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Uniqueness and Multiplicity for
Perturbations of the Yamabe
Problem on S”

PierpPAOLO EsposiTo )

SUMMARY. - Motivated by an uniqueness result for linear perturba-
tions with constant coefficients of the conformal laplacian on the
sphere, we investigate, via a finite dimensional reduction, more
general perturbations of the conformal laplacian, exibiting cases
in which uniqueness fails

1. Introduction

In this paper we study the equation
—Apu+ A@)u =t &)
uw€ HHS") u>0

where (S™, h) is the n-dimensional sphere equipped with the standard
metric.

When A(z) = %, the solutions are explicitely known and they

are obtained by the action of the conformal group on the constant

solution
n(n —2),n=2

e
In contrast, if A(z) = A < %, as a consequence of a remarkable

result by Bidaut-Veron and Veron, see [4], (1) admits just the con-
stant solution.

=
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The main purpose of this paper is to show that uniqueness fails for
¢ | small if A(z) = =2 4 ¢f(z) and f changes sign.
7 g g

More precisely, we will prove

THEOREM 1.1. Let \(z) = %-Fﬁf(fE)Jrg(ﬁafE), with || g(e,7) ||oo=

o(€) as e — 0, be in C°(S™). Then (1) is solvable for | e | small. Fur-
thermore, (1) has at least two solutions if f changes sign and n > 4
orifn=23 and [¢, f =0 with f # 0.

A related problem in R™ has been considered in [1].
We wish to thank Prof. Emmanuel Hebey and his whole research
group for their kind hospitality and for the helpful suggestions re-
ceived in the period of study spent in the Cergy-Pontoise University.
After this paper was finished, we learned from Prof. Ambrosetti that
in a recent paper of Cingolani similar results are obtained.

2. A finite dimensional reduction
Weak solutions of (1) are critical points of the energy functional
E.(u) := Eg(u) + G(e,u) , ue H(S")

where

Fo(u) = %/S | Vu |2 do(h)

%/nu%(m _ ”2;2 /n(u+)%du(h)

Gle,u) = %/n(ef + gle, z))udv(h)

The peculiar property of FEy is its conformal invariance.
Let us consider, in particular, the following conformal transforma-
tions

pouly) =, (tns(y)  o€S", t>1

where 7, denotes the stereographic projection from o as the north
pole.
They act on HZ(S™) through the following isomorphisms

2

Trpu(y) = (uo @oy)(y) | det dpgy(y) |5
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and
EO(TU,tU) = EU(U) V(Ua t) € 5" x [1,+OO), Vu € HIQ(Sn)

From the conformal invariance, it easily follows that VE (T, u) =0
if VEy(u) = 0.

In particular, if o = [@]%2 denotes the constant solution,
n—2
Z = A{Topu = u| detdpo(y) [} (2)

is a critical manifold for Ey. Actually, it can be shown that these
are all the critical points of Ej.
A proof of this claim in book form can be found in [7]. References
where such constructions are used are [6] and [5]. See also [2].
The critical points of E. can be found as critical points of E, con-
strained to some manifold Z, close to Z, following the same pertur-
bation technique used in [1].
Let a family of C? functionals {E.} be defined on a Hilbert space E
of the form

Ee(u) = Eo(u) + G(e, u) (3)

We assume that the unperturbed functional Fy satisfies the following
assumptions:

(Al) Ey possesses a finite dimensional manifold Z of critical points
at a fixed energy level b, that will be called critical manifold

(A2) D?Ey(z) is a Fredholm map with index 0 Vz € Z

(A3) T.Z = Ker(D?Ey(2)) Vz € Z (T,Z denotes the tangent space
to Z at z)

(B1) there exist @ > 0 and a continuous function I' : Z — R such
that uniformly on compact subsets of Z

['(z) = lim Gle.2)

e—0 €

G'(e,2) = 0(e?)

Under the preceding assumptions, one can use the Implicit Function
Theorem to show for | € | small the existence of w = w(e, z) € (T, Z)*
such that

El(z+w) €T, Z
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lw(e, 2)]| = ofe?)

uniformly on compact subsets of Z.

Letting Ze = {z+w(e, z) }, we obtain a manifold locally diffeomorphic
to Z such that for | € | small any critical points of E, restricted to
Z. is a stationary point of E..

From the development of F, on Z,

B |z, (u) = Bc(z+w(e, 2)) = Eo(2)+(Eg(2) | wle, 2)+O0(||w(e, 2)|*)+

+G(e,2) + (G (€, 2) | w(e, 2)) + O(|Jw(e, 2)||*) = b+ €°T(2) + o(e®)

uniformly on compact subsets of Z, one can derive a general existence
result, wich we will use in a particular case.

THEOREM 2.1. Let E. € C%(E, R) be of the form (8), where Ey and

G(e,u) satisfy Al,2,3 and Bl and suppose that there exists a critical

point Z € Z of I' such that one of the following conditions holds

(i) z is nondegenerate

(1) Z is a strict local minimum or mazimum

(111) Z is isolated and the local topological degree of T at z, dego. (I, 0),
is different from zero. Then for | € | small enough, the functional E,

has a critical point ue such that ue — z as € — 0.

It is easy to check that all the assumptions are satisfied in our
case; in particular, Z, given as in (2), is a smooth manifold dif-
feomorphic to B™*!, the open unit ball in R"*!, through the map
¢E=po € B+l T(r,(lfp)—lﬂ'

Furthermore, the nondegeneracy assumption A3 is satisfied, because
the kernel of the linearized operator at w is the eigenspace of the
Laplace-Beltrami operator corresponding to the first eigenvalue A\; =
n, wich has dimension n + 1, see [3], while by conformal invariance

ker D*Ey(Ty ) = Ty iker D> Eg (1)

Finally, we can take o = 1 and get

1 n-2
Dlpo) = 562 [ f) | detdppa o |7 dol) (@)

where ¢, =[] 1 .
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3. Proof of Theorem 1.1

We begin with an expansion around boundary points of the function
.

LEMMA 3.1. If n > 5, for every o € S™ it results
Tlpo) = 22 (1=l (o) [ (10 P) 0 Ddato)] as p—1
If n =4, for every o € S™ it results

T(po) = —8wsci(1 = p)” In(1 — p)[f(=0) +o(1)] as p— 1

If n =3, for every o € S", it results

Do) = 30— )l [, 72

— 7 d 1 1
o Tress iy ™) + o] as p

where
n(n —2), n-2

i

cn =

Proof. We have (see [7]) that

1+ | 71—(7(?/) |2 )n—2

| det dipg s |5 (y) = (¢
Gt L W T e () P

so that, integrating in stereographic coordinates

[ £ | detdins |5 ()dv(y) =

dzr =

n [y (@)t
2 /Rn 1+t |z |2)("—2)(1_|_ | 2 |2)2

__ o9nz—2 (fow;l) %) o
=2"t /R” 1+ |z |2)(n—2)(1+ | % |2)2 =

n

:2"r2[f(—a)/ (14 | 2 [2) "Dzt
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+o(1)] as t=(1—-p) ' = +oc
by dominated convergence, if n > 5.
If n =4, it is enough to split the integral into two pieces:

o (f o n5 ) (@)
=167 | T P T

e (f o 1))
=160 e e o)

dr =

and

o (for=1)(2)
b= 160 /|| @ [z P2 | 2 )2
3

= 16t2(f(~0) + o(1))ws /01t Tt =

Int
= 16wy [/ (~0) + o(1)]
Finally, if n = 3, exactly as for Iy, we now get

(f o 1y ) (@)t
8 o TR AL T

2d$:

om,1)(z
s (lif| - |;)3(| ) e +0(1)]

Since W;l(ﬁ) = m_4(2), after the change of variable 2 = @, the
integral above rewrites

z

| Fom ) |2 )2z =
R? | 2|

2
P4 | 2 )z =

Itz 2
o o f()
=27 [ SO0 I mo) Pavty) =272 [t sty

=27 [ (Fon o)

because

1 - y121+1 _
(1 + yn—l—l)2 1+ Yn+1

I+ |7 o(y) P=1+ and yy 41 = cos d(o,y)

O
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Proof. (Theorem 1.1)

If n > 4, we see from the Lemma that I' vanishes at B"*! and
changes sign with f around boundary points. Hence I" has a positive
maximum and a negative minimum and so it does E |z..

Existence of at least one solution, wich is not necessarily a minimum,
follows similarly, without sign assumption on f.

Finally, if n = 3, from

[t [ s = [ 1), e

do

Treosdiog) = U because of the

and the independence on y of [gs

symmetry, we see that o — [gs H_%‘Z)(Uy)dy has to change sign if
fs3 f == 0.
So, again, we get a positive maximum and a negative minimum.
Hence, from Theorem 2.1, for e small, we find solutions u. of the
equation
n+2
—Apu+ Ac(z)u = (ug)"2

If ab absurdo u, is not nonnegative, then there exists yg an absolute
minimum point of u. on S™ with uc(yy) < 0.
So

A (Wo)ue(yo) = (1)1 (40) ™% + Apue(yo) > 0

Then, for € small, u.(yo) > 0, a contradiction.

The function u, must be nonnegative and from the maximum prin-
ciple either vanishes or is positive.

But u, cannot vanish identically for e small because its energy level
is near b > 0.
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