An amalgamated duplication of a ring along an ideal: the basic properties

Marco D'Anna * Marco Fontana ${ }^{\dagger}$

May 23, 2006

Dedicated to Luigi Salce, on his 60th birthday

Abstract

We introduce a new general construction, denoted by $R \bowtie E$, called the amalgamated duplication of a ring R along an R-module E, that we assume to be an ideal in some overring of R. (Note that, when $E^{2}=0$, $R \bowtie E$ coincides with the Nagata's idealization $R \ltimes E$.)

After discussing the main properties of the amalgamated duplication $R \bowtie E$ in relation with pullback-type constructions, we restrict our investigation to the study of $R \bowtie E$ when E is an ideal of R. Special attention is devoted to the ideal-theoretic properties of $R \bowtie E$ and to the topological structure of its prime spectrum.

1 Introduction

If R is a commutative ring with unity and E is an R-module, the idealization $R \ltimes E$, introduced by Nagata in 1956 (cf. Nagata's book 16, page 2), is a new ring, containing R as a subring, where the module E can be viewed as an ideal such that its square is (0).

This construction has been extensively studied and has many applications in different contexts (cf. e.g. [17], [6, [9, [11). Particularly important is the generalization given by Fossum, in [5], where he defined a commutative extension of a ring R by an R-module E to be an exact sequence of abelian groups:

$$
0 \rightarrow E \xrightarrow{\iota} S \xrightarrow{\pi} R \rightarrow 0
$$

where S is a commutative ring, the map π is a ring homomorphism and the R-module structure on E is related to S and to the maps ι and π by the

[^0]equation $s \cdot \iota(e)=\iota(\pi(s) \cdot e)$ (for all $s \in S$ and $e \in E$). It is easy to see that the idealization $R \ltimes E$ is a very particular commutative extension of R by the R-module E (called trivial extension of R by E in [5]).

In this paper, we will introduce a new general construction, called the amalgamated duplication of a ring R along an R-module E (that we assume to be an ideal in some overring of R and so E is an R-submodule of the total ring of fractions $T(R)$ of R) and denoted by $R \bowtie E$ (see Lemma (2.4).

When $E^{2}=0$, the new construction $R \bowtie E$ coincides with the idealization $R \ltimes E$. In general, however, $R \bowtie E$ it is not a commutative extension in the sense of Fossum. One main difference of this construction, with respect to the idealization (or with respect to any Fossum's commutative extension) is that the ring $R \bowtie E$ can be a reduced ring (and, in fact, it is always reduced if R is a domain).

Motivations and some applications of the amalgamated duplication $R \bowtie E$ are discussed more in detail in two recent papers [1], 2]. More precisely, M. D'Anna [1] has studied some properties of this construction in case $E=I$ is a proper ideal of R, in order to construct reduced Gorenstein rings associated to Cohen-Macaulay rings and he has applied this contruction to curve singularities. M. D'Anna and M. Fontana in [2] have considered the case of the amalgamated duplication of a ring, in a not necessarily Noetherian setting, along a multiplicative-canonical ideal in the sense of Heinzer-Huckaba-Papick [10.

The present paper is devoted to a more systematic investigation of the general construction $R \bowtie E$, with a particular consideration to the ideal-theoretic properties and to the topological structure of its prime spectrum. More precisely, the paper is divided in two parts: in Section 2 we study the main properties of the amalgamated duplication $R \bowtie E$. In particular we give a presentation of this ring as a pullback (cf. Proposition 2.6) and from this fact (cf. also 4], 7]) we obtain several connections between the properties of R and the properties of $R \bowtie E$ and some useful information about $\operatorname{Spec}(R \bowtie E)$ (cf. Proposition 2.13).

In Section 3 we consider the case when $E=I$ is an ideal of R; this situation allows us to deepen the results obtained in Section 2; in particular we give a complete description of $\operatorname{Spec}(R \bowtie I)$ (cf. Theorems 3.6 and 3.9).

2 The general construction

In this section we will study the construction of the ring $R \bowtie E$ in a general setting. More precisely, R will always be a commutative ring with unity, $T(R)(:=$ \{regular elements $\}^{-1} R$) its total ring of fractions and E an R-submodule of $T(R)$. Moreover, in order to construct the ring $R \bowtie E$, we are interested in those R-submodules of $T(R)$ such that $E \cdot E \subseteq E$.

Lemma 2.1 Let E be an R-submodule of $T(R)$ and let J be an ideal of R.
(a) $E \cdot E \subseteq E$ if and only if there exists a subring S of $T(R)$ containing R and E, such that E is an ideal of S.
(b) If $E \cdot E \subseteq E$ then:

$$
R+E:=\{z=r+e \in T(R) \mid r \in R, e \in E\}
$$

is a subring of $(E: E):=\{z \in T(R) \mid z E \subseteq E\}(\subseteq T(R))$, containing R as a subring and E as an ideal.
(c) Assume that $E \cdot E \subseteq E$; the canonical ring homomorphism $\varphi: R \hookrightarrow$ $R+E \rightarrow(R+E) / E, r \mapsto r+E$, is surjective and $\operatorname{Ker}(\varphi)=E \cap R$.
(d) Assume that $E \cdot E \subseteq E$; the set $J+E:=\{j+e \mid j \in J, e \in E\}$ is an ideal of $R+E$ containing E and $(J+E) \cap R=\operatorname{Ker}(R \hookrightarrow R+E \rightarrow(R+E) /(J+E))=$ $J+(E \cap R)$.

Proof. (a) It is clear that the implication "if" holds. Conversely, set $S:=$ $(E: E)$. The hypothesis that $E \cdot E \subseteq E$ implies that E is an ideal of S and that S is a subring of $T(R)$ containing R as a subring.
(b) It is obvious that $R+E$ is an R-submodule of $(E: E)$ containing R and E. Moreover, let $r, s \in R$ and $e, f \in E$, if $z:=r+e$ and $w:=s+f(\in R+E)$ then $z w=r s+(r f+s e+e f) \in R+E$ and $z f=r f+e f \in E$.
(c) and (d) are straightforward.

From now on we will always assume that $E \cdot E \subseteq E$.
In the R-module direct sum $R \oplus E$ we can introduce a multiplicative structure by setting:

$$
(r, e)(s, f):=(r s, r f+s e+e f), \text { where } r, s \in R \text { and } e, f \in E
$$

We denote by $R \dot{\oplus} E$ the direct sum $R \oplus E$ endowed also with the multiplication defined above.

The following properties are easy to check:
Lemma 2.2 With the notation introduced above, we have:
(a) $R \dot{\oplus} E$ is a ring.
(b) The map $j: R \dot{\oplus} E \rightarrow R \times(R+E)$, defined by $(r, e) \mapsto(r, r+e)$, is an injective ring homomorphism.
(c) The map $i: R \rightarrow R \dot{\oplus} E$, defined by $r \mapsto(r, 0)$, is an injective ring homomorphism.

Remark 2.3 (a) With the notation of Lemma 2.1 note that if $E=S$ is a subring of $T(R)$ containing as a subring R, then $R+S=S$. Also, if I is an ideal of R, then $R+I=R$.
(b) In the statement of Lemma 2.1 (d), note that, in general, $J+E$ does not coincide with the extension of J in $R+E$: we have $J(R+E)=\{j+\alpha \mid j \in$ $J, \alpha \in J E\} \subseteq J+E$, but the inclusion can be strict (cf. Proposition 3.5 (a) and (b)).
(c) For an arbitrary R-module E, M. Nagata introduced in 1955 the idealization of E in R, denoted here by $R \ltimes E$, which is the R-module $R \oplus E$ endowed with a multiplicative structure defined by:

$$
(r, e)(s, f):=(r s, r f+s e), \quad \text { where } r, s \in R \text { and } e, f \in E
$$

(cf. 15] and also Nagata's book [16] page 2] and Huckaba's book 11] Chapter VI, Section 25]). The idealization $R \ltimes E$, called also the trivial extension of R by E [5], is a ring such that the canonical embedding $R \hookrightarrow R \ltimes E, r \mapsto(r, 0)$, defines a subring of $R \ltimes E$ isomorphic to R and the embedding $E \hookrightarrow R \ltimes E$, $e \mapsto(0, e)$, defines an ideal E^{\ltimes} in $R \ltimes E$ (isomorphic as an R-module to E), which is nilpotent of index 2 (i.e. $E^{\ltimes} \cdot E^{\ltimes}=0$). Therefore, even if R is reduced, the idealization $R \ltimes E$ is not a reduced ring, except in the trivial case for $E=(0)$, since $R \ltimes(0)=R$. Moreover, if $p_{R}: R \ltimes E \rightarrow R$ is the canonical projection (defined by $(r, e) \mapsto r)$, then

$$
0 \rightarrow E \rightarrow R \ltimes E \xrightarrow{p_{R}} R \rightarrow 0
$$

is an exact sequence.
Note that the idealization $R \ltimes E$ coincides with the ring $R \dot{\oplus} E$ (Lemma 2.2) if and only if E is an R-submodule of $T(R)$ that is nilpotent of index 2 (i.e. $E \cdot E=(0)$.

Lemma 2.4 With the notation of Lemma 2.2 note that $\delta:=j \circ i: R \hookrightarrow$ $R \times(R+E)$ is the diagonal embedding and set:

$$
\begin{aligned}
R^{\triangle} & :=(j \circ i)(R)=\{(r, r) \mid r \in R\} \quad \text { and } \\
R \bowtie E & :=j(R \dot{\oplus} E)=\{(r, r+e) \mid r \in R, \quad e \in E\} .
\end{aligned}
$$

We have:
(a) The canonical maps $R \cong R^{\triangle} \subseteq R \bowtie E \subseteq R \times T(R)$ are ring homomorphisms.
(b) $R \bowtie E$ is a subdirect product of the ring $R \times(R+E)$, i.e. if $\pi_{i} \quad(i=1,2)$ are the projections of $R \times(R+E)$ onto R and $R+E$, respectively, and if $\mathfrak{O}_{\boldsymbol{i}}:=\operatorname{Ker}\left(\left.\pi_{i}\right|_{R \bowtie E}\right)$, then $(R \bowtie E) / \mathfrak{O}_{\mathbf{1}} \cong R,(R \bowtie E) / \mathfrak{O}_{\mathbf{2}} \cong R+E$ and $\mathfrak{O}_{1} \cap \mathfrak{O}_{2}=(0)$.

Proof. (a) is obvious. For (b) recall that S is a subdirect product of a family of rings $\left\{R_{i} \mid i \in I\right\}$ if there exists a ring monomorphism $\varphi: S \hookrightarrow \prod_{i} R_{i}$ such that, for each $i \in I, \pi_{i} \circ \varphi: S \rightarrow R_{i}$ is a surjection (where $\pi_{i}: \prod_{i} R_{i} \rightarrow R_{i}$ is the canonical projection) [13, page 30]. Note also that $\mathfrak{O}_{1}=\{(0, e) \mid e \in E\}$ and $\mathfrak{O}_{2}=\{(\varepsilon, 0) \mid \varepsilon \in E \cap R\}$. The conclusion is straightforward (cf. also 13, Proposition 10]).

We will call the ring $R \bowtie E$, defined in Lemma [2.4] the amalgamated duplication of a ring along an R module E; the reason for this name will be clear after studying the prime spectrum of $R \bowtie E$ and comparing it with the prime spectrum of R (see Proposition 2.13). The following is an easy consequence of the previous lemma.

Corollary 2.5 With the notation of Lemma 2.4 the following properties are equivalent:
(i) R is a domain;
(ii) $R+E$ is a domain;
(iii) \mathfrak{O}_{1} is a prime ideal of $R \bowtie E$;
(iv) \mathfrak{O}_{2} is a prime ideal of $R \bowtie E$;
(v) $R \bowtie E$ is a reduced ring and $\mathfrak{O}_{\mathbf{1}}$ and \mathfrak{O}_{2} are prime ideals of $R \bowtie E$.

We will see in a moment that R is a domain if and only if \mathfrak{O}_{1} and \mathfrak{O}_{2} are the only minimal prime ideals $R \bowtie E$ (cf. Remark [2.8].

Proposition 2.6 Let $v: R \times(R+E) \rightarrow R \times((R+E) / E)$ and $u: R \hookrightarrow R \times((R+$ $E) / E)$ be the natural ring homomorphisms defined, respectively, by $v((x, r+$ $e)):=(x, r+E)$ and $u(r):=(r, r+E)$, for each $x, r \in R$ and $e \in E$. Then $v^{-1}(u(R))=R \bowtie E$. Therefore, if $v^{\prime}\left(:=\left.\pi_{1}\right|_{R \bowtie E}\right): R \bowtie E \rightarrow R$ is the canonical map defined by $(r, r+e) \mapsto r$ (cf. Lemma 2.4) and $u^{\prime}: R \bowtie E \hookrightarrow R \times(R+E)$ is the natural embedding, then the following diagram:

is a pullback.
Proof. Since E is an ideal of $R+E$ (Lemma 2.1 (b)), $\mathfrak{O}_{1}=(0) \times E$ is a common ideal of $v^{-1}(u(R))$ and $R \times(R+E)$. Moreover, by definition, if $x, r \in R$ and $e \in E$, then $(x, r+e) \in v^{-1}(u(R))$ if and only if $(x, r+E) \in u(R)$, that is $x-r \in E$. Therefore we conclude that $v^{-1}(u(R))=R \bowtie E$. The second part of the statement follows easily from the fact that $v^{-1}(u(R))=R \bowtie E$ and $(R \bowtie E) / \mathfrak{D}_{1} \cong R$, with $\mathfrak{O}_{1}=\operatorname{Ker}\left(v^{\prime}\right)$ (Proposition 2.4 (b)).

Corollary 2.7 The ring $R \times(R+E)$ is a finitely generated ($R \bowtie E$)-module. In particular, $R \bowtie E \subseteq R \times(R+E)$ is an integral extension and $\operatorname{dim}(R \bowtie E)=$ $\operatorname{dim}(R \times(R+E))=\sup \{\operatorname{dim}(R), \operatorname{dim}(R+E)\}$.

Proof. Clearly $u: R \hookrightarrow R \times((R+E) / E)$ is a finite ring homomorphism, since $R \times((R+E) / E)$ is generated by $(1,0)$ and $(0,1)$ as R-module. Since u is finite, also $u^{\prime}: R \bowtie E\left(=v^{-1}(u(R))\right) \hookrightarrow R \times((R+E) / E)$ is a finite ring homomorphism 4. Corollary 1.5 (4)]. Last statement follows from [12, Theorems 44 and 48] and from the fact that $\operatorname{Spec}(R \times(R+E))$ is homeomorphic to the disjoint union of $\operatorname{Spec}(R)$ and $\operatorname{Spec}(R+E)$ (cf. also Remark (2.8).

Remark 2.8 Recall that every ideal of the ring $R \times(R+E)$ is a direct product of ideals $I \times J$, with I ideal of R and J ideal of $R+E$. In particular, every prime ideal Q of $R \times(R+E)$ is either of the type $I \times(R+E)$ or $R \times J$, with I prime ideal of R and J prime ideal of $(R+E)$. Therefore, in the situation of Lemma [2.4] if R is an integral domain (and so $R+E$ also is an integral domain by Corollary 2.5), then $(0) \times(R+E)$ and $R \times(0)$ are necessarily the only minimal primes of $R \times(R+E)$. By the integrality property (Corollary 2.7 and [12, Theorem 46]), then $\mathfrak{O}_{1}=((0) \times(R+E)) \cap(R \bowtie E)=(0) \times E$ and $\mathfrak{O}_{2}=(R \times(0)) \cap(R \bowtie E)=(R \cap E) \times(0)$ are the only minimal primes of $R \bowtie E$.

Conversely, if \mathfrak{O}_{1} and \mathfrak{O}_{2} are the only minimal primes of $R \bowtie E$, then clearly $R \bowtie E$ is a reduced ring (Lemma 2.4(b)) and, by Corollary 2.5 R is an integral domain.

Corollary 2.9 The following statements are equivalent:
(i) R and $R+E$ are Noetherian;
(ii) $R \times(R+E)$ is Noetherian;
(iii) $R \bowtie E$ is Noetherian.

Proof. Clearly (i) and (ii) are equivalent. The statements (ii) and (iii) are equivalent by the Eakin-Nagata Theorem [14, Theorem 3.7], since $R \times(R+E)$ is a finitely generated $(R \bowtie E)$-module (Corollary 2.7).

Remark 2.10 (a) In the situation of Proposition 2.6 the pullback degenerates in two cases:
(1) $v^{\prime}: R \bowtie E \rightarrow R$ is an isomorphism if and only if $E=0$;
(2) $u^{\prime}: R \bowtie E \rightarrow R \times(R+E)$ is an isomorphism if and only if E is an overring of R (i.e., if and only if $E=R+E$).
(b) By the previous remark, we deduce easily that R Noetherian does not imply in general that $R+E$ is Noetherian and, conversely, $R+E$ Noetherian does not imply that R is Noetherian: take, for instance, E to be an arbitrary overring of R. However, if we assume that $R+E$ is a finitely generated R-module (cf. also the following Corollary 2.11), then by the Eakin-Nagata Theorem (14) Theorem 3.7] R is Noetherian if and only if $R+E$ is Noetherian.

This same situation described above (i.e. when E is an arbitrary overring of R) shows that, in Corollary 2.7 we may have that $\operatorname{dim}(R \bowtie E)=\operatorname{dim}(R)$ or that $\operatorname{dim}(R \bowtie E)=\operatorname{dim}(R+E)$ (with $\operatorname{dim}(R) \neq \operatorname{dim}(R+E))$.

Corollary 2.11 Assume that E is a fractional ideal of R (i.e. there exists a regular element $d \in R$ such that $d E \subseteq R$); then the following statements are equivalent:
(i) R is a Noetherian ring;
(ii) $R+E$ is a Noetherian R-module;
(iii) $R \times(R+E)$ is a Noetherian ring;
(iv) $R \bowtie E$ is a Noetherian ring.

Proof. By Corollary 2.9 and by previous Remark 2.10 (b), it is sufficient to show that, in this case, R is a Noetherian ring if and only if $R+E$ is a Noetherian R-module. Clearly, if R is Noetherian, then E is a finitely generated R-module and so $R+E$ is also a finitely generated R-module and thus it is a Noetherian R-module. Conversely, assume that $R+E$ is a Noetherian R-module; since it is faithful, by [14, Theorem 3.5] it follows that R is a Noetherian ring.

Corollary 2.12 In the situation described above:
(a) Let R^{\prime} and $(R+E)^{\prime}$ be the integral closures of R and $R+E$ in $T(R)$. Then $R \bowtie E$ and $R \times(R+E)$ have the same integral closure in $T(R) \times T(R)$, which is precisely $R^{\prime} \times(R+E)^{\prime}$. Moreover, if $R+E$ is a finitely generated R-module, then the integral closure of R^{Δ} in $T(R) \times T(R)$ (Lemma 2.4) also coincides with $R^{\prime} \times(R+E)^{\prime}$.
(b) If $E \cap R$ contains a regular element, then $T(R \bowtie E)=T(R \times(R+E))=$ $T(R) \times T(R)$ and, moreover, $R \bowtie E$ and $R \times(R+E)$ have the same complete integral closure in $T(R) \times T(R)$.

Proof. (a) It is clear that $(x, y) \in T(R) \times T(R)$ is integral over $R \times(R+E)$ if and only if $(x, y) \in R^{\prime} \times(R+E)^{\prime}$. Since the extension $R \bowtie E \hookrightarrow R \times(R+E)(\subseteq$ $T(R) \times T(R))$ is integral (Corollary [2.7), we have the first statement. If, in addition, we assume that $R+E$ is a finitely generated R-module, then the ring extension $R^{\Delta} \hookrightarrow R \times(R+E)$ (Lemma 2.4) is finite (so, in particular, integral) and thus we have the second statement.
(b) Since E is an R-submodule of $T(R)$, then clearly $T(R)=T(R+E)$, hence it is obvious that $T(R \times(R+E))=T(R) \times T(R)$. If e is a nonzero regular element of $E \cap R$, then (e, e) is a nonzero regular element belonging to $(E \cap R) \times E$, which is a common ideal of $R \bowtie E$ and $R \times(R+E)$. From this fact it follows that $R \bowtie E$ and $R \times(R+E)$ have the same total quotient ring [8, page 326] and so $T(R \bowtie E)=T(R) \times T(R)$. The last statement follows from [8, Lemma 26.5].

Note that, in Corollary 2.12 (b), the assumption that $E \cap R$ contains a regular element is essential, since if E is the ideal (0) of an integral domain R with quotient field K, then $R \bowtie(0) \cong R$ and so $T(R \bowtie(0)) \cong K$, but $T(R \times R)=K \times K$.

Using Proposition 2.6 and Corollary 2.7 we are now able to describe the relation between $\operatorname{Spec}(R \bowtie E), \operatorname{Spec}(R \times(R+E))$ and $\operatorname{Spec}(R)$. Recall that if $f: A \rightarrow B$ is a ring homomorphism, $f^{a}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ denotes, as usual, the continuous map canonically associated to f, i.e. $f^{a}(Q):=f^{-1}(Q)$, for each $Q \in \operatorname{Spec}(B)$; if I is an ideal of A and if $\mathcal{X}:=\operatorname{Spec}(A), V_{\mathcal{X}}(I)$ denotes the Zariski-closed set $\{P \in \mathcal{X} \mid P \supseteq I\}$ of \mathcal{X}.

Proposition 2.13 In the situation of Lemma 2.4 and with the notation of Proposition [2.6] set $X:=\operatorname{Spec}(R), Y:=\operatorname{Spec}(R \bowtie E)$ and $Z:=\operatorname{Spec}(R \times$ $(R+E))$ and set $\alpha:=\left(u^{\prime}\right)^{a}: Z \rightarrow Y$ and $\beta:=\left(v^{\prime}\right)^{a}: X \rightarrow Y$. Then the following properties hold:
(a) The canonical continuous map $\alpha: Z \rightarrow Y$ is surjective.
(b) The restriction of the map $\alpha: Z \rightarrow Y$ to $Z \backslash V_{Z}\left(\mathfrak{D}_{1}\right)$ gives rise to a topological homeomorphism:

$$
\left.\alpha\right|_{Z \backslash V_{Z}\left(\mathfrak{O}_{1}\right)}: Z \backslash V_{Z}\left(\mathfrak{O}_{1}\right) \xrightarrow{\cong} Y \backslash V_{Y}\left(\mathfrak{O}_{1}\right) .
$$

Moreover, for each $Q \in \operatorname{Spec}(R \times(R+E))$, with $Q \nsupseteq \mathfrak{O}_{1}$, if $\mathcal{Q}:=\alpha(Q)=$ $Q \cap(R \bowtie E)$, then the canonical map $(R \bowtie E)_{\mathcal{Q}} \rightarrow(R \times(R+E))_{Q}$ is a ring isomorphism.
(c) $\beta: X \rightarrow Y$ defines a canonical homeomorphism of X with $V_{Y}\left(\mathfrak{O}_{1}\right)$; moreover, for each $\mathcal{Q} \in \operatorname{Spec}(R \bowtie E)$ with $\mathcal{Q} \supseteq \mathfrak{O}_{\mathbf{1}}$, the canonical ring homomorphism $(R \bowtie E) / \mathcal{Q} \rightarrow R / v^{\prime}(\mathcal{Q})$ is an isomorphism.

Proof. (a) Follows immediately by Corollary 2.7 (b) and (c) are consequences of Proposition [2.6 and, respectively, Theorem 1.4 (c) and Corollary 1.5 (1) of 4].

We conclude this section by defining some distinguished ideals of $R \bowtie E$ that are naturally associated to a given ideal J of R and by giving an example of the general construction.

Proposition 2.14 In the situation of Proposition 2.6 and with the notation of Lemma 2.1] for each ideal J of R we can consider the following ideals of $R \bowtie E$:

$$
\mathcal{J}_{1}:=v^{\prime-1}(J), \quad \mathcal{J}_{2}:=u^{\prime-1}(R \times J(R+E)) \text { and } \mathcal{J}_{0}:=J^{e}:=J(R \bowtie E) .
$$

Then we have:
(a) $\mathcal{J}_{1}=u^{\prime-1}(J \times(R+E))=u^{\prime-1}(J \times(J+E))=\{(j, j+e) \mid j \in J, e \in E\}$.
(b) $\mathcal{J}_{0}=\{(j, j+\alpha) \mid j \in J, \alpha \in J E\}$.
(c) $\mathcal{J}:=\mathcal{J}_{1} \cap \mathcal{J}_{2}=u^{\prime-1}(J \times J(R+E))$.
(d) $\mathcal{J}_{0} \subseteq \mathcal{J}_{1} \cap \mathcal{J}_{2}$.

Proof. (a) and (b) are straightforward. Statement (c) is obvious, since $J \times$ $J(R+E)=(J \times(R+E)) \cap(R \times J(R+E))$. (d) follows from (c) and from the fact that $J(R \bowtie E) \subseteq u^{\prime-1}(J(R \times(R+E)))=u^{\prime-1}(J \times J(R+E))$.
Example 2.15 Let $R:=k\left[t^{4}, t^{6}, t^{7}, t^{9}\right]$ (where k is a field and t an indeterminate), $S:=k\left[t^{2}, t^{3}\right]$ and $E:=\left(t^{2}, t^{3}\right) S=t^{2} k[t]$. We have that $R+E=S$ and hence

$$
\begin{aligned}
R \bowtie E & =\{(f(t), g(t)) \mid f \in R, g \in S \text { and } g-f \in E\}= \\
& =\{(f(t), g(t)) \mid f \in R, g \in S \text { and } f(0)=g(0)\}
\end{aligned}
$$

Since E is a maximal ideal of S, the prime ideals in $R \times S$ containing $\mathfrak{O}_{\mathbf{1}}$ are either of the form $P \times S$, for some prime ideal P of R, or $R \times E$; hence the primes not containing \mathfrak{O}_{1} are of the form $R \times Q$, with $Q \in \operatorname{Spec}(S)$ and $Q \neq E$.

By Propositions 2.13 and 2.14 we have that if P is a prime in R, the ideal $\mathcal{P}_{1}=\left(v^{\prime}\right)^{-1}(P)=\left(u^{\prime}\right)^{-1}(P \times S)=\{(p, p+e) \mid p \in P, e \in E\}$ is a prime in $R \bowtie E$, containing \mathfrak{O}_{1}, and $R \bowtie E / \mathcal{P}_{1} \cong R / P$. Moreover, with the notation of Proposition 2.13 in this way we describe completely $V_{Y}\left(\mathfrak{O}_{1}\right)$. Notice also that, if we set $M:=\left(t^{4}, t^{6}, t^{7}, t^{9}\right) R$, then the maximal ideals $M \times S$ and $R \times E$ of $R \times S$ have the same trace in $R \bowtie E$, i.e. $(R \times E) \cap(R \bowtie E)=\{(r, r+e) \mid r \in$ $R \cap E, e \in E\}=(M \times S) \cap(R \bowtie E)$.

On the other hand, again by Proposition 2.13, we have that $Y \backslash V_{Y}\left(\mathfrak{O}_{1}\right)$ is homeomorphic to $Z \backslash V_{Z}\left(\mathfrak{O}_{1}\right)$. Hence the prime ideals of $R \bowtie E$ not containing \mathfrak{O}_{1} are of the form $(R \times Q) \cap(R \bowtie E)$, for some prime ideal Q of S, with $Q \neq E$.

3 The prime spectrum of $R \bowtie I$

In this section we study the case when the R-module $E=I$ is an ideal of R (that we will assume to be proper and different from (0), to avoid the trivial cases); in this situation $R+I=R$. We start with applying to this case some of the results we obtained in the general situation.

Proposition 3.1 Using the notation of Proposition 2.6] the following commutative diagram of canonical ring homomorphisms

is a pullback. The ideal $\mathfrak{O}_{1}=(0) \times I=\operatorname{Ker}\left(v^{\prime}\right)=\operatorname{Ker}(v)$ is a common ideal of $R \bowtie I$ and $R \times R$, the ideal $\mathfrak{O}_{2}=\operatorname{Ker}\left(R \bowtie I \xrightarrow{u^{\prime}} R \times R \xrightarrow{\pi_{2}} R\right)$ coincides with $I \times(0)=(I \times(0)) \cap(R \bowtie I)$ and $(R \bowtie I) / \mathfrak{O}_{i} \cong R$, for $i=1,2$.

In particular, if R is a domain then $R \bowtie I$ is reduced and \mathfrak{O}_{1} and \mathfrak{O}_{2} are the only minimal primes of $R \bowtie I$.

Proof. The first part is an easy consequence of Lemma 2.4(b) and Proposition 2.6 the last statement follows from Corollary 2.5

Remark 3.2 Note that, when $I \subseteq R$, then $R \bowtie I:=\{(r, r+i) \mid r \in R, i \in$ $I\}=\{(r+i, r) \mid r \in R, i \in I\}$. It follows that we can exchange the roles of \mathfrak{O}_{1} and \mathfrak{O}_{2} (and that \mathfrak{O}_{2} is also a common ideal of $R \bowtie I$ and $R \times R$).

If we specialize to the present situation Corollary 2.7 Corollary 2.11 and Corollary 2.12 then we obtain:

Corollary 3.3 Let R^{\prime} (respectively, R^{*}) be the integral closure (respectively, the complete integral closure) of R in $T(R)$, we have:
(a) $\operatorname{dim}(R \bowtie I)=\operatorname{dim}(R)$.
(b) R is Noetherian if and only if $R \bowtie I$ is Noetherian.
(c) The integral closure of R^{Δ} and of $R \bowtie I$ in $T(R) \times T(R)$ coincide with $R^{\prime} \times R^{\prime}$.
(d) If I contains a regular element, then $T(R \bowtie I)=T(R) \times T(R)$ and the complete integral closure of $R \bowtie I$ in $T(R) \times T(R)$ coincide with $R^{*} \times R^{*}$, which is the complete integral closure of $R \times R$ in $T(R) \times T(R)$.

Remark 3.4 We can now use Proposition 2.13 to describe $\operatorname{Spec}(R \bowtie I)$. Note that, in the general case (possibly with zero-divisors), if $\mathcal{Q} \in \operatorname{Spec}(R \bowtie I)$, then either $\mathcal{Q} \nsupseteq \mathfrak{O}_{1}$ or $\mathcal{Q} \supseteq \mathfrak{O}_{1}$.
Case 1. $\mathcal{Q} \nsupseteq \mathfrak{D}_{1}$.
In this case, by Proposition [2.13] there exists a unique prime ideal Q of $R \times R$ such that $\mathcal{Q}=Q \cap(R \bowtie I)$ and $Q \nsupseteq(0) \times I$. Therefore $Q \nsupseteq(0) \times R$ and so $Q \supseteq R \times(0)$. Hence $Q=R \times P$ for some prime P of R such that $P \nsupseteq I$.
With a slight abuse of notation, we identify R with its isomorphic image R^{Δ} in $R \bowtie I(\subseteq R \times R)$ under the diagonal embedding (Lemma [2.4) and we denote the contraction to R of an ideal \mathcal{H} of $R \bowtie I$ (or, H of $R \times R$) by $\mathcal{H} \cap R$ (or, by $H \cap R)$. Using this notation, then $P=Q \cap R=\mathcal{Q} \cap R$. Moreover, note that:

$$
\mathcal{Q}=\{(p+i, p) \mid p \in P, i \in I\}=(R \times P) \cap(R \bowtie I) .
$$

Furthermore, the canonical ring homomorphisms $R \bowtie I \hookrightarrow R \times R \xrightarrow{\pi_{2}} R$ induce for the localizations the following isomorphisms:

$$
(R \bowtie I)_{\mathcal{Q}} \cong(R \times R)_{Q}=(R \times R)_{R \times P} \cong R_{P} .
$$

Case 2. $\mathcal{Q} \supseteq \mathfrak{O}_{1}$.
In this case, by Proposition 2.13 there exists a unique prime ideal P of R such that $\mathcal{Q}=v^{\prime-1}(P)$ (or, equivalently, $P=v^{\prime}(\mathcal{Q})$); hence $\mathcal{Q}=\{(p, p+i) \mid p \in$ $P, i \in I\}=(P \times R) \cap(R \bowtie I)$.

Now, if $P \supseteq I$, it is easy to see that $\mathcal{Q}(=(P \times R) \cap(R \bowtie I))=\left\{\left(p^{\prime}, p^{\prime}+\right.\right.$ $\left.\left.i^{\prime}\right) \mid p^{\prime} \in P, i^{\prime} \in I\right\}=(R \times P) \cap(R \bowtie I)$. On the other hand, if $P \nsupseteq I$, then $\mathcal{Q}=(P \times R) \cap(R \bowtie I) \neq(R \times P) \cap(R \bowtie I)$.

Note also that, in this case, by Proposition [2.13] $(R \bowtie I) / \mathcal{Q} \cong R / P$.
After studying the relation between $\operatorname{Spec}(R \times R)$ and $\operatorname{Spec}(R \bowtie I)$, under the continuous map $\left(u^{\prime}\right)^{a}$, associated the canonical embedding $u^{\prime}: R \bowtie I \hookrightarrow$ $R \times R$, the next goal is to investigate directly the relation between $\operatorname{Spec}(R \bowtie I)$ and $\operatorname{Spec}(R)$, under the canonical map associated to the diagonal embedding $\delta: R \hookrightarrow R \bowtie I,(r \mapsto(r, r))$. As above, we will identify R with its isomorphic image R^{Δ} in $R \bowtie I$ and we will denote the contraction to R of an ideal \mathcal{H} of $R \bowtie I$ by $\mathcal{H} \cap R$ (instead of $\left.\delta^{-1}(\mathcal{H})\right)$.

Proposition 3.5 With the notation of Proposition 2.14, let J be an ideal of R. Then:
(a) $\mathcal{J}_{1}\left(:=v^{\prime-1}(J)\right)=u^{\prime-1}(J \times R)=u^{\prime-1}(J \times(J+I))=\{(j, j+i) \mid j \in J, i \in$ $I\}=: J \bowtie I$. If $J=I$, then $I \bowtie I(=I \times I)$ is a common ideal of $R \bowtie I$ and $R \times R$.
(b) $\mathcal{J}_{2}\left(:=u^{\prime-1}(R \times J)\right)=\{(j+i, j) \mid j \in J, i \in I\}$.
(c) $\mathcal{J}:=\mathcal{J}_{1} \cap \mathcal{J}_{2}=u^{\prime-1}(J \times J)=\left\{\left(j, j+i^{\prime}\right) \mid j \in J, i^{\prime} \in I \cap J\right\}=$ $\left\{\left(j_{1}, j_{2}\right) \mid j_{1}, j_{2} \in J, j_{1}-j_{2} \in I\right\}$.
(d) $\mathcal{J}_{0}(:=J(R \bowtie I))=\left\{\left(j, j+i^{\prime \prime}\right) \mid j \in J, i^{\prime \prime} \in J I\right\}$ (cf. [1 Lemma 8]).
(e) $\mathcal{J}_{0} \subseteq \mathcal{J}_{1} \cap \mathcal{J}_{2}$.
(f) $\mathcal{J}_{1}=\mathcal{J}_{2} \Leftrightarrow I \subseteq J$.
(g) $I+J=R \Rightarrow \mathcal{J}_{0}=\mathcal{J}_{1} \cap \mathcal{J}_{2}$.
(h) $\mathcal{J}_{1} \cap R=\mathcal{J}_{2} \cap R=\mathcal{J}_{0} \cap R=\mathcal{J} \cap R=J$.

Proof. (a) is a particular case of Proposition 2.14 (a). The second part is straightforward.
(b) Let $r \in R$ and $j \in J$; we have that $(r, j) \in R \bowtie I$ if and only if $(r, j)=$ $(s, s+i)$, for some $s \in R$ and $i \in I$. Therefore $r=s=j-i$ and $(r, j)=\left(j+i^{\prime}, j\right)$ for some $i^{\prime} \in I$.
(c) Let $j_{1}, j_{2} \in J$; we have that $\left(j_{1}, j_{2}\right) \in R \bowtie I$ if and only if $\left(j_{1}, j_{2}\right)=(s, s+i)$, for $s \in R$ and $i \in I$. Therefore $j_{1}=s, j_{2}=j_{1}+i$ and $j_{2}-j_{1}=i \in I$.
Statements (d) and (e) are particular cases of Proposition 2.14 ((b) and (d)).
(f) follows easily from (a) and (b), since:

$$
\mathcal{J}_{1}=\mathcal{J}_{2} \Rightarrow J+I=J \Rightarrow I \subseteq J \Rightarrow \mathcal{J}_{1}=\mathcal{J}_{2}
$$

(g) is a consequence of (c) and (d), since $J+I=R$ implies that $J \cap I=J I$.
(h) It is obvious that $\mathcal{J}_{1} \cap R=J=\mathcal{J}_{2} \cap R$ and hence, by (c) and (e), we also have $\mathcal{J} \cap R=\mathcal{J}_{0} \cap R=J$.

With the help of the previous proposition we can make Remark 3.4 more precise. In the following, the residue field at the prime ideal Q of a ring A (i.e. the field $A_{Q} / Q A_{Q}$) will be denoted by $\boldsymbol{k}_{A}(Q)$. Part of the next theorem is contained in [1] Proposition 5].

Theorem 3.6 Let P be a prime ideal of R and consider the ideals $\mathcal{P}_{\mathbf{1}}, \mathcal{P}_{\mathbf{2}}, \mathcal{P}_{\mathbf{0}}$ and \mathcal{P} of $R \bowtie I$ as in Proposition 3.5 (with $P=J$). Then:
(a) $\mathcal{P}_{\mathbf{1}}$ and $\mathcal{P}_{\mathbf{2}}$ are the only prime ideals of $R \bowtie I$ lying over P.
(b) If $P \supseteq I$, then $\mathcal{P}_{\mathbf{1}}=\mathcal{P}_{\mathbf{2}}=\mathcal{P}=\sqrt{\mathcal{P}_{\mathbf{0}}}=P \bowtie I$. Moreover, $\boldsymbol{k}_{R}(P) \cong$ $\boldsymbol{k}_{R \bowtie I}(\mathcal{P})$.
(c) If $P \nsupseteq$ I then $\mathcal{P}_{\mathbf{1}} \neq \mathcal{P}_{\mathbf{2}}$. Moreover $\mathcal{P}=\sqrt{\mathcal{P}_{\mathbf{0}}}$ and $\boldsymbol{k}_{R}(P) \cong \boldsymbol{k}_{R \bowtie I}\left(\mathcal{P}_{\mathbf{1}}\right) \cong$ $\boldsymbol{k}_{R \bowtie I}\left(\mathcal{P}_{2}\right)$.
(d) If P is a maximal ideal of R then $\mathcal{P}_{\mathbf{1}}$ and $\mathcal{P}_{\mathbf{2}}$ are maximal ideals of $R \bowtie I$.
(e) If R is a local ring with maximal ideal M then $R \bowtie I$ is a local ring with maximal ideal $\boldsymbol{\mathcal { M }}=\sqrt{\mathcal{M}_{\mathbf{0}}}=M \bowtie I$ (using again the notation of Proposition 3.5 for $M=J$).
(f) R is reduced if and only if $R \bowtie I$ is reduced.

Proof. Note that the composition of the diagonal embedding $\delta: R \hookrightarrow R \bowtie I$, $(r \mapsto(r, r))$, with the inclusion $R \bowtie I \subseteq R \times R, \quad((r, r+i) \mapsto(r, r+i))$, coincides with the diagonal embedding $R \hookrightarrow R \times R, \quad(r \mapsto(r, r))$, which is a finite ring homomorphism. Thus, in particular, both $R \hookrightarrow R \bowtie I$ and $R \bowtie I \subseteq R \times R$ are integral homomorphisms. Note also that if Q is a prime ideal of $R \times R$ lying over P, then necessarily $Q \in\{P \times R, R \times P\}$ (Remark 2.8).
(a) Note that $\mathcal{P}_{\mathbf{1}}=u^{\prime-1}(P \times R)$ and $\mathcal{P}_{\mathbf{2}}=u^{\prime-1}(R \times P)$ (Proposition 3.5); hence $\mathcal{P}_{\mathbf{1}}$ and $\mathcal{P}_{\mathbf{2}}$ are prime ideals lying over P. By integrality, if $\mathcal{Q} \in \operatorname{Spec}(R \bowtie I)$ and $\mathcal{Q} \cap R=P$, then there exists $\bar{Q} \in \operatorname{Spec}(R \times R)$ such that $\bar{Q} \cap(R \bowtie I)=\mathcal{Q}$ and thus $\bar{Q} \cap R=P$. Therefore $\bar{Q} \in\{P \times R, R \times P\}$ and so $\mathcal{Q} \in\left\{\mathcal{P}_{\mathbf{1}}, \mathcal{P}_{\mathbf{2}}\right\}$.
(b) We know already by Proposition 3.5 (f) and (c) that, if $P \supseteq I$, then $\mathcal{P}_{1}=$ $\mathcal{P}_{\mathbf{2}}=\mathcal{P}$, hence by part (a) we conclude easily that $\mathcal{P}=\sqrt{\mathcal{P}_{0}}$. Moreover we have the following sequence of canonical homomorphisms:

$$
\frac{R}{P} \subseteq \frac{R \bowtie I}{\sqrt{\mathcal{P}_{\mathbf{0}}}}=\frac{R \bowtie I}{\mathcal{P}} \subseteq \frac{R \times R}{P \times R} \cong \frac{R}{P} \cong \frac{R \times R}{R \times P}
$$

from which we deduce the last part of the statement.
(c) By Proposition 3.5 (e) and (f) we know that, if $P \nsupseteq I$, then $\mathcal{P}_{\mathbf{1}} \neq \mathcal{P}_{\mathbf{2}}$ and $\mathcal{P}_{\mathbf{0}} \subseteq \mathcal{P}=\mathcal{P}_{\mathbf{1}} \cap \mathcal{P}_{\mathbf{2}}$. By part (a) and by the integrality of $R \hookrightarrow R \bowtie I$, we conclude easily that $\mathcal{P}=\sqrt{\mathcal{P}_{\mathbf{0}}}$. Finally, as in part (b), it is easy to see that $\boldsymbol{k}_{R}(P) \cong \boldsymbol{k}_{R \bowtie I}\left(\mathcal{P}_{\mathbf{1}}\right) \cong \boldsymbol{k}_{R \bowtie I}\left(\mathcal{P}_{\mathbf{2}}\right)$.
(d) follows by the integrality of $R \subseteq R \bowtie I$.
(e) follows immediately by part (d) and part (b).
(f) follows by integrality of $R \hookrightarrow R \bowtie I$ and $R \bowtie I \subseteq R \times R$ and from the fact that R is reduced if and only if $R \times R$ is reduced.

Remark 3.7 In the situation of Theorem 3.6 note that, if P is a prime ideal of R, then by integrality of $R \hookrightarrow R \bowtie I \subseteq R \times R$, inside the ring $R \times R$, the prime ideals $P \times R$ and $R \times P$ are the only minimal prime ideals of $P \times P=$ $\mathcal{P}_{\mathbf{0}}(R \times R)=P(R \times R)$, and so

$$
\mathcal{P}_{\mathbf{0}}(R \times R)=P \times P=(P \times R) \cap(R \times P)=\sqrt{\mathcal{P}_{\mathbf{0}}(R \times R)}
$$

is a radical ideal of $R \times R$, with

$$
(P \times P) \cap(R \bowtie I)=((P \times R) \cap(R \times P)) \cap(R \bowtie I)=\mathcal{P}_{\mathbf{1}} \cap \mathcal{P}_{\mathbf{2}}=\mathcal{P}
$$

Next example shows that in $R \bowtie I$, in general, $\mathcal{P}_{\mathbf{0}}$ is not a radical ideal (i.e. it may happen that $\left.\mathcal{P}_{\mathbf{0}} \subsetneq \sqrt{\mathcal{P}_{\mathbf{0}}}=\mathcal{P}\right)$.

Example 3.8 Let V be a valuation domain with a nonzero non maximal non idempotent prime ideal P. (An explicit example can be constructed as follows: let k be a field and let X, Y be two indeterminates over k, then take $V:=$ $k[X]_{(X)}+Y k(X)[Y]_{(Y)}$ and $P:=Y k(X)[Y]_{(Y)}$. It is well known that V is discrete valuation domain of dimension 2 , and P is the height 1 prime ideal of V [16, (11.4), page 35], 8 page 192].)

In this situation, it is easy to see that the ideal $P \times P$ is a common (radical) ideal of $V \bowtie P$ and of its overring $V \times V$. Moreover, note that $\mathcal{P}_{0}=P(V \bowtie$ $P)=\left\{(p, p+x) \mid p \in P, x \in P^{2}\right\}$ (Proposition 3.5(d)) and that $P(V \times V)=$ $P \times P \subset V \bowtie P$. More precisely, by Proposition 3.5(c), we have:

$$
\begin{aligned}
P \times P & =(P \times P) \cap(V \bowtie P)=(P \times V) \cap(V \times P) \cap(V \bowtie P) \\
& =\mathcal{P}_{\mathbf{1}} \cap \mathcal{P}_{\mathbf{2}}=\mathcal{P}=\{(p, p+y) \mid p \in p, y \in P \cap P=P\}
\end{aligned}
$$

Clearly, since $P^{2} \neq P$, then $\mathcal{P}_{\mathbf{0}} \subsetneq \mathcal{P}$; for instance if $z \in P \backslash P^{2}$, then $(p, p+z) \in$ $\mathcal{P} \backslash P(V \bowtie P)$.

The next goal is to pursue the work initiated in Remark 3.4 and to give a complete description of the affine scheme $\operatorname{Spec}(R \bowtie I)$, determining the localizations of $R \bowtie I$ in each of its prime ideals. Part of the next theorem is contained in [1] Proposition 7].

Theorem 3.9 Let $X:=\operatorname{Spec}(R), Y:=\operatorname{Spec}(R \bowtie I)$ and $Z:=\operatorname{Spec}(R \times R) \cong$ $\operatorname{Spec}(R) \amalg \operatorname{Spec}(R)$ and let $\alpha: Z \rightarrow Y$ and $\gamma: Y \rightarrow X$ be the canonical surjective maps associated to the integral embeddings $R \bowtie I \hookrightarrow R \times R$ and $R \cong R^{\Delta} \hookrightarrow R \bowtie I$ (proof of Theorem 3.6).
(a) The restrictions of α

$$
\left.\alpha\right|_{Z \backslash V_{Z}\left(\mathfrak{D}_{i}\right)}: Z \backslash V_{Z}\left(\mathfrak{O}_{i}\right) \longrightarrow Y \backslash V_{Y}\left(\mathfrak{O}_{i}\right)
$$

(for $i=1,2$) are scheme isomorphisms, and clearly

$$
Z \backslash V_{Z}\left(\mathfrak{O}_{i}\right) \cong X \backslash V_{X}(I)
$$

In particular, for each prime ideal P of R, such that $P \nsupseteq I$, if we set $\overline{P_{1}}:=P \times R$ and $\overline{P_{2}}:=R \times P$ we have $\mathcal{P}_{i}:=\bar{P}_{i} \cap(R \bowtie I)$, for $1 \leq i \leq 2$ and the following canonical ring homomorphisms are isomorphisms:

$$
R_{P} \longrightarrow(R \bowtie I)_{\mathcal{P}_{i}} \longrightarrow(R \times R)_{\bar{P}_{i}}, \quad \text { for } 1 \leq i \leq 2
$$

(b) The restriction of γ

$$
\left.\gamma\right|_{V_{Y}\left(\mathfrak{O}_{1}\right) \cap V_{Y}\left(\mathfrak{O}_{2}\right)}: V_{Y}\left(\mathfrak{O}_{1}\right) \cap V_{Y}\left(\mathfrak{O}_{2}\right) \longrightarrow V_{X}(I)
$$

is a scheme isomorphism.
(c) If $P \in \operatorname{Spec}(R)$ is such that $P \supseteq I$ and $\mathcal{P} \in \operatorname{Spec}(R \bowtie I)$ is the unique prime ideal such that $\mathcal{P} \cap R=P$, the following diagram of canonical homomorphisms:

is a pullback (where $I_{P}:=I R_{P}, u_{P}(x):=\left(x, x+I_{P}\right)$ and $v_{P}((x, y)):=$ $\left(x, y+I_{P}\right)$, for $\left.x, y \in R_{P}\right)$, i.e. $(R \bowtie I)_{\mathcal{P}} \cong R_{P} \bowtie I_{P}$ (Proposition 3.1).

Proof. (a) Since $\mathfrak{O}_{1}=\{0\} \times I$ (respectively, $\mathfrak{O}_{2}=I \times\{0\}$) is a common ideal of $R \times R$ and $R \bowtie I$, this statement follows from the general results on pullbacks 4. Theorem 1.4], from Remark 3.4 from Theorem 3.6 (part (a) and (c) and its proof) and from the fact that the canonical ring homomorphisms $R_{P} \hookrightarrow(R \times R)_{\bar{P}_{i}}$ are isomorphisms, for $1 \leq i \leq 2$. Note that $Z \backslash V_{Z}\left(\mathfrak{O}_{1}\right) \cong$ $\left((X \amalg X) \backslash\left(X \amalg V_{X}(I)\right)\right)=X \backslash V_{X}(I)=\left((X \amalg X) \backslash\left(V_{X}(I) \amalg X\right)\right) \cong Z \backslash$ $V_{Z}\left(\mathfrak{O}_{2}\right)$.
(b) Note that $V_{Y}\left(\mathfrak{O}_{1}\right) \cap V_{Y}\left(\mathfrak{O}_{2}\right)=V_{Y}\left(\mathfrak{O}_{1}+\mathfrak{O}_{2}\right)$ and $\mathfrak{O}_{1}+\mathfrak{O}_{2}=I \times I$. Therefore the present statement follows from the fact that the canonical surjective homomorphism $R \bowtie I \rightarrow R / I$, defined by $(r, r+i) \mapsto r+I$ (for each $r \in R$ and $i \in I)$ has kernel equal to $I \times I$.
(c) If we start from the pullback diagram considered in Proposition 3.1 and we apply the tensor product $R_{P} \otimes_{R}$-, then by [4 Proposition 1.9] we get the following pullback diagram:

Note that, by the properties of the tensor product, we deduce immediately the following canonical ring isomorphisms: $R_{P} \otimes_{R}(R \times R) \cong R_{P} \times R_{P}, R_{P} \otimes_{R} R \cong$ R_{P} and that $R_{P} \otimes_{R}(R \times(R / I)) \cong R_{P} \times\left(R_{P} \otimes_{R}(R / I)\right) \cong R_{P} \times\left(R_{P} / I R_{P}\right)$. Therefore, the previous pullback diagram gives rise to the following pullback of canonical homomorphisms:

On the other hand, recall that $\operatorname{Spec}\left(R_{P} \otimes_{R}(R \bowtie I)\right)$ can be canonically identified (under the canonical homeomorphism associated to the natural ring homomorphism $\left.R \bowtie I \rightarrow R_{P} \otimes_{R}(R \bowtie I)\right)$ with the set of all prime ideals $\mathcal{H} \in \operatorname{Spec}(R \bowtie I)$
such that $\mathcal{H} \cap R \subseteq P$. Since we know already that, in the present situation, there exists a unique prime ideal $\mathcal{P} \in \operatorname{Spec}(R \bowtie I)$ such that $\mathcal{P} \cap R=P$ (Theorem 3.6(b)) and that the canonical embedding $R \hookrightarrow R \bowtie I$ has the going-up property, we deduce that $\operatorname{Spec}\left(R_{P} \otimes_{R}(R \bowtie I)\right)$ can be canonically identified with the set of all the prime ideals of $R \bowtie I$ contained in \mathcal{P}. Therefore $R_{P} \otimes_{R}(R \bowtie I)$ is a local ring with a unique maximal ideal corresponding to the prime ideal \mathcal{P} of $R \bowtie I$ and thus we deduce that the canonical ring homomorphism $(R \bowtie I)_{\mathcal{P}} \rightarrow R_{P} \otimes_{R}(R \bowtie I)$ is an isomorphism.

Proposition 3.10 The ring $R \bowtie I$ can be obtained as a pullback of the following diagram of canonical homomorphisms:

where \widetilde{u} is the diagonal embedding, \widetilde{v} is the canonical surjection $(x, y) \mapsto(x+$ $I, y+I)$, \widetilde{u}^{\prime} is the natural inclusion and \widetilde{v}^{\prime} is defined by $(x, x+i) \mapsto x+I$, for all $x, y \in R$ and $i \in I$.

Proof. By Proposition 3.1 we know that

is a pullback. On the other hand, it is easy to verify that the following diagram:

is a pullback, where w is the canonical surjection $(x, y) \mapsto(x+I, y)$ and φ is the natural proiection $x \mapsto x+I$, for each $x \in R$ and for each $y \in R / I$. The conclusion follows by juxtaposing two pullbacks.

Corollary 3.11 If R is a local ring, integrally closed in $T(R)$ with maximal ideal M and residue field k, then $R \bowtie M$ is seminormal in its integral closure inside $T(R) \times T(R)$ (which, in this situation, coincides with $R \times R$).

Proof. By the previous proposition $R \bowtie M$ (which is a local ring) can be obtained as a pullback of the following diagram of canonical homomorphisms:

The statement follows from the fact that, in this case, the integral closure of $R \bowtie M$ in $T(R) \times T(R)$ coincides with $R \times R$ (Corollary 3.3 (c)). Therefore, since \widetilde{u} is a minimal extension, then \widetilde{u}^{\prime} is also minimal [3, Lemme 1.4 (ii)], and thus the conclusion follows from [3] Théorème 2.2 (ii))] and from [18, (1.1)] (keeping in mind Theorem 3.6(c)).

Example 3.12 (a) Let $R:=k[[t]]$ (where k is a field and t an indeterminate) and let $I:=t^{n} R$. Using Proposition 3.10] if we denote by $h^{(i)}(t)$ the $i-$ th derivative of a power series $h(t) \in k[[t]]$, it is easy to see that

$$
R \bowtie I=\left\{(f(t), g(t)) \mid f(t), g(t) \in R, f^{(i)}(0)=g^{(i)}(0) \forall i=0, \ldots n-1\right\}
$$

(b) Let $R:=k[x, y]$ and $I:=x R$. In this case

$$
R \bowtie I=\{(f(x, y), g(x, y)) \mid f(x, y), g(x, y) \in R, f(0, y)=g(0, y)\}
$$

Setting $Y=\operatorname{Spec}(R \bowtie I)$ and $X=\operatorname{Spec}(R)$, by Proposition 2.13. $V_{Y}\left(\mathfrak{O}_{\boldsymbol{i}}\right) \cong$ $\operatorname{Spec}(k[x, y])$. On the other hand, by Theorem 3.9) $V_{Y}\left(\mathfrak{O}_{1}\right) \cap V_{Y}\left(\mathfrak{O}_{2}\right)=$ $V_{Y}((x R \times x R)) \cong V_{X}(x R) \cong \operatorname{Spec}(k[y])$. Hence the ring $R \bowtie I$ is the coordinate ring of two affine planes with a common line. Note that we can present $R \bowtie I$ as quotient of a polynomial ring in the following way: consider the homomorphism $\lambda: k[x, y, z] \longrightarrow R \times R$, defined by $\lambda(x):=(x, x)$, $\lambda(y):=(y, y)$ and $\lambda(z):=(0, x)$. It is not difficult to see that $\operatorname{Im}(\lambda)=R \bowtie I$ and $\operatorname{Ker}(\lambda)=\left(z x-z^{2}\right) k[x, y, z]$.

References

[1] M. D'Anna, A construction of Gorenstein rings, J. Algebra (to appear).
[2] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Preprint 2006.
[3] D. Ferrand and J.-P. Olivier, Homomorphismes mimimaux d'anneaux, J. Algebra 16 (1970), 461-471.
[4] M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123 (1980), 331-355.
[5] R. Fossum, Commutative extensions by canonical modules are Gorenstein rings, Proc. Am. Math. Soc. 40 (1973), 395-400.
[6] R. Fossum, P. Griffith and I. Reiten, Trivial extensions of Abelian categories. Homological algebra of trivial extensions of Abelian categories with applications to ring theory, Lecture Notes in Mathematics 456, Springer-Verlag, Berlin, 1975.
[7] S. Gabelli and E.G. Houston, Ideal theory in pullbacks, in "Non-Noetherian Commutative Ring Theory", S.T. Chapman and S. Glaz Eds., Kluwer Academic Publishers, 2000, 199-227.
[8] R. Gilmer, Multiplicative ideal theory, M. Dekker, New York, 1972.
[9] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics 1321, SpringerVerlag, Berlin, 1989.
[10] W. Heinzer, J. Huckaba and I. Papick, m-canonical ideals in integral domains, Comm. Algebra 26 (1998), 3021-3043.
[11] J. Huckaba, Commutative rings with zero divisors, M. Dekker, New York, 1988.
[12] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
[13] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
[14] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
[15] M. Nagata, The theory of multiplicity in general local rings, Proc. Intern. Symp. TokyoNikko 1955, Sci. Council of Japan, Tokyo 1956, 191-226.
[16] M. Nagata, Local Rings, Interscience, New York, 1962.
[17] I. Reiten, The converse of a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420.
[18] C. Traverso, Seminormality and Picard group, Ann. Sc. Norm. Sup. Pisa 24 (1970), 585-595.

Marco D'Anna
Dipartimento di Matematica e Informatica
Università di Catania
Viale Andrea Doria 6
95125 Catania, Italy
mdanna@dipmat.unict.it
Marco Fontana
Dipartimento di Matematica
Università di Roma degli Studi "Roma Tre"
Largo San Leonardo Murialdo 1
00146 Roma, Italy
fontana@mat.uniroma3.it

[^0]: MSC: 13A15, 13B99, 14A05.
 Key words: idealization, pullback, Zariski topology.
 *Partially supported by MIUR, under Grant PRIN 2005-011955.
 †Partially supported by MIUR, under Grant PRIN 2005-015278.

