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Largo San Leonardo Murialdo 1, 00146 Roma, Italy
(esposito@mat.uniroma3.it).

(MS received 19 February 2007; accepted 20 July 2007)

We study the effect of the potential |y|α on the stability of entire solutions for elliptic
equations on R

N , N � 2, with exponential or smoooth/singular polynomial
nonlinearities. Instability properties are crucial in order to establish regularity of the
extremal solution to some related Dirichlet nonlinear eigenvalue problem on bounded
domains. As a by-product of our results, we will improve the known results about the
regularity of such solutions.

1. Introduction

We are concerned with the study of

−∆U = |y|α sgn(Ḟ (U))F (U) in R
N , (1.1)

where α � 0, N � 2 and F (s) = es, sp with p < 0 or p > 1.
When α = 0, classification results for (1.1) are available in the literature. In [19]

Gidas and Spruck proved that the only non-negative solution of such an equation
with a subcritical nonlinearity F (s) = sp, 1 < p < (N+2)/(N−2) and N � 3, is the
trivial one (see also [1] for bounded changing-sign solutions with finite Morse index).
For the critical exponent p = (N + 2)/(N − 2), N � 3, the problem admits exactly
a three-parameter family of solutions as shown in the celebrated papers [8,20] (see
also [10]). In dimension N = 2, a similar classification is available in [10] for the
exponential nonlinearity F (s) = es under the finite-energy condition:∫

R2
eU < +∞.

In all these situations, the solutions are radial about some point in R
N . For singular

polynomial nonlinearities f(s) = sp, p < 0, only partial results are available. In [22]
it is shown that any positive solution u of (1.1) is a radial function, provided that u
satisfies a growth assumption modelled on |y|2/(1−p) at infinity. Only when N = 2,
every solution which is symmetric in both variables and arises from a limiting
procedure (in a sense which we will explain later) is radially symmetric, as shown
in [21].

When α > 0, as far we know, quite a few things are known. In dimension N = 2
a complete classification has been proved by Prajapat and Tarantello [25]: when
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1
2α /∈ N, all the solutions are radial around the origin and are ‘dilations’ of the
same function; when 1

2α ∈ N, there is a three-parameter family of solutions and
most of them are not symmetric around any point of R

2.
We focus now on stability properties. Given a solution U of (1.1), we define the

‘first eigenvalue’ of the linearized operator in the following way:

µ1(U) = inf
{ ∫

|∇φ|2 −
∫

|y|α|Ḟ (U)|φ2 : φ ∈ C∞
0 (RN ),

∫
φ2 = 1

}
.

We will say that U is a semi-stable (respectively, stable) solution if µ1(U) � 0
(respectively, µ1(U) > 0). An unstable solution U corresponds to the opposite
situation, µ1(U) < 0.

In the case when α = 0 and F (s) = sp with p > 1, for any

2 � N < 2 +
4p

p − 1
+ 4

√
p

p − 1
,

Farina [17] extends the Liouville-type results of [1] (which were established in the
subcritical case) to possibly unbounded and changing-sign solutions which are semi-
stable outside a compact set (see also [15]): such a class includes, in particular,
semi-stable and finite Morse index solutions. In a different direction, in [6] Cabré
and Capella show that, for general smooth nonlinearities F (U) (convex and increas-
ing), any bounded, radial solution of (1.1) with α = 0 is unstable when N � 10.
The result is sharp because problem (1.1) for some F (s) admits a bounded, radial
solution which is semi-stable when N � 11.

As for singular polynomial nonlinearities, Esposito et al . show in [14] that for
F (U) = 1/U2 all the (possibly non-radial) solutions bounded away from zero are
unstable when either 2 � N � 7 or N � 8 and

α >
3N − 14 − 4

√
6

4 + 2
√

6
,

exhibiting an effect of the potential |y|α on the stability. In this situation the result
is sharp.

In the spirit (and as a continuation) of [14], we focus our attention on the simplest
situation of semi-stable solutions and extend our previous result to a class of more
general nonlinearities.

Theorem 1.1. Let F (s) = es, sp, with p < 0 or p > 1 + 2√
3
. Let U be a non-trivial

solution of
−∆U = |y|α sgn(Ḟ (U))F (U) in R

N ,

F (U(y)) � F (U(0)) = 1 in R
N .

}
(1.2)

Then, U is unstable provided that

(a) either 2 � N < 10 or N � 10 and α > 1
4 (N − 10), when F (s) = es,

(b) either

2 � N < 2 +
4p

p − 1
+ 4

√
p

p − 1
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or

N � 2 +
4p

p − 1
+ 4

√
p

p − 1
, α >

|p|(N − 2)(p − 1)
2p(|p| +

√
p(p − 1))

− 2,

when F (s) = sp.

The critical dimension which appears in theorem 1.1 is sharp, as we will see
later by exhibiting well-known counterexamples. As far as semi-stable solutions are
concerned, for F (s) = sp, p > 1, our result extends what was known in [1, 17]
for α = 0 to the case α � 0 under the technical assumption p > 1 + 2√

3
. For

1 < p � 1 + 2√
3

we are able to establish a similar statement as in theorem 1.1:
however, it would not be sharp and we prefer to omit it. Our first aim is to cover
the exponential and the singular situation F (s) = sp, p < 0, because, as we recently
discovered, for exponential nonlinearities such an instability property was not even
known for α = 0. For N = 3, let us quote a recent non-existence result of finite
Morse index solutions by Dancer [12]. A special emphasis is given to the presence
of |y|α in (1.2) and our second aim is to investigate the dependence on α of stability
properties.

The instability of solutions to (1.2) is related to various nonlinear eigenvalue
problems. Let us take a nonlinearity f(s) in the class es, (1 − s)p with p < 0,
(1 + s)p with p > 1 + 2√

3
. Let us consider the problem

−∆u = λg(x)f(u) in Ω,

u = 0 on ∂Ω,

}
(1.3)

where g(x) is a non-negative Hölder function in Ω and λ � 0. According to the
literature (see, for example, [11] and [18, 23] for (1 − s)p, p < 0), it is possible to
define an extremal value in the following way:

λ∗ = sup{λ > 0 : (1.3) has a classical solution} ∈ (0, +∞),

such that, for any λ ∈ (0, λ∗), problem (1.3) has a unique minimal solution uλ (it
is the pointwise smallest positive solution of (1.3)). The solution uλ is completely
characterized as the unique stable solution:

µ1(uλ) = inf
{ ∫

|∇φ|2 − λ

∫
g(x)ḟ(uλ)φ2 : φ ∈ C∞

0 (Ω),
∫

Ω

φ2 = 1
}

> 0

(see [4] for a survey on the subject and an exhaustive list of related references). As
λ approaches λ∗, the family {uλ} can be compact:

sup
λ∈(0,λ∗)

‖f(uλ)‖∞ < +∞,

or f(uλ) can develop a blow-up phenomenon. The extremal function

u∗ = lim
λ↑λ∗

uλ

is always a weak solution of (1.3) with λ = λ∗; in the compact situation, u∗ is
actually a classical solution of (1.3). Hence, to establish the regularity of u∗, we
have to study and exclude the blow-up of f(uλ). As λ → λ∗, a suitable rescaling
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of uλ converges to a solution of the corresponding limiting problem on R
N in the

form (1.2) for some α � 0, semi-stable by the stability of uλ.
Now let g(x) = |x|αh(x), h � C > 0. If the blow-up occurs ‘essentially’ at the

origin, the limiting equation (1.2) presents a potential |y|α and theorem 1.1 allows
us to exclude blow-up of f(uλ) for suitable values of α. This occurs on the unit ball
B with a radial potential g(x) because in this case the minimal solution uλ achieves
the maximum value exactly at the origin (uλ is radial and radially decreasing).

Theorem 1.2. Let f(s) = es, (1−s)p with p < 0, (1+s)p with p > 1+ 2√
3
. Assume

that the potential g(x) has the form

g(x) = |x|αh(|x|), h � C > 0 on B.

Let uλ be the minimal solution of (1.3) for λ ∈ (0, λ∗). Then

sup
λ∈(0,λ∗)

‖f(uλ)‖∞ < ∞

and u∗ = limλ↑λ∗ uλ is a classical solution of (1.3) at λ∗, provided that

(a) either 2 � N < 10 or N � 10 and α > 1
4 (N − 10), when f(s) = es,

(b) either

2 � N < 2 +
4p

p − 1
+ 4

√
p

p − 1

or

N � 2 +
4p

p − 1
+ 4

√
p

p − 1
, α >

|p|(N − 2)(p − 1)
2p(|p| +

√
p(p − 1))

− 2,

when f(s) = (1 − s)p/(1 + s)p.

Theorem 1.2 is shown for p = −2 in [14]. Eigenvalue problems with singular
nonlinearities as (1 − u)−2 show special features (as shown in [13, 14]): not only is
the minimal branch compact in low dimensions but the unstable branches are also
compact as far as their Morse indices remain bounded (in [14] solutions of Morse
index 1 were considered). In [9] we consider the behaviour of stable and unstable
branches for singular nonlinearities in a larger class than (1 − s)p, p < 0. We also
include the m-Laplace operator, m > 1, in that study.

We also mention here the recent developments by Cabré and Capella [5, 7]: for
quite general nonlinearities, the extremal function u∗ is a classical solution on the
ball for any N � 9 and on a general domain for any N � 4 (see also a former result
of Nedev [24]).

On a general domain, the form of g(x) = |x|αh(x) does not help because the blow-
up can occur outside the origin and the limiting problem would have a constant
positive potential. Hence, the dimensions for compactness to hold correspond to
the worst situation α = 0; for the sake of completeness, let us state the following
result (it is already known, see [11,18,23]).
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Theorem 1.3. Let f(s) = es, (1 − s)p with p < 0, (1 + s)p with p > 1 + 2√
3
. Let

uλ be the minimal solution of (1.3) for λ ∈ (0, λ∗). Then

sup
λ∈(0,λ∗)

‖f(uλ)‖∞ < ∞

and u∗ = limλ↑λ∗ uλ is a classical solution of (1.3) at λ∗, provided that 2 � N < 10
when f(s) = es or

2 � N < 2 +
4p

p − 1
+ 4

√
p

p − 1

when f(s) = (1 − s)p/(1 + s)p.

Remark 1.4. Theorems 1.2 and 1.3 turn into a regularity property for semi-stable
solutions of Dirichlet elliptic problems. Let u be a semi-stable H1

0 (Ω)-weak solution
of (1.3) with λ = 1. Then, denoting by λ∗ and u∗ the extremal value and extremal
solution, respectively, of the nonlinear eigenvalue problem (1.3), it is possible to
show that λ∗ � 1 (see [2, 3]). Since f(u) is convex, when λ∗ > 1, u coincides with
the minimal solution uλ|λ=1, which is a classical solution, while, if λ∗ = 1, then
u = u∗ and, by theorems 1.2 and 1.3, it is still a smooth function. We refer the
reader to the appendix in [14] for details when f(u) = (1 − u)−2.

The paper is organized in the following way. In § 2, we derive weighted Lq(RN )-
bounds for semi-stable solutions of (1.2) which yield to the proof of theorem 1.1.
In § 3, we describe the blow-up procedure to relate (1.3) to (1.2) in the case of non-
compactness: theorem 1.2 then follows easily. We also provide some counterexamples
to show the sharpness of the results.

Theorem 1.3 is based on the same techniques and requires us only to show (per-
haps in an easy way, as done in [13, 14]) that blow-up ‘essentially’ does not occur
on ∂Ω. Nonetheless, we do not provide the details of its proof.

While this paper was under review, Farina informed us that, for the exponential
nonlinearity F (s) = es and α = 0, he had obtained in [16] a result similar to
our theorem 1.1: all the solutions are linearly unstable as long as N � 9. In the
exponential case the question of whether or not there exist solutions which are
semi-stable outside a compact set of R

N is still open: a non-existence result would
allow us to prove compactness along any unstable branch with uniformly bounded
Morse indices as already shown in [13] for F (U) = 1/U2.

2. Instability of entire solutions

Let F (s) = es, sp with p < 0 or p > 1 + 2√
3
. Let U be a solution of

−∆U = |y|α sgn(Ḟ (U))F (U) in R
N ,

F (U(y)) � F (U(0)) = 1 in R
N .

}
(2.1)

For semi-stable solutions of (2.1) the following useful weighted integral estimates
on F (U) hold.
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Theorem 2.1. Assume that U is a semi-stable solution of (2.1). Denoting by [·]
the integer part, let

q̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if F (s) = es,

p − 1
p

if F (s) = sp, 0 > p � 1 − 2√
3
,

p − 1
p

[
2p + 2

√
p(p − 1)

p − 1

]
+

p − 1
p

if F (s) = sp, |p − 1| > 2√
3
,

2p + 2
√

p(p − 1)
p − 1

/∈ N,

2 + 2
√

p − 1
p

if F (s) = sp, |p − 1| > 2√
3
,

2p + 2
√

p(p − 1)
p − 1

∈ N,

and

β̄ =

⎧⎪⎨
⎪⎩

1
2N − 2(2 + α) if F (s) = es,

1
2N − p

p − 1
(1 + 1

2α)q̄ if F (s) = sp.

Then, for any q � q̄ and β > β̄, we have that∫
F q(U)

(1 + |y|2)β
< ∞. (2.2)

Proof. By the semi-stability assumption on U , the following inequality holds:∫
|∇φ|2 −

∫
|y|α|Ḟ (U)|φ2 � 0 ∀φ ∈ C∞

0 (RN ). (2.3)

Given δ > 0, for the test function

φ =
1

(1 + |y|2)(N−2)/4+(δ/2)

we can find a sequence φn ∈ C∞
0 (RN ) so that φn → φ almost everywhere, ∇φn →

∇φ in L2(RN ). Applying (2.3) to φn and taking the limit as n → ∞, by Fatou’s
theorem we obtain∫ |y|α

(1 + |y|2)((N−2)/2)+δ
|Ḟ (U)| � C

∫
1

(1 + |y|2)(N/2)+δ
< +∞ (2.4)

for any δ > 0.
Define

0 < Λ =

⎧⎨
⎩

1 if F (s) = es,
p − 1

p
if F (s) = sp,

0 �= γ =

{
1 if F (s) = es,

p if F (s) = sp,
(2.5)

in such a way the following relation holds:

Ḟ (U) = γFΛ(U). (2.6)
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By a Moser-type iteration scheme based on (2.3), we will show that, for any
2 − 2

√
Λ < q < 2 + 2

√
Λ, q �= 0, and β,

∫
F q+Λ(U)

(1 + |y|2)β−1−(α/2) � Cq

(
1 +

∫
F q(U)

(1 + |y|2)β

)
(2.7)

(provided the second integral is finite).
Estimates (2.4), (2.7) now provide the validity of (2.2). Indeed, in view of (2.6),

estimate (2.4) can be rewritten as∫
F q1(U)

(1 + |y|2)β1+δ
< +∞,

where β1 = 1
2N −(1+ 1

2α) and q1 = Λ. Note that, by means of (2.5), the assumption
p > 1 + 2√

3
may be expressed in terms of Λ as Λ > 4 − 2

√
3 or, equivalently, as

q1 = Λ > 2 − 2
√

Λ.
Let βi = 1

2N − i(1 + 1
2α) and qi = iΛ. The index ī, defined by

ī =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if Λ � 2 + 2
√

Λ,[
2 + 2

√
Λ

Λ

]
+ 1 if 1 <

2 + 2
√

Λ

Λ
/∈ N,

2 + 2
√

Λ

Λ
if 1 <

2 + 2
√

Λ

Λ
∈ N,

(2.8)

is the smallest positive integer such that qī � 2 + 2
√

Λ. Now applying (2.7) for
i = 1, . . . , ī − 1 only in the case when ī � 2, we get that∫

F qī(U)
(1 + |y|2)βī+δ

< +∞. (2.9)

Observe that Λ < 2 + 2
√

Λ holds exactly when Λ < 4 + 2
√

3, which is expressed in
terms of p as p /∈ [1 − 2√

3
, 0) by means of (2.5). Moreover, the relations

q̄ = qī := īΛ � 2 + 2
√

Λ, β̄ = βī := 1
2N − ī(1 + 1

2α) (2.10)

do hold, following definitions (2.5) of Λ and (2.8) of ī. Therefore, estimate (2.9) for
any δ > 0 clearly implies the validity of (2.2).

In order to complete the proof, we need to show the validity of (2.7). Given R > 0,
consider a smooth radial cut-off function η so that

0 � η � 1, η = 1 on BR(0), η = 0 on R
N \ B2R(0), R|∇η| + R2|∆η| � 2.

(2.11)
Note that F (U(y)) > 0 in R

N , unless F (s) = sp, p > 0 and U = 0 (by the Hopf
lemma). Now multiply (2.1) by

γ
η2

(1 + |y|2)β−1 F q−1+Λ(U), q �= 0,
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and, by (2.3), (2.6), an integration by parts yields

γ

∫
η2|y|α

(1 + |y|2)β−1 sgn(Ḟ (U))F q+Λ(U)

= γ(q − 1 + Λ)
∫

η2

(1 + |y|2)β−1 F q−2+Λ(U)Ḟ (U)|∇U |2

+ γ

∫
F q−1+Λ(U)∇

(
η2

(1 + |y|2)β−1

)
∇U

= (q − 1 + Λ)
∫

η2

(1 + |y|2)β−1 F q−2(U)(Ḟ (U))2|∇U |2

+
∫

F q−1(U)Ḟ (U)∇
(

η2

(1 + |y|2)β−1

)
∇U

=
4(q − 1 + Λ)

q2

∫ ∣∣∣∣∇ ηF q/2(U)
(1 + |y|2)(β−1)/2

∣∣∣∣
2

− 4(q − 1 + Λ)
q2

∫
F q(U)

∣∣∣∣∇ η

(1 + |y|2)(β−1)/2

∣∣∣∣
2

+
2 − q − 2Λ

q2

∫
∇(F q(U))∇

(
η2

(1 + |y|2)β−1

)

� 4(q − 1 + Λ)
q2

∫
η2|y|α

(1 + |y|2)β−1 |Ḟ (U)|F q(U)

− 4(q − 1 + Λ)
q2

∫
F q(U)

∣∣∣∣∇ η

(1 + |y|2)(β−1)/2

∣∣∣∣
2

− 2 − q − 2Λ

q2

∫
F q(U)∆

(
η2

(1 + |y|2)β−1

)
.

By (2.11) it is straightforward to see that∣∣∣∣∇ η

(1 + |y|2)(β−1)/2

∣∣∣∣
2

+
∣∣∣∣∆ η2

(1 + |y|2)β−1

∣∣∣∣ � C

(1 + |y|2)β

for some constant C independent on R > 0. Since (2.6) implies γ sgn(Ḟ (U)) = |γ| >
0 and |Ḟ (U)| = |γ|FΛ(U), we finally obtain(

4(q − 1 + Λ)
q2 − 1

) ∫
η2|y|α

(1 + |y|2)β−1 F q+Λ(U) � C

∫
F q(U)

(1 + |y|2)β
,

where C does not depend on R > 0. For any 2 − 2
√

Λ < q < 2 + 2
√

Λ it holds that
(4(q − 1 + Λ)/q2) − 1 > 0 and then we get∫

η2|y|α
(1 + |y|2)β−1 F q+Λ(U) � C

∫
F q(U)

(1 + |y|2)β

for any 2 − 2
√

Λ < q < 2 + 2
√

Λ, q �= 0, where C does not depend on R > 0. Taking
the limit as R → +∞, since F (U(y)) is locally bounded, we easily obtain the validity
of (2.7) for any 2 − 2

√
Λ < q < 2 + 2

√
Λ, q �= 0, and the proof is completed.
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As a by-product of theorem 2.1, the following corollary holds.

Corollary 2.2. Let U be a semi-stable solution of (2.1). Define

N̄ =

⎧⎪⎨
⎪⎩

10 if F (s) = es,

2 +
4p

p − 1
+ 4

√
p

p − 1
if F (s) = sp

and

ᾱ =

⎧⎪⎪⎨
⎪⎪⎩

N − 10
4

if F (s) = es,

|p|(N − 2)(p − 1)
2p(|p| +

√
p(p − 1))

− 2 if F (s) = sp.

If either N < N̄ or N � N̄ and α > ᾱ, then it holds that∫
F q(U)
1 + |y|2 < ∞ (2.12)

for any
Λ(N − 2)

2 + α
< q < 2 + 2

√
Λ,

where Λ is defined in (2.5).

Proof. First, note that ᾱ � 0 only when N � N̄ . Hence, the inequality α > ᾱ is
automatically satisfied when N < N̄ and is equivalent to the condition that

Λ(N − 2)
2 + α

< 2 + 2
√

Λ.

Let us now fix some

q ∈
(

Λ(N − 2)
2 + α

, 2 + 2
√

Λ

)
.

By (2.10), the requirement

Λ(N − 2)
2 + α

< q < 2 + 2
√

Λ

implies that
(N − 2)q̄
N − 2β̄

< q < q̄,

or, equivalently,
q̄ − β̄q

q̄ − q
>

N

2
.

Therefore, for δ > 0 small we have∫
1

(1 + |y|2)(q̄−(β̄+δ)q)/(q̄−q)
< ∞. (2.13)
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In order to prove (2.12), by the Hölder inequality we obtain

∫
F q(U)
1 + |y|2 =

∫
F q(U)

(1 + |y|2)(β̄+δ)q/q̄

1
(1 + |y|2)1−(β̄+δ)q/q̄

�
( ∫

F q̄(U)
(1 + |y|2)β̄+δ

)q/q̄( ∫
1

(1 + |y|2)(q̄−(β̄+δ)q)/(q̄−q)

)(q̄−q)/q̄

< +∞

by means of (2.2) in theorem 2.1.

Proof of theorem 1.1. By contradiction, assume that µ1(U) � 0. The function U is
then a semi-stable solution of (2.1) and corollary 2.2 implies that (2.12) holds for
any

Λ(N − 2)
2 + α

< q < 2 + 2
√

Λ,

where Λ is defined in (2.5). Since 1 − Λ < 2 + 2
√

Λ, let us fix some q for which
(2.12) is available and

1 − q2

4(q − 1 + Λ)
> 0.

Let η be a cut-off function satisfying (2.11). Using equation (2.1) and rela-
tion (2.6) we compute

∫
|∇ηF q/2(U)|2 −

∫
|y|α|Ḟ (U)|(ηF q/2(U))2

= 1
4q2

∫
η2F q−2(U)(Ḟ (U))2|∇U |2 +

∫
|∇η|2F q(U)

+ 1
2q

∫
F q−1(U)Ḟ (U)∇U∇(η2) −

∫
η2|y|α|Ḟ (U)|F q(U)

= 1
4γq2

∫
η2F q−2+Λ(U)Ḟ (U)|∇U |2 +

∫
|∇η|2F q(U)

+ 1
2q

∫
F q−1(U)Ḟ (U)∇U∇(η2) −

∫
η2|y|αḞ (U)|F q(U)

= γ
q2

4(q − 1 + Λ)

∫
∇U∇(η2F q−1+Λ(U)) +

∫
|∇η|2F q(U)

−
∫

η2|y|α|Ḟ (U)|F q(U)

+
(

1
2q − q2

4(q − 1 + Λ)

) ∫
F q−1(U)Ḟ (U)∇U∇(η2)

= −
(

1 − q2

4(q − 1 + Λ)

) ∫
η2|y|α|Ḟ (U)|F q(U) +

∫
|∇η|2F q(U)

+
(

1
2

− q

4(q − 1 + Λ)

) ∫
∇(F q(U))∇(η2)
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= −
(

1 − q2

4(q − 1 + Λ)

) ∫
η2|y|α|Ḟ (U)|F q(U) +

∫
|∇η|2F q(U)

+
(

q

4(q − 1 + Λ)
− 1

2

)
F q(U)∆(η2).

Since

1 − q2

4(q − 1 + Λ)
> 0,

we get∫
|∇ηF q/2(U)|2 −

∫
|y|α|Ḟ (U)|(ηF q/2(U))2

� −
(

1 − q2

4(q − 1 + Λ)

) ∫
B1(0)

|y|α|Ḟ (U)|F q(U) + O

( ∫
|y|�R

F q(U)
1 + |y|2

)

→ −
(

1 − q2

4(q − 1 + Λ)

) ∫
B1(0)

|y|α|Ḟ (U)|F q(U) < 0 as R → +∞

for the non-trivial solution U . This is in contradiction to µ1(U) � 0.

3. Compactness of the minimal branch on the ball

First, we prove theorem 1.2, as follows.

Proof of theorem 1.2. We argue by contradiction. Assume the existence of a se-
quence λn ↑ λ∗ and associated solution un := uλn of (1.3) on the unit ball B so
that

‖f(un)‖∞ → +∞ as n → +∞. (3.1)

Recall that un is a radial and radially decreasing function. Let us now discuss all
the possible cases.

If f(s) = es, (3.1) implies that un(0) = ‖un‖∞ → +∞ as n → +∞. Let

εn = exp
(

− un(0)
α + 2

)

and Un(y) = un(εny) + (2 + α) ln εn, y ∈ Bn := B1/εn
(0). Then, εn → 0, Bn → R

N

as n → +∞, and Un solves

−∆Un = λn|y|αh(εn|y|)eUn in Bn,

Un(y) � Un(0) = 0.

Since Un satisfies Un(0) � Un(0) = 0 and has a uniformly bounded Laplacian, we
can find a subsequence of Un (still denoted by Un) so that Un → U in C1

loc(R
N ),

where U is a solution of (1.2) with F (s) = es (up to reabsorption of the positive coef-
ficient λ∗h(0)). Indeed, let us fix some ball BR(0) of large radius R. We can decom-
pose Un as Un = U1

n + U2
n, where U2

n = 0 on ∂BR(0) with ∆U2
n = ∆Un uniformly

bounded. By elliptic regularity theory, U2
n is uniformly bounded in C1,γ(BR(0)),

γ > 0. Since Un is negative and U2
n is uniformly bounded on BR(0), U1

n = Un − U2
n

is a harmonic function which is also one-side uniformly bounded too. By the
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mean-value theorem, since Un(0) = 0, U1
n (and then Un) is uniformly bounded in

C1,γ(BR/2(0)), γ > 0, for any R > 0. By the Ascoli–Arzelà theorem and a diagonal
process, Un has a converging subsequence in C1

loc(R
N ).

If f(s) = (1 + s)p, p > 1, then (3.1) implies that un(0) = ‖un‖∞ → +∞ as
n → +∞. Let εn = un(0)−(p−1)/(2+α) and

Un(y) = ε(2+α)/(p−1)
n un(εny), y ∈ Bn := B1/εn

(0).

Then εn → 0, Bn → R
N as n → +∞, and Un solves

−∆Un = λn|y|αh(εn|y|)(ε(2+α)/(p−1)
n + Un)p in Bn,

Un(y) � Un(0) = 1.

Also in this case, Un is negative with Un(0) = 1 and has a uniformly bounded
Laplacian. Then, a subsequence of Un (still denoted by Un) exists such that Un → U
in C1

loc(R
N ), where U is a solution of (1.2) with F (s) = sp (up to a positive

coefficient).

If f(s) = (1 − s)p, p < 0, (3.1) implies that un(0) = ‖un‖∞ → 1− as n → +∞.
Let εn = (1 − un(0))(1−p)/(2+α) and

Un(y) = ε−(2+α)/(1−p)
n (1 − un(εny)), y ∈ Bn := B1/εn

(0).

Then, εn → 0, Bn → R
N as n → +∞, and Un solves

∆Un = λn|y|αh(εn|y|)Up
n in Bn,

Un(y) � Un(0) = 1.

The family Un satisfies Un � Un(0) = 1 and has a uniformly bounded Laplacian.
Up to a subsequence, Un → U in C1

loc(R
N ), where U is a solution of (1.2) with

F (s) = sp (up to a positive coefficient).

Any function φ ∈ C∞
0 (RN ) so that∫

|∇φ|2 − λ∗h(0)
∫

|y|α|Ḟ (U)|φ2 < 0

could be rescaled back to a function φn ∈ C∞
0 (BRεn

(0)), for some R > 0, so that∫
Ω

|∇φn|2 − λn

∫
Ω

g(x)ḟ(un)φ2
n →

∫
|∇φ|2 − λ∗h(0)

∫
|y|α|Ḟ (U)|φ2 < 0

as n → +∞, in contradiction to the semi-stability of un. Hence, µ1(U) � 0. The-
orem 1.1 excludes the existence of such a solution when either N < N̄ or N � N̄
and α > ᾱ, and then the blow-up assumption (3.1) leads to a contradiction in such
cases (for the definitions of N̄ and ᾱ, see the statement of corollary 2.2).

To describe the counterexamples, we want to compute u∗ and λ∗ explicitly on the
unit ball B with g(x) = |x|α and N � N̄ , 0 � α � ᾱ. This will provide an example
of an extremal function u∗ so that ‖f(u∗)‖∞ = ∞, which is not a classical solution.
Therefore, theorem 1.2 cannot be improved. The limiting profile U around zero of
the minimal branch uλ as λ → λ∗ (which is non-compact in this case) provides an
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example of a radial, semi-stable, non-trivial solution of (1.2). Hence, theorem 1.1 is
sharp too.

Our examples are based on the following useful characterization of the extremal
solution (see [2,3] for f(s) = es, (1 + s)p with p > 1, and [13,14] for f(s) = (1 − s)p

with p < 0).

Theorem 3.1. Let g(x) be a non-negative Hölder function. Let u be a H1
0 (Ω)-

weak solution of (1.3) so that ‖f(u)‖∞ = +∞. Then the following assertions are
equivalent:

(i) u satisfies ∫
Ω

|∇φ|2 − λ

∫
Ω

g(x)ḟ(u)φ2 � 0 ∀φ ∈ H1
0 (Ω); (3.2)

(ii) λ = λ∗ and u = u∗.

Theorem 3.1 and the Hardy inequality∫
Ω

|∇φ|2 � (N − 2)2

4

∫
Ω

φ2

|x|2 ∀φ ∈ H1
0 (Ω)

provide the counterexamples. When f(s) = es, for N > 2 the function u0(x) =
(2 + α) ln 1/|x| is a singular H1

0 (B)-weak solution of −∆u0 = λ0|x|αeu0 , λ0 = (2 +
α)(N − 2). When N � N̄ and 0 � α � ᾱ, by the Hardy inequality we can prove
that (3.2) holds for λ = λ0 and u = u0. By theorem 3.1, we obtain u0 = u∗ and
λ0 = λ∗.

When N � N̄ and 0 � α � ᾱ, for f(s) = (1 + s)p, p > 1, and f(s) = (1 − s)p,
p < 0, it is possible to see in the same way that

λ∗ =
2 + α

p − 1

(
N − 2 − 2 + α

p − 1

)
, u∗ = |x|−(2+α)/(p−1) − 1,

and

λ∗ =
2 + α

1 − p

(
N − 2 +

2 + α

1 − p

)
, u∗ = 1 − |x|(2+α)/(1−p)

are the extremal value and solution of (1.3) on B, with g(x) = |x|α, respectively.
Observe that, in the case p > 1, we have

2 + α

p − 1
<

N − 2
2

,

which guarantees that u∗ = |x|−(2+α)/(p−1) − 1 ∈ H1
0 (B).
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