Università degli Studi di Roma Tre, A.A. 2023/2024

Corso di Laurea Triennale in Fisica e Matematica

AM110 - Analisi Matematica I

Docente: Pierpaolo Esposito Esercitatore: Luca Battaglia

Tutori: Lorenzo de Leonardis, Michele Matteucci

Side Materials

$$f_1 - f_2 + f_3 - f_4 + \dots + (-1)^n f_{n+1} = (-1)^n f_n + 1$$
 per ogni $n \ge 1$

$$f_1 f_2 + f_2 f_3 + f_3 f_4 + \dots + f_{2n-1} f_{2n} = f_{2n}^2$$
 per ogni $n \ge 1$

(vii)
$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \, \forall x \in \mathbb{R} \text{ con } x \neq 1$$
 (Somma geometrica)

(i) Supponiamo
$$n=1$$
: allora $\sum_{k=1}^1 k=1$; d'altro canto $\frac{1\cdot (1+1)}{2}=\frac{1\cdot 2}{2}=1$. Ora $\sum_{k=1}^n k=n+\sum_{k=1}^{n-1} k$; per ipotesi induttiva possiamo supporre $\sum_{k=1}^{n-1} k=\frac{(n-1)(n-1+1)}{2}=\frac{(n-1)n}{2}$, quindi $\sum_{k=1}^n k=n+\frac{(n-1)n}{2}=\frac{2n+(n-1)n}{2}=\frac{(2+n-1)n}{2}=\frac{n(n+1)}{2}$. Grazie al principio di induzione concludiamo che l'equazione di partenza è valida per ogni $n\geq 1$.

(ii) Supponiamo
$$n = 1$$
: allora $\sum_{k=1}^{1} k^2 = 1^2 = 1 = \frac{1(1+1)(2\cdot 1+1)}{6}$.

Ora $\sum_{k=1}^{n+1} k^2 = (n+1)^2 + \sum_{k=1}^{n} k^2$; per ipotesi induttiva possiamo supporre $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, quindi $\sum_{k=1}^{n+1} k^2 = (n+1)^2 + \frac{n(n+1)(2n+1)}{6} = \frac{n^2 + 2n + 1 + \frac{n(n+1)(2n+1)}{6}}{6} = \frac{6n^2 + 12n + 6 + n(2n^2 + 3n + 1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)(n+2)(2(n+1)+1)}{6}$. Grazie al principio di induzione concludiamo che l'equazione di partenza è valida per ogni n > 1.

- (vii) $\forall x \in \mathbb{R} \text{ con } x \neq 1$, supponiamo n = 0: allora $\sum_{k=0}^{0} x^k = x^0 = 1$. D'altronde $\frac{1 x^{0+1}}{1 x} = \frac{1 x}{1 x} = 1$. Ora, $\sum_{k=0}^{n+1} x^k = x^{n+1} + \sum_{k=0}^{n} x^k$; per ipotesi induttiva $\sum_{k=0}^{n+1} x^k = x^{n+1} + \sum_{k=0}^{n} x^k = x^{n+1} + \frac{1 x^{n+1}}{1 x} = \frac{(1 x)x^{n+1} + 1 x^{n+1}}{1 x} = \frac{1 x^{n+2}}{1 x}$.
- (i) Sia x un numero reale maggiore di 0. Supponiamo n=2: allora $(1+x)^2=1+2x+x^2$, ed essendo x^2 una quantità positiva abbiamo $(1+x)^2=1+2x+x^2>1+2x$. Ora $(1+x)^n=(1+x)(1+x)^{n-1}$; per ipotesi induttiva possiamo supporre $(1+x)^{n-1}>1+(n-1)x=1+nx-x$, quindi (osservando che (1+x) è una quantità positiva poiché x>0) abbiamo $(1+x)^n=(1+x)(1+x)^{n-1}>(1+x)(1+nx-x)=1+nx-x+x+nx^2-x^2=1+nx+(n-1)x^2$, ed essendo $(n-1)x^2$ una quantità positiva abbiamo $(1+x)^n>1+nx+(n-1)x^2>1+nx$. Grazie al principio di induzione concludiamo che la disequazione di partenza è valida per ogni $n\geq 2$.
- (iii) Supponiamo n=1: allora 1!=1; d'altro canto $2^{1-1}=2^0=1$, e ovviamente $1\geq 1$. Vogliamo verificare che $(n+1)!\geq 2^{(n+1)-1}=2^n$. Ora $(n+1)!=n!\cdot (n+1)$; per ipotesi induttiva possiamo supporre $n!\geq 2^{n-1}$, quindi $(n+1)!=n!\cdot (n+1)\geq 2^{n-1}\cdot (n+1)$, ma $n+1\geq 2$ essendo $n\geq 1$, quindi $(n+1)!\geq 2^{n-1}\cdot 2=2^n$. Grazie al principio di induzione concludiamo che la disequazione di partenza è valida per ogni $n\geq 1$.
- (v) Suppongo n=3. Il numero di diagonali di un triangolo (escludendo ovviamente i lati stessi) è 0. D'altronde $\frac{3(3-3)}{2}=0$. Per ipotesi induttiva so che la formula vale fino ad ogni poligono convesso con n lati. Se considero il poligono con n+1 questo significa che sto aggiungendo al poligono con n lati altri due lati dal nuovo vertice a due vertici a caso del n-poligono. Questo significa che il numero di diagonali dell'(n+1)-poligono sarà uguale a $\frac{n(n-3)}{2}+(n-2)+1$, poichè corrisponderà al numero di diagonali

del poligono precedente più (n-2) da levare al precedente che verranno contate come i nuovi lati. Inoltre bisognerà aggiungere una diagonale nuova corrispondente al lato dell'n-poligono precedentemente cancellata nel conteggio dell'n-poligono. Per concludere, $\frac{n(n-3)}{2}+(n-2)+1=\frac{n(n-3)+2(n-2)+2}{2}=\frac{n^2-3n+2n-4+2}{2}=\frac{(n+1)(n-2)}{2}$

(vi) Per n=3 è vero, infatti la somma interna degli angoli di un triangolo è π radianti (180 gradi). Per ipotesi induttiva considero la formula vera fino ad un poligono convesso con n lati. Un poligono convesso con (n+1)—lati è ottenuto dal precedente aggiungendo un triangolo. Ma allora il numero di gradi del nuovo poligono convesso sarà quella del precedente più quella del nuovo triangolo aggiunto: $(n-2)\pi + \pi = (n-1)\pi$

Esercizio 1 (Il numero di Nepero come punto fisso). Data la successione $\{a_n\}_{n\in\mathbb{N}}=\{\lambda^n\}_{n\in\mathbb{N}}$ con λ un numero reale, e definito l'operatore

$$\Delta_h[a_n] := \frac{a_{n+h} - a_n}{h}$$

allora è facile verificare che cercare per quale λ , $\Delta_h[\lambda^n] = \lambda^n$ equivale a calcolare $\lambda^h = (h+1) \Leftrightarrow \lambda = (1+h)^h$.

Quanto vale il limite per $h \to 0$? Quanto è il valore di λ ? a_n che successione è?

(iii)
$$\lim_{x \to -2} \frac{e^{2x+4} - 1}{x+2}$$

(iv)
$$\lim_{x \to 0} \frac{1 - e^{2x}}{\sin(3x)}$$

(v)
$$\lim_{x \to 0} \frac{\cos(3x) - 1}{1 - \sqrt{1 - x^2}}$$

(vi)
$$\lim_{x \to 0} \frac{\log(1 - 4x)}{x}$$

(vii)
$$\lim_{x\to 0} \frac{\arctan(2x)}{\sin(3x)}$$

(viii)
$$\lim_{x \to 0} \frac{\sin(2x)}{\log(3+3x)}$$

(xii)
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{\sin x}$$

(xiii)
$$\lim_{x \to 0^+} \left(1 + e^{\frac{1}{x^3}}\right)^{\sin x}$$

(ii)
$$\lim_{n \to \infty} \left(\frac{n-1}{n} \right)^{2n}$$

(vii)
$$\lim_{n \to \infty} \frac{\log\left(\frac{1}{n^5}\right)}{2\log\left(n^6 + n^2\right)}$$

(xii)
$$\lim_{n \to \infty} n^2 (2e^{\frac{\ln n}{n}} - 2)$$

(iii)
$$\lim_{n\to\infty} \sqrt{n} - \sqrt{n+1}$$

$$\text{(viii)} \ \lim_{n \to \infty} \frac{\log \left(1 + \frac{1}{n}\right) - \log \left(1 - \sin \left(\frac{1}{n}\right)\right)}{\frac{1}{n}(1 + n \sin \left(\frac{1}{n}\right))}$$

Esercizio 2 (Costante di Eulero-Mascheroni).

Definita la successione

$$a_n := \sum_{k=1}^n \frac{1}{k} - \ln n$$

dimostrare che $\lim_{n\to\infty}a_n$ esiste ed è un numero finito compreso tra 0 e 1, procedendo per passi.

Passo 1: Verificare che la successione è monotona decrescente: $a_{n+1} \le a_n$ per ogni $n \ge 1$.

(Suggerimento: usare che $\ln(\alpha+1) \leq \alpha$ per ogni $\alpha \geq -1$)

- Passo 2: Verificare che la successione è limitata dal basso e dall'alto, più in dettaglio: $0 \le a_n \le 1$ per ogni $n \ge 1$.
- Passo 3: Il teorema di convergenza delle successioni monotone afferma quanto segue:

Theorem 1. Se una successione di numeri reali è monotona crescente e limitata superiormente, allora è convergente e il suo estremo superiore è il suo limite.

Utilizzare il teorema di convergenza delle successioni monotone per dimostrare che

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \gamma$$

dove γ è una numero reale compreso tra $\frac{1}{2}$ e 1, chiamato costante di Eulero-Mascheroni.

Calcolare il seguenti integrale:

$$\int_{-1}^{1} \frac{x^9 e^{-x^4}}{1+x^6} \ dx$$

(i)
$$\int_{0}^{x} \sqrt{1-t^2} dt$$

(ii)
$$\int_0^x \sqrt{1-t^4}dt$$

(iii)
$$\int_0^x \sqrt{1+t^2}dt$$

(xxvi)
$$\int \frac{1}{x\sqrt{x^2+4x-4}} dx$$

(xxvii)
$$\int \frac{x+1}{x} \sqrt{x^2 + x} \, dx$$

(xxviii)
$$\int (5-x^2-x)^{-\frac{3}{2}} dx$$

Applichiamo la sostituzione $y = \frac{1}{x}$

$$\lim_{x \to +\infty} \frac{\left(\sqrt{1 + \frac{x^3}{x+1}} - x\right) \ln x}{x\left(x^{\frac{1}{x}} - 1\right) + \sqrt{x} \ln^2 x} = \lim_{y \to 0^+} \frac{\left(\sqrt{1 + \frac{1}{y^3 \left(\frac{1}{y} + 1\right)}} - \frac{1}{y}\right) (-\ln y)}{\frac{1}{y} \left(\left(\frac{1}{y}\right)^y - 1\right) + \frac{1}{\sqrt{y}} (-\ln y)^2} = \lim_{y \to 0^+} \frac{\left(\sqrt{y^2 + \frac{1}{y+1}} - 1\right) (-y \ln y)}{\left(e^{-y \ln y} - 1\right) + \sqrt{y} \ln^2 y} = \lim_{y \to 0^+} \frac{\sqrt{y^2 + \frac{1}{y+1}} - 1}{\frac{e^{-y \ln y} - 1}{y} - \frac{\ln y}{y}} = \frac{1 - 1}{1 + \infty} = 0$$