Uniqueness and Multiplicity for Perturbations of the Yamabe Problem on S^n

Pierpaolo Esposito (*)

Summary. - Motivated by an uniqueness result for linear perturbations with constant coefficients of the conformal laplacian on the sphere, we investigate, via a finite dimensional reduction, more general perturbations of the conformal laplacian, exibiting cases in which uniqueness fails

1. Introduction

In this paper we study the equation

$$-\Delta_h u + \lambda(x)u = u^{\frac{n+2}{n-2}}$$

$$u \in H_1^2(S^n) \quad u > 0$$
(1)

where (S^n, h) is the n-dimensional sphere equipped with the standard metric.

When $\lambda(x) \equiv \frac{n(n-2)}{4}$, the solutions are explicitly known and they are obtained by the action of the conformal group on the constant solution

$$\bar{u} := \left[\frac{n(n-2)}{4}\right]^{\frac{n-2}{4}}$$

In contrast, if $\lambda(x) \equiv \lambda < \frac{n(n-2)}{4}$, as a consequence of a remarkable result by Bidaut-Veron and Veron, see [4], (1) admits just the constant solution.

^(*) Author's address: Dipartimento di Matematica, Università di Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy

The main purpose of this paper is to show that uniqueness fails for $|\epsilon|$ small if $\lambda(x) = \frac{n(n-2)}{4} + \epsilon f(x)$ and f changes sign. More precisely, we will prove

THEOREM 1.1. Let $\lambda_{\epsilon}(x) = \frac{n(n-2)}{4} + \epsilon f(x) + g(\epsilon, x)$, with $||g(\epsilon, x)||_{\infty} = o(\epsilon)$ as $\epsilon \to 0$, be in $C^0(S^n)$. Then (1) is solvable for $|\epsilon|$ small. Furthermore, (1) has at least two solutions if f changes sign and $n \ge 4$ or if n = 3 and $\int_{S^n} f = 0$ with $f \ne 0$.

A related problem in \mathbb{R}^n has been considered in [1]. We wish to thank Prof. Emmanuel Hebey and his whole research group for their kind hospitality and for the helpful suggestions received in the period of study spent in the Cergy-Pontoise University. After this paper was finished, we learned from Prof. Ambrosetti that in a recent paper of Cingolani similar results are obtained.

2. A finite dimensional reduction

Weak solutions of (1) are critical points of the energy functional

$$E_{\epsilon}(u) := E_0(u) + G(\epsilon, u) , u \in H_1^2(S^n)$$

where

$$E_0(u) := rac{1}{2} \int_{S^n} | \nabla u |^2 dv(h) \ + rac{n(n-2)}{8} \int_{S^n} u^2 dv(h) - rac{n-2}{2n} \int_{S^n} (u_+)^{rac{2n}{n-2}} dv(h) \ G(\epsilon,u) := rac{1}{2} \int_{S^n} (\epsilon f + g(\epsilon,x)) u^2 dv(h)$$

The peculiar property of E_0 is its conformal invariance. Let us consider, in particular, the following conformal transformations

$$\varphi_{\sigma,t}(y) = \pi_{\sigma}^{-1}(t\pi_{\sigma}(y)) \qquad \sigma \in S^n \ , \ t \ge 1$$

where π_{σ} denotes the stereographic projection from σ as the north pole.

They act on $H_1^2(S^n)$ through the following isomorphisms

$$T_{\sigma,t}u(y) := (u \circ \varphi_{\sigma,t})(y) \mid \det d\varphi_{\sigma,t}(y) \mid^{\frac{n-2}{2n}}$$

and

$$E_0(T_{\sigma,t}u) = E_0(u)$$
 $\forall (\sigma,t) \in S^n \times [1,+\infty), \ \forall u \in H^2_1(S^n)$

From the conformal invariance, it easily follows that $\nabla E_0(T_{\sigma,t}u) = 0$ if $\nabla E_0(u) = 0$.

In particular, if $\bar{u} \equiv \left[\frac{n(n-2)}{4}\right]^{\frac{n-2}{4}}$ denotes the constant solution,

$$Z := \{ T_{\sigma,t} \bar{u} = \bar{u} \mid \det d\varphi_{\sigma,t}(y) \mid \frac{n-2}{2n} \}$$
 (2)

is a critical manifold for E_0 . Actually, it can be shown that these are all the critical points of E_0 .

A proof of this claim in book form can be found in [7]. References where such constructions are used are [6] and [5]. See also [2].

The critical points of E_{ϵ} can be found as critical points of E_{ϵ} constrained to some manifold Z_{ϵ} close to Z, following the same perturbation technique used in [1].

Let a family of C^2 functionals $\{E_{\epsilon}\}$ be defined on a Hilbert space E of the form

$$E_{\epsilon}(u) = E_0(u) + G(\epsilon, u) \tag{3}$$

We assume that the unperturbed functional E_0 satisfies the following assumptions:

- (A1) E_0 possesses a finite dimensional manifold Z of critical points at a fixed energy level b, that will be called *critical manifold*
- (A2) $D^2E_0(z)$ is a Fredholm map with index $0 \ \forall z \in Z$
- (A3) $T_z Z = Ker(D^2 E_0(z)) \ \forall z \in Z \ (T_z Z \ denotes the tangent space to Z at z)$
- (B1) there exist $\alpha > 0$ and a continuous function $\Gamma: Z \to R$ such that uniformly on compact subsets of Z

$$\Gamma(z) = \lim_{\epsilon \to 0} \frac{G(\epsilon, z)}{\epsilon^{\alpha}}$$

$$G'(\epsilon,z) = o(\epsilon^{\frac{\alpha}{2}})$$

Under the preceding assumptions, one can use the Implicit Function Theorem to show for $|\epsilon|$ small the existence of $w = w(\epsilon, z) \in (T_z Z)^{\perp}$ such that

$$E'_{\epsilon}(z+w) \in T_z Z$$

$$||w(\epsilon, z)|| = o(\epsilon^{\frac{\alpha}{2}})$$

uniformly on compact subsets of Z.

Letting $Z_{\epsilon} = \{z+w(\epsilon,z)\}$, we obtain a manifold locally diffeomorphic to Z such that for $|\epsilon|$ small any critical points of E_{ϵ} restricted to Z_{ϵ} is a stationary point of E_{ϵ} .

From the development of E_{ϵ} on Z_{ϵ}

$$E_{\epsilon} |_{Z_{\epsilon}} (u) = E_{\epsilon}(z + w(\epsilon, z)) = E_{0}(z) + (E'_{0}(z) | w(\epsilon, z)) + O(\|w(\epsilon, z)\|^{2}) + O(\|w(\epsilon, z)\|^{2})$$

$$+G(\epsilon,z) + (G'(\epsilon,z) \mid w(\epsilon,z)) + O(\|w(\epsilon,z)\|^2) = b + \epsilon^{\alpha} \Gamma(z) + o(\epsilon^{\alpha})$$

uniformly on compact subsets of Z, one can derive a general existence result, wich we will use in a particular case.

THEOREM 2.1. Let $E_{\epsilon} \in C^2(E,R)$ be of the form (3), where E_0 and $G(\epsilon,u)$ satisfy A1, 2, 3 and B1 and suppose that there exists a critical point $\bar{z} \in Z$ of Γ such that one of the following conditions holds

- (i) \bar{z} is nondegenerate
- (ii) \bar{z} is a strict local minimum or maximum
- (iii) \bar{z} is isolated and the local topological degree of Γ' at \bar{z} , $deg_{loc}(\Gamma',0)$, is different from zero. Then for $|\epsilon|$ small enough, the functional E_{ϵ} has a critical point u_{ϵ} such that $u_{\epsilon} \to \bar{z}$ as $\epsilon \to 0$.

It is easy to check that all the assumptions are satisfied in our case; in particular, Z, given as in (2), is a smooth manifold diffeomorphic to B^{n+1} , the open unit ball in R^{n+1} , through the map $\xi = \rho \sigma \in B^{n+1} \to T_{\sigma,(1-\rho)^{-1}} \bar{u}$.

Furthermore, the nondegeneracy assumption A3 is satisfied, because the kernel of the linearized operator at \bar{u} is the eigenspace of the Laplace-Beltrami operator corresponding to the first eigenvalue $\lambda_1 = n$, wich has dimension n + 1, see [3], while by conformal invariance

$$ker D^2 E_0(T_{\sigma,t}\bar{u}) = T_{\sigma,t} ker D^2 E_0(\bar{u})$$

Finally, we can take $\alpha = 1$ and get

$$\Gamma(\rho\sigma) = \frac{1}{2}c_n^2 \int_{S^n} f(y) \mid \det d\varphi_{\sigma,(1-\rho)^{-1}} \mid^{\frac{n-2}{n}} dv(y)$$
 (4)

where $c_n = [\frac{n(n-2)}{4}]^{\frac{n-2}{4}}$.

3. Proof of Theorem 1.1

We begin with an expansion around boundary points of the function Γ .

Lemma 3.1. If $n \geq 5$, for every $\sigma \in S^n$ it results

$$\Gamma(\rho\sigma) = c_n^2 2^{n-1} (1-\rho)^2 [f(-\sigma) \int_{\mathbb{R}^n} (1+|x|^2)^{-(n-2)} dx + o(1)]$$
 as $\rho \to 1$

If n = 4, for every $\sigma \in S^n$ it results

$$\Gamma(\rho\sigma) = -8\omega_3 c_4^2 (1-\rho)^2 \ln(1-\rho) [f(-\sigma) + o(1)] \text{ as } \rho \to 1$$

If n = 3, for every $\sigma \in S^n$, it results

$$\Gamma(\rho\sigma) = c_3^2 (1-\rho) \left[\int_{S^3} \frac{f(y)}{1+\cos d(\sigma,y)} dv(y) + o(1) \right] \text{ as } \rho \to 1$$

where

$$c_n = \left[\frac{n(n-2)}{4}\right]^{\frac{n-2}{4}}$$

Proof. We have (see [7]) that

$$|\det d\varphi_{\sigma,t}|^{\frac{n-2}{n}}(y) = (t\frac{1+|\pi_{\sigma}(y)|^2}{1+t^2|\pi_{\sigma}(y)|^2})^{n-2}$$

so that, integrating in stereographic coordinates

$$\int_{S^n} f(y) \mid \det d\varphi_{\sigma,t} \mid^{\frac{n-2}{n}} (y) dv(y) =$$

$$= 2^n \int_{R^n} \frac{f(\pi_{\sigma}^{-1}(x))t^{n-2}}{(1+t^2 \mid x \mid^2)^{(n-2)}(1+\mid x \mid^2)^2} dx =$$

$$= 2^n t^{-2} \int_{R^n} \frac{(f \circ \pi_{\sigma}^{-1})(\frac{x}{t})}{(1+\mid x \mid^2)^{(n-2)}(1+\mid \frac{x}{t} \mid^2)^2} =$$

$$= 2^n t^{-2} [f(-\sigma) \int_{R^n} (1+\mid x \mid^2)^{-(n-2)} dx +$$

$$+o(1)$$
] as $t = (1 - \rho)^{-1} \to +\infty$

by dominated convergence, if $n \geq 5$.

If n = 4, it is enough to split the integral into two pieces:

$$I_{1} := 16t^{-2} \int_{|x| \ge 1} \frac{(f \circ \pi_{\sigma}^{-1})(x)}{(t^{-2} + |x|^{2})^{2} (1 + |x|^{2})^{2}} dx =$$

$$= 16t^{-2} \left[\int_{|x| \ge 1} \frac{(f \circ \pi_{\sigma}^{-1})(x)}{|x|^{4} (1 + |x|^{2})^{2}} dx + o(1) \right]$$

and

$$I_2 := 16t^{-2} \int_{|x| \le t} \frac{(f \circ \pi_{\sigma}^{-1})(\frac{x}{t})}{(1+|x|^2)^2 (1+|\frac{x}{t}|^2)^2} dx =$$

$$= 16t^{-2} (f(-\sigma) + o(1))\omega_3 \int_0^t \frac{r^3}{(1+r^2)^2} dr =$$

$$= 16\omega_3 \frac{\ln t}{t^2} [f(-\sigma) + o(1)]$$

Finally, if n = 3, exactly as for I_1 , we now get

$$8 \int_{R^3} \frac{(f \circ \pi_{\sigma}^{-1})(x)t}{(1+t^2 \mid x \mid^2)(1+\mid x \mid^2)^2} dx =$$

$$= 8t^{-1} \left[\int_{R^3} \frac{(f \circ \pi_{\sigma}^{-1})(x)}{(1+\mid x \mid^2)^2 \mid x \mid^2} dx + o(1) \right]$$

Since $\pi_{\sigma}^{-1}(\frac{z}{|z|^2}) = \pi_{-\sigma}^{-1}(z)$, after the change of variable $x = \frac{z}{|z|^2}$, the integral above rewrites

$$\int_{R^3} (f \circ \pi_{\sigma}^{-1}) (\frac{z}{|z|^2}) (1+|z|^2)^{-2} dz =$$

$$= 2^{-3} \int_{R^3} (f \circ \pi_{-\sigma}^{-1}) (z) (\frac{2}{1+|z|^2})^3 (1+|z|^2) dz =$$

$$= 2^{-3} \int_{S^3} f(y) (1+|\pi_{-\sigma}(y)|^2) dv(y) = 2^{-2} \int_{S^3} \frac{f(y)}{1+\cos d(\sigma,y)} dv(y)$$

because

$$1 + |\pi_{-\sigma}(y)|^2 = 1 + \frac{1 - y_{n+1}^2}{(1 + y_{n+1})^2} = \frac{2}{1 + y_{n+1}} \text{ and } y_{n+1} = \cos d(\sigma, y)$$

Proof. (Theorem 1.1)

If $n \geq 4$, we see from the Lemma that Γ vanishes at ∂B^{n+1} and changes sign with f around boundary points. Hence Γ has a positive maximum and a negative minimum and so it does $E_{\epsilon}|_{Z_{\epsilon}}$.

Existence of at least one solution, wich is not necessarily a minimum, follows similarly, without sign assumption on f.

Finally, if n = 3, from

$$\int_{S^3} d\sigma \left(\int_{S^3} \frac{f(y)}{1 + \cos d(\sigma, y)} dy \right) = \int_{S^3} f(y) \left(\int_{S^3} \frac{d\sigma}{1 + \cos d(\sigma, y)} \right) dy$$

and the independence on y of $\int_{S^3} \frac{d\sigma}{1+\cos d(\sigma,y)} > 0$ because of the symmetry, we see that $\sigma \to \int_{S^3} \frac{f(y)}{1+\cos d(\sigma,y)} dy$ has to change sign if $\int_{S^3} f = 0$.

So, again, we get a positive maximum and a negative minimum. Hence, from Theorem 2.1, for ϵ small, we find solutions u_{ϵ} of the equation

$$-\triangle_h u + \lambda_{\epsilon}(x)u = (u_+)^{\frac{n+2}{n-2}}$$

If ab absurdo u_{ϵ} is not nonnegative, then there exists y_0 an absolute minimum point of u_{ϵ} on S^n with $u_{\epsilon}(y_0) < 0$. So

$$\lambda_{\epsilon}(y_0)u_{\epsilon}(y_0) = (u_{\epsilon})_{+}(y_0)^{\frac{n+2}{n-2}} + \Delta_h u_{\epsilon}(y_0) \ge 0$$

Then, for ϵ small, $u_{\epsilon}(y_0) \geq 0$, a contradiction.

The function u_{ϵ} must be nonnegative and from the maximum principle either vanishes or is positive.

But u_{ϵ} cannot vanish identically for ϵ small because its energy level is near b>0.

References

- [1] A. Ambrosetti, J.G. Azorero, and I. Peral, Perturbation of $\Delta u + u^{\frac{n+2}{n-2}} = 0$, the scalar curvature problem in \mathbb{R}^n and related topics, J. Funct. Analysis **165** (1999), 117–149.
- [2] T. Aubin, Nonlinear analysis on manifolds Monge-Ampère equations, Grundlehern der Mathematischen Wissenschaften **252** (1982).
- [3] M. Berger, P. Gauduchon, and E. Mazet, Le spectre d'une variété riemannienne, Lecture Note in Mathematics 194 (1971).

- [4] M. BIDAUT-VERON AND L. VERON, Nonlinear elliptic equations on compact riemannian manifolds and asymptotics of Emden equations, Inventiones Mathematicae 106 (1991), 489–539.
- [5] S.Y.A. CHANG AND P.C. YANG, A perturbation result in prescribing scalar curvature on S^n , Duke Math. Journal **64/1** (1991), 27–69.
- [6] E. Hebey, Changements de métriques conformes sur la sphère. le problème de Nirenberg, Bull. Sc. Math. 114 (1990), 215–242.
- [7] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics (1999).

Received April 3, 2000.