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a b s t r a c t


Let f : A→ B be a ring homomorphism and let J be an ideal of B. In this paper, we study the
amalgamation of Awith B along J with respect to f (denoted by Aonf J), a construction that
provides a general frame for studying the amalgamated duplication of a ring along an ideal,
introduced and studied by D’Anna and Fontana in 2007, and other classical constructions
(such as the A + XB[X], the A + XB[[X]] and the D + M constructions). In particular, we
completely describe the prime spectrum of the amalgamated duplication and we give
bounds for its Krull dimension.


© 2009 Elsevier B.V. All rights reserved.


1. Introduction


Let A and B be commutative rings with unity, let J be an ideal of B and let f : A −→ B be a ring homomorphism. In this
setting, we can consider the following subring of A× B:


A onf J := {(a, f (a)+ j) | a ∈ A, j ∈ J}


called the amalgamation of A with B along J with respect to f . This construction is a generalization of the amalgamated
duplication of a ring along an ideal (introduced and studied in [9,6,10,20]). Moreover, several classical constructions (such
as the A + XB[X], the A + XB[[X]] and the D + M constructions) can be studied as particular cases of the amalgamation
[7, Examples 2.5 and 2.6] and other classical constructions, such as the Nagata’s idealization (cf. [21, page 2], [17, Chapter VI,
Section 25]), also called Fossum’s trivial extension (cf. [15,19,4]), and the CPI extensions (in the sense of Boisen and Sheldon
[5]) are strictly related to it [7, Example 2.7 and Remark 2.8].
On the other hand, the amalgamation A onf J is related to a construction proposed by D.D. Anderson in [1] and motivated


by a classical construction due to Dorroh [12], concerning the embedding of a ring without identity in a ring with identity.
An ample introduction on the genesis of the notion of amalgamation is given in [7, Section 2].
One of the key tools for studying A onf J is based on the fact that the amalgamation can be studied in the frame of pullback


constructions [7, Section 4] (for a systematic study of these types of constructions, cf. [13]). This point of view allows us to
deepen the study initiated in [7] and to provide an ample description of various properties of A onf J , in connection with the
properties of A, J and f .
More precisely, in [7], we studied the basic properties of this construction (e.g., we provided characterizations for A onf J


to be a Noetherian ring, an integral domain, a reduced ring) and we characterized those distinguished pullbacks that can be
expressed as an amalgamation. In this paper,we pursue the investigation on the structure of the rings of the formA onf J , with
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particular attention to the prime spectrum, to the chain properties and to the Krull dimension. In particular, after recalling
(in Section 2) some basic properties proved in [7,8], needed in the present paper, we start our investigation by deepening
the study of chains of prime ideals in pullback constructions (Proposition 2.7).
In Section 3,we study the integral closure ofA onf J in its total ring of fractions and, finally, in Section 4,we concentrate our


attention to evaluate its Krull dimension. In particular, we provide upper and lower bounds for dim(A onf J) (Proposition 4.4
and Theorem 4.9) and we show that these bounds, obtained in a such general setting, are so sharp that generalize, and
possibly improve, analogous bounds established for the very particular cases of integral domains of the form A+ XB[X] [14]
or A+ XB[[X]] [11].


2. Preliminaries


Before beginning a systematic study of the ring A onf J , we recall from our introductory paper [7] to the subject some
basic properties of this construction.


Proposition 2.1 ([7, Proposition 5.1]). Let f : A→ B be a ring homomorphism, J an ideal of B and set A onf J := {(a, f (a)+ j) |
a ∈ A, j ∈ J}.


(1) Let ι := ιA,f ,J : A → A onf J be the natural ring homomorphism defined by ι(a) := (a, f (a)), for all a ∈ A. Then ι is an
embedding, making A onf J a ring extension of A (with ι(A) = Γ (f ) (:= {(a, f (a)) | a ∈ A} subring of A onf J).


(2) Let I be an ideal of A and set Ionf J := {(i, f (i)+ j) | i ∈ I, j ∈ J}. Then Ionf J is an ideal of A onf J , the composition of canonical
homomorphisms A


ι
↪→ A onf J � A onf J/Ionf J is a surjective ring homomorphism and its kernel coincides with I.


Hence, we have the following canonical isomorphism:


A
I
∼=
A onf J
Ionf J


.


(3) Let pA : A on
f J → A and pB : A on


f J → B be the natural projections of A onf J ⊆ A× B into A and B, respectively. Then pA is
surjective and Ker(pA) = {0} × J .
Moreover, pB(A on


f J) = f (A)+ J and Ker(pB) = f
−1(J)× {0}. Hence, the following canonical isomorphisms hold:


A onf J
({0} × J)


∼= A and
A onf J


f −1(J)× {0}
∼= f (A)+ J.


(4) Let γ : A onf J → (f (A)+ J)/J be the natural ring homomorphism, defined by (a, f (a)+ j) 7→ f (a)+ J . Then γ is surjective
and Ker(γ ) = f −1(J)× J . Thus, there exists a natural isomorphism


A onf J
f −1(J)× J


∼=
f (A)+ J
J


.


In particular, when f is surjective, we have the following natural isomorphism


A onf J
f −1(J)× J


∼=
B
J
.


Recall that, in [7,8], we have shown that the ring A onf J can be represented as a pullback of natural ring homomorphisms
and, using the notion of ring retraction, we have characterized the pullbacks that produce exactly rings of the form A onf J
(see also Propositions 2.3 and 2.5). Now we will make some pertinent remarks and prove a new result on chains of prime
ideals of pullbacks, that will be useful for our subsequent investigation of the ring A onf J .


Definition 2.2. We recall that, if α : A → C, β : B → C are ring homomorphisms, the subring D := α×C β := {(a, b) ∈
A × B | α(a) = β(b)} of A × B is called the pullback (or fiber product) of α and β . In the following, we will denote by pA
(respectively, pB ) the restriction to α×C β of the projection of A× B onto A (respectively, B).


The following proposition is a straightforward consequence of the definitions.


Proposition 2.3 ([7, Proposition 4.2]). Let f : A → B be a ring homomorphism and J be an ideal of B. If π : B → B/J is the
canonical projection and f̆ := π ◦ f , then A onf J = f̆ ×B/J π .


Now, recall that a ring homomorphism r : B→ A is called a ring retraction if there exists an (injective) ring homomorphism
i : A→ B such that r ◦ i = idA. In this case, we say also that A is a retract of B.


Example 2.4 ([7, Remark 4.6]). Let f : A→ B be a ring homomorphism and J an ideal of B. Then A is a retract of A onf J and
the map pA : A onf J → A, defined in Proposition 2.1(3), is a ring retraction. In fact, we have pA ◦ ι = idA, where ι is the ring
embedding of A into A onf J (Proposition 2.1(1)).


The pullbacks of the form A onf J form a distinguished subclass of the class of pullbacks of ring homomorphisms, as described
in the following proposition.
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Proposition 2.5 ([7, Proposition 4.7]). Let A, B, C, α, β, pA , pB be as in Definition 2.2. Then, the following conditions are
equivalent.


(i) pA : α×C β → A is a ring retraction.
(ii) There exist an ideal J of B and a ring homomorphism f : A→ B such that α×C β = A on


f J .


Let f : A→ B be a ring homomorphism, and set X := Spec(A), Y := Spec(B). Recall that f ∗ : Y → X denotes the continuous
map (with respect to the Zariski topologies) naturally associated to f (i.e., f ∗(Q ) := f −1(Q ) for all Q ∈ Y ). Let S be a subset
of A. Then, as usual, VX (S), or simply V (S), if no confusion can arise, denotes the closed subspace of X , consisting of all prime
ideals of A containing S. We will denote by Jac(A) the Jacobson radical of a ring A and wewill call local ring a (not necessarily
Noetherian) ring with a unique maximal ideal.
Now, we collect some results about the structure of the prime ideals of the ring A onf J . The proof of the following propo-


sition is based on well known properties of rings arising from pullbacks [13, Theorem 1.4] (for details, see [8]).


Proposition 2.6. With the notation of Proposition 2.1, set X := Spec(A), Y := Spec(B), and W := Spec(A onf J), and
J0 := {0} × J (⊆ A onf J). For all P ∈ X and Q ∈ Y , set:


P ′f := Ponf J := {(p, f (p)+ j) | p ∈ P, j ∈ J},
Q f := {(a, f (a)+ j) | a ∈ A, j ∈ J, f (a)+ j ∈ Q }.


Then, the following statements hold.


(1) The map P 7→ P ′f establishes a closed embedding of X into W, so its image, which coincides with V (J0), is homeomorphic to
X.


(2) The map Q 7→ Q f is a homeomorphism of Y\V (J) onto W\V (J0).
(3) The prime ideals of A onf J are of the type P ′f or Q f , for P varying in X and Q in Y\V (J).
(4) Let P ∈ Spec(A). Then, P ′f is a maximal ideal of A onf J if and only if P is a maximal ideal of A.
(5) Let Q be a prime ideal of B not containing J. Then, Q f is a maximal ideal of A onf J if and only if Q is a maximal ideal of B.


In particular:


Max(A onf J) = {P ′f | P ∈ Max(A)} ∪ {Q f | Q ∈ Max(B)\V (J)}.


The last result of this section concerns the chains of prime ideals in rings arising from pullbacks of rather general type.


Proposition 2.7. With the notation of Definition 2.2, assume β surjective. Let H ′ and H ′′ be prime ideals of D such that H ′ ( H ′′.
Assume that H ′ ∈ Spec(D)\ V (Ker(pA)), H


′′
∈ V (Ker(pA)), and that H


′ and H ′′ are adjacent prime ideals. Then, there exist two
prime ideals Q ′ and Q ′′ of B, with Q ′ ( Q ′′, and moreover such that Q ′ /∈ V (Ker(β)), p−1B (Q


′) = H ′, and p−1
B
(Q ′′) = H ′′.


Proof. Note that the existence (and uniqueness) of a prime ideal Q ′ of B such that Q ′ /∈ V (Ker(β)) and p−1B (Q
′) = H ′ is well


known [13, Theorem 1.4, Statement (c) of the proof].
On the other hand, note that p−1


B
(L+ Ker(β)) = p−1


B
(L)+ Ker(pA), for each ideal L of B. Now, it is clear that the set


S(Q ′) := {L ideal of B | Q ′ + Ker(β) ⊆ L and p−1
B
(L) ⊆ H ′′}


is nonempty (it contains Q ′ + Ker(β)) and inductive. Thus, by Zorn’s lemma, S(Q ′) contains a maximal element Q ′′, which
is easy to see that is a prime ideal of B. Since H ′′ ⊇ p−1


B
(Q ′′) ⊇ p−1


B
(Q ′)+Ker(pA) ) H


′ and H ′,H ′′ are adjacent prime ideals,
we have p−1


B
(Q ′′) = H ′′. �


3. Integral closure of the ring A onf J


Given a ring extension R ⊆ S, the integral closure of R in S will be denoted by R
S
; the integral closure of R in its total ring


of fractions Tot(R)will be simply denoted by R.
Now, we want to determine the integral closure of the ring A onf J in its total ring of fractions. It is easy to compute


Tot(A onf J) in some cases.


Proposition 3.1. Let f : A→ B be a ring homomorphism, J an ideal of B, and let A onf J be as in Proposition 2.1. Assume that J
and f −1(J) are regular ideals of B and A, respectively. Then Tot(A onf J) is canonically isomorphic to Tot(A)× Tot(B).


Proof. Note that J1 := f −1(J) × J is the conductor of A onf J in A × B (i.e., the largest ideal of A onf J that is also an ideal of
A× B). Since both f −1(J) and J are regular ideals, then J1 is a regular ideal of A× B. Now, the conclusion follows immediately
by applying [16, pag. 326]. �


Remark 3.2. Note that, in Proposition 3.1, the assumption that J and f −1(J) are regular ideals is essential. For example,
let A be an integral domain with quotient field K , B an overring of A, and let J = {0}. Then, in this situation, A onf J ∼= A
(Proposition 2.3), and thus Tot(A onf J) is isomorphic to K , but Tot(A)× Tot(B) = K × K .
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In the previous example, J and f −1(J) are both the zero ideal. Another example, for which J is a nonzero regular ideal, is
given next. Let A be an integral domainwith quotient field K , set B := A[X] and J := (X), and let f : A ↪→ A[X] be the natural
inclusion. In this case, from Proposition 2.3 we deduce that A onf J ∼= A + XA[X] = A[X], and hence Tot(A onf J) = K(X).
However, Tot(A)× Tot(B) = K × K(X). (Note that in this example f −1(J) = A ∩ J = {0}.)
Another example, for which both J and f −1(J) are nonzero and not regular ideals, is the following. Let K be a field and set


A := K (3), B := K (2), and J := {0} × K , where K (n) is the direct product ring K × K × · · · × K (n-times). If f is the projection
defined by (a, b, c) 7→ (a, b), it is immediately seen that A onf J ∼= K (4). Then Tot(A onf J) ∼= K (4), but Tot(A)×Tot(B) ∼= K (5).


We have already observed in [7, Section 5] that the ring B� := f (A) + J (subring of B) plays a relevant role in the
construction A onf J . The next result provides further evidence to this fact.


Lemma 3.3. Let f : A→ B be a ring homomorphism, J an ideal of B, and let A onf J be as in Proposition 2.1. The ring A×(f (A)+J),
subring of A× B, which contains A onf J is integral over A onf J . More precisely, every element of A× (f (A)+ J) has degree at most
two over A onf J .


Proof. Let (α, f (a) + j) ∈ A × (f (A) + J) with α, a ∈ A and j ∈ J . Assume that (α, f (a) + j) /∈ A onf J , thus, in particular,
α 6= a. Then, the element (α, f (a)+ j) is a root of the monic polynomial (X− (α, f (α)))(X− (a, f (a)+ j)) ∈ (A onf J)[X]. �


Proposition 3.4. With the notation of Lemma 3.3, assume that J and f −1(J) are regular ideals of B and A, respectively. Then
A onf J (i.e., the integral closure of A onf J in its total ring of fractions) coincides with A× f (A)+ J . In particular, if f is an integral
homomorphism, then A onf J = A× B.


Proof. Recall that, under the present hypothesis on J and f −1(J), we have Tot(A onf J) = Tot(A × B), which is canonically
isomorphic to Tot(A) × Tot(B) (Proposition 3.1). Therefore, it is easy to see that A onf J ⊆ A × f (A)+ J . On the other hand,
the ring A× f (A)+ J is obviously integral over A× (f (A)+ J) and A× (f (A)+ J) is integral over A onf J (Lemma 3.3). Thus
A× f (A)+ J is integral over A onf J . The conclusion is now straightforward. �


Remark 3.5. If we do not assume that J and f −1(J) are regular ideals of B and A, respectively, then the argument used in the
proof of Proposition 3.4 shows that the integral closure of A onf J in Tot(A)× Tot(B) coincides with A× f (A)+ J .


Now, we want to investigate when the ring A onf J is integral over Γ (f )(:= {(a, f (a)) | a ∈ A}).


Lemma 3.6. Let f : A −→ B, J ⊆ B, and A onf J be as in Proposition 2.1. Then, the following conditions are equivalent.


(i) f (A)+ J is integral over f (A).
(ii) A onf J is integral over Γ (f ).


In particular, if f is an integral homomorphism, then A onf J is integral over Γ (f ) (∼= A).


Proof. (i) implies (ii). Let (a, f (a)+j)be a nonzero element ofA onf J . Thus, by condition (i), there exist a positive integern and
a0, a1, . . ., an−1 ∈ A such that (f (a)+j)n+


∑n−1
i=0 f (ai)(f (a)+j)


i
= 0. Therefore, it is easy to verify that (a, f (a)+j) is a root of


themonic polynomial [X−(a, f (a))][Xn+
∑n−1
i=0 (ai, f (ai))X


i
] ∈ Γ (f )[X]. Conversely, consider an element f (a)+j ∈ f (A)+J .


By condition (ii), (a, f (a)+ j) is integral over Γ (f ), and hence the equation of integral dependence of (a, f (a)+ j) over Γ (f )
gives us the equation of integral dependence of f (a)+ j over f (A). The last statement is straightforward. �


4. Krull dimension of A onf J


Now, we want to study the Krull dimension of the ring A onf J . We start with an easy observation.


Proposition 4.1. Let f : A → B, J , and A onf J be as in Proposition 2.1. Then dim(A onf J) = max{dim(A), dim(f (A) + J)}. In
particular, if f is surjective, then dim(A onf J) = max{dim(A), dim(B)} = dim(A).


Proof. By Lemma 3.3 and [18, Theorem 48], it follows immediately that dim(A onf J) = dim(A × (f (A) + J)). Thus, the
conclusion is an easy consequence of the fact that Spec(A× (f (A)+ J)) is canonically homeomorphic to the disjoint union
of Spec(A) and Spec(f (A)+ J). The last statement is straightforward. �


We already observed in [7, Section 5] that the kind of results as in the previous proposition has a moderate interest,
because the Krull dimension of A onf J is compared to the Krull dimension of f (A)+J , which is not easy to evaluate (moreover,
if f −1(J) = {0}, we have A onf J ∼= f (A)+ J (Proposition 2.1(3))).
An easy case for evaluating dim(A onf J) is the following.


Proposition 4.2. Let f : A→ B, J , and A onf J be as in Proposition 2.1. Let f� : A→ B� := f (A)+ J be the ring homomorphism
induced from f . If we assume that f� is integral (e.g., f is integral), then dim(A onf J) = dim(A).


Proof. By Lemma 3.6 and [18, Theorem 48], it follows immediately that dim(A onf J) = dim(Γ (f )) = dim(A). �


We proceed our investigation looking for upper and lower bounds of the Krull dimension of A onf J . By Proposition 2.6,
we know that Spec(A onf J) = X ∪ U , where X := Spec(A) and U := Spec(B) \ V (J) (for the sake of simplicity, we identify
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X and U with their homeomorphic images in Spec(A onf J)). Furthermore, again from Proposition 2.6, we deduce that ideals
of the form Q f can be contained in ideals of the form P ′f , but not vice versa. Therefore, chains in Spec(A onf J) are obtained
by juxtaposition of two types of chains, one from U ‘‘on the bottom’’ and the other one from X ‘‘on the top’’ (where either
one or the other may be empty or a single element). It follows immediately that both dim(X) = dim(A) and dim(U) are
lower bounds for dim(A onf J) and dim(A)+ dim(U)+ 1 is an upper bound for dim(A onf J) (where, conventionally, we set
dim(∅) = −1).


Remark 4.3. Assume that J ⊆ Jac(B). By Proposition 2.6(5), we get that U does not contain maximal elements of
Spec(A onf J). Hence, in this case, 1+ dim(U) ≤ dim(A onf J).


Let us define the following subset of U:


Y
(f ,J) :=


{
Q ∈ U | f −1(Q + J) = {0}


}
;


it is obvious that Y
(f ,J) is stable under generizations, i.e., Q ∈ Y


(f ,J) , Q
′
∈ Spec(B) and Q ′ ⊆ Q imply Q ′ ∈ Y


(f ,J) . Hence
dim(Y


(f ,J)) =sup{htB(Q ) | Q ∈ Y
(f ,J)} and we will denote this integer by δ(f ,J) .


Proposition 4.4. Let f : A→ B, J , and A onf J be as in Proposition 2.1; let U = Spec(B) \ V (J) and δ
(f ,J) = dim(Y(f ,J)) .


(1) Let Q ∈ Spec(B), then f −1(Q + J) = {0} if and only if Q f (= (A× Q ) ∩ A onf J) is contained in J0 (= {0} × J).
(2) for every Q ∈ Y


(f ,J) , the corresponding prime Q
f of A onf J is contained in every prime of the form P ′f .


(3) max{dim(U), dim(A)+ 1+ δ
(f ,J)} ≤ dim(A on


f J).


Proof. (1) Assume that f −1(Q + J) = {0}. If (a, f (a) + j) ∈ Q f , with a ∈ A and j ∈ J , then f (a) + j ∈ Q , and so
a ∈ f −1(Q + J) = {0}, i.e., a = 0. Therefore, (a, f (a) + j) = (0, j) ∈ J0. Conversely, if a ∈ f −1(Q + J), i.e., f (a) = q + j for
some q ∈ Q and j ∈ J , then f (a)− j ∈ Q , and so (a, f (a)− j) ∈ Q f ⊆ J0, thus a = 0.
(2) By Proposition 2.6(1), we have that every ideal of the form P ′f contains J0. The conclusion follows immediately.
(3) By the observation preceding Remark 4.3, it is enough to show that dim(A)+1+ δ


(f ,J) ≤ dim(A on
f J). IfY


(f ,J) = ∅ the
statement is obvious. Otherwise, let Q0 ⊂ Q1 ⊂ · · · ⊂ Qr be amaximal chain inY


(f ,J) , thus r = δ(f ,J) . Let P0 ⊂ P1 ⊂ . . . ⊂ Pm
be a chain realizing dim(A). By (2) we obtain that


Q f0 ⊂ . . . ⊂ Q
f
r ⊂ P


′f
0 ⊂ . . . ⊂ P


′f
m ,


is a chain in Spec(A onf J). �


Remark 4.5. (a) In the situation of Proposition 4.4, note that, if J is contained in the nilradical of B, i.e., if V (J) = Spec(B),
then δ


(f ,J) = dim(U) = −1. Therefore, Proposition 4.4(3) gives dim(A) ≤ dim(A on
f J). But, in this (trivial) case, we can say


more, precisely that Spec(A) is homeomorphic to Spec(A onf J) (Proposition 2.6) and so dim(A) = dim(A onf J). As a matter
of fact, with the notation of Propositions 2.3 and 2.1, π∗A : Spec(A)→ Spec(A onf J) is a homeomorphism.
(b) Note that, if J 6⊆ Jac(B), the inequality 1 + dim(U) ≤ dim(A onf J) from Remark 4.3 can be false, as the following


Example 4.6 will show.
(c) Let f : A → B, J , and A onf J be as in Proposition 2.1. If we assume that J 6= {0} and that A onf J and B are integral


domains, then, by [7, Proposition 5.2], f −1(J) = {0} and the subset Y
(f ,J) of Spec(B), defined in the previous proposition, is


nonempty, since (0) ∈ Y
(f ,J) , and so δ(f ,J) ≥ 0. The following Example 4.10 will show that δ(f ,J) may be arbitrarily large. Note


that δ
(f ,J) may be equal to −1 even if J 6= {0}, f


−1(J) = {0}, but B is not an integral domain. It is sufficient to take B equal
to a local zero-dimensional ring not a field, J equal to its maximal ideal, A any subring of B such that J ∩ A = (0), and f be
the natural embedding of A in B (e.g., B := K [X]/(X2), where K is a field and X an indeterminate over K , and A any domain
contained in K ). In this case, Spec(B) = V (J) and so δ


(f ,J) = −1.
(d) Note that, in the situation of Proposition 4.4(1), we can have Q f ⊆ J0 (= {0} × J) with Q ) J . For instance let


A := K , B := K [X, Y ], Q := (X, Y )B, J := XB, and let f : A = K ↪→ K [X, Y ] = B be the natural embedding, where K is
a field and X and Y two indeterminates over K . In this case, A onf J ∼= A + J = K + XK [X, Y ] (Proposition 2.1(3)). Clearly,
f −1(Q ) = f −1(Q + J) = f −1(J) = {0} and Q f = J0 ∼= XK [X, Y ].


Example 4.6. Let K be a field and X and Y two indeterminates over K . Set B := K(X)[Y ](Y ) ∩ K(Y )[X](X). It is well known
that B is a one-dimensional semilocal domain, having two maximal idealsM := YK(X)[Y ](Y ) ∩ B and N := XK(Y )[X](X) ∩ B.
Let J := M , A := K and let f be the natural embedding of A in B. Clearly, f −1(J) = M ∩ K = {0}. In this situation,
N ∈ Spec(B)\V (J) and so dim(U) = 1. It is easy to see that A onf J ∼= K +M (Proposition 2.1(3)) is a one-dimensional local
domain. Therefore, in this case, we have 2 = 1+ dim(U) > 1 = dim(A onf J).


As an immediate consequence of Remark 4.3 and Proposition 4.4, we have:


Corollary 4.7. With the notation of Proposition 4.4, Let f : A→ B, J , and A onf J be as in Section 2. If we assume that J ⊆ Jac(B)
and that δ


(f ,J) ≥ 0 (e.g., A on
f J and B are integral domains), then


1+max{dim(A)+ δ
(f ,J) , dim(U)} ≤ dim(A on


f J).
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The following observations will be useful for Remark 4.13


Remark 4.8. Let f : A→ B, J , and A onf J as in Proposition 2.1, and let Q be a prime ideal of B.


(i) By Proposition 4.4(1), it follows immediately thatQ
f
:= (A×Q )∩A onf J ( J0 := {0}×J if and only ifQ ∈ Y


(f ,J) (as defined
in Proposition 4.4), i.e. f −1(Q + J) = {0}, and Q + J . Therefore, Y


(f ,J) is homeomorphic to {H ∈ Spec(A on
f J) | H ( J0}.


(ii) If A onf J and B are integral domains and J 6= {0} then, in this situation, J0 = (0)′f ∈ Spec(A onf J) and f −1(J) = {0} by
[7, Proposition 5.2]. Therefore, Q = (0) ∈ Y


(f ,J)(6= ∅) and Q
f
= f −1(J) × {0} = (0) ( J0; thus, if htAonf J(J0) < ∞,


δ
(f ,J)(= dimY


(f ,J)) = htAonf J(J0)− 1.


The next goal is to determine upper bounds to dim(A onf J), possibly sharper than dim(A)+ dim(U)+ 1.


Theorem 4.9. Let f : A→ B, J , and A onf J be as in Proposition 2.1. With the notation of Proposition 4.4, assume that A onf J has
finite Krull dimension. Then


dim(A onf J) ≤ max{dim(A), dim(A/f −1(J))+min{dim(B), 1+ dim(U)}}
≤ min{dim(A)+ dim(U)+ 1,max{dim(A), dim(A/f −1(J))+ dim(B)}}.


Proof. Wecan assume that Spec(B) 6= V (J), because otherwisewe already know that dim(A onf J) = dim(A) (Remark 4.5(a))
and so the inequalities hold.
Let H0 ⊂ H1 ⊂ . . . ⊂ Hn be a chain of prime ideals of A onf J realizing dim(A onf J). Two extreme cases are possible.
(1) If H0 ⊇ {0} × J then, by Proposition 2.6(1), the chain H0 ⊂ H1 ⊂ . . . ⊂ Hn induces a chain of prime ideals of A of


length n. From Proposition 4.4(2), we conclude that dim(A onf J) = dim(A).
(2) If Hn + {0} × J . From Proposition 2.6(2), the chain H0 ⊂ H1 ⊂ . . . ⊂ Hn induces a chain of prime ideals of U of length


n. From Proposition 4.4(2), we conclude that dim(A onf J) = sup{ht(Q ) | Q ∈ U} = dim(U).
We now consider the general case.
(3) Let t be the maximum index such that Ht + {0} × J , with 0 ≤ t � n. According to the notations of Proposition 2.6,


rewrite the given chain as follows:


Q f0 ⊂ Q
f
1 ⊂ . . . ⊂ Q


f
t ⊂ P


′f
t+1 ⊂ P


′f
t+2 ⊂ . . . ⊂ P


′f
n ,


where Q0 ⊂ Q1 ⊂ . . . ⊂ Qt is an increasing chain of prime ideals of B, with Qt 6⊇ J (Proposition 2.6(2)), and
Pt+1 ⊂ Pt+2 ⊂ . . . ⊂ Pn is an increasing chain of prime ideals of A (Proposition 2.6(1)). Furthermore, by Proposition 2.7, we
can find a prime ideal Q in V (J) (⊆ Spec(B)) such that the prime ideal Ht+1 = P


′f
t+1 coincides also with the restriction to


A onf J of the prime ideal A×Q of A×B, i.e.,Ht+1 = P
′f
t+1 = Q


f . It follows immediately that Pk ∈ V (f −1(J)), for t+1 ≤ k ≤ n.
Therefore, dim(A onf J) = (1+ t)+ (n− t − 1)with 1+ t ≤ min{1+ dim(U), dim(B)} and n− t − 1 ≤ dim


(
A/f −1(J)


)
.


Finally, it is obvious that min{dim(B), 1 + dim(U)} ≤ dim(B) and that dim
(
A/f −1(J)


)
+min{dim(B), 1 + dim(U)} ≤


dim(A)+ dim(U)+ 1. �


Example 4.10. Let V be a valuation domain with maximal idealM such that V = K +M, where K is a field isomorphic to
the residue field V/M. Let D be an integral domain with quotient field K , and set B := D+M. Assume that dim(V ) = n ≥ 1
and that Q is a prime ideal of V with htV (Q) = t + 1, n ≥ t + 1 ≥ 0. Set J := Q ∩ B. By the well known properties of
the ‘‘D + M constructions,’’ BM = V [16, Exercise 13(1), page 203], so J is a prime ideal of B and htB(J) = t + 1. More
precisely, if (0) ⊂ Q1 ⊂ Q2 ⊂ . . . ⊂ Qt ⊂ Qt+1 = Q is the chain of prime ideals of V realizing the height of Q, then
Q0 := (0) ⊂ Q1 := Q1 ∩ B ⊂ Q2 := Q2 ∩ B ⊂ . . . ⊂ Qt := Qt ∩ B ⊂ Qt+1 := Qt+1 ∩ B = J . Set A := D and let
f : A = D ↪→ D +M = B be the canonical embedding. Clearly, f −1(J) = {0} and so it is easy to verify that, in the present
situation,


Y
(f ,J) := {Q ∈ Spec(B) | Q /∈ V (J), f −1(Q + J) = {0}}


= {Qk | 0 ≤ k ≤ t} = Spec(B)\V (J) = U


(see also [16, Exercise 12(1), page 202]). Therefore, δ
(f ,J) = t = dim(U). Moreover, if m := dim(D) (= dim(A)) then, again


by the well known properties of the ‘‘D+M constructions’’, dim(B) = m+ n [16, Exercise 12(4), page 203]. Henceforth, in
the present example, we have max{dim(A)+ 1+ δ


(f ,J) , 1+ dim(U)} = dim(A)+ 1+ δ(f ,J) = m+ 1+ t .
On the other hand, since f −1(J) = {0}, clearly A/f −1(J) = A and so max{dim(A), dim


(
A/f −1(J)


)
+ min{dim(B), 1 +


dim(U)}} = dim(A)+min{dim(B), 1+dim(U)} = m+min{m+n, 1+ t}. Since n ≥ t+1, thenmin{m+n, 1+ t} = 1+ t .
Furthermore, by the fact that f −1(J) = {0}, we have A onf J ∼= A+J = D+J (Proposition 2.1(3)). Therefore, fromCorollary 4.3
and Theorem 4.9, we deduce that dim(D+ J) = m+ 1+ t .


Let A ⊂ B be an arbitrary ring extension.Wewill apply the previous results to the polynomial rings of the form A+XB[X]
and we will show that the bounds given by Fontana, Izelgue and Kabbaj [14, Theorem 2.1] in the very special case where B
and A are integral domains coincide to the bounds obtained specializing the general setting of amalgamated algebras.
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Remark 4.11. Recall that, by [7, Example 2.5], the ring A + XB[X] (respectively, A + XB[[X]]) is naturally isomorphic to
Aonσ


′


XB[X] (respectively, Aonσ
′′


XB[[X]]), where σ ′ (respectively, σ ′′) is the inclusion of A into B′ := B[X] (respectively, into
B′′ := B[[X]]).


Corollary 4.12. Let A ⊆ B be a ring extension and X an indeterminate over B. Set


δ′(A,B) := sup{htB[X](Q ) | Q ∈ Spec(B[X]), X /∈ Q , (Q + XB[X]) ∩ A = {0}}.


Then


max{dim(A)+ 1+ δ′(A,B), dim(B[X, X
−1
])} ≤ dim(A+ XB[X]) ≤ dim(A)+ dim(B[X]).


Proof. Let B′ := B[X] and J ′ := XB[X]. As observed above (Remark 4.11), we know that A onσ ′J ′ = A + XB[X]. From the
definitions, it is easy to see that δ


(σ ′,J′)
= δ′(A,B). Moreover, since dim(B[X, X


−1
]) = sup{htB[X](Q ) | Q ∈ Spec(B[X]), X /∈


Q } = dim(U) (where U , in this case, is homeomorphic to Spec(B[X])\V (J ′)) and σ ′−1(J ′) = A∩XB[X] = {0}, the conclusion
follows from Proposition 4.4(3) and Theorem 4.9. �


Remark 4.13. Let A ⊆ B integral domains and let N := A\{0}. In [14, Theorem 2.1], Fontana, Izelgue and Kabbaj proved that


max{dim(A)+ dim(N−1B[X]), dim(B[X])} ≤ dim(A+ XB[X]) ≤ dim(A)+ dim(B[X]).


By [14, Theorem 1.2(a) and Lemma 1.3], we know that


dim(N−1B[X]) = htA+XB[X](XB[X]) = 1+ λ′(A,B),


where


λ′(A,B) := sup{dim
(
B[X]q[X]


)
| q ∈ Spec(B), q ∩ A = (0)}.


FromRemark 4.8(iii) and the proof of Corollary 4.12, we deduce the equality htA+XB[X](XB[X]) = 1+δ′(A,B) = 1+λ
′


(A,B), hence
δ′(A,B) = λ


′


(A,B); moreover, we have dim B[X] = dim B[X, X
−1
], by [2, Proposition 1.14]. Therefore, in particular, we reobtain


Fontana, Izelgue andKabbaj’s result on the dimension of the integral domainA+XB[X]. This fact provides further evidence on
the sharpness of the bounds obtained in Proposition 4.4(3) and Theorem 4.9, in the general setting of amalgamated algebras.


We consider now the case of power series rings of the type A+ XB[[X]] for arbitrary ring extensions A ⊂ B.


Corollary 4.14. Let A ⊂ B be a ring extension and X an indeterminate over B. Set


δ
′′


(A,B) := sup{htB[[X]](Q ) | Q ∈ Spec(B[[X]])\V (X), (Q + XB[[X]]) ∩ A = {0}}.


Then


max{dim(A)+ 1+ δ
′′


(A,B), 1+ dim(B[[X]][X
−1
])} ≤ dim(A+ XB[[X]]) ≤ 1+ dim(A)+ dim(B[[X]][X−1]).


Proof. Keeping in mind the statements and the notation of Remark 4.11, it follows immediately that δ(σ ′′,XB[[X]]) = δ
′′


(A,B).
Moreover, recalling that U , in this case, is homeomorphic to Spec(B[[X]]) \ V (X), it is easy to see that dim(U) =
dim(B[[X]][X−1]). Finally, note thatmin{dim(B[[X]]), 1+dim(U)} = 1+dim(U), since everymaximal ideal of B[[X]] contains
X [3, Chapter 1, Exercise 5(iv)]. The conclusion is now a straightforward consequence of Corollary 4.3 and Theorem 4.9. �


Remark 4.15. By applying Corollary 4.14 and Remark 4.5, it follows that, if B is an integral domain, then


1+max{dim(A)+ δ
′′


(A,B), dim(B[[X]][X
−1
])} ≤ dim(A+ XB[[X]]) ≤ 1+ dim(A)+ dim(B[[X]][X−1]).


Now, we can compare our lower bound with that given by Dobbs and Khalis’s Theorem [11, Theorem 11]. Setting


λ
′′


(A,B) := sup{dim
(
B[[X]]q[[X]]


)
| q ∈ Spec(B), q ∩ A = (0)},


they prove that


1+max{dim(A)+ λ
′′


(A,B), dim(B[[X]][X
−1
])} ≤ dim(A+ XB[[X]]) ≤ 1+ dim(A)+ dim(B[[X]][X−1]).


It is clear that dim
(
B[[X]]q[[X]]


)
= htB[[X]](q[[X]]). Moreover, it is immediately seen that, if q ∈ Spec(B) and q ∩ A = (0),


then (q[[X]] + XB[[X]]) ∩ A = (0). Since the set {q[[X]] ∈ Spec(B[[X]]) | q ∈ Spec(B) and q ∩ A = {0}} is a subset of
{Q ∈ Spec(B[[X]]) | X /∈ Q and (Q + XB[[X]]) ∩ A = {0}}, we have λ


′′


(A,B) ≤ δ
′′


(A,B). It is natural to ask, as in the polynomial
case: does λ


′′


(A,B) = δ
′′


(A,B) hold? At themoment, the answer to this question is open. However, by [11, Theorem 7], we observe
that the answer could be negative if


htA+XB[[X]](XB[[X]]) = 1+ δ
′′


(A,B)


and λ
′′


(A,B) � sup{htB[[X]](Q ) | Q ∈ Λ(A,B)} ,whereΛ(A,B), as in [11, Theorem 7], is defined to beΛ(A,B) = {Q ∈ Spec(B[[X]]) |
X /∈ Q , Q ⊂ (q, X), for some q ∈ Spec(B)with q ∩ A = (0)}.
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Example 4.16. It is possible to construct an infinite-dimensional ring of the type A onf J , where A is a finite-dimensional
ring. In this situation, Bmust be a infinite-dimensional ring by Theorem 4.9. For instance, let A := C be the field of complex
numbers, let Y be an indeterminate overC, and let R := C[{Y 1/n | n ∈ N\{0}}]. Consider themaximal idealM of R generated
by the set {Y 1/n | n ∈ N\{0}}. Set B := RM, and consider the ring A + XB[[X]] (∼= A onσ


′′


XB[[X]], according to notation of
Remark 4.11). Then, by [11, Example 3], B is a one-dimensional non-discrete valuation domain and htA+XB[[X]](XB[[X]]) = ∞,
and thus dim(A+ XB[[X]]) = ∞.
The next two examples show that the upper bound and lower bound of Theorem 4.9 and Proposition 4.4(3) are ‘‘sharp’’,


in the sense that dim(A onf J)may be equal to each of the two numerical terms appearing in the first inequality (respectively,
in the inequality) of Theorem 4.9 (respectively, Proposition 4.4(3)).
Example 4.17. Let A be a valuation domain such that dim(A) = n ≥ 3, let {0} ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn be a chain of
prime ideals of A realizing dim(A), and let xh ∈ Ph+1\Ph, with 1 ≤ h ≤ n − 2 and (xh) 6= Ph+1. Since A is a valuation
domain, it is easily seen that V (xh) = V (Ph+1), and thus dim(A/(xh)) = dim(A/Ph+1) = n − (h + 1). Set B := A/(xh),
f : A � B the canonical projection, Qk := Pk/(xh) for h + 1 ≤ k ≤ n, and J := Qh+j for some 1 ≤ j ≤ n − h.
In this case, by Proposition 4.1, dim(A onf J) = dim(A × B) = max{dim(A), dim(B)} = dim(A) = n. Note also that
dim


(
A/f −1(J)


)
= n− (h+ j) ≤ n− (h+ 1) = dim(B), and


dim(U) =
{
−1, if j = 1,
j− 2, if 1 < j ≤ n− h.


It is also easy to see that f −1(Q + J) 6= {0} for all Q ∈ Spec(B) and so in this case δ
(f ,J) = −1, for all 1 ≤ j ≤ n−h. Moreover,


in the present situation, A onf J is a local ring, but it is not an integral domain since f −1(J) 6= {0} (see [7, Proposition 5.2]).
Consider now a chain H0 ⊂ H1 ⊂ . . . ⊂ Hn of prime ideals of A onf J realizing dim(A onf J). Two cases are possible.
• If 1 � j ≤ n− h, then the previous chain (realizing dim(A onf J)) is of the type:


((0) 6=)P
′f
0 ⊂ P


′f
1 ⊂ . . . ⊂ P


′f
h


⊂ P
′f
h+1 = Q


f
h+1 ⊂ . . . ⊂ P


′f
h+j−1 = Q


f
h+j−1


⊂ P
′f
h+j ⊂ . . . ⊂ P


′f
n


(where P
′f
k = Q


f
k also for h+ j ≤ k ≤ n, but in this case Qk ⊇ J);


• If j = 1, then the previous chain realizing dim(A onf J) is of the type:


((0) 6=)P
′f
0 ⊂ P


′f
1 ⊂ . . . ⊂ P


′f
h ⊂ . . . ⊂ P


′f
n


and none of the P
′f
k is equal to a Q


f
k for Qk 6⊇ J .


In the present example, the inequality of Corollary 4.3 gives back the inequality max{dim(A)+ 1+ δ
(f ,J) , 1+ dim(U)} =


max{n + 1 − 1, 1 + (j − 2)} ≤ n = dim(A onf J). The first inequality of Theorem 4.9 gives dim(A onf J) = n ≤
max{n, n− (h+ j)+min{n− (h+ 1), 1+ (j− 2)}} = max{dim(A), dim


(
A/f −1(J)


)
+min{dim(B), 1+ dim(U)}}.


Example 4.18. Let K be a field and let V and W be two incomparable finite-dimensional valuation domains having same
field of quotients F . Assume that V and W are K -algebras, that V = K +M and W = K + N whereM (respectively, N)
is the maximal ideal of V (respectively,W ), and that dim(V ) = m ≥ 1 and dim(W ) = n ≥ 1. Set T := V ∩ W . It is well
known that T is a finite-dimensional Bézout domain with quotient field F and with two maximal ideals M := M ∩ T and
N := N ∩ T such that TM = V and TN = W , and so dim(T ) = max{m, n} [18, Theorem 101]. Let D be an integral domain of
Krull dimension dwith quotient field K . Since D is embedded naturally in V (= K +M) andW (= K + N), we have also a
natural embedding ι : D ↪→ T .
In this situation, using the standard notation of the A onf J construction, when A := D, B := T , J := M , and f := ι, we have


that the ring D+M (subring of T ) is canonically isomorphic to DonιM , by [7, Example 2.6]. Moreover, f −1(J) = M ∩D = {0}
and so dim(A/f −1(J)) = dim(D) = d, and dim(U) = max{m− 1, n} .
It is easy to verify that if (0) = Q0 ⊂ Q1 ⊂ · · · ⊂ Qm =M are the prime ideals of V , then {Qk := Qk∩B | 0 ≤ k ≤ m−1}


coincides with the set {Q ∈ Spec(B)\V (J) | f −1(Q + J) = (Q + J) ∩ D = {0}}. Therefore, δ
(f ,J) = m− 1. On the other hand,


it is easy to verify that dim(D+M) = max{m+ d, n}.
In the present example, the inequality of Proposition 4.4(3) gives back the inequalitymax{dim(A)+1+δ


(f ,J) , dim(U)} =
max{d + 1 + m − 1, max{m − 1, n}} ≤ max{m + d, n} = dim(A onf J) = dim(D + M). Therefore, if n > m + d,
then dim(A onf J) = dim(U). By the first inequality of Theorem 4.9, it follows that dim(A onf J) = max{m + d, n} ≤
max{d, d+min{max{m, n}, 1+max{m−1, n}}} = max{dim(A), dim


(
A/f −1(J)


)
+min{dim(B), 1+dim(U)}}. Therefore,


ifm+ d ≤ n, then n = dim(D+M) = dim(DonιM) = d+min{max{m, n}, 1+max{m− 1, n}}.
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