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Singular mean field equations on compact Riemann surfaces
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Abstract

For a general class of elliptic PDE’s in mean field form on compact Riemann surfaces with
exponential nonlinearity, we address the question of the existence of solutions with concen-
trated nonlinear term, which, in view of the applications, are physically of definite interest.
In the model, we also include the possible presence of singular sources in the form of Dirac
masses, which makes the problem more difficult to attack.
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1 Introduction

Let us consider the problem

ke* 1
—Au= S — 1
gt =2 (fskeudvg |S|> M

on a compact, orientable Riemann surface (S, g), where A > 0, k is a smooth function and |S| is
the area of S. Here, A, is the Laplace-Beltrami operator and dv, is the area element in (.5, g).

Equation () and its variants arise in many different contexts. The Nirenberg problem concerns
the existence on S? of metrics —conformal to the standard round metric go— with Gaussian
curvature k, and corresponds to equation (I]) with A = 87. Indeed, a solution u of () on (S?, go)
with A = 87 provides a metric = ‘};j;% go, conformal to gg, with Gaussian curvature k. For
a general compact Riemann surf;ce, the prescribed Gaussian curvature problem is referred to
as the Kazdan-Warner problem. Since there are plenty of results in literature, let us just quote
the ones due to Kazdan and Warner [35], Chang and Yang [I3] and Chang, Gursky, Yang [12].
For bounded domains of IR?, a variant of (IJ) with Dirichlet boundary condition arises in fluid
mechanics as the equation for the stream function of a turbulent Euler flow with vortices of
same orientation. By a statistical mechanics approach a rigorous derivation of it can be given as
the mean-field limit of the Onsager’s vortex theory, as shown by Kiessling [14] [36] and Caglioti,
Lions, Marchioro, Pulvirenti [9, 0], and it is referred to as the “mean field equation”. In all
these contexts, the function k is typically positive.
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Notice that () contains also the singular mean-field equation

he? 1 AN
—Ajv=\ <7 > —4m Y n; inS 2
! fs hevdvg  |S] |S| Z 1%, @)

l
as a special case, where h > 0, p; € S, j =1,...,1, are distinct points, n; > 0 and N = an.
j=1
Indeed, introducing the Green function G(z,p) with pole at p € S as the solution of

{ ~A,G(p) =8, — & in S )

fs (x,p)dvy =0,

!
the function u(x) = v(x) + 47TanG(:1:,pj) does solve (@) with k(z) = h(x)e " i1 s G@ps)

j=1
Here, the function k is no longer positive, but is still nonnegative with zero set {p1,...,p;}. On
a flat torus T, singular mean-field equations with integer multiplicities {ny,...,n;} C N arise

in the study of the asymptotics for non-topological (stationary) condensates in the relativistic
abelian Chern-Simons-Higgs model as the Chern-Simons parameter tends to zero, as shown by
Nolasco and Tarantello [46]. In the context of Euler flows, the presence of singular sources model
the interaction of the fluid running on the given surface S with sinks of given vorticities and
opposite orientation w.r.t. all the vortices present in the fluid.

Observe that () admits a variational structure, in the sense that weak solutions for () are
critical points of the following energy functional

1 _
Ia(u) = B /S |Vu|§dvg — Alog </S ke“dvg) , u€H, (4)

where H = {u € H'(S) : [udvy, = 0}. For A < 8, J) is bounded from below and the infimum
of Jy is achieved by the well-known Moser-Trudinger inequality.

Let us focus first on the regular case k > 0. For k = 1 Struwe and Tarantello [47] were able to
obtain non-trivial solutions of () for 87 < A < 472 on the square flat torus 7. In the case of
compact Riemann surfaces with genus g > 1 the existence of solutions for ([{l) with 87 < A < 167
was shown by Ding, Jost, Li, Wang [29] still by a variational approach. The case S = S? of
zero genus was considered by Lin [39] who proved nonvanishing of the Leray-Schauder degree d)
associated to ([0) for 87 < A < 167 (and dy = 0 for 16m < A\ < 24m).

Since the solutions set of () is bounded in C%%(S), a € (0, 1), as long as A is far from the critical
parameter’s range 87N, the degree dy is well-defined and constant for all A € (8am, 87w (m + 1)),
m € N. As observed by Y.Y. Li [38], its value should just depend on m and the topology of S.
The program for computing dy, initiated in [38], was completely settled by Chen and Lin [16]

showing that
d)\: ( m_X(S) )7
m

where x(S) = 2 — 2g is the Euler characteristic of S (see also the variational approach later
developed by Malchiodi [43]). For S # S?, the degree d) is always non-trivial yielding to a
solution of () for all A ¢ 87N. While, as already partially proved by Lin [39], for S? there holds
dy =0 for all A > 167 with A ¢ 87N, and no existence statements can be deduced. A complete
positive answer to the existence issue for (Il) has been provided by Djadli [30] for all A ¢ 87N by
means of a variational approach of min-max type, inspired by the result of Djadli and Malchiodi
[31] concerning the fourth-order Paneitz operator in conformal geometry. Multiplicity results
have been provided by De Marchis |26, 27].



Solutions of () are no longer a pre-compact set when A — 87N: blow-up in L°°—norm along
with the concentration of the measure /\j‘sll:ec%:dvg as a sum of Dirac masses possibly arise for
sequences of solutions as A — 87N. Since d) can change just when A crosses the values 8wm,
m € N, it is crucial to have a precise asymptotic knowledge of blow-up solutions u) and uniquely
characterize them as A\ — 8mm. The most refined asymptotic analysis is given by Chen and Lin
[15]: in particular, as A — 8mm u) has m well-separated maximum points (up to a subsequence)

which converge to a critical point in S™ \ A of

m

onl€) = 1= D lor k(&) + D0 H(E,&) + 3066 &), (5)
j=1
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where H(z,§) is the regular part of G(z,§) and A = {£ € S™: § =&, for i # j} is the diagonal
set in S™. Let us notice that a critical point £ of ¢, does satisfy

v{log k(x) + 8TH(z, &) + SWZG(;U,@)} =0
i T
for all ¢ = 1,...,m. In [I6] blow-up solutions are constructed and their contribution to the

degree is computed, so to determine (by local uniqueness of blow-up solutions) the jump in
the values of d) across A\ = 8mm. Since the degree d) does not depend on k, it is possible to
choose a positive function k so that all the c.p.’s of ¢,, are non-degenerate, and then in [I6] the
authors simply address the existence of blow-up sequences of solutions for () which concentrate
at non-degenerate c.p.’s of ¢, as A — 8mm.

The aim of the present paper is twofold. On one hand, we are interested in the construction of
blow-up solutions with a general potential k£ for which the corresponding ¢, can possibly have
degenerate but “stable” c.p.’s. On the other hand, we are interested to the singular mean-field
equation or, equivalently, to ([Il) with a nonnegative potential k¥ which vanishes somewhere.

Let us focus now on the singular case. The first asymptotic analysis has been carried out by
Bartolucci and Tarantello [7], with an application in the electroweak theory following [29]. The
asymptotic analysis has been refined later in [2] [I7], with the on-going project by Chen and Lin
[18] of computing the Leray-Schauder degree dy, A ¢ A, where

A=87N+{87> (1+n;): JC{l,...,1}}
jeJ

is the correponding critical set of parameters where compactness might fail, see [7]. For n; > 1
the degree dy has been computed by Chen, Lin and Wang [19] for A\ € (8, 167), revealing the
special role played by S?, the sphere being the only surface for which the degree can vanish
(precisely, it vanishes only for I = 1). The critical regime A\ = 87 has been considered in [28] [45]
for a general surface. However, as we will explain below, the problem on the torus with total
multiplicity N = 2 becomes more degenerate. In this case, existence/non-existence issues have
been discussed in [I9] for a rectangular torus (along with the computation of ds,) and in [40] for
the general case, physically relevant issues in connection with non-topological 2—condensates in
the Chern-Simons-Higgs model [46]. Existence results have been recently obtained by means of
a variational approach of min-max type, inspired by [29] [31], confirming the special role of S?
(see also the discussion in [5, 50]). For A ¢ A, the singular problem (@) is solvable for S # S? [4]
(see also [3] for an application in the electroweak theory). The case of the sphere has been first
considered by Malchiodi and Ruiz [44] for n; <1 and A € (87, 167) \ A: the crucial assumption
to have existence for (2) is that # J # 1, where J = {j =1,...,1: A < 8n(1 4+ n;)}. The result
has been extended by Bartolucci and Malchiodi [6] to general n;’s and A under the condition
[>2and A < 8mmin{l+n,;:j=1,...,1}, corresponding to the situation #J = I.

In some of the above-mentioned papers, the regular/singular mean field equation has been also
considered on a bounded domain  C R? with homogeneous Dirichlet b.c. Since [gke*>dv, —



+00 along any non-compact sequence of solutions uy for (), through the setting p = fk%
S g

problem (I)) is naturally related (but not equivalent) to —Agju = p (kze“ - ﬁ s ke“dvg> with

p — 07, which has been recently studied by the second author in [34]. Blow-up solutions for the
corresponding Dirichlet problem

—Au = pke" in ()
{ u=20 on 02
on a bounded domain €2 C R? have been constructed at c.p.’s of ¢, which are non-degenerate
[1] or, more generally, “stable” |25 [33]. A “stable” critical value for ¢,, has been constructed by
del Pino, Kowalczyk and Musso [25] for the regular problem on a non-simply connected domain
and for the singular problem with [ = 1. The latter case has been extended to the flat torus [34],
and a similar result is still in order for multiple singular sources as shown by D’Aprile [21], under
suitable relations between m and the n;’s

Setting
() = K{a)e A5 T Gl ©)

for £ € 8™\ A we introduce the notation

m
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where K is the Gaussian curvature of (S, g). Letting S = {k > 0}, our first main result is

Theorem 1.1. Let D CC S™ \ A be a stable critical set of p,,. Assume that A(E) > 0 (< 0
resp.) for all € € D. Then, for all A in a small right (left resp.) neighborhood of 8wm there is a
solution uy of (@) so that (along sub-sequences)

Ak e¥>
Jg kenrdu, o em Z %, ®
as X — 8wm in the sense of measures in S, for some ¢ = (q1,...,qm) € D.

Along with (8) notice that there always hold that uy — log [ ke"*dv, — —oo in C)y(S \
{q1,.--,qm}) and

sup (u,\ — log/ ke“*dvg> — 400
as A = 8mm, for any neighborhood U; of ¢; in S, j = 1,...,m. The notion of stability we are
using here is the one introduced in [37]:

Definition 1.2. A critical set D cC S™ \ A of ¢,, is stable if for any closed neighborhood U of
D in 5™\ A there exists § > 0 such that, if |G — ©mllc1y < 9, then G has at least one critical
point in U. In particular, the minimal/maximal set of ¢,, is stable (if ¢, is not constant) as
well as any isolated c.p. of ¢, with non-trivial local degree.

Since A(€) can be re-written as

A = 47TZPj(€j)[Ag log p;(&5) + [V1og p; (&)]2 — 2K (&5))]

= 47TZPj(€j)[Ag log k(&;) + ETTTT +[Vlog p;(&5)2 — 2K (&5)], 9)

j=1



for a c.p. of ¢,, we have that

" 8mm
A) = 4m ) p;(&)[Bglog k(&) + 7o — 2K (&)
j=1
in view of Vp;(&;) = 0 for all j = 1,...,m. Since for k > 0 the function ¢,, always attains its

minimum value in S™ \ A and the minimal set is clearly stable, as a first by-product we have
(see also [16]):

Corollary 1.3. Assume k> 0. Let m € N be so that either 1 < m < infg ¢ 15 —[2K — Aylogk] or

m > supg g 151 ~[2K — Aglogk]. Then there exist solutions uy of (1) which concentrate at m points
qis-- -5 qm in the sense [8) as A\ — 8mwm, where ¢ = (q1,...,qm) S a minimum point of Y., in

S™\ A.

When the surface (5, g) has constant Gaussian curvature, by the Gauss-Bonnet formula we have
that K = 27%('5). For k = 1, Corollary [[.3] then provides the existence of blow-up solutions

uy concentrating at m points as A — 8mm for all m > 2, where A belongs to a small right
neighborhood of 8mm. The case m = 1 is problematic since ¢, is a constant function.

Concerning the singular problem (), in general the function ¢,, has neither maximum nor
minimum points, and it is then natural to search for saddle critical points. The min-max scheme
introduced in [2I] works in the Euclidean context as well as in the case of a surface [22]. In
particular, on S? the function ¢,, has a “stable” critical value of min-max type as soon as [ > 2
and

8mm ¢ 8tN+8n(1+n;) Vi=1,...,1, #J>2, (10)

where J = {j =1,...,0 : 8m < 87(1 + n;)}. In the construction, each singular source p; has
to be coupled with some p; # p; in order to deform S?\ {p;,p;} onto a circle running around p;,
and the condition [ > 2 is crucial. Notice that the min-max scheme provides a critical point ¢ of
©m so that {q} is a stable critical set according to Definition Morover, since #J > 2 yields

to 2m < 2+ N, for k(z) = e *" 2j=1 3G @p5) we have that

1671'
A(q) SN ZpJqJ —N+2m—-2]<0

in view of K = é—§|. As a second by-product of Theorem [Tl we have:

Corollary 1.4. Leth =1 andl > 2. Assume that S is topologically a sphere and that m satisfies
{@A). Then, for all A in a small left neighborhood of 8wm there is a solution uy of (@) which

concentrates at m points qi, ..., qm in the sense &) as A — 8rm.

Theorem [Tl and Corollary [[.3] are the perturbative counter-parts of global existence results
already available in literature, obtained via degree theory or a variational approach. However,
the behavior of such solutions as A — 87mm is not known whereas the ones we construct exhibit
blow-up phenomena, a property that has a definite interest in its own. More important, Corollary
L4l gives completely new results for the case of S2, by showing that in a perturbative regime the
condition #.J > 2 in [44] is sufficient for the existence in the general case, beyond the results in
[6]. Moreover, in [22] the cases #J = 0,1 are also treated.

There are cases for which A(§) can vanish. By invariance under rotations, it is easily seen that
on S? the function H(&,€) is constant, and then the c.p.’s of ¢ and k do coincide. Since in

particular VH (z, §) e 0, by @) for S =S? and m = 1 the coefficient A(£) writes as

T=¢

A(€) = 4rk(€)e¥™ M ED[A log k(€) + |V log k(€)|2] = dmeS™HEODA k(€), (11)



and might vanish at some c.p. of k. Another typical example is the singular mean-field equation

@) on the flat torus T' with h = 1 and even total multiplicity N: since k = e~ *™ j=1niG(wp))

- . . _N
and K =0, by [@) the coefficient A(£) writes for m = 5 as

m

A©) =47 pi(&)IVIog pi(&)[2 = (4m) D~ pi(&)I Ve, om (O > 0,
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and vanishes exactly at the c.p.’s of ¢,,. In all these situations, a more refined analysis is
necessary.

Introduce the following quantity

B(&) = =21 [Agpi(&) — 2K(&)p;(&)]1og p; (&) — @ (12)
j=1

m 87T m 1
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where B,.(§) denotes the pre-image of B,.(0) through the isothermal coordinate system at £. The
quantity B(&) has been first used and derived by Chang, Chen and Lin [I1] in the study of the
mean field equation on bounded domains (see also [19, [42] for the case of the torus). We have
the following general result, of which Theorem [[T]is just a special case:

Theorem 1.5. Let D CC 5™\ A be a stable critical set of p,. Assume that
either A(§) > 0(< 0 resp.) or  A(§) =0, B(¢) >0(<0 resp.) (13)

do hold in a closed neighborhood U of D in S™ \ A. Then, for all X in a small right (left resp.)
neighborhood of 8mm there is a solution uy of (@) which concentrates (along sub-sequences) at
m points q1, ..., qm in the sense (8) as A — 8wm, for some q € D.

To deal a with stable critical set D in the sense above, we need to require condition (I3 on a
neighborhood of D. In case we strengthen the stability assumption, we can relax the assumption
(@3) to hold just on D. As an instructive example, in Remark 5} (i) we present the case of a
non-degenerate local minimum/maximum point.

We can now discuss the two previous examples for which the coefficient A(¢) vanishes. For S = S?
and m = 1, there holds ¢ = ﬁ log k + const. since H(§,&) = const.. In view of (), assume
that Agk > 0 in a small neighborhood U of the minimal set D = {£ € S : ¢1(§) = ming 1}
so to have A(§) > 0 in U. We just need to show that B(§) > 0 in U so to use Theorem
with D, which is clearly a stable critical set of 1 as soon as k is not a constant function. Up
to take U smaller, it is clearly enough to show that B(£) > 0 for all £ € D with A(¢) = 0. Up
to a rotation, we can assume that & is the south pole P of S?. The stereographic projection
7 (2,y,2) = (2%, 2L) through the north pole is an isometry between (S? \ {north pole}, go)

and (R?

1—27 1—2

Sepc])- Since it is easily seen that dist (771 (u,v), P) = |(u,v)| and

16
» (d+u2+0?)2 Yeucl

1 1
G(ﬂ'il(u,v),P) =5 log |(u,v)| + e log(4 + u? + 1)2) + ¢,

in the coordinate system 7 in terms of k(u,v) = k(7' (u,v)) we can write that

B(P) = 128¢% lim R, 0) = K(0,0) p 1 > 0
10 Jra\p.0) (U +0v?)?

in view of k > k(P), k # k(P). Similarly, we can treat the case in which Agzk < 0 does hold in a
small neighborhood U of the maximal set D.



In the case of the flat torus T with N even, m = % and k = e¥0, ug = —4n Zé‘:l n;G(z,p;), at
a c.p. € of v, the coeflicient

B(£) = lim 8/. eUoH8T 25 G(@85) gy
0 o, Bg) z::

can be re-written in the following way:

e if N=2,m=1

uo(x)—u +8nH (x,§)—8mH(£,E) _
B(€) = 8ewo(@+8THES) /60” " (2 il %x—/‘ A
T |z —¢&| R2\T |z — ¢

where the integral on T is conditionally convergent in view of V(ug(z)+87H (z,§)) =0

and A(ug(z) + 87H (z,£)) =0

OifN24even,m:%

PJ(&J) e dx
_82 [/T |£L’—§ |4 dx pJ(éﬂ)/}R ‘|4

j AT, |7 =&

)

where T has been splitted into disjoint sets 11, ..., T, so that B,(¢;) C T for r small and
all j.

When T is a rectangle, | = 1 and n; = 2, the constant B(€) has been used by Chen, Lin and Wang
[19] in the computation of the degree dgr. The function 1 = 72 + const. has exactly three non-
degenerate critical points &, & (saddle points) and & (maximum point) with B(&;), B(&) > 0
and B(&) < 0. By Theorem [0l and Remark [0} (i) we deduce the existence of

e two distinct families of solutions, for A in a small right neighborhood of 87, concentrating
at & and & as A — 8,

e one family of solutions, for A in a small left neighborhood of 87, concentrating at &3 as
A — 8.

Moreover, B(€) has been recently used in the construction of non-topological condensates for the
relativistic abelian Chern-Simons-Higgs model as the Chern-Simons parameter tends to zero, see
[42]. Unfortunately, when N > 4 there are no examples where the sign of B(£) can be determined.

To explain more clearly such a connection, recall that in the relativistic abelian Chern-Simon-
Higgs model the N vortex-condensates are gauge-periodic stationary matter configurations with
finite-energy that, in the self-dual regime, express in terms of solutions for

—szl (1—ev 47an] p; (14)

in a flat torus T'. We refer to [32] for a complete account on the model and to [49] for the analytical
results concerning it. The quantity 2¢ > 0 is the Chern-Simons parameter, p; € S, j =1,...,1,
are distinct points and n; € N. Physically, € is very small and two classes of solutions are
relevant: either e¥ — 1 as e — 07 (“topological” type) or €¥ — 0 as € — 07 (“non-topological”
type). Topological solutions were first found by Caffarelli and Yang [8]. However, non-topological
condensates represent the main feature of the Chern-Simons-Higgs model which were absent in

the classical (Maxwell-Higgs) vortex theory, whose existence was established by Tarantello [48].



Through the change w — w — ug, ug = —4w Zi-:l n;G(z,p;), the self-dual equation (I4)) reads

equivalently as
AT N

1
—Aw = ke (1 — ke¥) — ——
7|

> (15)

with k£ = e"0. Setting ¢ = ﬁ Jrwdr and uw = w — ¢ € H, an integration of (IJ) provides a
relation between ¢ and u (see [48]):

ec/ ke'dx — ezc/ k2e®tdy = 4n N2,
T T

Hence, necessarily

2
uGAE—{uGH'</kze“) —167TN62/I<:262“20}
T T

and then ¢ = ¢4 (u) with
8T N e?
Jrker T \/(fT ke")? — 16w Ne? [ k2e?v

ecx(w) —

For solutions of “non-topological” type it is natural to choose c_(u), and then equation (I3
reads in terms of u € A, as

—Au = 47TN( ke 1)

J ket T
647m2N2¢2 fT k2et ke k2e2u 16
* u w)2 2 220 kaeu_kaQeQu - ({19)
(kae —I—\/(kae )2 — 167 Ne? [ k2e )
N

When N is even and m = %, equation (I6)) is a perturbation of [[)x=grm as € — 07. The
parallel becomes clear if we re-consider () itself as a perturbation of (M) x=gxm as A — 8wm. As
far as () is concerned, the sign of the perturbation can be chosen since it depends on A — 8wm.
For (I6) the sign of the perturbation is given and is like the case A < 8mm in which we need to
require (I3]) with the negative sign < 0. Even if we always have the wrong sign A(§) > 0, the

g

coefficient A(£) behaves like [V, (€)]2 = Z Ve, om(€)[2 and, near a critical set D of ¢, is
j=1

very small. The condition B(§) < 0 on D wiﬁ then be enough, as stated in the following;:
Theorem 1.6. Assume N even. Let D CC (T'\ {p1,...,pi})™ \ A be a stable critical set of

onl€) = 1= D wol&) + 30 GlEn &)
=1 I#]

Assume that B(§) < 0 does hold in D. Then, for all ¢ small there is a solution w. of (I4)
which concentrates at m points qi, ..., qm, with ¢ = (q1,...,qm) € D, as € = 0 in the sense of
measures:

1 m
6—26“’5(1 —ev) — 87TZ5qj.

j=1
Correspondingly, there exist non-topological N vortex-condensates of gauge potential A. and Higgs
field ¢ for which the magnetic field (Fi2)e is very concentrated at the m points q1,...,qm (ex-
ternal to the so-called vortex-set {p1,...,pi}) as € = 0.



Theorem [[6 slightly improves the result in [42] (see [23] [24] 4T] for concentration at the vortices)
where they just deal with isolated c.p.’s of ¢, with non-trivial local degree. Our “stability”
assumption is more general as already explained in Definition Even if ¢; has always the
maximal set as a “stable” critical set, a general existence result for 1—point concentration does
not follow since we don’t know whether the coefficient B(§) < 0 or not (apart from the case
l=1,ny =2, T arectangle).

2 Approximation of the solution
To construct approximating solutions of (), the main idea is to use as “basic cells” the functions

U575($)ZUO(|xg§|>—21Og5 §>0, &€ R

where

’U,O(’f') = ].Og m

They are all the solutions of
Au+e*=0 inIR?
Sz € < o0,

and do satisfy the following concentration property:
e“¢ — 8mds in measure sense

as 6 — 0. We will use now isothermal coordinates to pull-back us¢ in S.

Let us recall that every Riemann surface (S, g) is locally conformally flat, and the local coordinates
in which g¢ is conformal to the Euclidean metric are referred to as isothermal coordinates (see
for example the simple existence proof provided by Chern [20]). For every £ € S it amounts to
find a local chart ye, with y¢(¢) = 0, from a neighborhood of £ onto Ba,,(0) (the choice of rgy
is independent of &) in which g = e?¢We@)dg, where p¢ € C°(Ba,,(0),R). In particular, ¢
relates with the Gaussian curvature K of (.9, g) through the relation:

Age(y) = —2K (y; ' (y))e? ™ for y € By, (0). (17)
We can also assume that ye, ¢¢ depends smoothly in £ and that ¢¢(0) =0, V@ (0) = 0.
We now pull-back us0 in £ € S, for § > 0, by simply setting
Use(z) = usolue(z) = log
s, = us,0(Ye =log 5—F— 353
‘ ‘ (02 + [ye (@) 2)?

for z € ygl(Bgro (0)). Letting x € C§°(Bar,(0)) be a radial cut-off function so that 0 < x < 1,
x =1 in B,,(0), we introduce the function PUjs ¢ as the unique solution of

{ —AgPUs¢(x) = xe(x)e#e(®elosl) — ﬁ Jsxee #eeVsedv, in S (18)

fs PUs ¢dvy = 0,

where x¢(x) = x(|ye(z)]) and pe(x) = Pe(ye(x)). Notice that the R.H.S. in (I8) has zero average
and smoothly depends in z, and then (I8)) is uniquely solvable by a smooth solution PUs.

Let us recall the transformation law for Ay under conformal changes: if § = e¥g, then

Ay =c?A,. (19)



Decompose now the Green function G(z,¢), £ € S, as

G, €) = — e () log lye (2)| + H(x, €),

2m
and by (@) then deduce that
{ Ay H— = Aqxz g [ye(z)| = 2(Vxe, Viog lye(z))g — gy in S
fs dvg = ox ISX§10g|yE()|dvg'

We have used that )
Ay log ye(z)| = e ?¢W Alog |y|‘ o 27de
y=ye(z

in view of (I9).
For r < 2rq define B,(§) = ygl(Br(O)), Ar(§) = Br(§) \ Byj2(€), and set

Agxe ) 2 X' (Jy])
fe = ety + A Ve V@) + g7 [

By [22) it follows that
1
/ngdvg = [S AgUs edvy + O(8%) = O(5?)

as § — 0, where W5 ¢ € H'(S) is defined in @I). Thus, [, fedvg = 0, and then F is well defined
as the unique solution of

—AgFg = fg in S
{ fS ngvg = 0. (20)
We have the following asymptotic expansion of PUs¢ as § — 0:
Lemma 2.1. The function PUs¢ satisfies
PUs¢ = xe¢ [Us,e —10g(86%)] + 8mH (x,€) + ase — 26°F¢ + O(6*|log d|)
uniformly in S, where F¢ is given in [20) and
e?eW —1 X/ (ly) log Jy|
as, (5210 (5—|—2 (/ (|y|)7dy+7r—/ 7dy) .
o |S| 5] [uf? @yl
In particular, there holds
_ 52X 2 4
PUs¢ = 8nG(x,&) — 2|y B + ase — 20°F¢ + O(6%| log d|)
e\x
locally uniformly in S\ {£}.
Proof: Let us define .
Us.¢(z) = PUs¢(x) — xeUs,e — 8mH (,§), (21)

where Us ¢ = Us ¢ — log(862), for which there holds

/\Ilagdv :—/ [X5U55+87TH(3: 5)} dv —_/XEIOgMdv_
S ’ 9 S ’ ) g s (52+|y5($)|2)2 g

Since Us ¢ satisfies in Bay, (€)

—AQU&g = —€_¢5(y)AU§Q Us,e

)

— 6_905 e
y=ye(x)

10



in view of (I9), by the equation of H(z,£) now we have that

“AgWse = 2(Vxe, Ve + 4V loglye(o)] ) +Agxe (Use +4loglue(a)])

1
+5 (87r - / xee ¥eelos dvg> .
B s

Also, we have that in Ag,,(£)

|yE(I)|4 - _9 §° +O(54>

(0% + [ye (2)[2)? lye (2)[?

Us.e +4log |ye(z)| = log
and R
V(Use + 4loglye(x)]) = —26°V|ye(z)| 7> + O(5*),
and there holds

2 2
/ xeTPeenedy, = / x(lyl) oy dy -+ 05" +/ Y ay
s Barg (0)\Bry (0) ly| B,y (0) (02 +[y[?)

=87 — 882 [ 5 — / Xl g} 1 o)
o Barg (0)\ B (0) |yl

/
:87r+452/ XD g+ o(s)
Rz |yl

in view of dv, = e®¢dy in the coordinate system ye and

2ro 1 /
/ x(lil)dy: Qﬂ/ x(;")dT: T _/ X (Igl)dy_
Barg (0\Bo(0) 1Y o T 6 2By 00\B, 0 Yl

By the definition of fc we then have that

— A U5 = —28%fc + O(6Y) in S. (22)
Since |, g Fedvug = 0, by elliptic regularity theory we get that

1
Use = —262F + ] s edv, + O(6%),
S

in view of (20). On the other hand, we have that

lye ()]* 2+ |y
\IJ& d’U = —/X log—dv =2 log 76@§(y)dy
/s H s @) T s, 0 PE

2
+f o (205 +0(6") ) <y
Bayg (0)\ Brg (0) lyl

52 2 Pely) 1
:2/ log +7|2y|e“’5(y)dy+252/ () 7y
By (0) lyl R2\ B, (0) lyl

!
—4n6?log ry — 262 / %dy +0(5%)
Rz

in view of

2r /
t !
/ x(lz/2|)dy 27T/ x( )dt — onlogr _/ X' (lvl) oegldy (23)
Bar (O\B,(0) |Vl ro 0 B2, (0)\ B,.(0) ]
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for r < rg. Since

8% + Jy? 1+ |22 Cro14r? 1
/ log Kl Ul |2y| dy = 52/ log + |QZ| dz = 27‘1’62/ [log —|—2r - = }Td?‘
By (0) |yl B,y/5(0) |2| 0 r r+1

+762 log (52 + 1) +0(5%)

where y = §z, by e?¢®) = 1 + O(|y|?) we can write that

52 2 62 R
2/ log +7|2y| iy = 2/ log ( 5 + 1) (e9<W) —1)dy — 4n6%log &
By (0) lyl B, (0) |yl

e e} 2
+47T62[10g7°o+/ (m#- 1 )rdr]+0(54)
0

r r2+1

@e(y) _ 1 o0 1472 1
= 252/ ( )ery—ALWSQ log § + 476> [logro —l—/ (10g+—QT - )rdr}
By (0 0

r

O(6*|1og d|)

by using that

52 527 .
log +1 ——] e?e) _ 1 dy=O<54/
/Bm@) [ (r+ 1)~ e ) .
= 0<54/
B g (0\B1(0)

1) -

1 1
log( 5 + 1) - |y|? dy)
w0 (0) lyl lyl

|y|2dy>+0<54> 0(5*10g 1)

1
1og( 1)
ly|? Iyl2

= O(24) as |y| — +oo. In conclusion, we get that

in view of log( ]

ly \yP

Ge(y) 1 I
/\Ilgygdvg:—47r5210g5+252 U X(|y|)ery+7r—/ w +0(6*|1og 8))
S R2 R2

in view of fo (log =& 1” — r2+1 )rdr = 5. This completes the proof. O

The ansatz will be constructed as follows. Given m € N, let us consider distinct points §; € S
(i.e. & € S with k(&) > 0) and 6; > 0, j = 1,...,m. In order to have a good approximation,
we will assume that

55 =06%p;(&) Vi=1,...,m, (24)
and
3C >1: |\—8mm| < C?|logdl, (25)

where § > 0 and p; is as in ([@). Up to take 7o smaller, we assume that the points {;’s are well
separated and k(¢;) is uniformly far from zero, namely, we choose { = (&1,...,&y) € E, where

== {(517-'-7§m) esm | dq(&,fj) > 4rg and k(fj) >0 Vl,] =1,...,m, 275_7}
Denote U; := Us, ¢, and W; = PU;, j=1,...,m, where P is the projection operator defined by

(I8). Thus, our approximating solution is W (x Z W;(z), parametrized by (4,£) € (0, 00) X E.
Notice that for ro small enough we have that D C = c 8™\ A. We will look for a solution u of
(@ in the form u = W + ¢, for some small remainder term ¢. In terms of ¢, the problem (IJ) is
equivalent to find ¢ € H so that

L(¢) = —-[R+N(¢)]  in5, (26)
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where the linear operator L is defined as

B ke fS ke ¢du,
L(¢) = Agd + /\W <¢ - W ) (27)

the nonlinear part N is given by

N (@) = keWto ke ¢ n ke fS kewqﬁdvg ke (28)
fS keW+edu, fS keW dv, (fS kerUg)2 fS keW dvg,
and the approximation rate of W is encoded in
ke 1
R:AW—I—)\(i——). 29
g JskeWdv, |S| (29)

Notice that for all ¢ € H

/SL(¢)dvg :/SN(¢)dvg :/SRdvg =0.

In order to get the invertibility of L, let us introduce the weighted norm
-1

()]

[Pl = sup
wes ; (07 + X8, (6,) (@) e, (X)]> + 18X5\ B, () ()1 T/

for any h € L*°(S), where 0 < o < 1 is a small fixed constant and x4 denotes the characteristic
function of the set A. Let us evaluate the approximation rate of W in || « ||.:

Lemma 2.2. Assume 24)-@25). There exists a constant C' > 0, independent of § > 0 small,
such that
IR]l. < C (8]Vem(€)lg +0°~7|log d]) (30)

for all € € Z, where |chm(§)|§ stands for i |V5j<pm(§)|§.
j=1
Proof: First, from Lemma [2Z1] we note that for any j € {1,...,m}
W;(w) = Uj(x) —log(837) + 8mH (z,&;) + O(5°| log d])
uniformly for z € B, (&;) and
Wy () = $7G (. &) + O log )
uniformly for 2 on compact subsets of S\ {{;}. Since by symmetry and (¢, (0) = 0 we have

852 ;
pj(x)e¥idv, = / iy (y) ——L—— e W gy
/Bm@j) ’ ’ B (07 + [yl)?
8
= i (&) 5 (1 + O(63|y|*))dy = 87p;(&;) + O(6%|log 1),
/ng(o) J(69) 1 e (1+ Oy )iy = 8oy (65) + 0(6% og )
we then get that
1
/kewdvg = ZW/ ker+87rH(ac,5j)+8ﬂ'Zl¢jG(w,il)+0(62|log5\)dvg+O(1)
S j=1 J Bm(gj)

- Z % /Bm(fj) pj(x)e”s (1 + O(8%|log 6]))dv, + O(1)
= Y S lmesle) + 0@ ogd)] +0(1) = I+ Ol og)) (31)
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By Lemma 20l and @24)), (3I)) we have that

e in S\ UL, B,,(;) there holds 8wmfslf§7:;d% = 0(6?) in view of W(z) = O(1);

e in B, (&), j € {1,...,m}, there holds
LeW e~ 108(887)+8mH (2,6;)+87 3, ; G(w,&1)+0(5% | log 8|) .
8wmw = 8mm mmd—2 + O(|logd|) “
8rmp;(z) + O(6%|log d|) oU
8mmp;(£;) + O(62|log d|)
{1 . <V(pj °yg,')(0)
pi (&)

e (0)) + Ol (2) + 2] 1og )|
which can be summarized as follows:

rmke™V i V(pj oy ") (0
e - ij[1+<—(”pé?3)(),ygj<x>>+0<|ygj<x>|2+62|log5|>}el’j (32)
S g j=1 J\57

+O(52)XS\UTZIBTO(£]-)5
where x; = x¢;. Since as before

2

807
xje %ieVidy :/ 7dy + 0(6%) = 87 + O(8*
Jos "= Jin G OO =T OO

with ¢; = ¢, for

A ke 1
R87rm - gW + 87Tm 7fs kewdvg — E
we then have that
" ke
Rsrm = —ije_“’jer + 8mm———— Z/ x;e ¥ il idvg — ———
2 Jskedu, T 5] El
i ke
= - e ?ieVi 4 8em——v—— 1+ O(8?).
ije e’d + Wmfs T do, +0(6%)

j=1

By (B2) we now deduce that Rgrp, (x) = O(0%) in S\ UL, By, (¢;) and
Rorm = [=¢7 +1+0(V1og(p; 0y, (O)llye, (2)] + 8| log 8])] € + O(6?)
= %0 ([V10g(p; v )(0) lye, (@)] + lye, (@) + 8% 1og 3] ) + O(8?)
in By, (&), 7 € {1,...,m}, in view of ¢;(§;) = 0 and Vi, (§;) = 0. From the definition of || - ||.
we deduce the validity of
[ Rsrmllx < C (8]Vom(€)lg +6*77) (33)

in view of |V log(p; o ygjl)(())| < Ve, om(&)|g- Since by (32)

keW 1 " U,
R—Rgﬂ-m = (A—S?Tm) (W — m) = O(|/\—8ﬂ'm|;)@e 7+ |A—87Tm|),

we get that ||R — Rgam|« = O(0~7|A — 8mm|). In conclusion, by ([25) and B3) we deduce the
validity of ([B0). O
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3 The reduced energy

The purpose of this section is to give an asymptotic expansion of the “reduced energy” Jy(W),
where J) is the energy functional given by (). For technical reasons, we will be concerned with
establishing it in a C2-sense in § and just in a C'-sense in &. To this aim, the following result
will be very useful:

Lemma 3.1. Letting f € C?7(S) (possibly depending in £), 0 < v < 1, denote as Py(f) the
second-order Taylor expansion of f(x) at &:

Paf(x) = f(€) + (V(f o yg )(0), ye(x)) + %<D2(f o g )(0)ye(x), e ().

The following expansions do hold as 6 — 0:

/xgef“’ﬁf(:v)eU“dvg = 87Tf(§)—252Agf(§) {27T10g5+/ Mdy—i—w]
s R?

]
@) =B e [ X0,
ST A6 [ A o),

+852/x56_“’5
X8

dv T
m = ils—gf(é) +7Agf(€) + O(67)

[ xee e pagetne
s
and
e 5o 007 — |ye(x)|? _Ar N
/SX£€ #c f(x)e” deg =352 (2a—1)f(&) + (a 2)3Agf(§)+0(5v)

fora e R.

Proof: Since dvgy = e?<W)dy, by symmetry observe that

—pe
/ xee #< f(z)eVsedv, = 852/ xee 10 fix) dvg + O(5*)
S\ By (€) N\Brg(¢)  |Ye(@)]

oo f(@) = Po(f) () x(yl)
=862 emwer 2/ du, 4 862 d
/S\Bm(g) Xe |ye ()] s T80 /Bzm(o)\Bm(o) Y

+202A(f 0 y71)(0) / XUl g, 4 o(st)
Bary (O\B, (0) 1Y

as 0 — 0. On B,,(§) we get that

e~ f(x)eVscdu, = -1 7862
. 842 — B . 842
-/ o PO ) G + /| o (29900 = PG D) Gy
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Since f(z) — P2(f)(z) = O(|ye(x)|*>T7), by symmetry and the Lebesgue Theorem we get that

8
xee ¢ f(z)eVr<dvy = £(€) / 8y
/Bm@ ¢ ‘ 5,y 50 (LT [92)?

—pe /(@) = Po(f) (@)
e ()]
52 2413 8 >

= 87Tf(§)(1 — m) + 27T62A(f o yg—l)(o) <10g 52 + 52 + T‘(Q) -

2 —oc f(2) = P (f) (@) v, + 0(6%) = 87 —ﬁ
0 /Bm@)e e 0t 09 =3 f(g)(l 7‘3)

B _ z) — P T
+2m6%(=2log 6 + 2logro — 1)A(f oy )(0) + 857 /Bm@) € “"g%

2
+5%A(f o ygl)(O)/ %dy + 852/3 o e dvg + 0(6%)

B,y s(0)

dvg + o(6%).

In view of [23) and

2r /
t 1
Bar(O\B,.(0) |Vl P 0 2 2 g, on\B.0) Yl

for 7 < rp, summing up the two previous expansions we get that

/xge’“"ﬁf(:v)e’f“dvg - 87Tf(§)—252A(foy£_1)(0) [27T10g5+/ X’(|y|)10g|y|dy+7{|
S R2 |y
—oc J(@) = Po(f)(2) X' (lyl)
52 pe\T) AN N 52 52).
v [ e BB dy 4 s(e) [ 2 S ols)

Since by () Ay f(x) = e~#@A(f oy ) (e (@), we get that A(f oy ?)(0) = A, f(€), and the
validity of the first expansion then follows. The other two expansions are simpler because of the
stronger decay. Indeed, by the Taylor expansion of f at £ and the symmetries we get that

_ dv 8 — dy 2
Xe“’ﬁfa:e%@ig:—/ foyH(0y) —=—= +0(6
et s = 5 o Ve O OO0

8 dy 6° |?J|2 24 |y|2+’y 2
e {f O [ im0 [ o [t |y|2>3dy)} 0%
= S FE) + 78, f(6) + O")

s
2

[
2 (14 [y[?)? r2 (L4 y?)? Jre (L+yl?)? 2

Similarly, we have that

- ad® — Jye(x)? 8 -1 a—lyP 2
xee Pef(x)eVse —— 2 _dy :_/ foy 0y)——=———dy + O(d
S ree e G = 5 NS AL RO R T R

. . d
in view of [, W =T and

_8 a— |yl 52 ly[*(a = |y[*) N
=5 [f © [, g+ 700 [ dy] o)
= 2520 = DJE) + (- 2950, 7(6) + 06)

in view of

ol dy @y ™
/. T per® =@t /. TP~ /. e~ 2 Vg
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and

yPla—=1y?) , dy . dy . dy
L me = [ e e [ om0 [ o - e

The Lemma is completely established. [l

®_| Bl

We are now ready to establish the expansion of Jy(W):
Theorem 3.2. Assume 24)-@8). The following expansion does hold

IN(W) = —=8mm — Alog(mm) — 32720 (€) +2(A—87mm) log § + A(£)6% log 6 — B(£)6% +0(6?) (35)
in C?(R) and CY(Z) as 6 — 0F, where ¢,,(£), A() and B(£) are given by @), [@) and (),

respectively.
The proof will be divided into several steps.

Proof (of (B8] in C(R x E)): First, let us consider the term

/S|VW|§dvg—/SW(—AgW)dvg— Z /ije“’jerWldvg

jl=1

in view of [ Wdv, = 0. Since by ([B) and (18]
[ e e G o, = [ (~8,PUG . 6)du, = PU @) (36)
for all j,1=1,...,m, by Lemmata 2Tl BT and (B8] we have that for | = j
/ijef“"jer W,dv,

— / xjef“"jer [xj(Uj — 10g(86§»)) + 81 H (x,&5) + as; ¢, — 25]2ng] dvg + 0(64| log §])
s

= / Xjeitpj er
S

= 8/ X (0ly)) log lyl” dy + 8T PU;(&;) + 8mas, ¢, — 16762 F: . (£5)
Bavyys,;(0) (L [y[2)2 7 (1+[yl?)? o " 7

+0(5*|log 6|) = —16m — 32w log &; + 647° H (&;,&;) + 16mas, ¢, — 32787 Fe, (&) + O(6|log 6]?)

e, ()|

og NN r G, &) + e, — 202F,
VI e R TS e m 20T

dvy + O(6*|log 6)

in view of

/ Ay g 11 2/00 95 1oy 2/00 ds 2
= 27 = — 27 _— = =27
v L+ WPY? P O+WP? Sy WP 1 o (1+9)
by means of an integration by parts. Similarly, by Lemmata 2.1 Bl and (36) we have that for
L#j

/ xje P eV Widv, = / xje eV [8nG (2, &) + s, — 207 Fe,| dvg + O(6*|log d|)
s s
= 647°G (&1, &) + 8m(as, ¢, + as,.e,) — 167(07 Fe, (&) + 67 Fe, (§5)) + O(8%|log 6]?).

Setting

ase =Y s Fogln)=> 5F (),
= =
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summing up the two previous expansions, for the gradient term we get that

/ |VW| gdvg = —8mm — 16mmlogd — 32720, (€) + 8Tmas e — 16772 Fse(&5) +0(6%)
Jj=1

in view of (24) and
w3 lowpi(6) — 3202 | 3 HIG.6) + 30 66,65 | = 32220 )
j=1 j=1 1#j

Let us now expand the potential term in Jy(W). By Lemma 2.1 for any j = 1,...,m we find
that

/ kewdvq = / pj Ui —10g(88%)+ars ¢ — 2F5§+O(54|10g6|)dv
ro (€5) ' ro(€5)

1 / U, ey ) XiPi s
= o xje ?peteT e du, — 805 ————=—dv, + O(6"*|logd])| .
807 [ s7 T ) e, @

By Lemma Bl (with f(z) = €% p;e®s¢=2F%.¢) we can now deduce that

8532‘/ " )kewdvg = 87p;(&;)eo 7 20e&) —am (Agp; (&) — 2K (&)p;(&5)) 62 log 6,
o (65

~2(8gns(6) - 2k(e &) ([ XUy 1) g2 s aszp ey [ X,

lyl lyl®
m P Ps(e¥ip.:
+8(5J2»/ |:k687r L G(=.€5) _ e ¥i 2(74):| dvq 8(5?/ Xjeﬂijpi) d’l)g + 0(52)
o (€9) ye; ()] Asrg (€5) |ye, ()]

in view of L\“ = kST X5 Gn8) iy By, (&;) and by [7)

lye,; (@)
A [e77p] (&) = Agp;(&5) — 2K (§5)p;(&))- (37)
On the other hand, we have that

/ ke dv, = / kST 275 G@8) dy 4+ O(52| log 4)).
S\UTL, Brg (&) S\UTL, Bro (&)

Since
m

Ze—st,s(ﬁj) —m— 22 Fse(&) + 0(54)

Jj=1 Jj=1

and by (24) there holds

1
82 log 6; = p;(&;)8° logd + §pj(§j) log p;(&;)8%,

we then obtain that

1 A
;ea5*5524kewdv9—m—$52 g+ 87(r§ 2ZF§E &) +o(6%), (38)
where
" A "(ly|) 1
By(&) = —2m> [Agpi(&) — 2K (&)pi(&5)]og pj(&5) — 2(7?(/]1«2 x(|y||)y|og|y|dy+w)
j=1
4 Xl 3 8 keST 251 G(@.85) . M dv...
Sy Z )48 [ ke LT |
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By @3), (34) and the splitting of S as the union of UJ,; B,.(§;) and S\ UJL, B,.(;), r < 1o, we
easily deduce that

B, (&) = —2wZ[Agﬂj(§j) — 2K(&;)p;(&5)] log p;(&5) — @

1
+8/ ke®m Xi= @8 g g p; (&) — A(E) log —
S\UTL, Br(&5) Z "

+SZ / @) = Poep)@) g,
(€ lve; (@) |

in view of W = kST 25 C@8) in B, (&), B7) and the definitions of A(€), Py(e%7p;). As
a by-product we have that B, (§) does not depend on x and r < ro. Since

o [ P0) = Pa(ering) (@)
r=0JB,(¢)) |ye; (x)|*

eﬂaj(z)dvg =0

in view of €%1@)p;(z) — Py(e®7p;)(z) = o([ye, (z)|?) as x — &;, we have that B, (£) coincides with
B(€) as defined in ([I2).

Finally, we get the following expansion for Jg;,, (W) as § — 0:
Jsrm(W) = —=87m(1 + log(mm)) — 3272, (€) + A(£)6% log d — B(€)6* + o(6?). (39)
Since

log/ keVdv, = —21ogé + log(mm) + O(6%|log d|),
5

by 28) we then deduce that

(W) = Jgem(W) = (A = 8rm)log /S ke du,

= Jgem(W) — (A — 87m)(—21log § + log(mm)) + O(6*|log 6]?)
and the proof is complete. O
We establish now expansion (35]) in a C'l-sense in £, where the derivatives in ¢ are with respect

to a given coordinate system.

Proof (of (35) in Cl( )): We just need to expand the derivatives of J\(W) in £. Let us fix
ie{l,2} and j € {1,...,m}. We have that

9 [J(W)]——/ AW+ 2 T W
(&5)ildA = < g fskewdvg (&) g-

Arguing as in Lemma [2.1] it is easy to show that

X
e Wq = —2m [0ce,): lye, (@)]* + 620 ¢, (log pqa(&4))] (40)

—4log |ye, (2)|0(¢,;): Xq + 8T (e, ), H (2, &) + O(6°|log d])

does hold uniformly in S. In particular there hold

Xq(sq

6(§j)iWq_ 167 52+| ()|2

\G(£,&) + O(8%logd|)  Va#j
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uniformly in S and
Ny Wi = 87Ta(€j)iG($= &)+ 0(52| log d])

locally uniformly in S\ {{;}. Then we have that:
-forq#1,j
/ xie~ eV e,y Wydu, = O(6%) log )
s

in view of x;xq = 0;

-forl#£j
/Xle_“’leUl[)(g.).V[/ldvg = —16#8(£,).G(§l,§j)/Xlze_‘“eUlLdvg—|—O(52|10g5|)
s o 7 s 0f + lye, ()2
dy 2
= —128710y,G(&,¢&; / —————=+0(6"|logé
(&5) ( ]) Brg (0) (1 4 |y|2)3 ( | |)
e
= —647°0¢;),G(&, &) + O(6%|log )
and

/S)(le_s"’eUla(gj)indvg = 647°0(¢,),G (&, &) + O(6%|log 81)
in view of Lemma Bl So we have that for [ # j
/SXle_“”eU’ Ae;) Wdvg = O(6°|log d)).
If [ = j, by Lemma [31] we have that
/ije_“"erfa(Ej)invg = /ije_“"erfa(gj)indvg + O(6%|1og d|)
= /ng‘e_“”'eU" [Xi0c¢): (Us — log(867)) + 870(e,), H (. &;)] dug + O(6%| log )
= 0e,), {/5 xie #ieVs dvg} + /S)(?e“"j %8¢,y p5dvg — 8¢, log p;j (&) + 647°0(e,), H (2, ;)

+0(62|log 8]) = —870¢, ), log p; (&) + 64#28(5j)iH(x,§j)’m _ +0([1ogd))

=<7

=&,

in view of J¢,y, log(867) = d(e,), 10g p;(&;), De,),#;(&;) = 0 and
) 2et1clidy ) = 80(e ), lou s (&) [ UL ay 1 0(5%) = 0
(ei| [ xGe P e dug | =80, log pi (&) 34y +0(57) = 0(57).
s re ( yl?)
In view of [¢ d(¢,),Wdvy, = 0 we can compute
—/Agwa(gj)in’Ug = Z/Xle_weUla(gj)in’Ug
5 = /s

= —8m0,), logp; (&) + 64m°¢,), H (2, &;)

) + O(6°|log 6)

T=EC5

= =327%0¢,),om(€) + O(6%[log d|) (41)

in view of G(z1,z2) = G(x2,x1) for all 1 # x2 and 8(5j)iH(:1:,§j)‘ = %8(5j)i[H(§j,§j)]. In

T=¢;
order to give an expansion of the second term in 9¢,),[Jx(W)], first observe that by Lemma

i
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m there hold keW — €& :;25 pPi€ U] [1 + 0(52)] uniformly in BTU (5]) and keW — O(l) U.l’lifOI’mly in
SN\ UJLy Bro (&) So we have that

8e™ s /Skewa (e,) Wdvg = Z g /B . )pqu"(l + 0(6%)9¢,); Widvg + O(1)
l,g=1 ro\Sq

= 5;2 pje Uj (1+ 0(52))8(£]) W;dv, — 1671'2 8(£] gl,fj)/ pleUl
Brg (&5) l#j Brgy (&)

dvg
07 + lye, ()2

van >5[ o o016 (a6, + O o )

in view of d¢,), Wi = 8¢y, H (x,&) + O(6?|log d]) in By, (&,) when g # . Since
;) Wi = X;0(¢;):[U; — log(867)] — 4log lye, (2)|0(¢; ), x; + 870y, H (x,&5) + O(6%| log ),

we have that

/ pie™ ie;), Widv,
BTo(E'
=/ng*pjeU“?(sj)indvg+AijjeUf[8W5<gj>iH(w=€j)—3@-)1- log p; (&;)] + O(6°|log 6)

= 0¢;) US ijjerdvg} — Oe;),s 1ngj(§j)/SXijer + O(8|log 4))

in view of 8¢, log p;(z) = 8m0¢,), H (x,&;). Since by the Taylor expansion of e?/(p; o ygjl) at 0
and the symmetries we have that '

. 862
a../ <<edev}=/ ey €91 W (p; oyt ——L—=d
(5])1 |: SX]p] g BQTO(Q) X(|y|) (5])1 |: (p] y§] )( )jl (52+ |y| ) y
_ 86%(lyl* — 67)
+0e;): 10gpj(€j)/ X(yDe? W (pj 0 yg )W)~ ayg- = 870ie,). 4 (&) + O8] log )
Bay, (0) (67 + [yl?)

in view of 9(¢,), [eﬁbi(o)(pj o ygjl)( )} = ¢, p;(&) and [g, 1+‘\yT1) dy = 0, by Lemma [B.1] we
then deduce that

/ y )pjera(gj)indvg = 0(6%|log ).
ro S5

Since by the Taylor expansion of %! (p; o Ye, 1y at 0 and the symmetries we have that

dvy 2 1 sy S
pe’ gL —— = & pzoyl ) (Sry)e? O —————dy
/m@) 0 + lve (x) Yy 0 : (1+[y[?)?
= 5 Ld Lo =T Lo,
— 7 e PR 5
by Lemma 3.1l we obtain that
e_a“’ﬁ/kewa(gj)invg = 28(5] (&, &)+ Z@EJ (&,&5) + O(|log d]).
s 1#] 1#]
Since by B8) [g ke dvg = Z3te® ¢ (14 O(6%|1ogd])), we finally get that
ke
/ W%»deg (42)
Za@] (&) +—Za@>l (&.€)) + O(8%|log d]) = O(62|log 8])
l;éj l#j
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in view of G(§,&;) = H(&,&;) for I # j. In conclusion, by (#I)-(42) we can write
ey [Jsmm(W)] = =32m%0(¢,), 0m (€) + O(6°| log d]). (43)
By (23) we have that d¢,y, [Jx(W)] = (¢, ), [Jsx(W)]+O(6?|log 6]), and the proof is complete. O

Finally, we address the expansions for the derivatives of J(W) in 4.

Proof (of (85) in C?(R)): We just focus on the first and second derivative of Jy (W) in §. Since
1

0s = pi (&)0s, in view of (24]), arguing as in Lemma 2] it is easy to show that

46,
—Xim———5 + 85,6, — 461 F¢, + O 53 log d 44
e (P e~ 10k O log 3] (44

| 2

p; *(&)0sWi =

62 —
(€0 D55 Wi = dyg L — 1Y (@)

8 +lye, (@) + Yo — 4Fe, + O(6%| log d)) (45)

do hold uniformly in S, where

7e® —1 X'(ly]) log |y
S ([ Aty - [ Xl
Bsie = | | 110g0; |S| x(lyl) PE Y - Iy Y

8 e@{(y)_l ry 1og y
Vo6 = | logd; + —: 5] </ x(lyl)Tdy—%—/Rz % y>

By Lemma B.1] we then have that

and

(&)/ je %ie J&;Wldvg

44,
= —/ Xleef“"jeU 275qu + 87Bs,.¢, — 32m0 Fe, (&) + 0(63| 10g(5|2)
S 5 +| 51( )| '

32 dy
=S [ s A () + O los )
J /8

_ 167
dj

5jl + 87‘1’6[5[751 — 327T(51F5l (fj) + 0(53| log 5|2),

pl_l(gl)/ Xje_wera&szdvg
S

U, 0% = lye (@)
:4/X-Xle_“"erfl—ldv + 8mys 327 Fy, (&) + O(62|log 6]%)
s (97 + lye, () [£)2 7 77 s T

32 2 1
=5 T e P - 2RG) + O gl
J 0/5;

167
— 952
35j

851 + 8756, — 321 Fg, (&5) + O(6%|log 6]*)

and

p;%(fl)/ Xje_weUf(%UjaaWzdvq = gpl%(gl)/Xje_wjer%a‘sm
: 975 s 6% + ye; ()2
— Jye, (2) 2 lyP —1

| 52 16
= 8p;(&; 56»/X<e’¢jerJ—'dv + — 6171—46Fl§< / ————dy
]( ]) 5l S J (5]2+|y5j(x)|2)2 g 5 ( 01, g ( ])) - (1+|y|2)3

327 1
08 [10g ) = S=5.p5(€;) 281 + O(5")
J
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in view of [p, (Hl'ylz)g dy = 0, where §;; denotes the Kronecker’s symbol. Since [ 8sWdv, =
f S O0ssWdvg = 0, we then deduce the following expansions:

/S (—AW)OsWdv, = Z / xje %ieYi 9sWidv, (46)
jl=1
- 16;’” + &rmipﬁ (€)Bs,.¢, — 3216 i (€ Fe, (&) + O(6%] Tog 8]2),
=1 4l=1
/S(—AQW)a&;deg = Z /x e~ %1V 955 Widv, (47)
Gi=1
= 12% + 87Tmipl(§l)%5z,5l — 327 i p1(&) Fe, (&) + O(6%|log 6]%)
=1 =1
and J
/S (0 W)OsWdv, = Z / e %3V 95U 05 Wdvg = 3?}% +0(6") (48)

7,l=1
as & — 0. Since by Lemma 2.1] there hold

ea51§72F51§(m) )
ke = e pje 1+ O(5*| log 8]
J

uniformly in B,,(§;) and ke = O(1), 9sW = O(d|logé|) uniformly in S\ ULy By (§5), by
Lemma B we can write that

/ ke 0sWdv, = Z / ke" 9sWidv, 4+ O(8]log d])

7,l=1 To(gj

m LN eos

*QFM(f)idu +ri -
26 /m@] o7 + lye, (@)]> 7

*se (A
0(0g) = = 3-S5 (e 4n(Aui6) ~ 2K 6y (6)
j=1

Jil=1

(mzpz (E)Bse, — 4> p? (€31 F, (€j))

NI»—A

F(&)Bse —4 ) p? (€)1 F, (éj)) + 061

dl=1

ea55

- 6 < 5 T me &1)Bs,, & ° A(f) + O(al—iﬁ))

-

in view of 1) and

1 . —2F5.¢(&5) — m 2 S 3 % 3
526 5’5(')—3—52 1 Fe (&) +0(8%) ———2];1p ()6iFe, (&) + O(6%).  (49)
Combining with (B8] we then get that
[ ke 8 W v, 1 6 A©) B(¢)
Jsrm 79 2 ( A i SV o 2%/
fs kewdvg (&) Bsier — 3 47Tm6 0gd + 47Tm6 (50)

4
__5 5] +0

%
i
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which yields to

7 fS ke dsW duv,
85 [JSTrm(W)] = /S(—AgW)a(;Wd’Ug — 87mW
= 24(&)dlogd + [A(&) — 2B(&)]6 + 0(9). (51)
Since by (28] and (B0) there holds
ke oswWd -
(0 — 8am)ds ke OoWdv, _ 20\ —8mm) oy sy

[ ke dv, 8

by ([B&I) we deduce the validity of (B8 for the first derivative in ¢.

Towards the expansion of the second derivative, we proceed in a similar way with the aid of the
expansion for dssW;. Since

ea51§72F51§(m) )
ke = e pje 1+ 0(5*| log 6]
J

and ke"' = O(1), 95sW + (0sW)? = O(|log §]) do hold uniformly in B,,(&;) and S\UJ™, B, (&),
respectively, by Lemma [3.]] we can write that

/ke (055 T + (95 W)2)du, — Z/B ke [955 W + (95 W)2)dv, + O(|log 6))

0 5]

T ey el
BTo (5] (5_] + |y§] (I)|2)2 :

_i exse / 6_2F5’5(1)¢ Zp (&1)Bs,,¢ 452pl (&) Fg | dv
) 0F + lye, ()]? l - A

= j =1
n (mzpl &)1, — lilpma)Fgl @-)) +0(|log o),
=
and then
R [ ks + @i i( ) 4 (Bgpy(65) — 2K E)))
%i (i ot (€)Bser — ip () F, (@-)) + mlf;m ()76 — 4 i P& Fe, (&) + O(6")
=1 \i= — = jil=

m m 1 A
= (i;—g + mZPl(&)%héz Z 7 (&)Bs, e + Alg) +0(87)

8T
1=1 =1

in view of 1) and (@9)). Combining with (B8] we then get that

ke [05sW + (9sW)dv, 6 3A 3
fS [ }6 keW(;U5 o 52 + (6) 10g(5 + Zpl(é)wél@ (52)
g =1

Oqlﬂk

LAY A 3B 12
5 Dot e+ Gl = 4 s D Fl) o)
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Since

fS keW[855W + ((95W)2]dvg
Oss[IA(W)] = /S(_AQW)655WdU9 —A Ty keWdo,
f keW&;deg 2
_A d JsTT 70 779
—I—/S( g35W)35W Vg + /\< fS kervg »

by @), (@8), (BA) and (E2) we deduce that
055 Jsmm (W)] = 2A(€) log 6 + 3A() — 2B(£) + o(1). (53)
Since by 25)), (G0) and (G2)

[ k€W [05sW + (0sW)2dv, ([ [s ke OsWdvy A — 87m

A—8 3 2= 2) | =25—5— + 0(8°|log 6|

( mm) Jg eV dv, [ eV dvg, 62 + 007 log o),
by (E3) we deduce the validity of (B5]) also for the second derivative in §, and the proof is
complete. O

4 Variational reduction and proof of main results

In the so-called nonlinear Lyapunov-Schimdt reduction, the first step is the solvability theory for
the operator L given in ([27)), obtained as the linearization of (Il at the approximating solution W.
As 0 — 0 observe that formally the operator L, scaled and centered at 0 by setting y = v, (x)/9;,

approaches L defined in R? as

o - U S B C) N

Due to the intrinsic invariances, the kernel of L in L™ (IR?) is non-empty and is spanned by 1
and Y;, 7 =0,1,2, where

4y; )
Yi(y) = Y 1=1,2, and Yo(y)

1— 2
_ 7 _ o1yl
1+ [y[?

R

Since [25] [33] it is by now rather standard to show the invertibility of L in a suitable “orthogonal”
space, and a sketched proof of it will be given in Appendix A. However, for Dirichlet Liouville-
type equations on bounded domains as in [25,33], the corresponding limiting operator L takes the
form L(¢) = Agp+ W(ﬁ and the function 1 does not belong to its kernel, making possible to
disregard the “dilation parameters” §; in the reduction. As we will see, one additional parameter §
is needed in the reduction and in this respect our problem displays a new feature w.r.t. Dirichlet
Liouville-type equations, making our situation very similar to the one arising in the study of
critical problems in higher dimension.

To be more precise, for ¢ =0,1,2 and j = 1,...,m introduce the functions
57 —lye, (x)|? .
Zi() =, (yzj (iv)) B 25;+|y§(7. @p fori=0
17 — I - 95 (x)): .
Ly 40, (ve; () fori=1,2,

T ye, @)

and set Z = ZZOI. Fori=1,2and j=1,...,m, let PZ, PZ;; be the projections of Z, Z;; as
=1 _
the solutions in H of )
AgPZ  =XiD8gZ — 157 [s XiDgZdvg

54
AgPZij = XjAgZij — ‘—é‘ fS XjAgZijdvg. ( )

In Appendix A we will prove the following result:
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Proposition 4.1. There exists 0o > 0 so that for all 0 < § < do, h € C(S) with [¢hdv, =0,
& € E there is a unique solution ¢ € HNW?22(S) and cp,c;j € R of

2 m
L(¢) = h+coAgPZ+ Y > cijAPZy in S (55)
i=1 j=1
[4 00y PZdvy = [4 6Dy PZijdv, =0 Vi=1,2,j=1,...,m.

Moreover, the map (6,€) — (¢, co, ¢ij) is twice-differentiable in & and one-differentiable in & with

2 m
[0l < Cllogallll,leol+ Y23 les| < CllalL (56)
i=1 j=1
2 m
5 log |2
036l + 33 10l + o Wsselloe < L . (57)
i=1 j=1

for some C > 0.

Let us recall that u = W + ¢ solves () if ¢ € H does satisfy (26). Since the operator L is not
fully invertible, in view of Proposition [4.1] one can solve the nonlinear problem (26) just up to a
linear combination of A;PZ and A,PZ;;, as explained in the following (see Appendix B for the
proof):

Proposition 4.2. There exists 59 > 0 so that for all 0 < 6 < &g, £ € Z problem

2 m

L(¢) = —[R+ N(9)| + coAgPZ+ Y > ¢;jAPZ;; in S (58)
i=1 j=1

Js dDgPZdvy = [4 ¢AgPZijdvg = 0 Vi=1,2,j=1,....m

admits a unique solution ¢(5,&) € H N W22(S) and co(6,€), ¢ij(6,€) € R, i = 1,2 and j =
1,...,m, where §; > 0 are as in 24) and N, R are given by 23), 29), respectively. Moreover,
the map (0,€) — (6(0,8),c0(9,8),¢i;(8,€)) is twice-differentiable in § and one-differentiable in &
with

[6]loe < C (3]10g 8]| Vi (), + 82| log §]?) (59)
2 m

195¢ll0e + > D> 10(e), blloe < C (11062 [Vipm (€)]g + 67| log d]°) (60)
i=1 j=1

19550100 < C (67 10g 6]*|Veom (€)]g + 07| log d|*) . (61)

The function W + ¢(4,€) will be a true solution of (26 if § and & are such that ¢o(d,&) =
¢ij(6,€) = 0 for all ¢ = 1,2, and j = 1,...,m. This problem is equivalent to finding critical
points of the reduced energy Ex(6,§) = Jx(W + ¢(6,&)), where J) is given by (), as stated in

Lemma 4.3. There exists 0g such that, if (0,€) € (0,d00] X Z is a critical point of Ey, then
u=W + ¢(6,€) is a solution of (), where &; are given by 24).

Once equation () has been reduced to the search of c.p.’s for E), it becomes crucial to show
that the main asymptotic term of E) is given by Jx(W), for which an expansion has been given
in Theorem More precisely, by the estimates in Appendix B we have that

Theorem 4.4. Assume 24)-@8). The following expansion does hold

Ex(5,6) = —8mm — Mog(mm) — 321%0m (€) + 2(X — 87wm) log 6 + A(€)§%logd  (62)
—B(£)8% + 0(6%) +12(6,€)
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in C*(R) and C1(Z) as 6§ — 0%, where @, (&), A) and B(€) are given by @), @) and (),
respectively. The term rx(9,€) satisfies

4 52
7 (0,&)| + mWU(@ &)+ WW&ST,\(CS, )| < C6%|1og 8| [V ()2 (63)
for some C > 0 independent of (6,€) € (0,d0] x =.

We are now in position to establish the main result stated in the Introduction.

Proof (of Theorem [L.5]): According to Lemma [3] we just need to find a critical point of
Ex(0,€). By Theorem .4 for A > 8mm we have that

OOENWAZBTNIE) 5 1 A€)log(h — Smm)u® +24(u g + (AE) —~ 2B(E))°
+o(1) + O (2 log(VA = Srmp) 2V o (€)]2)
and

(02 055 EX) (VX — 8mm p, €)

A —8mm

= 24+ A(&)p*[2log i + log(A — 87m) + 3] — 2B(&) 1
+o(1) + O (2 1og (VA= Srmu)* IV om(€)I2)

as A — 8mm. By assumption we can find ap > 0 small so that B(§) > 0 for all £ € U with
[A(§)] < ao. Let
Dy ={§€ U [Vom(ly < V2 [log(A — 87m)| 7}

and consider the interval

= [\/|log(TO— 87rm)|,M},

0 < mg = inf |A(§)|—% , M =2 sup B_%(Q < +o0.
£el {§€U:1A(§)|<ao}

For A close to 8mm and for all £ € Dy we have that
LN ] m3

=2 A(E)m2(1+0(1))—2B(§) ——— 0 _
A —8mm eyl (E)ma(1+o(1)) ( )|log()\—87rm)|

where

+o(1) >0

in view of A(¢)m3 <1, and

(0 OsEX) (VA — 8mm i, &)

o ‘M:M =2 — A(E)M?|log(A — 87m)|(1 + o(1)) — 2B(E)M? + o(1) < 0

since either A(£) > ag or 0 < A(€) < ag, B(§)M? > 4. Moreover, in I, x Dy we have that

(62 955 Ex) (VA = 8mm pu, €)
A —8mm

= =2 = A’ log(X = 8mm)|(1 + 0(1)) = 2B()u® + o(1) < —1

since either A(§) > ag or 0 < A(&) < ag, B(§) > 0. So, for all A close to 8mm and £ € Dy there
exists an unique p(A, §) € Int Iy so that (A, &) 1= VA — 8mm u(A, &) satisfies s E(d(), £), &) = 0.
Moreover, by the IFT the map £ € Dy — (), &) is a C! —function of & with

85£E>\ (6(A7 5)5
A€

03(0, &) =~ GE PSS — O log(r — s ),
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in view of 12(\, €)|0ss Ex(vV A — 8mm p(A, €),€)| > 1 and ds¢ Ex (8, €) = O(8|log §|+| 10g(5|3|chm(§)|§)
(as it can be easily shown by the methods in the proof of Theorem B2).

The aim now is to extend the map §(\, €) to the whole U in a C'—way. Letting n € C§°[—2,2]
be a cut-off function so that 7 = 1 in [—1,1], we define the C'' —extension 6 of § to D as

678 = n(|log(A —8mm)|°|Vem(€)]7) 8N, &) + VA =8mm |1 —n (|log(A — 87m) |°|Veom (€)[7)

and E)\(€) = Ex(6(),€),€). Since |0:6(), €)| = O(|log(A — 87m)|~3), by Theorem B4l we have
that
E\(€) = —8mm — Mog(mm) — 327%p,, (€) + O(|A — 87m| [log(\ — 87m)|)

and
VeEA(€) = VeEA(B(X, €),6) 405 Ex(3(), £),€)eb(N, €) = =321V, (€)+O(VX — 87m| log(A—87m)|?)

uniformly in £ € U. Since D is a stable critical set of ¢, (according to Definition [LZ), we find a
critical point £y € U of E5(§) +8mm+ Alog(mm), which is also a c.p. of Ex(§). By VeEx(€x) =0
we get that

Vom(€x) = O(VX = 8rm|log(\ — 8tm)[?),

and then &, € D). Moreover 0(\,€) = 6(\€) satisfies dsEx(0(\,€x),Ex) = 0, and then
VeEr(€)) = 0 is equivalent to VeEx(d(\,€x),€x) = 0. In conclusion, up to take U smaller
so that Vg, (&) # 0 for all £ € U \ D, the pair (6(X,€x),&x) is a c.p. of Ex(4,&) and, along a
sub-sequence, &5 — ¢ € D as A — 8mm. By construction, the corresponding solution has the
required asymptotic properties. O

Remark 4.5. i) The validity of condition (I3]) just on D is enough to provide Theorem [[Hlin the
case of D = {&}, where & is a non-degenerate local minimum/maximum point of ¢,,. In this
case, we just consider a small ball By, (§y) as Dy, with sy = |log(\ — 87m)|~3. Since A(&) > 0
and Vg, (&) = 0 we have that A(§) > —Cosy and |V, (§)]|g < Cosy for all € € B, (&) and
some Cp > 0. Since B(§) > 0 for all £ € By, (&) if A(&) =0, it is easy to see as before that for
A close to 8mm and for all £ € By, (&)

85 Ex(v X —8mm i, 5)’ v >0, BEAWVA—Smmpo)| <0

AT =

with

1
Oss Ex(VA — 8mm p, &) < _F

in I x Bs, (&)- So, for all X close to 8wm we can still find a C*'—map & € By, (&) = 6(),€)
so that OsEx(0(A, ), &) = 0. Setting Ex(§) = Ex(0(\,§),&) for £ € By, (§0), by Theorem 4] we
have that

E\(€) = —=8mm — Mog(mm) — 321%0 (€) + O(|\ — 87m| [log(A — 87m)|).

Since by the non-degeneracy of &, we have on 0B, (&) that ¢, (£) > ©m (&) + C1532 / pm(§) <
om (&) — C153 for some C; > 0, we can find an interior minimum/maximum point &, € Bs, (&)
of Ex(€) on By, (&0). By 5EA(5(X,&x),€x) = 0, we also deduce that Ve Ex(5(), €x),€x) = 0, and
the pair (6(\, €x), &) is the c.p. of Ey(4,&) we were searching for.

ii) If (I3) does hold just in D, Theorem [[Hlis also valid in the special case |A(§)| = O(|V@m (&)]4)-
Indeed, condition (I3) reduces to B(§) > 0 (< 0) on D and in Dy we have that A(§) >
—Co|log(A — 87m)| =3 for some Cy > 0. Similarly as in point (i), it is still possible to define
the map £ € Dy — §(\,§), and the remaining argument in the proof of Theorem [[5] works also
in this case by extending §(), &) on a small neighborhood U of D in §™ \ A.
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5 Proof of Theorem

In this section, we shall study the existence of non-topological solutions of ([[4]). To this purpose
we look for a solution to the equivalent problem (IE) of the form w = u + ¢_(u) with [ u =0
and we are lead to study (I6). Assume that N is even, so that equation (6] is a perturbation
of [M)x=srm with m = . Notice that the energy functional of (I5) is given by

1 1 AnN
:—/ Vwl? + — (k:e —1)2 4 2 v w e HY(T).
2 T 262

T
: fT STN €2
Introduce the notation C = 16mN=L~ 5o that ¢* (™ =
= (Jp e Joker(1+ /1-C)
4T N

I(u) = L.(u+ c_(u)) = Juxn (u) — 47N log (1 +/1- ezc(u)) -

LHVI= 20 g

T
+ 47N log(87Ne?) + % —27N.
€
Hence, if u € A, = {u € H | €2C(u) < 1} is a critical point of I, with €2C(u) < 1, then u +c_(u)
is a solution to (I5l) and w is a solution to ([I6). Observe that I. is a perturbation of Jgrm as
e — 07", in view of 47N = &mm.

Given m distinct points & € T\ {p1,...,m}, j = 1,...,m, we will define §; according to (24)
and assume
3C>1:e<Co (65)

Letting W (z Z W;(x), we look for a solution of (I€) in the form u = W + ¢, for some small

remainder term gb. In terms of ¢, problem (I6) is equivalent to find ¢ € H so that W + ¢ € A,
and

L(¢) = —[R 4+ N(¢)] in T. (66)

The linear operator L€ is defined as

e ke

ATrNe2C(W) ( ke 2k%e2W ) [ Jrke" o
1+ /I—CW))2\ [, ke [ k2e2W Jp ke
20( ) (ka2 2W¢ ka€W¢)]
(1+/1—eECW))\/1—-eCW)\ Jpk2eW [ keW
n 47 NkeV e2C0(W) (f ) fT kewgb)
fT keW 1 + \/1 - 620 \/1 — 620 fT k2 2w fT keW '
Observe that L€ is defined for all ¢ € H. The nonlinear part N€¢ is well-defined for ¢ € H such
that W 4+ ¢ € A, and is given by
W+¢ w ke ke w
Ne(@) =y (R keTo e Jpkel o k) )
Jr ke Jr ke ([ ke) Jr ke
n 4rNe2C(W + @) keW+o k2e2(W+e)
(1+/1-eCW + ¢))2 JpkeWre [ k2e2(WHe)
4rNe2C(W) ( ke k2e2W )

(I aom)? \pkeW [ k2

29



The approximation rate of W becomes

w 2 W 2 2W
—AW—|—47TN( ke i) N : ArNe*C(W) ( ke k% ) (68)

Jpke™ T 1+ 41— EQC(W))2 Jrke™ o [p ke

We have that

Lemma 5.1. Let N be an even number and m = 5. Assume @24) and (@5). There ezists a

constant C' > 0, independent of § > 0 small, such that for all £ € =
R < C (6]Vom(E)]y +6°77) . (69)
8rme2C(W) ( ke k2e2W

(1+ T ec))’ \JpkeW [ k2e2W

Proof: First, note that R = Rgxm +

) in view of

N =2m. As in (3I)) we have that

/k:2 2Wd$—26454/ ¢2Us (1 4+ 0(52| log 8))) dz + O(1)

Bry (&)

647ij (&) T
= 1 = —
; 645;-1 ( 362 +O(Jlogo]) | +0 56 z::
Hence, in T\ UJL, By, (¢;) there holds 7% A = O(6%) in view of W (z) = O(1), and in By, (&),
j€{1,...,m}, there holds

E2e2W _ 352[p?(:1:) + 0(62|log §))] Ui — 0826V
Jpk2e2W 64mp3(&5) 22121 [ (&)1 (1 + O(62] log d])) ’

k 2W

which summarize as follows: w = 0(62 ZJ L xjeY + 68 Xr\ur, m(gj)>. On the other

hand, from (BI) we get that

357 et gy (L O@%[logdl)) 32 W 1
[%= + O(|logd|)]? 3mé? < p; (&)

(1+ 0(5?|log])) .

C(W) = 167N (14 0(8%1ogd))), (70)

which implies by (G5 that for e and ¢ sufficiently small W € A, and
8rme2C(W)

(1+ /1= EC))?

Therefore, by using ([B2) and the estimate on % we find the following estimate

2 m
R — Rgﬂ-m = O<;—2 [ZXjer + 52}>,
Jj=1

and then ||R¢ — Rgnm |« = O(¢2672). Thus, in view of [B3) and (5] the conclusion follows. [

2

= 27me2C(W) + O([E2C(W)]?) = 0(2—2).

Now, we are going to establish the expansion of I (V).
Theorem 5.2. Assume (24) and @3). The following expansion does hold

om0, (6) + A5 o b B + BE) G +o0?) (T)

in C?(R) and C1(Z) as 6 — 0F, where ¢, (£), A(€) and B(€) are given by @), [@) and ([2),

respectively, and

I.(W) = —16mm+8mmlog(8€?) +

(72)



Proof: By (0) we have that
4

2 4 €2
[1+y/1—eC(W } 5+ 3 cw )+0(54) log (1+\/1 - 62O(W)) = logZ—ZC’( )+0(54))
Hence, by using (64]) we find that

T
I.(W) = Jgam(W) + 7me2C(W) + 8wm log(8mme?) + |2—2| —8tm + O(e*57).

Thus, the expansion (1)) follows by @B9), @) and C(W) = [rmd?]~LB(€)[1 + O(6?|logd|)] in
view of ([Z0)). Finally, the expansions for the derivatives follow similarly as in the proof of Theorem

B2 in view of
4me205[C(W)]

(1+/1— 2CW))2

= 0plJsrim (W)] + mme*95[C(W)] + O(* C(W)|9[C(W)]])
for either 8 = (§;); or 8 =4, and
o5 Le(W)] = 05 Jsmwm (W)] + mme 955 [C(W)] + O(* C(W)|055[C(W)]| + €*|05[C(W)][?),
by using [@3), 1), (B3) and the expansions for the derivatives of C'(W) in the line of ([Z0). O

6,8 [IS(W)] = (9,@[Jgﬂm(W)] +

2
Since L€ and N°€ are small perturbations of Lgqym, and Ngrm, in view of ||[A€(¢)].« = O(%H(b”oo)

2
and N€(¢) = Ngzm(6) + O(§—2||¢||§o), as for Proposition 1.2] in view of (69)) it follows

Proposition 5.3. There exists g > 0 so that for all 0 < 6 < &g, £ € Z problem

2 m
L(¢) = —[R° + N(¢)] + coAPZ + > > ¢i;APZ;; inT
i=1 j=1

[p 6APZ = [, APZ;; =0 Vi=1,2,j=1,....,m

admits a unique solution ¢(5,€) € HNW22(T) and co(6,€), ¢ij(0,€) € IR, i = 1,2 and j =
1,...,m, where §; > 0 are as in 24) and N€¢, R¢ are given by @), [€). Moreover, the map
(0,8) — (9(6,8),¢0(6,8),¢i;(9,8)) is twice-differentiable in § and one-differentiable in & with

6] 9658l o

< 2—0 .

)
I¢lloo + rioggy | 19500 + > 118y,
irj

Remark 5.4. Notice that if ||¢||cc < vd|logd| then W + ¢ € A, for ¢ and e small enough.

The function ¢(4,&) will be a solution to (66]), namely, W + ¢(d,£) will be a true solution
of ([I8) if § and £ are such that ¢(0,§) = ¢;(6,€) = 0 for all ¢ = 1,2, and j = 1,...,m
Similarly to Lemma M3 this problem is equivalent to finding critical points of the reduced
energy £(0,¢) = I, (W + &(9, §))

Theorem 5.5. Assume (24) and [@3). The following expansion does hold
7|

2
£€(0,€) = —16mm+8mm 10g(862)+@—327T290m(§)+A(§)(52 log 5—3(5)62+B(§)§—2+o(52)+rf(5, £)

in C2(R) and CY(Z) as & — 01, where o, (€), A(E), B(€) and B(€) are given by @), @), )
and (T2)), respectively. The term r¢(0,&) satisfies for some C > 0 independent of (6, &)

52
Ir(6,&)[ + o ||V7“ (6,6 + o 5|2|3567“ (6,6)] < C8%|1og 8[|V (€)]5-
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Proof (of Theorem [I.6)): Similarly to Theorem [[H to find a critical point of £¢(4, £) the key
step is to get the existence of a function § = (¢, &) = /eu(e, &) such that IsE°(0(e,€),&) =0in a
small neighborhood of the critical set D. Even if A(§) > 0 for all £ € (T'\ {p1,...,p})™ \ A, this
is possible in view of B(€) > 0 and “the correct sign” B(£) < 0 in D. The argument is based on
the same one explained in Remark 5} (ii) and uses the crucial smallness property of A(§) near

D: A(§) = O(IVem(E)[7)- O

6 Appendix A

We consider the operator

LSﬂm(¢) = Ag¢ +

S8rmke™V <¢ B fS keW(bdvg)

[ ke du, Js keWdv,
for which we first address a-priori estimates when all the ¢;;’s vanish:

Proposition 6.1. There exists do > 0 and C > 0 so that, for all 0 < § < &g, h € C(S) with
Jshdvg =0, & € Eand ¢ € Hy(S)NW>2(S) a solution of BB) with L = Lgxm, and co = ¢ =0,
i=1,2andj=1,...,m, one has
[6llsc < C1log 6][|R]l (73)
Proof: By contradiction, assume the existence of sequences § — 0, points £ € = with £ — £*,
functions h with |logd|||h[l. = o(1) and solutions ¢ with [|¢[|c = 1. Recall that 67 = 6%p;(&;).
g w
Setting K = % and ) = ¢ — %, we have that Ay + K¢ = h in S and 9 does

satisfy the same orthogonality conditions as ¢.

Since [[nlloc < 2[|@nlloc < 2 and Agyp = o(1) in Cppo(S\ {&7,---,&}), We can assume that

P = oo In Clloc(s\ {&,...,&5}). Since ¢ is bounded, it extends to an harmonic function in
. ke pdvg . . ke pd
S, and then Yo = ¢ := —hmjfsslfeiwd:;’ in view of ‘—g‘ fswdvg = —stslfeiwq;g.

The function ¥; = w(ygjl(5jy)) satisfies AW 4+K; U, = hj in B% (0), where K; = 5?/C(ygjl(5jy))
and h; = 67h(yg ' (3;9)). Since |hy| < C||h[l. and Kj = gz (1 + O(6%|logd])) uniformly in
32% (0) in view of Lemma 21 and (38)), up to a sub-sequence, by elliptic estimates ¥; — ¥,
in ) .(R?), where ¥} o is a bounded solution of AW} » + W‘I’jm = 0 of the form U, , =
Z a;;Yi (see for example [1]). Since —A,PZ;; = xje ¥ieViZ;; — ﬁ Js xje%ie Zijdvg in view

=0
of (54) and A, = e™% A in By, (§;) through ye,, we have that

yi 32 3
— [y PZi»:32/ U,y 7dy/wn+06
/s oP2y =32 | TR T8 Je T 1) )

Since then fR2 Wdy = 0, we deduce that a1; = az; = 0. By the other orthogonality

condition [ s VAGPZ = 0 similarly we deduce that

- 1— |y 16 1—|y? >
- WA, P Zo;dv :16/ v, W g, 7dy/wn+05
Z/S oFZ0ia =10 |V PP ™ T 1S] S T TP )
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which implies Z ap; = 0 in view of fR2 Wdy = 0. By dominated convergence we have that
Jj=1

1 1 8
Gy, &)Kbdv, = —— log 6 Kabd ——1 H(E, &) | ———— T, od
Jo Gt ve, = —sows [ sty + [ [ 5ol + (e 6] e Vo
+3 G g)/ 8 g, dy+o(l) = ——logs Kbdv, + dag; + o(1)
is8j j,00 =—c= 0j
i#i e (L )2 27 Bo€)
in view of [, log |y 1+\y\|) dy = —%. In view of [¢ K =0 and
[|2]]
[ 6w &man,| < clioga / iy + 57| [ Gl )| < C1omlnl. = o)
5\Sj
by the Green’s representation formula
m m m m m
Dw0) = w(g) = m/gwdvﬁZ/SG(y,sj)M—h]dvg—mco+4za0j+o<1>
Jj=1 j=1 j=1 j=1

m m m
which gives Zaoj = mco + 42 ap; as n — +o00. Since Zaoj =0, we get that ¢y = 0.
j=1 j=1 j=1

Following [33], let PZ; € H}(S) be s.t. AyPZ; = x;AgZ; — ‘—é‘ JsXjAgZjdv, in S, where

4 1—|yl> 8 1
2w =5 (57) . G50 = gl2iowd +losL+ WP + S

satisfies e¥iA,Z; + eYiZ; = eViZy; in By, (€j). Since it is easily seen that PZ; = x;Z; +
16T’TH(-, &) + O(62|log §|%) uniformly in S, we test the equation of ¢ against PZ; to get:

1 .
/51/)|:XjAng — E/SXJ‘A!]ZJ'CZ’U!]} dvg—l—/SlO/JPZjdvg = \/;Xj1f)[€<pJAng +’CZJ]dUg+O(1)

1— 2
= / x;eY Zojdv, + o(1) = 16/ v -%dy +o(1) = / hPZ; = o(1)
S S

g2 (L+y?)
in view of [¢Kidv, = 0, [gpdvy, = o(1), [¢x;D¢Zjdvy = O(1 fsxﬂ/’ eYiZ;dv, =
O(6%1ogd|?) and [(hPZ; = O(|10g5|||h||*) = o(1). Since [p, ¥ Wdy = 0 we have

that ag; = 0. So far, we have shown that ¢» — 0 in C},.(S\ {£7,...,&,,}) and uniformly in
U™ Brs, (&), for all R > 0.

Setting ;(y) = ¥(yg,' ®): K;(y) = K(yg,' () and hy(y) = h(y,' (y)) for y € Bay,(0), we have
that e%i Ai&j —i—l@jz/;j = ﬁj. By now it is rather standard to show that the operator L; = % A—H@j
satisfies the maximum principle in B,.(0) \ Brs,(0) for R large and > 0 small enough, see for

w
example [25]. As a consequence, we get that ¢y — 0 in L°>°(S). Since % — ¢ along a
sub-sequence, ||1)|lcc — 0 implies ¢ — ¢ in L°°(S) with ¢ = 0 in view of fs ¢ = 0, in contradiction
with ||¢]|cc = 1. This completes the proof. O

We are now ready for

Proof (of Proposition [4.1)): Since ||AjPZ;j||« < C foralli=0,1,2,5=1,...,m, and

H (A —8mm e ((b _ s keW¢dvg>

)fS keW dv, fS keW dvg

= O(|A = 8mm|[|9] ),

*
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by Proposition 6] for A close to 8mm any solution of (B3]) satisfies

2 m
1lloe < Cllogd] |lIAll« + lcol + Y D~ les|

i=1 j=1
To estimate the values of the ¢;;’s, test equation (B3] against PZ;;, i =1,2and j =1,...,m:
m 2 m
/ OL(PZij)dv, = / hPZijdvg +co / ANgPZoPZijdvg + > > e / AyPZyPZ;jdv,.
o o 1=0 /% k=11=1 o
Since for j = 1,...,m we have the following estimates in C(S)
PZiyj=x;Zij +0(8), i=1,2,  PZy = xj(Zo; +2) + O(5°|logd|), (74)

it readily follows that fS ANyPZyPZ;;dvy = — 327”(5;“5“ +0(0), where the d;;’s are the Kronecker’s
symbols. By Lemma 2.1] (28], (B8) and (74) we have that for ¢ = 1,2

L(PZ”) = XjAgZij —|—6UjPZij + 0(52 +5Z eU’“) = er [PZZJ - eikijjZij] + 0(52 +5Z eUk)
k=1 k=1

. . ke PZ;:dv
in view of Js e

e, = 0(9), leading to |L(PZ;;)||« = O(6). Similarly, we have that

m m

2 m
L(PZ) = > [xjAgZoj + €V PZy; — = > xwe ]+ 0(8%) + 0 (52 eUk)

j k=1 k=1

eli [PZo; — xj€ %1 Zo; — 2x;] + 0(52) + 0 (52 eU">
k=1

<
I
o

[
NE

<.
Il
o

¢ S ke PZyjdv,

ToheWdu, = 2 + O(6%|log d|), leading to ||L(PZ)||. = O(5). Hence, we get that

in view o

2 m 2 m 2 m
leol+_ D leis] < Cllhll+00(19lloctleol+ 3 D lesl) < € lbl].+6110g 810 (Jeol+>_ D leii ).

i=1 j=1 i=1 j=1 i=1 j=1

2 m
yielding to the desired estimates ||¢]lco = O(|logdl||h]«) and |co| + ZZ leij| = O(||R|l+). To
i=1 j=1
prove the solvability assertion, problem (B5]) is equivalent to finding ¢ € H such that

_ AkeW fs ke pdo,
/S<V¢, V) gdug —/S [fs kW dv, (¢ — [+ kW do, ) — h] Pdug Vi € H,

where H = {¢ € H}(S) : fS $AGPZ;jdvg = fS $AGPZdvy =0,i=1,2,j=1,...,m}. With
the aid of Riesz representation theorem, the Fredholm’s alternative guarantees unique solvability
for any h provided that the homogeneous equation has only the trivial solution: for (B5) with
h = 0, the a-priori estimate (56l gives that ¢ = 0.

So far, we have seen that, if T'(h) denotes the unique solution ¢ of (BH)), the operator T is a
continuous linear map from {h € L*(S) : [, hdv, = 0}, endowed with the | - [|.-norm, into
{¢ € L=(S) : [4¢dv, = 0}, endowed with || - [|oo-norm. The argument below is heuristic but
can be made completely rigourous. The operator 1" and the coefficients ¢y, ¢;; are differentiable
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wr.t. &, 1=1,...,m, or d. Differentiating equation (BH), we formally get that X = 0g¢, where
B=§& withl=1,...,mor B =, satisfies L(X) = h(¢) + doAgPZ + >, ; dijAgPZ;;, where

= AkeW ke ke
h(¢) = =0 (7>¢+6 RS /kqude +7/kew(9 W pdv
’ Js ke dug g (fs kewdvg)2 s ! (fs kewdvg)2 s 8 !
+co0s(AyPZ) + Z ¢ij0s(AyPZ;5)
4,J

and do = Ogco, dij = Ogcij, and the orthogonality conditions become
/XAgPZijdvg = —/ d)ag(AgPZij)d’Ug, /XAgPZdUg = —/ (baﬁ(AgPZ)d’Ug
s s s s

Find now coefficients by, b;; so that ¥ = X + byPZ + Zk,l bri PZy; satisfies the orthogonality

conditions [( YA PZdv, = [(YAyPZ;jdv, = 0. The coefficients by, bj; have to satisfy an

| log d
1)

almost diagonal system, and are then well-defined with |bg| + Z |bi;| < C
ij
105(AgPZ;j)|l« < . Hence, the function X can be uniquely expressed as X = T(f) — bgPZ —
Zl ; bijPZ;j, where f = B(¢)+boL(PZ)+Z 2 b;; L(PZ;j). Moreover, since || 0sW || oo+ ||0sK ]|« <
£ K|+ < C and ||9s] e < $ (s kewdvg)* we find that

[I12]|« in view of

f keW dug ]

; | log 4
11l < IR+ ol | LPZ) 4+ D big | IL(PZi) | < O3 [hl,
0,J
and by (BO) we deduce that for any first derivative
I91c] ¢ 1080
1056ll00 < C|[J10g I/l + 25| < =52 ..

Differentiating once more in ¢ the equation satisfied by 0s¢ and arguing as above, we finally
3
obtain that ||0ss¢|lec < O%Hhﬂ*, and the proof is complete. O

7 Appendix B

By Proposition 1] we now deduce the following.

Proof (of Proposition [4.2]): In terms of the operator T', problem (E8)) takes the form A(¢) =
¢, where A(¢) := —T(R+ N(¢)). Given v > 0, let us consider the space

Fo=d6c0(S) : 9l < v[6| togd] S IV los(py 0 2 )(O)] + 57 logdf?
j=1

Notice that if ¢ € F, then W + ¢ € A, for § and € small enough. Since in view of Lemma 2]
and (38) we have

ke +oupripy Mo Oy [ ke Oadvy MW Oy [ ke Oy,

T keW T odu, (JskeWFodu )2 (JgheWHodu,)?
MW [ eV Oipady, N 2)\kew+¢’(fs ket Py dug) ([ ke TPhadug) el
o b5, P ke, ) .
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for any ¢1,¢2 € F,, we obtain that [N (¢1) — N(¢2)[ls < C([|d1llec + [[92)]le0)l|d1 — ¢2[loc and
then
1
1A(91) = A(¢2)lloc < Cllogd[(|91lloc + [1¢2)lls0) 191 = d2lloc < Fll61 — 2]l
for ¢ small in view of Proposition 4.1l Moreover, we have that for any ¢ € F,

IA(@)lle < Cllogd|([l6l13,+ I Rll+) < Cllog ] [|¢]3.+Co

5| log 8| |V log(p; oy, ')(0)| +6°~7| log 5|2]

Jj=1

in view of Lemma Then, for v = 2Cy and § small A is a contraction mapping of F, into
itself, and therefore has a unique fixed point ¢ € F,,.

By the Implicit Function Theorem it follows that the map (d,£) — (¢(3,£), co(9,8), ¢i;(6,€)) is
(at least) twice-differentiable in § and one differentiable in . Differentiating ¢ = —T(R+ N(¢))
wrt. f=¢&,1=1,...,m,or 8 =4, we get that dg¢p = —9gT(R+ N(¢)) — T(9sR + Iz N(9)).
By Lemma and (B7) we have that

log 6|? i _ Y
05T (RN ()] < CE2E (| +IN@).) = (11085 3 19 ok JO) +6° Hogal* ).
=1
and, in view of [|95W || < &, we can estimate
ket ke
95N (6) = N($)9sW + A -
B (¢) (¢) B + (J"S keW-‘rd)d’Ug fs kewdvg> B¢

B\ (kew+¢ [ ke TP0W du, ke [s ke 9sWdvg ke [ ke 9sWdvg ke [g ke 05W ddu,

(/s kew+¢d”9)2 (Js kervg)2 (Js kervg)2 (/s kervg)2
ke (s ke 9sWduy) ([ ke gdvy) ) . <k6W+¢ Js keWH0dgdu, ke [o ke pgdu, )
(fs kewdvg)g (fs kew+¢dvg)2 (Js kervg)2
as follows

10sN(@)llx < C [10W lloo 6112 + [1lloc | Opblloc]

m - o 9 -
O<5| log 6|2 Z |V 1og(p; o ygjl)(())|2 + 6372 |1og5|4> +o <”| lf)Z'(Iﬂ ) (75)

j=1

2 . .
Since fs Xje_sajerdUg = fR2 XdyD((ﬂjﬁ(f’j%dy’ we have that

2
6&( / xje-wedevg)=sagllogpj<§j> / e WE L o) = 0()
S R2

L+[yl?)3
and
oy Uy 160p; (&) (ly* = 0%p;(&5)) , 16 ly]* -1 -
on( [ e ang = [ DR B = [ asdnio) = 06)

Since ¢;(&;) = 0 and Vg;(&;) = 0, we have that %/ = 1+ O(|ye, (z)|?) and dp(x e ¥ (z)) =
O(|ye, (x)|), and then

AgOgW = — ijerang + 0(51_0)

j=1
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in view of |9gU;| = O(3}), where the big O is estimated in || - ||,-norm. Since in By, (&;)
2
9 W = 06U + O(6%]log 3] + Iy, ()| + [V log(p; oy NO)). 851 = D4 — =+ O(3]log ),

in the same line as Lemma [2.1] and

Ts ke dug kerU ij 1+ O(|V1og(pj 0y, )(0)|lye, ()| + 82| log 6])] + O(6?)
g9 j=1

in view of (32), by (2] and (BQ) we deduce for

ke [ ke" oW
DR = NgOsW + ——— | OgW — 25—
y 908+ [ ke du, < g Js ke dv,

the estimate
||aﬂR||*—o(Z|v1og by 0 0) +8'7 g1 ).
Jj=1

Combining all the estimates, we then get that

19560 = o(| log 8?3 [V log(p; 0 5, )(0)] + 61| log6|3) T o(1956]10).

j=1

which in turn provides the validity of (GO). We proceed in the same way to obtain the estimate
(€T)) on Os5¢, and the proof is complete. O

Lemma is rather standard and we will omit its proof. Since the problem has been reduced
to find c.p.’s of the reduced energy Ex (9, &) = Jy(W + ¢(6,€)), where Jy is given by (), the last
key step is show that the main asymptotic term of E) is given by Jy(W).

Proof (of Theorem [.4]): Write

D2I(W)

1,1
IN(W + ¢) — Jr(W) + D HW)ie. ¢l + /0/0 [D2J\(W + ts¢) — D2 J\(W)][¢, #] t dsdt

DJ\(W)[¢]

2
1 1 1,1
= = [ Rodv,+ 5 [ N@ods, + [ [ (D20 + t50) = D2Wl 6.0 s

since DJx(W)(¢) = — [ Rodvg, D2J\(W)[p, ¢] = — [ L(¢)pdvy and

DIAW)[G] + DI (W) [, 6] = /S N(9)gdv,

in view of [y ¢dv, = 0 and (B8). Since 3 [gkeWdv, < [oke"WT0dv, < 2 [ ke dv, and
leWHtsé — W] < CeW||¢] oo, it is straighforward to see that

DJ\(W)[¢] + D*Jn(W)][o, ¢>]‘ + tdt [ ds[D?J\(W +ts¢) — D> Jx(W)][6, ¢]

= O(IN(9)llll¢llse + 16112%) = Oll¢lI),

and then we deduce that

[IA(W +¢) = A(W)| = O(I BRIl ][9]l + 19]13,) = O (67| log 8| [V (€)[* + 62| log 6]*)
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in view of (B9) and 47V, 0 (&) = Vlog(p; o y;l)(O) Differentiating w.r.t. 5 =¢§,1=1,...,m,
or § = ¢ we get that

AW +0) = W] = =3 [10:R0+ RIolav, + 5 [ (GaIN)6 + N(6)9s0) do,

1 1
+/ tdt/ dsds{[D>I\(W + tsp) — D>J(W)][, ¢]}.
0 0

Since it is straightforward to see that

1 1
\ / vt / dsds {[D2IN(W + ts6) — DJn(W)][6, ¢1}\ — O(I61Z 1956l + 61 195W 1),

by ([[3) we deduce that
05l IA(W + &) = JA(W)]| O(9sRl|:lI¢lloc + 1 RI108¢lloc + 1612 1058ll00 + 10112 105W llsc)

e log d
0([52|1og5||wm(§)|2+53 |log5|2]| g |)

)

in view of (5J)-(@0) and [|9sW |« = O(%). Arguing similarly for the second derivative in d, we
get that

_ log 6|?
sl )~ )] = 0 5110z Vi (€ + 577 10gi7) 2L ).
Combining the previous estimates on the difference Jy(W + ¢) — Jx(W) with the expansion of
Jx(W) contained in Theorem B:2] we deduce the validity of the expansion (G2) with an error
term which can be estimated (in C%(R) and C*(Z)) like 0(62) + rx(d,&) as § — 0, where 5 (d, &)
does satisfy ([G3)). O
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