £(¥) = +oo for any C'—map V¥ so that |¥| — 1 as |z| — +oo and deg (V) # 0,
Ovchinnikov and Sigal [T1] have proposed to correct £ into

1 (deg U)? 1
Eren (V) = VY — —=—x + = (|¥]* - 1)?) du,
en0) = [ (5IvR = CED Lo - 12 as
where y is a smooth cut-off function with x = 0 when |z| < R and x = 1 when |z| >
R+ R and R >> 1is given. Given a vortex configuration (a,n) = (ay,...,ax,n1,...,nK),
a C'—map ¥ so that |U| — 1 as |z| — +oo has vortex configuration (a,n) if ay,...,ax are
the only zeroes of U with local indices nq, ..., ng, denoted for short as conf ¥ = (a,n). Given

ng, Ovchinnikov and Sigal [12] introduce the “intervortex energy” E given by
E(a) = inf{&en(¥) : conf ¥ = (a,n,)},

and conjecture that a, is a critical point of F if and only if there is a minimizer U for E(q,),

yielding to a solution of (LT]) with conf U = (a,, n,) which is not “radially symmetric” around

any point by construction. Letting d, = Ir;m la; — a;|, the following asymptotic expression is
i#]

established [12]:

a

E(a) = Zgren(Uni) + H(

. R) + Rem (1.2)
7j=1
with Rem = O(d;') as d, — +oo, where H(a) = —7 Y n;n;In|a; — a;] is the energy of the
B i#]

vortex pairs interactions. When VH(a) = 0, the estimate in (L2) improves up to Rem =
O(d;?).

a

When VH (a) = 0 (aso-called forceless vortex configuration), by choosing refined test functions
the asymptotic expression ([L2)) is improved [13] in the form of the following upper bound:

K
E(a) <Y &en(Un) + H(%5) = A) + Rem (1.3)
i=1 r
with Rem = O(d,* 4+ R™?) as d, — +00, where the correlation term A(a) is a homogeneous
function of degree (—2) given as

1 K K
A =1 [ 1 val =Y el
B2 | =1 j=1

with ¢;(x) = n;0(z —a;), j=1,..., K, and 6(x) the polar angle of = € R?.

To push further the analysis, in [I3] the attention is restricted to symmetric vortex config-

urations in order to reduce the number of independent variables in E(a). In particular, the

simplest %—symmetric vortex configurations (a,n) (which are invariant under %—rotations
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and reflections w.r.t. the real axis) have the form: ag = 0, aq,...,ay are the vertices of a
regular N—polygon with a; = 1 and n; = --- = ny = m. We impose also the forceless
condition VH (a) = 0, which simply reads as ng = —~tm.

Since |a;| = -+ = |ay/|, the only variable is the size a = |a;| of the polygon, and then the

intervortex energy will be in the form F(a). Since A(a) is homogeneous of degree —2, we have
that A(a) = 22, where

Ay = A(L R, e (1.4)
is the correlation coefficient for given ny = —%m and ny = -+ = ny = m. In [13] the
existence of c.p.’s of E(a) is shown for the cases (N,m) = (2,2) and (N,m) = (4,2) by
comparing F(a) for a small and large, and using the positive sign of Ay (the correlation
coefficient has value 87 and 80, respectively). It is also conjectured [13] that the correlation
coefficient has values which are integer multiples of 7. With a long but tricky computation,
in the next section we will disprove such a conjecture by showing

Theorem 1.1. The correlation coefficient in (1.4) always vanishes: Ay = 0, for all N > 2
and m € Z.

Beside the role of Ay in symmetry-breaking phenomena for (L)) in R?, as already discussed,
we will also explain its connection with the Ginzburg-Landau equation

{ —Au = k(1 — |[u]?) inQ

u=g on 0f2 (1.5)

on a bounded domain € for strongly Type II superconductors k — +o0o, where g : 9Q — S!
is a smooth map.

The energy functional for (L5

1 2 k2 2)\2
_ 1 A
5 [ 19aP+ 5 [ a1

has always a minimizer 4 in the space H = {u € H'(Q,C) : v = g on 9Q}. When d =
deg g # 0, by [2lI5.16] we know that on simply connected domains u;, has exactly |d| simple
7Z€eroes ay, . . ., ajq for k large, where (aq, ..., ajq) is a critical point for a suitable “renormalized
energy” Wi(ay,...,aq). The symmetry-breaking phenomenon here takes place, driven by an
external mechanism like the boundary condition that forces the confinement of vortices in
some equilibrium configuration. A similar result does hold [2] on star-shaped domains for any
solutions sequence uy, of (LO). Near any vortex a;, the function u(7 + a;) behaves like Uy, ().

Once the asymptotic behavior is well understood, a natural question concerns the construction
of such solutions for any given c.p. (ai,...,ax) of W, and a positive answer has been given
by a heat-flow approach [8,9], by topological methods [I] and by perturbative methods [5]14]
in case ny = -+ = nxg = +1. In [I4], page 12, it is presented as an open problem to know
whether or not there are solutions having vortices collapsing as k — 00, the simplest situation
being problem (L3]) on the unit ball B with boundary value gy = W

(1.6)

—Au = k*u(l—|u]*) in B
U= go on 0B.

It is conjectured the existence of solutions to (LG) having a vortex of degree —1 at the origin
ap = 0 and three vortices of degrees +1 at the vertices la;, a; = e’ 01 for j=1,2,3 of a
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small (I << 1) equilateral triangle centered at 0. This vortex configuration is 2?’T—symmetric,
forceless and has “renormalized energy”

W(l) = —67rIn3 — 67 In(1 — 1% + 0%, 1>0. (1.7)

In collaboration with J. Wei, we were working on this problem. Inspired by [5], we were aiming
to use a reduction argument of Lyapunov-Schmidt type, starting from the approximating
solutions Uy for (L) given by

3
Up(z) = 9*@U_, (k) H Uy (k‘(x - le%(jfl)))
=1

with [ — 0 and [k — +o00, where the function ¢y, is an harmonic function so that Uy |gp= go-
The interaction due to the collapsing of three vortices onto 0 gives at main order a term (Ik)~?
with the plus sign, i.e. for some Jy > 0 there holds the energy expansion

1
Ey(Uy) = 4dnlnk+1+ 5W(l) + Jo(Lk) ™% + o((1k)™?)
= drlnk+ 1 —3rIn3+ 3wl® + Jo(lk) "> + o (I° + (Ik)7?), (1.8)

in view of (7). The aim is to construct a solution u, in the form Uy[n(1 + ) + (1 — n)e?],
where 1» = (k) is a remainder term small in a weighted L*(B)—norm and | = [(k) as
k — 400. The function 7 is a smooth cut-off function with n =1 in U?ZOBl/k(laj) and n =0
in B\ U}_yBayi(la;). The function ¢ = ¢ (k) is found thanks to the solvability theory (up to
a finite-dimensional kernel) of the linearized operator for (L)) at Uy as [ — 0 and Ik — 400,
and by the Lyapunov-Schimdt reduction the existence of I(k) follows as a c.p. of

Ey := By, (U[n(1 + (k) + (1 = n)e’ ™)) .

If Uy, is sufficiently good as an approximating solution of (IL6), we have that Ej, = Ej(Uy) +
o((1k)™2). Since 37l + Jo(Ik)~2 has always a minimum point of order k=1 as k — 400, by
(L]) we get the existence of [ = [(k) in view of the persistence of minimum points under small
perturbations.

Unfortunately, this is not the case. Pushing further the analysis, we were able to identify the
leading term 1y = ¥o(k) of b = ¥ (k), and compute its contribution into the energy expansion,
yielding to a correction in the form:

Ep=4rlnk+1+ %W(l) + J1(lk) 2 4 o((1k) ™). (1.9)

By () and (LJ) a c.p. I(k) of Ej always exists provided J; > 0. First numerically, and then
rigorously, we were disappointed to find that J; = 0.

Later on, we realized that —.J; is exactly the correlation coefficient Ay in (L)) (with N = 3
and m = 1) introduced by Ovchinnikov and Sigal [13]. If u is a solution of (L) with vortices
ap = 0 and la;, a; = e -1 for j = 1,2,3, with ng = —1 and ny = ny = n3 = 1, then the
function U(x) = u(}) does solve

—AU =U(1—-1|UJ]?) in By
U =g on 0B,

with vortices ag and lka; of vorticities ng = —1, n; = ny = ng = 1. Since (L)) and (LI0)
formally coincide when k = +00, it is natural to find a correlation term in the energy expansion

(1.10)
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E,, in the form —@ = Jy1(Ik)~2, where a = Ik is the modulus of the lka;’s for j = 1,2,3. Even
more and not surprlsingly, the function Uk(%), where

Ur[n(L + vo(k)) + (1 — n)e”™)]

is a very good approximating solution for (L) which improves the approximation rate of Uy,
does coincide with the refined test functions used by Ovchinnikov and Sigal [13] to get the
improved upper bound (L3]).

In conclusion, the vanishing of the correlation coefficient Ay does not support any conjecture
concerning symmetry-breaking phenomena for ((ILT]) or the existence of collapsing vortices for
(LG) when & — +oo. Higher-order expansions would be needed in their study.

2. THE CORRELATION COEFFICIENT

2mi(j—1)

Let N > 2. Letaj =e ~ ,j=1,...,N, be the N—roots of unity, and set n; = m € Z
forall j=1,...,N, ay =0 and ng = N’l
Ag = Ap(m ) glven in (L4). Since (in complex notatlon) VO(z) = |x|7%(—x2, x1) has the same
modulus as = W the correlation coefficient takes the form

1 Yoop al n

J__ |4 J__ |4
- E § . 2.1
4/Rzl|, x—aj| : |x—a»| (2.1)

J

Since the integer m comes out as m* from the expression (2.I]), we have that Ag(m) = m*Ag(1).
Hereafter, we will assume m = 1 and simply denote Ay(1) as Ay.

Let us first notice that Ay is not well-defined without further specifications, because the integral
function in (210 is not integrable near the points a;, j = 0,..., N. Recall that the N—roots
of unity aq,...,ay do satisfy the following symmetry properties:

N
Y ai=0 V[l <N,1#£0, (2.2)

1

<.
Il

N
as it can be easily deduced by the relation 2% — 1 = [](z — a;). A first application of (Z2)
j=1

is the validity of

N Nx . . o
J J
= 2.3

which implies that the integral function in (Z1I) near 0 has the form

N N 3 N

30 Y = - Rl ) + O 2.4)

=0 J =0 J
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N

and is not integrable at 0 when N = 2. Similarly, setting ay(z) = —N2;1 + > x_la_ for
j=1 J
j#k

k=1,..., N, near a; we have that

|Z ng Z| ’ 4 Re[(z — ax)ap(z)] + %m(@p (2.5)

\:L’—ak|4

(z — ap)on(x) 2\’
2Re——F5— —
*( L o) - S Z T
The function aj can not be computed explicitly, but we know that

N N
N-1 1 v N-1 1
. _ Nt 2.6
) 2 +Z;ak_aj a < . +Z1—aj> (2.6)

2m(j—1)

N . 2m(j—1)
_ N _N—1+21—COST+Z§1n]T
k 9 2(1_ 27r(]]v—1))

= coS

2m(j—1)

N :
N1 sin =
= iay Z - =V
"= 2(1 —cos %)

in view of {aja, ': j=1,...,N,j#k} = {as,...,ax} and the symmetry of {a;,...,an}
under reflections w.r.t. the real axis. By inserting (2.0]) into (2.5) we deduce that the integral
function in () near a; has the form

3B = S = o Refad (o — )] + O(—

| — a

) (2.7)

|z — ag[*

and is not integrable at a, when o} (ay) # 0. Since the (possible) singular term in (2.4)), ([2.7)
has vanishing integrals on circles, the meaning of A is in terms of a principal value:

o= gl e el 29)

R2A\UN_ B (ay,

We would like to compute Ay in polar coordinates, even tough the set R?* \ UY_,B.(ay) is not
radially symmetric. The key idea is to make the integral function in (2.8]) integrable near any
a;j, j =1,..., N, by adding suitable singular terms, in such a way that the integral in (28]
will have to be computed just on the radially symmetric set R? \ B.(ag). To this aim, it is
crucial to compute «aj(ay). Arguing as before, we get that

N N
N -1 1 -1
/ g — _— —
ak(ar) = 2a? Zl (ar — a;)? % < ZJ 1 —ay) )

N 2m(j—1 . om(i—1
— N2 N_l_z<1—cos%)2—51n2%
B 4(1 = cos 2152
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N—-1

Since there holds )’ a,; E a; =—1forall k=2,..., N in view of (Z2]), we have that

7j=1

E 2P N N—2p

N N N N
— — — p — — — p
1_[2(,2 a;) o _Oz, ll(z aj) — _Oz > ay,
Jj= p= ;# p= =0
and then

N N N-2
[[a-a)=N, JJQ—a)=> (N-1-1)a} (2.10)
= 1 =

By (2I0) we get that

Z|1—a|2 ZN2H‘1_CL’€‘2 ZN2Z =DV - p—l)ép
k#]

j=2 1,p=0

N—1 N—1 N—1
N1 4 4=, 4 , 2N —1)(2N —1) ,
- B DD DY) SIS L CEL
a1 =1 =1
N1
3
in view of (2.2). Since by @9) aj(a;) = 2a) ?, by (Z1) we have that
Y Re[ v e L'(R?\ {0
e §:| §j ) € L O,
7=0
Since
a? a?
lim J = lim J =0,

=0 SN Boay) (8= @)?(L+ |2 = a;]?) 50 Jpa\p,(ay) (£ = @)*(1+ |2 — a4[?)

we can re-write Ag as

1. N+1)2VN + (N -1 N —1)* 1
4 = Liim | i oy
07 40 R2\ B, (0) 2e(xN —1) 16/z[* |z — a;|*
B YT IR L
= (x —a;)?(1+ |z — a;]?)
1. N+1)zV + (N -1 N1 &1
= —lim | |4 - - Z
4 =0 Jp2\ (B, (0) <} 2¢(z™ — 1) 16]z|* |z —
N 2
1 Bnas 1 1
——Re lim/ ! = -1—--1I (2.11)
TR [ ) S >?;@%%M(1+M—@#J i

in view of (Z.3).
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As far as I, let us write the following Taylor expansions: for |z| < 1 there hold

(N + 1)z + (N —1))?

= (N =1 +2(N? = )2V + (N +1)22) " (k + 1)at™

(1—ah)? k>0
= (N=1)*+ ) 4N(kN — 1)2*V = chka_ (2.12)
and h N
o= 1<>{”i ZNSQV FIE (207 2N - e (8 1) Sk 1)
= (N+1)*+ Y AN(kN + )2tV =3 dpat™ . (2.13)

k>1 k>0

where ¢ = max{4N (kN —1), (N —1)?} and dy = max{4N (kN + 1), (N +1)?}. Letting ¢ > 0
small, by (ZI2)-(2I3) we have that in polar coordinates (w.r.t. to the origin) I writes as

/ pdp/ do [16 4|ZC pkN szGQ - Z|Z k’+]. k(N Zk0|2]

k>0 j=1 k>0
( N
/ / do [16 4|Zd —kEN —szGZ __42|Z k’+]_ k —k —zk0|2]
- k>0 j=1 k>0
+06(1)

with o.(1) — 0 as € — 0, in view of

o= = o) e =17 = [ D0k Da YV, - e = Y (ko Dabat?
k>0 k>0

for |x| < 1. By the Parseval’s Theorem we get that

_ 2 2kN-3 2 2k+1
I = 27r/e [162\0| NZ(k+1)p ]dp

k>1 k>0

~ N+1)*t—(N—-1)* o
*2”/1 [16Zid 2 anena >16p§ M R
1—e

k>1 k>0

dp + 0e(1)

= 27TN/ [NZ (kN + N — 1)2p2kN+2N 3 Z(k+1)2p2k+1] dp

k>0 k>0

27N N N N 12—2]<;N2N3 —2k—3 NN2 1)=—
+W/[Zk++)p D (k+1)% dp+(+)2

k>0 k>0

1—e¢
+o.(1) = 27TN/ [NZ (EN + N — 1)2p2eN+2N-3 +NZ (EN + N 4 1)2p%N+2N+1

k>0 k>0

_2 Z(k + 1)2p2k+1

k>0

dp+ N(N? + 1)% + 0.(1)
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as € = 0. We compute now the integrals and let ¢ — 0 to end up with

N senton—2 | N 2kN+2N+2 k2| |!
I = 27N §Z(l€N+N—1)p +EZ(kN+N+1)p =) (k+1)p ‘0
k>0 k>0 k>0
FN(N? + 1)%.
Denoting the function inside brackets as f(p), we need now to determine the explicit expression
of f(p) for p < 1:

Flo) = SN ) k4 D) = SN ) ) - Yk 1) ()

2 k>0 k>0 k>0
_ EpZN—Q 1+ p! _51)21\1—21_/)4 _ p*
2 (1—p2N)2 2 1— 2N (1= p?)2
N-1
VIR = NP = (1= ) = 205 )
]:

2 (=) |
and then by the I’'Hopital’s rule we get that

N—
N(N— 1)pN_1—|—N<N—|— 1) N+1 (Z ) —|—Np2N_1 _Np2N+1

AN?f(1) = 21i !
, , N— N-1  N-2 ‘
—N*(N = 2)pV =% = N*(N +2)p" +2(Z P44 ) (3 G+ 1))
= lim =0 J=0 J=0
p—1 1-0p
IN 1 2N IN —1 2N —2 N—2 N N2 N2
LN Jim BN A DT = pt =t NN )
p—1 1—p 3
In conclusion, for I we get the value
[= %N(NQ —1). (2.14)

Remark 2.1. In [13] the value of Ay was computed neglecting the term I in (210). By (214
notice that ™ I = Zm*N(N? — 1) does coincide with 87 when (N,m) = (2,2) and 807 when
(N,m) = (4,2), in agreement with the computations in [13].

As far as II, let us compute in polar coordinates the value of

2

a;
lim / = lim pl'(p)dp,
GHOZ R2\ (B (0)U{1—e<|z[< 12 (—a;)*(1+[x—aq;?) 0 (0,1—€)U( 1= ,+00)

where the function I' is defined in the following way:

2

a“
r = J df
(p) Z/ peze (2+p — a. pe —i0 __ N—lpeie)

- —z r -
(pw — a;)*(w? — 2J;pa]era)’
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with + the counterclockwise unit circle around the origin. Since

2+ p? 24 % \? 2+ p?
2 _ . 2 _ (— . 2 (1 2
w p ajw + a; <w % aj | +a; ( % )7,

observe that w? — #ajw + a; vanishes at pia;, with
2+ p? 2+ p?
P = P ( P )2 —1
P 2p

satisfying p_ < 1 < py in view of % > /2. Since
(

! (Y

2 _ 24p% 2
w o Gwtaj P

) =a; ?p’,

by the Cauchy’s residue Theorem the function I'(p) can now be computed explicitly as

F(p) _ izN:a?;/ dw
p3j:1 ’ v(w_a.

D2 (w — p_ay)(w — pray)

_ (pp— — 1)~
a QWN{ (pp— = 1)7

[\

(ppy — pp-)~" ifp<1
(ppy —pp-)' = p* ifp> 1.

N

Since we have that

1 1
(pp- =1 = 20" =V + 9 = (" + 2=Vt + ), ppe —pp- =P 4,
we get that
2 p4_'_2 p2
(oo = 1)(pps — pp-)~" = = + =
" (Pt +2)\/p* +4—p2(pt+4)  2¢/pt+4 2

and the expression of I'(p) now follows in the form

2rNp? ifp<1

4
_ pe+2 2
Flp) =N _”Np+{0 it p>1.

Vot t4

(2.15)

Note that

o pt+2 2| = 4p
Vpt+4 (P* +2)\/pt +4+p*(p* +4)

is integrable in (0, 00), and we have that

o0 4 M 2
pt+2 5 1 s+ 2
——p)dp= lim - ——— —s)ds 2.16
/Op( T p7)dp Ma+oo2o(f+4 ) (2.16)

. s v M? . M 1
= lim ZV32+4|0 - | = A, z(VM2+4—M)=§.

M—+o0 M—+o0
Thanks to ([ZI3)-(ZI0) we can compute
+o0
lim pL(p)dp = / pI'(p)dp = 7N,
20 J(0,1-e)u(11 ,+00) 0

and for II we get the value
T

1= gN(N2 —1). (2.17)
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Finally, inserting (ZI14]) and (2.17) into (ZI1]) we get that the correlation coefficient vanishes:
Ap = 0. Then, there holds Ay(m) = 0 for all m € Z, as claimed.
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