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Preface


The University S. M. Ben Abdellah, Fez, Morocco organized the Fifth International
Fez Conference on Commutative Algebra and Applications during the period of June
23–28, 2008. The purpose of the conference was to present recent progress and new
trends in commutative algebra and applications. Several talks were centered on topics
influenced by Professor Alain Bouvier to pay tribute to the role he played in initiating
diverse contributions to the field of commutative algebra.


This volume comprises the proceedings of the conference which consist mainly of
research papers and draw on the authors’ contributions to the conference. The book
features 29 articles providing an up-to-date account of current research in commutative
algebra and covering the following topics: amalgamated algebras, chain conditions
and spectral topology, class groups and t -class semigroups, factorization and divis-
ibility, Gorenstein homological algebra, homological aspects of commutative rings,
idealization, integer-valued polynomial rings and generalizations, Matlis domains, nu-
merical semigroups, Prüfer-like conditions in monoids and rings, pullbacks and trivial
extensions, Schubert varieties, semidualizing modules, spectra and dimension theory.


The aim of this book is to be a reference and a learning tool for different audi-
ences including graduate and postgraduate students, commutative algebraists, and also
researchers in other fields of mathematics (e.g., algebraic number theory and algebraic
geometry).


The conference was sponsored by S. M. Ben Abdellah University, Faculty of Sci-
ences and Technology (FST) Fez-Saiss, Faculty of Sciences Dhar El-Mehraz, Labo-
ratoire de Modélisation et Calcul Scientifique at FST Fez-Saiss, UFR “Algèbre Com-
mutative et Aspects Homologiques” at FST Fez-Saiss, Ministère de l’Enseignement
Supérieur et de la Recherche Scientifique, Centre National de la Recherche Scientifique
et Technique, International Mathematical Union, and Les Eaux Minérales D’Oulmès.


We wish to express our gratitude to the local organizing committee, particularly
Prof. N. Mahdou (chair) and Prof. R. Ameziane Hassani (treasurer). Also we would
like to thank Prof. M. Zouak and Prof. A. Iraqi, Deans of FST Fez-Saiss and FS Dhar
El-Mehraz, respectively. Special thanks are due to Mrs. Z. Bouziane, Director of Hotel
Aghlias, and her staff for the hospitality and conference arrangements. We greatly
appreciate the efforts of the contributors and referees and thank the editorial staff at
Walter de Gruyter, especially Dr. R. Plato and S. Albroscheit for their patience and
assistance with this volume.


May 2009 Marco Fontana
Salah-Eddine Kabbaj


Bruce Olberding
Irena Swanson
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Splitting sets and weakly Matlis domains


D. D. Anderson and Muhammad Zafrullah


Abstract. An integral domain D is weakly Matlis if the intersection D D \¹DP j P 2 t -Max.D/º
is independent of finite character. We investigate the question of whenDŒX� orDS is weakly Matlis.


Keywords. Weakly Matlis domain, splitting set, t -splitting set.


AMS classification. 13F05, 13A15, 13F20.


Call an integral domain D a weakly Matlis domain if D is of finite t -character and no
two distinct maximal t -ideals of D contain a nonzero prime ideal. Recently Gabelli,
Houston and Picozza [13] have studied polynomial rings over weakly Matlis domains
and have shown that in some cases a polynomial ring over a weakly Matlis domain
need not be weakly Matlis. The purpose of this paper is to indicate the use of splitting
sets and t -splitting sets in the study of polynomial rings over weakly Matlis domains.
We show for instance that if K � L is an extension of fields and X an indeterminate
over L, then the polynomial ring over K CXLŒX� is a weakly Matlis domain.


Let D be an integral domain with quotient field K and let F.D/ be the set of
nonzero fractional ideals of D. A saturated multiplicative set S of D is said to be a
splitting set if for all d 2 Dn¹0º we can write d D st where s 2 S and tD \ kD D
tkD for all k 2 S . (When t; k 2 Dn¹0º are such that tD \ kD D tkD we say
that t and k are v-coprime, because in this case .t; k/v D D.) Splitting sets and their
properties important for ideal theory were studied in [1]. Splitting sets have proved to
be useful in many situations (see [20]). A saturated multiplicative set S is said to be
a t -splitting set if for each d 2 Dn¹0º we can write .d/ D .AB/t where A and B
are integral ideals such that At \ S ¤ � and .B; s/t D D for all s 2 S . Here the
subscript v (resp., t ) indicates the v-operation (resp., t -operation) defined on F.D/ by
A 7! Av D .A�1/�1 (resp., At D [¹Fv j F a finitely generated nonzero subideal
of Aº). We shall freely use known facts about the v- and t -operations. A reader in
need of a quick review on this topic may consult Sections 32 and 34 of Gilmer’s book
[14]. Let us note for now that a proper integral ideal maximal with respect to being a
t -ideal is a prime ideal called a maximal t -ideal. We note that if S is a splitting set or
t -splitting set, then any prime t -ideal P intersecting S intersects S in detail, i.e., every
nonzero prime ideal contained in P also intersects S (see [5, Proposition 2.8] and [2,
Lemma 4.2]). Thus a splitting or t -splitting set induces a bifurcation of t -Max.D/,
the set of maximal t -ideals, into those that intersect S (in detail) and those that are
disjoint from S: The aim of this article is to show how the splitting sets and t -splitting
sets can be used to prove useful results and provide interesting examples. Our focus
will be on proving results about and providing examples of weakly Matlis domains
which, as defined in [4], are domains D such that every nonzero nonunit is contained
in at most a finite number of maximal t -ideals and no two distinct maximal t -ideals
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contain a common nonzero prime ideal. Indeed, as any nonzero prime ideal contains a
minimal prime of a principal ideal which is necessarily a t -ideal, one can require that
in a weakly Matlis domain no two maximal t -ideals contain a prime t -ideal.


A domain that satisfies ACC on integral divisorial ideals is called a Mori domain.
In [13] Houston, Gabelli and Picozza give an example of a semiquasilocal one dimen-
sional Mori domain (and hence a weakly Matlis domain) D such that the polynomial
ringDŒX� is not a weakly Matlis domain. They also show that ifD is a t -local domain
(i.e., a quasilocal domain with maximal ideal a t -ideal) or a UMT domain (i.e., uppers
to zero are maximal t -ideals, or, equivalently, t -invertible), then D is a weakly Matlis
domain if and only if DŒX� is. One aim of this paper is to give a class of examples
of one dimensional Mori domains D such that the polynomial ring DŒX� is a weakly
Matlis domain. We do this by proving Theorem 1. We also provide a family of ex-
amples of non-UMT weakly Matlis domains such that polynomial rings over them are
again weakly Matlis.


Theorem 1. Let K � L be an extension of fields and let T be an indeterminate over
L: The domain D D K C TLŒT � is a one dimensional Mori domain such that the
polynomial ring DŒX� is a weakly Matlis domain.


To facilitate the proof of this theorem we shall need a sequence of lemmas, which
will find other uses as well.


Lemma 2. Let S be a splitting set of D: If B is an integral t -ideal of D, then BDS is
an integral t -ideal. In fact, for a nonzero ideal A of D, AtDS D .ADS /t . If E is an
integral t -ideal of DS , then E \D is a t -ideal of D. Consequently a maximal t -ideal
of D that is disjoint from S extends to a maximal t -ideal of DS , and every maximal
t -ideal ofDS contracts to a maximal t -ideal ofD. Hence t -Max.DS / D ¹PDS j P 2
t -Max.D/ and P \ S D �º.


Proof. Only the “consequently” part is new. (See [1, Section 3] for the other parts of
the proof.) Thus suppose that P is a maximal t -ideal of D such that P \ S D �,
so PDS is a proper t -ideal. Suppose that PDS is not a maximal t -ideal. Let Q be a
maximal t -ideal of DS that properly contains PDS . Thus Q \ D ¡ P , but by the
earlier part of the lemma, Q \D is a t -ideal which contradicts the maximality of P:
Further, if Q is a maximal t -ideal of DS , then Q \ D D P is a prime t -ideal of D.
If P is not a maximal t -ideal, then P is properly contained in a maximal t -ideal M .
There are two cases: M \S D � andM \S ¤ �: In the first caseMDS is a maximal
t -ideal properly containing Q which contradicts the maximality of Q. In the second
case, let s 2M \ S and let p 2 Pn¹0º. Then since S is a splitting set, p D s1t where
s1 2 S and t is v-coprime to every element of S . Since P \ S D �; t 2 P . But
then t; s 2 M ; so M � .t; s/v D D, contradicting the assumption that M is a proper
t -ideal.


Note that the proof of Lemma 2 shows that the set t -Max.D/ is bifurcated by the
splitting set S into two sets: those disjoint from S and those that intersect S in detail.
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Lemma 2a. Let S be a splitting set of a domain D with the following properties:


(1) Every member of S belongs to only a finite number of maximal t -ideals of D,


(2) Every prime t -ideal intersecting S is contained in a unique maximal t -ideal ofD:


Then DS is a weakly Matlis domain if and only if D is.


Proof. Let D be a weakly Matlis domain and consider DS . Take a nonzero nonunit
x 2 DS . Then since S is a splitting set we conclude that xDS \D D dD a principal
ideal [1]. Now dDS D xDS . Since every maximal t -ideal of DS is extended from
a maximal t -ideal of D disjoint from S , and because D, being weakly Matlis, is of
finite t -character, we conclude that d and hence x belongs to only a finite number of
maximal t -ideals of DS : Since x is arbitrary, DS is of finite t -character. Next suppose
that there is a prime ideal P of DS such that P is contained in two distinct maximal
t -ideals M1 and M2 of DS . Then P \D � M1 \D, M2 \D, two distinct maximal
t -ideals of D, contradicting the fact that D is a weakly Matlis domain.


For the converse, suppose thatDS is a weakly Matlis domain and let d be a nonzero
nonunit of D. Then d D sr where s 2 S and r is v-coprime to every member of S .
Now s and r being v-coprime do not share any maximal t -ideals. Next the number
of maximal t -ideals containing s is finite because of (1) and the number of maximal
t -ideals containing r is finite because DS is weakly Matlis (and by Lemma 2). Next
let P be a prime t -ideal ofD such that P is contained in two distinct maximal t -ideals
M and N . Then P \S D � by (2). But then bothM and N are disjoint from S (for if
they intersect S , they intersect S in detail) and so the prime t -ideal PDS is contained
in the two maximal t -ideals MDS and NDS contradicting the assumption that DS is
a weakly Matlis domain.


Proposition 2b. Let X be an indeterminate over D and let D be of finite t -character.
Then D and DŒX� are weakly Matlis if and only if for every pair of distinct maximal
t -ideals P and Q of D, P ŒX� \QŒX� does not contain a nonzero prime ideal.


Proof. We know that D is of finite t -character if and only if DŒX� is [17, Proposition
4.2] (while this is stated for D being integrally closed, their proof does not use this
hypothesis). Also, every maximal t -ideal M of DŒX� with M \ D ¤ .0/ is of the
form P ŒX� where P is a maximal t -ideal of D [16, Proposition 1.1]. Suppose that for
every pair of distinct maximal t -ideals P and Q of D, P ŒX�\QŒX� does not contain
a nonzero prime ideal. Let us show that DŒX� is weakly Matlis. For this we must
show that no two maximal t -ideals of DŒX� contain a nonzero prime ideal. Now the
complement of the set of maximal t -ideals used in the condition is the set of maximal
t -ideals that are uppers to zero and these are height-one prime ideals. But if at least one
of a pair of maximal t -ideals is of height one, then obviously the condition is satisfied.
So no pair of maximal t -ideals contains a nonzero prime ideal. The condition clearly
indicates that D is also weakly Matlis. Conversely if both D and DŒX� are weakly
Matlis, then the condition is obviously satisfied.


There are examples of weakly Matlis domains D, such as weakly Krull domains,
with the property that for every multiplicative subset S the ring of fractions DS is
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weakly Matlis. Recall that an integral domain D is a weakly Krull domain if D D
\DP is a locally finite intersection of localizations at height-one prime ideals of D: A
Krull domain is a weakly Krull domain such that the localization at every height one
prime ideal is a discrete rank one valuation domain. Now recall from [3] that D is a
weakly factorial domain (i.e., every nonzero nonunit is a product of primary elements)
if and only if every saturated multiplicative subset of D is a splitting set, if and only
if D is a weakly Krull domain with zero t -class group. The t -class group is precisely
the divisor class group for a Krull domain and a Krull domain with a zero divisor class
group is a UFD, and there exist Krull domains that are not UFD’s. So, in general,
a saturated multiplicative set in a weakly Krull domain is not a splitting set. In other
words there do exist weakly Matlis domainsD such thatDS is a weakly Matlis domain
while S is not a splitting set. There are other examples of weakly Matlis domains D
that have nonsplitting saturated multiplicative sets S such that DS is weakly Matlis.
Now the question is: Is there a weakly Matlis domain D such that DS is not weakly
Matlis? The example below answers this question.


Example 2c. Let X and Y be indeterminates over the field of rational numbers Q and
let T D QŒŒX; Y ��. The ring R D Z.p/C .X; Y /QŒŒX; Y ��, p a nonzero prime of Z, is
an integral domain of the generalDCM type [7] and obviously a quasilocal ring with
the maximal ideal a principal ideal. Let K be the quotient field of R and let T be an
indeterminate over K: Then the ring S D RC TKŒŒT �� D Z.p/C .X; Y /QŒŒX; Y ��C
TKŒŒT �� is a quasilocal ring with the maximal ideal a principal ideal. Since a principal
ideal is a divisorial ideal and hence a t -ideal, we conclude that S is a t -local ring and
hence is a weakly Matlis domain. But if N D ¹pnº1nD0, then SN D QŒŒX; Y �� C
TKŒŒT �� is a GCD domain such that every nonzero prime ideal of SN contains TKŒT �;
so SN cannot be a weakly Matlis domain.


A splitting set S of D is called lcm splitting if every element of S has an lcm with
every member of Dn¹0º. A splitting set generated by prime elements is obviously an
lcm splitting set. This gives us a Nagata type theorem for weakly Matlis domains.


Lemma 3. Let S be an lcm splitting set of D generated by primes. Then DS is a
weakly Matlis domain if and only if D is.


Proof. Note that S satisfies (1) and (2) of Lemma 2a since a nonzero principal prime
ideal is a maximal t -ideal.


Proposition 4. Let D be an integral domain that contains a splitting set S generated
by primes such that DS ŒX� is a weakly Matlis domain. Then DŒX� is a weakly Matlis
domain.


Proof. The proof follows from the fact that if S is an lcm splitting set inD then S is an
lcm splitting set in DŒX� [5, Theorem 2.2] and of course that DS ŒX� D DŒX�S which
in turn makes the proof an application of Lemma 3.


Proof of Theorem 1. The proof depends upon the fact that TLŒT � is a maximal ideal
of D D K C TLŒT � of height one and every element of K C TLŒT �nTLŒT � is an
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associate of an element of the form 1CTf .T / which being common to both LŒT � and
K C TLŒT � is a product of primes which are of height one and maximal [12]. From
this it follows that S DKCTLŒT �nTLŒT � is an lcm splitting set generated by primes.
Also, because DS is a one dimensional local domain, DS ŒX� D DŒX�S is a weakly
Matlis domain, [6, page 389]. Now Proposition 4 applies.


It is shown in [13] that if D is a UMT domain or a t -local domain, then D is a
weakly Matlis domain if and only if the polynomial ringDŒX� is. Now a PVMD being
an integrally closed UMT domain we conclude that for a PVMD and hence for a GCD
domain D being weakly Matlis is equivalent to DŒX� being weakly Matlis. We shall
use t -splitting sets to bring to light the behind the scenes goings on, in this matter, later.
For now we shall show, that even a weakly Matlis domain that is neither t -local nor
UMT can have a weakly Matlis polynomial ring. The example has already appeared
in Section 2 of [19]. So we shall briefly describe this example and let the reader check
the details.


Example 5. Let V be a valuation domain of rank > 1 and let Q be a nonzero non-
maximal prime ideal of V: The domain R D V CT VQŒT � is a non-UMT weakly Krull
domain such that RŒX� is a weakly Matlis domain.


Before we start to illustrate this example let us recall that an element x in Dn¹0º is
called primal if for all r; s 2 Dn¹0º, xjrs inD implies that x D uv where ujr and vjs.
An integral domainD is a Schreier domain ifD is integrally closed and every nonzero
element ofD is primal. Schreier domains were introduced by P.M. Cohn in [10] where
it was shown that a GCD domain is Schreier and that every irreducible element in a
Schreier domain is a prime. It was noted in [11, page 424] that if D is a GCD domain,
S a multiplicative set in D and X is an indeterminate over DS , then D C XDS ŒX� is
a Schreier domain.


Illustration: That R is a Schreier domain that is not a GCD domain (and hence
not a UMT domain) can be checked from [19, Section 2]. Following [19] let us call
f 2 Rn¹0º discrete if f .0/ is a unit in V: Now according to Lemma 2.2 of [19] every
nonzero nonunit f of R can be written uniquely up to associates as f D gd where d
is a discrete element and g is not divisible by a nonunit discrete element of R: Indeed
it is also shown in [19] after Lemma 2.2 that every discrete element is a product of
finitely many height-one principal primes. So the set S D ¹d 2 R j d is discreteº is an
lcm splitting set generated by primes. Next, as shown in Lemma 2.4 of [19]M D RnS
is a prime t -ideal of R such that MRM is a prime t -ideal. So, RM D RS is t -local
and according to [13] RS ŒX� D RŒX�S is a weakly Matlis domain. Now Lemma 3
facilitates the conclusion that RŒX� is a weakly Matlis domain.


Let us do some analysis here. Our main tool in Lemma 3 is the fact that we can split
every nonzero nonunit x ofD as a product x D st where s is a finite product of height-
one principal primes (coming from an lcm splitting set S ) and hence is contained in a
finite number of maximal t -ideals and t is not divisible by any such primes, i.e., t is
coprime to every member of S . So, if we can show that each t for a general x belongs to
at most a finite number of maximal t -ideals such that no two of those maximal t -ideals
contain a nonzero prime ideal we have accomplished our task.







6 D. D. Anderson and M. Zafrullah


Following Theorem 4.9 of [2] we can prove the following lemma similar to Lem-
ma 2.


Lemma 6. Let D be an integral domain and S a t -splitting set of D. If B is an
(integral) t -ideal of D, then BDS is an (integral) t -ideal of DS . In fact, for a nonzero
ideal A ofD, AtDS D .ADS /t . If E is a t -ideal ofDS , then E \D is a t -ideal ofD.
Consequently, if P is a maximal t -ideal ofD with P \S D �, then PDS is a maximal
t -ideal of DS . Hence t -Max.DS / D ¹PDS j P 2 t -Max.D/ and P \ S D �º.


Indeed the “consequently” part of Lemma 6 can be handled in precisely the same
manner as we did in the proof of Lemma 2. For the other parts of the proof the reader
may consult [2, Theorem 4.9].


Let S be a t -splitting set of D and let � D ¹A1A2 � � �An j Ai D diDS \ Dº be
the multiplicative set generated by ideals that are contractions of dDS to D for each
nonzero d 2 D: Call � a t -complement of S: Also, let D� be the � -transform, i.e.,
D� D ¹x 2 K j xA � D for some A 2 �º. It is easy to show that D D DS \ D�
and as shown in Theorem 4.3 of [2], DS D \DP where P ranges over the maximal
t -ideals P of D with P \ S D � and D� D \DQ where Q ranges over the maximal
t -ideals Q of D with Q intersecting S in detail.


This discussion leads to the following result.


Lemma 7. Let S be a t -splitting set of D, F D ¹P 2 t -Max.D/ j P \ S D �º and
G D ¹Q 2 t -Max.D/ j Q \ S ¤ �º. Suppose that DS is a ring of finite t -character
and every nonzero nonunit of D belongs to at most a finite number of members of G.
Then D is a ring of finite t -character. If in addition DS is a weakly Matlis domain
and no two members of G contain a nonzero prime ideal, then D is a weakly Matlis
domain. Moreover, if S is a t -splitting set and D is a ring of finite t -character (resp.,
weakly Matlis domain), then DS is a ring of finite t -character (resp., weakly Matlis).


Let D be an integral domain, X an indeterminate over D, and S D ¹f 2 DŒX� j
.Af /v D Dº. It is easy to check that the set S is multiplicative and saturated. Our next
result gives an alternate proof to parts of Lemma 2.1 and Proposition 2.2 of [13]; also
see Corollary 3.5 of that paper.


Proposition 8. Let D be an integral domain, X be an indeterminate over D, and S D
¹f 2 DŒX� j .Af /v D Dº. If DŒX�S is a ring of finite t -character (resp., weakly
Matlis domain), thenDŒX� is a ring of finite t -character (resp., weakly Matlis domain)
and so is D. Moreover, if DŒX� is a ring of finite t -character (resp., weakly Matlis
domain), then so is DŒX�S .


Proof. It has been shown in [8, Proposition 3.7] that S is a t -splitting set. So all we
have to do for the first part is to check that the requirements of Lemma 7 are met. For
this set F D ¹P 2 t -Max.DŒX�/ j P \ S D �º and G D ¹Q 2 t -Max.DŒX�/ j
Q \ S ¤ �º. Now every nonzero nonunit of DŒX� belongs to at most a finite number
of members of G, because every nonzero nonunit of DŒX� belongs to at most a finite
number of uppers to zero. The other requirement is met automatically because the
members of G are all height-one primes.
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The bifurcation induced by the t -splitting set S D ¹f 2 DŒX� j .Af /v D Dº does
indeed shed useful light on the construction DŒX�Nv


where Nv D S D ¹f 2 DŒX� j
.Af /v D Dº by B. G. Kang [18]. For details the reader may consult [8] and [9].
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Divisibility properties in ultrapowers
of commutative rings


David F. Anderson, Ayman Badawi, David E. Dobbs and Jay Shapiro


Abstract. All rings considered are commutative with identity. We study the preservation of certain
properties in the passage from a ring R to the ultrapower R� relative to a free ultrafilter on the set
of all positive integers. Our main result is that if R is a locally pseudo-valuation domain (LPVD) of
finite character (for instance, a semi-quasilocal LPVD), then R� is also an LPVD. In the same vein,
it is shown that the classes of pseudo-valuation domains and pseudo-valuation rings are each stable
under the passage from R to R�. An example is given of a divided domain R such that the domain
R� is not divided. A divisibility condition is found which characterizes the divided (respectively,
quasilocal) rings R such that R� is a divided (respectively, treed) ring.


Keywords. Ultrapower, linearly ordered, divided prime, divided ring, pseudo-valuation domain,
�-ring.


AMS classification. Primary 13A05, 13G05; secondary 13H10.


1 Introduction


All rings considered in this note are commutative with identity. Our interest here is in
the preservation of certain properties in the passage from a ringR to the ultrapowerR�


relative to a free ultrafilter U on a denumerable index set I . For convenience, we iden-
tify I with the set N of all positive integers. (The interested reader is invited to check
that our methods extend to the case in which U is any countably incomplete ultrafilter
on an infinite index set I ; and that many of our results carry over to ultraproducts.)
By definition, R� is the factor ring of


Q
I R modulo the ideal ¹.ai /i2I j Z.ai / 2 Uº,


where Z.ai / denotes the set of coordinates i where ai D 0. By an abuse of notation,
we will also denote the elements of R� by .ai /i2I . It will be clear from the context
whether we are working in the product or the ultrapower.


For some time, there has been considerable interest in the transfer of ring-theoretic
properties betweenR andR�; see, for instance, [19], [20], [21], as well as [16, pp. 179–
180] for a brief introduction to ultrafilters and ultraproducts. Among the assembled lore
is the fact that if R is an integral domain with quotient field K, then R� is an integral
domain with quotient field K�. More significantly, if a ring R is semi-quasilocal with
exactly n maximal ideals, then R� is also semi-quasilocal with exactly n maximal
ideals [20]. In particular, if .R;M/ is a quasilocal ring, then R� is also quasilocal,
with unique maximal ideal M �. Much of our motivation comes from the result [15]
that ifR is a Prüfer domain, thenR� is also a Prüfer domain. Hence, ifR is a valuation


The second-named author and the fourth-named author thank the University of Tennessee, Knoxville for its
warm hospitality and partial support during their visits in February 2003 and March 2004.
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domain, then so is R�. In the same spirit, our main result, Corollary 3.3, establishes
that if R is a locally pseudo-valuation domain (LPVD, in the sense of [12]) of finite
character (for instance, a semi-quasilocal LPVD), then R� is also an LPVD. Section 3
is devoted to a proof of Corollary 3.3, together with the supporting technical results on
ultrafilters. Section 2 deals with easier material, primarily for certain quasilocal rings,
suggested by the Prüfer$ LPVD interplay.


The “interplay” that was just mentioned refers to the fact that LPVDs are, perhaps,
the best behaved members in the class of locally divided integral domains (in the sense
of [10]). This class is particularly interesting for several reasons: it contains all Prüfer
domains as well as many integral domains that are not necessarily integrally closed;
and the “locally divided integral domain” concept figures in several characterizations
of Prüfer domains. Generalizations to the context of rings possibly with nontrivial
zero-divisors have led to concepts such as divided rings [3], locally divided rings [7],
and pseudo-valuation rings ([14], [6]). Among the results in Section 2, we establish
in Corollary 2.8 and Proposition 2.9 that the classes of pseudo-valuation domains and
pseudo-valuation rings are each stable under the passage from R to R�. However,
Example 2.4 shows that the class of divided domains does not exhibit similar stability.
Section 2 also contains sharper facts, such as Example 2.5, involving the concept of
a treed ring. (Recall that a ring R is called treed in case no maximal ideal of R can
contain incomparable prime ideals of R; thus, a ring R is quasilocal and treed if and
only if Spec.R/, the set of all prime ideals of R, is linearly ordered with respect to
inclusion.) The study of the various classes of divided rings in Section 2 is aided by
a divisibility condition established in Proposition 2.3 as a characterization of rings R
such that R� is divided. This result is paired naturally with our first result, Proposition
2.1 which, in the context of ultrapowers, permits a permutation in the quantifications
in a characterization of rings R such that Spec.R/ is linearly ordered [2, Theorem 0].


Our reasoning with ultrapowers often depends on a number of facts that are used
without further mention. For instance, consider elements x D .xi /; y D .yi / of the
ultrapower R�. Then xk D 0 (for some k 2 N/ if and only if ¹i 2 I j xki D 0º 2 U.
Similarly, xjy if and only if ¹i 2 I j xi jyiº 2 U. Also, note that if P is an ideal
of a ring R, then P � WD ¹.ai / j ¹i 2 I j ai 2 P º 2 Uº is an ideal of R�; and
P � 2 Spec.R�/ if and only if P 2 Spec.R/. Viewing R as canonically embedded
in R� via the diagonal map, we see easily that P � \ R D P . Furthermore, there are
canonical isomorphisms .R=P /� Š R�=P � and (if P is a prime ideal) .RP /� Š R�P� .


In addition to the notation and conventions mentioned above, we use dim(ension)
to refer to Krull dimension; and, for a ring R, we use Max.R/ to denote the set of
maximal ideals of R, Min.R/ to denote the set of minimal prime ideals of R, Nil.R/
to denote the set of nilpotent elements of R, and Rad.J / to denote the nilradical of an
ideal J of R. Any unexplained material is standard, as in [13].


2 Comparability properties in Spec.R�/


Recall from [2, Theorem 0] that for any ring R, Spec.R/ is linearly ordered (with
respect to inclusion) if and only if, for any a; b 2 R, there exists n D n.a; b/ 2 N
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such that either ajbn or bjan. This criterion is sharpened in the following result for
ultrapowers. One consequence of Proposition 2.1 is the fact that if R is a ring such that
Spec.R�/ is linearly ordered, then Spec.R/ is also linearly ordered; a more elementary
proof of this fact follows since P � \R D P for each P 2 Spec.R/.


Proposition 2.1. LetR be a ring. Then Spec.R�/ is linearly ordered if and only if there
exists n 2 N such that for all a; b 2 R, either ajbn or bjan.


Proof. We first prove the contrapositive of the “only if” assertion. Suppose, then, that
there does not exist n 2 N such that for all a; b 2 R, one has that either ajbn or bjan.
Thus, for each n 2 N, there exist elements an; bn 2 R such that an−bnn and bn−ann.
Define ˛; ˇ 2 R� by ˛ WD .an/n2N and ˇ WD .bn/n2N . We claim that for all n 2 N,
˛−ˇn and ˇ−˛n. Given the claim, one sees via the criterion in [2, Theorem 0] that, as
desired, Spec.R�/ is not linearly ordered.


Suppose that the above claim fails. Then, without loss of generality, ˛jˇk for some
k 2 N. It follows, by a fact recalled in the Introduction, that ¹n 2 N j anjbknº 2 U.
However, for all n � k, we know that an−bkn . Hence, ¹n 2 N j anjbknº � ¹1; 2; : : : ; k�
1º. This is a contradiction, since a finite set cannot be a member of a free ultrafilter.
This establishes the claim and completes the proof of the “only if” assertion.


We next turn to the “if” assertion. Suppose, then, that there exists k 2 N such that
for a; b 2 R, either ajbk or bjak . By applying the above criterion from [2, Theorem
0], our task is translated to showing that if ˛ WD .an/n2N and ˇ WD .bn/n2N , then
there exists n 2 N such that either ˛jˇn or ˇj˛n. It suffices to show that either ˛jˇk


or ˇj˛k . Putting V WD ¹i 2 N j ai jbki º and W WD ¹i 2 N j bi jaki º, we see from a
fact recalled in the Introduction that an equivalent task is to show that either V 2 U or
W 2 U. Since U is an ultrafilter, it is enough to show that V [W D N. This equality
is, however, ensured by the hypothesis of the “if” assertion, to complete the proof.


Recall that a local (Noetherian) integral domain .R;M/ is called analytically un-
ramified (resp., analytically irreducible) if its completion with respect to the filtration
given by the powers M n is a reduced ring (resp., an integral domain). Our next re-
sult, which re-encounters the criterion from Proposition 2.1, is also interesting in that
neither its hypothesis nor its conclusion mentions an ultrapower.


Corollary 2.2. Let R be an analytically unramified one-dimensional local integral do-
main. Then R is analytically irreducible if and only if there exists n 2 N such that for
all a; b 2 R, either ajbn or bjan.


Proof. The integral closure of R (in its quotient field) is a finitely generated R-module
[22]. It therefore follows from well-known results (cf. [18, (43.20), (32.2)], [8, Propo-
sition III.5.2]) that R is analytically irreducible if and only if the integral closure of
R is local. By [21, Theorem 6.3], the latter condition is equivalent to requiring that
Spec.R�/ is linearly ordered. Accordingly, an application of Proposition 2.1 completes
the proof.


A ring R is called divided if, for each P 2 Spec.R/ and a 2 R, either a 2 P or
P � Ra. Recall from [3, Proposition 2] that a ring R is divided if and only if, for
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any elements a; b 2 R, either ajb or there exists n D n.a; b/ 2 N such that bjan. It
therefore follows that one consequence of Proposition 2.3 is the fact that if R is a ring
such that R� is divided, then R is also divided. The proof of Proposition 2.3 is similar
to the proof of Proposition 2.1 and is hence omitted.


Proposition 2.3. Let R be a divided ring. Then R� is divided if and only if there exists
n 2 N such that for all a; b 2 R, either ajb or bjan.


We next construct an example to show that a divided ring R need not satisfy the
divisibility condition in the statement of Proposition 2.3.


Example 2.4. There exists a divided ring R such that R� is not divided. Our construc-
tion uses an infinite strictly ascending chain of fields Q � F1 � F2 � � � � � Fn � � � � ,
with F WD [Fn. Fix a prime integer p and let


R WD Z.p/ C F1X C F2X
2
C � � � C FnX


n
C � � � � F ŒŒX��:


To show that R is divided, it will be convenient to first show that the ring


T WD QC F1X C F2X
2
C � � � C FnX


n
C � � � � F ŒŒX��


is divided. For this, it suffices, by [3, Proposition 2], to show that if a D
P1
iDn aiX


i


and b D
P1
jDm bjX


j are nonzero nonunits of T , with 1 � n � m, then there exists
a positive integer � such that a�=b 2 T . Choose � so that �n > 2m. Then p WD
�n � m > m and we easily see by the usual process of long division that when a�


(D .an/
�Xn�C higher degree terms) is divided by b, the quotient in F ŒŒX�� actually


lies in T . In other words, b divides a� in T , and so T is a divided domain. Next,
consider the maximal ideal M WD F1X C F2X


2 C � � � C FnX
n C � � � of T . Observe


that T=M Š Q. Then, since R is the pullback T �T=M Z.p/ with both T and Z.p/
being divided domains, it follows from [11, Corollary 2.6] that R is a divided domain,
and hence a divided ring, as asserted.


Moreover, we claim thatR� is not divided. To prove this claim, pick dn 2 FnnFn�1
for each n 2 N. Set an WD X and bn WD dnX


n. Then for each n, an−bn and bn−ann.
Define ˛; ˇ 2 R� via ˛ WD .an/n2N and ˇ WD .bn/n2N . Then ˛−ˇ and ˇ−˛n for all
n 2 N. So, by [3, Proposition 2], R� is not divided, thus proving the above claim.


Let R be the divided ring in the above example. Although R� is not divided, note
thatR� is treed (in contrast to the situation in Example 2.5 below). To see this, observe
that for all a; b 2 R, either ajb2 or bja2, and apply Proposition 2.1.


Next, we present a family of examples of divided rings whose ultrapowers are not
treed.


Example 2.5. There exists a divided ring R such that R� is not treed. Indeed, consider
any analytically unramified one-dimensional local integral domain R. Trivially, R is
a divided ring. Moreover, as recalled in the Introduction, R� inherits the “quasilocal”
condition from R. Therefore, by also arranging that R is not analytically irreducible
(for instance, takingR as in the examples in [9, pp. 54–55]), we see from Corollary 2.2
and Proposition 2.1 that R� is not treed.
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Our next result shows that the property involving a uniform bound that was men-
tioned in the hypothesis of Proposition 2.3 ascends and descends in the context of a
certain pullback, namely, the “Spec.R/ D Spec.T /” context of [1]. First, for n 2 N, it
is convenient to say that a ring R has property �n if, for all elements a; b 2 R, either
ajb or bjan. It is clear that if a ring R satisfies �n for some n 2 N, then R satisfies �m
for all m � n.


Proposition 2.6. LetR � T be quasilocal rings with common maximal idealM . Then:


(a) If R satisfies �n, then T satisfies �n.


(b) If T satisfies �1, then R satisfies �2.


(c) If T satisfies �n for some n � 2, then R satisfies �n.


Proof. (a) The assertion is clear because R and T have the same set of nonunits.
(b) Suppose that T satisfies �1, and let a; b 2 R. We need to show that either ajb


in R or bja2 in R. Without loss of generality, neither a nor b is a unit; thus, a; b 2M .
Suppose that a−b in R. We show that bja2 in R. There are two cases.


In the first case, ajb in T . Then b D ax for some x 2 T n R. Since M � R, we
conclude that x is a unit of T . Then a D x�1b (in T ), and so a2 D .ax�1/b 2 Rb, as
ax�1 2M � R. In particular, bja2 in R.


In the remaining case, a−b in T . Then, by hypothesis, bja in T . Write by D a,
with y 2 T . It follows that a2 D b.ay/ and so, since ay 2 M � R, we have bja2 in
R, as desired.


(c) Suppose that T satisfies �n for some n � 2. As in the proof of (b), we must
show that if a; b 2 M , then either ajb in R or bjan in R. Suppose that a−b in R.
We show that bjan in R. If ajb in T , we can argue as in the proof of (b) to show that
bja2 in R, whence bjan in R. Thus, without loss of generality, a−b in T . Then, by
hypothesis, bjan in T . Write an D bx, with x 2 T . If x 2 R, we are done, and so we
may assume that x is a unit of T . Since n � 2, we have b D x�1an D .x�1an�1/a,
with .x�1an�1/ 2M � R. Thus, in the case to which we have reduced, it follows that
ajb (in T ), a contradiction. The proof is complete.


Proposition 2.7. Let T be an overring of an integral domainR. If Spec.R/ D Spec.T /
(as sets), then Spec.R�/ D Spec.T �/.


Proof. Without loss of generality R ¤ T . Then, by [1, Lemma 3.2], R and T are
quasilocal, with the same maximal ideal, say M . By a fact recalled in the Introduc-
tion, it follows that R� and T � are each quasilocal with unique maximal ideal M �.
Therefore, by [1, Proposition 3.8], Spec.R�/ D Spec.T �/.


Recall from [14] that a quasilocal domain .R;M/ is called a pseudo-valuation do-
main (PVD) if R has a (uniquely determined) valuation overring V such that V has
maximal ideal M ; equivalently, such that Spec.R/ D Spec.V / (as sets).


Corollary 2.8. If R is a PVD, then R� is a PVD.
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Proof. Since the ultrapower of a valuation domain is also a valuation domain, the result
follows by combining Proposition 2.7 and the second of the above characterizations
of PVDs.


The preceding result generalizes to arbitrary (commutative) rings. In the process
of proving this (see Proposition 2.9 below), we make contact with the following in-
teresting class of divided rings. Recall from [6] that a ring R is called a pseudo-
valuation ring (PVR) if Pa and Rb are comparable (with respect to inclusion) for
all P 2 Spec.R/ and a; b 2 R. An integral domain is a PVR if and only if it is a PVD.
Any PVR is a divided, hence quasilocal, ring. It was shown in [6] that a quasilocal ring
.R;M/ is a PVR if and only if, for all elements a; b 2 R, either ajb or bjam for each
m 2M .


Proposition 2.9. If R is a PVR, then R� is a PVR.


Proof. By the above remarks, R is quasilocal, say with maximal ideal M . There-
fore, R� is quasilocal, with maximal ideal M �. Consider arbitrary elements ˛ D
.an/n2N ; ˇ D .bn/n2N 2 R


� and � D .mn/n2N 2 M
�. Without loss of gener-


ality, the coordinates mn may be chosen so that mn 2 M for each n 2 N. Put
V WD ¹i 2 N j ai jbiº and W WD ¹i 2 N j bi jaimiº. Since R is a PVR, the last-
mentioned characterization of PVRs yields that V [ W D N. As U is an ultrafilter,
it follows that either V 2 U or W 2 U. In the first (resp., second) case, ˛jˇ (resp.,
ˇj˛�). Thus, either ˛jˇ or ˇj˛� for each � 2M �. In other words, R� is a PVR.


Recently, much attention has been paid to a certain class C of divided rings that
contains the class of PVRs. We next recall the definition of C and show that, unlike the
classes of Prüfer domains, valuation domains, PVDs and PVRs, C is not stable under
the passage from R to R�.


Recall that a prime idealP of a ringR is said to be divided (inR) ifP is comparable
(with respect to inclusion) to Rb for each b 2 R. A ring R is called a ˆ-pseudo-
valuation ring (ˆ-PVR) if Nil.R/ is a divided prime ideal of R and, for all a; b 2
R n Nil.R/, either ajb or bjan for all nonunits n of R. The following particularly
useful characterization of the ˆ-PVR concept appears in [5]. A ring R is a ˆ-PVR if
and only if Nil.R/ is a divided prime ideal of R and R=Nil.R/ is a PVD.


Example 2.10. There exists aˆ-PVR R such that R� is not aˆ-PVR. It can be further
arranged that Nil.R/ is a prime ideal of R but Nil.R�/ is not a prime ideal of R�. For
a construction of such, begin with any field K and set


R WD KŒX1; X2; : : : ; Xn; : : : �=.¹X
n
n ; XiXj j n; i; j 2 N; i ¤ j º/:


Notice that the images of the Xi ’s are nilpotent and generate the unique maximal ideal,
say M , of R. In particular, Nil.R/ D M 2 Spec.R/. It is then trivial via the above
criterion from [5] that R is a ˆ-PVR. To show that R� is not a ˆ-PVR, we produce
elements ˛ 2 Nil.R�/, ˇ 2 R� n Nil.R�/ such that ˇ−˛. Observe that the elements
˛ WD .X2; X3; X2; X3; : : :/ and ˇ WD .X1; X2; X3; : : : ; Xn; : : :/ have the asserted prop-
erties. Thus, Nil.R�/ is not a divided prime ideal of R�, and so R� is not a ˆ-PVR.
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It remains to verify that Nil.R�/ is not a prime ideal of R�. Consider the element
 WD .X2; X3; : : : ; Xn; : : : / 2 R


�. Evidently, ˇ D 0. We noted above that ˇ is not
nilpotent; and in the same way, one checks that  is not nilpotent. The verification is
complete.


In view of the unexpected behavior of Nil.R�/ in the preceding example, we devote
the final two results of this section to additional scrutiny of related behavior. We begin
by analyzing the behavior of “Rad” in the passage from R to R�.


Remark 2.11. Let J be an ideal of a ring R. Then Rad.J �/ � Rad.J /�, with equality
if and only if there exists n 2 N such that an 2 J for all a 2 Rad.J /. The proof is
similar to that of Proposition 2.1; see [19, Proposition 2.28].


Example 2.12. There exists a PVR, R, such that Nil.R/ is a prime ideal of R and
Nil.R�/ is a prime ideal of R�, but Nil.R�/ ¤ Nil.R/�. (By taking J WD 0 in the
preceding remark, one trivially has that Nil.S�/ � Nil.S/� for any ring S .) For a
construction, consider any rank one non-discrete valuation domain .D;M/. Choose
any nonzero element d 2 M ; then Rad.Dd/ D M . Then, of course, [6, Corollary
3] ensures that R WD D=Dd is a PVR, and so Nil.R/ is a prime (in fact, the unique
maximal) ideal of R. Moreover, by Proposition 2.9, R� is a PVR, and so Nil.R�/ is a
prime ideal of R�.


It remains to verify that Nil.R�/ ¤ Nil.R/�. Deny. Then, by the criterion in
Remark 2.11, there exists n 2 N such that an D 0 for all a 2 Rad.0/ D Nil.R/.
Therefore, for all m 2 M , we have mn 2 Dd . Letting v denote any (real-valued)
valuation associated to D, we infer the existence of d1 2 D such that


nv.m/ D v.mn/ D v.d1d/ D v.d1/C v.d/ � v.d/;


whence v.m/ � v.d/
n


, an absurdity since the non-discreteness of D guarantees the
existence of elements m 2 M with arbitrarily small (positive) v-value. This (desired)
contradiction completes the verification.


3 Ultrapowers of LPVDs


For the remainder of the paper, R will denote an integral domain. Recall from [12]
that R is called a locally pseudo-valuation domain (LPVD) if RP is a PVD for all P 2
Spec.R/ (equivalently, for all P 2 Max.R/). We will show that with an extra assump-
tion onR, the property of being an LPVD is inherited byR�. First, we need to describe
the maximal ideals of R�. In [23], a description of some of the maximal ideals of the
product T WD


Q
I R is given (an equivalent formulation is given in [20]). Furthermore,


it is shown in [23] that with an additional hypothesis, these are all the maximal ideals
of T . We next present that description here and then pass to considerations involving
the factor ring R�.


Let I denote the set of all functions from the index set I to the set of finite subsets of
Max.R/. For �; � 2 I, we say � � � (� is called a subfunction of � ) if �.i/ � �.i/ for
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all i 2 I . For � � � 2 I, we define � n� to be the function given by �.i/n�.i/ for each
i 2 I . Also, we define the functions � _ � (resp., � ^ �) via .� _ �/.i/ WD �.i/[ �.i/
(resp., .� ^ �/.i/ WD �.i/ \ �.i/) for each i 2 I . Finally, the blank function ˆ is
defined by ˆ.i/ WD ¿ for each i 2 I . Now, consider a fixed element � 2 I. The set
of subfunctions of � forms a Boolean algebra with � as 1, ˆ as 0, and the complement
of � � � is �0 D � n �. Therefore, it makes sense to talk about ultrafilters on the
set of subfunctions of � . In particular, by an ultrafilter on � , we mean a collection of
functions F � ¹� j � � �º such that:


� � 2 F and ˆ 62 F ;


� If � 2 F and � � � , then � 2 F ;


� If �; � 2 F , then � ^ � 2 F ;


� If � is an element of the Boolean algebra of subfunctions of � , then either � 2 F
or �0 2 F .


If F is an ultrafilter on � , then by a standard argument, one can show that if �_� 2 F ,
then either � 2 F or � 2 F .


For a D .ai /i2I 2 T , we can obtain an interesting subfunction of � by defining
�a.i/ WD ¹P 2 �.i/ j ai 2 P º. Now, consider any ultrafilter F on � . Set .F / WD
¹a 2 T j �a 2 F º. As shown in [17] or [23], .F / is a maximal ideal of T . Moreover,
if each nonzero element of R is contained in only finitely many maximal ideals of R
(such rings R are said to have finite character), then these .F /’s are all the maximal
ideals of T [23, Theorem 1.2].


It is well known that for a (commutative) ring S , each P 2 Spec.S/ induces an
ultrafilter UP on the Boolean algebra of idempotents of S via: e 2 UP if and only if
1 � e 2 P . Furthermore, it is easy to see that if P � Q are elements of Spec.S/, then
UP � UQ; hence, since UP and UQ are maximal filters, we have UP D UQ. Now
if (as above) T WD


Q
I R, where R is an integral domain, then the Boolean algebra


of idempotents of T is isomorphic to the Boolean algebra of subsets of I . Thus, each
prime ideal P of T determines an ultrafilter UP on (the Boolean algebra of subsets of)
I . In particular, UP WD ¹A � I j 1 � eA 2 P º, where eA denotes the characteristic
function on A.


Conversely, given an ultrafilter U on (the Boolean algebra of subsets of) I , one can
construct an ideal PU � T by setting PU WD .¹1 � eA j A 2 Uº/. Observe that if
.ai / 2 T , then .ai /.1 � eA/ D .ai /, where A WD Z.ai /. Thus PU is the ideal of
relations that defines the ultrapower R� and so T=PU D R�. Therefore, if R is an
integral domain, PU is a prime ideal of T . Furthermore, one sees that UPU


D U and
PUP


� P . Hence the assignment U 7! PU defines a bijection between the set of
ultrafilters on I and Min.T /.


In addition, we claim that eachQ 2 Spec.T / contains a unique minimal prime ideal
P . Suppose the claim is false, and takeQ 2 Spec.T / such thatQ contains two distinct
minimal prime ideals P1 and P2. Since each minimal prime ideal of T is generated by
idempotents, there exists an idempotent e 2 P1 n P2. Therefore 1 � e 2 P2, whence
1 D e C .1 � e/ 2 Q, a contradiction, thus proving the claim.
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Furthermore, suppose Q 2 Spec.T /, and let P denote the unique minimal prime
ideal of T that is contained in Q. Then, since the only idempotents in a local ring
are 0 and 1, it follows that PTQ D 0. Hence, there are canonical isomorphisms
TQ Š TQ=PTQ Š .T=P /Q=P .


Now, we return to ultrapowers of an integral domain R with respect to an ultrafilter
U on I . As noted above, R� D T=PU. Therefore, to examine the localization of
R� at an arbitrary maximal ideal, it suffices, by the preceding remarks, to consider the
localization of T at a suitable maximal ideal. First, we need the following technical
lemma.


Lemma 3.1. Let F be an ultrafilter on � 2 I and let � 2 F . Let M WD .F / be the
maximal ideal determined by F and put U WD UM . Then there exists W 2 U such
that �.i/ ¤ ¿ for all i 2 W .


Proof. Partition the set I into V WD ¹i 2 I j �.i/ D ¿º and W WD I n V . Observe
that �eV


� � 2 F , whence �eV
2 F . Thus, eV 2 M D .F /. Since U D UM , it


follows that W 2 U, and the result is proved.


Before moving on to our result for LPVDs, we give some general definitions. Let
R be a ring with a; b 2 R and let S be a multiplicative subset of R. We say that a
divides b with respect to S if the image of a divides the image of b in the ringRS . This
is equivalent to saying that there exists r 2 R and s 2 S such that ar D bs. Note that
if X is any finite subset of Max.R/, then a divides b with respect to all R n P for all
P 2 X if and only if a divides b with respect to R n [P2XP .


Theorem 3.2. Let R be an LPVD and let .F / be the maximal ideal of T determined
by an ultrafilter F on some � . Then T.F / is a PVD.


Proof. Let M D .F /. To show that TM is a PVD, we must show that given any two
elements ˛; ˇ 2 M , either ˛ divides ˇ with respect to T nM or ˇ divides ˛m with
respect to T nM for all m 2M (cf. [6]).


Let ˛ D .ai /i2I and ˇ D .bi /i2I be elements of M . Thus the element �˛ ^ �ˇ is
in F . Define � � �˛ ^ �ˇ by �.i/ WD ¹P 2 .�˛ ^ �ˇ /.i/ j ai divides bi with respect
to R n P º. Set � WD .�˛ ^ �ˇ / n � .


Since F is an ultrafilter, either � 2 F or � 2 F . First, assume the former. In
this case, we claim that ˛ divides ˇ with respect to T nM . To see this, note that by
Lemma 3.1, there exists W 2 U such that for all i 2 W , �.i/ ¤ ¿. Furthermore,
from the definition of � , it follows that for each i 2 W , there exists ri 2 R and
si 2 R n [P2�.i/P such that airi D bisi . For all i 2 I n W , let ri WD si WD 1. Use
this data to define two elements of R�, namely, r WD .ri / and s WD .si /. It follows that
˛r D ˇs. However, it is also clear from the definition that s 62 M , thus proving the
claim.


In the remaining case, we can assume that � 2 F . Let m WD .mi /i2I 2 M . It
suffices to show that ˇ divides ˛m with respect to T nM . Since �m 2 F , we have
�m ^ � 2 F . Therefore, it again follows from Lemma 3.1 that there exists W 2 U
such that for all i 2 W; .�m ^ �/.i/ ¤ ¿. Also from the definition of �, ai does not
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divide bi with respect to R n P for any P 2 .�m ^ �/.i/. Therefore, since R is an
LPVD, we have that for each i 2 W , there exist si 2 R n [P2.�m^�/.i/P and ri 2 R
such that miaisi D biri . For all other i , set ri WD si WD 1. Thus, s WD .si / 2 T nM ,
r WD .ri / 2 T , and m˛s D ˇr . The last equation is the statement that ˇ divides ˛m
with respect to T nM , as desired.


Corollary 3.3. Let R be an LPVD with finite character. Then any ultrapower R� is
also an LPVD.


Proof. Since R has finite character, it follows from [23, Theorem 1.2] that each maxi-
mal ideal of R� is the image of a maximal ideal of T of the form .F /. Thus, the result
follows directly from Theorem 3.2.


We close with two observations. First, the “locally divided” analogue of the pre-
ceding result is false. Indeed, Examples 2.4 and 2.5 each show that if R is a quasilocal
locally divided integral domain (necessarily of finite character), in other words a di-
vided domain, then R� need not be locally divided. Second, we do not know whether
Corollary 3.3 remains valid if one deletes the “finite character” hypothesis.
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On rings with divided nil ideal: a survey


Ayman Badawi


Abstract. Let R be a commutative ring with 1 6D 0 and Nil.R/ be its set of nilpotent elements.
Recall that a prime ideal of R is called a divided prime if P � .x/ for every x 2 R n P ; thus a
divided prime ideal is comparable to every ideal of R. In many articles, the author investigated the
class of rings H D ¹R j R is a commutative ring and Nil.R/ is a divided prime ideal ofRº (Observe
that if R is an integral domain, then R 2 H .) If R 2 H , then R is called a �-ring. Recently, David
Anderson and the author generalized the concept of PrRufer domains, Bezout domains, Dedekind
domains, and Krull domains to the context of rings that are in the class H . Also, Lucas and the
author generalized the concept of Mori domains to the context of rings that are in the class H . In
this paper, we state many of the main results on �-rings.


Keywords. Prüfer ring, �-Prüfer ring, Dedekind ring, �-Dedekind ring, Krull ring, �-Krull ring,
Mori ring, �-Mori ring, divided ring.
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1 Introduction


Let R be a commutative ring with 1 6D 0 and Nil.R/ be its set of nilpotent elements.
Recall from [26] and [7] that a prime ideal of R is called a divided prime if P � .x/
for every x 2 R n P ; thus a divided prime ideal is comparable to every ideal of R.
In [6], [8], [9], [10], and [11], the author investigated the class of rings H D ¹R j R
is a commutative ring and Nil.R/ is a divided prime ideal of Rº. (Observe that if R
is an integral domain, then R 2 H .) If R 2 H , then R is called a �-ring. Recently,
David Anderson and the author, [3] and [4], generalized the concept of PrRufer, Bezout
domains, Dedekind domains, and Krull domains to the context of rings that are in the
class H . Also, Lucas and the author, [17], generalized the concept of Mori domain to
the context of rings that are in the class H . Yet, another paper by Dobbs and the author
[14] investigated going-down �-rings. In this paper, we state many of the main results
on �-rings.


We assume throughout that all rings are commutative with 1 6D 0. Let R be a
ring. Then T .R/ denotes the total quotient ring of R, and Z.R/ denotes the set of
zerodivisors of R. We start by recalling some background material. A non-zerodivisor
of a ring R is called a regular element and an ideal of R is said to be regular if it
contains a regular element. An ideal I of a ring R is said to be a nonnil ideal if
I 6� Nil.R/. If I is a nonnil ideal of a ring R 2 H , then Nil.R/ � I . In particular,
this holds if I is a regular ideal of a ring R 2 H .


Recall from [6] that for a ring R 2 H with total quotient ring T .R/, the map
� : T .R/ �! RNil.R/ such that �.a=b/ D a=b for a 2 R and b 2 R n Z.R/ is
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a ring homomorphism from T .R/ into RNil.R/, and � restricted to R is also a ring
homomorphism from R into RNil.R/ given by �.x/ D x=1 for every x 2 R. Ob-
serve that if R 2 H , then �.R/ 2 H , Ker.�/ � Nil.R/, Nil.T .R// D Nil.R/,
Nil.RNil.R// D �.Nil.R// D Nil.�.R// D Z.�.R//, T .�.R// D RNil.R/ is quasilo-
cal with maximal ideal Nil.�.R//, and RNil.R/=Nil.�.R// D T .�.R//=Nil.�.R// is
the quotient field of �.R/=Nil.�.R//.


Recall that an ideal I of a ring R is called a divisorial ideal of R if .I�1/�1 D I ,
where I�1 D ¹x 2 T .R/ j xI � Rº. If a ring R satisfies the ascending chain
condition (a.c.c.) on divisorial regular ideals of R, then R is called a Mori ring in the
sense of [46]. An integral domain R is called a Dedekind domain if every nonzero
ideal of R is invertible, i.e., if I is a nonzero ideal of R, then II�1 D R. If every
finitely generated nonzero ideal I of an integral domain R is invertible, then R is said
to be a Prüfer domain. If every finitely generated regular ideal of a ring R is invertible,
then R is said to be a Prüfer ring. If R is an integral domain and x�1 2 R for each
x 2 T .R/ n R, then R is called a valuation domain. Also, recall from [29] that an
integral domain R is called a Krull domain if R D \Vi , where each Vi is a discrete
valuation overring of R, and every nonzero element of R is a unit in all but finitely
many Vi . Many characterizations and properties of Dedekind and Krull domains are
given in [29], [30], and [40]. Recall from [32] that an integral domain R with quotient
field K is called a pseudo-valuation domain (PVD) in case each prime ideal of R is
strongly prime in the sense that xy 2 P , x 2 K, y 2 K implies that either x 2 P
or y 2 P . Every valuation domain is a pseudo-valuation domain. In [13], Anderson,
Dobbs and the author generalized the concept of pseudo-valuation rings to the context
of arbitrary rings. Recall from [13] that a prime ideal P of R is said to be strongly
prime if either aP � bR or bR � aP for all a; b 2 R. A ring R is said to be a
pseudo-valuation ring (PVR) if every prime ideal of R is a strongly prime ideal of R.


Throughout the paper, we will use the technique of idealization of a module to
construct examples. Recall that for an R-module B , the idealization of B over R is the
ring formed from R � B by defining addition and multiplication as .r; a/ C .s; b/ D
.r C s; a C b/ and .r; a/.s; b/ D .rs; rb C sa/, respectively. A standard notation for
the “idealized ring” is R.C/B . See [38] for basic properties of these rings.


2 �-pseudo-valuation rings and �-chained rings


In [6], the author generalized the concept of pseudo-valuation domains to the context
of rings that are in H . Recall from [6] that a ring R 2 H is said to be a �-pseudo-
valuation ring (�-PVR) if every nonnil prime ideal of R is a �-strongly prime ideal of
�.R/, in the sense that xy 2 �.P /, x 2 RNil.R/ , y 2 RNil.R/ (observe that RNil.R/ D


T .�.R/// implies that either x 2 �.P / or y 2 �.P /. We state some of the main
results on �-pseudo-valuation rings.


Theorem 2.1 ([8, Proposition 2.1]). Let D be a PVD and suppose that P;Q are prime
ideal of D such that P is properly contained in Q. Let d � 1 and choose x 2 D such
that Rad.xD/ D P . Then J D xdC1DQ is an ideal of D and hence D=J is a PVR
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with the following properties:


(i) Nil.R/ D P=J and xd 62 J ;


(ii) Z.R/ D Q=J .


Theorem 2.2 ([8, Corollary 2.7]). Let d � 2;D; P;Q; x; J , and R be as in Theorem
2.1. Set B D RNil.R/. Then the idealization ring R.C/B is a �-PVR that is not a PVR.


Theorem 2.3 ([10, Proposition 2.9], also see [23, Theorem 3.1]). Let R 2 H . Then R
is a �-PVR if and only if R=Nil.R/ is a PVD.


Recall from [9] that a ring R 2 H is said to be a �-chained ring (�-CR) if for each
x 2 RNil.R/ n �.R/ we have x�1 2 �.R/. A ring A is said to be a chained ring if for
every a; b 2 A, either a j b (in A) or b j a (in A).


Theorem 2.4 ([9, Corollary 2.7]). Let d � 2, D be a valuation domain, P;Q; x; J;R
be as in Theorem 2.1. Then R D D=J is a chained ring. Furthermore, if B D RNil.R/,
then the idealization ring R.C/B is a �-CR that is not a chained ring.


Theorem 2.5 ([9, Proposition 3.3]). Let R 2 H be a quasi-local ring with maximal
ideal M such that M contains a regular element of R . Then R is a �-PVR if and only
if .M WM/ D ¹x 2 T .R/ j xM �M º is a �-CR with maximal ideal M .


Theorem 2.6 ([3, Theorem 2.7]). Let R 2 H . Then R is a �-CR if and only if
R=Nil.R/ is a valuation domain.


Recall that B is said to be an overring of a ring A if B is a ring between A and
T .A/.


Theorem 2.7 ([10, Corrollary 3.17]). Let R 2 H be a �-PVR with maximal ideal M .
The following statements are equivalent:


(i) Every overring of R is a �-PVR;


(ii) RŒu� is a �-PVR for each u 2 .M WM/ nR;


(iii) RŒu� is quasi-local for each u 2 .M WM/ nR;


(iv) If B is an overring of R and B � .M W M/, then B is a �-PVR with maximal
ideal M ;


(v) If B is an overring of R and B � .M WM/, then B is quasi-local;


(vi) Every overring of R is quasi-local;


(vii) Every �-CR between R and T .R/ other than .M W M/ is of the form RP for
some non-maximal prime ideal P of R;


(viii) R0 D .M WM/ (where R0 is the integral closure of R inside T .R/).
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3 Nonnil Noetherian rings (�-Noetherian rings)


Recall that an ideal I of a ringR is said to be a nonnil ideal if I 6� Nil.R/. LetR 2 H .
Recall from [11] that R is said to be a nonnil-Noetherian ring or just a �-Noetherian
ring as in [16] if each nonnil ideal of R is finitely generated. We have the following
results.


Theorem 3.1 ([11, Corollary 2.3]). Let R 2 H . If every nonnil prime ideal of R is
finitely generated, then R is a �-Noetherian ring.


Theorem 3.2 ([11, Theorem 2.4]). Let R 2 H . The following statements are equiva-
lent:


(i) R is a �-Noetherian ring;


(ii) R=Nil.R/ is a Noetherian domain;


(iii) �.R/=Nil.�.R// is a Noetherian domain;


(iv) �.R/ is a �-Noetherian ring.


Theorem 3.3 ([11, Theorem 2.6]). Let R 2 H . Suppose that each nonnil prime ideal
of R has a power that is finitely generated. Then R is a �-Noetherian ring.


Theorem 3.4 ([11, Theorem 2.7]). LetR 2 H . Suppose thatR is a �-Noetherian ring.
Then any localization of R is a �-Noetherian ring, and any localization of �.R/ is a
�-Noetherian ring.


Theorem 3.5 ([11, Theorem 2.9]). Let R 2 H . Suppose that R satisfies the ascending
chain condition on the nonnil finitely generated ideals. Then R is a �-Noetherian ring.


Theorem 3.6 ([11, Theorem 3.4]). LetR be a Noetherian domain with quotient fieldK
such that dim.R/ D 1 andR has infinitely many maximal ideals. ThenD D R.C/K 2
H is a �-Noetherian ring with Krull dimension one which is not a Noetherian ring. In
particular, Z.C/Q is a �-Noetherian ring with Krull dimension one which is not a
Noetherian ring (where Z is the set of all integer numbers with quotient field Q).


Theorem 3.7 ([11, Theorem 3.5]). LetR be a Noetherian domain with quotient fieldK
and Krull dimension n � 2. ThenD D R.C/K 2 H is a �-Noetherian ring with Krull
dimension n which is not a Noetherian ring. In particular, if K is the quotient field of
R D ZŒx1; : : : ; xn�1�, then R.C/K is a �-Noetherian ring with Krull dimension n
which is not a Noetherian ring.


In the following result, we show that a �-Noetherian ring is related to a pullback of
a Noetherian domain.







On rings with divided nil ideal: a survey 25


Theorem 3.8 ([16, Theorem 2.2]). Let R 2 H . Then R is a �-Noetherian ring if
and only if �.R/ is ring-isomorphic to a ring A obtained from the following pullback
diagram:


A �! S D A=M


# #


T �! T=M


where T is a zero-dimensional quasilocal ring containing A with maximal ideal M ,
S D A=M is a Noetherian subring of T=M , the vertical arrows are the usual inclusion
maps, and the horizontal arrows are the usual surjective maps.


Theorem 3.9 ([16, Proposition 2.4]). LetR 2 H be a �-Noetherian ring and let I ¤ R
be an ideal of R. If I � Nil.R/, then R=I is a �-Noetherian ring. If I 6� Nil.R/, then
Nil.R/ � I and R=I is a Noetherian ring. Moreover, if Nil.R/ � I , then R=I is both
Noetherian and �-Noetherian if and only if I is either a prime ideal or a primary ideal
whose radical is a maximal ideal.


Theorem 3.10 ([16, Corollary 2.5]). Let R 2 H be a �-Noetherian ring. Then a
homomorphic image of R is either a �-Noetherian ring or a Noetherian ring.


Our next result shows that a �-Noetherian ring satisfies the conclusion of the Prin-
cipal Ideal Theorem (and the Generalized Principal Ideal Theorem).


Theorem 3.11 ([16, Theorem 2.7]). Let R 2 H be a �-Noetherian ring and let P be a
prime ideal. If P is minimal over an ideal generated by n or fewer elements, then the
height of P is less than or equal to n. In particular, each prime minimal over a nonnil
element of R has height one.


Other statements about primes of Noetherian rings that can be easily adapted to
statements about primes of �-Noetherian rings include the following.


Theorem 3.12 ([16, Proposition 2.8] and [40, Theorem 145]). Let R 2 H satisfy the
ascending chain condition on radical ideals. If R has an infinite number of prime
ideals of height one, then their intersection is Nil.R/.


Theorem 3.13 ([16, Proposition 2.9]). Let R 2 H be a �-Noetherian ring and P be
a nonnil prime ideal of R of height n. Then there exist nonnil elements a1; : : : ; an in
R such that P is minimal over the ideal .a1; : : : ; an/ of R, and for any i (1 � i � n),
every (nonnil) prime ideal of R minimal over .a1; : : : ; ai / has height i .


Theorem 3.14 ([16, Proposition 2.10]). Let R 2 H be a �-Noetherian ring and let I
be an ideal of R generated by n elements with I ¤ R. If P is a prime ideal containing
I with P=I of height k, then the height of P is less than or equal to nC k.


Theorem 3.15 ([16, Proposition 3.1]). Let R 2 H be a �-Noetherian ring and let P
be a height n prime of R. If Q is a prime of RŒx� that contracts to P but properly
contains PRŒx�, then PRŒx� has height n and Q has height nC 1.
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Similar height restrictions exist for the primes of RŒx1; : : : ; xm�.


Theorem 3.16 ([16, Proposition 3.2]). LetR 2 H be a �-Noetherian ring and let P be
a height n prime ofR. IfQ is a prime ofRŒx1; : : : ; xm� that contracts to P but properly
contains PRŒx1; : : : ; xm�, then PRŒx1; : : : ; xm� has height n and Q has height at most
nCm. Moreover the prime PRŒx1; : : : ; xm�C .x1; : : : ; xm/RŒx1; : : : ; xm� has height
nCm.


Theorem 3.17 ([16, Corollary 3.3]). If R is a finite dimensional �-Noetherian ring of
dimension n, then dim.RŒx1; : : : ; xm�/ D nCm for each integer m > 0.


In our next result, we show that each ideal of RŒx� that contracts to a nonnil ideal
of R is finitely generated.


Theorem 3.18 ([16, Proposition 3.4]). Let R 2 H be a �-Noetherian ring. If I is an
ideal of RŒx1; : : : ; xn� for which I \ R is not contained in Nil.R/, then I is a finitely
generated ideal of RŒx1; : : : ; xn�.


Since three distinct comparable primes of RŒx� cannot contract to the same prime
of R, a consequence of Theorem 3.18 is that the search for primes of RŒx� that are not
finitely generated can be restricted to those of height one. A similar statement can be
made for primes of RŒx1; : : : ; xn�.


Theorem 3.19 ([16, Corollary 3.5]). Let R 2 H be a �-Noetherian ring and let P be
a prime of RŒx1; : : : ; xn�. If P has height greater than n, then P is finitely generated.


The ring in our next example shows that the converse of Theorem 3.18 does not
hold even for prime ideals.


Example 3.20 ([16, Example 3.6]). Let R D D.C/L be the idealization of L D
K..y//=D over D D KŒŒy��. Then R is a quasilocal �-Noetherian ring with nil-
radical Nil.R/ isomorphic to L. Consider the polynomial g.x/ D 1 � yx. Since the
coefficients of g generate D as an ideal and g is irreducible, P D gDŒx� is a height-
one principal prime of DŒx� with P \ D D .0/. Each nonzero element of L can be
written in the form d=yn where n is a positive integer, y denotes the image of y in
L and d D d0 C d1y C � � � C dn�1y


n�1 with d0 ¤ 0. Given such an element, let
f .x/ D 1 C yx C � � � C yn�1xn�1 2 LŒx�. Then g.x/.df .x/=yn/ D d=yn since
dyn=yn D 0 in L. It follows that g.x/RŒx� is a height-one principal prime of RŒx�
that contracts to Nil.R/.


4 �-Prüfer rings and �-Bezout rings


We say that a nonnil ideal I of R is �-invertible if �.I / is an invertible ideal of �.R/.
Recall from [3] that R is called a �-PrRufer ring if every finitely generated nonnil ideal
of R is �-invertible.
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Theorem 4.1 ([3, Corollary 2.10]). Let R 2 H . Then the following statements are
equivalent:


(i) R is a �-Prüfer ring;


(ii) �.R/ is a Prüfer ring;


(iii) �.R/=Nil.�.R// is a Prüfer domain;


(iv) RP is a �-CR for each prime ideal P of R;


(v) RP =Nil.RP / is a valuation domain for each prime ideal P of R;


(vi) RM=Nil.RM / is a valuation domain for each maximal ideal M of R;


(vii) RM is a �-CR for each maximal ideal M of R.


Theorem 4.2 ([3, Theorem 2.11]). Let R 2 H be a �-Prüfer ring and let S be a �-
chained overring of R. Then S D RP for some prime ideal P of R containing Z.R/.


The following is an example of a ring R 2 H such that R is a Prüfer ring, but R is
not a �-Prüfer ring.


Example 4.3 ([3, Example 2.15]). Let n � 1 and let D be a non-integrally closed
domain with quotient field K and Krull dimension n. Set R D D.C/.K=D/. Then
R 2 H and R is a Prüfer ring with Krull dimension n which is not a �-Prüfer ring.


Theorem 4.4 ([3, Theorem 2.17]). Let R 2 H . Then R is a �-Prüfer ring if and only
if every overring of �.R/ is integrally closed.


Example 4.5 ([3, Example 2.18]). Let n � 1 and let D be a Prüfer domain with quo-
tient fieldK and Krull dimension n. SetR D D.C/K. ThenR 2 H is a (non-domain)
�-Prüfer ring with Krull dimension n.


Recall from [21] that a ring R is said to be a pre-Prüfer ring if R=I is a Prüfer ring
for every nonzero proper ideal I of R.


Theorem 4.6 ([3, Theorem 2.19]). Let R 2 H such that Nil.R/ ¤ ¹0º. Then R is a
pre-Prüfer ring if and only if R is a �-Prüfer ring.


The following example shows that the hypothesis Nil.R/ ¤ ¹0º in Theorem 4.6 is
crucial.


Example 4.7 ([3, Example 2.20] and [42, Example 2.9]). Let D be a Prüfer domain
with quotient field F . For indeterminates X; Y , let K D F.Y / and let V be the
valuation domainKCXKŒŒX��. Then V is one-dimensional with maximal idealM D
XKŒŒX��. Set R D D CM . Then Nil.R/ D ¹0º, and R is a pre-Prüfer ring (domain)
which is not a Prüfer ring (domain). Hence R is not a �-Prüfer ring.
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Recall from [3] that a ringR 2 H is said to be a �-Bezout ring if �.I / is a principal
ideal of �.R/ for every finitely generated nonnil ideal I of R. A �-Bezout ring is a
�-Prüfer ring, but of course the converse is not true. A ring R is said to be a Bezout
ring if every finitely generated regular ideal of R is principal.


Theorem 4.8 ([3, Corollary 3.5]). Let R 2 H . Then the following statements are
equivalent:


(i) R is a �-Bezout ring;


(ii) R=Nil.R/ is a Bezout domain;


(iii) �.R/=Nil.�.R// is a Bezout domain;


(iv) �.R/ is a Bezout ring;


(v) Every finitely generated nonnil ideal of R is principal.


Theorem 4.9 ([3, Theorem 3.9]). Let R 2 H be quasi-local. Then R is a �-CR if and
only if R is a �-Bezout ring.


Example 4.10 ([3, Example 3.8]). Let n � 1 and let D be a Bezout domain with
quotient field K and Krull dimension n. Set R D D.C/K. Then R 2 H is a (non-
domain) �-Bezout ring with Krull dimension n.


5 �-Dedekind rings


Let R 2 H . We say that a nonnil ideal I of R is �-invertible if �.I / is an invertible
ideal of �.R/. If every nonnil ideal of R is �-invertible, then we say that R is a �-
Dedekind ring.


Theorem 5.1 ([4, Theorem 2.6]). Let R 2 H . Then R is a �-Dedekind ring if and only
if �.R/ is ring-isomorphic to a ring A obtained from the following pullback diagram:


A �! A=M


# #


T �! T=M


where T is a zero-dimensional quasilocal ring with maximal ideal M , A=M is a
Dedekind subring of T=M , the vertical arrows are the usual inclusion maps, and the
horizontal arrows are the usual surjective maps.


Example 5.2 ([4, Example 2.7]). Let D be a Dedekind domain with quotient field K,
and let L be an extension ring of K. Set R D D.C/L. Then R 2 H and R is a
�-Dedekind ring which is not a Dedekind domain.


We say that a ring R 2 H is �-(completely) integrally closed if �.R/ is (com-
pletely) integrally closed in T .�.R// D RNil.R/. The following characterization of
�-Dedekind rings resembles that of Dedekind domains as in [40, Theorem 96].
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Theorem 5.3 ([4, Theorem 2.10]). Let R 2 H . Then the following statements are
equivalent:


(i) R is �-Dedekind;


(ii) R is nonnil-Noetherian (�-Noetherian), �-integrally closed, and of dimension
� 1;


(iii) R is nonnil-Noetherian and RM is a discrete �-chained ring for each maximal
ideal M of R.


A ring R is said to be a Dedekind ring if every nonzero ideal of R is invertible.


Theorem 5.4 ([4, Theorem 2.12]). Let R 2 H be a �-Dedekind ring. Then R is a
Dedekind ring.


The following is an example of a ring R 2 H which is a Dedekind ring but not a
�-Dedekind ring.


Example 5.5 ([4, Example 2.13]). Let D be a non-Dedekind domain with (proper)
quotient field K. Set R D D.C/K=D. Then R 2 H and R D T .R/. Hence R is a
Dedekind ring. Since R=Nil.R/ is ring-isomorphic to D, R is not a �-Dedekind ring
by [4, Theorem 2.5].


It is well known that an integral domain R is a Dedekind domain iff every nonzero
proper ideal of R is (uniquely) a product of prime ideals of R. We have the following
result.


Theorem 5.6 ([4, Theorem 2.15]). Let R 2 H . Then R is a �-Dedekind ring if and
only if every nonnil proper ideal of R is (uniquely) a product of nonnil prime ideals of
R.


Theorem 5.7 ([4, Theorem 2.16]). Let R 2 H . Then the following statements are
equivalent:


(i) R is a �-Dedekind ring;


(ii) Each nonnil proper principal ideal aR can be written in the form aR D


Q1 � � �Qn, where each Qi is a power of a nonnil prime ideal of R and the Qi ’s
are pairwise comaximal;


(iii) Each nonnil proper ideal I of R can be written in the form I D Q1 � � �Qn,
where each Qi is a power of a nonnil prime ideal of R and the Qi ’s are pairwise
comaximal.


Theorem 5.8 ([4, Theorem 2.20]). Let R 2 H . Then the following statements are
equivalent:


(i) R is a �-Dedekind ring;


(ii) Each nonnil prime ideal of R is �-invertible;


(iii) R is a nonnil-Noetherian ring and each nonnil maximal ideal ofR is �-invertible.
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Theorem 5.9 ([4, Theorem 2.23]). Let R 2 H be a �-Dedekind ring. Then every
overring of R is a �-Dedekind ring.


6 Factoring nonnil ideals into prime and invertible ideals


In this section, we give a generalization of the concept of factorization of ideals of an
integral domain into a finite product of invertible and prime ideals which was exten-
sively studied by Olberding [48] to the context of rings that are in the class H . Observe
that if R is an integral domain, then R 2 H . An ideal I of a ring R is said to be a
nonnil ideal if I 6� Nil.R/. Let R 2 H . Then R is said to be a �-ZPUI ring if each
nonnil ideal I of �.R/ can be written as I D JP1 � � �Pn, where J is an invertible ideal
of �.R/ and P1; : : : ; Pn are prime ideals of �.R/. If every nonnil ideal I of R can
be written as I D JP1 � � �Pn, where J is an invertible ideal of R and P1; : : : ; Pn are
prime ideals ofR, thenR is said to be a nonnil-ZPUI ring. Commutative �-ZPUI rings
that are in H are characterized in [12, Theorem 2.9]. Examples of �-ZPUI rings that
are not ZPUI rings are constructed in [12, Theorem 2.13]. It is shown in [12, Theorem
2.14] that a �-ZPUI ring is the pullback of a ZPUI domain. It is shown in [12, Theo-
rem 3.1] that a nonnil-ZPUI ring is a �-ZPUI ring. Examples of �-ZPUI rings that are
not nonnil-ZPUI rings are constructed in [12, Theorem 3.2]. We call a ring R 2 H a
nonnil-strongly discrete ring if R has no nonnil prime ideal P such that P 2 D P . A
ringR 2 H is said to be nonnil-h-local if each nonnil ideal ofR is contained in at most
finitely many maximal ideals of R and each nonnil prime ideal P of R is contained in
a unique maximal ideal of R.


Since the class of integral domains is a subset of H , the following result is a gener-
alization of [48, Theorem 2.3].


Theorem 6.1 ([12, Theorem 2.9]). Let R 2 H . Then the following statements are
equivalent:


(i) R is a �-ZPUI ring;


(ii) Every nonnil proper ideal of R can be written as a product of prime ideals of R
and a finitely generated ideal of R;


(iii) Every nonnil proper ideal of �.R/ can be written as a product of prime ideals of
�.R/ and a finitely generated ideal of �.R/;


(iv) R is a nonnil-strongly discrete nonnil-h-local �-Prüfer ring.


In the following result, we show that a nonnil-ZPUI ring is a �-ZPUI ring.


Theorem 6.2 ([12, Theorem 3.1]). Let R 2 H be a nonnil-ZPUI ring. Then R is a
�-ZPUI ring, and hence all the following statements hold:


(i) R=Nil.R/ is a ZPUI domain.


(ii) Every nonnil proper ideal of R can be written as a product of prime ideals of R
and a finitely generated ideal of R.
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(iii) Every nonnil proper ideal of �.R/ can be written as a product of prime ideals of
�.R/ and a finitely generated ideal of �.R/.


(iv) R is a nonnil-strongly discrete nonnil-h-local �-Prüfer ring.


(v) R is a nonnil-strongly discrete nonnil-h-local Prüfer ring.


Examples of �-ZPUI rings that are not nonnil-ZPUI rings are constructed in the
following result.


Theorem 6.3 ([12, Theorem 3.2]). Let A be a ZPUI domain that is not a Dedekind
domain with Krull dimension n � 1 and quotient field K. Then R D A.C/K=A 2 H
is a �-ZPUI ring with Krull dimension n which is not a nonnil-ZPUI ring.


Olberding in [48, Corollary 2.4] showed that for each n � 1, there exists a ZPUI
domain with Krull dimension n. A Dedekind domain is a trivial example of a ZPUI
domain. We have the following result.


Theorem 6.4 ([12, Theorem 2.13]). Let A be a ZPUI domain (i.e. A is a strongly
discrete h-local Prüfer domain by [48, Theorem2.3]) with Krull dimension n � 1 and
quotient field F , and let K be an extension ring of F (i.e. K is a ring and F � K).
Then R D A.C/K 2 H is a �-ZPUI ring with Krull dimension n that is not a ZPUI
ring.


In the following result, we show that a �-ZPUI ring is the pullback of a ZPUI
domain. A good paper for pullbacks is the article by Fontana [27].


Theorem 6.5 ([12, Theorem 2.14]). Let R 2 H . Then R is a �-ZPUI ring if and only
if �.R/ is ring-isomorphic to a ring A obtained from the following pullback diagram:


A �! A=M


# #


T �! T=M


where T is a zero-dimensional quasilocal ring with maximal idealM , A=M is a ZPUI
ring that is a subring of T=M , the vertical arrows are the usual inclusion maps, and
the horizontal arrows are the usual surjective maps.


7 �-Krull rings


We say that a ring R 2 H is a discrete �-chained ring if R is a �-chained ring with
at most one nonnil prime ideal and every nonnil ideal of R is principal. Recall from
[4] that a ring R 2 H is said to be a �-Krull ring if �.R/ D \Vi , where each Vi is a
discrete �-chained overring of �.R/, and for every nonnilpotent element x 2 R, �.x/
is a unit in all but finitely many Vi .


Theorem 7.1 ([4, Theorem 3.1]). Let R 2 H . Then R is a �-Krull ring if and only if
R=Nil.R/ is a Krull domain.







32 A. Badawi


We have the following pullback characterization of �-Krull rings.


Theorem 7.2 ([4, Theorem 3.2]). Let R 2 H . Then R is a �-Krull ring if and only if
�.R/ is ring-isomorphic to a ring A obtained from the following pullback diagram:


A �! A=M


# #


T �! T=M


where T is a zero-dimensional quasilocal ring with maximal idealM , A=M is a Krull
subring of T=M , the vertical arrows are the usual inclusion maps, and the horizontal
arrows are the usual surjective maps.


Example 7.3 ([4, Example 3.3]). Let D be a Krull domain with quotient field K, and
let L be a ring extension ofK. Set R D D.C/L. Then R 2 H and R is a �-Krull ring
which is not a Krull domain.


It is well known [29, Theorem 3.6] that an integral domain R is a Krull domain
if and only if R is a completely integrally closed Mori domain. We have a similar
characterization for �-Krull rings.


Theorem 7.4 ([4, Theorem 3.4]). Let R 2 H . Then R is a �-Krull ring if and only if
R is a �-completely integrally closed �-Mori ring.


Theorem 7.5 ([4, Theorem 3.5]). Let R 2 H be a �-Krull ring which is not zero-
dimensional. Then the following statements are equivalent:


(i) R is a �-Pr Rufer ring;


(ii) R is a �-Dedekind ring;


(iii) R is one-dimensional.


It is well known that if R is a Noetherian domain, then R0 is a Krull domain. In
particular, an integrally closed Noetherian domain is a Krull domain. We have the
following analogous result for nonnil-Noetherian rings.


Theorem 7.6 ([4, Theorem 3.6]). LetR 2 H be a nonnil-Noetherian ring. Then �.R/0


is a �-Krull ring. In particular, if R is a �-integrally closed nonnil-Noetherian ring,
then R is a �-Krull ring.


It is known [40, Problem 8, page 83] that if R is a Krull domain in which all prime
ideals of height � 2 are finitely generated, then R is a Noetherian domain. We have
the following analogous result for nonnil-Noetherian rings.


Theorem 7.7 ([4, Theorem 3.7]). Let R 2 H be a �-Krull ring in which all prime
ideals of R with height � 2 are finitely generated. Then R is a nonnil-Noetherian ring.
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For a ring R 2 H , let �R denotes the ring-homomorphism � W T .R/ �! RNil.R/.
It is well known [29, Proposition 1.9, page 8] that an integral domain R is a Krull
domain if and only if R satisfies the following three conditions:


(i) RP is a discrete valuation domain for every height-one prime ideal P of R;


(ii) R D \RP , the intersection being taken over all height-one prime ideals P of R;


(iii) Each nonzero element of R is in only a finite number of height-one prime ideals
of R, i.e., each nonzero element of R is a unit in all but finitely many RP , where
P is a height-one prime ideal of R.


The following result is an analog of [29, Proposition 1.9, page 8].


Theorem 7.8 ([4, Theorem 3.9]). Let R 2 H with dim.R/ � 1. Then R is a �-Krull
ring if and only if R satisfies the following three conditions:


(i) RP is a discrete �-chained ring for every height-one prime ideal P of R;


(ii) �R.R/ D \�RP .RP /, the intersection being taken over all height-one prime
ideals P of R;


(iii) Each nonnilpotent element of R lies in only a finite number of height-one prime
ideals of R, i.e., each nonnilpotent element of R is a unit in all but finitely many
RP , where P is a height-one prime ideal of R.


Recall that a ring R is called a Marot ring if each regular ideal of R is generated by
its set of regular elements. A Marot ring is called a Krull ring in the sense of [38, page
37] if either R D T .R/ or if there exists a family ¹Viº of discrete rank-one valuation
rings such that:


(i) R is the intersection of the valuation rings ¹Viº;


(ii) Each regular element of T .R/ is a unit in all but finitely many Vi .


The following is an example of a ringR 2 H which is a Krull ring but not a �-Krull
ring.


Example 7.9 ([4, Example 3.12]). LetD be a non-Krull domain with (proper) quotient
field K. Set R D D.C/K=D. Then R 2 H and R D T .R/. Hence R is a Krull ring.
Since R=Nil.R/ is ring-isomorphic to D, R is not a �-Krull ring by Theorem 7.1.


8 �-Mori rings


According to [46], a ringR is called a Mori ring if it satisfies a.c.c. on divisorial regular
ideals. Let R 2 H . A nonnil ideal I of R is �-divisorial if �.I / is a divisorial ideal of
�.R/, and R is a �-Mori ring if it satisfies a.c.c. on �-divisorial ideals.


The following is a characterization of �-Mori rings in terms of Mori rings in the
sense of [46].
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Theorem 8.1 ([17, Theorem 2.2]). Let R 2 H . Then R is a �-Mori ring if and only if
�.R/ is a Mori ring.


The following is a characterization of �-Mori rings in terms of Mori domains.


Theorem 8.2 ([17, Theorem 2.5]). Let R 2 H . Then R is a �-Mori ring if and only if
R=Nil.R/ is a Mori domain.


Theorem 8.3 ([17, Theorem 2.7]). LetR 2 H be a �-Mori ring. ThenR satisfies a.c.c.
on nonnil divisorial ideals of R. In particular, R is a Mori ring.


The converse of Theorem 8.3 is not valid as it can be seen by the following example.


Example 8.4 ([17, Example 2.8]). Let D be an integral domain with quotient field L
which is not a Mori domain and set R D D.C/.L=D/, the idealization of L=D over
D. Then R 2 H is a Mori ring which is not a �-Mori ring.


Example 8.18 shows how to construct a nontrivial Mori ring (i.e., where R ¤
T .R/) in H which is not �-Mori.


Theorem 8.5 ([17, Theorem 2.10]). Let R 2 H be a �-Noetherian ring. Then R is
both a �-Mori ring and a Mori ring.


Given a Krull domain of the formE D LCM , whereL is a field andM a maximal
ideal of E, any subfieldK of L gives rise to a Mori domainD D KCM . If L is not a
finite algebraic extension ofK, thenD cannot be Noetherian (see [19, Section 4]). We
make use of this in our next example to build a �-Mori ring which is neither an integral
domain nor a �-Noetherian.


Example 8.6 ([17, Example 2.11]). Let K be the quotient field of the ring D D


Q C XRŒŒX�� and set R D D.C/K, the idealization of K over D. It is easy to
see that Nil.R/ D ¹0º.C/K is a divided prime ideal of R. Hence R 2 H . Now
since R=Nil.R/ is ring-isomorphic toD andD is a Mori domain but not a Noetherian
domain, we conclude that R is a �-Mori ring which is not a �-Noetherian ring.


In light of Example 8.6, �-Mori rings can be constructed as in the following exam-
ple.


Example 8.7 ([17, Example 2.12]). LetD be a Mori domain with quotient fieldK and
let L be an extension ring of K. Then R D D.C/L, the idealization of L over D, is
in H . Moreover, R is a �-Mori ring since R=Nil.R/ is ring-isomorphic to D which is
a Mori domain.


The following result is a generalization of [54, Theorem 1]. An analogous result
holds for Mori rings when the chains under consideration are restricted to regular divi-
sorial ideals whose intersection is regular [46, Theorem 2.22].
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Theorem 8.8 ([17, Theorem 2.13]). Let R 2 H . Then R is a �-Mori ring if and only
if whenever ¹Imº is a descending chain of nonnil �-divisorial ideals of R such that
\ Im 6D Nil.R/, then ¹Imº is a finite set.


Let D be an integral domain with quotient field K. If I is an ideal of D, then
.D W I / D ¹x 2 K j xI � Dº. Mori domains can be characterized by the property
that for each nonzero ideal I , there is a finitely generated ideal J � I such that
.D W I / D .D W J / (equivalently, Iv D Jv) ([51, Theorem 1]). Our next result
generalizes this result to �-Mori rings.


Theorem 8.9 ([17, Theorem 2.14]). Let R 2 H . Then R is a �-Mori ring if and only
if for any nonnil ideal I of R, there exists a nonnil finitely generated ideal J , J � I ,
such that �.J /�1 D �.I /�1, equivalently, �.J /v D �.I /v .


In the following theorem we combine all of the different characterizations of �-
Mori rings stated in this section.


Theorem 8.10 ([17, Corollary 2.15]). Let R 2 H . The following statements are equiv-
alent:


(i) R is a �-Mori ring;


(ii) R=Nil.R/ is a Mori domain;


(iii) �.R/=Nil.�.R// is a Mori domain;


(iv) �.R/ is a Mori ring.


(v) If ¹Imº is a descending chain of nonnil �-divisorial ideals of R such that \ Im 6D
Nil.R/, then ¹Imº is a finite set;


(vi) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal J ,
J � I , such that �.J /�1 D �.I /�1;


(vii) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal J ,
J � I , such that �.J /v D �.I /v .


The following result is a generalization of [54, Theorem 5].


Theorem 8.11 ([17, Theorem 3.1]). Let R 2 H be a �-Mori ring and I be a nonzero
�-divisorial ideal of R. Then I contains a power of its radical.


We recall a few definitions regarding special types of ideals in integral domains.
For a nonzero ideal I of an integral domain D, I is said to be strong if II�1 D I ,
strongly divisorial if it is both strong and divisorial, and v-invertible if .II�1/v D D.
We will extend these concepts to the rings in H .


Let I be a nonnil ideal of a ring R 2 H . We say that I is strong if II�1 D I ,
�-strong if �.I /�.I /�1 D �.I /, strongly divisorial if it is both strong and divisorial,
strongly �-divisorial if it is both �-strong and �-divisorial, v-invertible if .II�1/v D R
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and �-v-invertible if .�.I /�.I /�1/v D �.R/. Obviously, I is �-strong, strongly �-
divisorial or �-v-invertible if and only if �.I / is, respectively, strong, strongly diviso-
rial or v-invertible.


In [51, Proposition 1], J. Querré proved that if P is a prime ideal of a Mori domain
D, then P is divisorial when it is height one. In the same proposition, he incorrectly
asserted that if the height of P is larger than one and P�1 properly containsD, then P
is strongly divisorial. While it is true that such a prime must be strong, a (Noetherian)
counterexample to the full statement can be found in [34]. What one can say is that Pv
will be strongly divisorial (see [5]).


Theorem 8.12 ([17, Theorem 3.3]). Let R 2 H be a �-Mori ring and P be a (nonnil)
prime ideal of R. If ht.P / D 1, then P is �-divisorial. If ht.P / � 2, then either
�.P /�1 D �.R/ or �.P /v is strongly divisorial.


For a �-Mori ring R 2 H , let Dm.R/ denote the maximal �-divisorial ideals of
R; i.e., the set of nonnil ideals of R maximal with respect to being �-divisorial. The
following result generalizes [25, Theorem 2.3] and [19, Proposition 2.1].


Theorem 8.13 ([17, Theorem 3.4]). Let R 2 H be a �-Mori ring such that Nil.R/ is
not the maximal ideal of R. Then the following hold:


(a) The set Dm.R/ is nonempty. Moreover, M 2 Dm.R/ if and only if M=Nil.R/ is
a maximal divisorial ideal of R=Nil.R/.


(b) Every ideal of Dm.R/ is prime.


(c) Every nonnilpotent nonunit element of R is contained in a finite number of maxi-
mal �-divisorial ideals.


As with a nonempty subset of R, a nonempty set of ideals S is multiplicative if (i)
the zero ideal is not contained in S, and (ii) for each I and J in S, the product IJ is
in S . Such a set S is referred to as a multiplicative system of ideals and it gives rise
to a generalized ring of quotients RS D ¹t 2 T .R/ j tI � R for some I 2 Sº. For
each prime ideal P , R.P / D ¹t 2 T .R/ j st 2 R for some s 2 RnP º D RS, where
S is the set of ideals (including R) that are not contained in P . Note that in general a
localization of a Mori ring need not be Mori (see Example 8.18 below). On the other
hand, if S is a multiplicative system of regular ideals, then RS is a Mori ring whenever
R is Mori ring ([46, Theorem 2.13]).


Theorem 8.14 ([17, Theorem 3.5], and [17, Theorem 2.2]). Let R be a �-Mori ring.
Then


(a) RS is a �-Mori ring for each multiplicative set S .


(b) RP is a �-Mori ring for each prime P .


(c) RS is a �-Mori ring for each multiplicative system of ideals S .


(d) R.P / is a �-Mori ring for each prime ideal P .
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One of the well-known characterizations of Mori domains is that an integral domain
D is a Mori domain if and only if (i)DM is a Mori domain for each maximal divisorial
ideal M , (ii) D D \DM where the M range over the set of maximal divisorial ideals
of D, and (iii) each nonzero element is contained in at most finitely many maximal
divisorial ideals ([52, Théorème 2.1] and [54, Théorème I.2]). A similar statement
holds for �-Mori rings. Note that in condition (ii), if D has no maximal divisorial
ideals, the intersection is assumed to be the quotient field of D. For the equivalence,
that means that D is its own quotient field. The analogous statement is that if Dm is
empty, then we have R D T .R/ D RNil.R/ with Nil.R/ the maximal ideal.


Theorem 8.15 ([17, Theorem 3.6]). Let R 2 H . Then the following statements are
equivalent:


(i) R is a �-Mori ring;


(ii) (a) RM is a �-Mori ring for each maximal �-divisorial M ,


(b) �.R/ D \�.R/�.M/ where the M range over the set of maximal �-divi-
sorial ideals, and


(c) each nonnil element (ideal) is contained in at most finitely many maximal
�-divisorial ideals;


(iii) (a) R.M/ is a �-Mori ring for each maximal �-divisorial M ,


(b) �.R/ D \�.R/�.M/ where the M range over the set of maximal �-divi-
sorial ideals, and


(c) each nonnil element (ideal) is contained in at most finitely many maximal
�-divisorial ideals.


In [19], V. Barucci and S. Gabelli proved that if P is a maximal divisorial ideal
of a Mori domain D, then the following three conditions are equivalent: (1) DP is a
discrete rank-one valuation domain, (2) P is v-invertible, and (3) P is not strong [19,
Theorem 2.5]. A similar result holds for �-Mori rings.


Theorem 8.16 ([17, Theorem 3.9]). Let R 2 H be a �-Mori ring and P 2 Dm.R/.
Then the following statements are equivalent:


(i) RP is a discrete rank-one �-chained ring;


(ii) P is �-v-invertible;


(iii) P is not �-strong.


Recall from [38] that if f .x/ 2 RŒx�, then c.f / denotes the ideal ofR generated by
the coefficients of f .x/, and R.x/ denotes the quotient ring RŒx�S of the polynomial
ring RŒx�, where S is the set of f 2 RŒx� such that c.f / D R.


Theorem 8.17 ([17, Theorem 4.5]). Let R be an integrally closed ring with Nil.R/ D
Z.R/ ¤ ¹0º. Then the following statements are equivalent:
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(i) R is �-Mori and the nilradical of T .RŒx�/ is an ideal of R.x/;


(ii) R.x/ is �-Mori;


(iii) R.x/ is �-Noetherian;


(iv) R is �-Noetherian and the nilradical of T .RŒx�/ is an ideal of R.x/;


(v) Each regular ideal of R is invertible;


(vi) R=Nil.R/ is a Dedekind domain;


(vii) R is a �-Dedekind ring.


As mentioned above, a Mori ring is said to be nontrivial if it is properly contained
in its total quotient ring. Our next example is of a nontrivial Mori ring that is in the set
H but is not a �-Mori ring.


Example 8.18 ([17, Example 5.3]). Let E be a Dedekind domain with a maximal ideal
M such that no power of M is principal (equivalently, M generates an infinite cyclic
subgroup of the class group) and let D D E C xF Œx�, where F is the quotient field of
E. Let P D ¹ND j N 2 Max.E/n¹M ºº, B D


P
F=DP˛ where each P˛ 2 P , and


let R D D.C/B . Then the following hold:


(a) If J is a regular ideal, then J D I.C/B D IR for some ideal I that contains
a polynomial in D whose constant term is a unit of E. Moreover, the ideal I
is principal and factors uniquely as P r1


1 � � �P
rn
n , where the Pi are the height-one


maximal ideals of D that contain I .


(b) R ¤ T .R/ since, for example, the element .1 C x; 0/ is a regular element of R
that is not a unit.


(c) R is a nontrivial Mori ring but R is not �-Mori.


(d) MR is a maximal �-divisorial ideal of R, but RMR is not a Mori ring.
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Abstract. In this work, we consider five possible extensions of the Prüfer domain concept to arbitrary
commutative rings. We investigate the transfer of these Prüfer-like properties to pullbacks, and then
generate new families of rings with zero divisors subject to some given Prüfer conditions.
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1 Introduction


All rings considered in this paper are commutative with identity element and all mod-
ules are unital. Prüfer domains were defined in 1932 by H. Prüfer, as domains in which
every finitely generated ideal is invertible [30]. In 1936, Krull [27] named these rings in
Prüfer’s honor and stated equivalent conditions that make a domain Prüfer. Since then,
many of these conditions have been extended to the case of rings with zero divisors
and gave rise to five classes of Prüfer-like rings ([6] and [7]), namely:


(1) R is semihereditary, i.e., every finitely generated ideal is projective (Cartan–
Eilenberg [10]).


(2) The weak global dimension of R is at most one (Glaz [17]).


(3) R is an arithmetical ring, i.e., every finitely generated ideal is locally principal
(Fuchs [12] and Jensen [25]).


(4) R is a Gaussian ring, i.e., c.fg/ D c.f /c.g/ for any polynomials f; g with
coefficients in R, where c.f / is the ideal of R generated by the coefficients of f
called the content ideal of f (Tsang [33]).


(5) R is a Prüfer ring, i.e., every finitely generated regular ideal is invertible (equiva-
lently, every two generated regular ideal is invertible); (Butts–Smith [8] and Grif-
fin [21]).


In [19] it was proved that .1/ H) .2/ H) .3/ H) .4/ H) .5/ and examples are
given to show that, in general, the implications cannot be reversed.


Recall, from Bazzoni and Glaz [7, Theorem 3.12], that if the total ring of quotients
Tot.R/ of R is von Neumann regular, then all the five conditions above are equivalent
on R; and a Prüfer ring R satisfies one of the five Prüfer conditions if and only if
Tot.R/ satisfies the same condition (see for instance [6, 7]).
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The goal of this work is to study the transfer of the Prüfer-like properties to pull-
backs. For this purpose, we show in Theorem 2.1 that, if T D K CM is a local ring
(which is not a field) where M is its maximal ideal and K its residue field and D is a
subring of T=M such that qf.D/ D T=M , then R D D CM satisfies one of the five
Prüfer conditions if and only if T and D satisfy the same condition.


In this spirit, our main result (Theorem 2.5) studies the transfer of Gaussian property
to the general pullbacks, where the ambient local ring .T; M/ is principal or satisfies
M 2 D 0.


A special application of these constructions is the notion of trivial ring extension.
Let A be a ring, E an A-module and R D A / E, the set of pairs .a; e/ with a 2 A
and e 2 E, under coordinatewise addition and under an adjusted multiplication defined
by .a; e/.a0; e0/ D .aa0; ae0 C a0e/; for all a; a0 2 A; e; e0 2 E. Then R is called the
trivial ring extension of A by E. It is clear that the trivial ring extension R D K / E,
where K is a field, has the form R D .K / 0/C .0 / E/. Trivial ring extensions have
been studied extensively; the work is summarized in Glaz’s book [17] and Huckaba’s
book [24]. These extensions have been useful for solving many open problems and
conjectures in both commutative and non-commutative ring theory (see for instance
[17, 24, 26]).


Our results generate new and original examples which enrich the current literature
with new families of Prüfer-like rings with zerodivisors.


2 Main results


Throughout this section, we adopt the following riding assumptions and notations:
.T; M/ is a local ring of the form T D K CM where K is a field, h W T ! T=M is
the canonical surjection, D is a subring of K such that qf.D/ D K, and R D DCM .
It is easy to see that M is D-flat (since M is a K-vector space), T D S�1R where
S D D � ¹0º and T D RM ; in particular T is R-flat. For more details on properties
of such pullbacks, see [9, 11, 15].


Theorem 2.1. Let T; M; D, and R as above. Then:


(1) R is a Prüfer ring if and only if T and D are Prüfer rings.


(2) R is a Gaussian ring if and only if T and D are Gaussian rings.


(3) R is an arithmetical ring if and only if T and D are arithmetical rings.


(4) wdim.R/ � 1 if and only if wdim.T / � 1 and wdim.D/ � 1.


(5) R is a semihereditary ring if and only if T and D are semihereditary rings.


The proof uses the following useful lemma.


Lemma 2.2. Let T; M; D, and R as above. Then R and T have the same total ring of
quotients, that is, Tot.R/ D Tot.T /.


Proof. Let S1 D R � Z.R/ and S D D � ¹0º. Let us remark first that S � S1
and R � Z.R/ � T � Z.T /. Indeed, let d C m 2 R and 0 6D d


0


2 D such that
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d
0


.d Cm/ D 0. Then d
0


d C d
0


m D 0 implies that d D 0 and m D 0 since M ,
as a flat D-module, is torsion free. Also, let 0 6D r 2 R � Z.R/ and r 0=d 2 T D
S�1R such that rr 0=d D 0. Then there exists an element t 0 2 S.� R � Z.R//
such that t 0rr 0 D 0, and so r 0=d D 0. Then, Tot.R/ D S�1


1 R D S�1
1 S�1R since


S � S1. So, Tot.R/ D S�1
1 T (as T D S�1R) which is contained in Tot.T / since


S1 D R�Z.R/ � T �Z.T /. But the fact that S�1
1 T is a total ring of quotients means


that S�1
1 T .D Tot.R// D Tot.T /, as desired.


Proof of Theorem 2.1. (1) Assume that R is a Prüfer ring. By the proof of Lemma 2.2,
S D D � ¹0º � R � Z.R/. Hence T , as localization of R, is a Prüfer ring by [5,
Theorem 2.1]. Also, from the construction of R D D CM , we can see that D is a
module retract of R, and so, by [4, Theorem 2.2(1)] D is Prüfer since it is torsion free.


Conversely, assume that D is a Prüfer domain and T is a Prüfer ring. We wish to
show that R is a Prüfer ring. For that, let us consider a finitely generated regular ideal
I of R and prove that I is invertible. By [6, Theorem 2.5(3)], it suffices to show that I
is R-projective, that is, I ˝R T is T -projective and I ˝R .R=M/ is .R=M/-projective
by [17, Theorem 5.1.1(1)]. Since T is R-flat, I ˝R T D IT which is T -projective
since it is a finitely generated regular ideal of T ; also, IT D xT for some x 2 T as
it is a free ideal in the local ring T . On the other hand, I ˝R .R=M/ D I=IM �


.IT /=.IMT / D .IT /˝T .T=M/ D .xT /˝T K Š K. Hence I ˝R .R=M/ is a D-
submodule of K.D qf.D/) which is invertible as a fractional ideal of D and therefore
I ˝R .R=M/ is D-projective by [6, Theorem 2.5(1)]. Hence R is a Prüfer ring.


(2) If R is a Gaussian ring, then so is T since it is a localization of R by [5, Theorem
2.5(1)]. Also, R Gaussian implies R is a Prüfer ring, and by Theorem 2.1(1), D is a
Prüfer ring and therefore Gaussian as it is a domain.


Conversely, assume that T and D are Gaussian rings. So R is a Prüfer ring by (1)
since T and D are, in particular, Prüfer rings. But Tot.T /.D Tot.R// is a Gaussian
ring by [7, Theorem 3.12] since T is a Gaussian ring. Therefore, R is a Gaussian ring
by [6, Theorem 5.7(1)].


The proof of the assertions (3), (4) and (5) is similar to (2), and this completes the
proof of Theorem 2.1.


The following example ensures the necessity of the condition “qf.D/ D T=M ”
imposed in Theorem 2.1.


Example 2.3. Let T D KŒŒX�� D K CM be the ring of formal power series over a
field K, where M WD XT is the maximal ideal of the valuation domain T , D be a
subring of K such that qf.D/ 6D K and R WD D C M . Then R is not a Gaussian
(Prüfer) domain.


Proof. By [17, Theorem 5.2.10].


Now, we can construct a new example of an arithmetical ring R with wdim.R/ > 1.


Example 2.4. Let D be a valuation domain, K D qf.D/, T D KŒŒX��=.Xn/ D KCM
be a local ring, where M D XT is its maximal ideal and n > 2 be a positive integer.







44 C. Bakkari and N. Mahdou


Set R D D CM . Then:


(1) R is arithmetical.


(2) wdim.R/ > 1.


Proof. (1) By Theorem 2.2(3).
(2) Denote by x the image of X in T . We claim that the ideal xR is not flat.


Assuming the opposite, the ideal xR is free since R is local, which is a contradiction
since x � xn�1 D xn D 0. Hence xR is not flat and so wdim.R/ > 1.


The following theorem investigates the transfer of the Gaussian property to the
general pullbacks and provides some original examples satisfying this property.


Theorem 2.5. Let .T; M/ be a local ring, h W T ! T=M , D a subring of T=M such
that qf.D/ D T=M , and let R WD h�1.D/. Assume that M 2 D 0 or T is principal.
Then D is Gaussian if and only if R is Gaussian.


Before proving Theorem 2.5, we establish the following lemma.


Lemma 2.6. Let .T; M/, D and R as in Theorem 2.5, f be a polynomial of RŒX� such
that c.f /T D xT for some x 2M . Then there exists x


0


2M and g 2 RŒX� such that


(1) f D x0g and c.f / D x0c.g/,


(2) c.g/T D T .


Proof. Let f D
Pn


iD0 aiX
i be a polynomial of RŒX� such that c.f /T D xT for


some x 2 M . We wish to construct a polynomial g 2 RŒX� and find an element
x0 2M such that f D x0g and c.f / D x0c.g/.


(1) We have ai 2 c.f / � c.f /T D xT for each i D 0; : : : ; n. Then there exists
bi 2 R and si 2 S such that ai D x.bi=si /. Thus for x0 D x=.


Qn
iD0 si / 2 M , we


have ai D x0a0i , where a0i D .
Qn


jD0;j 6Di sj /bi 2 R. For g D
Pn


iD0 a0iX
i 2 RŒX�, we


have f D x0g and so c.f / D x0c.g/.
(2) We have f D x0g and x0 2M . Our aim is to show that c.g/T D T .
We have x 2 xT D c.f /T D x0c.g/T D xc.g/T D xS�1c.g/ since xT D x0T .


Hence, x D xa=s for some a 2 c.g/ and s 2 S and so x..a=s/ � 1/ D 0. Therefore,
.a=s/ � 1 2 AnnT .x/ � M (since .T; M/ local) and then a=s … M . This means
that a=s is invertible in T since .T; M/ is local and so c.g/T D T since .a=s/ 2
c.g/T .


Proof of Theorem 2.5. If R is Gaussian then, by [5, Theorem 3.1(1)], D is Gaussian as
an homomorphic image of R.


Conversely, assume that D is a Gaussian (Prüfer) domain and let f and g be two
polynomials of RŒX�. Our aim is to show that c.fg/ D c.f /c.g/. Two cases are then
possible:


Case 1: c.f / ¢ M or c.g/ ¢ M .
Assume for example that c.f / ¢ M . Hence, it suffices to show that c.f / is lo-


cally principal in R (since in this case, f is Gaussian and so c.fg/ D c.f /c.g/).
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Therefore, it suffices to show that c.f / is R-projective, that is c.f / ˝R T is T -
projective and c.f / ˝R .R=M/ is R=M -projective by [17, Theorem 5.1.1(1)]. But
c.f / ˝R T D c.f /T (since T is R-flat) D T is T -projective. On the other hand,
c.f / ˝R .R=M/ D c.f /=MC.f / D c.f /=MT c.f / D c.f /=MT D c.f /=M
which is a finitely generated ideal of R=M.D D/ which is supposed to be a Prüfer
domain, so c.f /˝R .R=M/ is R=M -invertible and so projective. Therefore c.f / is
R-projective and so c.fg/ D c.f /c.g/.


If c.g/ …M , the same argument shows that c.fg/ D c.f /c.g/.
Case 2: c.f / �M and c.g/ �M .
If M 2 D 0, then c.fg/ � c.f /c.g/ �M 2 D 0, and so c.fg/ D c.f /c.g/.D 0/.
If T is principal, there exists then x 2 M such that c.f /T D xT . By Lemma 2.6,


there exists f 0 2 RŒX� and x0 2 M such that c.f / D x0c.f 0/ and c.f 0/T D T .
Hence, c.f 0/ is locally principal by case 1 and so c.f / is locally principal. Therefore
f is Gaussian and so c.fg/ D c.f /c.g/.


Note that the same Example 2.3 proves the necessity of the condition “qf.D/ D
T=M ” imposed in Theorem 2.5.


Now, we are able to construct a non arithmetical Gaussian ring and an arithmetical
ring with wdim.R/ > 1.


Corollary 2.7. Let D be a Prüfer domain, K D qf.D/, E be a nonzero K-vector space
and R D D / E. Then:


(1) R is a Gaussian ring.


(2) R is an arithmetical ring if and only if dimK.E/ D 1.


(3) wdim.R/ > 1.


Proof. (1) By Theorem 2.5.
(2) Assume that dimK.E/ D 1, we may assume then E D K. Set T D K / K.


The ring T is arithmetical since M WD 0 / K is the unique proper ideal of T . Hence
R is an arithmetical ring by Theorem 2.5 since D is a Prüfer domain.


Conversely, assume that dimK.E/ 6D 1. It may be proved similarly as [3, Example
2.3] that T is not arithmetical; and so R is not arithmetical too by Theorem 2.1 since
M WD 0 / E is a common ideal of R and S .


(3) By Theorem 2.1 since wdim.T / > 1 (T .0; 1/.D 0 / K/ is not flat (as T is
local and .0; 1/T .0; 1/ D .0; 0/).


Now, we are ready to give, using Corollary 2.7, a new class of non arithmetical
Gaussian rings.


Example 2.8. Let D be a Prüfer domain, K D qf.D/, E be a nonzero K-vector space
such that dimK.E/ 6D 1, and R D D / E. Then:


(1) R is a Gaussian ring.


(2) R is not an arithmetical ring.







46 C. Bakkari and N. Mahdou


Also we give, by Corollary 2.7, a new class of arithmetical rings with wdim.R/ > 1.


Example 2.9. Let D be a Prüfer domain which is not a field, K D qf.D/ and R D
D / K. Then:


(1) R is a an arithmetical ring.


(2) wdim.R/ > 1.


Finally, we close this paper by constructing an example of non arithmetical Gaus-
sian rings.


Example 2.10. Let T D QŒŒX�� / .QŒŒX��=.X// D .QCXQŒŒX��/ / .QŒŒX��=.X//
and R D .ZCXQŒŒX��/ / .QŒŒX��=.X// . Then:


(1) T is a non arithmetical Gaussian ring.


(2) R is a non arithmetical Gaussian ring.


Proof. (1) By [4, Theorem 2.1(2) and Example 2.6(2)]. (2) Follows from Theorem 2.1
and (1).
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On propinquity of numerical semigroups and
one-dimensional local Cohen Macaulay rings


Valentina Barucci


Abstract. The paper contains some known and unknown results for numerical semigroups. They
show how a numerical semigroup is close to a one-dimensional local Cohen Macaulay ring.
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1 Introduction


This paper deals mainly with numerical semigroups, i.e. subsemigroups of N, with
zero and with finite complement in N. The literature on this subject is wide and rich.
However our interest is focused on those aspects of the theory which are more re-
lated to commutative ring theory. If S is a numerical semigroup and k is a field, the
semigroup ring kŒŒS�� inherits several properties of S . More generally, the behaviour
of ideals in numerical semigroups is very close to that of ideals in one-dimensional
local Cohen-Macaulay rings or, even more generally, in local rings possessing an m-
canonical ideal (cf. [1]). The main original results of the paper are Theorems 4.2 and
5.2. Theorem 4.2 shows how a principal integral ideal of a numerical semigroup is in
a unique way a finite intersection of t irreducible integral ideals, where t is the type of
the semigroup. It is not surprising that this is stronger than the corresponding result for
one-dimensional local Cohen Macaulay rings, where only the number of components
is invariant. Moreover, Proposition 4.4 points out how the decomposition of a principal
ideal in irreducible relative ideals is completely different. Theorem 5.2 characterizes
almost symmetric semigroups. Its ring theoretic version appears in [1], but the proof
for numerical semigroups is more direct. Almost symmetric semigroups and their cor-
responding rings, the almost Gorenstein rings were introduced in [3] and recently used
in [8]. The paper contains also several results which are in large part well known. How-
ever for some of them an explicit proof is not published anywhere or exists only in ring
theoretic version. The arguments for a numerical semigroup are not always an additive
version of the arguments for the corresponding ring. Sometimes they are simpler or
different. The paper includes a theorem due to Marco La Valle, which gives a partial
answer to the Wilf problem.
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2 Generalities


We fix for all the paper the following notation. S is a numerical semigroup, i.e. a
subsemigroup of N, with zero and with finite complement in N. The numerical semi-
group generated by d1; : : : ; dh 2 N is S D hd1; : : : ; dhi D ¹


Ph
iD1 nidi I ni 2 Nº.


M D S n ¹0º is the maximal ideal of S , e is the multiplicity of S , that is the smallest
positive integer of S , g is the Frobenius number of S , that is the greatest integer which
does not belong to S .


A relative ideal of S is a nonempty subset I of Z (which is the quotient group of
S ) such that I C S � I and I C s � S , for some s 2 S . A relative ideal which is
contained in S is an integral ideal of S .


If I , J are relative ideals of S , then the following are relative ideals too:


I C J D ¹i C j I i 2 I; j 2 J º;


I � J D ¹z 2 Z j z C J � I º;


I \ J;


I [ J:


If z 2 Z, z C S D ¹z C sI s 2 Sº is the principal relative ideal generated by z and
it is easy to check that I � .z C S/ D I � z D ¹i � zI i 2 I º.


Moreover the ideal generated by z1; : : : ; zh is


.z1 C S/ [ � � � [ .zh C S/:


Proposition 2.1. If I ,J are relative ideals of S , then


I � J � .J � I / D
\


I�zCJ


.z C J /:


Proof. The first inclusion is trivial. To show the equality, assume x 2 J � .J � I /,
i.e. x C .J � I / � J and let z 2 Z such that I � z C J , i.e. �z 2 J � I , then
x � z 2 J , i.e. x 2 z C J and so J � .J � I / �


T
I�zCJ .z C J /. Conversely, if


x 2 z C J for each z 2 Z such that I � z C J , i.e. for each z such that �z 2 J � I ,
then x C y D x � z 2 J for each y 2 J � I , that is x 2 J � .J � I /.


In particular we have


I � S � .S � I / D
\


I�zCS


.z C S/


and, if I D S � .S � I /, I is bidual.
If I is a relative ideal of S , and s 2 S , s ¤ 0, then Aps.I / D I n.sCI / is the set of


the s smallest elements in I in the s congruence classes mod s and is called the Apery
set of I (with respect to s). In particular Ape.S/ is the Apery set of S with respect
to the multiplicity e. Since g is the greatest gap of S , g C s is the largest element in
Aps.S/.
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The following lemma, corresponds to Nakayama’s lemma for local rings. For nu-
merical semigroups the proof is very easy.


Lemma 2.2. If I is a relative ideal of S , then the unique minimal set of generators of
I is I n .M C I /.


Proof. An element x 2 I is superfluous as generator of I if and only if x D z C s,
for some z 2 I and some s 2 S , s ¤ 0. Hence x is superfluous if and only if
x 2M C I


Since eCI �MCI , then I n.MCI / � I n.eCI / D Ape.I / and by Lemma 2.2
each relative ideal I of S needs at most e generators.


In particular M n 2M is the minimal set of generators of M and its cardinality is
the embedding dimension � of S . Of course a minimal set of generators ofM coincide
with a minimal set of generators of S DM [¹0º. We have � � e and if equality holds
the semigroup S is called of maximal embedding dimension.


3 Canonical ideal


A particular relative ideal of S plays a special role. It is the canonical ideal � D
¹g�xI x 2 ZnSº. Thus, calling an integer z symmetric to x if z D g�x,� consists
of the integers which are symmetric to the gaps of the semigroup. The contents of the
following lemma can be found in [7] and [3].


Lemma 3.1. (i) S � � � N.


(ii) For each relative ideal I of S , � � I D ¹g � xI x 2 Z n I º.


(iii) If I � J are relative ideals of S , then Card.J n I / D Card..� � I / n .� � J //.


Proof. (i) If s 2 S then x D g � s … S , so s D g � .g � s/ D g � x 2 �, hence
S � �. Moreover, if z 2 Z, z < 0, then g � z > g, so g � z 2 S and z … �, hence
� � N.


In order to prove (ii), we show that, for each relative ideal I of S ,


x 2 I ) g � x … � � I;


x … I ) g � x 2 � � I:


In fact, let x 2 I . If g�x 2 ��I , then g�xCI � �. In particular g�xCx D g 2 �,
a contradiction.


Now let x … I . If g � x … � � I , then g � x C i … �, for some i 2 I . It follows
that g � x C i is symmetric to an element of S , i.e. g � .g � x C i/ D x � i 2 S ,
hence x 2 i C S � I , a contradiction.


(iii) Let z 2 Z. By (ii), z 2 J n I if and only if g � z 2 .� � I / n .� � J /, thus
the two sets are in one to one correspondence and they have the same cardinality.
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Example 3.2. Consider the following semigroup:


S D ¹0; 4; 7; 8; 11; 12;!º D h4; 7; 13i:


Here the Frobenius number g is 10, the multiplicity e is 4 and the embedding dimension
� is 3. The canonical ideal is


� D ¹0; 1; 4; 5; 7; 8; 9; 11;!º:


The role of the canonical ideal� is well known (cf. [7]) and recalled in next propo-
sition, point (1). Points (2) and (3) are proved for rings in [6].


Proposition 3.3. (1) For each relative ideal I of S , � � .� � I / D I . In particular
� � .� � S/ D � �� D S .


(2) For each set ¹Ihºh2H of relative ideals of S ,


� �
\
h2H


Ih D
[
h2H


.� � Ih/:


(3) � is an irreducible relative ideal, i.e., � is not the intersection of any set of
relative ideals properly containing �.


Proof. (1) Let z 2 �� .�� I /. Then by Lemma 3.1 (ii) z D g � y, with y … �� I .
Since y D g � x, for some x 2 I (again by Lemma 3.1 (ii)), we have z D g � y D
g � .g � x/ D x 2 I . The opposite inclusion is by Proposition 2.1.


(2) Set
S
h2H .� � Ih/ D U . For each ideal Ih0 of the set ¹Ihºh2H , we have


.� � Ih0/ � U , thus .� � U/ � � � .� � Ih0/ D Ih0 , so .� � U/ �
T
h2H Ih. It


follows that � �
T
h2H Ih � � � .� � U/ D U . The other inclusion is trivial.


(3) Assume that � is the intersection of a set of relative ideals, � D
T
h2H Ih. We


want to show that � D Ih0 for some h0 2 H .
Applying (2) we have that S D � �� D � �


T
h2H Ih D


S
h2H .� � Ih/, thus


� � Ih0 D S , for some h0 2 H and so Ih0 D � � .� � Ih0/ D � � S D �.


Properties (1) and (3) characterize � in the following sense:


Proposition 3.4. Let �0 be a relative ideal of S . Then


�0 � .�0 � I / D I


for each relative ideal I of S if and only if �0 D z C�, for some z 2 Z.


Proof. Since
�0 � .�0 ��/ D � D


\
��zC�0


.z C�0/


and� is irreducible, we have� D zC�0, for some z 2 Z. The converse is trivial.
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Proposition 3.5. Let �0 be a relative ideal of S . Then �0 is an irreducible relative
ideal if and only if �0 D z C�, for some z 2 Z.


Proof. Since
�0 D � � .� ��0/ D


\
�0�zC�


.z C�/


and�0 is irreducible, we have�0 D zC�, for some z 2 Z. The converse is trivial.


We now show how the Apery set of S is strictly connected to the Apery set of �
This fact was observed for s D e in [11].


Proposition 3.6. Let s 2 S , s ¤ 0. If Aps.S/ D ¹p0; : : : ; ps�1º, where p0 D 0 <
p1 < � � � < ps�1, then Aps.�/ D ¹ps�1 � ps�1; ps�1 � ps�2; : : : ; ps�1 � p0º.


Proof. Recall that g C s D ps�1.
We have pi 2 Aps.S/ D S n .s C S/. Thus


pi 2 S ) g � pi … � ) g C s � pi D ps�1 � pi … �C s:


On the other hand


pi … S C s ) pi � s … S ) g � .pi � s/ D g C s � pi 2 �:


Therefore, for each i , ps�1 � pi 2 � n .s C�/ D Aps.�/.


Remark 3.7. (a) Note that by Proposition 3.6, Aps.S/ can be obtained from Aps.�/
in a similar way.


(b) Proposition 3.6 shows in particular that the biggest element in Aps.�/ is the
same as the biggest element in Aps.S/, it is in fact ps�1 D g C s.


4 Type and decompositions of principal ideals in irreducible ideals


The type t of a numerical semigroup S is the minimal number of generators of the
canonical ideal, that is t D Card.� n .�CM//.


Consider the partial order on S given by


s1 � s2 , s1 C s3 D s2; for some s3 2 S: .?/


If s 2 S , s ¤ 0, the number of maximal elements in Aps.S/, with respect to the
order .?/ turns out to be the type of the semigroup (cf. [5]). We include this fact in the
following proposition, which is all well known, cf. [5].


Proposition 4.1. Let t be the type of S . Then


(i) t D Card..S �M/ n S/.


(ii) If s 2 S , s ¤ 0, then x 2 .S �M/ n S if and only if x C s is maximal in Aps.S/
with respect to the order .?/.


(iii) 1 � t � e � 1.
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Proof. (i) Applying 3.1 (iii) and Proposition 3.3 (1), we get t D Card.�n.�CM// D
Card.�� .�CM/ n .���// D Card...���/�M/ n S/ D Card..S �M/ n S/.


(ii) If x 2 .S �M/ n S then x … S , but x Cm 2 S for each m 2M . In particular
x … S and xC s 2 S , thus xC s 2 S n .sCS/ D Aps.S/. Moreover, for each u 2M ,
both xC u and xC sC u are in S , so that xC sC u … Aps.S/, this means that xC s
is maximal in Aps.S/, with respect to the order .?/. Conversely, if x C s is maximal
in Aps.S/ then x … S , x C s 2 S and x C s Cm … Aps.S/ D S n .s C S/, for each
m 2M . Since xC sCm 2 S , this last condition is equivalent to xC sCm 2 sC S ,
i.e. to x Cm 2 S , for each m 2M . Thus x 2 .S �M/ n S .


(iii) Ape.S/ has e elements and the element 0 2 Ape.S/ is not maximal. Thus
there are at most e � 1 maximal elements, so that t � e � 1 by (ii).


It is well known that, if .R;m/ is a one-dimensional local Cohen Macaulay ring,
and r 2 m is a non-zerodivisor, then the number of components in a decomposition
of the principal ideal rR as irredundant intersection of irreducible integral ideals is
invariant and independent on r . This number is in fact the CM-type of the ring R. In
case of numerical semigroups not only the number of components is invariant, but such
irredundant intersection is unique. This is shown in next theorem.


If s 2 S , set B.s/ D ¹z 2 S j z � sº. It turns out (cf. [10]) that I D S nB.s/ is an
irreducible integral ideal of S , i.e., I is not the intersection of any set of integral ideals
properly containing I . As a matter of fact each integral ideal containing I contains s.


Theorem 4.2. Let s 2 S , s ¤ 0 and let pi1 ; : : : ; pit be the maximal elements in Aps.S/
with respect to the order .?/. Setting, for j D 1; : : : ; t , Iij D S n B.pij /, then


Ii1 \ � � � \ Iit


is the unique irredundant decomposition of the principal ideal s C S in irreducible
integral ideals.


Proof. Observe first that, for each element p 2 Aps.S/, B.p/ � Aps.S/. In fact, if
z 2 S and z � p, i.e. z C u D p 2 Aps.S/, for some u 2 S , then z C u … s C S . It
follows that z � s C u … S and so z � s … S . Thus z 2 Aps.S/. Therefore the ideals
Iij are integral irreducible ideals containing s C S . If p 2 Aps.S/, then p � pij , for
some maximal element pij , so p … Iij . Thus we have an equality s C S D


Tt
jD1 Iij .


To show that the intersection is irredundant, observe that each component is necessary:
deleting Iih , we have that


T
j¤h Iij contains pih and is not equal to s C S .


We have to show that the decomposition is unique. Suppose that sCS D
Tm
˛D1 I˛ ,


where I˛ are irreducible integral ideals. Consider a maximal element of Aps.S/, say
pi1 . We have that pi1 … I˛ , for some ˛, otherwise pi1 2 s C S D


Tm
˛D1 I˛ , say


pi1 … I1. So q … I1, for each q � pi1 . Moreover, if q 2 Aps.S/, q � pi1 , then q 2 I1,
otherwise I1 D .I1 [ ¹pi1º/ \ .I1 [ E.q//, where E.q/ D ¹z 2 S j q � zº and
I1 is not irreducible, a contradiction. Therefore I1 D S n B.pi1/ D Ii1 . In the same
way, for each maximal element pij of Aps.S/, we get the unique irreducible integral
ideal Iij .
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Example 4.3. (a) Let S D ¹0; 5; 6; 8; 10;!º D h5; 6; 8i. If we take s D e D 5, the
maximal elements in Ap5.S/ D ¹0; 6; 8; 12; 14º are 12 and 14 and the corresponding
irreducible integral ideals are


I1 D S n B.12/ D S n ¹0; 6; 12º D ¹5; 8; 10; 11; 13;!º D .5C S/ [ ¹8; 14º;


I2 D S n B.14/ D S n ¹0; 6; 8; 14º D ¹5; 10; 11; 12; 13; 15;!º D .5C S/ [ ¹12º:


Hence I1 \ I2 is the unique irredundant decomposition of the principal ideal 5C S in
irreducible integral ideals.


(b) If in the same semigroup S D h5; 6; 8i, we take s D 6, we get 13 and 15 as
maximal elements in Ap6.S/. So the corresponding ideals are


J1 D S n B.13/ D .6C S/ [ ¹10; 15º;


J2 D S n B.15/ D .6C S/ [ ¹8; 13º


and J1 \ J2 is the unique irredundant decomposition of the principal ideal 6 C S in
irreducible integral ideals.


We show now that the type t of a semigroup S is also the number of components of
an irredundant intersection of a principal ideal in irreducible relative ideals. A similar
ring theoretic result is in [4, Proposition 2.6].


Proposition 4.4. (i) If � is minimally generated by z1; : : : ; zt , then


S D .� � z1/ \ � � � \ .� � zt /


is the unique irredundant decomposition of S in irreducible relative ideals.


(ii) Each relative principal ideal of S is in a unique way an irredundant intersection
of t irreducible relative ideals.


Proof. (i) We have:


��S D � D


t[
iD1


.ziCS/ D


t[
iD1


.ziC.���// D


t[
iD1


.��.��zi // D ��


t\
iD1


.��zi /


where we applied Proposition 3.3 (2) for the last equality. So that, dualizing


S D .� � .� � S// D


t\
iD1


.� � zi /:


Moreover the intersection is irredundant: if
T
i¤h.� � zi / � .� � zh/, then zh 2


��.��zh/ � ��
T
i¤h.��zi / D


S
i¤h.ziCS/, a contradiction with the minimality


of the set of generators for �. By Proposition 3.5 the components of the intersection
are irreducible relative ideals. To show that such a decomposition is unique, recall that,
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again by Proposition 3.5, each irreducible relative ideal is of the form yC�, for some
y 2 Z. Thus, if S D


T
i .yi C�/ then, by Proposition 3.3 (2),


� D � � S D
[
i


.� � .yi C�// D
[
i


..� ��/C .yi C S// D
[
i


.�yi C S/:


Thus ¹�yiº is a set of generators for �. Requesting that the decomposition is irredun-
dant, ¹�yiº has to be the minimal set of generators of �.


(ii) Since, by (i), S D .� � z1/ \ � � � \ .� � zt /, if z 2 Z, we have also


z C S D .z � z1 C�/ \ � � � \ .z � zt C�/


where each component of the intersection is an irreducible relative ideal by Proposi-
tion 3.5.


Example 4.5. Consider again the semigroup S D ¹0; 5; 6; 8; 10;!º D h5; 6; 8i. Here
the canonical ideal � D ¹0; 2; 5; 6; 7; 8; 10;!º is minimally generated by 0 and 2, in
fact � n .�CM/ D ¹0; 2º. Applying Proposition 4.4 (i), we get S D � \ .� � 2/.
Thus, taking for example the principal ideal 5C S , we have that


5C S D .5C�/ \ .3C�/


is its unique decomposition in irreducible relative ideals.


5 Almost symmetric semigroups


If t D 1 or equivalently � D S , then the numerical semigroup S is classically called
symmetric.
S is almost symmetric if� � S �M , equivalently if t D .gC1�2n/C1 (cf. [3]).


Example 5.1. If S D h5; 8; 9; 12i D ¹0; 5; 8; 9; 10; 12;!º, then


� D ¹0; 4; 5; 7; 8; 9; 10; 12;!º;


thus � � S �M D ¹0; 4; 5; 7;!º and S is almost symmetric.


Theorem 5.2. The following conditions are equivalent for a numerical semigroup S of
maximal ideal M :


(i) S is almost symmetric.


(ii) Each ideal of M �M is bidual as ideal of S .


(iii) M � e is the canonical ideal of M �M .


Proof. If S D N, the three conditions trivially hold. Suppose S ¨ N, so that M �
M D S �M is a semigroup which properly contains S .
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(i)) (ii). Let I be an ideal ofM �M . Then: �C I � .M �M/C I � I . Since
0 2 �, also the opposite inclusion �C I � I holds, thus �C I D I .


If I is not bidual in S then I ¨ S � .S � I / � � � .S � I /, hence


S � I ¨ � � I D � � .�C I / D .� ��/ � I D S � I;


a contradiction.
(ii)) (iii). We have to prove that M � .M � I / � I , for each ideal I of M �M .


First notice that
M � I D S � I:


If M � I ¨ S � I , then z C I � S and z C I ª M for some z 2 Z, thus z C I D S
and S is an ideal of M �M , a contradiction. Thus


M � .M � I / � S � .M � I / D S � .S � I / D I:


By Proposition 3.4 a translation M C z of M , for some z 2 Z is the canonical ideal of
M �M . To obtain 0 as minimal element in z CM , the right choice is z D �e.


(iii)) (i). Suppose S is not almost symmetric, i.e., there is b 2 Z, b … M (a gap
of S ), g � b …M (b is symmetric to another gap of S ), b …M �M .


The Frobenius number of M �M is g � e. We claim that x D g � e � b is in the
canonical ideal of M �M but is not in M � e. In fact:


.g � e/ � x D .g � e/ � .g � e � b/ D b …M �M


since .g � e/ � x is a gap of M �M , x is in the canonical ideal of M �M . On the
other hand x D g � e � b …M � e, because g � b …M .


Example 5.3. If S D h5; 8; 9; 12i D ¹0; 5; 8; 9; 10; 12;!º then


M �M D ¹0; 4; 5; 7;!º


is a semigroup of Frobenius number 6 and the canonical ideal of M �M is


M � e DM � 5 D ¹0; 3; 4; 5; 7;!º:


By Theorem 5.2, we reobtain a result of [3].


Corollary 5.4. The following conditions are equivalent for a numerical semigroup S
of maximal ideal M :


(i) S is almost symmetric of maximal embedding dimension.


(ii) M �M is a symmetric semigroup.


Proof. Assume S ¤ N, to avoid the trivial case. Recall that a semigroup S is of
maximal embedding dimension if and only if M �M D M � e (cf. [2, Proposition
I.2.9]). Thus, if S is almost symmetric of maximal embedding dimension, then by
Theorem 5.2 ((i)) (iii))M �M is a symmetric semigroup because coincides with its
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canonical ideal. Conversely, ifM �M is a symmetric semigroup, then each ideal I of
M �M is bidual, thus I is bidual also as ideal of S and by Theorem 5.2 ((ii)) (i)) S
is almost symmetric. Moreover, by (iii) of Theorem 5.2, M � e is the canonical ideal
of M �M , hence M � e DM �M and S is of maximal embedding dimension.


Wilf in [12] asked whether the inequality g C 1 � n� always holds in a numerical
semigroup. The following is a partial positive answer. The proof sketched here (cf.
[9]) is due to Marco La Valle, an old student of mine, who does not work anymore in
mathematics. I consider his result interesting and worthwhile to publish.


Theorem 5.5 (M. La Valle). If S is an almost symmetric semigroup, then


g C 1 � n�:


Proof. Since S is almost symmetric, t D g C 2 � 2n, thus n D g�t
2 C 1. Hence the


Wilf inequality becomes


g C 1 �
�g � t


2
C 1


�
�


or equivalently
2C �t � .� � 2/g C 2�:


It is enough to prove
�t � .� � 2/g


equivalently
�.g � t / � 2g:


Since t < e (cf. Proposition 4.1 (iii)), it is enough to prove


�.g � e/ � 2g that is � �
2g
g � e


:


Case 1. If e < g=2, then g � e > g=2 and


2g
g � e


<
2g
g=2
D 4:


Since, for � � 3, Wilf’s inequality is easily checked, in this case the theorem is proved.
Case 2. if e D g C 1, it is easy: � D e and n D 1 thus g C 1 D e � 1e.
Case 3. If g=2 < e < g, we have to compute the number � of (necessary) genera-


tors of S .
We have at least: n� 1 generators smaller than g, 2e � .gC 1/ generators between


g C 1 and 2e, .e C s/ � 2e � 1 generators between 2e and e C s, where S D ¹s0 D


0; s1 D e; s2 D s; : : : .si < siC1/º. Therefore:


� � .n � 1/C .2e � g � 1/C .s � e � 1/ D nC e C s � g � 3


and
�n � n2


C ne C ns � ng � 3n D f .n/:
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We claim that
f .n/ � g C 1:


By induction on n � 3. For n D 3, it is


f .n/ D 3.e C s � g/:


But for n D 3 an almost symmetric semigroup is of one of the following forms:


S D ¹0; g � 3; g � 1; g C 1;!º;


S D ¹0; g � 2; g � 1; g C 1;!º:


In the first case
f .3/ D 3g � 12 � g C 1, g � 7:


In the second case
f .3/ D 3g � 9 � g C 1, g � 5:


Thus, taking care of a finite small number of easy cases (g < 7 in the first case and
g < 5 in the second case) the inductive hypothesis is verified.


Now the inductive step:


f .nC 1/ � f .n/ D .2n � 2/C .s C e � g/ > 0:


So if f .n/ > g C 1, then also f .nC 1/ > g C 1.
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n-perfectness in pullbacks
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Abstract. A ring is called n-perfect (n � 0), if every flat module has projective dimension at most
n. The n-perfect rings have a homological characterization using the cotorsion global dimension of
rings, to the effect thatR is n-perfect if and only ifR has cotorsion global dimension at most n. This
paper continues the investigation of n-perfectness initiated by the authors for pullback constructions.
It leads to further examples of n-perfect rings and allows to compute the cotorsion global dimension
of some special rings. A result involving flatness in pullbacks is also stated.
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Dedicated to Alain Bouvier


1 Introduction


Throughout this paper all rings are commutative with identity element and all modules
are unitary. For a ring R and an R-moduleM , we use pdR.M/ and fdR.M/ to denote,
respectively, the classical projective and flat dimensions of M . It is convenient to use
“m-local” to refer to (not necessarily Noetherian) rings with a unique maximal idealm.


A commutative square of ring homomorphisms


R


i2


��


i1 // R1


j1


��
R2


j2


// R0


(�)


is said to be a pullback square, if given r1 2 R1 and r2 2 R2 with j1.r1/ D j2.r2/
there exists a unique element r 2 R such that i1.r/ D r1 and i2.r/ D r2. The ring R is
called a pullback ofR1 andR2 overR0. we shall refer to the diagram .�/ as a pullback
diagram of type .�/.


The much useful particular case of pullback rings are constructed as follows: Let
I be an ideal of a ring T . A subring D of the quotient ring T=I is of the form R=I
where R is a subring of T , which contained I as an ideal. Then, R is a pullback
ring of T and D over T=I issued from the following pullback diagram of canonical
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homomorphisms:


R WD ��1.D/
� _


��


�jR
// // D D R=I


� _


��
T


�
// // T=I


Following [2], R is called the ring of the .T; I;D/ construction. This construction
includes the well-known D CM -construction and in general the D C I -construction
(for more details about these constructions, please see [2, 4, 8, 9, 11]).


These constructions have proven to be useful in solving many open problems and
conjectures for various contexts in (commutative and non-commutative) ring theory. In
the same direction, the pullback rings are used in [1] to give some interesting examples
of particular n-perfect rings. Recall that a ring is called n-perfect (n � 0), if every
flat module has projective dimension at most n [7]. These rings have a homological
characterization using their cotorsion global dimension, such that the cotorsion global
dimension of a ring R, Cgldim.R/, is the supremum of the cotorsion dimensions of
all R-modules, where the cotorsion dimension of an R-module M , cdR.M/, is the
least positive integer n for which ExtnC1


R .F; C / D 0 for all flat R-modules F [5].
Namely, the modules of cotorsion dimension 0 are the known cotorsion modules (see
[16, Definition 3.1.1]). For a positive integer n, we have [5, Theorem 19.2.5(1)]:


Cgldim.R/ � n if and only if R is n-perfect.


In this paper, we continue the investigation of n-perfectness in more general con-
text of pullbacks. Namely, in our main result (Theorem 2.1), we study the transfer of
n-perfectness in the following pullback diagram. In other words, we compute the cotor-
sion global dimension of the pullback ring R defined bellow in terms of its associated
rings T and D:


Let T be a ring of the form S C I , where S is a subring of T and I is a nonzero
ideal of T such that S \ I D 0. Consider a ring homomorphism � W D ! S .
Then, we may show, via �, that I is a D-module. Thus, we may define on the D-
module R WD D ˚D I a structure of ring with multiplication given by: .r; i/.r 0; i 0/ D
.rr 0; ri 0C r 0i C i i 0/ for r; r 0 2 R and i; i 0 2 I . Then, R is a pullback ring of T and D
over S associated to the following pullback diagram:


R
˛ // //


'


��


D D R=I


�


��
T


ˇ


// // S D T=I


(��)


where ˛ and ˇ are the natural surjections and ' is defined by: '..d; i// D �.d/C i for
d 2 D and i 2 I . We shall refer to the diagram .��/ as a pullback diagram of type
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.��/. This construction generalizes theDC I -construction in which T is assumed to
be an integral domain, I is a prime ideal of T , and ' is the natural injection. Then, the
construction .��/ enriches the commutative ring theory by new examples of particular
pullback rings (see Corollaries 2.6 and 2.9 and Examples 2.7, 2.8, 2.10, and 2.11).


2 Main results


First, recall that a ring homomorphism � W R! S is called a flat epimorphism ofR, if
S is a flatR-module and � is an epimorphism; that is, for any two ring homomorphisms


S
f


�
g
T , T a ring, satisfying f � D g� we have f D g. We may also say that S is a


flat epimorphism of R (please see [11, pages 13–14] and [14]). Particularly, for every
multiplicative set W of R, W �1R is a flat epimorphism of R. Also, the quotient ring
R=I is a flat epimorphism of R for every pure ideal I of R; that is, R=I is a flat
R-module [11, Theorem 1.2.15].


The main result is the following generalization of [1, Theorem 5.1].


Theorem 2.1. Consider a pullback diagram of type .��/. Let n be a positive integer.
If T and D are n-perfect, then R is n-perfect.


Furthermore, if � is a flat epimorphism of D, then we get an equivalence: T and
D are n-perfect if and only if R is n-perfect.


In other words, Cgldim.R/ D sup¹Cgldim.T /;Cgldim.D/º:


The proof of the theorem involves the following results.


Lemma 2.2. Consider a pullback diagram of type .�/ and assume that j2 is surjective.
Then, for any flat R-module F , we have


pdR.F / D sup¹pdR1
.F ˝R R1/; pdR2


.F ˝R R2/º:


Proof. Consider an exact sequence of R-modules


0! Pn ! Pn�1 ! � � � ! P0 ! F ! 0;


where each Pj , for j D 0; : : : ; n � 1, is projective. Since F is flat, we obtain the
following exact sequences of Ri -modules for i D 1 and 2:


0! Pn ˝R Ri ! Pn�1 ˝R Ri ! � � � ! P0 ˝R Ri ! F ˝R Ri ! 0:


From [15, Chapter 2], Pn is an R-module projective if and only if Pn ˝R Ri is an
Ri -module projective for i D 1 and 2. This implies the desired equality.


The following is a generalization of [1, Lemma 5.2].


Lemma 2.3. Consider a pullback diagram of type .�/ and assume that j2 is surjective.
Then, for a positive integer n, R is n-perfect if R1 and R2 are n-perfect.


In other words, Cgldim.R/ � sup¹Cgldim.T /;Cgldim.D/º:


Proof. Follows from Lemma 2.2.
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Recall that, for a ring homomorphism  W R ! S , we say that R is a subring
retract of S , if there exists a ring homomorphism � W S �! R satisfying � D idjR.
In this case,  is injective and the R-module S contains R as a direct summand [11,
page 111].


Lemma 2.4 ([1, Lemma 3.4]). Let R be a subring retract of a ring S . If S is n-perfect
for some positive integer n, then R is n-perfect.


The following is a generalization of [1, Lemma 3.5], [5, Proposition 19.3.1(1)], and
[16, Proposition 3.3.3].


Lemma 2.5. For any ring homomorphism � W R! S , and any S -moduleM , we have
the inequality cdR.M/ � cdS .M/:


Furthermore, if � is a flat epimorphism, then we have equality: cdR.M/D cdS .M/.
Consequently, if � is a flat epimorphism, then Cgldim.S/ � Cgldim.R/. In other
words, if R is n-perfect for some positive integer n, then S is n-perfect.


Proof. We may assume that cdS .M/ D n for some positive integer n. We have
TorRp .S; F / D 0 for every p > 0 and every flat R-module F . Thus, we may ap-
ply [3, Proposition 4.1.3] which gives ExtnC1


R .F;M/ Š ExtnC1
S .F ˝R S;M/ D 0.


Therefore, cdR.M/ � n.
Now, suppose that � is a flat epimorphism. From the first inequality, it remains to


prove the inequality cdS .M/ � cdR.M/. For that, we may assume that cdR.M/ D n
for some positive integer n. Let F be a flat S -module (then it is also flat as an R-
module). We have:


S ˝R F Š S ˝R .S ˝S F / Š .S ˝R S/˝S F


Š S ˝S F from [11, Theorem 1.2.19]


Š F:


Then,


ExtnC1
S .F;M/ D ExtnC1


S .S ˝R F;M/


Š ExtnC1
R .F;M/ from [3, Proposition 4.1.3]


D 0 since cdR.M/ D n.


Therefore, cdS .M/ � n, as desired.


Proof of Theorem 2.1. The first implication follows immediately from Lemma 2.3.
Now, if we assume that � is a flat epimorphism of D, then ' is a flat epimorphism


of R (by [13, page 13]). Also, we have that D is a subring retract of R. Thus, the
converse implication is a simple consequence of Lemmas 2.4 and 2.5.


As an application of Theorem 2.1, we set the following first (general) example of a
pullback ring satisfying the hypotheses of Theorem 2.1.
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Recall the trivial extension of R by an R-module M is the ring denoted by R /
M whose underling group is A � M with multiplication given by .r;m/.r 0; m0/ D
.rr 0; rm0 C r 0m/ (see for instance [11, Chapter 4, Section 4] and [10]).


Corollary 2.6. Let f W D ! S be a ring homomorphism and let M be an S -module.
For a positive integer n, if T WD S / M and D are n-perfect, then R WD D / M is
n-perfect.


Furthermore, if f is a flat epimorphism of D, then we get an equivalence: T and
D are n-perfect if and only if R is n-perfect.


Proof. Note that R / M is a pullback ring of R and S / M over S associated to the
following pullback diagram of type .��/:


R /M // //


��


R


f


��
S /M // // S


Then, the result is a simple application of Theorem 2.1.


In [10, Proposition 1.15], we have that R is perfect if and only if R /M is perfect.
In the following examples we extend this result to n-perfect rings in particular cases.


Example 2.7. Let R be a ring, let M be an R-module, and let n be a positive integer.
For a multiplicative set U of R, we have: R and U�1R / U�1M are n-perfect if and
only if R / U�1M is n-perfect.


Particularly:


(1) If R is a domain with quotient field Q and U D R n ¹0º, then R is n-perfect if
and only if R / U�1M is n-perfect.


(2) If R is von Neumann regular, then, for every prime ideal p of R, R is n-perfect if
and only if R /Mp is n-perfect.


Proof. Use Corollary 2.6, [10, Proposition 1.15], and the fact that U�1R is a flat epi-
morphism of R.


Example 2.8. Let R be a ring, let M be an R-module, and let n be a positive integer.
We have: For every ideal I of R such that IM D 0, if R=I /M and R are n-perfect,
then R /M is n-perfect.


Particularly, if I D Ann.M/ is maximal, then R is n-perfect if and only if R /M
is n-perfect.


Namely, for every maximal ideal m of R, R is n-perfect if and only if R / R=m is
n-perfect.


Proof. Use Corollary 2.6 and [10, Proposition 1.15].
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Now, similarly to Corollary 2.6, we give the second (general) example of a pullback
ring satisfying the hypothesis of Theorem 2.1.


Corollary 2.9. Let f W D ! S be a ring homomorphism. For a positive integer n, if
T WD SŒX� andD are n-perfect, then the ringR WD D˚DXSŒX� (with multiplication
defined as in the pullback diagram of type .��/) is n-perfect.


Furthermore, if f is a flat epimorphism of D, then we get an equivalence: T and
D are n-perfect if and only if R is n-perfect.


Also, as Examples 2.7 and 2.8, we give two concrete examples of the preceding
construction. Note that, from [1, Theorem 4.1], every polynomial ring in one indeter-
minate RŒX� over a ring R may not be 0-perfect.


Example 2.10. Let R be a ring and let n be a positive integer. For a multiplicative set
U of R, we have: U�1RŒX� and R are n-perfect if and only if R ˚R X.U�1RŒX�/ is
n-perfect.


Particularly:


(1) If R is a domain with quotient field Q and U D R n ¹0º, then, for n � 1, R is
n-perfect if and only if R˚R X.U�1RŒX�/ is n-perfect.


(2) If R is von Neumann regular, then, for every prime ideal p of R and n � 1, R is
n-perfect if and only if R˚R XRpŒX� is n-perfect.


Example 2.11. Let R be a ring, let I be an ideal of R, and let n be a positive integer.
We have: if R=I ŒX� and R are n-perfect, then R˚R X.R=I ŒX�/ is n-perfect.


Particularly, if I is maximal, then, for n � 1, R is n-perfect if and only if R ˚R
X.R=I ŒX�/ is n-perfect.


Finally, we turn to a question involving flatness in pullbacks. Namely, we give a
generalization of [6, Theorem 3.4].


Theorem 2.12. Consider the following pullback diagram:


R WD ��1.D/
� _


i


��


�jR
// // D D R=M


� _


j


��
T


� // // K D T=M


where M is a maximal ideal of T , i and j are the natural injections, and � is the
natural surjection.


(1) If K D qf.D/, then T is a flat epimorphism of R, where qf.D/ denotes the
quotient field of D.


(2) If either T is M -local or K is a subring retract of T , then K D qf.D/ if T is a
flat R-module and M contains a regular element m.
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Proof. (1) Assume that K D qf.D/, then j is a flat epimorphism of D, and so is i (by
[13, page 13]), as desired.


(2) Now suppose that T is a flat R-module and assume that qf.D/ ¨ K. Then,
there exists y 2 K n ¹0º with yD \D D 0, hence:


��1.yD/ \ ��1.D/ D ��1.yD \D/ DM: .�/


With either of the hypotheses, we can choose an invertible element x of T which
satisfies �.x/ D y. Indeed, if T is M -local then every x 2 T such that �.x/ D y is
invertible (since y 6D 0 implies x 2 T n¹M º). And if there exists a ring homomorphism
� W K ! T such that �� D 1K , then we can choose x D �.y/.


Thus, ��1.yD/ D xR CM D xR, and the equality .�/ becomes xR \ R D M:
Then, since m is regular, we obtain easily that xmR \ mR D mM . Now, from [11,
Theorem 1.2.7(1)], we have .xmR \ mR/T D xmRT \ mRT D xmT \ mT D
mT (since x is invertible in T ). Then, mMT D .mxR \ mR/T D mT . So, from
Nakayama’s lemma, there exist an element m0 of M such that .1 � m0/m D 0. Then,
since m is regular, m0 D 1 2M , which is absurd, and therefore K D qf.D/.


Let T and R be as in Theorem 2.12 above. If T is flat as an R-module and M
contains a regular elementm, then it is a localization ofR under each of the conditions:
T is M -local or K is a subring retract of T , as shown by the following, which shows
that Theorem 2.12 is also a generalization of [12, Proposition 3.2].


Corollary 2.13. Consider the pullback diagram of Theorem 2.12, such thatM contains
a regular element.


(1) If T is a flat R-module and M -local, then T D RM .


(2) If T is a flat R-module and K is a subring retract of T , then T D W �1R, where
W D D n ¹0º.


Proof. (1) From Theorem 2.12 (2), K D qf.D/. Then, T is a flat epimorphism R (by
Theorem 2.12 (1)). Therefore, by [11, Theorem 1.2.21(4)], RM D TM D T .


(2) Assume thatK is a subring retract of T , then T D KCM and soR D DCM .
Therefore, T D W �1R, where W D D n ¹0º (since, by Theorem 2.12 (2), qf.D/ D
K).
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On flatness of factor rings and Krull dimension
of tensor products


Samir Bouchiba


Abstract. This paper mainly discusses Sharma’s paper [12] on Krull dimension of tensor products
of commutative rings. Actually, it characterizes the family of algebras A over an arbitrary ring R
such that A


P
is (faithfully) flat over R for each prime ideal P of A and thus proves that the main


theorem of [12] is trivial. As an alternative result to Sharma’s theorem, we provide a satisfactory
lower bound of the Krull dimension of A˝R B in terms of geometrical invariants of the R-algebras
A and B and the connections intertwining their respective algebra structures over R. Finally, we
compute dim.A˝R B/ in the case where either A or B is a field.


Keywords. Krull dimension, faithfully flat module, prime ideal, AF-domain, tensor product.


AMS classification. 13C15, 13B24, 13F05.


Dedicated to Alain Bouvier


1 Introduction


All rings and algebras considered in this paper are commutative with identity element
and all ring homomorphisms are unital. All standard notations and definitions are as
in [2] and [12]. Throughout, we denote by Spec.R/ (resp., Max.R/) the set of prime
ideals (resp., maximal ideals) of a ring R. Also, we use kR.p/ to denote the quotient
field of R


p
for each prime ideal p of R. Further, given a ring R and an R-algebra A,


we denote by �A W R �! A, with �A.r/ WD r:1A for each r 2 R, the associated ring
homomorphism defining the R-algebra structure on A, and if P 2 Spec.A), when no
confusion is likely, we denote by the prime ideal pA of R the inverse image ��1


A .P /.
It is well known that if I is an ideal of a ring R and S is a multiplicative subset of


R such that I \ S D ¿, then there exists a prime ideal P of R such that I � P and
P\S D ¿. This is a useful tool for finding prime ideals ofR with specified properties.
Motivated by this, in [2], G. Bergman led a profound analysis of the following problem:
Let J be a partially ordered set and R be a ring. Let ¹.Ij ; Sj /ºj2J be a collection of
pairs where Ij is an ideal and Sj is a multiplicative subset of R such that Ij \Sj D ¿.


Under what conditions does there exist Pj 2 Spec.R/, for all j 2 J , such that
Pj � Ij , Pj \ Sj D ¿ satisfying Pj � Pr whenever j � r 2 J ?


As an application, some theorems of [2] are used to prove the well-known result stating
that for any two algebras A and B over a field k,


dim.A˝k B/ � dim.A/C dim.B/:
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In [12], P. Sharma discusses [2] and proves the following theorem that stands for
the main result of [12]:


If R is a ring and A;B are two R-algebras such that A
P


and B
Q


are faithfully
flat R-algebras whenever P 2 Spec.A/ and Q 2 Spec.B/, then, by [12, Theo-
rem 2.5],


dim.A˝R B/ � dim.A/C dim.B/:


This theorem yields the following result: If R is a zero-dimensional quasilocal ring,
then for any two R-algebras A;B , by [12, Corollary 2.6],


dim.A˝R B/ � dim.A/C dim.B/:


The principal goal of the present paper is to lead an in-depth study of Sharma’s
paper [12], precisely its major theorem. First, we seek the algebras A over a ring R
satisfying the strong hypotheses of this theorem. In this regard, we prove that, given a
ring R and an R-algebra A, A


P
is faithfully flat over R whenever P 2 Spec.A/ if and


only if R is a field (cf. Proposition 2.1). In other words, the above-mentioned theorem
of [12] turns out to be merely the well-known result on dim.A ˝k B/ for a field k.
Also, we characterize the algebras A over a domain R satisfying the condition A


P
is


flat over R for each prime ideal P of A. In section 3, we give an alternative result to
Sharma’s theorem by providing a satisfactory lower bound of dim.A˝RB/ in terms of
geometrical invariants of A and B and of the connections intertwining their respective
algebra structures over R, and compute dim.A˝R B/ in the case where either A or B
is a field. First, Proposition 3.1 determines the algebras A and B over a ring R such
that A˝R B ¤ ¹0º. The main theorem of this section states the following:


Let R be a nonzero ring and A, B be two R-algebras such that A˝R B ¤ ¹0º.
Then


dim.A˝R B/�max
°


ht
� P
pA


�
C ht


� Q
pB


�
W P 2 Spec.A/ and Q 2 Spec.B/


such that ��1
A .P / D ��1


B .Q/ WD p
±
:


By virtue of this theorem, we prove that if R is a nonzero zero-dimensional ring and
A, B are R-algebras such that A˝R B ¤ ¹0º, then


dim.A˝R B/ � max
°


ht.M/C ht.M 0/ WM 2 Max.A/ and M 0 2 Max.B/


such that ��1
A .M/ D ��1


B .M 0/
±
;


extending [12, Corollary 2.6].


2 Flatness of factor rings


This section discusses Sharma’s main theorem in [12]. More precisely, we characterize
the algebras A over a ring R such that A


P
is (faithfully) flat over R for each prime ideal
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P of A. Proposition 2.1 allows to prove that [12, Theorem 2.5] turns out to be merely
the well-known result dim.A ˝k B/ � dim.A/Cdim.B/ for two algebras A and B
over a field k.


First, it is convenient to remind the reader of the following natural ring isomor-
phisms related to tensor products of algebras over an arbitrary ring R that will be used
throughout this paper: Let R be a ring and let A;B be two R-algebras. Let a be an
ideal of R and S a multiplicative subset of R. Let I be an ideal of A and J an ideal of
B . Then 8̂̂<̂


:̂
S�1R˝R A Š S


�1A;


R
a ˝R A Š


A
aA
;


A˝RB
I˝RBCA˝RJ


Š
A
I
˝R


B
J
;


where I ˝RB (resp., A˝R J ) denotes the canonical image of I ˝RB (resp., A˝R J )
in A˝R B .


Our first result proves that Sharma’s main theorem in [12] is trivial.


Proposition 2.1. Let R be a nonzero ring and A a nonzero R-algebra. Then the fol-
lowing assertions are equivalent:


(1) A
P


is faithfully flat over R for each prime ideal P of A;


(2) A
M


is faithfully flat over R for each maximal ideal M of A;


(3) R is a field.


Proof. Clearly, (3) ) (1) ) (2). Now, assume that (2) holds. Choose x ¤ 0 2
R. Let M be a maximal ideal of A and k.M/ WD A


M
. Since faithfully flat maps


are injective (see [10, Theorem 7.5 (i)]), the image of x in k.M/ is nonzero, so a
unit in k.M/. Hence R


xR
˝R k.M/ Š k.M/


xk.M/
D ¹0º. So, by faithful flatness, we get


R
xR
D ¹0º. Therefore, xR D R, so that x is a unit in R. Consequently R is a field,


establishing (3), as desired.


Remark 2.2. We present here, for convenience, an alternate proof of .2/ ) .3/ of
Proposition 2.1.


Consider the given ring homomorphism �A W R ! A, with M 2 Max.A/ and
p WD ��1


A .M/. As, by faithful flatness, the map ��1
A
M


W Spec. A
M
/ ! Spec.R/ is


surjective, we get Spec.R/ D ¹pº is a singleton. Since A
M


is faithfully flat over R, we
can conclude that R


p
is faithfully flat over R because


R


p
˝R


A


M
Š


A=M


p.A=M/
D
A=M


.0/
Š


A


M


is faithfully flat over A
M


. But faithfully flat maps are injective [10, Theorem 7.5 (i)],
and so the canonical map R ! R


p
is an isomorphism. It follows that R is a field, as


desired.
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In light of Proposition 2.1, for a given ring R and an R-algebra A, it is then natural
to ask when A


P
is flat over R for each prime ideal P of A. The following result charac-


terizes such a case. It is worthwhile to note that the case A D R of Proposition 2.3 is
included in [8, Remark 2.6(e)].


Proposition 2.3. Let R be a nonzero ring and K its total quotient ring. Suppose that
K is a Von Neumann regular ring. Let A be a nonzero R-algebra. Then the following
statements are equivalent:


(1) A
I


is flat over R for each ideal I of A;


(2) A
P


is flat over R for each prime ideal P of A;


(3) ��1
A .P / is a minimal prime ideal of R for each prime ideal P of A;


(4) ��1
A .M/ is a minimal prime ideal of R for each maximal ideal M of A;


(5) A is a K-algebra.


The proof relies on the following easy result. First, given a ringR and anR-algebra
A, recall that the going-down theorem holds between R and A if for each pair p � p0


of prime ideals of R and for each prime ideal P 0 of A lying over p0, there exists
P 2 Spec.A/ such that P � P 0 and ��1


A .P / D p.


Lemma 2.4. Let R be a nonzero ring and A a nonzero R-algebra. Let P 2 Spec.A/
and p WD ��1


A .P /. If A
P


is flat over R, then p is a minimal prime ideal of R.


Proof. Assume that A
P


is flat over R. Then, applying [10, Theorem 9.5], the going-
down theorem holds between R and A


P
. Notice that �A


P
D s ı �A, where s is the


canonical surjection s W A ! A
P


. Therefore ��1
A
P


..0// D ��1
A .s�1..0/// D ��1


A .P / D


p is a minimal prime ideal of R.


Proof of Proposition 2.3. (1)) (2) and (3)) (4) are straightforward. (2)) (3) holds
by Lemma 2.4.


(4)) (5). Assume that (4) holds. Let Z denote the set of zero-divisor elements of
R and let r 2 R n Z. Then, in particular, r does not lie in any minimal prime ideal p
of R. Thus, applying (4), for each maximal ideal M of A, we get �A.r/ 62 M . Hence
�A.r/ is invertible in A. Applying [11, definition, p. 97], it follows, by the universal
property of the localization K WD S�1R of R, where S WD R n Z, that there exists a
ring homomorphism ' such that the following diagram is commutative:


R
i
�! K


�A & . '


A


where i is the canonical injective ring homomorphism. Hence A is a K-algebra. Thus
(5) holds.


(5) ) (1). Suppose that (5) holds. Then A
I


is flat over K for each ideal I of A
since K is Von Neumann regular. Being a localization of R, K is flat over R. Hence,
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by transitivity of flatness, A
I


is flat over R for each ideal I of A (cf. [10, p. 46]),
establishing (1). This completes the proof.


3 Krull dimension of tensor products


The main goal of this section is to give an alternative result to Sharma’s main theorem
of [12]. In fact, we seek a satisfactory lower bound of dim.A ˝R B/ in terms of
geometrical invariants of A and B and of the connections intertwining their respective
algebra structures over R. This enables us to provide a family of algebras A and B
over a ring R satisfying the inequality dim.A ˝R B/ � dim.A/Cdim.B/. Also, we
compute dim.A˝R B/ in the case where either A or B is a field.


Throughout this section, we use t.d.(A W k/ to denote the transcendence degree of
an algebra A over a field k (for nondomains, t.d..A W k/ WD sup


®
t.d..A


p
W k/ W p 2


Spec.A/
¯
).


First, it is worthwhile pointing out that, in the context of computing the Krull di-
mension of tensor products of algebras, the case which has been most deeply investi-
gated is when R is a field k. The initial impetus for these investigations was a result of
R. Sharp in [13], and Grothendieck some 10 years earlier, that, for any two extension
fields K and L of k, by [13, Theorem 3.1],


dim.K ˝k L/ D min
�


t.d..K W k/; t.d..L W k/
�
:


Subsequently, A. Wadsworth extended this result to AF-domains. Recall that a domain
A that is a k-algebra of finite transcendence degree over k is said to be an AF-domain
if it satisfies the altitude formula over k, that is,


ht.p/C t.d.
�A
p
W k
�
D t.d..A W k/


for all prime ideals p of A. The class of AF-domains contains the most basic rings of
algebraic geometry, including finitely generated k-algebras that are domains. Let us
recall at this point some notation. For a k algebra A and integers 0 � d � s, put


D.s; d; A/ WD max
°


ht.pŒX1; : : : ; Xs�/Cmin
�
s; d C t.d.


�A
p
W k
��
W p 2 Spec.A/


±
;


where X1; X2; : : : ; Xs are indeterminates over A. Wadsworth proved that if A1 and A2
are AF-domains, then, by [14, Theorem 3.8],


dim.A1 ˝k A2/ D min
�


dim.A1/C t.d..A2 W k/; t.d..A1 W k/C dim.A2/
�
:


He also stated a formula for dim.A˝k B/ which holds for an AF-domain A, with no
restriction on B; namely, by [14, Theorem 3.7],


dim.A˝k B/ D D
�


t.d..A W k/; dim.A/; B
�


(this formula holds even when t.d..B W k/ D1; see [14, p. 400]).
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Recent developments on height and grade of (prime) ideals as well as on dimension
theory in tensor products of algebras over a field k are to be found in [3], [4], [5]
and [6].


Our first result characterizes the algebrasA andB over a ringR such thatA˝RB ¤
¹0º. Recall that if A is an R-algebra and P 2 Spec.A/, then we denote by pA the
inverse image ��1


A .P /, where �A W R! A is the canonical ring homomorphism.


Proposition 3.1. Let R be a nonzero ring and A, B be two nonzero R-algebras. Then


(a) Let P 2 Spec.A/ and Q 2 Spec.B/. Then


��1
A .P / D ��1


B .Q/ H)
A


P
˝R


B


Q
¤ ¹0º:


(b) A ˝R B ¤ ¹0º if and only if there exists P 2 Spec.A/ and Q 2 Spec.B/ such
that ��1


A .P / D ��1
B .Q/.


Proof. Both assertions follow from [9, Corollaire 3.2.7.1 (i), p. 235].


The following result is a direct consequence of Proposition 3.1.


Corollary 3.2. Let R be a nonzero ring and K, L be two fields that are R-algebras.
Let �K W R �! K and �L W R �! L be the two ring homomorphisms defining the
R-algebra structures on K and L, respectively, and let p WD Ker.�K/, q WD Ker.�L/.
Then K ˝R L ¤ ¹0º if and only if p D q.


Next, we extend the above-mentioned Sharp’s theorem [13, Theorem 3.1] and, par-
tially, Wadsworth’s theorem [14, Theorem 3.7] to the general context of tensor products
of algebras over an arbitrary ring R.


Theorem 3.3. Let R be a nonzero ring. LetK, L be two fields that are R-algebras and
A a nonzero R-algebra. Let p WD ��1


K .0/. Then


(1) Assume that K ˝R L ¤ ¹0º. Then


dim.K ˝R L/ D min
�


t.d.
�
K W kR.p/


�
; t.d.


�
L W kR.p/


��
:


(2) Assume that K ˝R A ¤ ¹0º and t.d.
�
K W kR.p/


�
is finite. Then


dim.K ˝R A/ D D
�


t.d.
�
K W kR.p/


�
; 0; S


�1 A


pA


�
;


where S WD R
p
n ¹0º.


We need the following technical lemma.
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Lemma 3.4. Let R be a nonzero ring and A an R-algebra. Let p be a prime ideal of
R. Then


kR.p/˝R A Š S
�1 A


pA
;


where S WD R
p
n ¹0º.


Proof. It is straightforward from the next natural ring isomorphisms:


kR.p/˝R A Š kR.p/˝R
p


�R
p
˝R A


�
Š kR.p/˝R


p


A


pA


Š S
�1 A


pA
;


as desired.


Proof of Theorem 3.3. (1) First, observe that, by Corollary 3.2, ��1
K .0/ D ��1


L .0/ D p,
as K ˝R L ¤ ¹0º. Then, we may view R


p
as a common subring of K and L, so that


kR.p/ is a common subfield of K and L. Hence


K ˝R L Š K ˝kR.p/ .kR.p/˝R L/


Š K ˝kR.p/ S
�1 L


pL
by Lemma 3.4


Š K ˝kR.p/ L:


Thus, applying [13, Theorem 3.1], we get the formula.
(2) Notice that, by virtue of Lemma 3.4,


K ˝R A Š K ˝kR.p/ .kR.p/˝R A/ Š K ˝kR.p/ S
�1 A


pA
:


Then, as K ˝R A ¤ ¹0º, S
�1 A


pA
¤ ¹0º. Therefore, by [14, Theorem 3.7],


dim.K ˝R A/ D D
�


t.d.
�
K W kR.p/


�
; 0; S


�1 A


pA


�
;


as desired.


Next, we announce the main theorem of this section.


Theorem 3.5. Let R be a nonzero ring and A, B be two R-algebras such that A ˝R


B ¤ ¹0º. Then


dim.A˝R B/ � max
°


ht
� P
pA


�
C ht


� Q
pB


�
W P 2 Spec.A/ and Q 2 Spec.B/


with ��1
A .P / D ��1


B .Q/ WD p
±
:
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Proof. Fix a prime ideal p of R. Let kR.p/ ˝R A (resp., kR.p/ ˝R B) denote the
fibre ring of A (resp., of B) over p. By Lemma 3.4,8<:kR.p/˝R A Š S


�1 A
pA
;


kR.p/˝R B Š S
�1 B


pB
;


where S WD R
p
n ¹0º. Then there exists a one-to-one order preserving correspondence


between the spectrum of kR.p/ ˝R A and the set of prime ideals of A
pA


of the form
P


pA
such that ��1


A .P / D p. In light of this, it is clear that to prove the theorem we are
reduced to proving that


dim.A˝R B/ � dim.kR.p/˝R A/C dim.kR.p/˝R B/:


In view of the following canonical surjective ring homomorphism:


A˝R B
'
�!


A


pA
˝R


p


B


pB
;


we get


dim.A˝R B/ � dim
� A
pA
˝R


p


B


pB


�
� dim


�
S
�1
� A
pA
˝R


p


B


pB


��
D dim


��
S
�1 A


pA


�
˝kR.p/


�
S
�1 B


pB


��
D dim


�
.kR.p/˝R A/˝kR.p/ .kR.p/˝R B/


�
� dim.kR.p/˝R A/C dim.kR.p/˝R B/;


as desired.


Theorem 3.5 yields the following interesting consequences. Recall that a ring A is
said to be equidimensional if all its maximal ideals have the same height.


Corollary 3.6. Let R be a nonzero ring and A, B be two R-algebras such that A˝R


B ¤ ¹0º. Assume that A
P


and B
Q


are flat over R for each prime ideal P of A and each
prime ideal Q of B . Then:


(a)


dim.A˝R B/ � max
°


ht.P /C ht.Q/ W P 2 Spec.A/ and Q 2 Spec.B/


such that ��1
A .P / D ��1


B .Q/
±
:
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(b) If either A and B are equidimensional or R contains exactly one minimal prime
ideal, then


dim.A˝R B/ � dim.A/C dim.B/:


Proof. (a) Let P 2 Spec.A/ and Q 2 Spec.B/ such that pA D qB WD p. As A
P


is
flat over R, we get, by Lemma 2.4, p is a minimal prime ideal of R. Hence ht.P / D
ht. P


pA
/ and ht.Q/ D ht. Q


pB
/. Applying Theorem 3.5, we obtain


dim.A˝R B/ � ht
� P
pA


�
C ht


� Q
pA


�
D ht.P /C ht.Q/;


as we wish to show.
(b) Assume that A and B are equidimensional. As A˝R B ¤ ¹0º, by Proposition


3.1, there exists P 2 Spec.A/ and Q 2 Spec.B/ such that pA D qB WD p. Let
M 2 Max.A/ and M 0 2 Max.B/ such that P � M and Q � M 0. Applying Lemma
2.4, we get pA D mA D m0B D qB WD p, as p;mA; m


0
B are minimal primes in R.


Hence
dim.A˝R B/ � ht.M/C ht.M 0/ D dim.A/C dim.B/;


as A and B are equidimensional.
Now, suppose that R contains exactly one minimal prime ideal. Then, by Lemma


2.4, ��1
A .P / D ��1


B .Q/ for each prime ideal P of A and each prime ideal Q of B .
Thus, applying (a), we get dim.A˝R B/ � ht.P /C ht.Q/ for each prime ideal P of
A and each prime ideal Q of B , so that


dim.A˝R B/ � dim.A/C dim.B/;


completing the proof.


Applying Theorem 3.5 to the case where R is a zero-dimensional ring R, we get
the following result extending [12, Corollary 2.6].


Corollary 3.7. Let R be a nonzero zero-dimensional ring and let A, B be two R-
algebras such that A˝R B ¤ ¹0º. Then


dim.A˝R B/ � max
°


ht.M/C ht.M 0/ WM 2 Max.A/ and M 0 2 Max.B/


with ��1
A .M/ D ��1


B .M 0/
±
:


Moreover, if either R is quasilocal or A and B are equidimensional, then


dim.A˝R B/ � dim.A/C dim.B/:


Proof. First, note that if P 2 Spec.A/ and Q 2 Spec.B/ with pA D qB , then for any
P � P 0 2 Spec.A/ and any Q � Q0 2 Spec.B/, we have p0A D q0B D pA, as R is
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zero-dimensional. It follows that


max
°


ht.P /C ht.Q/ W P 2 Spec.A/ and Q 2 Spec.B/ such that pA D qB


±
D max


°
ht.M/C ht.M 0/ WM 2 Max.A/ and M 0 2 Max.B/ such that mA D m


0
B


±
:


Taking account of this, the result easily follows from Theorem 3.5.


Acknowledgments. The author would like to thank the referee for his/her relevant
suggestions and corrections.


References
[1] M. Atiyah and I. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading,


MA, 1969.


[2] G. F. Bergman, Arrays of prime ideals in commutative rings, J. Algebra 261 (2003), 389–410.


[3] S. Bouchiba, On Krull dimension of tensor products of algebras arising from AF-domains,
J. Pure Appl. Algebra 203 (2005), 237–251.


[4] S. Bouchiba, Chains of prime ideals in tensor products of algebras, J. Pure Appl. Algebra 209
(2007), 621–630.


[5] S. Bouchiba and S. Kabbaj, Tensor products of Cohen–Macaulay rings: Solution to a problem
of Grothendieck, J. Algebra 252 (2002), 65–73.


[6] S. Bouchiba, D. E. Dobbs, and S.-E. Kabbaj, On the prime ideal structure of tensor products of
algebras, J. Pure Appl. Algebra 176 (2002), 89–112.


[7] N. Bourbaki, Algèbre commutative, Chap. 1–4, Masson, Paris, 1985.


[8] D. E. Dobbs and M. Fontana, Classes of commutative rings characterized by going-up and
going-down behavior, Rend. Sem. Mat. Univ. Padova 66 (1982), 113–127.


[9] A. Grothendieck and J. A. Dieudonné, Eléments de géométrie algébrique, Vol. I, Springer-
Verlag, Berlin, 1971.


[10] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.


[11] J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.


[12] P. Sharma, Lifting of primes and dimension of tensor product of rings, J. Algebra 287 (2005),
169–173.


[13] R. Y. Sharp, The dimension of the tensor product of two field extensions, Bull. London Math.
Soc. 9 (1977), 42–48.


[14] A. R. Wadsworth, The Krull dimension of tensor products of commutative algebras over a field,
J. London Math. Soc. 19 (1979), 391–401.


Author information
Samir Bouchiba, Department of Mathematics, University Moulay Ismail, Meknes 50000, Morocco.
E-mail: sbouchiba@hotmail.com







Commutative Algebra and its Applications, 79–88 © de Gruyter 2009


Bouvier’s conjecture
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Abstract. This paper deals with Bouvier’s conjecture which sustains that finite-dimensional non-
Noetherian Krull domains need not be Jaffard.


Keywords. Noetherian domain, Krull domain, factorial domain, affine domain, Krull dimension,
valuative dimension, Jaffard domain, fourteenth problem of Hilbert.
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Dedicated to Alain Bouvier


1 Introduction


All rings and algebras considered in this paper are commutative with identity element
and, unless otherwise specified, are assumed to be non-zero. All ring homomorphisms
are unital. If k is a field and A a domain which is a k-algebra, we use qf.A/ to denote
the quotient field of A and t: d:.A/ to denote the transcendence degree of qf.A/ over k.
Finally, recall that an affine domain over a ring A is a finitely generated A-algebra that
is a domain [28, p. 127]. Any unreferenced material is standard as in [17, 23, 25].


A finite-dimensional integral domain R is said to be Jaffard if there holds
dim.RŒX1; : : : ; Xn�/ D nCdim.R/ for all n � 1; equivalently, if dim.R/ D dimv.R/,
where dim.R/ denotes the (Krull) dimension ofR and dimv.R/ its valuative dimension
(i.e., the supremum of dimensions of the valuation overrings ofR). As this notion does
not carry over to localizations, R is said to be locally Jaffard if Rp is a Jaffard domain
for each prime ideal p of R (equiv., S�1R is a Jaffard domain for each multiplicative
subset S of R). The class of Jaffard domains contains most of the well-known classes
of rings involved in Krull dimension theory such as Noetherian domains, Prüfer do-
mains, universally catenarian domains, and universally strong S-domains. We assume
familiarity with these concepts, as in [3, 5, 7, 8, 13, 20, 21, 22, 24].


It is an open problem to compute the dimension of polynomial rings over Krull
domains in general. In this vein, Bouvier conjectured that “finite-dimensional Krull (or
more particularly factorial) domains need not be Jaffard” [8, 15]. In Figure 1, a diagram
of implications places this conjecture in its proper perspective and hence shows how
it naturally arises. In particular, it indicates how the classes of (finite-dimensional)
Noetherian domains, Prüfer domains, UFDs, Krull domains, and PVMDs [17] interact
with the notion of Jaffard domain as well as with the (strong) S-domain properties of
Kaplansky [22, 23, 24].


This work was funded by KFUPM under Project # MS/DOMAIN/369.
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q
Strong S-domain


q Locally Jaffard


q Jaffard


q
U. Strong S-Domain


q
dimRŒX� D dimRC 1


q
S-domain


q Noetherian


q UFD + Noetherian


Figure 1. Diagram of Implications


This paper scans all known families of examples of non-Noetherian finite dimen-
sional Krull (or factorial) domains existing in the literature. In Section 2, we show that
most of these examples are in fact locally Jaffard domains. One of these families which
arises from David’s second example [12] yields examples of Jaffard domains but it is
still open whether these are locally Jaffard. Further, David’s example turns out to be
the first example of a 3-dimensional factorial domain which is not catenarian (i.e., prior
to Fujita’s example [16]). Section 3 is devoted to the last known family of examples
which stem from the generalized fourteenth problem of Hilbert (also called Hilbert–
Zariski problem): Let k be a field of characteristic zero, T a normal affine domain over
k, and F a subfield of qf.T /. The Hilbert–Zariski problem asks whetherR WD F \T is
an affine domain over k. Counterexamples on this problem were constructed by Rees
[30], Nagata [27] and Roberts [31, 32] where R wasn’t even Noetherian. In this vein,
Anderson, Dobbs, Eakin, and Heinzer [4] asked whether R and its localizations inherit
from T the Noetherian-like main behavior of having Krull and valuative dimensions
coincide (i.e., Jaffard). This problem will be addressed within the more general context
of subalgebras of affine domains over Noetherian domains; namely, let A � R be an
extension of domains where A is Noetherian and R is a subalgebra of an affine domain
over A. It turns out that R is Jaffard but it is still elusively open whether R is locally
Jaffard.
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2 Examples of non-Noetherian Krull domains


Obviously, Bouvier’s conjecture (mentioned above) makes sense beyond the Noether-
ian context. As the notion of Krull domain is stable under formation of rings of frac-
tions and adjunction of indeterminates, it merely claims “the existence of a Krull do-
mainR and a multiplicative subset S (possibly equal to ¹1º) such that 1Cdim.S�1R/ˆ
dim.S�1RŒX�/:” However, finite-dimensional non-Noetherian Krull domains are
scarce in the literature and one needs to test them and their localizations as well for
the Jaffard property.


Next, we show that most of these families of examples are subject to the (locally)
Jaffard property. This reflects the difficulty of proving or disproving Bouvier’s conjec-
ture.


Example 2.1. Nagarajan’s example [26] arises as the ring R0 of invariants of a finite
group of automorphisms acting on R WD kŒŒX; Y ��, where k is a field of characteristic
p 6D 0. It turned out that R is integral over R0. Therefore [24, Theorem 4.6] forces R0
to be a universally strong S-domain, hence a locally Jaffard domain [3, 23].


Example 2.2. Nagata’s example [28, p. 206] and David’s example [11] arise as integral
closures of Noetherian domains, which are necessarily universally strong S-domains by
[24, Corollary 4.21] (hence locally Jaffard).


Example 2.3. Gilmer’s example [18] and Brewer–Costa–Lady’s example [9] arise as
group rings (over a field and a group of finite rank), which are universally strong S-
domains by [2] (hence locally Jaffard).


Example 2.4. Fujita’s example [16] is a 3-dimensional factorial quasilocal domain
.R;M/ that arises as a directed union of 3-dimensional Noetherian domains, say
R D


S
Rn. We claim R to be a locally Jaffard domain.


Indeed, the localization with respect to any height-one prime ideal is a DVR (i.e.,
discrete valuation ring) and hence a Jaffard domain. As, by [13, Theorem 2.3], R is
a Jaffard domain, then RM is locally Jaffard. Now, let P be a prime ideal of R with
ht.P / D 2. Clearly, there exists Q 2 Spec.R/ such that .0/ � Q � P � M is a
saturated chain of prime ideals of R. As, ht.MŒn�/ D ht.M/ D 3 for each positive
integer n, we obtain ht.P Œn�/ D ht.P / D 2 for each positive integer n. Then RP is
locally Jaffard, as claimed.


Example 2.5. David’s second example [12] is a 3-dimensional factorial domain J WDS
Jn which arises as an ascending union of 3-dimensional polynomial rings Jn in three


indeterminates over a field k. We claim that J is a Jaffard domain. Moreover, J turns
out to be non catenarian. Thus, David’s example is the first example of a 3-dimensional
factorial domain which is not catenarian (prior to Fujita’s example).


Indeed, we have Jn WD kŒX; ˇn�1; ˇn� for each positive integer n, where the inde-
terminates ˇn satisfy the following condition: For n � 2,


ˇn D
�ˇ


s.n/
n�1 C ˇn�2


X
(1)
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where the s.n/ are positive integers. Also, Jn � J � JnŒX
�1� for each positive integer


n. By [13, Theorem 2.3], J is a Jaffard domain, as the Jn are affine domains. Notice,
at this point, we weren’t able to prove or disprove that J is locally Jaffard.


Next, fix a positive integer n. We have Jn


XJ\Jn
D kŒˇn�1; ˇn�. On account of (1),


we get


ˇn�1 D ˇn
s.nC1/


: (2)


Therefore
Jn


XJ \ Jn


D kŒˇn�:


Iterating the formula in (2), it is clear that for each positive integers n � m, there
exists a positive integer r such that ˇn D ˇm


r
with respect to the integral domain


J
XJ


. It follows that J
XJ


is integral over kŒˇn� for each positive integer n. Surely,
ˇn is transcendental over k, for each positive integer n, since .0/ � XJ � M WD


.X; ˇ0; ˇ1; : : : ; ˇn; : : : / is a chain of distinct prime ideals of J . Then dim. J
XJ
/ D 1


and thus .0/ � XJ � M WD .X; ˇ0; ˇ1; : : : ; ˇn; : : : / is a saturated chain of prime
ideals of J . As ht.M/ D 3, it follows that J is not catenarian, as desired.


Example 2.6. Anderson–Mulay’s example [6] draws from a combination of techniques
of Abhyankar [1] and Nagata [28] and arises as a directed union of polynomial rings
over a field. Let k be a field, d an integer � 1, and X;Z; Y1; : : : ; Yd d C 2 inde-
terminates over k. Let ¹ˇi WD


P
n�0 binX


n j 1 � i � dº � kŒŒX�� be a set of
algebraically independent elements over k.X/ (with bin 6D 0 for all i and n). Define
¹Uin j 1 � i � d; 0 � nº by


Ui0 WD Yi ;


Uin WD
Yi CZ.


P
0�k�n�1 bikX


k/


Xn
; for n � 1:


For any i; n we have
Uin D XUi.nC1/ � binZ: (3)


LetRn WD kŒX;Z;U1n; : : : ; Udn� be a polynomial ring in dC2 indeterminates (by (3));
and let R WD


S
Rn D kŒX;Z; ¹U1n; : : : ; Udn j n � 0º�. Anderson and Mulay proved


thatR is a .dC2/-dimensional non-Noetherian Jaffard and factorial domain. We claim
that R is locally Jaffard. For this purpose, we envisage two cases.


Case 1: k is algebraically closed. Let P be a prime ideal of R. We may suppose
ht.P / � 2 (since R is factorial). Assume X … P . Clearly, R0 � R � R0ŒX


�1�, then
RP Š .RŒX


�1�/PRŒX�1� D .R0ŒX
�1�/PR0ŒX�1� is Noetherian (hence Jaffard). Assume


X 2 P . By (3), R
XR
Š kŒZ�. Then P D .X; f / for some irreducible polynomial f


in kŒZ�. As k is algebraically closed, we get f D Z � ˛ for some ˛ 2 k. For any
positive integer n and i D 1; : : : ; d , define


Vin WD Uin C bin˛:
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Observe that, for each n and i , we have


Rn D kŒX;Z � ˛; V1n; : : : ; Vdn�;


Vin D XUi.nC1/ � bin.Z � ˛/:


Then P \Rn D .X;Z�˛; ¹V1n; : : : ; Vdnº/ is a maximal ideal of Rn for each positive
integer n. For each 0 � i � d , set


Pi WD .Z � ˛; ¹Vrnº1�r�i; 0�n/R:


Each Pi is a prime ideal of R since Pi \ Rn D .Z � ˛; V1n; : : : ; Vin/ is a prime ideal
of Rn. This gives rise to the following chain of prime ideals of R


0 � .Z � ˛/R D P0 � P1 � � � � � Pd � P:


Each inclusion is proper since the Pi ’s contract to distinct ideals in each Rn. Hence
ht.P / � d C 2, whence ht.P / D d C 2 as dim.R/ D d C 2. Since R is a Jaffard
domain, we get ht.P Œn�/ D ht.P / for each positive integer n. Therefore, R is locally
Jaffard, as desired.


Case 2: k is an arbitrary field. Let K be an algebraic closure of k. Let Tn D


KŒX;Z;U1n; : : : ; Udn� for each positive integer n and let


T WD
[
n�0


Tn D KŒX;Z; ¹U1n; : : : ; Udn W n � 0º�:


Let Q be a minimal prime ideal of PT . Then Q D .X;Z � ˇ/ with ˇ 2 K, as
T


XT
Š KŒZ�. By the above case, we have ht.Q/ D d C 2. Hence ht.PT / D d C 2.


As Tn Š K ˝k Rn, we get,


T D
[
n�0


Tn D


[
n�0


K ˝k Rn D K ˝k


[
n�0


Rn D K ˝k R:


Then T is a free and hence faithfully flat R-module. A well-known property of faithful
flatness shows that PT \ R D P . Further, T is an integral and flat extension of R. It
follows that ht.PT / D ht.P / D d C 2, and thus RP is a Jaffard domain.


Example 2.7. Eakin–Heinzer’s 3-dimensional non-Noetherian Krull domain, say R,
arises – via [30] and [14, Theorem 2.2] – as the symbolic Rees algebra with respect
to a minimal prime ideal P of the 2-dimensional homogeneous coordinate ring A of
a nonsingular elliptic cubic defined over the complex numbers. We claim that this
construction, too, yields locally Jaffard domains. Indeed, let K WD qf.A/, t be an
indeterminate over A, and P .n/ WD P nAP \ A, the nth symbolic power of P , for
n � 2. Set R WD AŒt�1; P t; P .2/t2; : : : ; P .n/tn; : : : �, the 3-dimensional symbolic
Rees algebra with respect to P . We have


A � AŒt�1� � R � AŒt; t�1� � K.t�1/:
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Let Q be a prime ideal of R, Q0 WD Q \ AŒt�1�, and q WD Q \ A D Q0 \ A. We
envisage three cases.


Case 1: ht.Q/ D 1. Then RQ is a DVR hence a Jaffard domain.
Case 2: ht.Q/ D 3. Then 3 D dim.RQ/ � dimv.RQ/ � dimv.AŒt


�1�Q0/ D
dim.AŒt�1�Q0/ � dim.AŒt�1� D 1C dim.A/ D 3. Hence RQ is a Jaffard domain.


Case 3: ht.Q/ D 2. If t�1 … Q, then RQ is a localization of AŒt; t�1�, hence a
Jaffard domain. Next, assume that t�1 2 Q. If Q is a homogeneous prime ideal, then
Q �M WD .mŒt�1�Ct�1AŒt�1�/˚pt˚� � �˚p.n/tn˚� � � and ht.M/ D 3, wherem is
the unique maximal ideal ofA. AsR is a Jaffard domain, we get ht.MŒX1; : : : ; Xn�/ D
ht.M/ D 3 for each positive integer n. Hence ht.QŒX1; : : : ; Xn�/ D ht.Q/ D 2
for each positive integer n, so that RQ is Jaffard. Now, assume that Q is not ho-
mogeneous. As t�1 2 Q and ht.Q/ D 1 C ht.Q�/, where Q� is the ideal gen-
erated by all homogeneous elements of Q, we get Q� D t�1R which is a height
one prime ideal of the Krull domain R. Also, for each positive integer n, note that
QŒX1; X2; : : : ; Xn�


� D Q�ŒX1; : : : ; Xn�. Therefore, for each positive integer n, we
have


ht.QŒX1; : : : ; Xn�/ D 1C ht.QŒX1; : : : ; Xn�
�/


D 1C ht.Q�ŒX1; : : : ; Xn�/


D 1C ht.t�1RŒX1; : : : ; Xn�/


D 1C ht.t�1R/ D 2


D ht.Q/:


It follows that RQ is Jaffard, completing the proof. Notice that Anderson–Dobbs–
Eakin–Heinzer’s example [4, Example 5.1] is a localization of R (by a height 3 maxi-
mal ideal), then locally Jaffard.


Also, Eakin–Heinzer’s second example [14] is a universally strong S-domain; in
fact, it belongs to the same family as Example 2.1. Another family of non-Noetherian
finite-dimensional Krull domains stems from the generalized fourteenth problem of
Hilbert (also called Hilbert–Zariski problem). This is the object of our investigation in
the following section.


3 Krull domains issued from the Hilbert–Zariski problem


Let k be a field of characteristic zero and let T be a normal affine domain over k. Let
F be a subfield of the field of fractions of T . Set R WD F \ T . The Hilbert–Zariski
problem asks whether R is an affine domain over k. Counterexamples on this problem
were constructed by Rees [30], Nagata [27] and Roberts [31, 32], where it is shown that
R does not inherit the Noetherian property from T in general. In this vein, Anderson,
Dobbs, Eakin, and Heinzer [4] asked whether R inherits from T the Noetherian-like
main behavior of being locally Jaffard. We investigate this problem within a more
general context; namely, extensions of domains A � R, where A is Noetherian and R
is a subalgebra of an affine domain over A.
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The next result characterizes the subalgebras of affine domains over a Noetherian
domain. It allows one to reduce the study of the prime ideal structure of these construc-
tions to those domains R between a Noetherian domain B and its localization BŒb�1�
.0 6D b 2 B/.


Proposition 3.1. Let A � R be an extension of domains where A is Noetherian. Then
the following statements are equivalent:


(1) R is a subalgebra of an affine domain over A;


(2) There is r ¤ 0 2 R such that RŒr�1� is an affine domain over A;


(3) There is an affine domain B over A and b ¤ 0 2 B such that B � R � BŒb�1�.


Proof. (1)) (2). This is [19, Proposition 2.1(b)].
(2)) (3). Let r ¤ 0 2 R and x1; : : : ; xn 2 RŒr


�1� with RŒr�1� D AŒx1; : : : ; xn�.
For each i D 1; : : : ; n, write xi D


Pni


jD0 rij r
�j with rij 2 R and ni 2 N. Let


B WD AŒ¹rij W i D 1; : : : ; n and j D 0; : : : ; niº� and let b WD r . Clearly, B is an affine
domain over A such that B � R � BŒb�1�.


The implication (3)) (1) is trivial, completing the proof of the proposition.


Corollary 3.2. Let A � R be an extension of domains where A is Noetherian and R
is a subalgebra of an affine domain over A. Then there exists an affine domain T over
A such that R � T and Rp is Noetherian (hence Jaffard) for each prime ideal p of R
that survives in T .


Proof. By Proposition 3.1, there exists an affine domain B over A and a nonzero ele-
ment b of B such that B � R � BŒb�1�. Put T D BŒb�1�. Let p be a prime ideal of
R that survives in T (i.e., b 62 p). Then it is easy to see that


Rp Š RŒb
�1�pRŒb�1� D BŒb


�1�pBŒb�1� D TpT


is a Noetherian domain, as desired.


Corollary 3.3. Let R be a subalgebra of an affine domain T over a field k. Then:


(1) dim.R/ D t: d:.R/ and R is a Jaffard domain.


(2) dim.R/ D ht.P \ R/ C t: d:. R
P\R


/ for each prime ideal P of T . In particular,
dim.R/ D ht.M/ for each maximal ideal M of R that survives in T .


Proof. (1) This is [10, Proposition 5.1] which is a consequence of a more general result
on valuative radicals [10, Théorème 4.4]. Also the statement “dim.R/ D t: d:.R/” is
[29, Corollary 1.2]. We offer here an alternate proof: By Proposition 3.1, there exists
an affine domain B over k and a nonzero element b of B such that B � R � BŒb�1�.
By [28, Corollary 14.6], dim.BŒb�1�/ D dimv.BŒb


�1�/ D dimv.B/ D dim.B/ D
t: d:.B/ D t: d:.R/. Further, observe that BŒb�1� D RŒb�1� is a localization of R.
Hence dim.BŒb�1�/ D dim.RŒb�1�/ � dim.R/ � dimv.R/ � dimv.B/. Conse-
quently, dim.R/ D dimv.R/ D t: d:.R/, as desired.
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(2) Let P be a prime ideal of T with p WD P \ R. By [10, Théorème 1.2], the
extension R � T satisfies the altitude inequality formula. Hence


ht.P /C t.d.
�T
P
W
R


p


�
� ht.p/C t.d..T W R/:


By [28, Corollary 14.6], we obtain


t.d..T W k/ � t.d.
�R
p
W k
�
� ht.p/C t.d..T W k/ � t.d..R W k/:


Then t.d..R/ � ht.p/C t.d..R
p
W k/. Moreover, it is well known that ([33, p. 10])


ht.p/C t.d.
�R
p
W k
�
� t.d..R/:


Applying (1), we get


dim.R/ D t.d..R W k/ D ht.p/C t.d.
�R
p
W k
�
:


Finally, notice that if M 2 Spec.R/ with MT ¤ T , then there exists M 0 2
Spec.T / contracting to M , so that ([28, Corollary 14.6])


t.d.
� R
M


�
� t.d.


� T
M 0


�
D 0;


completing the proof.


The above corollaries shed some light on the dimension and prime ideal structure
of the non-Noetherian Krull domains emanating from the Hilbert–Zariski problem. In
particular, these are necessarily Jaffard. But we are unable to prove or disprove if
they are locally Jaffard. An in-depth study is to be carried out on (some contexts of)
subalgebras of affine domains over Noetherian domains in line with Rees, Nagata, and
Roberts constructions.


Acknowledgments. We would like to thank the referee for helpful comments which
improved the third section of this paper.
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Elastic properties of some semirings
defined by positive systems


Patrick Cesarz, S. T. Chapman, Stephen McAdam and
George J. Schaeffer


Abstract. We consider two semirings motivated by the study of positive systems in control theory
and consider their basic factorization properties. The first is the semiring RCŒX� of polynomials
with nonnegative real coefficients. The second is a semiring of algebraic integers having the form
N0Œ� � D ¹x C y� W where x; y are nonnegative integersº for an appropriately chosen real quadratic
integer � . In each case, we show that the semiring has full infinite elasticity and that the �-set is
¹1; 2; 3; : : :º. The proof in the latter case uses results of Hans Rademacher on the distribution of
primes in quadratic extensions which may be of independent interest.


Keywords. Algebraic integer, non-unique factorization, elasticity of factorization, delta set.


AMS classification. 20M14, 20D60, 11B75.


1 Introduction


Let Z denote the ring of integers, N the set of positive integers, and N0 the set of
nonnegative integers. At the recent PREP Conference on the theory of non-unique
factorization, Ulrich Krause [10] posed several questions to the second author of this
note which were motivated by Krause’s familiarity with the theory of positive systems
in control theory (see [5] for recent Conference Proceedings on this subject). These
questions are as follows:


(1) If RCŒX� D ¹f .X/ W f .X/ D
Pt
iD0 aix


i 2 RŒX� with ai � 0 for every i º, then
what are the relative factorization properties of this multiplicative monoid?


(2) Let d > 0 be a squarefree integer. If N0Œ
p
d� D ¹a C b


p
d W a; b 2 N0º


then what factorization properties does this multiplicative monoid inherit from
the regular ring of integers in Q.


p
d/?


We found these questions of interest, and we provide basic answers to both. In
particular, we prove in Theorem 2.3 that any rational number s � 1 can serve as the
elasticity of some f .X/ 2 RCŒX� and that any positive integer m may serve as a con-
secutive difference in the length set of some element of RCŒX�. For question (2), we
consider the set N0Œ� � D ¹x C y� W x; y 2 N0º where � is an appropriately chosen
integer of Q.


p
d/. Under our assumptions, N0Œ� � is a semiring, and we repeat in The-


orem 3.1 results analogous to those of Theorem 2.3 for N0Œ� �. A key step in the proof
of this latter theorem originates in the work of Hans Rademacher on the distribution
of primes among quadratic integers which may provide independent interest (see for
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example Corollary 3.12 and [13]). Theorems 2.3 and 3.1 demonstrate that in these
monoids, unique factorization fails rather spectacularly.


Let us briefly review the notation and definitions which we will require. A very
good reference for the theory of non-unique factorization is the monograph [9]. Given a
ring or semiringR with no zero divisors, we letR� represent the multiplicative monoid
R n ¹0º; by hypothesis this monoid is cancellative. For a commutative monoid M , let
A.M/ denote the set of all irreducible elements (atoms) of M , and let M� denote the
set of all invertible elements (units) of M . For x 2M nM�, we define


L.x/ D ¹n W there are ˛1; : : : ; ˛n 2 A.M/ with x D ˛1 � � �˛nº


to be the set of lengths of x in M . For the M we are considering in Sections 2 and 3,
we have always that jL.x/j <1 (such a monoid is called a finite factorization monoid
or FFM [9, Section 1.5]). The ratio sup L.x/=min L.x/ is called the elasticity of x
and denoted �.x/. The elasticity of the monoid M is defined by


�.M/ D sup¹�.x/ W x 2M nM�º


(see [9, Chapter 1.4]). M is said to be fully elastic if for every q 2 Œ1; �.M/� \ Q,
there exists an x 2 M nM� such that �.x/ D q. Full elasticity has been studied in
great detail for various monoids in the papers [1], [3], [4], [7] and [8]. Accordingly,M
is said to have full infinite elasticity if �.M/ D1 and M is fully elastic; equivalently,
every rational number s � 1 is the elasticity of some element of M .


The �-set of x 2 M nM� is the set of consecutive differences in the set L.x/.
Explicitly, suppose that


L.x/ D ¹n1; n2; : : : ; nkº


where ni < niC1 for 1 � i � k � 1. Then �.x/ D ¹ni � ni�1 W 2 � i � kº. As one
might expect, we define the �-set of the monoid M by


�.M/ D
[


x2MnM�


�.x/


(see again [9, Chapter 1.4]). As with elasticity, the study of the �-sets of particular
monoids has an active history, and various calculations in specific cases can be found
in [2] and [6].


2 Semirings of polynomials with nonnegative coefficients


Let RCŒX� be the semiring of univariate polynomials with nonnegative real coeffi-
cients. That is,


RCŒX� D


´
f .X/ 2 RŒX� W f .X/ D


tX
iD0


aiX
i with ai � 0 for every i


µ
:


Lemma 2.1. Let n 2 Z and b; c 2 R such that n > 1, b > 0, and c � n. Then
f .X/ D .X C c/n.X2 �X C b/ 2 RCŒX� if and only if nb � c.
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Proof. Let ai be the coefficient of X i in f . We will show that ai � 0 for all i ¤ 1
and that a1 � 0 if and only if nb � c. The leading and trailing coefficients of f are
anC2 D 1 and a0 D bcn, respectively, and these are both positive by our hypotheses.
We also have anC1 D nc � 1 � n2 � 1 > 0.


Let i satisfy 2 � i � n. Expanding .X C c/n by the binomial theorem and multi-
plying by X2 �X C b we obtain


ai D


 
n


i


!
bcn�i �


 
n


i � 1


!
cn�iC1


C


 
n


i � 2


!
cn�iC2.


By our assumptions on n; c; i , we have ai � 0 if and only if


.i Š/.n � i C 2/Š
cn�i .nŠ/


ai D .n � i C 1/.n � i C 2/b � ci.n � i C 2/C c2i.i � 1/


is nonnegative. The first term on the right is nonnegative, so it suffices to show that


c2i.i � 1/ � ci.n � i C 2/.


This follows from observing that c.i � 1/ � c � n � n � i C 2 and that c; i > 0.
Finally, a1 D c


n�1.nb � c/, so a1 � 0 if and only if nb � c.


Corollary 2.2. If b > 1=4 and nb � c, but .n� 1/b < c, then .X C c/n.X2 �X C b/
is irreducible in RCŒX�.


Proof. The lemma shows our polynomial is in RCŒX�. We must show it is irreducible
there. The discriminant of X2 � X C b is 1 � 4b < 0, and hence X2 � X C b is
irreducible in RŒX�. Thus, any nontrivial factorization of our polynomial in RCŒX�
would include a factor of the form .X C c/m.X2 � X C b/ with m < n. However,
since mb � .n� 1/b < c, the lemma shows that this factor does not lie in RCŒX�.


Theorem 2.3. The monoid RCŒX�� has full infinite elasticity and �.RCŒX��/ D N.


Proof. Consider


g.X/ D .X C n/n.X2
�X C 1/.X C 1/k ,


where n; k � 1. Lemma 2.1 with b D 1 and c D n implies that the polynomial


.X C n/m.X2
�X C 1/


is an element of RCŒX� if and only if m � n and Corollary 2.2 guarantees that it is
irreducible in RCŒX� when m D n. In particular, g 2 RCŒX�.


Using the fact that X2 � X C 1 is an irreducible element of RŒX�, it is clear that
.X2 � X C 1/.X C 1/ is an irreducible element of RCŒX�. The reader will have no
trouble verifying that the only irreducible factors of g in RCŒX� are


.X C n/n.X2
�X C 1/, X C 1, X C n, and .X C 1/.X2


�X C 1/,
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and that there are only two irreducible factorizations of g in RCŒX�:


g.X/ D Œ.X C n/n.X2
�X C 1/� � ŒX C 1�k , and


g.X/ D ŒX C n�n � Œ.X2
�X C 1/.X C 1/� � ŒX C 1�k�1


which have lengths 1C k and nC k respectively. Thus, in RCŒX� we have


L.g/ D ¹1C k; nC kº; �.g/ D
nC k


1C k
and �.g/ D ¹n � 1º.


Given any rational number s � 1, one can find integers n; k � 1 such that s equals
.nC k/=.1C k/, so we conclude that RŒX�� has full infinite elasticity. Similarly, we
obtain �.RŒX��/ D N.


Before we conclude this section, we remark that R can be replaced in all of the
above results and arguments with any ring A with Z � A � R.


3 Semirings of quadratic integers


In the last section, we studied the basic factorization properties of the polynomial
semiring RCŒX� by exploiting the properties of the UFD RŒX� in which it is con-
tained. However, a few issues with the inclusion RCŒX� � RŒX� make further results
challenging to obtain in this manner. For instance, RCŒX�� is not a root-closed sub-
monoid of RŒX��; that is, there do exist nonzero f 2 RŒX� such that f;�f … RCŒX�
but f n 2 RCŒX� for some n > 1. As an example, f .X/ D X4C 2X3�X2C 2X C 1
does not lie in RCŒX� but its square


f .X/2 D X8
C 4X7


C 2X6
C 11X4


C 2X2
C 4X C 1


certainly does.
Another problem that arises in treating RCŒX� via RŒX� is, simply put, the tran-


scendence of X . Given f 2 RCŒX�, the naïve method for computing the atomic
factorizations of f in RCŒX� is to factor f in the UFD RŒX� and then determine by
brute force which factors (among all divisors of f ) are irreducible factors of f in
RCŒX�. As deg f grows, computation using this method becomes prohibitive, and an
improved algorithm is not immediately apparent.


It is therefore natural to ask what happens when we replace R with Z and replace
X with an appropriate algebraic integer � . In this section, we will show that analogous
results hold for these algebraic semirings in the quadratic case.


Let ˛ be an algebraic integer of degree n. The set


N0Œ˛� D


´
ˇ 2 ZŒ˛� W ˇ D


n�1X
iD0


ui˛
i with ui 2 N0 for every i


µ


forms a semiring under the usual operations if and only if ˛n 2 N0Œ˛�. Equivalently,
the minimal polynomial of ˛ is of the form T n � f .T / where f 2 N0ŒT � (here N0ŒT �
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is the semiring of univariate polynomials in T with nonnegative integer coefficients)
and degf < n.


For the rest of the article we fix a quadratic integer � such that N0Œ� � (as defined
above) is a semiring (with n D 2). From our previous discussion, we easily see that
N0Œ� � is a semiring if and only if � C N� � 0 and � N� < 0. These two inequalities have a
number of implications which we summarize below.


� Set K D Q.�/. There is a unique squarefree d 2 Z such that K D Q.
p
d/. We


fix q; r 2 Q such that � D q C r
p
d .


� Since � N� D q2 � dr2 < 0, we must have d > 0. As is standard, we take
p
d > 0


and note that K is a subfield of R.
� Because � C N� D 2q � 0, q � 0. We may also assume that r > 0, possibly after


replacing � with its conjugate.


In this section we prove the following theorem.


Theorem 3.1. With the notation and assumptions as above, N0Œ� �
� has full infinite


elasticity and �.N0Œ� �
�/ D N.


The plan of the proof is as follows. Just as we exploited the inclusion RCŒX� �
RŒX�, we will use the properties of ZŒ� � to study N0Œ� �. However, these two situations
are strikingly different: while RŒX�� D R� and RCŒX�� D RC n ¹0º, invertible
elements of ZŒ� � need not remain so in N0Œ� �. From algebraic number theory, we know
that ZŒ� ��=¹˙1º ' Z, but exactly one of the elements of ZŒ� � lifting to a generator
of this group lives in N0Œ� �. This element, the fundamental unit � of ZŒ� �, is actually
irreducible in N0Œ� �. Using a theorem of Hans Rademacher, we show that for any
positive integer k there is a prime � of the ring ZŒ� � such that � 2 N0Œ� � and k is
least with � j �k in N0Œ� �. Exploiting the unique factorization of �k in ZŒ� �, we will
show that the length set of �k is either ¹2; kº or ¹3; kº (with the latter occurring when
� D �). Along with the existence of a prime element of N0Œ� � this is adequate to prove
the theorem.


We begin the proof by formulating a membership criterion for the semiring N0Œ� �.
Let � be the endomorphism ofK� given by ˛ 7! N̨=˛. The following basic facts about
� follow directly from the definition:


Proposition 3.2. Let ˛; ˇ 2 K�. Then the following hold:


� �.�˛/ D �.˛/, and �. N̨ / D �.1=˛/ D 1=�.˛/.
� If ˛ > 0, then N̨ > 0 if and only if �.˛/ > 0. In particular, �.�/ < 0.
� �.˛/ D 1 if and only if ˛ 2 Q.


� �.˛/ D �1 if and only if ˛ is a rational multiple of
p
d .


� �.˛/ D �.ˇ/ if and only if ˛=ˇ 2 Q.


Also, since � D q C r
p
d with q; r 2 Q, q � 0, r > 0, and N� D q � r


p
d < 0 we


have �.�/ < 0 and j�.�/j D .�q C r
p
d/=.q C r


p
d/ � 1, so �1 � �.�/ < 0.
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Proposition 3.3 (Membership criterion). If ˛ in ZŒ� � is nonzero, then ˛ is in N0Œ� � if
and only if ˛ > 0 and �.˛/ is in Œ�.�/; 1�.


Proof. For any real number � not equal to �1=
p
d , let


f .�/ D
1 � �


p
d


1C �
p
d


.


Since f .�/! �1 as �!˙1, let f .˙1/ D �1.
Let ˛ D xCy� be nonzero in ZŒ� � and assume for now that xCyq ¤ 0. We have


˛ D x C y� D .x C yq/C yr
p
d D .x C yq/.1C �˛


p
d/;


where �˛ D yr=.x C yq/. Since �˛ is rational, it is not �1=
p
d .


Since xCyq is rational, we see �.˛/ D �.1C�˛
p
d/ D f .�˛/. In particular, when


˛ D � (so .x; y/ D .0; 1/), we get �.�/ D f .�� / D f .r=q/ (here, when q D 0, we
take r=q D1, since r > 0). Since f .0/ D 1, we have �.˛/ is in Œ�.�/; 1� if and only if
f .�˛/ is in Œf .r=q/; f .0/�. However, away from its singularity �1=


p
d , the derivative


of f .�/ is always negative. That singularity is negative, and so on the nonnegative
interval Œ0; r=q�, f .�/ is monotonically decreasing. Thus �.˛/ is in Œ�.�/; 1� if and
only if 0 � �˛ � r=q.


Now suppose that ˛ is in N0Œ� �. Then x; y are nonnegative and not both zero.
Obviously ˛ D .x C yq/ C yr


p
d > 0. Also 0 � yr=.x C yq/ � yr=yq D r=q,


showing 0 � �˛ � r=q, which by the above shows that �.˛/ is in Œ�.�/; 1�, as desired.
Conversely, suppose ˛ > 0 and �.˛/ is in Œ�.�/; 1�. Then 0 � yr=.xC yq/ � r=q (by
the above). The first inequality shows that either yr and xCyq have the same sign, or
yr D 0. They cannot both be negative, as otherwise ˛ D .x C yq/C yr


p
d < 0.


On the other hand, suppose that both are positive. From yr > 0 we obtain y > 0,
and since yr=.x C yq/ � r=q D yr=yq, we must also have x � 0, so ˛ 2 N0Œ� �. If
yr D 0, then y D 0 and so ˛ D x where x is a positive integer, so again ˛ 2 N0Œ� �.


We now turn to the case that x C yq D 0. Assume first that ˛ 2 N0Œ� � so that
x; y � 0 (not both zero). Since x; y; q � 0, x C yq D 0 implies x D 0 and therefore
q D 0 since y must be nonzero. Then y > 0 so ˛ D y� > 0 and �.˛/ D �.�/ lies in
the interval Œ�.�/; 1�, as desired.


Conversely, suppose that ˛ D x C y� > 0, �.˛/ 2 Œ�.�/; 1�, and x C yq D 0.
Then ˛ D yr


p
d , so �.˛/ D �1 and hence �.�/ D �1, which implies q D 0. Since


x C yq D 0, x is also equal to zero, so ˛ D y� . Since ˛ > 0 and � > 0, y > 0, from
which we finally conclude that ˛ 2 N0Œ� �.


Corollary 3.4 (Divisibility criterion). If ˛; ı 2 N0Œ� � are nonzero then ı j ˛ in N0Œ� � if
and only if ı j ˛ in ZŒ� � and �.˛=ı/ 2 Œ�.�/; 1�.


The above follows from the membership criterion since � is an endomorphism of
K�. In particular, if ı is a unit of the ring ZŒ� �, whether or not ı divides ˛ in N0Œ� �
depends entirely on the value �.˛/. This idea plays a central part in our arguments.
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As stated in the summary of the proof of the main theorem, ZŒ� ��=¹˙1º is iso-
morphic to Z (this is an application of the classical unit theorem of Dirichlet, see for
example [12], Theorem I.12.12). There is a unique � 2 ZŒ� �� with � > 1 which lifts
to a generator of this group; this is called the fundamental unit of ZŒ� �.


Proposition 3.5. We have � 2 N0Œ� �, j�.�/j < 1, and


N0Œ� � \ ZŒ� �� D ¹�k W k � 0º D ¹1; �; �2; : : :º.


In particular, � is an irreducible element of N0Œ� �, and N0Œ� �
� D ¹1º.


Proof. Let � D uC v
p
d where u; v 2 Q. Since � is the greatest element of the set


¹˙�;˙N�º we have u; v > 0.
If �.�/ > 0, then � and N� are both positive and � N� D 1 since � is a unit. It follows


that �.�/ D 1=�2, and so �.�/ < 1 since � > 1. Thus � 2 N0Œ� � by Proposition 3.3.
On the other hand, if �.�/ < 0, then � N� D �1 instead. Since � 2 ZŒ� �, there exist


x; y 2 Z with � D x C y� . Comparing coefficients, u D x C yq and v D yr so
immediately y > 0. In addition,


0 > y2� N� D y2.q2
� dr2/ D .u2


� dv2/C .�2ux C x2/ D .�2ux C x2/ � 1


from which it follows that x � 0 and � 2 N0Œ� �.
Since � 2 N0Œ� �, j�.�/j � 1. However, � is neither rational nor a rational multiple


of
p
d , so neither �.�/ D 1 nor �.�/ D �1, respectively, and thus j�.�/j < 1.


Ifw 2 N0Œ� �\ZŒ� ��, then since � is the fundamental unit of ZŒ� � andw is positive,
w D �k for some k 2 Z. Since w 2 N0Œ� �, by Proposition 3.3 we have j�.w/j D
j�.�/jk � 1 showing k � 0 since we know j�.�/j < 1.


It follows that � is irreducible in N0Œ� �, for if � D ˛ˇ for ˛; ˇ 2 N0Œ� �, we would
also have ˛; ˇ 2 ZŒ� ��, meaning ˛ and ˇ are positive powers of �, so ¹˛; ˇº D ¹1; �º.
Since any unit of N0Œ� � is also a unit of ZŒ� �, it also follows that N0Œ� �


� D ¹1º.


Corollary 3.6. The monoid N0Œ� �
� is atomic.


Proof. Let ˛ 2 N0Œ� �, assume that � − ˛, and let N be the function ı 7! jı Nıj (the
absolute norm). We will show that ˛ has an atomic factorization in N0Œ� � by induction
on N.˛/. If N.˛/ D 1, then ˛ is a unit in ZŒ� �, but � − ˛ so we must have ˛ D 1 (by
Proposition 3.5).


On the other hand, if N.˛/ > 1 and ˛ is not itself irreducible, then there are nonunits
ˇ and  of N0Œ� � which satisfy ˛ D ˇ . Of course � − ˇ;  , so ˇ and  are also
nonunits of ZŒ� �. It follows that 1 < N.ˇ/;N./ < N.˛/, so ˛ has an atomic factor-
ization by induction.


In the general case, j�.�/j < 1 implies that j�.˛=�m/j > 1 for large m, and so by
Corollary 3.4 there is a greatest m such that �m j ˛ in N0Œ� �. Thus ˛ D �m˛0 where
� − ˛0. Since � is irreducible and ˛0 has an atomic factorization, ˛ has an atomic
factorization.


If � is a unit unusual behavior arises, and this leads to a case division in our proof.







96 P. Cesarz, S. T. Chapman, S. McAdam, G. J. Schaeffer


Proposition 3.7. Suppose that � is a unit of ZŒ� �. Then � D � and for all ˛ 2 N0Œ� �
with N̨ > 0, � j ˛ implies �2 j ˛ in N0Œ� �.


Proof. If � is a unit, then � 2 ZŒ� �� \ N0Œ� �, so it follows from Proposition 3.5 that
� D �k where k > 0 (nonzero since � is irrational). Since �.�/ < 0, we also have
�.�/ < 0, and thus the membership criterion yields j�.�/j � j�.�/j D j�.�/jk . But
j�.�/j < 1, so we must have k D 1.


Since � is a unit and �.�/ < 0, a given nonzero ˛ 2 N0Œ� � is divisible by � if
and only if �.˛/ 2 Œ�.�/; �.�2/�. Similarly, ˛ is divisible by �2 if and only if �.˛/ 2
Œ�.�3/; �.�2/�. Hence, if ˛ is divisible by � but not divisible by �2,


�.˛/ 2
�
�.�/; �.�3/


�
� Œ�1; 0/


so �.˛/ < 0 whence N̨ < 0.


Proposition 3.8. If � is not a unit of ZŒ� �, then �.�/ > �.�/.


Proof. Suppose instead that �.�/ D �.�/ (this suffices by the membership criterion).
Then �=� 2 Q by Proposition 3.2, and since it is also a nonzero element of ZŒ� �,
m D �=� is a positive rational integer. Of course, � D u C v� where u; v 2 N0, so
� D muC mv� , which implies .1 � mv/� D mu. Since � is irrational but mu 2 Z
we must have 1 �mv D 0, so m D v D 1 and therefore � D m� D �.


The above results comprise the first ingredients in the main theorem. We will now
show that for any nondiscrete subset I of .0; 1� there exist infinitely many primes � of
the ring ZŒ� � satisfying �.�/ 2 I . The proof of Theorem 3.1 requires that for certain
I at least one such prime exists, so a simpler argument than the one we give here
may exist.


We briefly review a few notions of classical algebraic number theory: The ring of
integers of K, denoted OK , is the integral closure of Z in K (as usual, K D Q.


p
d/


here). A basic result of algebraic number theory states that


OK D


´
ZŒ 1C


p
d


2 � if d � 1 mod 4, and
ZŒ
p
d� otherwise.


Incidentally, both N0Œ
p
d� and N0Œ


1C
p
d


2 � are both semirings, since
p
d and 1C


p
d


2
satisfy the inequalities given in the introduction to this section.


Like the unit group of ZŒ� �, the group O�K also admits a unique fundamental unit
" > 1 which lifts to a generator of O�K=¹˙1º. Note that � must be a positive power of
" (in fact it is the least power of " lying in ZŒ� �).


Given an ideal a of OK we will set "a D "m where m is the least positive integer
such that N"m > 0 and "m � 1 mod a. Finally, we define the conductor of ZŒ� � by


f D ¹˛ 2 OK W ˛OK � ZŒ� �º.


This is a nonzero ideal of both OK and ZŒ� �; in fact, it is the largest ideal of OK which
is contained in ZŒ� �. Furthermore, if ˛ 2 ZŒ� �, ˇ 2 OK , and ˛ � ˇ mod f , then
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ˇ 2 ZŒ� � as well. For example, "f � 1 mod f so "f is an element of ZŒ� �. Since,
1 � "f is an element of f , so is its associate (in OK), "�1


f � 1, so we have "�1
f 2 ZŒ� �


which shows "f 2 ZŒ� ��. It follows that "f is a positive power of �.
To summarize, the following units of OK are important in our proof:


� ", the fundamental unit of OK .


� �, the fundamental unit of ZŒ� �, which is a positive power of "; it is also an
irreducible element of the semiring N0Œ� �.


� "a, the least power of " such that "a � 1 mod a and N"a > 0 (for a an ideal of
OK).


An important property of the conductor is that it preserves primality.


Proposition 3.9. If � is a prime of OK and � � 1 mod f , then � is also a prime
of ZŒ� �.


Proof. Suppose that � j ˛ˇ with ˛; ˇ 2 ZŒ� �. Since � is prime in OK , ˛ D �ı for
some ı 2 OK , say. Since ı � ˛ mod f and ˛ 2 ZŒ� �, ı 2 ZŒ� � as well.


Example 3.10. As an example, let � D 1C
p


5. Since � C N� D 2 and � N� D �4, N0Œ� �


is a semiring. Clearly ZŒ� � D ZŒ
p


5�, and by a result stated above OK D ZŒ 1C
p


5
2 �.


Observe that 2OK � ZŒ
p


5�. Since the minimal polynomial of 1C
p


5
2 is irreducible


over F2, 2OK is a nonzero prime ideal and therefore maximal (OK is Dedekind). It
follows that f D 2OK . It is important to note that while f is also an ideal of ZŒ


p
5�, it


is not principal; rather f D .2; 1C
p


5/ in ZŒ
p


5�.
The fundamental unit of OK is " D 1C


p
5


2 , which obviously does not lie in ZŒ
p


5�,
nor does its square, 1C ". However, "3 D 2C


p
5 does lie in ZŒ


p
5�, so � D "3. (This


is expected, since .OK=f/� is cyclic of order 3 and .ZŒ
p


5�=f/� is trivial).
Now, � � 1 mod f , but N� < 0. Hence "f is not equal to �, but rather "f D �


2 D "6.
The element � D 12C


p
5 2 N0Œ1C


p
5� is prime in OK (its norm is 139, which


is prime, and OK is factorial for our choice of K). Moreover, 12C
p


5 � 1 mod f , so
it remains prime when we move to the ring ZŒ


p
5�.


Note that � D 2C
p


5 does not divide 12C
p


5 in N0Œ1C
p


5�:


.12C
p


5/.2C
p


5/�1
D �19C 10


p
5 D �29C 10.1C


p
5/.


However, � ought to divide some power of � . Since �.�/ < 0, the divisibility criterion
shows � j �k if and only if �.�k/ is in the interval Œ�.�/; �.��/�, but since �.�/ > 0,
that is equivalent to having �.�k/ � �.��/. We have �.�/ � 0:6859, so the smallest
power of � divisible by � in N0Œ1C


p
5� is k D 11. Indeed


.12C
p


5/11.2C
p


5/�1
D 81893205959C 329760376010.1C


p
5/.


Using the fact that 12 C
p


5 is prime in ZŒ� �, we can argue that the only irreducible
factors of .12 C


p
5/11 in ZŒ� � are 12 C


p
5, the fundamental unit 2 C


p
5, and the
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large factor given above. It follows that the length set of .12C
p


5/11 in N0Œ1C
p


5� is
¹2; 11º. This is essentially the argument we will generalize to prove the main theorem.


As demonstrated in the example, we want to find primes � of ZŒ� � which lie in
N0Œ� � and with �.�/ approximating some specified value. The following result is a
direct corollary of work done by Hans Rademacher on the distribution of primes in
quadratic integer rings [13].


Proposition 3.11. Let a be an ideal of OK , let � 2 OK be relatively prime to a, and
let I be a nondiscrete subset of


�
�."a/; 1


�
. There exist infinitely many primes � of OK


such that � � � mod a and �.�/ 2 I .


Proof. Define L W .0;1/ ! R by L.t/ D log"2
a
.1=t/. Following Rademacher, we


also define w W K� ! R by w.˛/ D L.j�.˛/j/. For v 2 .0; 1� and x � 2 let c.x; v/
be the number of primes � of ZŒ� � such that � N� � x, � � � mod a, �; N� > 0, and
w.�/ 2 Œ0; v/. Note that since "a; N"a > 0 by definition, N"a D "


�1
a , hence �."a/ D 1="2


a


and w."a/ D 1.
The Hauptsatz of [13] states that there are constants A;B;H > 0 depending only


on K and a such that for x � 2


jc.x; v/ �Hv Li.x/j � Ax exp.�B
p


log x/,


where Li.x/ D
R x


2 dt= log t .
It suffices to prove the proposition for I D .t0; t1� where 1="2


a < t0 < t1 < 1. The
functionL is monotonically decreasing and the image of .1="2


a; 1� underL is Œ0; 1/. Let
vi D L.ti / so that 0 < v1 < v0 < 1. Applying the triangle inequality to Rademacher’s
result, we have


jc.x; v0/ � c.x; v1/ �H.v0 � v1/Li.x/j � 2Ax exp.�B
p


log x/.


One verifies easily that Li.x/ dominates 2Ax exp.�B
p


log x/ (using L’Hôpital’s rule,
for example), so dividing through by Li.x/ and taking x !1 yields


lim
c.x; v0/ � c.x; v1/


Li.x/
D H.v0 � v1/ > 0.


In particular c.x; v0/ � c.x; v1/ ! 1 as x ! 1. Recalling the definition of c,
this means that there are infinitely many primes � of ZŒ� � such that � � � mod a,
�; N� > 0, and w.�/ 2 Œv1; v0/. Since the primes being counted satisfy �; N� > 0 (and
therefore �.�/ > 0), w.�/ 2 Œv1; v0/ if and only if �.�/ 2 .t0; t1�.


Corollary 3.12. If a is an ideal of OK and � 2 OK is relatively prime to a then the set
¹�.�/ W � is prime in OK , � � � mod aº \ .0; 1� is dense in .0; 1�.


Proof. Since "a; N"a > 0 and "a > 1, we have 0 < �."a/ < 1. It follows that


.0; 1� D
1[
kD0


�
�."kC1


a /; �."ka/
�


and this union is clearly disjoint.
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Let U be an open subset of .0; 1� and fix k so that U 0 D U \
�
�."kC1


a /; �."ka/
�


is
nonempty, hence nondiscrete. Then �."�ka /�U 0 is a nondiscrete subset of


�
�."a/; 1


�
. By


the preceding proposition there exists a prime element � of OK such that � � � mod a
and �.�/ 2 �."�ka / � U 0. Finally, let � 0 D "ka� . � 0 is prime in OK , � 0 � � mod a
(since "a � 1 mod a), and �.� 0/ 2 U .


Corollary 3.13. If I is a nondiscrete subset of .0; 1� there exist infinitely many primes
� of ZŒ� � satisfying �.�/ 2 I .


Proof. Applying the preceding corollary, there exist infinitely many primes � of OK
satisfying �.�/ 2 I and � � 1 mod f . The congruence condition guarantees that �
lies in ZŒ� � and that it remains prime in this subring (see Proposition 3.9).


Note also that if the union of intervals in the proof of Corollary 3.12 is instead taken
over all k 2 Z, we obtain all of .0;1/, so .0; 1� may be replaced with .0;1/ in both
the above results. Another way to see this is to use the fact that if � is prime, then so
is N� and �. N�/ D 1=�.�/.


Proposition 3.14. Let k be an integer such that k � 3. There exists � 2 N0Œ� �
� such


that L.�/ D ¹2C �; kº where � D 0 when � ¤ � and � D 1 when � D �.


Proof. Suppose we have ˛ 2 N0Œ� �
� with �.˛/ > 0 and let


Im D
�
�.�m/ � Œ�.�/; 1�


�
\ .0;1/ D


�
0;max¹�.�m/; �.�m�/º


�
.


Then ˛ is divisible by �m if and only if �.˛/ 2 Im (by Corollary 3.4).
We set J D I1 n I2C� and compute


J D


8̂<̂
:
�
�.�2/; �.�/


�
if � ¤ � and �.�/ > 0,�


�.�2/; �.��/
�


if � ¤ � and �.�/ < 0,�
�.�4/; �.�2/


�
if � D �.


In all cases, J is a subinterval of .0; 1/, open on the left and closed on the right. For any
integer i > 0 let Ji denote the image of J under the map .0;1/! .0;1/ W x 7! x1=i .
Since J � .0; 1/ and this map is continuous and monotonically increasing on .0; 1/, we
have maxJk > maxJk�1, so Jk n Jk�1 is a nondiscrete subset of .0; 1�. By Corollary
3.13 we may fix a prime � of ZŒ� � such that �.�/ 2 Jk n Jk�1. By replacing � with
its negative, we may assume that � > 0 and therefore � 2 N0Œ� � by Proposition 3.3.


Since �.�/ 2 Jk , �.�k/ 2 J � I1, so � j �k in N0Œ� �. On the other hand,
�.�/ > maxJk�1, so �.�k�1/ > maxJ D max I1 and therefore � − �k�1 in N0Œ� �.
That is, k is the least positive integer such that � j �k . Similarly, since �.�k/ 2 J and
J is disjoint with I2C�, �2C� − �k in N0Œ� �.


Let � D �k . As shown above, � j � but �2C� − � in N0Œ� �. Let ı be an irreducible
factor of � in N0Œ� �. Since then ı j �k in ZŒ� � and � is prime in ZŒ� �, ı D �i�j where
i; j 2 Z and 0 � j � k. We have the following possibilities:


� If i > 0, then we must have ı D �. This is irreducible by Proposition 3.5.







100 P. Cesarz, S. T. Chapman, S. McAdam, G. J. Schaeffer


� If i D 0, then ı D � . It is easily verified that � is irreducible in N0Œ� � since � − �
in N0Œ� � and � is a prime element of ZŒ� �.


� Assume that i < 0. Then �ji j divides �j in N0Œ� �. However, since �2C� − �j ,
ji j � 1C�. Hence, if � ¤ �, we must have i D �1 and consequently also j D k
since k is the least positive integer such that � j �k .
On the other hand, if � D � then � j �j implies �2 j �j since �.�j / > 0
(Proposition 3.7). Hence we obtain .i; j / D .�2; k/.


Hence the irreducible factors of � in N0Œ� � are �, � , and ��.1C�/�k . It follows that the
only atomic factorizations of � in N0Œ� � are


� D .�/1C�.��.1C�/�k/ D .�/k;


so L.�/ D ¹2C �; kº as desired.


Proposition 3.15. The monoid N0Œ� �
� has a prime element.


Proof. Let ¹1; �º be a Z-basis for OK and suppose that � D g C f � where g; f 2 Z
and f ¤ 0. There are infinitely many rational primes which remain prime in OK
(this is true of asymptotically half of all rational primes when K is a quadratic number
field—this is a consequence of quadratic reciprocity); fix such a prime p > 0 which
does not divide f . An elementary argument shows that p is prime in N0Œ� �


�; the details
are left to the reader.


We may now complete the proof of the main theorem. The fact that�.N0Œ� �
�/ D N


follows easily from Proposition 3.14. If s � 1 is rational, we can find j; k such that


j C k


j C .2C �/
D s.


So taking � as in the statement of Proposition 3.14, �.pj �/ D s where p is some prime
element of N0Œ� �


�.
Theorems 2.3 and 3.1 raise a number of further questions about factorization in


structures of this kind. For example, does every finite subset of ¹2; 3; : : :º occur as the
factorization length set of some f 2 RCŒX� or some ˛ 2 N0Œ� �?
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Integer-valued polynomial in valued fields
with an application


to discrete dynamical systems


Jean-Luc Chabert


Abstract. Integer-valued polynomials on subsets of discrete valuation domains are well studied.
We undertake here a systematical study of integer-valued polynomials on subsets S of valued fields
and of several connected notions: the polynomial closure of S , the Bhargava’s factorial ideals of
S and the v-orderings of S . A sequence of numbers is naturally associated to the subset S and a
good description can be done in the case where S is regular (a generalization of the regular compact
subsets of Y. Amice in local fields). Such a case arises naturally when we consider orbits under the
action of an isometry.


Keywords. Integer-valued polynomial, generalized factorials, valued field, valuative capacity, dis-
crete dynamical system.


AMS classification. 13F20, 13B65, 37B99.


1 Introduction


Integer-valued polynomials in a number fieldK is a natural notion introduced by Pólya
[28] and Ostrowski [29]: they are polynomials f with coefficients in K such that
f .OK/ � OK (where OK denotes the ring of integers of K). The notion has been
generalized, first in [7] by considering any integral domain D and the D-algebra


Int.D/ D ¹f 2 KŒX� j f .D/ � Dº (1.1)


(where K denotes the quotient field of D), and then, in [22] by considering any subset
S of the integral domain D and the corresponding D-algebra


Int.S;D/ D ¹f 2 KŒX� j f .S/ � Dº; (1.2)


that is called the ring of integer-valued polynomials on S with respect to D.
When D is Noetherian, the notion behaves well by localization: for every maximal


ideal m of D, one has the equality [8, I.2.7]


Int.S;D/m D Int.S;Dm/: (1.3)


So that, whenD D OK is the ring of integers of a number fieldK, the study may be re-
stricted to the case where S is a subset of the ring V of a discrete valuation v (with finite
residue field). We then may use the notion of v-ordering introduced by Bhargava ([2]
and [3]) that allows an algorithmic construction of bases of the V -module Int.S; V /.
Finally, the case of subsets of discrete valuation domains is well studied, although it
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remains some difficult questions. For instance, what happens when we replace the
indeterminate X by several indeterminates (see Mulay [27] and Evrard [17])?


When the field K is no more a number field, but an infinite algebraic extension of
Q, the ring of integers OK is no more a Dedekind domain, but a Prüfer domain. Then,
we are not sure that things still work well under localization. We can find (see [11] or
[8, VI.4.13]) characterizations of the equality


.Int.OK//m D Int..OK/m/: (1.4)


Without any condition on K, we only have the containment


.Int.OK//m � Int..OK/m/; (1.5)


and more generally, for every subset S of K, we have [8, I.2.4]


.Int.S;OK//m � Int.S; .OK/m/: (1.6)


In any case, it may be worth of interest to study the ring Int.S; V / formed by the
integer-valued polynomials on a subset S of a (not necessarily discrete) rank-one val-
uation domain V .


In fact, it is known that many of the results concerning discrete valuation domains
may be extended to rank-one valuation domains provided that the completion bS of S
is assumed to be compact (see [9]) because, in that case we still have a p-adic Stone–
Weierstrass theorem [10]. But, here, we wish to remove all restrictions on the subset S
(while keeping the assumption that the valuation is rank one).


Classical definitions


Before beginning this study, let us first recall two general notions linked to integer-
valued polynomials: the polynomial closure of a subset and the factorial ideals associ-
ated to a subset. For every integral domainD with quotient fieldK and every subset S
of D, we may associate to the subset S , and to the corresponding D-algebra


Int.S;D/ D ¹f 2 KŒX� j f .S/ � Dº (1.7)


of integer-valued polynomials on S with respect to D, the following notions:


Definition 1.1 (McQuillan [26]).


(i) A subset T of K is said to be polynomially equivalent to S if


Int.T;D/ D Int.S;D/: (1.8)


(ii) The polynomial closure S of S is the largest subset of K which is polynomially
equivalent to S , equivalently,


S D ¹t 2 K j f .t/ 2 D 8f 2 Int.S;D/º: (1.9)


(iii) The subset S is said to be polynomially closed if


S D S: (1.10)
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So that, to study the ring Int.S;D/ we may replace S by its polynomial closure S
or, when we do not know it, by any subset T which is polynomially equivalent to S .
We now generalize to every subset S of an integral domain D the notion of factorial
ideal introduced by Bhargava [4] for subsets of Dedekind domains.


Definition 1.2 ([4] and [9]). For every n 2 N, the n-th factorial ideal of the subset S
with respect to the domain D is the inverse nŠDS (or simply nŠS ) of the D-module gen-
erated by the leading coefficients of the polynomials of Int.S;D/ of degree n, where
the inverse of a sub-D-module N of K is N�1 D ¹x 2 K j xN � Dº.


Note that, in particular,K�1 D .0/ and .0/�1 D K. Bhargava [4] showed that these
factorial ideals may have fine properties extending those of the classical factorials. For
instance, when D is a Dedekind domain,


8n;m 2 N nŠDS �mŠ
D
S divides .nCm/ŠDS : (1.11)


We fix now the hypotheses and notation for the whole paper.


2 Hypotheses, notation and v-orderings


2.1 Let K be a valued field,


that is, a field endowed with a rank-one valuation v. Then, the value group � D v.K�/
is a subgroup of the additive group R. We denote by V the corresponding valuation
domain, by m the maximal ideal and by k the residue field V=m.


As usual, we define an absolute value on K by letting


8 x 2 K� jxj D e�v.x/: (2.1)


For x 2 K and  2 R, we denote by B.x; / the ball of center x and radius e� , that
is,


B.x; / D ¹y 2 K j v.x � y/ � º: (2.2)


Remark 2.1. With respect to the polynomial closure, we may notice the following:


(i) Since every polynomial f 2 KŒX� is a continuous function onK, the polynomial
closure S of any subset S ofK obviously contains the topological closureeS of S
in K: eS � S: (2.3)


(ii) There are subsets S such that eS 6D S (Remarks 6.4 (ii) and 11.4 (2)).


(iii) In general, polynomially closed subsets are stable under intersection [8, IV.1.5],
but not under finite union [8, IV.4.Exercise 2]. Nevertheless,we will see that, in
a valued field K, a ball is polynomially closed and a finite union of balls is still
polynomially closed (Proposition 8.2). (All the balls that we will consider are
closed balls of the form B.x; / unless the contrary is explicitly stated.)
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2.2 Now we fix a subset S of K .


Since we are in a valued fieldK, the factorial ideals nŠS of S are characterized by their
valuations. Thus, we introduce the following arithmetical function:


Definition 2.2 ([9]). The characteristic function of S is the function wS defined by


8n 2 N wS .n/ D v.nŠS / (2.4)


with the convention that v..0// D C1 and v.K/ D �1.


Obviously, 0ŠS D V , and then, wS .0/ D 0. In the case of valued fields, factorial
ideals have still fine properties. For instance, (1.11) becomes


8n;m 2 N wS .nCm/ � wS .n/C wS .m/: (2.5)


The following proposition is an obvious consequence of the previous inclusion (2.3):


Proposition 2.3. Denoting by eS the topological closure of S in K, we have


Int.eS; V / D Int.S; V / and hence, for every n � 0; nŠeS D nŠS :
Denoting by bV andbS the completions of V and S with respect to the topology induced
by v, we have


Int.bS;bV / D Int.S;bV / D Int.S; V /bV and, for every n � 0; nŠbS D nŠSbV :
Equivalently,


8n 2 N wS .n/ D w QS .n/ D wbS .n/: (2.6)


We will see that most often the characteristic function wS may be computed by
means of the following notion of generalized v-ordering which extends the notion of
v-ordering due to Bhargava [2].


2.3 v-orderings


Definition 2.4 ([9]). Let N 2 N [ ¹C1º. A sequence ¹anºNnD0 of elements of S is
called a v-ordering of S if, for 1 � n � N , one has


v


 
n�1Y
kD0


.an � ak/


!
D inf
x2S


v


 
n�1Y
kD0


.x � ak/


!
: (2.7)


The proof of [19, Proposition 4] may be extended to these generalized v-orderings,
so that we have another characterization of the v-orderings of S :


Proposition 2.5. The sequence ¹anºNnD0 of elements of S is a v-ordering of S if and
only if


8n � 1 8x0; : : : ; xn 2 S
Y


0�i<j�n


.xj � xi / is divisible by
Y


0�i<j�n


.aj � ai /: (2.8)
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Although these notions of integer-valued polynomial, factorial ideal, polynomial
closure and v-ordering have already been partially studied, we wish to undertake here
a systematical study of them. The following proposition shows strong links between
them.


Proposition 2.6 ([2] and [9]). Let N 2 N [ ¹C1º and let ¹anºNnD0 be a sequence of
distinct elements of S . We associate to this sequence of elements a sequence ¹fnºNnD0
of polynomials


f0.X/ D 1 and, for 1 � n � N; fn.X/ D
n�1Y
kD0


X � ak


an � ak
: (2.9)


The following assertions are equivalent:


(i) The sequence ¹anºNnD0 is a v-ordering of S .


(ii) The sequence ¹anºNnD0 is a v-ordering of S .


(iii) For each n � N , fn belongs to Int.S; V /.


(iv) The sequence ¹fnºNnD0 is a basis of the V -module


IntN .S; V / D ¹f 2 Int.S; V / j deg.f / � N º: (2.10)


(v) For 1 � n � N , one has


nŠS D


n�1Y
kD0


.an � ak/V; that is; wS .n/ D v


 
n�1Y
kD0


.an � ak/


!
: (2.11)


This proposition shows in particular that, for 0 � n � N , the real numbers
v
�Qn�1


kD0.an�ak/
�


do not depend on the v-ordering ¹anºNnD0. But, as shown in the fol-
lowing remark, there does not always exist v-orderings for a given subset S although
there always exist integer-valued polynomials on S and factorials associated to S .


Remark 2.7. (i) There does not always exist v-orderings when the valuation is not
discrete. For instance, assume that the valuation v is not discrete and the subset S is
equal to the maximal ideal m of V . Then, S does not admit any v-ordering since, for
every s; t 2 m, v.s � t / > 0 while inft2m v.t � s/ D 0.


(ii) As a v-ordering of S is also a v-ordering of the polynomial closure S of S , the
relevant question is more likely the existence of a v-ordering in S . For instance, in
the previous example, with v non discrete and S D m (the maximal ideal of V ),
there is no v-ordering in m. Yet S D V , since Int.m; V / D Int.V; V / D V ŒX� (see
[9, Remark 8] or Theorem 4.3 below). This larger subset S may admit v-orderings.
Indeed, a sequence ¹anº of elements of the non-discrete rank-one valuation domain V
is a v-ordering of V if and only if the an’s are in distinct classes modulo m, and such
a sequence exists if and only if the residue field k D V=m is infinite.


Corollary 2.8. If the sequence ¹anºn2N is an infinite v-ordering of S , then the subset
T D ¹an j n 2 Nº is polynomially equivalent to S .
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2.4 Notation


For  2 R and a; b 2 K, we say that


a and b are equivalent modulo  if v.a � b/ �  .


Then, for our fixed subset S and for every  2 R, we denote by


� S.a; / the equivalence class modulo  of the element a 2 S , that is,


S.a; / D S \ B.a; /; (2.12)


� S mod  the set formed by the equivalence classes modulo  of the elements of
S ,


� S any set of representatives of S mod  ,
� q the cardinality (finite or infinite) of S mod  :


q D q .S/ D Card.S mod / D Card.S /: (2.13)


Since q may be finite or infinite, it is natural to introduce the following:


1 D 1.S/ D sup¹ j q finiteº: (2.14)


Noticing that in the definition of a v-ordering what is important is not the valuation of
the elements of S but the valuation of the differences of elements of S , we are led to
consider another natural number:


0 D 0.S/ D inf¹v.x � y/ j x; y 2 S; x 6D yº: (2.15)


Clearly,
�1 � 0.S/ � 1.S/ � C1: (2.16)


We will see that the fact that one of these three inequalities becomes an equality corre-
sponds to three particular cases:


� 0 D �1 if and only if S is a non-fractional subset (see Section 3).
� 0 D 1 if and only if Int.S; V / is isomorphic to a generalized polynomial ring


(see Section 4).


� 1 D C1 if and only if the completion bS of S is compact, which corresponds
to the well studied case (see Section 6).


2.5 The results


After studying these three particular cases, we shall assume that we have


�1 < 0 < 1 < C1;


hence in particular that S is a fractional subset. We consider two cases, whether q1 is
finite or infinite. In Section 5, we associate to S a natural sequence ¹kºk2N of critical
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valuations. If q1 is finite, this sequence is finite, otherwise it is infinite. In Section 7,
we prove an inequality concerning the characteristic function wS :


8n 2 N
wS .n/


n
� 1:


In Sections 8 and 9, we establish some containments concerning the polynomial clo-
sure: in Section 8, when q1 is finite, we show that S � S C B.0; 1/ and, in
Section 9, we show that the polynomial closure contains not only the topological clo-
sure but also the pseudo-closure, which is a subset that we naturally associate to the
pseudo-convergent sequences introduced by Ostrowski [29]. Then, in Section 10, we
characterize the case where S C B.0; 1/ � S : we prove that this containment holds
in particular when S is a regular subset, which is a generalization of the notion of reg-
ular compact subset introduced in 1964 by Y. Amice [1]. As an application, we show
in Section 11 that, when S is any orbit under the action of an isometry, then S is a
regular subset and this regular subset is either discrete or precompact. Finally, we end
this paper by giving in Section 12 explicit examples. In a forthcoming paper [14], we
will study such regular subsets and show that in this case the v-orderings have very
strong properties.


3 The non-fractional case .0 D �1/


The following lemma is obvious.


Lemma 3.1. Let a 2 K� and b 2 K. Consider T D aS C b D ¹as C b j s 2 Sº.
Then, the automorphism


f .X/ 2 KŒX� 7! f


�
X � b


a


�
2 KŒX�


induces an isomorphism between the rings Int.S; V / and Int.T; V /. Obviously,


nŠT D a
nnŠS ; equivalently; wT .n/ D nv.a/C wS .n/: (3.1)


Moreover, for everyN 2 N[¹C1º, the sequence ¹anºNnD0 is a v-ordering of S if and
only if the sequence ¹aan C bºNnD0 is a v-ordering of T .


Consequently, for our study, we may replace the set S by aS C b for any a 2 K�


and b 2 K. We are then led to consider whether S is a fractional subset of K or not.
Recall that


Definition 3.2. The subset S of K is said to be a fractional subset of K if there exists
some d 2 K� such that dS � V .


Theorem 3.3. The following assertions are equivalent:


(i) S is not a fractional subset,


(ii) 0 D �1,







110 J.-L. Chabert


(iii) 1 D �1,


(iv) Int.S; V / D V ,


(v) nŠS D K for n � 1,


(vi) wS .n/ D �1 for n � 1,


(vii) The polynomial closure S of S is equal to K.


Proof. Obviously, on the one hand, assertions (i), (ii), and (iii) are equivalent and, on
the other hand, assertions (iv), (v) and (vi) are equivalent. The equivalence between
(i) and (iv) is known ([26] or [8, Corollary I.1.10]). The equivalence between (iv) and
(vii) is obvious.


Remark 3.4. Clearly, a non-fractional subset does not admit any v-ordering.


From now on, we will assume that S is a fractional subset. Then, Lemma 3.1 allows
us to replace S by the subset dS D ¹ds j s 2 Sº where d denotes any element of K
such that v.d/ � �0, so that, we may assume that S � V . Moreover, replacing S by
the subset S � s0 D ¹s � s0 j s 2 Sº for some s0 2 S , we may also assume that 0 2 S .


4 The polynomial ring case .�1 < 0 D 1 < C1/


Notation. For  2 R and x 2 K, let


V Œ.X � x/=� D


´
nX
kD0


ak.X � x/
k
2 KŒX� j v.ak/ � �k


µ
: (4.1)


Obviously, if there exists t 2 K such that v.t/ D  , then the ring V Œ.X � x/=� is a
classical polynomial ring:


V Œ.X � x/=� D V


�
X � x


t


�
: (4.2)


Lemma 4.1. With the previous notation, for every a 2 S and  2 R, one has


V Œ.X � a/=� � Int.B.a; /; V / � Int.S.a; /; V /: (4.3)


Proof. Let f 2 V Œ.X � a/=� and write


f .X/ D
X


cn.X � a/
n where v.cn/ � �n:


For every b 2 B.a; /, one has


f .b/ D
X


cn.b � a/
n with v.cn.b � a/


n/ � 0;


thus f .b/ 2 V .
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To characterize the ring Int.S; V / we need a technical lemma that will be useful for
other cases. Here, we denote by b� the completion of � in R, that is, b� D � if v is
discrete, and b� D R if v is not discrete.


Lemma 4.2. Assume that  2 b� , ı 2 R and a 2 S are such that  < ı and
S.a; / mod ı is infinite. Then, for every f 2 Int.S; V /, one has


f 2 V Œ.X � a/=�� where � D  C
n.nC 1/


2
.ı � / and n D deg.f /: (4.4)


Proof. We do not know whether  2 � but, for each integer s, there exists zs 2 K
with  � 1


s
� v.zs/ �  . Fix an integer s and let T be the following subset of V :


T D


²
x � a


zs
j x 2 S.a; /


³
:


Let g 2 Int.T; V / be of degree n. As S.a; / mod ı is infinite, letting "s D ı �  C 1
s
,


one can find t0; t1; : : : ; tn in T such that, for i 6D j , v.ti � tj / < "s . It then follows
from Cramer’s rule (see for instance [8, Proposition I.3.1]) that the valuation of each
coefficient of g is greater or equal to


�v


� Y
0�i<j�n


.tj � ti /


�
> �


n.nC 1/
2


"s:


Consequently, if f .X/ D
Pn
mD0 bm.X � a/


m belongs to Int.S; V /, then g.X/ DPn
mD0 bmz


m
s .X � a/


m belongs to Int.T; V /, and hence, one has


8m � 1 v.bm/ > �m �
n.nC 1/


2
"s:


Since s may tend toC1, we obtain the inequality


8m � 1 v.bm/ � �m �
n.nC 1/


2
.ı � / � �m


�
 C


n.nC 1/
2


.ı � /


�
:


Theorem 4.3. If 0 D 1 > �1, then


Int.S; V / D V ŒX=0� and S D B.0; 0/: (4.5)


In particular,
wS .n/ D n0: (4.6)


Proof. We may apply the previous lemma. Clearly, 0 2 b� and S D S.0; 0/. By
definition of 1, for every ı > 1 D 0, qı is infinite, that is, S.0; 0/ mod ı is
infinite. So that, if f 2 Int.S; V /, then f 2 V ŒX=�� where � may tend to 0 when ı
tends to 0. Finally, f 2 V ŒX=0�. By Lemma 4.1, as S D S.0; 0/, we thus have


V ŒX=0� � Int.B.0; 0/; V / � Int.S; V / � V ŒX=0�:
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It follows that Int.S; V / D V ŒX=0� and also that S � B.0; 0/ � S . The following
lemma shows that B.0; 0/ is polynomially closed and thus allows to conclude that
S D B.0; 0/.


Lemma 4.4. For every x 2 K and every  2 R, the ball B.x; / is polynomially
closed.


Proof. If  belongs to � , there exists t 2 K such that v.t/ D  , then the polynomial
f .X/ D 1


t
.X�x/ belongs to Int.B.x; /; V / and, for every y 2 K, f .y/ 2 V implies


v.y � x/ �  , that is, y 2 B.x; /.
If the valuation v is discrete, there exists ı 2 � such thatB.x; / is equal toB.x; ı/,


which is polynomially closed. If the valuation v is not discrete, there exists an increas-
ing sequence ¹ınºn2N such that ın 2 � for every n and limn ın D  . Consequently,
B.x; / D \n2NB.x; ın/. By the first argument, the balls B.x; ın/ are polynomially
closed and we know that an intersection of polynomially closed subsets is a polynomi-
ally closed subset (see [8, IV.1.5]).


Theorem 4.3 says that, if 0 D 1 > �1, then S is a ball. Conversely:


Proposition 4.5. Assume that S D B.x; /. Then,


(i) S D S .


(ii) 0 D min¹ı 2 � j ı � º (in fact, 0 D  if v is not discrete).


(iii) If v is discrete and V=m is finite with cardinality q, then


1 D C1 and wS .n/ D n0 C wV .n/ D n0 C
X
k�1


�
n


qk


�
:


(iv) If either v is not discrete or V=m is infinite, then


1 D 0; Int.S; V / D V Œ.X � x/=0� and wS .n/ D n0:


(v) S admits infinite v-orderings if and only if: either v is discrete, or  2 � and
V=m is infinite.


Proof. (i) is Lemma 4.4.
(ii) is obvious.
Note that one can replace B.x; / by B.x; 0/ and then, using Lemma 3.1 when


0 2 � , one can replace B.x; 0/ by V D B.0; 0/.
(iii) follows from [8, Theorem II.2.7].
(iv) The hypothesis implies 1 D 0, and then, (iv) follows from Theorem 4.3.
(v) The existence of v-orderings is obvious in both cases. Conversely, assume that


v is not discrete. If  … � then, for all x; y 2 S , one has v.x � y/ >  while
infx;y2S D  so that, there is no element in S for the second term of a v-ordering.
If  2 � , we replace S by V . Then, it follows from (iv) that wV .n/ D 0. But, if
Card.V=m/ D q then, for all x0; : : : ; xq 2 V , v.


Q
0�i<j�q.xj � xi // > 0, so that,


there is no element in V for the .q C 1/-th term of a v-ordering.
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5 The critical valuations of a fractional subset (0 < 1)


Now, we may assume that 0 < 1, which implies in particular that S is a fractional
subset. Moreover, since there exists  > 0 such that S mod  is finite, there exist s0
and s1 2 S such that v.s0 � s1/ D 0. Then, if we replace S by T D


®
s�s1
s0�s1


j s 2 S
¯
,


0 and 1 belong to T and 0.T / D 0. So that:


From now on, we assume that


S � V; 0; 1 2 S; 0 D 0; q0 D 1 and 0 < 1 � C1: (5.1)


Moreover, we may choose S0 D ¹0º.


We are interested in the study of the function


 2 R 7! q 2 N [ ¹C1º: (5.2)


This is an increasing function and, by definition of 1, q D C1 for  > 1.
Moreover, for every  < 1, q is finite, thus sup¹v.a � b/ j a; b 2 S ; a 6D bº is a
maximum, and hence, is <  . Consequently, there exists " > 0 such that qı D q for
 � " � ı �  . The function  7! q is piecewise constant and left continuous. So
that, we have the following proposition:


Proposition 5.1. For every  such that q is finite, let


Q D sup ¹ı j qı D qº: (5.3)


These suprema are maxima and the Q ’s may be written as elements of a strictly in-
creasing sequence


¹kº0�k�l or ¹kºk�0:


The sequence ¹kº is finite if and only if q1 is finite, and then l D 1. The sequence
¹kº is infinite if and only if q1 is infinite, and then


lim
k!C1


k D 1: (5.4)


In other words, the k’s are characterized by


0 D 0 and, for k � 1: k�1 <  � k , q D qk : (5.5)


Note that, when q1 is infinite and 1 is finite, then necessarily the valuation v is
not discrete.


Definition 5.2. The sequence ¹kº, finite or infinite introduced in Proposition 5.1, is
called the sequence of critical valuations of S .


Remark 5.3. It follows from Proposition 5.1 that it is possible to choose the elements
of the S ’s, the sets of representatives of S modulo  , for  < 1, in such a way that


 < ı ) S � Sı : (5.6)
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Indeed, for each k � 0, we just have to choose the elements of SkC1 in such a way that
Sk � SkC1 . We always assume that this condition is satisfied and also that S0 D ¹0º.
With such a choice, when 1 D limk!1 k , we may also assume


[<1S D [k�0Sk � S1 : (5.7)


This last containment may be strict (see Example 5.4 (i) below).


Example 5.4. (i) If K D Qp and S D V D Zp , then k D k, qk D pk , Sk D
¹a 2 N j 0 � a < pkº and [k�0Sk D N while 1 D C1 and S1 D
Zp D S .


(ii) If K D Cp is the completion of an algebraic closure of Qp and if


S D


´
nX
kD0


"kp
1� 1
kC1 j n 2 N; "k 2 ¹0; 1º


µ
;


then k D 1 � 1
kC1 , qk D 2k , 1 D 1 and [k�0Sk D S1 D S .


(iii) Consider the previous example and let


T D S [ ¹S C p2
º:


Then,


k.T / D k.S/; 1.T / D 1 and [k�0 Tk D T1 6D T:


6 The precompact case (1 D C1)


The fact that 1 D C1 is clearly equivalent to the fact that S is precompact, that
is, the completion bS of S is compact (see for instance [10, Lemma 3.1]). We have to
distinguish two cases whether S is finite or not.


6.1 S finite


This case is well described by McQuillan [25] for subsets of any integral domain (see
also [8, Exercises IV.1, V.2, VI.20, VIII.25 and VIII.28] and [16]). For finite subsets
of a valued field K, one can say a bit more. Obviously, there are v-orderings since at
each step we just have to choose between a finite number of elements and, clearly, the
first assertion of the following proposition is true.


Proposition 6.1. Assume that S is finite with cardinality N .


(i) There exist infinite v-orderings ¹anºn2N of S . Moreover, if ¹anºn2N is a v-
ordering of S , the an’s for n D 0 and n � N may be arbitrarily chosen, but
necessarily, ¹an j 0 � n < N º D S .


(ii) S D S D eS .
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(iii) wS .n/ D C1 , n � N .


(iv) Let


fn.X/ D


n�1Y
kD0


X � ak


an � ak
for 0 � n < N and '.X/ D


N�1Y
nD0


.X�an/ D
Y
s2S


.X�s/:


Then,
Int.S; V / D ˚N�1


nD0 Vfn.X/˚KŒX�'.X/: (6.1)


Proof. Assertion (i) is obvious and assertion (ii) is also well known. Assertion (iii)
results from assertion (i). Let us prove assertion (iv). Proposition 2.6 implies


IntN�1.S; V / D


N�1X
nD0


Vfn.X/: (6.2)


Now, let f 2 Int.S; V / and write f D 'g C h where g; h 2 KŒX� and deg.h/ < N .
Then, h D f � 'g 2 IntN�1.S; V /.


Remark 6.2. The number of sequences such that ¹anºN�1
nD0 is a v-ordering of S is at


least N , since a0 may be arbitrarily chosen in S , and at most NŠ. Note that the upper
bound NŠ is reached for instance when the elements of S are non-congruent modulo
m. On the contrary, the lower bound N is never reached for N > 2.


6.2 S infinite


This is also a well studied case.


Proposition 6.3 ([9]). Assume that S is infinite and bS is compact. Then:


(i) There always exist infinite v-orderings in S .


(ii) The polynomial closure S of S is equal to its topological closure eS in K.


Proof. The first assertion is [9, Lemma 17], and the second assertion is [9, Theo-
rem 10].


Remark 6.4. (i) Note that 1 < C1 implies that either the valuation v is not discrete
or the residue field k D V=m is infinite (else bV would be compact and bS as well).


(ii) When 1 < C1, we may have eS 6D S . For instance, let t 6D 0 be such that
v.t/ > 0 and let S D ¹t�k j k 2 Nº. Then, S is not a fractional subset, and hence its
polynomial closure S is equal to K, while its topological closure eS is equal to S . We
will see more interesting cases with Remark 11.4.2.
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(iii) In the precompact case (1 D C1), one has the equality S D S1 . This
last equality, that may be thought as a generalization of the precompact case, means
when 1 < C1 that every class modulo 1 contains only one element: 8a 2
S; S.a; 1/ D ¹aº (S is uniformly discrete), and hence, eS D S . In particular,
since 0 2 S , for every nonzero element a 2 S , v.a/ < 1. Note also that, when
1 < C1, S D S1 is equivalent to S D [kSk because q1 is infinite, and hence
1 D limk k .


With respect to Proposition 6.3, note that the first assertion still holds: if S D S1 ,
then S admits infinite v-orderings [12, Proposition 2.3]. On the other hand, the second
assertion cannot be extended since we may have S D S1 andeS 6D S (see Section 12).


(iv) Another argument that leads to say that S D S1 generalizes the precompact case
is the notion of pseudo-convergence introduced by Ostrowski [30, p. 368] and used by
Kaplansky [24] in the study of immediate extensions of valued fields. A sequence
¹xnºn2N of elements of K is said to be pseudo-convergent if


8 i; j; k Œ i < j < k ) v.xj � xi / < v.xk � xj / �: (6.3)


One may prove that, if S1 D S , then from every infinite sequence of elements of S
one can extract a pseudo-convergent subsequence (see [13, §1.12]).


7 On the characteristic function


In this section we assume that 1 < C1.


Theorem 7.1. For every subset S , one has


8n 2 N wS .n/ � n1: (7.1)


Note that, when 1 D C1, the previous theorem does not give any information on
the function wS , and that, when 1 D �1, that is, when S is not a fractional subset,
these inequalities are still true: they mean wS .0/ D 0 and, for n � 1, wS .n/ D �1,
that is, Int.S; V / D V .


Proof. Assume that  2 � and ı 2 R are such that  < ı, q is finite and qı is
infinite. Then, there necessarily exits an a 2 S such that S.a; / mod ı is infinite. It
follows from Lemma 4.2 that, for every n, the valuation of the leading coefficient of a
polynomial f 2 Int.S; V / of degree n is � �n. C n.nC1/


2 .ı � //. Consequently,


wS .n/ � n C
n2.nC 1/


2
.ı � /:


Assume first that the sequence of critical valuations is finite. Then q1 is finite
and, for every ı > 1, qı is infinite. Then, the previous inequality, with  D 1 and
ı > 1, becomes


8n 2 N wS .n/ � n1 C
n2.nC 1/


2
.ı � 1/:


These inequalities for all ı > 1 imply that wS .n/ � n1.
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Assume now that the sequence of critical valuations is infinite and that 1 is finite.
Then q1 is infinite and, for every k 2 N, qk is finite. It follows from the previous
inequality, with  D k and ı D 1, that


8n 2 N wS .n/ � nk C
n2.nC 1/


2
.1 � k/:


Since limk!1 k D 1, we may conclude that wS .n/ � n1.


Recall that, by analogy with the Archimedean case (see for instance [21]), one
defines the valuative capacity of S in the following way:


Definition 7.2 ([12, §4]). The valuative capacity of S with respect to v is the limit ıS
(finite or infinite) of the increasing sequence


ıS .n/ D
2


n.nC 1/
inf


x0;:::;xn2S
v


� Y
0�i<j�n


.xj � xi /


�
: (7.2)


The link between the sequences ¹ıS .n/ºn2N and ¹wS .n/ºn2N is given by the fol-
lowing formulas [12, Theorems 3.13 and 4.2]:


nX
kD1


wS .n/ D
1
2
n.nC 1/ıS .n/ (7.3)


and


lim
n!1


wS .n/


n
D sup


n�1


wS .n/


n
D ıS : (7.4)


Consequently, we always have the inequality


ıS � 1.S/: (7.5)


8 On the polynomial closure


Proposition 8.1. For every  < 1, one has the containment


S � S C B.0; /: (8.1)


Moreover, if q1 is finite, one has also


S � S C B.0; 1/: (8.2)


This is an easy consequence of the fact that a finite union of balls is polynomially
closed (Proposition 8.2 below) since


S D [a2SS.a; / � [a2SB.a; / D S C B.0; /: (8.3)







118 J.-L. Chabert


Proposition 8.2. Every finite union of balls is polynomially closed.


This proposition is itself an easy consequence of the following lemma:


Lemma 8.3. Let a; t1; : : : ; tr be elements of K and let ; 1; : : : ; r be positive real
numbers such that the balls B.a; /; B.t1; 1/; : : : ; B.tr ; r/ are disjoint. Then, for
every " > 0, there exists f 2 KŒX� such that


8x 2 [rkD1B.tk; k/ v.f .x// � " and 8x 2 B.a; / v.f .x// D 0: (8.4)


Proof. We may assume that


 > v.t1 � a/ � v.t2 � a/ � � � � � v.tr � a/: (8.5)


Obviously, we have
8k v.a � tk/ < k :


Now consider


f .x/ D


rY
iD1


�
x � ti


a � ti


�mi
where the mi ’s are integers that we are going to choose.


For k 2 ¹1; : : : ; rº and x 2 B.tk; k/, one has


v


�
x � tk


a � tk


�
� k � v.a � tk/ D "k > 0


and, for j 2 ¹k; : : : ; rº and x 2 B.tk; k/, one has


v


�
x � tj


a � tj


�
D v


�
tk � tj


a � tj


�
� 0:


Thus, for every x 2 B.tk; k/,


v.f .x// D


rX
iD1


miv


�
x � ti


a � ti


�
�


kX
iD1


miv


�
x � ti


a � ti


�
� mk"k �


k�1X
iD1


miv.a � ti /:


We may choose successively the integers m1; : : : ; mk; : : : ; mr such that


8k 2 ¹1; : : : ; rº mk"k � "C


k�1X
iD1


miv.a � ti /:


With such a choice of the mi ’s, for every x 2 [r
kD1B.tk; /, one has v.f .x// � ". Of


course, f .a/ D 1. Moreover, if x 2 B.a; /, then v.x � tk/ D v.a � tk/ for every
k 2 ¹1; : : : ; rº, and hence, v.f .x// D 0.
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Proof of Proposition 8.2. Assume that S D tr
kD1B.tk; k/ where t denotes a disjoint


union. Let a 2 K n S and ı 2 � , ı > 0. Then, by Lemma 8.3, there exists f 2 KŒX�
such that v.f .a// D 0 and, for every x 2 S , v.f .x// � ı. Let d 2 V be such that
v.d/ D ı. Then, the polynomial 1


d
f .X/ shows that a … S .


Theorem 8.4. For every  < 1, one has


S D [a2S


�
S \ B.a; /


�
: (8.6)


In other words
[a2SS.a; / D [a2SS.a; /: (8.7)


Proof. Obviously, [a2SS.a; / � S . Let us prove the reverse containment. Let b be
an element of S . Then, by Proposition 8.2, b belongs to [a2SB.a; /, thus there exits
a0 such that b 2 B.a0; /. Assume, by way of contradiction, that b … S.a0; /, then
there exists g 2 KŒX� such that g.S.a0; // � V and v.g.b// < 0. Since the values
of a polynomial on a fractional subset is a fractional subset, there exists " > 0 such that
�" < min¹v.g.x// j x 2 Sº. It follows from Lemma 8.3 that there exists f 2 KŒX�
such that


8x 2 [a2S ;a 6Da0B.a; / v.f .x// � " and 8x 2 B.a0; / v.f .x// D 0:


Then, for x 2 [a2S ;a 6Da0B.a; /, one has v.f .x/g.x// � 0 and, for x 2 S.a0; /,
one has v.f .x/g.x// D v.g.x// � 0, while v.f .b/g.b// D v.g.b// < 0. Conse-
quently, fg 2 Int.S; V / and f .b/g.b/ … V , that is b … S . We obtain a contradic-
tion.


If q1 < C1, the previous proof still holds with  D 1.


Corollary 8.5. If q1 is finite, then S D [a2S1S.a; 1/:


Now, we consider what happens with respect to v-orderings. We first recall:


Lemma 8.6 ([6], Lemma 3.4). If ¹anºNnD0 is a v-ordering of S then, for every ball B ,
the (possibly empty) subsequence formed by the an’s that belong to B is a v-ordering
of S \ B .


Proposition 8.7. Let  be such that  < 1. Then, S admits an infinite v-ordering if
and only if, for every b 2 S , S.b; / admits an infinite v-ordering.


Proof. Assume that S admits an infinite v-ordering ¹anºn2N . By Lemma 8.6, for
every b 2 S , the subsequence formed by the an’s that are inB.b; / is a v-ordering of
S.b; /. Let T D ¹an j n 2 Nº and, for every b 2 S , consider T .b; / D T\B.b; /.
If T .b; / is infinite, then S.b; / admits an infinite v-ordering. Thus, assume that, for
some b 2 S , T .b; / is finite. By Corollary 2.8, T D S and, by Theorem 8.4,
T .b; / D S.b; /. Since T .b; / is assumed to be finite, one has T .b; / D T .b; /
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(Proposition 6.1.ii). Consequently, S.b; / is also finite, and hence, admits an infinite
v-ordering (Proposition 6.1.i).


Conversely, assume that, for every b 2 S , S.b; / admits an infinite v-ordering.
We prove the existence of an infinite v-ordering of S by induction on n. Assume that
a0; : : : ; an�1 is a v-ordering of S . The question is: does there exist an element an 2 S
which allows to reach the following infimum


inf
x2S


v


 
n�1Y
kD0


.x � ak/


!
D inf
b2S


inf
x2S.b;/


v


 
n�1Y
kD0


.x � ak/


!
‹


It is then enough to prove that, for every b 2 S , the following infimum is a minimum:


inf
x2S.b;/


v


 
n�1Y
kD0


.x � ak/


!
D v


 Y
ak…S.b;/


.b�ak/


!
C inf
x2S.b;/


v


 Y
ak2S.b;/


.x�ak/


!
:


This last infimum is a minimum since the ak’s that belong to S.b; / form a v-ordering
of S.b; / and, by hypothesis, S.b; / admits infinite v-orderings.


9 The pseudo-closure


When 1 D C1, that is, when bS is compact, one has S D eS (Propositions 6.1 and
6.3). So that, we may assume that 1 < C1, and hence, that either v is not discrete
or k D V=m is infinite.


We will generalize the fact that the topological closure eS of S in K is contained
in the polynomial closure S of S by considering the notion of pseudo-convergent se-
quence previously mentioned (see (6.3)).


Definition 9.1. (i) A sequence ¹xnºn�0 of elements of K is pseudo-convergent if


8 i; j; k Œ i < j < k ) v.xj � xi / < v.xk � xj / �: (9.1)


(ii) An element x of K is a pseudo-limit of a sequence ¹xnºn�0 if


8 i; j Œ i < j ) v.x � xi / < v.x � xj / �: (9.2)


(iii) The pseudo-closure of S in K is the union eeS of S and of the set formed by the
pseudo-limits in K of pseudo-convergent sequences of elements of S .


Suppose that x is a pseudo-limit of a sequence ¹xnºn�0 and let


ı D lim
n!C1


v.x � xn/:


If ı D C1, then the sequence ¹xnº is convergent with x as classical limit-point. In
fact, clearly, one haseS � eeS . If ı < C1, then the sequence ¹xnº is pseudo-convergent
since, for i < j < k, one has


v.xj � xi / D v.x � xi / < v.x � xj / D v.xk � xj /:
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Note also that, in this case, every y such that v.x�y/ � ı is also a pseudo-limit of the
sequence ¹xnº.


Theorem 9.2. The polynomial closure S of S satisfies the following containments:eeS � S � \k�0 .S C B.0; k// (9.3)


where eeS denotes the pseudo-closure of S . Moreover, one has the following equalities:


\k�0 .S C B.0; k// D .S C B.0; 1// [eeS D .S C B.0; 1// [ S
D
eeS C B.0; 1/: (9.4)


Proof. Let x 2 eeS . Of course, if x 2 eS , then x 2 S . Assume that x 2 eeS neS , and then,
that x is a pseudo-limit of a sequence ¹xnºn�0 of elements of S . For every n � 0, let
ın D v.x � xn/ and let ı D limn!C1 ın < C1. We have v.xm � xm0/ D ım for
m0 > m > n, with ın < ım < ı, thus S.xn; ın/ mod ı is infinite.


Consider now a polynomial f .X/ D
Pd
jD0 cjX


j 2 Int.S; V / of degree d . It
follows from Lemma 4.2 that f 2 V Œ.X � xn/=�n� where �n D ın C


d.dC1/
2 .ı � ın/,


that is, v.cj / � �j�n for every j . Consequently,


v.cj .x � xn/
j / � j.ın � �n/ D �j


d.d C 1/
2


.ı � ın/;


and


v.f .x// � �
d 2.d C 1/


2
.ı � ın/:


Since, lim ın D ı, one may conclude that v.f .x// � 0 and x 2 S . This is the first
containment. The second containment is a straightforward consequence of Contain-
ment (8.1).


Since S � eeS � S , it is obvious that the subset .S C B.0; 1//[eeS is contained in
.S C B.0; 1// [ S and also in eeS C B.0; 1/. Moreover, it follows from (9.3) that
.S C B.0; 1// [ S and eeS C B.0; 1/ are contained in \k�0 .S C B.0; k//. Thus,
it remains to prove that \k�0 .S C B.0; k// � .S C B.0; 1// [eeS .


If the sequence ¹kº is finite, 1 D l for some l and the result follows immedi-
ately. If the sequence ¹kº is infinite, let x be an element of \k.S C B.0; k// which
is not in S CB.0; 1/. We show that x 2 eeS . Let k1 � 0. As x 2 S CB.0; k1/, there
is x1 2 S such that v.x � x1/ � k1 . As x 62 S C B.0; 1/, v.x � x1/ < 1. There
exists k2 > k1 such that v.x � x1/ < k2 . As x 2 S C B.0; k2/, there is x2 2 S such
that v.x � x2/ � k2 . We then have


k1 � v.x � x1/ < k2 � v.x � x2/ < 1:


So that, we may construct two sequences ¹knºn�1 and ¹xnºn�1 such that


kn � v.x � xn/ < knC1 :


Consequently, limn kn D 1 and x is a pseudo-limit of the sequence ¹xnº.
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Remark 9.3. (i) If 1 D C1, we have the equalities


eS D eeS D S D \k�0.S C B.0; k//:


(ii) From Theorem 9.2, it follows that we always have


eeS C B.0; 1/ D S C B.0; 1/ D \k�0.S C B.0; k//:


If q1 is finite, we moreover have the equalities


S C B.0; 1/ D eS C B.0; 1/ D eeS C B.0; 1/ D S C B.0; 1/:
If q1 is infinite, we only have a containment


S C B.0; 1/ � \k�0.S C B.0; k//:


This containment may be strict. For instance, if 1 D C1, then S C B.0; 1/ D S
and \k�0.S C B.0; k// D eS , but it may obviously be that S   eS . The containment
may also be strict in case 1 < C1, according to the following example:


Assume that v.K�/ D Q and v.2/ D 0. Let S D ¹0; 1º [ ¹2 C unºn�1 where
v.un/ D 1 � 1


n
. Then, 0 D 0; n D 1 � 1


n
; 1 D 1. Let x D 2C t with v.t/ � 1.


Then, x is the pseudo-limit of the sequence ¹2 C unº. Thus x 2 eeS , and by (9.3),
x 2 \k�0.S C B.0; k//. Yet x … S C B.0; 1/.


This fact still holds even if S is a very regular subset (see Remark 12.3 (ii)).


(iii) When 1 < C1, the containments in (9.3) may be strict:
If V=m is infinite and S is a set of representatives modulo m, then Int.S; V / D


V ŒX� (from a Vandermonde argument). Thus eeS D S   S D V .
On the other hand, suppose that the valuation v is discrete and that V=m is infinite,


then set S D m [ .1Cm2/. From Proposition 8.2, S is polynomially closed, that is,
S D S . In this situation, 0 D 0 and 1 D 1 (with q1 D 2). Thus S C B.0; 1/ D
m [ .1Cm/, and hence, S C B.0; 1/ 6� S D S .


Let us now look at containments concerning the polynomial rings. Recall Lem-
ma 4.1 that says that


8a 2 S 8 2 R V Œ.X � a/=� � Int.S.a; /; V /: (9.5)


Consequently,
\a2SV Œ.X � a/=� � Int.S; V /: (9.6)


This leads us to recall and slightly generalize a notion introduced in [31]:


Definition 9.4. For every  2 R, the Bhargava ring with respect to S and  is the
following domain:


Int .S; V / D \a2SV Œ.X � a/=� D \a2SV Œ.X � a/=�: (9.7)
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In the case where  2 � , then  D v.t/ for some t 2 K and then


Int .S; V / D ¹f 2 KŒX� j 8s 2 S f .tX C s/ 2 V ŒX�º: (9.8)


Yeramian [31] defines only Int .S; V / when S D V and  D v.t/ and denotes it by
Bt .V /. As previously noticed


8 2 R V ŒX� � Int .S; V / � Int.S; V /: (9.9)


Obviously,
 < ı ) Int .S; V / � Intı.S; V /; (9.10)


and if 1 D limk k < C1, then


[k Intk .S; V / � Int1.S; V /: (9.11)


We may also note that


Proposition 9.5. If 1 < C1, then


8 2 R Int .S; V / D Int.S C B.0; /; V /: (9.12)


Proof. Since 1 < C1, either v is not discrete or k D V=m is infinite. Then,
Proposition 4.5 says that


8a 2 K 8 2 R Int.B.a; /; V / D V Œ.X � a/=�: (9.13)


Thus, the containment S � \k�0 .S C B.0; k// corresponds to the containment


[k�0 Intk .S; V / � Int.S; V /: (9.14)


10 When S D \k .S CB.0; k//


In this section we still assume that 1 < C1. We know that


S � \k�0 .S C B.0; k//: (10.1)


When does NS equal \k�0 .S C B.0; k//?


Proposition 10.1. The following assertions are equivalent:


(i) S D \k�0 .S C B.0; k//:


(ii) S C B.0; 1/ � S:


(iii) Int.S; V / D Int1.S; V /:
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Proof. (i)$ (ii) follows from the equality \k.S C B.0; k// D .S C B.0; 1// [ S
(Theorem 9.2).


(ii)$ (iii) By Proposition 9.5, we have


Int1.S; V / D Int.S C B.0; 1/; V /


and, clearly, we have


Int.S C B.0; 1/; V / � Int.S; V / D Int.S; V /:


Thus, the containment S CB.0; 1/ � S is equivalent to the equality Int1.S; V / D
Int.S; V /.


Now, we have to distinguish whether q1 is finite or not.


10.1 When q1 is finite


Recall that, when q1 is finite, one has \k .SCB.0; k// D SCB.0; 1/. We begin
with a lemma:


Lemma 10.2. Assume that the sequence ¹kº of critical valuations of S is finite. If
a 2 S is such that, for every ı > 1, S.a; 1/ mod ı is infinite, then


Int.S; V / � V Œ.X � a/=1� and B.a; 1/ � S: (10.2)


Proof. We apply Lemma 4.2 with  D 1 and, when ı tends to 1, � tends to 1.


This leads us to the following characterization:


Theorem 10.3. Assume that q1 is finite. Then, the following three assertions are
equivalent:


8a 2 S 8ı > 1 S.a; 1/ mod ı is infinite; (10.3)


S D S C B.0; 1/; (10.4)


Int.S; V / D Int1.S; V /: (10.5)


Proof. When assertion (10.3) holds, it follows from Lemma 10.2 that B.a; 1/ � S
for every a 2 S , and hence, that S C B.0; 1/ � S . Since S � \k.S C B.0; k// D
S C B.0; 1/, we have (10.4).


Now assume that (10.3) does not hold. Then there exist a 2 S and ı > 1 such that
S.a; 1/ mod ı is finite. Let b1; : : : ; bs 2 S be such that S.a; 1/ � [siD1B.bi ; ı/.
Then, S.a; 1/ � [siD1B.bi ; ı/. But [siD1B.bi ; ı/ cannot be equal to B.a; 1/ since
either v is not discrete, or V=m is infinite (because 1 is finite). Consequently, by
Corollary 8.5, we have S \B.a; 1/ D S.a; 1/ 6D B.a; 1/. Thus, assertion (10.4)
does not hold.


The equivalence between (10.4) and (10.5) follows from Proposition 10.1.
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Remark 10.4. (i) In the case described by Theorem 10.3, S is a finite union of balls
and, as already said, either the valuation v is not discrete, or the residue field V=m is
infinite. It follows from Propositions 8.7 and 4.5 that the subset S admits an infinite
v-ordering if and only if 1 2 � and the residue field V=m is infinite.


(ii) Recall that if S is a finite union of balls, the study of the characteristic function
wS is done in [6] in the case where the valuation v is discrete.


Let us now consider the case where q1 is infinite.


10.2 When q1 is infinite


The analog of Lemma 10.2 is


Lemma 10.5. Assume that the sequence ¹kº of critical valuations of S is infinite. If
there exists a 2 S such that, for every  < 1, S.a; / mod 1 is infinite, then


Int.S; V / � V Œ.X � a/=1� and B.a; 1/ � S: (10.6)


Proof. We apply Lemma 4.2 with  D k and ı D 1 and, when k tends to C1, �
tends to 1.


This lemma leads to the following equivalences:


Theorem 10.6. Assume that 1 is finite and that q1 is infinite. Then, the following
four assertions are equivalent:


S D \k�0 .S C B.0; k// ; (10.7)


S C B.0; 1/ � S; (10.8)


Int.S; V / D Int1.S; V /; (10.9)


8a 2 S 8 < 1


°
Œ S.a; 1/ D S.a; / � ) Œ S.a; 1/ D B.a; 1/ �


±
: (10.10)


These equivalent assertions also hold when the following condition is satisfied:


8a 2 S 8 < 1 S.a; / mod 1 is infinite: (10.11)


Proof. The equivalences (10.7) $ (10.8) $ (10.9) are nothing else than Proposi-
tion 10.1. Let us prove that (10.8) ! (10.10). Assume that a 2 S and  < 1
are such that S.a; 1/ D S.a; / and that S CB.0; 1/ � S . Then, by Theorem 8.4,


B.a; 1/ � S \ B.a; / D S.a; / D S.a; 1/ � B.a; 1/:


Thus, S.a; 1/ D B.a; 1/:
Conversely, suppose there exists  < 1 such that S.a; / mod 1 is finite. Then,


S.a; / is a finite union of balls [jS.bj ; 1/. Let ı D minj 6Dj 0 v.bj � bj 0/. Then,
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S.a; ı/ D S.a; 1/. Assuming (10.10), we then have S.a; 1/ D B.a; 1/. On the
other hand, if there is no such  < 1 (with S.a; / mod 1 finite), it follows from
Lemma 10.5 that B.a; 1/ � S . In both cases we then have [a2SB.a; 1/ � S .


Finally, Lemma 10.5 shows that (10.11)! (10.9).


Note that assertion (10.11) means that, for every a 2 S and every  < 1, the se-
quence formed by the cardinalities of S.a; / mod k is not a stationary sequence. The
following example shows that condition (10.11) is not necessary in order to have (10.8).


Example 10.7. Let S be a subset satisfying condition (10.11), then it satisfies (10.8).
Let b 2 K and ı < 1 be such that B.b; ı/ \ S D ¿ and let T D S [ B.b; 1/.
Then, obviously, 1.T / D 1.S/ and T D S [ B.b; 1/. Consequently,


T C B.0; 1/ D .S [ ¹bº/C B.0; 1/ D .S C B.0; 1// [ B.b; 1/


� S [ B.b; 1/ D T ;


while Card.T .b; ı/ mod 1/ D 1.


10.3 Regular subsets


The equivalent assertions of Theorems 10.3 and 10.6 are satisfied by regular subsets as
in the following generalization of regular compact subsets introduced by Amice [1] in
local fields and extended to precompact subsets of discrete valuation domains in [18]:


Definition 10.8. The fractional subset S ofK is said to be a regular subset if, for every
 < ı such that q is finite, Card.S.x; / mod ı/ does not depend on x 2 S in the
following sense:


(i) if qı is finite, then every non-empty ball S.x; / is the disjoint union of qı
q


balls
S.y; ı/,


(ii) if qı is infinite, then every non-empty ball S.x; / is the disjoint union of infinitely
many balls S.y; ı/.


Condition (i) is equivalent to both following assertions:


8k � 0; qkC1 D ˛kqk .where ˛k 2 N/;


8a 2 S; Card S.a; k/ mod kC1 D ˛k :


If q1 is infinite, condition (ii) follows from condition (i). The next section shows that
regular subsets appear naturally in discrete dynamical systems.


11 Orbits under the action of an isometry


Let ' be a map from S to S . Then, the pair .S; '/ may be considered as a discrete
dynamical system. For every x 2 S , we may consider the forward orbit O'C.x/ of x
under the action of ':


O
'
C.x/ D ¹'


n.x/ j n 2 Nº: (11.1)
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Proposition 11.1. Let ' W S ! S be an isometry. Fix x 2 S and let


T D O
'
C.x/ D ¹'


n.x/ j n 2 Nº:


Then, for every  2 R, denoting by q .T / the cardinality of T mod  , we have


8n;m 2 N Œ n � m .mod q .T // , 'n.x/ � 'm.x/ .mod / �: (11.2)


In particular, if q .T / is finite, x; '.x/; : : : ; 'q .T /�1 is a complete system of represen-
tatives of T mod  , and, if q .T / is infinite, the 'k.x/’s (for k 2 N) are non-congruent
modulo  .


Proof. If q .T / is finite, there exists 0 � s < t such that 's.x/ � 't .x/ .mod /.
Conversely, assume that this is the case. Then, 't�s.x/ � x .mod /. Let r > 0 be
the smallest integer such that 'r.x/ � x .mod /. Then, x; '.x/; : : : ; 'r�1.x/ are
non-congruent modulo  . Moreover,


8h 2 N '.hC1/r.x/ D 'hr.'r.x// � 'hr.x/ .mod /;


and hence,
8h 2 N 'hr.x/ � x .mod /:


Now, for every n 2 N, let n0 be such that


n � n0 .mod r/ where 0 � n0 < r;


then
'n�n0.x/ � x .mod /; that is; 'n.x/ � 'n0.x/ .mod /:


Finally, the sequence x; '.x/; : : : ; 'r�1.x/ is a complete system of representatives of
T mod  , and q .T / D r . In particular, q .T / is finite. It follows that q .T / is infinite
if and only if the 'k.x/’s are non-congruent modulo  .


Now we generalize a result obtained in discrete valuation domains with finite
residue field (cf. [20, Théorème 7.1] or [15, Theorem 3.3]):


Theorem 11.2. Let K be a valued field, S be an infinite fractional subset of K, and
' W S ! S be an isometry. For every x 2 S , the forward orbit


O
'
C.x/ D ¹'


n.x/ j n 2 Nº


is a regular subset.


Proof. Fix x 2 S and let T D O
'
C.x/. Let  2 R be such that Card.T mod / D


q .T / D r is finite and consider some ı >  .
Assume first that Card.T mod ı/ is infinite. Then, the 'k.x/, for k 2 N, are


non-congruent modulo ı. Consequently, in each class T .'i .x/; / .0 � i < r/ of
S mod  , there are infinitely many elements that are non-congruent modulo ı, namely,


T .'i .x/; / D ¹'iCkr.x/ j k 2 Nº:
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Assume now that Card.T mod ı/ D qı.T / D s is finite. It follows from Proposi-
tion 11.1 and from ı >  that


n � m .mod s/ , 'n.x/ � 'm.x/ .mod ı/


) 'n.x/ � 'm.x/ .mod / , n � m .mod r/:


Thus, r D q .S/ divides s D qı.T /. Let s D r˛. Then,


T .x; / D ¹'rl.x/ j l 2 Nº D [˛�1
kD0¹'


krCsl
j l 2 Nº D [˛�1


kD0T .'
kr.x/; ı/:


Thus, T .x; / is the disjoint union of ˛ D s
r


balls of the form T .y; ı/. Moreover, for
0 � i < r , one has T .'i .x/; / D 'i .T .x; //, so that T .'i .x/; / is also the disjoint
union of ˛ balls of the form T .y; ı/.


Proposition 11.3. Let T be the forward orbit of an element x of a valued fieldK under
the action of an isometry '.


(i) If 1.T / D C1, then T is precompact.


(ii) If 1.T / < C1, then T is discrete.


(iii) If q1.T / D C1, then


T D T1 D [<1T :


(iv) If q1.T / < C1, then
T D T1 C T .x; 1/


where


T1 D ¹'
k.x/ j 0 � k < q1º � ¹y 2 K j v.x � y/ < 1º


and


T .x; 1/ D ¹'
rq1 .x/ j r 2 Nº � ¹y 2 K j v.x � y/ D 1º:


Proof. It follows from Proposition 11.1 that, for every  < 1, ¹'n.x/ j 0 � n < qº
is a complete set of representatives of T modulo  , that we may choose as T . Clearly,
for  < ı < 1, one has T � Tı .


Assume that q1 D C1. Then, k.T /! 1.T /, and hence, T D [<1T . In
particular, T1 D T . This is assertion (iii).


Assume that q1 < C1 (and hence, 1 < C1) then, for every ı > 1, one
has v.'n.x/ � 'm.x// < ı whatever n 6D m, and hence, v.'n.x/ � 'm.x// � 1.
Consequently, T .x; 1/ which is a priori the intersection of T with the ball B.x; 1/,
is here in fact, the intersection of T with the sphere ¹y 2 K j v.x � y/ D 1º. Thus,
T � T1 C ¹y 2 K j v.y/ D 1º. Clearly, the intersection of T with B.x; 1/ is
the forward orbit of x under the action of 'q1 : T .x; 1/ D ¹'rq1 .x/ j r 2 Nº.
This is assertion (iv).
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Assertion (i) is obvious. Finally, assume that 1 < C1. It follows from assertions
(iii) and (iv) that, no matter whether q1 is finite or not, for all x 6D y 2 T , v.x�y/ �
1. Consequently, T is (uniformly) discrete: for each t 2 T , T \¹x 2 K j v.x� t / >
1º D ¹tº. This is assertion (ii).


Remark 11.4. Let T denote the orbit of an element x of K under the action of an
isometry '.


(1) If q1.T / is finite, then V=m is infinite. Indeed, the previous proof shows that, if
q1 is finite, then


q1 jn �m , v.'n.x/ � 'm.x// D 1: (11.3)


In particular, ¹y 2 K j v.y/ D 1º is infinite, which is equivalent to the fact that the
residue field V=m is infinite.


(2) If 1.T / is finite, then T is discrete, and hence, is equal to its topological closureeT in V and also to its completion. If q1.T / is infinite then, by Theorem 10.6 (asser-
tion (10.11)), T is polynomially equivalent to T C B.0; 1/. Consequently, eT 6D T .


Corollary 11.5. Let S be an infinite fractional subset of K and let ' W S ! S be
an isometry. If the dynamical system .S; '/ is topologically transitive, that is, if there
exists x 2 S such that T D O'C.x/ is dense in S , then S is a regular subset. Moreover,
either 1 < C1, and then S is discrete with S D S1 D T , or 1 D C1, and
then S is precompact with S D S1 .


Proof. By hypothesis, for every  2 R, one has T mod  = S mod  , and hence, for
every  such that q .S/ < q1.S/, q .S/ D q .T / and .x; '.x/; : : : ; 'q�1.x// is a
complete system of representatives of S mod  , that one may choose for S .


In summary, we obtain notably different results whether q1 is finite or infinite.
The regular subsets such that q1 is infinite will be considered in a forthcoming pa-
per [14] where we show that their v-orderings have very strong properties that may be
used to describe the dynamics. In particular, extending results of [18], we prove that,
for any infinite fractional subset S of K such that S D S1 , the following assertions
are equivalent:


(i) S is a regular subset.


(ii) There exists a sequence ¹anºn2N of elements of S such that


8 2 � Œ v.an � am/ �  , q j.n �m/ �: (11.4)


(iii) The characteristic function wS of S satisfies a generalized Legendre formula


wS .n/ D v.nŠS / D n0 C


C1X
kD1


�
n


qk .S/


�
.k � k�1/ : (11.5)
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12 An example


The following example is a generalization of an example given in [12]. Let k be a field
and let � be a subgroup of R. Let �C D ¹ 2 � j  � 0º and consider the integral
domain


A D kŒ�C� D kŒ¹X

j  � 0ºIXXı D XCı � (12.1)


endowed with the valuation v defined by


8k 2 N 8ak 2 k 8ık 2 �C v


 
nX
kD0


akX
ık


!
D min¹ık j ak 6D 0º: (12.2)


Fix a strictly increasing sequence ¹rnºn2N of elements of �C. For every n � 0, choose
a finite subset Cn of k containing 0 with cardinality ˛n > 1. Now consider the follow-
ing subset of A:


T D ¹c0X
r0 C c1X


r1 C � � � C clX
rl j l 2 N; ch 2 Ch; 0 � h � lº: (12.3)


Then,


qrh D qrh.T / D Card.T mod rh/ satisfies qr0 D 1 and qrhC1 D ˛hqrh : (12.4)


Of course,
q D qrh for rh�1 <  � rh: (12.5)


In other words, the sequence of critical valuations of T , that is ¹kºk2N , is the sequence
¹rkºk2N . Consequently,


1.T / D r1 D sup ¹ rn j n 2 N º: (12.6)


Thus, T is a discrete subspace if the sequence ¹rnº is bounded and T is precompact if
the sequence is unbounded. In both cases, the subset T admits infinite v-orderings. We
describe now such a v-ordering.


For every n � 0, the elements of Cn may be ordered in a finite sequence


¹cn;iº0�i<˛n with cn;0 D 0: (12.7)


For every n � 0, denoting by n mod ˛ the unique integer m such that n � m (mod ˛)
and 0 � m < ˛, we consider


n0 D n mod ˛0; n1 D
n � n0


˛0
mod ˛1; n2 D


n � n0 � n1˛0


˛1
mod ˛2; : : : (12.8)


so that
n D n0 C n1˛0 C n2˛0˛1 C � � � C nl˛0˛1 � � �˛l�1 (12.9)


or
n D n0 C n1qr1 C n2qr2 C � � � C nlqrl with 0 � nh < ˛h: (12.10)


Then, put


an D


lX
hD0


ch;nhX
rh : (12.11)
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Proposition 12.1. The sequence ¹anºn2N defined by (12.10) and (12.11) is a v-or-
dering of the subset T defined by (12.3). Moreover, this v-ordering satisfies condi-
tion (11.4) and the following Legendre formula:


wT .n/ D v.nŠ/T D nr0 C
X
h�1


�
n


qrh


�
.rh � rh�1/ : (12.12)


Proof. Denote by �T .n/ the greatest integer k such that qrk divides n. Clearly,


8n;m 2 N v.an � am/ D r�T .n�m/: (12.13)


One easily verifies that for m � n


v


 
n�1Y
kD0


.am � ak/


!
D


n�1X
kD0


r�T .m�k/ D


mX
lD1


r�T .l/ �


m�nX
lD1


r�T .l/


D r0nC
X
k>0


��
m


qrk


�
�


�
m � n


qrk


��
.rk � rk�1/:


In particular,


v


 
n�1Y
kD0


.an � ak/


!
D r0nC


X
k>0


�
n


qrk


�
.rk � rk�1/:


Thus, the sequence ¹anº is a v-ordering of T since�
m


qrk


�
�


�
m � n


qrk


�
�


�
n


qrk


�
:


Corollary 12.2. The valuative capacity of T is equal to


ıT D
X
k�0


1
˛0˛1 � � �˛k�1


rk


�
1 �


1
˛k


�
: (12.14)


In particular, if ˛k D q for every k, then


ıT D


�
1 �


1
q


�X
k�0


rk


qk
: (12.15)


Since the condition on the sequence ¹rkºk2N is just to be a strictly increasing se-
quence, it is easy to choose the rk’s in order to have ıT either finite or infinite.


Proof. Recall that the definition of ıT is given in Section 7. Note first that, if S is a
regular subset such that S D S1 , then the characteristic function wS satisfies for-
mula (11.5), and hence, the valuative capacity of S is given by


ıS D lim
n!C1


wS .n/


n
D 0 C


X
k�1


1
qk


.k � k�1/: (12.16)


Replacing k by rk and qk by ˛0˛1 : : : ˛k�1, we easily obtain formula (12.14).
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Remark 12.3. The map ' W T ! T defined by '.an/ D anC1 for n 2 N is an isometry
on T and O'C.0/ D T n ¹0º.
(i) If r1 D C1, we consider the subset


bT D ´ 1X
lD0


dnX
rn j dn 2 Cn


µ
(12.17)


and any subset S such that
T � S � bT : (12.18)


Then, S is precompact, S1 D T and S D bT \K. The subsets S and T are polyno-
mially equivalent and the sequence ¹anº is a v-ordering of S .


The previous map ' may be extended by continuity to bT and the dynamical system
.bT ; '/ is transitive since O'C.0/ D T n ¹0º is dense in T , and hence, in bT .
(ii) If r1 < C1, we consider any subset S such that


T � S � \k.T C B.0; rk//: (12.19)


Then, S1 D T and S D \k.T C B.0; rk//. The subsets S and T are polynomially
equivalent and the sequence ¹anº is a v-ordering of S .


Note also that in this latter case (r1 <1), T may either be equal to T CB.0; r1/
or not. Assume that the characteristic of K is 6D 2, r1 2 � , C0 D ¹0; 1º and Cn D
¹0; 1; 2º for n � 1. Then, 2CX r1 belongs to\k�0.T CB.0; rk//while 2CX r1 does
not belong to T C B.0; r1/ (in fact, this is quite the example given in Remark 9.3).
On the other hand, if all the Cn’s are equal, then


T D T C B.0; r1/ D \k�0.T C B.0; rk//:


Acknowledgments. I am very grateful to the referee for several suggestions which
improved the first version of this paper, and specially, for pointing out the counter-
examples given in Remark 9.3.
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Almost clean rings and arithmetical rings


François Couchot


Abstract. It is shown that a commutative Bézout ring R with compact minimal prime spectrum is
an elementary divisor ring if and only if so is R=L for each minimal prime ideal L. This result
is obtained by using the quotient space pSpecR of the prime spectrum of the ring R modulo the
equivalence generated by the inclusion. When every prime ideal contains only one minimal prime,
for instance if R is arithmetical, pSpecR is Hausdorff and there is a bijection between this quotient
space and the minimal prime spectrum MinR, which is a homeomorphism if and only if MinR is
compact. If x is a closed point of pSpecR, there is a pure ideal A.x/ such that x D V.A.x//. If R is
almost clean, i.e., each element is the sum of a regular element with an idempotent, it is shown that
pSpecR is totally disconnected and, 8x 2 pSpecR, R=A.x/ is almost clean; the converse holds if
every principal ideal is finitely presented. Some questions posed by Facchini and Faith at the second
International Fez Conference on Commutative Ring Theory in 1995, are also investigated. If R is
a commutative ring for which the ring Q.R=A/ of quotients of R=A is an IF-ring for each proper
ideal A, it is proved that RP is a strongly discrete valuation ring for each maximal ideal P and R=A
is semicoherent for each proper ideal A.


Keywords. Totally disconnected space, Bézout ring, Hermite ring, elementary divisor ring, IF-ring,
valuation ring, clean ring, almost clean ring.


AMS classification. 13F05, 13F10.


1 Introduction


In this paper we consider the following two questions:


Question 1.1. Is every Bézout domain an elementary divisor ring?


Question 1.2. More generally, is every Bézout semihereditary ring an elementary divi-
sor ring?


The first question was posed by M. Henriksen in [17] in 1955, and the second by
M. D. Larsen, W. J Lewis and T. S. Shores in [20] in 1974.


In Section 3 we prove that these two questions are equivalent but they are still
unsolved.


To show this equivalence, we use the quotient space pSpecR of SpecR modulo
the equivalence generated by the inclusion, where R is a commutative ring. When R
is a Gelfand ring, i.e., each prime ideal is contained in only one maximal, pSpecR is
Hausdorff and homeomorphic to MaxR (Proposition 2.1). On the other hand, if each
prime ideal contains a unique minimal prime, then pSpecR is Hausdorff and there is a
continuous bijection from MinR into pSpecR which is a homeomorphism if and only
if MinR is compact. There is also a continuous surjection �R W pSpecR! Spec B.R/,
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where B.R/ is the Boolean ring associated to R, and �R is a homeomorphism if and
only if pSpecR is totally disconnected. In this case, it is possible to get some interest-
ing algebraic results by using Lemma 2.9.


A ringR is said to be clean (respectively almost clean (see [24])) if each element of
R is the sum of an idempotent with a unit (respectively a regular element). In Section 4
we show that the total disconnectedness of pSpecR is necessary if the ring R is almost
clean. Recall that a ring R is clean if and only if R is Gelfand and MaxR totally
disconnected: see [25, Theorem 1.7], [22, Corollary 2.7] or [9, Theorem I.1]. Almost
clean rings were introduced by McGovern in [24] and studied by several authors: Ahn
and Anderson [1], Burgess and Raphael [3] and [4], Varadarajan [30]. If Q is the
quotient ring of R and if each prime ideal of R contains a unique minimal prime, we
show that pSpecR and pSpecQ are homeomorphic and B.R/ D B.Q/; moreover, if
R is arithmetical, then R is almost clean if Q is clean, and the converse holds if Q is
coherent.


In Section 5 we give partial answers to some questions posed by Facchini and Faith
at the second International Fez Conference on Commutative Ring Theory in 1995 [12].
If R is fractionally IF, it is shown that R=A is semicoherent for each ideal A and RP is
a strongly discrete valuation ring for each maximal ideal P . We give an example of a
finitely fractionally self FP-injective ring which is not arithmetical; recall that Facchini
and Faith proved that each fractionally self FP-injective ring is arithmetical. It is also
proven that any ring which is either clean, coherent and arithmetical or semihereditary
is finitely fractionally IF. However, there exist examples of clean coherent arithmetical
rings with a non-compact minimal prime spectrum; recall that the author proved that
MinR=A is compact for any ideal A of a fractionally self FP-injective ring R.


All rings in this paper are associative and commutative with unity, and all modules
are unital.We denote respectively SpecR, MaxR and MinR; the space of prime ideals,
maximal ideals and minimal prime ideals ofR, with the Zariski topology. If A a subset
of R, then we denote V.A/ D ¹P 2 SpecR j A � P º and D.A/ D SpecR n V.A/:


2 A quotient space of the prime spectrum of a ring


If R is a ring, we consider on SpecR the equivalence relation R defined by LRL0 if
there exists a finite sequence of prime ideals .Lk/1�k�n such that L D L1, L0 D Ln


and8k; 1 � k � .n�1/, eitherLk � LkC1 orLk � LkC1. We denote by pSpecR the
quotient space of SpecR modulo R and by �R W SpecR ! pSpecR the natural map.
The quasi-compactness of SpecR implies the one of pSpecR, but generally pSpecR
is not T1: see [21, Propositions 6.2 and 6.3]. However:


Proposition 2.1. The following conditions are equivalent for a ring R:


(i) The restriction of �R to MaxR is a homeomorphism;


(ii) the restriction of �R to MaxR is injective;


(iii) R is Gelfand.


In this case pSpecR is Hausdorff.
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Proof. It is obvious that (i)) (ii).
(ii)) (iii). If a prime ideal is contained in two maximal ideals P1 and P2 we get


that �R.P1/ D �R.P2/.
(iii) ) (i). If L is a prime ideal we denote by �.L/ the unique maximal ideal


containing L. It is easy to verify that �.L/ D �.L0/ if LRL0. So, � induces a map
N� W pSpecR ! MaxR. We easily show that N��1 D �RjMax R. By [10, Theorem 1.2]
� is continuous and MaxR is Hausdorff. Hence N� is a homeomorphism and pSpecR
is Hausdorff.


Proposition 2.2 ([9, Proposition IV.1]). Let R be a ring such that each prime ideal
contains only one minimal prime. Then pSpecR is Hausdorff and �RjMin R is bijective.
Moreover �RjMin R is a homeomorphism if and only if MinR is compact.


Proposition 2.3. Let ' W R ! T be a ring homomorphism. Then ' induces a
continuous map b' W pSpecT ! pSpecR such that �R ı


a' D b' ı �T , where
a' W SpecT ! SpecR is the continuous map induced by '.


Proof. If L and L0 are prime ideals of T such that L � L0 then a'.L/ � a'.L0/.
Hence, if x 2 pSpecT , we can put b'.x/ D �R.


a'.L// where L 2 x. Since �R and
a' are continuous, so is b'.


An exact sequence 0 ! F ! E ! G ! 0 is pure if it remains exact when
tensoring it with any R-module. Then, we say that F is a pure submodule of E. By
[13, Proposition 8.6] F is a pure submodule of E if every finite system of equations


nX
iD1


rj;ixi D yj 2 F .1 � j � p/;


with coefficients rj;i 2 R and unknowns x1; : : : ; xn, has a solution in F whenever it is
solvable in E. The following proposition is well known.


Proposition 2.4. Let A be an ideal of a ring R. The following conditions are equiva-
lent:


(i) A is a pure ideal of R;


(ii) for each finite family .ai /1�i�n of elements of A there exists t 2 A such that
ai D ai t; 8i; 1 � i � n;


(iii) for all a 2 A there exists b 2 A such that a D ab;


(iv) R=A is a flat R-module.


Moreover, if A is finitely generated, then A is pure if and only if it is generated by an
idempotent.


Proof. (ii)) (iii) is obvious.
(iii)) (iv). LetB be an ideal ofR. We must prove thatA\B D AB . If a 2 A\B ,


there exists t 2 A such that a D at . Hence a 2 AB .
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(iv)) (iii). If a 2 A, then Ra D A \Ra D Aa by .iv/.
(i)) (iii). If a 2 A, 1 is solution of the equation ax D a. So, this equation has a


solution in A.
(iii)) (ii). Let a1; : : : ; an be elements of A. We proceed by induction on n. There


exists t 2 A such that an D tan. By induction hypothesis there exists s 2 A such
that ai � tai D s.ai � tai /; 8i; 1 � i � .n � 1/. Now, it is easy to check that
.s C t � st/ai D ai ; 8i; 1 � i � n.


(ii)) (i). We consider the following system of equations:


nX
iD1


rj;ixi D aj 2 A; 1 � j � p:


Assume that .c1; : : : ; cn/ is a solution of this system in R. There exists s 2 A such that
aj D saj ; 8j; 1 � j � p. So, .sc1; : : : ; scn/ is a solution of this system in A.


We set 0P the kernel of the natural map R! RP where P 2 SpecR.


Lemma 2.5. LetR be a ring and let C a closed subset of SpecR. Then C is the inverse
image of a closed subset of pSpecR by �R if and only if C D V.A/ where A is a pure
ideal. Moreover, in this case, A D \P2C 0P .


Proof. Let A be a pure ideal, and let P and L be prime ideals such that A � P and
L � P . Since A is pure, for each a 2 A there exists b 2 A such that a D ab. Then
.1 � b/a D 0 and .1 � b/ … P , whence .1 � b/ … L and a 2 L. So, L 2 V.A/ and
V.A/ is the inverse image of a closed subset of pSpecR by �R.


Let C D V.B/ where B D \L2CL. Suppose that C is the inverse image of a
closed subset of pSpecR by �R. We put A D \P2C 0P . Let b 2 B and P 2 C . Then
C contains each minimal prime ideal contained in P . So, the image of b, by the natural
map R! RP , belongs to the nilradical of RP . It follows that there exist 0 ¤ nP 2 N
and sP 2 R n P such that sP bnP D 0. Hence, 8L 2 D.sP / \ C; bnP 2 0L. A finite
family .D.sPj


//1�j�m covers C . Let n D max¹nP1 ; : : : ; nPm
º. Then bn 2 0L; 8L 2


C , whence bn 2 A. We deduce that C D V.A/. Now, we have AP D 0 if P 2 V.A/
and AP D RP if P 2 D.A/. Hence A is a pure ideal.


Corollary 2.6. For any ring R the following assertions hold:


(i) A subset U of pSpecR is open and closed if and only if there exists an idempotent
e 2 R such that � R .U / D D.e/;


(ii) R is indecomposable if and only if pSpecR is connected.


Proof. A subset U of pSpecR is open and closed if and only if is so � R .U / and it is
well known that a subset U 0 of SpecR is open and closed if and only if U 0 D D.e/
for some idempotent e 2 R. The second assertion is an immediate consequence of
the first.
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If ¹xº is closed in pSpecR we denote by A.x/ the pure ideal of R for which x D
V.A.x//. A topological space is called totally disconnected if each of its connected
components contains only one point. Every Hausdorff topological space X with a
base of clopen neighbourhoods is totally disconnected and the converse holds if X is
compact (see [16, Theorem 16.17]).


Proposition 2.7. Let R be a ring. Then the following conditions are equivalent:


(i) pSpecR is totally disconnected;


(ii) for each x 2 pSpecR, ¹xº is closed and A.x/ is generated by idempotents.


Proof. (ii)) (i). Let x; y 2 pSpecR, x ¤ y. Then V.A.x// \ V.A.y// D ¿. So,
A.x/ C A.y/ D R, whence 9a 2 A.x/ such that .1 � a/ 2 A.y/. There exists an
idempotent e 2 A.x/ such that a D ae. So, .1 � e/.1 � a/ D .1 � e/ 2 A.y/. We
easily deduce that x � D.1 � e/ and y � D.e/.


(i)) (ii). Let x 2 pSpecR and a 2 A.x/. There exists b 2 A.x/ such that a D ab.
So .1 � b/a D 0. Clearly x � D.1 � b/. Since pSpecR is Hausdorff and SpecR is
quasi-compact, �!R .V .1 � b// is closed. Therefore U D pSpecR n �!R .V .1 � b// is
open and contains x. The condition pSpecR is totally disconnected implies that there
exists an idempotent e such that x � D.e/ � � R .U / � D.1 � b/. If follows that
e 2 R.1 � b/. So ea D 0 and consequently a D a.1 � e/. From x � D.e/ and
e.1 � e/ D 0 we deduce that .1 � e/ 2 A.x/ by Lemma 2.5.


For any ring R, B.R/ is the set of idempotents of R. For any e; e0 2 B.R/ we put
e ˚ e0 D e C e0 � ee0 and e ˇ e0 D ee0. With these operations B.R/ is a Boolean
ring. The space Spec B.R/ is denoted by X.R/. Then X.R/ is Hausdorff, compact and
totally disconnected. If x 2 X.R/ the stalk of R at x is the quotient of R by the ideal
generated by the idempotents contained in x.


Proposition 2.8. Let R be a ring. The following assertions hold:


(i) There exists a surjective continuous map �R W pSpecR! X.R/;


(ii) pSpecR is totally disconnected if and only if �R is a homeomorphism. In this
case, for each x 2 pSpecR, R=A.x/ is the stalk of R at �R.x/.


Proof. (i). IfL andL0 are prime ideals ofR,L � L0, thenL\B.R/ D L0\B.R/ since
each prime ideal of B.R/ is maximal. So, �R is well defined. It is easy to check that
for any idempotent e 2 R, � R .D.e// D �!R .D.e//. Hence �R is continuous. For each
x 2 X.R/, if L is a maximal ideal containing all elements of x, then x D �R.�R.L//,
whence �R is surjective.


(ii). It is obvious that pSpecR is totally disconnected if �R is a homeomorphism.
Conversely, since pSpecR is compact and X.R/ is Hausdorff it is enough to show that
�R is injective. Let x; x0 2 pSpecR; x ¤ x0. There exists an idempotent e such that
x 2 �!R .D.e// and x0 2 �!R .D.1 � e//. It follows that e … �R.x/ and e 2 �R.x


0/.
Hence �R.x/ ¤ �R.x


0/. The last assertion is a consequence of Proposition 2.7 and
Lemma 2.5.
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The following lemma will be useful to show some important results of this paper.


Lemma 2.9. Let R be a ring such that pSpecR is totally disconnected. Then any R-
algebra S (which is not necessarily commutative) satisfies the following condition: let
f1; : : : ; fk be polynomials over S in noncommuting variables x1; : : : ; xm; y1; : : : ; yn.
Let a1; : : : ; am 2 S . Assume that, 8x 2 pSpecR there exist b1; : : : ; bn 2 S such that:


fi .a1; : : : ; am; b1; : : : ; bn/ 2 A.x/S; 8i; 1 � i � k:


Then there exist d1; : : : ; dn 2 S such that:


fi .a1; : : : ; am; d1; : : : ; dn/ D 0; 8i; 1 � i � k:


Proof. Let x 2 pSpecR and let bx;1; : : : ; bx;n 2 S such that


fi .a1; : : : ; am; bx;1; : : : ; bx;n/ 2 A.x/S; 8i; 1 � i � k:


Then there exists a finitely generated ideal A � A.x/ such that


fi .a1; : : : ; am; bx;1; : : : ; bx;n/ 2 AS; 8i; 1 � i � k:


There exists an idempotent ex such that A � R.1 � ex/ � A.x/. Hence


exfi .a1; : : : ; am; bx;1; : : : ; bx;n/ D 0; 8i; 1 � i � k:


A finite family .�!R .D.exj
///1�j�p covers pSpecR. We may assume that .exj


/1�j�p


is a family of orthogonal idempotents. We put d` D ex1bx1;`C� � �Cexp
bxp ;`; 8`; 1 �


` � n: Then fi .a1; : : : ; am; d1; : : : ; dn/ D 0, 8i , 1 � i � k.


We denote by genM the minimal number of generators of a finitely generated R-
module M . The following proposition is an example of an algebraic result that can be
proven by using Lemma 2.9. Recall that the trivial extension R Ë M of R by M is
defined by: R Ë M D ¹


�
r x
0 r


�
j r 2 R; x 2 M º: It is convenient to identify R Ë M


with the R-module R˚M endowed with the following multiplication: .r; x/.s; y/ D
.rs; ry C sx/, where r; s 2 R and x; y 2M .


Proposition 2.10. Let R be a ring such that pSpecR is totally disconnected. LetM be
a finitely generated R-module and F a finitely presented R-module. Then:


(i) If, 8x 2 pSpecR, M=A.x/M is a homomorphic image of F=A.x/F , then M is
a homomorphic image of F ;


(ii) genM D sup¹gen.M=A.x/M/ j x 2 pSpecRº;


(iii) if M is finitely presented and, 8x 2 pSpecR, M=A.x/M Š F=A.x/F , then
M Š F .


Proof. (i). Let ¹m1; : : : ; mpº be a spanning set of M . Let ¹f1; : : : ; fnº be a spanning
set of F with the following relations: 8`; 1 � ` � n0,


Pn
iD1 cl;ifi D 0. We put
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S D R ËM the trivial extension of R by M . We consider the following system E1 of
polynomial equations in variables Xj;i ; Yi ; Zi;j ; 1 � j � k; 1 � i � n:


nX
iD1


Xj;iYi D .0; mj /; 8j; 1 � j � kI Yi D


pX
jD1


Zi;j .0; mj /; 8i; 1 � i � nI


nX
iD1


.cl;i ; 0/Yi D 0; 8`; 1 � ` � n0:


Thus E1 has a solution modulo A.x/S for each x 2 pSpecR. By Lemma 2.9 E1 has
a solution xj;i , yi ; zi;j , 1 � j � p, 1 � i � n in S . It is easy to check that yi D


.0; m0i /; 8i; 1 � i � n, and if xj;i D .rj;i ; x
0
j;i /, 8j; i , 1 � j � p, 1 � i � n, then


mj D
Pn


iD1 rj;im
0
i , 8j; 1 � j � p. We have also: 8`, 1 � ` � n0,


Pn
iD1 cl;im


0
i D 0.


Hence we get an epimorphism � W F !M defined by �.fi / D m
0
i , 8i , 1 � i � n.


(ii) is an easy consequence of (i).
(iii). Let the notations be as in (i). We assume thatm1; : : : ; mp verify the following


relations: 8k; 1 � k � p0;
Pp


jD1 dk;jmj D 0.
Observe that F Š M if M has a spanning set ¹m01; : : : ; m


0
nº with the relations:


8`; 1 � ` � n0;
Pn


iD1 cl;im
0i D 0. In this case there exist rj;i 2 R such that


mj D
Pn


iD1 rj;im
0
i ; 8j; 1 � j � p. Thus


pX
jD1


dk;jmj D


nX
iD1


0@ pX
jD1


dk;j rj;i


1Am0i D 0; 8k; 1 � k � p0:


It follows that there exist wk;l 2 R such that:


pX
jD1


dk;jmj D


n0X
`D1


wk;l


 
nX


iD1


c`;im
0
i


!


D


nX
iD1


0@ n0X
`D1


wk;lcl;i


1Am0i D 0; 8k; 1 � k � p0:


We deduce that
pX


jD1


dk;j rj;i D


n0X
`D1


wk;lcl;i ; 8k; 1 � k � p0; 8i; 1 � i � n: (2.1)


Conversely, if there exists an epimorphism � W F ! M defined by �.fi / D m0i ,
then � is bijective if each relation .rel/


Pn
iD1 aim


0
i D 0 is a linear combination of


the relations
Pn


iD1 c`;im
0
i D 0. Since m0i is a linear combination of m1; : : : ; mp , from


the relation .rel/ we get a relation .rel1/ which is a linear combination of the relationsPp
jDi dk;jmj D 0. By using the equalities 2.1, we get that .rel/ is a linear combination


of the relations
Pn


iD1 c`;im
0
i D 0.
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Let E2 be the system of polynomial equations in variables Xj;i ; Wk;`, 1 � j � p,
1 � i � n, 1 � k � p0, 1 � ` � n0,


pX
jD1


.dk;j ; 0/Xj;i D


n0X
`D1


Wk;l.c`;i ; 0/; 8k; 1 � k � p0; 8i; 1 � i � n:


We put E D E1 [ E2. As in (i) and by using the above observation we show that E has
a solution. We define � W F !M as in (i), and by using the fact that E2 has a solution,
we prove that � is injective by using the above observation.


3 Hermite rings and elementary divisor rings


An R-module is called uniserial if the set of its submodules is totally ordered by in-
clusion. A ring R is a valuation ring if it is a uniserial R-module. We say that R is
arithmetical if RL is a valuation ring for each maximal ideal L. A ring is a Bézout
ring if every finitely generated ideal is principal. A ring R is Hermite if R satisfies the
following property : for every .a; b/ 2 R2, there exist d; a0; b0 in R such that a D da0,
b D db0 and Ra0 C Rb0 D R. We say that R is an elementary divisor ring if for
every matrix A, with entries in R, there exist a diagonal matrix D and invertible ma-
trices P and Q, with entries in R, such that PAQ D D. Then we have the following
implications:


elementary divisor ring) Hermite ring) Bézout ring) arithmetical ring;


but these implications are not reversible: see [14] or [5].


Theorem 3.1. Let R be a ring such that pSpecR is totally disconnected. Assume that
R=A.x/ is Bézout for each x 2 pSpecR. Then R is Hermite.


Proof. By Proposition 2.10 R is Bézout. It follows that each prime ideal contains a
unique minimal prime, whence R=A.x/ has a unique minimal prime ideal. By [17,
Theorem 2], a ring with a unique minimal ideal is Hermite if and only if it is Bézout.
So, R=A.x/ is Hermite. Now, let a; b 2 R. Consider the following polynomial
equations: a D XZ; b D YZ and 1 D SX C T Y . For each x 2 pSpecR, these
equations have a solution modulo A.x/. By Lemma 2.9 they have a solution in R.


Recall that a ring R is (semi)hereditary if each (finitely generated) ideal is pro-
jective. If F is a submodule of a module E and x an element of E, then the ideal
¹r 2 R j rx 2 F º is denoted by .F W x/.


The following was already proved, see [8, Theorem III.3] and [20, Theorem 2.4].


Corollary 3.2. Let R be a Bézout ring. Then the following assertions hold:


(i) R is Hermite if MinR is compact;


(ii) R is Hermite if it is semihereditary.
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Proof. (i). Since each prime ideal contains a unique minimal prime, �RjMin R is bijec-
tive. Moreover, by [9, Proposition IV.1] pSpecR is Hausdorff. It follows that �RjMin R


is a homeomorphism because MinR is compact. We can apply the previous theorem
because MinR is always totally disconnected ([18, Corollary 2.4]):


8a 2 R; D.a/ \MinR D V..N W a// \MinR


where N is the nilradical of R.
(ii) is an immediate consequence of (i) because MinR is compact if R is semi-


hereditary by [26, Proposition 10].


The following example shows that pSpecR is not generally totally disconnected,
even if R is arithmetical.


Example 3.3. Consider [31, Example 6.2 (due to Jensen)] defined in the following way:
let I be a family of pairwise disjoint intervals of the real line with rational endpoints,
such that between any two intervals of I there is at least another interval of I; let R be
the ring of continuous maps R! R which are rational constant by interval except on
finitely many intervals of I on which it is given by a rational polynomial. It is easy to
check that R is a reduced indecomposable ring. It is also Bézout (left as an exercise!).
Let Œa; b� 2 I and f 2 R defined by f .x/ D .x�a/.b�x/ if a � x � b and f .x/ D 0
elsewhere. Then .0 W f / is not finitely generated, whence R is not semihereditary. So,
pSpecR is an infinite set and a compact connected topological space.


Theorem 3.4. Let R be a ring such that pSpecR is totally disconnected. Assume that
R=A.x/ is Bézout for each x 2 pSpecR. Then R is an elementary divisor ring if and
only if so is R=L, for each minimal prime ideal L.


Proof. Only “if” requires a proof. By Theorem 3.1R is Hermite. Let x 2 pSpecR and
R0 D R=A.x/. ThenR0 has a unique minimal prime ideal. LetL be the minimal prime
ideal of R such that L=A.x/ is the minimal prime of R0. Thus L=A.x/ is contained in
the Jacobson radical J.R0/ ofR0. So,R0=J.R0/ is an elementary divisor ring since it is
a homomorphic image of R=L. By [17, Theorem 3] a Hermite ring S is an elementary
divisor ring if and only if so is S=J.S/. Hence R=A.x/ is an elementary divisor ring.
Let a; b; c 2 R such that RaC Rb C Rc D R. We consider the polynomial equation
in variables X; Y; S; T : aSX C bTX C cT Y D 1. By [15, Theorem 6], this equation
has a solution modulo A.x/, 8x 2 pSpecR. So, by Lemma 2.9 there is a solution in
R. We conclude by [15, Theorem 6].


With a similar proof as in Corollary 3.2, we get Corollary 3.5. The second condition
shows that the two questions 1.1 and 1.2 have the same answer.


Corollary 3.5. The following assertions hold:


(i) Let R be a Bézout ring with compact minimal prime spectrum. Then R is an
elementary divisor ring if and only if so is R=L, for each minimal prime ideal L.
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(ii) Let R be a semihereditary ring. Then R is an elementary divisor ring if and only
if so is R=L, for each minimal prime ideal L.


(iii) Let R be a hereditary ring. Then R is an elementary divisor ring if and only if
R=L is Bézout for each minimal prime ideal L.


The third assertion can be also deduced from [27, Corollary].


4 Almost clean rings


In [24, Proposition 15], McGovern proved that each element of a ring R is the product
of an idempotent with a regular element if and only ifR is a PP-ring, i.e., each principal
ideal is projective, and he showed that each PP-ring is almost clean ([24, Proposition
16]). The aim of this section is to study almost clean rings.


In the sequel, if R is a ring, R.R/ is its set of regular elements of R and


ˆR D ¹L 2 SpecR j L \R.R/ D ¿º:


By [2, Corollaire 2, p. 92] each zero-divisor is contained in an element of ˆR. So, the
following proposition is obvious.


Proposition 4.1. Let R be a ring. The following conditions are equivalent:


(i) For each a 2 R, either a or .a � 1/ is regular.


(ii) R is almost clean and indecomposable.


(iii) 8L;L0 2 ˆR; LC L
0 ¤ R.


Corollary 4.2. Let R be an arithmetical ring, Q its ring of fractions and N its nilrad-
ical. Then:


(i) R is almost clean and indecomposable if and only if Q is a valuation ring;


(ii) R=A is almost clean and indecomposable for each ideal A � N if and only if N
is prime and uniserial.


Proof. (i). Assume that R is almost clean and indecomposable. Then if L;L0 2 ˆR


then there exists a maximal idealP such thatLCL0 � P . SinceRP is a valuation ring,
either L � L0 or L0 � L. By [2, Corollaire, p. 129] ˆR is homeomorphic to SpecQ.
It follows that Q is local. Conversely, ˆR contains a unique maximal element.


(ii). First, assume that R=A is almost clean and indecomposable for each ideal
A � N . SinceQ is a valuation ring then N is prime. By way of contradiction suppose
9a; b 2 N such that neither divides the other. We may assume that Ra \Rb D 0. Let
A and B be maximal submodules of Ra and Rb respectively. We may replace R by
R=.A C B/ and assume that Ra and Rb are simple modules. Let L and P be their
respective annihilators. Since RL is a valuation ring and RLa ¤ 0, we have RLb D 0.
So, L ¤ P . It follows that 9c 2 L such that .1 � c/ 2 P . Neither c nor .1 � c/ is
regular. This contradicts that R is almost clean.
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Conversely, suppose that N is prime and uniserial. Then, if A is an ideal contained
in N , N=A is also uniserial. So, the ring of fractions of R=A is a valuation ring: see
[29, p. 218, between the definition of a torch ring and Theorem B].


Following Vámos [29], we say that R is a torch ring if the following conditions are
satisfied:


(i) R is an arithmetical ring with at least two maximal ideals;


(ii) R has a unique minimal prime ideal N which is a nonzero uniserial module.


We follow T. S. Shores and R. Wiegand [28], by defining a canonical form for
an R-module E to be a decomposition E Š R=I1 ˚ R=I2 ˚ � � � ˚ R=In; where
I1 � I2 � � � � � In 6D R; and by calling a ring R a CF-ring if every direct sum of
finitely many cyclic modules has a canonical form.


Corollary 4.3. Each CF-ring is almost clean.


Proof. By [28, Theorem 3.12] every CF-ring is arithmetical and a finite product of
indecomposable CF-rings. If R is indecomposable then R is either a domain, or a local
ring, or a torch ring. By Corollary 4.2 R is almost clean.


By Proposition 2.8, there is some similarity between [4, Theorem 2.4] and the fol-
lowing theorem.


Theorem 4.4. Let R be a ring. Consider the following conditions:


(i) R is almost clean;


(ii) pSpecR is totally disconnected and 8r 2 R, 8x 2 pSpecR, 9sx 2 R.R/ such
that either r � sx modulo A.x/ or .r � 1/ � sx modulo A.x/;


(iii) pSpecR is totally disconnected and for each x 2 pSpecR, R=A.x/ is almost
clean.


Then (i), (ii)) (iii) and the three conditions are equivalent if every principal ideal
of R is finitely presented.


Proof. (i)) (ii). Let x and y be two distinct points of pSpecR. Let P and P 0 be two
minimal prime ideals of R such that P 2 x and P 0 2 y. There is no maximal ideal
containing P and P 0. So, P C P 0 D R and there exist a 2 P and a0 2 P 0 such that
aC a0 D 1. We have a D s C e where s is regular and e idempotent. Since s … P we
get that e … P . It follows that for each L 2 x, .1 � e/ 2 L and e … L. So, x � D.e/.
We have a0 D �s C .1 � e/. In the same way we get y � D.1 � e/. Therefore x and
y belong to disjoint clopen neighbourhoods. Hence pSpecR is totally disconnected.
Now, let r 2 R and z 2 pSpecR. We have r D s C e where s is regular and e
idempotent. If z � V.e/ then e 2 A.z/ and r � s modulo A.z/; and, if z � V.1 � e/
then .1 � e/ 2 A.z/ and .r � 1/ � s modulo A.z/.


(ii)) (i). Let a 2 R. Let Q be the ring of fractions of R and let S D R ËQ be
the trivial extension of R byQ. We consider the following polynomial equations in S :
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E2 D E;ECX D .a; 0/ andXY D .0; 1/. Let x 2 pSpecR. If a � sx modulo A.x/
where sx is a regular element of R, then E D .0; 0/; X D .sx; 0/; Y D .0; 1=sx/
is a solution of these polynomial equations modulo A.x/S ; if .a � 1/ � sx modulo
A.x/, we take E D .1; 0/. So, by Lemma 2.9, these equations have a solution in S :
E D .e; q/; X D .s; u/; Y D .t; v/. From E2 D E we deduce that e2 D e and
.2e � 1/q D 0. So, q D 0 since .2e � 1/ is a unit. From E C X D .a; 0/ we deduce
that u D 0, and from XY D .0; 1/ we deduce that sv D 1. Hence s is a regular
element of R and a D e C s. We conclude that R is almost clean.


(ii)) (iii). Clearly, if r 2 R then, 8x 2 pSpecR either r or .r � 1/ is regular
modulo A.x/. So, R=A.x/ is almost clean 8x 2 pSpecR.


(iii) ) (ii). We assume that each principal ideal is finitely presented. Let x 2
pSpecR. It remains to show that any regular element a modulo A.x/ is congruent to
a regular element of R modulo A.x/. Since .0 W a/ is finitely generated and A.x/ is
generated by idempotents, there exists an idempotent e 2 A.x/ such that .0 W a/ � Re.
Now, it is easy to check that a.1 � e/C e is a regular element.


The following examples show that the conditions (i) and (iii) are not generally
equivalent.


Example 4.5 ([4, Examples 2.2 and 2.9.(i)]). are non-almost clean arithmetical rings
(the second is reduced) with almost clean stalks. These are defined in the following
way: let D be a principal ideal domain and 8n 2 N, let Rn be a quotient of D by
a non-zero proper ideal In; let R be the set of elements r D .rn/n2N of …n2NRn


which satisfy 9mr 2 N and 9dr 2 D such that 8n � mr , rn D dr C In. We
put em D .ım;n/n2N ; 8m 2 N. It is easy to check that the points of pSpecR are:
x1 D V.


L
n2N Rn/ and 8n 2 N, xn D V.1 � en/. Since x1 � D.1 � em/ and


xm � D.em/,8m 2 N, pSpecR is totally disconnected. So, (by using Proposition 2.8)
these examples satisfy condition (iii) of Theorem 4.4.


The following example shows that the condition “each principal ideal is finitely
presented” is not necessary if R is almost clean.


Example 4.6. We consider [31, Example 1.3b]. LetR D Z˚S where S D .Z=2Z/.N/.
The multiplication is defined by .m; x/.n; y/ D .mn; nxCmyCxy/, wherem; n 2 Z
and x; y 2 S . It is known that R is a reduced arithmetical ring which is not semi-
hereditary. Let p 2 Z and s 2 S . Then .2p � 1; s/ D .2p � 1; 0/ C .0; s/ and
.2p; s/ D .2p � 1; 0/C .1; s/. It is easy to check that .2p � 1; 0/ is regular and, .0; s/
and .1; s/ are idempotents. Hence R is almost clean. But .0 W .2; 0// D 0� S which is
not finitely generated.


Proposition 4.7. Let R be a ring and Q its ring of fractions. Assume that each prime
ideal of R contains only one minimal prime. Then:


(i) pSpecQ and pSpecR are homeomorphic;


(ii) each idempotent of Q belongs to R;


(iii) if Q is clean then R is almost clean.
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Proof. (i). If ' W R! Q is the natural map then MinR � ˆR D Im a'. It follows that
each prime ideal of Q contains only one minimal prime and b' is bijective. Moreover,
since pSpecQ and pSpecR are compact, b' is a homeomorphism.


(ii). Let e an idempotent of Q. Then �!Q .D.e// is a clopen subset of pSpecQ,
whence its image by b' is a clopen subset of pSpecR and consequently it is of the form
�!R .D.e


0// where e0 is an idempotent of R. But the inverse image of D.e0/ � SpecR
by a' is D.e0/ � SpecQ. So, e D e0 2 R.


(iii). Assume that Q is clean. Let r 2 R. Then r D q C e where q is a unit of Q
and e an idempotent. Since e 2 R, q is a regular element of R.


Corollary 4.8. Let R be an almost clean arithmetical ring and Q its ring of fractions.
If Q is coherent then Q is clean. In this case Q is an elementary divisor ring.


Proof. Recall that an arithmetical ring is coherent if and only if each principal ideal is
finitely presented because the intersection of any two finitely generated ideals is finitely
generated by [28, Corollary 1.11]. By Proposition 4.7 we may assume that pSpecQ D
pSpecR. This space is totally disconnected by Theorem 4.4. Let x 2 pSpecQ and let
A.x/ be the pure ideal of R such that x D V.A.x//. Then x D V.QA.x//. If s is a
regular element of R then s C A.x/ is a regular element of R=A.x/. So, R=A.x/ and
Q=QA.x/ have the same ring of fractions which is a valuation ring by Corollary 4.2.
Hence Q=QA.x/ is almost clean, 8x 2 pSpecQ. By Theorem 4.4 Q is almost clean
too. We conclude that Q is clean since each regular element is a unit.


The last assertion is a consequence of [9, Theorem I.1 and Corollary II.2].


We don’t know if the assumption “Q is coherent” can be omitted. The following
example shows that the conclusion of the previous corollary doesn’t hold if R is not
arithmetical, even if R has a unique minimal prime ideal.


Example 4.9. Let K be a field, D D KŒx; y�.x;y/ where x; y are indeterminates, E D
D=Dx ˚ D=Dy and R the trivial extension of D by E. Since R contains a unique
minimal prime ideal, Q is indecomposable. We put r D


�
x 0
0 x


�
and s D


�
y 0
0 y


�
. Clearly


r and s are zerodivisors but r C s is regular. It follows that r
rCs


and s
rCs


are two
zerodivisors of Q whose sum is 1. So, Q is not almost clean.


5 Fractionally IF-rings


Let P be a ring property. We say that a ringR is (finitely) fractionally P if the classical
ring of quotients Q.R=A/ of R=A satisfies P for each (finitely generated) ideal A.
In [12] Facchini and Faith studied fractionally self FP-injective rings. They proved
that these rings are arithmetical ([12, Theorem 1]) and they gave some examples ([12,
Theorem 6]). In the first part of this section we investigate fractionally IF-rings and
partially answer a question posed by Facchini and Faith in [12, question Q1, p. 301].


Some preliminary results are needed. As in [23] a ring R is said to be semicoherent
if HomR.E; F / is a submodule of a flat R-module for any pair of injective R-modules
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E; F . AnR-moduleE is FP-injective if Ext1R.F;E/ D 0 for any finitely presentedR-
module F; and R is self FP-injective if R is FP-injective as R-module. We recall that
a module E is FP-injective if and only if it is a pure submodule of every overmodule.
If each injective R-module is flat we say that R is an IF-ring. By [6, Theorem 2], R is
an IF-ring if and only if it is coherent and self FP-injective.


Proposition 5.1. Let R be a self FP-injective ring. Then R is coherent if and only if it
is semicoherent.


Proof. IfR is coherent then HomR.E; F / is flat for any pair of injective modulesE; F
by [13, Theorem XIII.6.4(b)]; so, R is semicoherent. Conversely, let E be the injective
hull of R. Since R is a pure submodule of E, then, for each injective R-module F , the
following sequence is exact:


0! HomR.F ˝R E=R;F /! HomR.F ˝R E;F /! HomR.F ˝R R;F /! 0:


By using the natural isomorphisms HomR.F ˝R B;F / Š HomR.F;HomR.B; F //
and F Š HomR.R; F / we get the following exact sequence:


0! HomR.F;HomR.E=R; F //! HomR.F;HomR.E; F //! HomR.F; F /! 0:


So, the identity map on F is the image of an element of HomR.F;HomR.E; F //.
Consequently the following sequence splits:


0! HomR.E=R; F /! HomR.E; F /! F ! 0:


It follows that F is a direct summand of a flat module. So, R is an IF-ring.


Corollary 5.2. LetR be a ring. Assume that its ring of quotientsQ is self FP-injective.
Then R is semicoherent if and only if Q is coherent.


Proof. If R is semicoherent, then so is Q by [23, Proposition 1.2]. From Proposi-
tion 5.1 we deduce thatQ is coherent. Conversely, letE and F be injectiveR-modules.
It is easy to check that the multiplication by a regular element of R in HomR.E; F / is
injective. So, HomR.E; F / is a submodule of the injective hull ofQ˝R HomR.E; F /
which is flat over Q and R because Q is an IF-ring.


Corollary 5.3. Let R be a valuation ring and A an ideal. Then R=A is semicoherent if
and only if A is either prime or the inverse image of a proper principal ideal of RA] by
the natural map R! RA] , where A] D ¹r 2 R j rA � Aº.


Proof. Assume that A is not prime and let A0 D ARA] . Then RA]=A0 is the ring of
quotients of R=A. So, by [7, Théorème 2.8], RA]=A0 is self FP-injective because each
non-unit is a zero-divisor. By [8, Corollary II.14] it is coherent if and only if A0 is
principal. So, we conclude by Corollary 5.2.


A valuation ring R is called strongly discrete if there is no non-zero idempotent
prime ideal.
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Corollary 5.4. Let R be a valuation ring. Then R=A is semicoherent for each ideal A
if and only if R is strongly discrete.


Proof. Assume that R is strongly discrete. Each ideal A is of the form A D aL, where
L is a prime ideal and a 2 R. Clearly L D A]. Then, L2 ¤ L implies that ARL is
principal over RL. Since A is the inverse image of ARL by the natural map R! RL,
R=A is semicoherent by Corollary 5.3.


Conversely, let L be non-zero prime ideal, let A D aLRL, where 0 ¤ a 2 RL and
let A0 be the inverse image of A by the natural map R ! RL. Clearly L D .A0/].
Since R=A0 is semicoherent, A is principal over RL by Corollary 5.3. It follows that L
is principal over RL. So, L ¤ L2.


Now, we can prove one of the main results of this section.


Theorem 5.5. Let R be a fractionally IF-ring. Then, R=A is semicoherent for each
ideal A and RP is a strongly discrete valuation ring for each maximal ideal P .


Proof. By [12, Theorem 1]R is arithmetical because it is fractionally self FP-injective.
LetP be a maximal ideal and letA be an ideal ofRP . IfB is the kernel of the following
composition of natural maps R ! RP ! RP =A, then Q.RP =A/ D Q.R=B/ is an
IF-ring. We conclude by Corollaries 5.3 and 5.4.


It is obvious that each von Neumann regular ring is a fractionally IF-ring. More-
over:


Proposition 5.6. Let R be an arithmetical ring which is locally strongly discrete. Then
R is a fractionally IF-ring in the following cases:


(i) R is fractionally semilocal;


(ii) R is semilocal;


(iii) R is a Prüfer domain of finite character, i.e., each non-zero element is contained
in but a finite number of maximal ideals.


Proof. (i). We may assume that R D Q.R/. By [12, Lemma 7], for each maximal
ideal P , RP D Q.RP /. It follows that RP is self FP-injective. Moreover it is coherent
by Corollary 5.4 and Proposition 5.1. Since …P2Max RRP is a faithfully flat R-module
and an IF-ring, we deduce that R is IF too.


(ii) follows from (i) by [12, Lemma 5].
(iii) follows from (ii) since R=A is semilocal for each non-zero ideal A.


Question 5.7. What are the locally strongly discrete Prüfer domains which are frac-
tionally IF?


The following example shows that an arithmetical ring which is locally artinian is
not necessarily fractionally IF.
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Example 5.8. LetK be a field, V D KŒX�=.X2/whereX is an indeterminate and let x
be the image of X in V . For each p 2 N we put R2p D V and R2pC1 D V=xV Š K.
Let S D


Q
n2N Rn, J D


L
n2N Rn and let R be the unitary V -subalgebra of S


generated by J . For each n 2 N we set en D .ın;p/p2N and we denote by 1 the
identity element of R. Let P be a maximal ideal of R:


� Either J � P ; in this case P D P1 D J C xR and RP1 D R=J Š V ;


� or 9n 2 N such that en … P ; in this case P D Pn D R.1 � en/ C Rxen,
RPn
D R=R.1 � en/ Š V if n is even and RPn


Š K if n is odd.


Then, for each maximal ideal P , RP is an artinian valuation ring. Now it is easy to
check that .0 W x1/ D Rx1C


L
n2N Re2nC1. So, R is not coherent.


The following proposition is a short answer to another question posed by Facchini
and Faith in [12, question Q3, p. 301].


Proposition 5.9. There exists a non-arithmetical zero-Krull-dimensional ring R which
is finitely fractionally self FP-injective.


Proof. Let V be the artinian valuation ring of Example 5.8, S D V N and J D V .N/.
Let y D .yn/n2N ; z D .zn/n2N 2 S such that, 8p 2 N; y2p D z2pC1 D x and
y2pC1 D z2p D 0, and let R be the unitary V -subalgebra of S generated by y; z and
J . The idempotents .en/n2N are defined as in Example 5.8. Let P 2 MaxR:


� Either J � P ; in this case P D P1 D J C yR C zR and RP1 D R=J Š
KŒY;Z�=.Y;Z/2;


� or 9n 2 N such that en … P ; in this case P D Pn D R.1 � en/ C Rxen,
RPn
D R=R.1 � en/ Š V .


Clearly, RP1 is not a valuation ring. So, R is not arithmetical. First, we show that R
is a pure submodule of S . It is sufficient to prove that RP is a pure submodule of SP


for each maximal ideal P . It is obvious that RPn
Š SPn


Š enS Š V . It remains to
be shown that RP1 is a pure submodule of SP1 Š S=J . We consider the following
equations:


8i; 1 � i � p;
X


1�j�m


ri;jxj � si modulo J;


where ri;j ; si 2 R; 8i; 1 � i � p; 8j; 1 � j � m. When these equations have a
solution in S , we must prove they have a solution in R too. This can be done by using
the basis ¹1; y; z; en; xen j n 2 Nº of R over K. Consequently R is pure in S . Now,
let A be a finitely generated ideal of R. Then R=A is a pure submodule of S=SA. We
have S=SA Š


Q
n2N.R=A/Pn


. For each n 2 N, .R=A/Pn
is self injective, whence


it is an injective .R=A/-module. We deduce that S=SA is injective over R=A. Hence
R=A is self FP-injective.


Finally, for the second question posed by Facchini and Faith in [12, question Q2,
p. 301], we shall prove Theorem 5.11. The following lemma is needed.
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Lemma 5.10. Let R be a clean ring such that R D Q.R/ and .0 W a/ is finitely
generated for each a 2 R. Then, for each maximal ideal P , RP D Q.RP /.


Proof. Let P be a maximal ideal of R. By way of contradiction, suppose that RP


contains a regular element which is not a unit. So, 9a 2 P such that .0P W a/ D 0P


(since R is clean, RP D R=0P by [9, Proposition III.1]). It follows that .0 W a/ � 0P .
Since .0 W a/ is finitely generated and 0P is generated by idempotents, there exists an
idempotent e 2 0P such that .0 W a/ � Re. Now, it is easy to check that a.1 � e/C e
is a regular element contained in P . This contradicts that R D Q.R/.


Theorem 5.11. The following assertions hold:


(i) Let R be an almost clean coherent arithmetical ring. Assume that R=A.x/ is
either torch or local or a domain 8x 2 pSpecR. Then R is finitely fractionally
IF;


(ii) each clean coherent arithmetical ring is finitely fractionally IF;


(iii) each semihereditary ring is finitely fractionally IF;


(iv) let R be a zero-Krull-dimensional ring or a one-Krull-dimensional domain. Then
R is finitely fractionally IF if and only if R is coherent and arithmetical.


Proof. (i). Let A be a finitely generated ideal of an almost clean coherent arithmetical
ring R and let N be the nilradical of R. Since each prime ideal contains only one
minimal prime, by [9, Lemme IV.2] D..N W A// is the inverse image by �R of an
open subset U of pSpecR. For each x 2 U there exists an idempotent ex 2 .N W A/
such that x � D.ex/ � D..N W A//. Hence .N W A/ D †x2U .Rex C N/. Since
R is coherent .0 W A/ is finitely generated. It follows that there exists an idempotent
e 2 .N W A/ such that .0 W A/ � .Re C N/. We have R=A Š .R.1 � e/=A.1 �
e// � .Re=Ae/. Since .0 WR.1�e/ A.1 � e// � N.1 � e/, .R.1 � e/=A.1 � e// is IF
by [8, Proposition II.15]. On the other hand, Re is an almost coherent arithmetical
ring and Ae is a finitely generated ideal contained in Ne. Let T D .Re=Ae/ and let
� W R! T be the natural epimorphism. Then pSpecT is totally disconnected because
it is homeomorphic to pSpec.Re/. Let x 2 pSpecT . Then T=A.x/ is the quotient
of R=A.b�.x// modulo an ideal contained in the minimal prime of R=A.b�.x//. By
Corollary 4.2 T=A.x/ is almost clean. We deduce that T is coherent and almost clean
by Theorem 4.4. By Corollary 4.8 T 0 D Q.T / is clean. By Lemma 5.10 T 0P D Q.T


0
P /


for each maximal ideal P of T 0. We deduce that T 0P is IF because it is a valuation ring.
So, since T 0 is locally IF, it is IF too. Hence Q.R=A/ is IF.


(ii) and (iii). If R is either clean, coherent and arithmetical or semihereditary, then
R satisfies the conditions of (i). Hence R is finitely fractionally IF.


(iv). Observe that Q.R=A/ D R=A for each non-zero proper ideal A.
First assume that R is arithmetical and coherent. We deduce that R is finitely frac-


tionally IF from (ii) and (iii).
Conversely, let P be a maximal ideal of R and A a finitely generated ideal of RP .


There exists a finitely generated ideal B of R such that A D BP . So, RP =A Š
.R=B/P . Since R=B is IF, so is RP =A by [7, Proposition 1.2]. Hence we may assume
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that R is local and we must prove that R is a valuation ring. If not, there exist a; b 2 R
such that a … Rb and b … Ra. The coherence of R=.ab/ implies that Ra \ Rb is
finitely generated. It follows thatR=.Ra\Rb/ is IF. We may assume thatRa\Rb D
0. By [19, Corollary 2.5] A D .0 W .0 W A// for each finitely generated ideal A. We
deduce that 0 D Ra\Rb D .0 W .0 W a/C .0 W b//: Then .0 W a/C .0 W b/ is a faithful
finitely generated proper ideal. By [19, Corollary 2.5] this is not possible. Hence R is
a valuation ring.


If R is fractionally self FP-injective, then, by [8, Theorem III.1] MinR=A is com-
pact for each proper ideal A. The following example shows that this is not true if R is
finitely fractionally IF, even if R is a coherent clean arithmetical ring.


Example 5.12. Let D be a valuation domain. Assume that its maximal ideal P 0 is
the only non-zero prime and it is not finitely generated. Let 0 ¤ d 2 P 0. We put
V D D=dD, P D P 0=dD and R D V N . It is easy to check that R is clean, Bézout
and coherent. So, by (ii) of Theorem 5.11 R is finitely fractionally IF. Since P is not
finitely generated, 8n 2 N, 9bn 2 P such that bn


n ¤ 0. We set b D .bn/n2N . Let N
be the nilradical of R. If there exists c D .cn/n2N 2 R such that .b � bcb/ 2 N , then
9m 2 N such that bm.1�cb/m D 0. If n 2 N; n � m we get that bn


n.1�cnbn/
n D 0.


Clearly there is a contradiction. So, R=N is not von Neumann regular. Now, let c 2 R
such that .N W c/ D N . We shall prove that c is a unit. By way of contradiction,
suppose 9k 2 N such that ck 2 P . We put ek D .ık;n/n2N . Then cek D ckek 2 N .
It follows that ek 2 N , which is absurd. So, 8k 2 N; ck … P . Therefore c is a unit
and R=N is equal to its quotient ring. By [11, Theorem 5] a reduced arithmetic ring
S is semihereditary if and only if Q.S/ is von Neumann regular. By [26, Proposition
10] a reduced arithmetic ring S is semihereditary if and only if MinS is compact.
Consequently MinR=N is not compact . Hence MinR is not compact too. (If P 0


is finitely generated by p and R D
Q


n2N D=p
nC1D, then R is clean, arithmetical,


coherent and finitely fractionally IF, but MinR is not compact. We do the same proof
by taking bn D p C p


nC1D; 8n 2 N.)
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Amalgamated algebras along an ideal


Marco D’Anna, Carmelo Antonio Finocchiaro and Marco Fontana


Abstract. Let f W A ! B be a ring homomorphism and J an ideal of B . In this paper, we
initiate a systematic study of a new ring construction called the “amalgamation of A with B along
J with respect to f ”. This construction finds its roots in a paper by J. L. Dorroh appeared in 1932
and provides a general frame for studying the amalgamated duplication of a ring along an ideal,
introduced and studied by D’Anna and Fontana in 2007, and other classical constructions such as
the A C XBŒX� and A C XBŒŒX�� constructions, the CPI-extensions of Boisen and Sheldon, the
D CM constructions and the Nagata’s idealization.


Keywords. Nagata’s idealization, pullback, D CM construction, amalgamated duplication.
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1 Introduction


Let A and B be commutative rings with unity, let J ba an ideal of B and let f W A �!
B be a ring homomorphism. In this setting, we can define the following subring of
A � B:


A‰f J D ¹.a; f .a/C j / j a 2 A; j 2 J º


called the amalgamation of A with B along J with respect to f . This construction is a
generalization of the amalgamated duplication of a ring along an ideal (introduced and
studied in [6] and [7]). Moreover, other classical constructions (such as theACXBŒX�
construction, the DCM construction and the Nagata’s idealization) can be studied as
particular cases of the amalgamation.


On the other hand, the amalgamation A‰f J is related to a construction proposed
by D. D. Anderson in [1] and motivated by a classical construction due to Dorroh [8],
concerning the embedding of a ring without identity in a ring with identity.


The level of generality that we have chosen is due to the fact that the amalgamation
can be studied in the frame of pullback constructions. This point of view allows us to
provide easily an ample description of the properties ofA‰fJ , in connection with the
properties of A, J and f .


In this paper, we begin a study of the basic properties of A‰fJ . In particular,
in Section 2, we present all the constructions cited above as particular cases of the
amalgamation. Moreover, we show that the CPI extensions (in the sense of Boisen and
Sheldon [3]) are related to amalgamations of a special type and we compare Nagata’s
idealization with the amalgamation. In Section 3, we consider the iteration of the
amalgamation process, giving some geometrical applications of it.


The first and the third author were partially supported by MIUR- PRIN grants.
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In the last two sections, we show that the amalgamation can be realized as a pull-
back and we characterize those pullbacks that arise from an amalgamation (Proposi-
tion 4.7). Finally we apply these results to study the basic algebraic properties of the
amalgamation, with particular attention to the finiteness conditions.


2 The genesis


Let A be a commutative ring with identity and let R be a ring without identity which is
an A-module. Following the construction described by D. D. Anderson in [1], we can
define a multiplicative structure in the A-module A ˚R, by setting .a; x/.a0; x0/ WD
.aa0; ax0Ca0xCxx0/, for all a; a0 2 A and x; x0 2 R. We denote by A P̊R the direct
sum A˚R endowed also with the multiplication defined above.


The following properties are easy to check.


Lemma 2.1 ([1, Theorem 2.1]). With the notation introduced above, we have:


(1) A P̊R is a ring with identity .1; 0/, which has an A-algebra structure induced by
the canonical ring embedding �A W A ,! A P̊R, defined by a 7! .a; 0/ for all
a 2 A.


(2) If we identify R with its canonical image .0/�R under the canonical embedding
�R W R ,! A P̊R, defined by x 7! .0; x/, for all x 2 R, then R becomes an
ideal in A P̊R.


(3) If we identify A with A� .0/ (respectively, R with .0/�R) inside A P̊R, then the
ring A P̊R is an A-module generated by .1; 0/ and R, i.e., A.1; 0/CR D A P̊R.
Moreover, if pA W A P̊R� A is the canonical projection (defined by .a; x/ 7! a
for all a 2 A and x 2 R), then


0! R
�
R
�! A P̊R


p
A
��! A! 0


is a splitting exact sequence of A-modules.


Remark 2.2. (1) The previous construction takes its roots in the classical construction,
introduced by Dorroh [8] in 1932, for embedding a ring (with or without identity, possi-
bly without regular elements) in a ring with identity (see also Jacobson [14, page 155]).
For completeness, we recall Dorroh’s construction starting with a case which is not the
motivating one, but that leads naturally to the relevant one (Case 2).


Case 1. Let R be a commutative ring (with or without identity) and let Tot.R/
be its total ring of fractions, i.e., Tot.R/ WD N�1R, where N is the set of regular
elements of R. If we assume that R has a regular element r , then it is easy to see that
R � Tot.R/, and Tot.R/ has identity 1 WD r


r
, even if R does not. In this situation we


can consider RŒ1� WD ¹xCm �1 j x 2 R;m 2 Zº. Obviously, if R has an identity, then
R D RŒ1�; otherwise, we have that RŒ1� is a commutative ring with identity, which







Amalgamated algebras along an ideal 157


contains properly R and it is the smallest subring of Tot.R/ containing R and 1. It is
easy to see that:


(a) R and RŒ1� have the same characteristic,


(b) R is an ideal of RŒ1�, and


(c) if R ¨ RŒ1�, then the quotient-ring RŒ1�=R is canonically isomorphic to Z=nZ,
where n .� 0/ is the characteristic of RŒ1� (or, equivalently, of R).


Case 2. Let R be a commutative ring (with or without identity) and, possibly,
without regular elements. In this situation, we possibly have R D Tot.R/, so we
cannot perform the previous construction. Following Dorroh’s ideas, we can consider
in any case R as a Z-module and, with the notation introduced at the beginning of this
section, we can construct the ring Z P̊ R, that we denote by Dh.R/ in Dorroh’s honour.
Note that Dh.R/ is a commutative ring with identity 1Dh.R/ WD .1; 0/. If we identify,
as usual, R with its canonical image in Dh.R/, then R is an ideal of Dh.R/ and Dh.R/
has a kind of minimal property over R, since Dh.R/ D Z.1; 0/ C R. Moreover, the
quotient-ring Dh.R/=R is naturally isomorphic to Z.


On the bad side, note that if R has an identity 1R, then the canonical embedding
of R into Dh.R/ (defined by x 7! .0; x/ for all x 2 R/ does not preserve the identity,
since .0; 1R/ ¤ 1Dh.R/. Moreover, in any case (whenever R is a ring with or without
identity), the canonical embedding R ,! Dh.R/ may not preserve the characteristic.


In order to overcome this difficult, in 1935, Dorroh [9] gave a variation of the previ-
ous construction. More precisely, if R has positive characteristic n, then R can be con-
sidered as a Z=nZ-module, so Dhn.R/ WD .Z=nZ/ P̊ R is a ring with identity, having
characteristic n. Moreover, as above, Dhn.R/ D .Z=nZ/ .1; 0/C R and Dhn.R/=R is
canonically isomorphic to Z=nZ.


(2) Note that a general version of the Dorroh’s construction (previous Case 2) was
considered in 1974 by Shores [18, Definition 6.3] for constructing examples of local
commutative rings with arbitrarily large Loewy length. We are indebted to L. Salce
for pointing out to us that the amalgamated duplication of a ring along an ideal [6] can
also be viewed as a special case of Shores construction (cf. also [17]). Moreover, be-
fore Shores, Corner in 1969 [4], for studying endomorphisms rings of Abelian groups,
considered a similar construction called “split extension of a ring by an ideal”.


A natural situation in which we can apply the previous general construction (Lem-
ma 2.1) is the following. Let f W A ! B be a ring homomorphism and let J be
an ideal of B . Note that f induces on J a natural structure of A-module by setting
a �j WD f .a/j , for all a 2 A and j 2 J . Then, we can consider A P̊ J .


The following properties, except (2) that is easy to verify, follow from Lemma 2.1.


Lemma 2.3. With the notation introduced above, we have:


(1) A P̊ J is a ring.


(2) The map f ‰ W A P̊ J ! A�B , defined by .a; j / 7! .a; f .a/C j / for all a 2 A
and j 2 J , is an injective ring homomorphism.
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(3) The map �A W A ! A P̊ J (respectively, �J W J ! A P̊ J ), defined by a 7!
.a; 0/ for all a 2 A (respectively, by j 7! .0; j / for all j 2 J ), is an injective
ring homomorphism (respectively, an injective A-module homomorphism). If we
identify A with �A.A/ (respectively, J with �J .J /), then the ring A P̊ J coincides
with AC J .


(4) Let pA W A P̊ J ! A be the canonical projection (defined by .a; j / 7! a for all
a 2 A and j 2 J ), then the following is a split exact sequence of A-modules:


0! J
�J
�! A P̊ J


pA
��! A! 0 :


We set


A‰fJ WD f ‰.A P̊ J /; �.f / WD ¹.a; f .a// j a 2 Aº:


Clearly, �.f / � A‰fJ and they are subrings of A�B . The motivation for replacing
A P̊ J with its canonical image A‰fJ inside A � B (under f ‰) is related to the fact
that the multiplicative structure defined in A P̊ J , which looks somewhat “artificial”,
becomes the restriction toA‰fJ of the natural multiplication defined componentwise
in the direct product A � B . The ring A‰fJ will be called the amalgamation of A
with B along J , with respect to f W A! B .


Example 2.4. The amalgamated duplication of a ring.
A particular case of the construction introduced above is the amalgamated duplication
of a ring [6]. Let A be a commutative ring with unity, and let E be an A-submodule of
the total ring of fractions Tot.A/ of A such thatE �E � E. In this case, E is an ideal in
the subring B WD .E W E/ .WD ¹z 2 Tot.A/ j zE � Eº/ of Tot.A/. If � W A! B is the
natural embedding, then A‰�E coincides with A‰E, the amalgamated duplication
of A along E, as defined in [6]. A particular and relevant case is when E WD I is
an ideal in A. In this case, we can take B WD A, we can consider the identity map
id WD idA W A ! A and we have that A‰ I , the amalgamated duplication of A along
the ideal I , coincides with A‰idI , that we will call also the simple amalgamation of
A along I (instead of the amalgamation of A along I , with respect to idA).


Example 2.5. The constructions ACXBŒX � and ACXBŒŒX ��.
Let A � B be an extension of commutative rings and X WD ¹X1; X2; : : : ; Xnº a
finite set of indeterminates over B . In the polynomial ring BŒX�, we can consider the
following subring


ACXBŒX � WD ¹h 2 BŒX � j h.0/ 2 Aº ;


where 0 is the n-tuple whose components are 0. This is a particular case of the general
construction introduced above. In fact, if � 0 W A ,! BŒX � is the natural embedding
and J 0 WD XBŒX �, then it is easy to check that A‰� 0J 0 is isomorphic to ACXBŒX �
(see also the following Proposition 5.1(3)).


Similarly, the subring A C XBŒŒX �� WD ¹h 2 BŒŒX �� j h.0/ 2 Aº of the ring of
power series BŒŒX �� is isomorphic to A‰� 00J 00, where � 00 W A ,! BŒŒX �� is the natural
embedding and J 00 WD XBŒŒX ��.
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Example 2.6. The D CM construction.
Let M be a maximal ideal of a ring (usually, an integral domain) T and let D be a
subring of T such thatM \D D .0/. The ringDCM WD ¹xCm j x 2 D; m 2M º
is canonically isomorphic to D‰�M , where � W D ,! T is the natural embedding.


More generally, let ¹M� j � 2 ƒº be a subset of the set of the maximal ideals of
T , such that M� \ D D .0/ for some � 2 ƒ, and set J WD


T
�2ƒM�. The ring


DCJ WD ¹xCj j x 2 D; j 2 J º is canonically isomorphic toD‰�J . In particular,
if D WD K is a field contained in T and J WD Jac.T / is the Jacobson ideal of (the
K-algebra) T , then K C Jac.T / is canonically isomorphic to K ‰� Jac.T /, where
� W K ,! T is the natural embedding.


Example 2.7. The CPI-extensions (in the sense of Boisen–Sheldon [3]).
Let A be a ring and P be a prime ideal of A. Let k.P / be the residue field of the
localization AP and denote by  P (or simply, by  ) the canonical surjective ring
homomorphism AP �! k.P /. It is well known that k.P / is canonically isomorphic
to the quotient field of A=P , so we can identify A=P with its canonical image into
k.P /. Then the subring C .A; P / WD  �1.A=P / of AP is called the CPI-extension of
A with respect to P . It is immediately seen that, if we denote by �P (or, simply, by
�) the localization homomorphism A �! AP , then C .A; P / coincides with the ring
�.A/CPAP . On the other hand, if J WD PAP , we can consider A‰� J and we have
the canonical projectionA‰� J ! �.A/CPAP , defined by .a; �.a/Cj / 7! �.a/C
j , where a 2 A and j 2 PAP . It follows that C .A; P / is canonically isomorphic to
.A‰� PAP /=.P � ¹0º/ (Proposition 5.1(3)).


More generally, let I be an ideal of A and let SI be the set of the elements s 2 A
such that s C I is a regular element of A=I . Obviously, SI is a multiplicative subset
of A and if SI is its canonical projection onto A=I , then Tot.A=I / D .SI /


�1.A=I /.
Let 'I W S�1A �! Tot.A=I / be the canonical surjective ring homomorphism defined
by 'I .as�1/ WD .a C I /.s C I /�1, for all a 2 A and s 2 S . Then, the subring
C .A; I / WD '�1


I .A=I / of S�1
I A is called the CPI-extension of A with respect to I . If


�I W A �! S�1
I A is the localization homomorphism, then it is easy to see that C .A; I /


coincides with the ring �I .A/C S�1
I I . It will follow by Proposition 5.1(3) that, if we


consider the ideal J WD S�1
I I of S�1


I A, then C .A; I / is canonically isomorphic to
.A‰�I J /=.��1


I .J / � ¹0º/.


Remark 2.8. Nagata’s idealization.
Let A be a commutative ring and M a A-module. We recall that, in 1955, Nagata
introduced the ring extension of A called the idealization of M in A, denoted here by
A ËM, as the A-module A˚M endowed with a multiplicative structure defined by


.a; x/.a0; x0/ WD .aa0; ax0 C a0x/ ; for all a; a0 2 A and x; x0 2M


(cf. [15], Nagata’s book [16, page 2], and Huckaba’s book [13, Chapter VI, Section
25]). The idealization AËM is a ring, such that the canonical embedding �A W A ,!
AËM (defined by a 7! .a; 0/, for all a 2 A) induces a subring AË .WD �A.A// of AËM
isomorphic to A and the embedding �M WM ,! AËM (defined by x 7! .0; x/, for all
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x 2M) determines an ideal MË .WD �M.M// in AËM (isomorphic, as an A-module,
to M), which is nilpotent of index 2 (i.e. MË �MË D 0).


For the sake of simplicity, we will identify M with MË and A with AË. If pA W
AËM ! A is the canonical projection (defined by .a; x/ 7! a, for all a 2 A and
x 2M), then


0!M
�
M
��! AËM


p
A
��! A! 0


is a spitting exact sequence of A-modules. (Note that the idealization AËM is also
called in [11] the trivial extension of A by M.)


We can apply the construction of Lemma 2.1 by taking R WD M, where M is an
A-module, and considering M as a (commutative) ring without identity, endowed with
a trivial multiplication (defined by x�y WD 0 for all x; y 2M). In this way, we have that
the Nagata’s idealization is a particular case of the construction considered in Lemma
2.1. Therefore, the Nagata’s idealization can be interpreted as a particular case of the
general amalgamation construction. Let B WD AËM and � .D �A/ W A ,! B be the
canonical embedding. After identifying M with MË, M becomes an ideal of B . It is
now straightforward that AËM coincides with the amalgamation A‰�M.


Although this, the Nagata’s idealization and the constructions of the type A‰fJ
can be very different from an algebraic point of view. In fact, for example, if M
is a nonzero A-module, the ring AËM is always not reduced (the element .0; x/ is
nilpotent, for all x 2M), but the amalgamation A‰fJ can be an integral domain (see
Example 2.6 and Proposition 5.2).


3 Iteration of the construction A‰f J


In the following all rings will always be commutative with identity, and every ring
homomorphism will send 1 to 1.


If A is a ring and I is an ideal of A, we can consider the amalgamated duplication
of the ring A along its ideal I (= the simple amalgamation of A along I ), i.e., A‰
I WD ¹.a; a C i/ j a 2 A; i 2 I º (Example 2.4). For the sake of simplicity, set
A0 WD A‰ I . It is immediately seen that I 0 WD ¹0º�I is an ideal of A0, and thus we
can consider again the simple amalgamation of A0 along I 0, i.e., the ring A00 WD A0‰
I 0 .D .A‰I /‰ .¹0º�I /). It is easy to check that the ring A00 may not be considered
as a simple amalgamation of A along one of its ideals. However, we can show that A00


can be interpreted as an amalgamation of algebras, giving in this way an answer to a
problem posed by B. Olberding in 2006 at Padova’s Conference in honour of L. Salce.


We start by showing that it is possible to iterate the amalgamation of algebras and
the result is still an amalgamation of algebras.


More precisely, let f W A ! B be a ring homomorphism and J an ideal of B .
Since J 0f WD ¹0º � J is an ideal of the ring A0f WD A‰fJ , we can consider the
simple amalgamation of A0f along J 0f , i.e., A00f WD A0f ‰J 0f (which coincides with
A0f ‰idJ 0f , where id WD idA0f is the identity mapping of A0f ). On the other hand, we
can consider the mapping f .2/ W A ! B.2/ WD B � B , defined by a 7! .f .a/; f .a//
for all a 2 A. Since J .2/ WD J � J is an ideal of the ring B.2/, we can consider the
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amalgamation A‰f .2/
J .2/. Then, the mapping A00f ! A ‰f .2/


J .2/; defined by
..a; f .a/C j1/; .a; f .a/C j1/C .0; j2// 7! .a; .f .a/; f .a//C .j1; j1 C j2// for all
a 2 A and j1; j2 2 J , is a ring isomorphism, having as inverse map the map A‰f .2/


J .2/ ! A00f ; defined by .a; .f .a/C j1; f .a/C j2// 7! ..a; f .a/C j1/; .a; f .a/C
j1/ C .0; j2 � j1// for all a 2 A and j1; j2 2 J . We will denote by A‰2;f J or,
simply, A.2;f / (if no confusion can arise) the ring A‰f .2/


J .2/, that we will call the
2-amalgamation of the A-algebra B along J (with respect to f ).


For n � 2, we define the n-amalgamation of theA-algebraB along J (with respect
to f ) by setting


A‰n;fJ WD A.n;f / WD A‰f .n/


J .n/;


where f .n/ W A! B.n/ WD B �B � � � � �B (n-times) is the diagonal homomorphism
associated to f and J .n/ WD J � J � � � � � J (n-times). Therefore,


A‰n;fJ


D ¹.a; .f .a/; f .a/; : : : ; f .a//C .j1; j2; : : : ; jn// j a 2 A; j1; j2; : : : ; jn 2 J º :


Proposition 3.1. Let f W A ! B be a ring homomorphism and J an ideal of B .
Then A ‰n;f J is canonically isomorphic to the simple amalgamation A.n�1;f / ‰


J .n�1;f / .D A.n�1;f / ‰idJ .n�1;f //, where J .n�1;f / is the canonical isomorphic im-
age of J inside A.n�1;f / and id WD idA.n�1;f / is the identity mapping of A.n�1;f /.


Proof. The proof can be given by induction on n � 2. For the sake of simplicity, we
only consider here the inductive step from n D 2 to n C 1 .D 3/. It is straightfor-
ward that the mapping A‰3;f J ! A00f‰J 00f , defined by .a; .f .a/; f .a/; f .a//C
.j1; j2; j3// 7! .a00; a00C j 00/, where a00 WD ..a; f .a/C j1/; .a; f .a/C j1/C .0; j2 �


j1// 2 A
00f and j 00 WD ..0; 0/; .0; j3 � j2// 2 J


00f , for all a 2 A and j1; j2; j3 2 J
establishes a canonical ring isomorphism.


In particular, let A be a ring and I an ideal of A, the simple amalgamation of
A0 WD A‰I along I 0 WD ¹0º � I , that is A00 WD A0‰I 0, is canonically isomorphic to
the 2-amalgamation A‰2;idI D ¹.a; .a; a/C .i1; i2// j a 2 A; i1; i2 2 I º.


Example 3.2. We can apply the previous (iterated) construction to curve singularities.
Let A be the ring of an algebroid curve with h branches (i.e., A is a one-dimensional
reduced ring of the form KŒŒX1; X2; : : : ; Xr ��=


Th
iD1 Pi , where K is an algebraically


closed field, X1; X2; : : : ; Xr are indeterminates overK and Pi is an height r � 1 prime
ideal of KŒŒX1; X2; : : : ; Xr ��, for 1 � i � r). If I is a regular and proper ideal of A,
then, with an argument similar to that used in the proof of [5, Theorem 14] (where the
case of a simple amalgamation of the ring of the given algebroid curve is investigated),
it can be shown that A‰n I is the ring of an algebroid curve with .nC 1/h branches;
moreover, for each branch ofA, there are exactly nC1 branches ofA‰n I isomorphic
to it.
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4 Pullback constructions


Let f W A �! B be a ring homomorphism and J an ideal of B . In the remaining part
of the paper, we intend to investigate the algebraic properties of the ring A‰fJ , in
relation with those of A;B; J and f . One important tool we can use for this purpose is
the fact that the ringA‰fJ can be represented as a pullback (see next Proposition 4.2).
On the other hand, we will provide a characterization of those pullbacks that give rise
to amalgamated algebras (see next Proposition 4.7). After proving these facts, we will
make some pertinent remarks useful for the subsequent investigation on amalgamated
algebras.


Definition 4.1. We recall that, if ˛ W A ! C; ˇ W B ! C are ring homomorphisms,
the subring D WD ˛ �


C
ˇ WD ¹.a; b/ 2 A � B j ˛.a/ D ˇ.b/º of A � B is called the


pullback (or fiber product) of ˛ and ˇ.


The fact that D is a pullback can also be described by saying that the triplet
.D; pA; pB/ is a solution of the universal problem of rendering commutative the di-
agram built on ˛ and ˇ,


D
p


A
����! A


p
B


??y ˛


??y
B


ˇ
����! C


where p
A


(respectively, p
B


) is the restriction to ˛�
C
ˇ of the projection of A�B onto


A (respectively, B).


Proposition 4.2. Let f W A! B be a ring homomorphism and J be an ideal of B . If
� W B ! B=J is the canonical projection and Mf WD � ıf , then A‰fJ D Mf �


B=J
� .


Proof. The statement follows easily from the definitions.


Remark 4.3. Notice that we have many other ways to describe the ring A‰fJ as a
pullback. In fact, if C WD A�B=J and u W A! C , v W A�B ! C are the canonical
ring homomorphisms defined by u.a/ WD .a; f .a/ C J /, v..a; b// WD .a; b C J /,
for every .a; b/ 2 A � B , it is straightforward to show that A‰fJ is canonically
isomorphic to u �


C
v. On the other hand, if I WD f �1.J /, Mu W A=I ! A=I � B=J


and Mv W A � B ! A=I � B=J are the natural ring homomorphisms induced by u and
v, respectively, then A‰fJ is also canonically isomorphic to the pullback of Mu and Mv.


The next goal is to show that the rings of the form A‰fJ , for some ring homo-
morphism f W A ! B and some ideal J of B , determine a distinguished subclass of
the class of all fiber products.


Proposition 4.4. Let A;B;C; ˛; ˇ be as in Definition 4.1, and let f W A ! B be a
ring homomorphism. Then the following conditions are equivalent:


(i) There exist an ideal J of B such that A‰fJ is the fiber product of ˛ and ˇ.
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(ii) ˛ is the composition ˇ ı f .


If the previous conditions hold, then J D Ker.ˇ/.


Proof. Assume that condition (i) holds, and let a be an element ofA. Then .a; f .a// 2
A‰fJ and, by assumption, we have ˛.a/ D ˇ.f .a//. This prove condition (ii).


Conversely, assume that ˛ D ˇ ı f . We want to show that the ring A ‰f Ker.ˇ/
is the fiber product of ˛ and ˇ. The inclusion A‰f Ker.ˇ/ � ˛�


C
ˇ is clear. On the


other hand, let .a; b/ 2 ˛ �
C
ˇ. By assumption, we have ˇ.b/ D ˛.a/ D ˇ.f .a//.


This shows that b � f .a/ 2 Ker.ˇ/, and thus .a; b/ D .a; f .a/ C k/, for some
k 2 Ker.ˇ/. Then A‰f Ker.ˇ/ D ˛ �


C
ˇ and condition (i) is true.


The last statement of the proposition is straightforward.


In the previous proposition we assume the existence of the ring homomorphism f .
The next step is to give a condition for the existence of f . We start by recalling that
a ring homomorphism r W B ! A is called a ring retraction if there exists a ring
homomorphism � W A ! B , such that r ı � D idA. In this situation, � is necessarily
injective, r is necessarily surjective, and A is called a retract of B .


Example 4.5. If r W B ! A is a ring retraction and � W A ,! B is a ring embedding
such that r ı � D idA, then B is naturally isomorphic to A ‰� Ker.r/. This is a
consequence of the facts, easy to verify, thatB D �.A/CKer.r/ and that ��1.Ker.r// D
¹0º (for more details see Proposition 5.1(3)).


Remark 4.6. Let f W A! B be a ring homomorphism and J be an ideal of B . Then
A is a retract of A‰fJ . More precisely, �


A
W A‰fJ ! A, .a; f .a/; j / 7! a, is a


retraction, since the map � W A ! A‰fJ , a 7! .a; f .a//, is a ring embedding such
that �


A
ı � D idA.


Proposition 4.7. Let A;B;C; ˛; ˇ; p
A
; p


B
be as in Definition 4.1. Then, the following


conditions are equivalent:


(i) p
A
W ˛ �


C
ˇ ! A is a ring retraction.


(ii) There exist an ideal J of B and a ring homomorphism f W A ! B such that
˛ �


C
ˇ D A‰fJ .


Proof. Set D WD ˛ �
C
ˇ. Assume that condition (i) holds and let � W A ,! D be


a ring embedding such that p
A
ı � D idA. If we consider the ring homomorphism


f WD p
B
ı � W A ! B , then, by using the definition of a pullback, we have ˇ ı f D


ˇ ı p
B
ı � D ˛ ı p


A
ı � D ˛ ı idA D ˛. Then, condition (ii) follows by applying


Proposition 4.4. Conversely, let f W A ! B be a ring homomorphism such that
D D A‰fJ , for some ideal J of B . By Remark 4.6, the projection of A‰fJ onto
A is a ring retraction.


Remark 4.8. Let f; g W A ! B be two ring homomorphisms and J be an ideal of
B . It can happen that A‰fJ D A‰gJ , with f ¤ g. In fact, it is easily seen that
A‰fJ D A‰gJ if and only if f .a/ � g.a/ 2 J , for every a 2 A.







164 M. D’Anna, C. A. Finocchiaro and M. Fontana


For example, let f; g W AŒX� ! AŒX� be the ring homomorphisms defined by
f .X/ WD X2, f .a/ WD a, g.X/ WD X3, g.a/ WD a, for all a 2 A, and set J WD XAŒX�.
Then f ¤ g, but AŒX� ‰f J D AŒX� ‰g J , since f .p/ � g.p/ 2 J , for all
p 2 AŒX�.


The next goal is to give some sufficient conditions for a pullback to be reduced.
Given a ring A, we denote by Nilp.A/ the ideal of all nilpotent elements of A.


Proposition 4.9. With the notation of Definition 4.1, we have:


(1) If D .D ˛ �
C
ˇ/ is reduced, then


Nilp.A/ \ Ker.˛/ D ¹0º and Nilp.B/ \ Ker.ˇ/ D ¹0º:


(2) If at least one of the following conditions holds


(a) A is reduced and Nilp.B/ \ Ker.ˇ/ D ¹0º,
(b) B is reduced and Nilp.A/ \ Ker.˛/ D ¹0º,


then D is reduced.


Proof. (1) Assume D reduced. By symmetry, it suffices to show that Nilp.A/ \
Ker.˛/ D ¹0º. If a 2 Nilp.A/ \ Ker.˛/, then .a; 0/ is a nilpotent element of D,
and thus a D 0.


(2) By the symmetry of conditions (a) and (b), it is enough to show that, if condition
(a) holds, thenD is reduced. Let .a; b/ be a nilpotent element ofD. Then a D 0, since
a 2 Nilp.A/ and A is reduced. Thus we have .a; b/ D .0; b/ 2 Nilp.D/, hence
b 2 Nilp.B/ \ Ker.ˇ/ D ¹0º.


We study next the Noetherianity of a ring arising from a pullback construction as in
Definition 4.1.


Proposition 4.10. With the notation of Definition 4.1, the following conditions are
equivalent:


(i) D .D ˛ �
C
ˇ/ is a Noetherian ring.


(ii) Ker.ˇ/ is a Noetherian D-module (with the D-module structure naturally in-
duced by p


B
) and p


A
.D/ is a Noetherian ring.


Proof. It is easy to see that Ker.p
A
/ D ¹0º � Ker.ˇ/. Thus, we have the following


short exact sequence of D-modules


0 �! Ker.ˇ/
i
�! D


p
A
�! p


A
.D/ �! 0;


where i is the natural D-module embedding (defined by x 7! .0; x/ for all x 2
Ker.ˇ/). By [2, Proposition (6.3)], D is a Noetherian ring if and only if Ker.ˇ/ and
p


A
.D/ are Noetherian as D-modules. The statement now follows immediately, since


the D-submodules of p
A
.D/ are exactly the ideals of the ring p


A
.D/.
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Remark 4.11. Note that, in Proposition 4.10, we did not require ˇ to be surjective.
However, if ˇ is surjective, then pA is also surjective and so pA.D/ D A. Therefore,
in this case, D is a Noetherian ring if and only if A is a Noetherian ring and Ker.ˇ/ is
a Noetherian D-module.


5 The ring A‰f J : some basic algebraic properties


We start with some straightforward consequences of the definition of amalgamated
algebra A‰fJ .


Proposition 5.1. Let f W A ! B be a ring homomorphism, J an ideal of B and let
A‰fJ WD ¹.a; f .a/C j / j a 2 A; j 2 J º be as in Section 2.


(1) Let � WD �A;f;J W A! A‰fJ be the natural the ring homomorphism defined by
�.a/ WD .a; f .a//, for all a 2 A. Then � is an embedding, making A‰fJ a ring
extension of A (with �.A/ D �.f / .WD ¹.a; f .a// j a 2 Aº subring of A‰fJ ).


(2) Let I be an ideal of A and set I ‰f J WD ¹.i; f .i/C j / j i 2 I; j 2 J º. Then
I ‰f J is an ideal of A‰fJ , the composition of canonical homomorphisms
A


�
,! A‰fJ � A‰fJ=I ‰f J is a surjective ring homomorphism and its


kernel coincides with I .
Hence, we have the following canonical isomorphism:


A‰fJ


I‰fJ
Š
A


I
:


(3) Let p
A
W A‰fJ ! A and p


B
W A‰fJ ! B be the natural projections


of A‰fJ � A � B into A and B , respectively. Then p
A


is surjective and
Ker.p


A
/ D ¹0º � J .


Moreover, p
B
.A‰fJ / D f .A/C J and Ker.p


B
/ D f �1.J / � ¹0º. Hence, the


following canonical isomorphisms hold:


A‰fJ


.¹0º � J /
Š A and


A‰fJ


f �1.J / � ¹0º
Š f .A/C J:


(4) Let  W A‰fJ ! .f .A/ C J /=J be the natural ring homomorphism, defined
by .a; f .a/C j / 7! f .a/C J . Then  is surjective and Ker./ D f �1.J / � J .
Thus, there exists a natural isomorphism


A‰fJ


f �1.J / � J
Š
f .A/C J


J
:


In particular, when f is surjective we have


A‰fJ


f �1.J / � J
Š
B


J
:
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The ring B˘ WD f .A/ C J (which is a subring of B) has an important role in
the construction A‰fJ . For instance, if f �1.J / D ¹0º, we have A‰fJ Š B˘
(Proposition 5.1(3)). Moreover, in general, J is an ideal also in B˘ and, if we denote
by f˘ W A! B˘ the ring homomorphism induced from f , then A‰f˘J D A‰f J .
The next result shows one more aspect of the essential role of the ring B˘ for the
construction A‰fJ .


Proposition 5.2. With the notation of Proposition 5.1, assume J ¤ ¹0º. Then, the
following conditions are equivalent:


(i) A‰fJ is an integral domain.


(ii) f .A/C J is an integral domain and f �1.J / D ¹0º.


In particular, if B is an integral domain and f �1.J / D ¹0º, thenA‰fJ is an integral
domain.


Proof. (ii)) (i) is obvious, since f �1.J / D ¹0º implies that A‰fJ Š f .A/ C J
(Proposition 5.1(3)).


Assume that condition (i) holds. If there exists an element a 2 An¹0º such that
f .a/ 2 J , then .a; 0/ 2 .A‰fJ /n¹.0; 0/º. Hence, if j is a nonzero element of J ,
we have .a; 0/.0; j / D .0; 0/, a contradiction. Thus f �1.J / D ¹0º. In this case, as
observed above, A‰fJ Š f .A/CJ (Proposition 5.1(3)), so f .A/CJ is an integral
domain.


Remark 5.3. (1) Note that, if A‰fJ is an integral domain, then A is also an integral
domain, by Proposition 5.1(1).


(2) Let B D A, f D idA and J D I be an ideal of A. In this situation, A‰id
AI (the


simple amalgamation of A along I ) coincides with the amalgamated duplication of A
along I (Example 2.4) and it is never an integral domain, unless I D ¹0º and A is an
integral domain.


Now, we characterize when the amalgamated algebra A‰fJ is a reduced ring.


Proposition 5.4. We preserve the notation of Proposition 5.1. The following conditions
are equivalent:


(i) A‰fJ is a reduced ring.


(ii) A is a reduced ring and Nilp.B/ \ J D ¹0º.


In particular, if A and B are reduced, then A‰fJ is reduced; conversely, if J is a
radical ideal of B and A‰fJ is reduced, then B (and A) is reduced.


Proof. From Proposition 4.9(2a) we deduce easily that (ii) ) (i), after noting that,
with the notation of Proposition 4.2, in this case Ker.�/ D J:


(i)) (ii) By Proposition 4.9(1) and the previous equality, it is enough to show that
if A‰fJ is reduced, then A is reduced. This is trivial because, if a 2 Nilp.A/, then
.a; f .a// 2 Nilp.A‰fJ /.
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Finally, the first part of the last statement is straightforward. As for the second part,
we have ¹0º D Nilp.B/ \ J D Nilp.B/ (since J is radical, and so J � Nilp.B/).
Hence B is reduced.


Remark 5.5. (1) Note that, from the previous result, when B D A, f D idA .D id/
and J D I is an ideal of A, we reobtain easily that A‰ I .D A‰idI / is a reduced
ring if and only if A is a reduced ring [7, Proposition 2.1].


(2) The previous proposition implies that the property of being reduced for A‰fJ is
independent of the nature of f .


(3) IfA and f .A/CJ are reduced rings, thenA‰fJ is a reduced ring, by Proposition
5.4. But the converse is not true in general. As a matter of fact, let A WD Z, B WD
Z � .Z=4Z/, f W A ! B be the ring homomorphism such that f .n/ D .n; Œn�4/, for
every n 2 Z (where Œn�4 denotes the class of n modulo 4). If we set J WD Z � ¹Œ0�4º,
then J \Nilp.B/ D ¹0º, and thus A‰fJ is a reduced ring, but .0; Œ2�4/ D .2; Œ2�4/C
.�2; Œ0�4/ is a nonzero nilpotent element of f .Z/C J .


The next proposition provides an answer to the question of when A‰fJ is a
Noetherian ring.


Proposition 5.6. With the notation of Proposition 5.1, the following conditions are
equivalent:


(i) A‰fJ is a Noetherian ring.


(ii) A and f .A/C J are Noetherian rings.


Proof. (ii)) (i). Recall that A‰fJ is the fiber product of the ring homomorphism
Mf W A! B=J (defined by a 7! f .a/C J ) and of the canonical projection � W B !
B=J . Since the projection p


A
W A‰fJ ! A is surjective (Proposition 5.1(3)) and A


is a Noetherian ring, by Proposition 4.10, it suffices to show that J .D Ker.�//, with
the structure of A‰fJ -module induced by p


B
, is Noetherian. But this fact is easy,


since every A‰fJ -submodule of J is an ideal of the Noetherian ring f .A/C J .
(i)) (ii) is a straightforward consequence of Proposition 5.1(3).


Note that, from the previous result, when B D A, f D idA .D id/ and J D I is an
ideal of A, we reobtain easily that A‰ I .D A‰idI / is a Noetherian ring if and only
if A is a Noetherian ring [6, Corollary 2.11].


However, the previous proposition has a moderate interest because the Noetherian-
ity of A‰fJ is not directly related to the data (i.e., A;B; f and J ), but to the ring
B˘ D f .A/C J which is canonically isomorphic A‰fJ , if f �1.J / D ¹0º (Proposi-
tion 5.1(3)). Therefore, in order to obtain more useful criteria for the Noetherianity of
A‰fJ , we specialize Proposition 5.6 in some relevant cases.


Proposition 5.7. With the notation of Proposition 5.1, assume that at least one of the
following conditions holds:


(a) J is a finitely generated A-module (with the structure naturally induced by f).
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(b) J is a Noetherian A-module (with the structure naturally induced by f).


(c) f .A/CJ is Noetherian as A-module (with the structure naturally induced by f).


(d) f is a finite homomorphism.


Then A‰fJ is Noetherian if and only if A is Noetherian. In particular, if A is a
Noetherian ring and B is a Noetherian A-module (e.g., if f is a finite homomorphism
[2, Proposition 6.5]), then A‰fJ is a Noetherian ring for all ideals J of B .


Proof. Clearly, without any extra assumption, if A‰fJ is a Noetherian ring, then A
is a Noetherian ring, since it is isomorphic to A‰fJ=.¹0º � J / (Proposition 5.1(3)).


Conversely, assume that A is a Noetherian ring. In this case, it is straightforward to
verify that conditions (a), (b), and (c) are equivalent [2, Propositions 6.2, 6.3, and 6.5].
Moreover (d) implies (a), since J is an A-submodule of B , and B is a Noetherian
A-module under condition (d) [2, Proposition 6.5].


Using the previous observations, it is enough to show that A‰fJ is Noetherian if
A is Noetherian and condition (c) holds. If f .A/C J is Noetherian as an A-module,
then f .A/ C J is a Noetherian ring (every ideal of f .A/ C J is an A-submodule of
f .A/C J ). The conclusion follows from Proposition 5.6((ii)) (i)).


The last statement is a consequence of the first part and of the fact that, if B is a
Noetherian A-module, then (a) holds [2, Proposition 6.2].


Proposition 5.8. We preserve the notation of Propositions 5.1 and 4.2. If B is a
Noetherian ring and the ring homomorphism Mf W A ! B=J is finite, then A‰fJ
is a Noetherian ring if and only if A is a Noetherian ring.


Proof. If A‰fJ is Noetherian we already know that A is Noetherian. Hence, we
only need to show that if A and B are Noetherian rings and Mf is finite then A‰fJ is
Noetherian. But this fact follows immediately from [10, Proposition 1.8].


As a consequence of the previous proposition, we can characterize when rings of the
form ACXBŒX� and ACXBŒŒX�� are Noetherian. Note that S. Hizem and A. Benhissi
[12] have already given a characterization of the Noetherianity of the power series rings
of the form A C XBŒŒX��. The next corollary provides a simple proof of Hizem and
Benhissi’s theorem and shows that a similar characterization holds for the polynomial
case (in several indeterminates). At the Fez Conference in June 2008, S. Hizem has
announced to have proven a similar result in the polynomial ring case with a totally
different approach.


Corollary 5.9. Let A � B be a ring extension and X WD ¹X1; : : : ; Xnº a finite set of
indeterminates over B . Then the following conditions are equivalent:


(i) ACXBŒX � is a Noetherian ring.


(ii) ACXBŒŒX �� is a Noetherian ring.


(iii) A is a Noetherian ring and A � B is a finite ring extension.
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Proof. (iii) ) (i, ii). With the notations of Example 2.5, recall that A C XBŒX � is
isomorphic to A‰� 0XBŒX � (and A C XBŒŒX �� is isomorphic to A‰� 00XBŒŒX ��).
Since we have the following canonical isomorphisms


BŒX �


XBŒX �
Š B Š


BŒŒX ��


XBŒŒX ��
;


in the present situation, the homomorphism M� 0 W A ,! BŒX �=XBŒX � (or, M� 00 W A ,!
BŒŒX ��=XBŒŒX ��) is finite. Hence, statements (i) and (ii) follow easily from Proposi-
tion 5.8.


(i) (or, (ii))) (iii). Assume thatACXBŒX � (or,ACXBŒŒX ��) is a Noetherian ring.
By Proposition 5.6, or by the isomorphism .ACXBŒX �/=XBŒX � Š A (respectively
.ACXBŒŒX ��/=XBŒŒX �� Š A), we deduce that A is also a Noetherian ring. Moreover,
by assumption, the ideal I of ACXBŒX � (respectively, of ACXBŒŒX ��) generated by
the set ¹bXk j b 2 B; 1 � k � nº is finitely generated. Hence I D .f1; f2; : : : ; fm/,
for some f1; f2; : : : ; fm 2 I . Let ¹bjk j 1 � k � nº be the set of coefficients of linear
monomials of the polynomial (respectively, power series) fj , 1 � j � m. It is easy to
verify that ¹bjk j 1 � j � m; 1 � k � nº generates B as A-module; thus A � B is a
finite ring extension.


Remark 5.10. Let A � B be a ring extension, and let X be an indeterminate over
B . Note that the ideal J 0 D XBŒX� of BŒX� is never finitely generated as an A-
module (with the structure induced by the inclusion � 0 W A ,! BŒX�). As a matter of
fact, assume that ¹g1; g2; : : : ; grº .� BŒX�/ is a set of generators of J 0 as A-module
and set N WD max¹deg.gi / j i D 1; 2; : : : ; rº. Clearly, we have XNC1 2 J 0 nPr
iD1Agi , which is a contradiction. Therefore, the previous observation shows that the


Noetherianity of the ring A‰fJ does not imply that J is finitely generated as an A-
module (with the structure induced by f ); for instance RCXCŒX� .Š R‰� 0XCŒX�,
where � 0 W R ,! CŒX� is the natural embedding) is a Noetherian ring (Proposition
5.9), but XCŒX� is not finitely generated as an R-vector space. This fact shows that
condition (a) (or, equivalently, (b) or (c)) of Proposition 5.7 is not necessary for the
Noetherianity of A‰fJ .


Example 5.11. LetA � B be a ring extension, J an ideal ofB and X WD ¹X1; : : : ; Xrº
a finite set of indeterminates overB . We setB 0 WD BŒX �, J 0 WD XJ ŒX � and we denote
by � 0 the canonical embedding of A into B 0. By a routine argument, it is easy to see
that the ringA‰� 0J 0 is naturally isomorphic to the ringACXJ ŒX �. Now, we want to
show that, in this case, we can characterize the Noetherianity of the ring ACXJ ŒX �,
without assuming a finiteness condition on the inclusion A � B (as in Corollary 5.9
(iii)) or on the inclusionACXJ ŒX � � BŒX �. More precisely, the following conditions
are equivalent:


(i) ACXJ ŒX � is a Noetherian ring.


(ii) A is a Noetherian ring, J is an idempotent ideal of B and it is finitely generated
as an A-module.
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(i)) (ii). Assume that R WD AC XJ ŒX � D AC J 0 is a Noetherian ring. Then,
clearly, A is Noetherian, since A is canonically isomorphic to R=J 0. Now, consider
the ideal L of R generated by the set of linear monomials ¹bXi j 1 � i � r; b 2 J º.
By assumption, we can find `1; `2; : : : ; `t 2 L such that L D


Pt
kD1 `kR. Note that


`k.0; 0; : : : ; 0/ D 0, for all k, 1 � k � t . If we denote by bk the coefficient of the
monomial X1 in the polynomial `k , then it is easy to see that ¹b1; b2; : : : ; btº is a set of
generators of J as an A-module.


The next step is to show that J is an idempotent ideal of B . By assumption, J 0 is a
finitely generated ideal of R. Let


gh WD


mhX
j1C���CjrD1


ch;j1:::jr
X
j1
1 � � �X


jr
r ; with h D 1; 2; : : : ; s;


be a finite set of generators of J 0 in R. Set j1 WD max¹j1 j ch;j10:::0 ¤ 0; for 1 � h �


sº. Take now an arbitrary element b 2 J and consider the monomial bXj1C1
1 2 J 0.


Clearly, we have


bX
j1C1
1 D


sX
hD1


fhgh; with fh WD


nhX
e1C���CerD0


dh;e1:::er
X
e1
1 � � �X


er
r 2 R:


Therefore,


b D


sX
hD1


X
j1Ce1Dj1C1


ch;j10:::0dh;e10:::0:


Since j1 < j1 C 1, we have necessarily that e1 � 1. Henceforth fh belongs to J 0 and
so dh;e10:::0 2 J , for all h, 1 � h � s. This proves that b 2 J 2.


(ii)) (i). In this situation, by Nakayama’s lemma, we easily deduce that J D eB ,
for some idempotent element e 2 J . Let ¹b1; : : : ; bsº be a set of generators of J as
an A-module, i.e., J D eB D


P
1�h�s bhA. We consider a new set of indeterminates


over B (and A) and precisely Y WD ¹Yih j 1 � i � r; 1 � h � sº. We can define
a map ' W AŒX ;Y � ! BŒX � by setting '.Xi / WD eXi , and '.Yih/ WD bhXi , for
all i D 1; : : : ; r; h D 1; : : : ; s. It is easy to see that ' is a ring homomorphism and
Im.'/ � R .D ACXJ ŒX �/. Conversely, let


f WD aC


rX
iD1


� niX
ei1C���CeirD0


ci;ei1 :::eir
X
ei1
1 � � �X


eir
r


�
Xi 2 R .and so ci;ei1 :::eir


2 J / :


Since J D
P


1�h�s bhA, then for all i D 1; : : : ; r and ei1 ; : : : ; eir , with ei1 C � � � C
eir 2 ¹0; : : : ; niº, we can find elements ai;ei1 :::eir ;h


2 A, with 1 � h � s, such that
ci;ei1 :::eir


D
Ps
hD1 ai;ei1 :::eir ;h


bh. Consider the polynomial


g WD aC


rX
iD1


sX
hD1


niX
ei1C���CeirD0


ai;ei1 :::eir ;h
X
ei1
1 � � �X


eir
r Yih 2 AŒX ;Y �:
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It is straightforward to see that '.g/ D f and so Im.'/ D R. By Hilbert’s basis
theorem, we conclude easily that R is Noetherian.


Remark 5.12. We preserve the notation of Example 5.11.


(1) Note that in the previous example, when J D B , we reobtain Corollary 5.9 ((i)
, (iii)). If B D A and I is an ideal of A, then we simply have that A C XI ŒX � is
a Noetherian ring if and only if A is a Noetherian ring and I is an idempotent ideal
of A. Note the previous two cases were studied as separate cases by S. Hizem, who
announced similar results in her talk at the Fez Conference in June 2008, presenting
an ample and systematic study of the transfer of various finiteness conditions in the
constructions ACXI ŒX � and ACXBŒX �.


(2) The Noetherianity of B it is not a necessary condition for the Noetherianity of the
ringACXJ ŒX �. For instance, takeA any field,B the product of infinitely many copies
of A, so that we can consider A as a subring of B , via the diagonal ring embedding
a 7! .a; a; : : : /, a 2 A. Set J WD .1; 0; : : : /B . Then J is an idempotent ideal of B
and, at the same time, a cyclic A-module. Thus, by Example 5.11, AC XJ ŒX � is a
Noetherian ring. Obviously, B is not Noetherian.


(3) Note that, if A C XJ ŒX � is Noetherian and B is not Noetherian, then A � B
and A C XJ ŒX � � BŒX � are necessarily not finite. Moreover, it is easy to see that
ACXJ ŒX � � BŒX � is a finite extension if and only if the canonical homomorphism
A ,! BŒX �=.XJ ŒX �/ is finite. Finally, it can be shown that last condition holds if and
only if J D B and A � B is finite.
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A sheaf-theoretic bound on the cardinality of a finite ring


David E. Dobbs


Abstract. By using Pierce’s representation of a ring as the ring of global sections of a sheaf of
connected rings, an upper bound is given for the cardinality of a finite ring. Examples are given to
compare this upper bound to bounds due to Ganesan and Redmond.


Keywords. Finite ring, sheaf, connected ring, associated Boolean ring, idempotent element, prime
ideal, zero-divisor, annihilator, integral domain.
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1 Introduction


All rings considered in this note are commutative with 1 and typically nonzero; all ring
homomorphisms are unital. If R is a ring, then Spec.R/ denotes the set of prime ideals
of R; Z.R/ the set of zero-divisors in R; and .0 WR r/ the annihilator of r in R. If q is
a prime-power, then Fq denotes the field with exactly q elements; and jS j denotes the
cardinality of a set S .


Our starting point is the following remarkable result of Ganesan [4, Theorem I]: if
R is a ring such that 2 � k WD jZ.R/j < 1, then R is finite and, in fact, jRj � k2.
In reviewing [4] in Mathematical Reviews, Alex Rosenberg wrote that “The methods
are elementary.” In fact, Ganesan’s proof depends only on the First Isomorphism The-
orem and Lagrange’s theorem. (In detail, if r is a nonzero zero-divisor in R, then
I WD .0 WR r/ � Z.R/ must be finite, while R=I Š Rr � Z.R/ is also finite.)
Despite its elementary nature, Ganesan’s result has had a considerable influence, and
a number of improvements to it have appeared. Although we shall not consider non-
commutative rings in this paper, note that Ganesan did generalize his result to non-
commutative rings [5, Theorem 1]; and Bell [1] extended the result to the context of
alternative (not necessarily associative) rings. However, the greatest influence of Gane-
san’s theorem has been to commutative ring theory. The two most obvious such influ-
ences are to the burgeoning development of the theory of zero-divisor graphs, perhaps
because finite zero-divisor graphs correspond to finite rings (apart from the obvious
counter-examples); and the search for inequalities that, at least for certain classes of
rings, improve upon the upper bound in Ganesan’s result: cf. [11], [12]. We will say
no more here about the former, but instead focus on the latter, by providing a new up-
per bound for the cardinality of a finite ring: see Corollary 2.10 (a). The results given
below reveal that for certain classes of rings, our upper bound is sharper than those in
[4], [11] and [12], while for some other classes of rings, the reverse is true.
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A key step leading to Corollary 2.10 is taken in Lemma 2.6, where it is shown that
each ring R is (to use the terminology of another time [9]) a certain subdirect sum of
connected rings. (Recall that a ring A is said to be connected if its only idempotent ele-
ments are 0 and 1; this is equivalent to requiring that Spec.A/, in the Zariski topology,
is a connected space [2, Corollary 2, page 104].) This is shown as a consequence of the
Pierce representation of any ring as the ring of global sections of a sheaf of connected
rings [10]. (For another approach to this representation, see [13, Section 2, especially
pages 84–88].) Our use of sheaf theory here will require only the basic definition and
facts about sheaves, as in [6, Chapter II, Section 1, especially pages 61–62]. The most
important upshot is Theorem 2.8 (a), giving a canonical description up to isomorphism
of any direct product of finitely many connected rings; this, in turn, leads to a formula
for jRj in Corollary 2.9 and the upper bound in Corollary 2.10 (a).


2 Results


We begin by recording the fundamental result of Ganesan.


Theorem 2.1 (Ganesan [4, Theorem I]). Let R be a ring such that 2 � k WD jZ.R/j <
1. Then R is finite and, in fact, jRj � k2.


We next record examples showing that Ganesan’s upper bound is sometimes exact
and sometimes only an inequality. Some of the data in Example 2.2 will be referred
to later when we discuss other upper bounds for jRj. The specific examples given in
Example 2.2 have been chosen to facilitate comparison among the various bounds, and
the interested reader will have no trouble in generalizing some of the arguments in
Example 2.2 (for instance, to various finite special principal ideal rings, idealizations
or direct products with more than two factors).


Example 2.2. (a) Let X be transcendental over Fq for some prime-power q, consider
an integer e � 2, and put R WD FqŒX�=.X


e/. Let k WD jZ.R/j. Then jRj D k2 if
and only if e D 2 (i.e., if and only if R is isomorphic to the ring of dual numbers
over Fq).


(b) Let R be a finite (nonzero) Boolean ring and k WD jZ.R/j. Then jRj < k2.


(c) Let q1 � q2 be prime-powers, and put R WD Fq1 � Fq2 . Let k WD jZ.R/j. Then
k D q1 C q2 � 1 and jRj < k2.


(d) Consider integers b � a � 2, and put R WD Z=2aZ � Z=2bZ. Let k WD jZ.R/j.
Then k D 3 � 2aCb�2 and jRj < k2.


Proof. (a) Let x WD X C .X2/ 2 R. Then every element r 2 R can be expressed
uniquely as


Pe�1
iD0 aix


i for some elements a0; : : : ; ae�1 2 Fq . Such an element r is in
Z.R/ if and only if a0 D 0. It follows that jRj D qe and k D jZ.R/j D qe�1. Then
jRj D k2 if and only if qe D .qe�1/2, i.e., if and only if e D 2.e � 1/. This equation
holds if and only if e D 2. Moreover, if e > 2, Theorem 2.1 yields that jRj < k2.
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(b) It is easy to see, via the Chinese Remainder Theorem, that R is isomorphic to
the direct product of n copies of F2, for some positive integer n (cf. [9, Theorem 3.20]),
and so jRj D 2n. Since every (idempotent) element of R is either a zero-divisor or 1,
we have that k D jZ.R/j D 2n � 1. Thus, jRj D k2 if and only if 2n D .2n � 1/2, or
equivalently, .2n � 1/=2n D 1=.2n � 1/. However this equality never happens, since a
positive rational number can be written in only one way as a ratio of positive integers
that are relatively prime. Thus, by Theorem 2.1 (or directly), jRj < k2 regardless of
the value of n.


(c) Since Z.R/ D ¹.a; b/ 2 R j either b D 0 or a D 0 (or both)º, it is clear that
k D q1Cq2�1. Thus, the assertion comes down to verifying that q1q2 < .q1Cq2�1/2,
or equivalently, that


1 < .q1 � 1/2 C .q2 � 1/2 C q1q2;


and it is easy to verify this inequality regardless of the values of q1; q2.
(d) It is easy to check that for any integer c � 2 and prime number p, we have that


Z.Z=pcZ/ D ¹mCpcZ 2 Z=pcZ j p dividesm in Zº, and so jZ.Z=pcZ/j D pc�1.
By handling overlaps in counting as in the proof of (c), we find that


k D 2a�12b
C 2b�12a


� 2a�12b�1
D 2a�12b�1.2C 2 � 1/ D 3 � 2aCb�2;


as asserted. Of course, jRj D 2a2b D 2aCb . Thus, it remains only to verify that
2aCb < .3 � 2aCb�2/2, or equivalently, that 24�a�b < 9, which is obvious.


In [11, Section 3], Redmond generalized Theorem 2.1 by showing that ifR is a ring
which is not an integral domain such that j.0 WR r/j < 1 for each nonzero element
r 2 R, then R is finite. This led to an upper bound on jRj in case a uniform upper
bound was known for j.0 WR r/j, 0 ¤ r 2 R. This work was improved in a subsequent
paper, as follows.


Theorem 2.3 (Redmond [12, Theorem 6.1]). Let R be a Noetherian ring which is not
an integral domain andK a positive integer such that j.0 WR r/j � K for each nonzero
element r 2 R. Then R is finite and, in fact, jRj � .K2 � 2K C 2/2.


The next results parallels Example 2.2, this time with a focus on the upper bound
of Redmond.


Example 2.4. For each of the types of rings R in Example 2.2, let k WD jZ.R/j be
as in Example 2.2, and let K be optimal as in Theorem 2.3, namely, the least positive
integer such that j.0 WR r/j � K for each nonzero element r 2 R. Then:


(a) Let R be as in Example 2.2 (a). Then K D k, i.e., K D qe�1. It follows that
jRj < .K2�2KC2/2. Moreover, the bounds in Theorems 2.1 and 2.3 are related
by k2 < .K2 � 2K C 2/2.


(b) Let R be as in Example 2.2 (b). Then K D 2n�1 D jRj=2. Moreover, the bounds
in Theorems 2.1 and 2.3 are related by


jRj < k2
D .2n


� 1/2 < .K2
� 2K C 2/2:
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(c) Let R be as in Example 2.2 (c). Then K D q2. Also, jRj < .K2 � 2K C 2/2 if
and only if q1q2 < .q2


2 � 2q2 C 2/2. Moreover, the bounds in Theorems 2.1 and
2.3 are related by


k2
� .K2


� 2K C 2/2 , .q1 C q2 � 1/2 � .q2
2 � 2q2 C 2/2:


(d) Let R be as in Example 2.2 (d). Then K D 2aCb�1. Moreover, the bounds in
Theorems 2.1 and 2.3 are related by


jRj < k2
D .3 � 2aCb�2/2 < .K2


� 2K C 2/2:


Proof. (a) The first assertion follows from the fact that j.0 WR xe�1/j D jRxj D qe�1


and Example 2.2 (a). The remaining assertions then follow from Example 2.2 (a) and
the fact that k D qe�1 � 2 satisfies k2 < .k2 � 2kC 2/2. This inequality is clear from
calculus, since the real-valued function f of a real variable t given by


f .t/ WD t4 � 4t3 C 7t2 � 4t C 4


satisfies f .t/ > 0 for all t � 2.
(b) The first assertion follows since j.0 WR .1; 0; : : : ; 0//j D 2n�1 and no proper


additive subgroup of R can have larger cardinality than this (the far reaches of La-
grange’s theorem!). In view of Example 2.2 (b), the remaining assertions come down
to showing that


.2n
� 1/2 < .22n�2


� 2n
C 2/2


for all positive integers n. This reduces to showing that


23n�1
C 22n


C 2nC2 < 24n�4
C 22nC2


C 3;


which is clear.
(c) As we have assumed that q1 � q2 and j.0 WR .1; 0//j D q2, the assertions follow


easily from Example 2.2 (c).
(d) The first assertion follows since j.0 WR .2C 2aZ; 0//j D 2a�12b D 2aCb�1. In


view of Example 2.2 (b), the remaining assertions come down to showing that


k2 <
�4


9
k2
�


4
3
k C 2


�2
for all k � 12;


or equivalently, that 0 < 16k4 � 96k3C 207k2 � 432kC 324 if k � 12. We leave this
easy verification to the reader.


If R is any ring, let B.R/ denote the Boolean ring of idempotents of R, with mul-
tiplication being that of R and addition redefined by a?b WD a C b � 2ab for all
idempotents a; b 2 R. The next result contains some elementary but useful facts about
the B.�/ construction.


Lemma 2.5. Let R be a ring expressed as a ring direct product R D
Q


i2I Ri where
the index set I is nonempty and each ring Ri is nonzero. Then:
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(a) B.R/ D
Q


i2I B.Ri / as rings.


(b) If each Ri is connected (for instance, quasilocal), then B.R/ Š
Q


i2I F2.


Proof. (a) Straightforward.
(b) Any quasilocal ring is connected. It remains to show that if R is a (nonzero)


connected ring, then B.R/ Š F2. This, in turn, follows from the fact that B.R/ is a
(Boolean) ring with exactly two elements.


The next result contains the main use of sheaf theory in this note. The only fact that
we will use about sheaves is the following easy consequence of the definitions. If F is
a sheaf of rings on a topological space X and U is an open set in X , then the canonical
ring homomorphism F.U / !


Q
x2U Fx is an injection, where Fx denotes the stalk


of F at x.


Lemma 2.6. If R is any ring, then the natural ring homomorphism


˛ W R!
Y


x2Spec.B.R//


R=xR


is an injection.


Proof. According to the Pierce representation, there is a sheaf F of rings on the topo-
logical space X WD Spec.B.R// endowed with the Zariski topology such that for all
x 2 X , the stalk of F at x is the connected ring Fx D R=xR (where xR denotes the
ideal of R generated by the set x). Thus, by the above comments, for any Zariski-open
subset U ofX , we have a natural ring homomorphism F.U /!


Q
x2U R=xR. Taking


U WD X , we thus obtain a natural ring homomorphism


ˇ W R!
Y


x2Spec.B.R//


R=xR:


With the details of the Pierce representation in hand (from [10] or [13]), it is straight-
forward to check that ˇ D ˛.


Proposition 2.7. Let R be a ring. Then the following conditions are equivalent:


(1) R has only finitely many idempotent elements and jR=xRj < 1 for each x 2
Spec.B.R//;


(2) jSpec.B.R//j <1 and jR=xRj <1 for each x 2 Spec.B.R//;


(3) R is finite.


Proof. Since B.R/ is the set of idempotent elements of R and a finite ring can have
only finitely many prime ideals, it is easy to see that .3/ ) .1/ ) .2/. As for
.2/ ) .3/, it suffices to note, via Lemma 2.6 and the definition of multiplication of
cardinal numbers, that any ring R satisfies jRj �


Q
x2Spec.B.R// jR=xRj.







178 D. E. Dobbs


Proposition 2.7 can be viewed in the spirit of the results of Ganesan and Redmond
that were recalled in Theorems 2.1 and 2.3, respectively. To be sure, conditions (1)
and (2) in Proposition 2.7 each have two stipulations on R, but the same is true of
the characterizations of finite rings implicit in Theorems 2.1 and 2.3 (with the latter
result also stipulating that R is Noetherian). Note that one cannot avoid the first of the
stipulations in either (1) or (2) of Proposition 2.7, as any (possibly infinite) Boolean
ring R has the property that R=xR Š F2 for each x 2 Spec.B.R//.


Recall that every finite ring is uniquely expressible as an internal direct product of
finitely many finite local rings (cf. [14, Theorem 3, page 205; Remark 1, page 208]).
For such a ring, the homomorphism ˛ from Lemma 2.6 turns out to be an isomorphism.
Actually, the next result establishes somewhat more.


Theorem 2.8. LetR be a ring expressed as a ring direct productR D
Qn


iD1Ri where n
is a positive integer and eachRi is a nonzero connected (for instance, quasilocal) ring.
As above, consider the natural ring homomorphism ˛ W R !


Q
x2Spec.B.R//R=xR.


Then:


(a) ˛ may be identified with the identity map R !
Qn


iD1 Ri , and so ˛ is an isomor-
phism.


(b) jRj D
Q


x2Spec.B.R// jR=xRj.


Proof. (a) By Lemma 2.5 (b), B.R/ Š
Qn


iD1 F2, and so jSpec.B.R//j D n. Thus, in
view of Lemma 2.6, it suffices to prove that if x 2 Spec.B.R//, then R=xR Š Ri . For
convenience of notation, identify B.R/ with


Qn
iD1 F2. Then


x D F2 � � � � � F2 � 0 � F2 � � � � � F2


where the 0 is at the i th position for some i D 1; : : : ; n. Clearly,


xR D R1 � � � � �Ri�1 � 0 �RiC1 � � � � �Rn;


whence R=xR Š Ri , as desired.
(b) As in the proof of Proposition 2.7, one need only combine (a) with the definition


of multiplication of cardinal numbers.


Corollary 2.9. Let R be a finite ring. Express R (uniquely) as a ring direct product
R D


Qn
iD1Ri where n is a positive integer and each Ri is a (nonzero finite) local ring.


Then R Š
Q


x2Spec.B.R// R=xR and jRj D
Q


x2Spec.B.R// jR=xRj.


Proof. Recall that any local ring is connected. Apply Theorem 2.8.


The equality describing jRj in Corollary 2.9 should perhaps not be considered as
giving an upper bound for jRj. For this reason, we proceed to weaken that formula. As
a result, in the spirit of the results of Ganesan and Redmond in Theorems 2.1 and 2.3,
we will give a new upper bound for a ring with at least 2, but only finitely many, zero-
divisors. Since the upper bound of Ganesan (involving jZ.R/j) is sometimes exact
(for instance, if R D FqŒX�=.X


2/), our formula will be predicated on an additional
parameter, which is called b below.
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Corollary 2.10. Let R be a ring. Suppose that 2 � k WD jZ.R/j < 1. Then R and
B.R/ are finite. Let b WD maxx2Spec.B.R// jR=xRj. Then:


(a) jRj � bjSpec.B.R//j � blog2.kC1/.


(b) Express R (uniquely) as an internal direct product R D
Qn


iD1 Ri where n is a
positive integer and each Ri is a (nonzero finite) local ring. Then jRj equals the
lesser of the above upper bounds (i.e., the first inequality in (a) becomes an equal-
ity) if and only if jR1j D � � � D jRnj. In particular, if the n rings R1; : : : ; Rn are
isomorphic to one another, then jRj D bjSpec.B.R//j. Moreover, jRj D blog2.kC1/


if and only if R is a (finite) Boolean ring.


Proof. The finitude of R follows from Ganesan’s result (Theorem 2.1); the finitude of
B.R/ is then a triviality, as is that of b. As jR=xRj � b for all x 2 Spec.B.R//,
(a) is an easy consequence of the second assertion of Corollary 2.9 once we show that
jSpec.B.R//j � log2.k C 1/. To show the latter fact, note first that jB.R/j D 2m for
some positive integer m, since B.R/ is a finite Boolean ring. Hence jSpec.B.R//j D
m. On the other hand, jB.R/j � kC 1, since each idempotent element of R is either 1
or an element of Z.R/. Thus 2m � k C 1, and so m � log2.k C 1/, thus completing
the proof of (a).


(b) Let m be as in the proof of (a). As noted above, jSpec.B.R//j D m. Note that
m D n, as a consequence of Lemma 2.5 (b). Write Spec.B.R// D ¹x1; : : : ; xnº. Put
qi WD jR=xiRj for each i D 1; : : : ; n. By the proof of Theorem 2.8 (a), we may relabel
the elements of Spec.B.R// and the direct factors R1; : : : ; Rm so that q1 � � � � � qm


and R=xiR Š Ri for each i D 1; : : : ; n. Note that b D qn. By Corollary 2.9,


jRj D q1 � � � � � qn � b
n
D bjSpec.B.R//j


I


since qi � b for each i , equality holds if and only if q1 D � � � D qn, i.e., if and only if
jR1j D � � � D jRnj.


It remains to prove the “Moreover” assertion. It follows from the above that jRj D
blog2.kC1/ if and only if q1 D � � � D qn and jSpec.B.R//j D log2.k C 1/. Observe
that jSpec.B.R//j D log2.k C 1/ if and only if jB.R/j D k C 1, i.e., if and only if
each zero-divisor of R is idempotent. This last condition is equivalent to (either n D 1,
in which case, R D R1 is a finite local, hence connected, ring in which 0 is the only
zero-divisor, contradicting the hypothesis that k � 2, or) n � 2 such that each nonzero
element of each Ri must be (a zero-divisor in R and hence) idempotent. Thus, as each
Ri is connected, jRj D blog2.kC1/ if and only if R1 Š � � � Š Rn Š F2, i.e., if and only
if R is Boolean.


The appearance in Corollary 2.10 (a) of a logarithmic expression in an upper bound
for the cardinality of a spectral set should not be surprising: cf. [3, Proposition 2.1 (a)].
For a complete answer to the question of the possible cardinalities of jSpec.R/j, as-
suming that R is any finite ring with given cardinality n, see [3, Theorem 2.3].


We next compare the bounds of Ganesan and Redmond to the weaker of the upper
bounds that were established in Corollary 2.10 (a).
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Remark 2.11. Let R be a finite ring, but not a integral domain, with k WD jZ.R/j; K
the least positive integer such that j.0 WR r/j � K for each nonzero element r 2 R; and
b WD maxx2Spec.B.R// jR=xRj. We proceed to compare the upper bounds for jRj from
Theorem 2.1, Theorem 2.3 and (the weaker assertion in) Corollary 2.10 (a), namely,
the expressions k2; .K2 � 2K C 2/2 and blog2.kC1/, respectively.


(a) Let R be a (finite nonzero) Boolean ring. Then jRj D blog2.kC1/, by the final as-
sertion in Corollary 2.10 (b). However, by Example 2.4 (b), the bounds from Theorems
2.1 and 2.3 each exceed jRj for any such R.


(b) Let R be as in Example 2.2 (a); i.e., R D FqŒX�=.X
e/. Since R is local, B.R/ D


F2 and so b D jRj D qe . Thus, jRj < blog2.kC1/ (since b > 1 and k C 1 > 2). As
we saw in Example 2.2 (a) and Example 2.4 (a), the bound from Theorem 2.1 exceeds
jRj if and only if e > 2 and the bound from Theorem 2.3 exceeds jRj. In particular,
Ganesan’s bound exceeds the (weaker) bound from Corollary 2.10 (a) for all rings of
the form R D FqŒX�=.X


2/.
How do the bounds compare for rings of the form R D FqŒX�=.X


e/ in general
(bearing in mind that q is a prime-power and e � 2)? For simplicity, we study the case
q D 2. Recall that k D K D qe�1 D 2e�1. Hence, the bound from Corollary 2.10 (a)
is


blog2.kC1/
D 2e log2.kC1/


D 2e log2.qe�1C1/
D 2e log2.2e�1C1/:


As we have already seen in this remark that, for various rings, there is no general
inequality relating the bounds from Theorem 2.1 and Corollary 2.10 (a), we will leave
the proof of the next fact to the reader. Let ˇ WD 2e log2.2e�1C1/. Then the bound from
Theorem 2.1 is less than ˇ for all values of e � 2 (and q D 2). However, the situation
relative to the bound from Theorem 2.3 is more complicated. Indeed, using the above
information and Example 2.4 (a) (still with q WD 2), one easily checks that ˇ is less
than (resp., exceeds) the bound from Theorem 2.3 if e D 2 (resp., e D 3).


(c) The discussion in (a) and (b) has already shown that the bound from Corollary
2.10 (a) can, depending on the ring R, exceed both, only one, or neither of the bounds
from Theorems 2.1 and 2.3. For this reason and to save space, we will merely state
some conclusions relative to the rings from parts (c) and (d) of Example 2.2 without
proof.


Let R be as in Example 2.2 (c). Then b D q2 and the upper bound from Theo-
rem 2.10 (a) is


ˇ WD blog2.kC1/
D q


log2.kC1/


2 D q
log2.q1Cq2/


2 :


It might be expected that this bound typically exceeds the bounds from Theorem 2.1
and 2.3, using the intuition that exponential functions grow quicker than polynomial
functions, and a general analysis shows that this is often the case. However, we would
point out that ˇ is less than each of the bounds from Theorem 2.1 and 2.3 in case
q1 D 2 < q2 D 3, i.e., for R D F2 � F3, the key calculation being that 3log2 5 <
12:82 < 16 < 25. To be fair, one should also record that Ganesan’s bound is less than
ˇ whenever q1 and q2 are distinct integral powers of 2.
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Finally, let R be as in Example 2.2 (d). Unfortunately, we now have two different
meanings for the symbol b. So, only in this paragraph, R D Z=2aZ � Z=2bZ with
2 � a � b and the symbol b will not necessarily mean maxx2Spec.B.R// jR=xRj. The
upper bound from Theorem 2.10 (a) is


ˇ WD .2b/log2.kC1/
D .2b/log2.3�2aCb�2C1/


D .3 � 2aCb�2
C 1/b:


It can be shown that Ganesan’s bound is less than ˇ for all values of a and b. As an
(easy) exercise, we leave to the reader to determine how ˇ compares to Redmond’s
bound for rings of the type in Example 2.2 (d).


The author feels that Remark 2.11 gives additional reasons for one to appreciate
Ganesan’s result. In view of the quotation from Rosenberg in the Introduction, it seems
reasonable to ask if there is a “non-elementary” proof of Ganesan’s result, perhaps
using the Pierce representation. With Lemma 2.6 in hand, we could then ask (given
that R is a ring such that 2 � jZ.R/j < 1) if it is the case that jSpec.B.R//j < 1;
that, whenever x 2 Spec.B.R//, it must hold that the connected ring R=xR is a non-
domain with only finitely many zero-divisors; and that each such R=xR is finite. Such
a program may seem initially to have some promise. For instance, since Z.R/ is finite,
it is easy to see thatB.R/ is finite, and so jSpec.B.R//j <1. Also, ifA is a connected
ring, but not a domain, with only finitely many zero divisors, it can be shown that the
associated reduced ring Ared is also connected and has at most as many zero divisors
as A. However, proceeding via Rred cannot succeed, since Rred may be an integral
domain: consider, for instance, R WD Z=qZ for any prime-power q.


Nevertheless, by considering reduced rings (and avoiding Ganesan’s methods), one
can produce a fragment of Ganesan’s result, by decidedly non-elementary means, and
we close by recording that in Proposition 2.12. This is done in the belief that the use of
a strong theoretical machine can often lead to some insight without needing to resort to
imagination of the kind exhibited in Ganesan’s proof. In doing so, I acknowledge the
contrary attitude, as exemplified in 1963 by my calculus teacher, William O. J. Moser
(who is an expert in combinatorial aspects of group theory, number theory and ge-
ometry), when he disparaged such heavy use of theoretical machinery as “dynamiting
butterflies”. One should, perhaps, add that Proposition 2.12 is also an easy conse-
quence of Theorem 2.1 and the fact that each finite ring is a direct product of finitely
many connected rings.


Proposition 2.12. There is no reduced connected ring R such that 2 � k WD jZ.R/j <
1.


Proof. Suppose, on the contrary, that such a ring R exists. Since R is a reduced ring,
Z.R/ is the union of the minimal prime ideals of R [7, Corollary 2.4]. Suppose next
that P1; : : : ; PkC1 are pairwise distinct minimal prime ideals of R. By the Prime
Avoidance Lemma [8, Theorem 83], we can pick elements xi 2 Pi n


SkC1
jD1 Pj , for


i D 1; : : : ; k C 1. As xi1 ¤ xi2 whenever i1 ¤ i2 and ¹x1; : : : ; xkC1º � Z.R/,


j¹x1; : : : ; xkC1ºj D k C 1 � jZ.R/j D k;
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a contradiction. Thus, R has at most k (pairwise distinct) minimal prime ideals, say,
Q1; : : : ;Qs for some positive integer s � k. Let T denote the total quotient ring
of R. Then T D RRn.Q1[ ���[Qs/ has only the prime ideals QiT , and so T has (Krull)
dimension 0. Being a ring of fractions of a reduced ring, T must also be reduced.
Thus, T is a von Neumann regular ring (cf. [8, Exercise 22, page 64]). However,
whenever S is a multiplicatively closed subset of a ring R, we have that Spec.RS / is
homeomorphic to a subspace of Spec.R/ (using the Zariski topology here and later, of
course). In particular, Spec.T / is homeomorphic to a subspace of a connected space,
hence is itself connected, and so T is a connected ring. But any nonzero connected von
Neumann regular ring is a field (since each of its nonzero principal ideals is generated
by an idempotent and thus must be the entire ring). Thus T is a field, and so R, as a
subring of T , must be an integral domain, contradicting jZ.R/j > 1.
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Straight rings, II


David E. Dobbs and Gabriel Picavet


Abstract. A (commutative integral) domain A is called a straight domain if A ,! B is a prime mor-
phism for each overring B of A; i.e., if B=PB is a torsion-free A=P -module for each P 2 Spec.A/.
It is known that each straight domain is a going-down domain, but not conversely; and that each
locally divided domain is straight. We obtain new characterizations of prime morphisms by using,
i.a., weak Bourbaki associated primes and attached primes. Applications include a characterization
of straight domains within the universe of quasi-Prüfer domains, as being the going-down domains
for which certain related total quotient rings are Artinian. We also characterize the straight domains
within the universes of i -domains and of treed domains. Sufficient conditions are given for the
“straight domain” property to be inherited by all overrings. Some new classes of going-down do-
mains are introduced, leading to a characterization of divided domains within the class of straight
domains.


Keywords. Prime morphism, torsion-free, integral domain, straight domain, weak Bourbaki associ-
ated prime, primal ideal, quasi-Prüfer domain, divided domain, i -domain, going-down, incompara-
bility, going-down domain, n-almost valuation domain, conductor overring, Krull dimension.


AMS classification. 13G05, 13B24, 13B99, 13A15, 13F05, 13E10.


1 Introduction and notation


All rings considered below are commutative with 1 and typically nonzero; all ring
homomorphisms are unital. We next collect the notation that we use in connection
with any ring A: Z.A/ is the set of all zero-divisors of A; Reg.A/ WD A n Z.A/ the
set of all regular elements of A; Tot.A/ the total quotient ring of A; Spec.A/ (resp.,
Min.A/) the set of all prime (resp., minimal prime) ideals of A; and dim.A/ the (Krull)
dimension of A. The height of a prime ideal P is denoted by ht.P /. The radical of an
ideal I of A is denoted by


p
I . An overring of A is a subring of Tot.A/ that contains


A as a subring, that is, a ring B such that A � B � Tot.A/. The integral closure of
A (in Tot.A/) is denoted by A0. If I is an ideal of A, then VA.I / WD ¹P 2 Spec.A/ j
I � P º. If f W A ! B is a ring homomorphism, then af W Spec.B/ ! Spec.A/
denotes the canonically induced map; f is called an i -morphism if af is an injection.
Extending the usage in [14, page 28], we let GD and INC refer to the going-down
and incomparability properties, respectively, of ring homomorphisms (not just of ring
extensions).


This paragraph summarizes some key material from [8], while the next paragraph
indicates the focus of the present sequel. As in [7], a ring homomorphism f W A! B
is called a prime morphism if B=PB is torsion-free over A=P for each P 2 Spec.A/.
A characterization that we use in Section 2 is the following: f is a prime morphism if
and only if PBP \ B D PB for each P 2 Spec.A/ [8, Proposition 2.2 (a)]. A ring
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A is called extensionally straight if A ,! B is a prime morphism for each overring B
of A. An extensionally straight domain is called a straight domain. A ring A such that
A=P is a straight domain for all P 2 Spec.A/ is called a straight ring. A domain is a
straight ring if and only if it is a straight domain [8, Theorem 4.6 (a)]. Since flat ring
homomorphism) prime morphism) GD, we have that Prüfer domain) straight
domain ) going-down domain. Moreover, locally divided ring ) straight ring )
going-down ring. These implications can be reversed for seminormal weak Baer rings
[8, Theorem 3.12], but neither of these implications is reversible in general. Although
[8, Example 4.4] constructs a quasilocal two-dimensional going-down domain which
is not a straight domain, there is no known example of a straight domain which is
not a locally divided domain; equivalently, there is no known example of a quasilocal
straight domain which is not a divided domain (in the sense of [6]).


As outlined below, this paper deepens the earlier study in [8], with special emphasis
on quasi-Prüfer domains (also known as INC-domains) and i -domains. (Background
on INC-domains and i -domains will be recalled as needed.) For partial motivation for
this focus, note that the above-mentioned domain in [8, Example 4.4] is an i -domain
(and hence an INC-domain). Much of this work examines the relationship between
straight domains and divided domains, bearing in mind that [8, Proposition 4.18 (b),
(c)] showed that any quasilocal straight domain does have some divided-like behavior.
In particular, we develop new characterizations of prime morphisms, characterize the
straight domains within several classes of domains, give sufficient conditions for the
“straight domain” property to pass to overrings, and introduce new classes of going-
down domains that lead to a characterization of divided domains within the class of
straight domains.


In view of the torsion-theoretic motivation for the concept of a prime morphism,
we devote much of Section 2 to studies involving weak Bourbaki associated primes
and attached primes (in the sense of [4], [16]). To complement [8, Proposition 2.2],
some useful characterizations of prime morphisms in terms of these concepts are given
in Proposition 2.1. One consequence (Corollary 2.3) is a characterization of straight
domains within the universe of INC-domains, as being the going-down domains for
which certain related total quotient rings are Artinian. Another consequence, Corol-
lary 2.5, shows that if A is a straight domain with quotient field K; I is a nonzero
finitely generated ideal of A and P is a prime ideal of A, then the fractional overring
B WD .I WK I / satisfies the following two conclusions: B=PB has compact mini-
mal spectrum (in the Zariski topology); and .B=PB/P (WD .B=PB/AnP ) has (Krull)
dimension 0.


Section 3 begins by complementing the characterizations of prime morphisms in
[8] and Proposition 2.1 by adding a few more in Proposition 3.1. One of the relevant
concepts there is that of a primal ideal, in the sense of [11]. Upshots include character-
izations of the straight domains within the universe of treed domains (Proposition 3.4),
within the universe of quasi-Prüfer domains (Proposition 3.5), and within the universe
of i -domains (Corollary 3.6). In the second and third of these results, primary ideals
play some significant roles.


Section 4 introduces the concept of a surjectively prime morphism. Any surjec-
tively prime morphism is an i -morphism and, for the special case of an integral ring
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extension, must be a prime morphism. The “surjectively prime” concept is used to find
a number of sufficient conditions for an overring of a straight domain to be a straight
domain: cf. Proposition 4.3, Corollary 4.4 and Proposition 4.7.


Section 5 introduces some new classes of going-down domains. One of these, the
class of quasi-divided domains, figures in a characterization of divided domains within
the class of straight domains (Proposition 5.3). Another of these, the class of n-AVDs
(or n-almost valuation domains), gives a new universe within which the concepts of
“straight domain” and “divided domain” are equivalent (Corollary 5.6).


Section 6 studies the conductor overrings of a quasilocal i -domain A of finite
(Krull) dimension. These overrings are the simplest examples of the fractional over-
rings that were considered in [8, Sections 3 and 5]. Corollary 6.3 shows that for A
as above, A is a divided domain if and only if A is a straight domain whose nonzero
nonmaximal prime ideals have their heights determined by conductor overrings in a
specific way.


In addition to the above notation, we also use standard notation for conductors
.A WC B/, occasionally deleting “C ” if no confusion is possible; and � denotes proper
inclusion. Any unexplained material is standard, as in [4], [14].


2 Connections with associated or attached prime ideals


It is well known that the torsion of a module M is closely related to the associated
prime ideals of M . Thus, it is not surprising that results on prime morphisms can be
obtained by considering associated prime ideals. We will mainly use the weak Bour-
baki associated prime ideals and the attached prime ideals (of Northcott). Background
on these topics will be recalled or cited as needed. First, we recall some useful nota-
tion. Let A be a ring. If X is a subset of Spec.A/ then, as in [7], U.X/ denotes the
union of all the elements of X .


Let M be an A-module. A prime ideal P of A is a weak Bourbaki associated
prime ideal of M if there exists (a necessarily nonzero element) x 2 M such that P
is a minimal element of VA.0 WA x/ (with respect to inclusion). The set of all weak
Bourbaki associated prime ideals ofM is denoted by AssA.M/; and AssA.M/ ¤ ¿,
M ¤ 0. We set Ass.A/ WD AssA.A/. It is known that Z.A/ D U.Ass.A//. Moreover,
if I is an ideal of A and M is an A=I -module, then AssA.M/ D a�.AssA=I .M//,
where � W A ! A=I is the canonical ring homomorphism. The reader is referred to
[15] and [16] for additional background and references.


We will also need the attached prime ideals, as defined by Northcott and studied
subsequently in, i.a., [9], [12], [20]. A prime ideal P of a ring A is an attached prime
ideal of M if, for every finitely generated ideal I � P , there exists x 2 M such that
I � .0 WA x/ � P . The set of all attached prime ideals of M is denoted by AttA.M/;
and AttA.M/ ¤ ¿ , M ¤ 0. It is known that Z.A/ D U.Att.A//. Moreover, if I
is an ideal of A and M is an A=I -module, then AttA.M/ D a�.AttA=I .M//, where
� W A! A=I is the canonical ring homomorphism.


We next collect four useful facts. Let M be an A-module.


(a) AssA.M/ � AttA.M/.
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(b) Each element of AttA.M/ is a union of some elements of AssA.M/ [20, Sec-
tion 5].


Let f W A! B be a ring homomorphism and M a B-module.


(c) AssA.M/ � af .AssB.M//, with equality if f is flat [15].


(d) AttA.M/ D af .AttB.M// [12, Proposition 2.1].


The next result establishes some useful characterizations of prime morphisms in
terms of associated or attached prime ideals. As usual, if P 2 Spec.A/, then k.P /
denotes AP =PAP .


Proposition 2.1. Let f W A ! B be a ring homomorphism. Then the following six
conditions are equivalent:


(1) f is a prime morphism;


(2) af .AssB.B=PB// D ¹P º for each P 2 Spec.A/ that survives in B;


(3) AssA.B=PB/ D ¹P º for each P 2 Spec.A/ that survives in B;


(4) af .AttB.B=PB// D ¹P º for each P 2 Spec.A/ that survives in B;


(5) AttA.B=PB/ D ¹P º for each P 2 Spec.A/ that survives in B;


(6) A ! B induces a ring homomorphism k.P / ! Tot.B=PB/ for each P 2
Spec.A/ that survives in B .


If (any of the above equivalent conditions) (1)–(6) hold(s), then f satisfies GD and
f �1.W / D P for each W 2 Min.V.PB//, whence f �1.


p
PB/ D P .


Proof. Since any prime morphism satisfies GD, the final assertion follows from a stan-
dard fact about GD (cf. [14, Exercise 37, page 44]).


(6) ) (1). Assume (6). We must show that if P 2 Spec.A/, then B=PB is a
torsion-free A=P -module. This is clear if PB D B , and so, without loss of generality,
P survives in B . The conclusion follows from a comment in the next-to-last paragraph
of the introduction of [8], as (6) ensures that A=P ! B=PB is the restriction of a ring
homomorphism Tot.A=P /! Tot.B=PB/.


(1) ) (6). Assume (1). Let P be a prime ideal of A that survives in B . As (1)
ensures that B=PB is a torsion-free A=P -module, the composite of A=P ! B=PB
and the inclusion map B=PB ! Tot.B=PB/ sends Reg.A=P / D .A=P / n ¹0º into
Reg.B=PB/ � U.Tot.B=PB//. Accordingly, the universal mapping property of rings
of fractions yields the desired ring homomorphism k.P / ! Tot.B=PB/, thus prov-
ing (6).


(4)) (2) by (a); (2)) (4) by (b); (4), (5) by (d); (5)) (3) by (a); and (3))
(5) by (b).


(1)) (2). Assume (1), and let P be a prime ideal ofA that survives in B . Consider
any Q 2 AssB.B=PB/. We must show that af .Q/ D P . By the definition of a weak
Bourbaki associated prime, Q is a minimal element of VB.PB WB b/ for some b 2 B .
Suppose that a 2 A is such that f .a/ 2 Q. Then ansb D f .an/sb 2 PB for some
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s 2 B n Q and some positive integer n, by [4, Proposition 12, page 73]. Note that
sb 62 PB (for, otherwise, s 2 .PB WB b/ � Q, a contradiction). As sb 62 PB and f is
a prime morphism, we have that a 2 P . Thus, af .Q/ � P . Moreover, PB � Q gives
the reverse inclusion, and so (2) holds.


(2) ) (1). Assume (2). Let P 2 Spec.A/; a 2 A and b 2 B n PB such that
ab D f .a/b 2 PB . Our task is to show that a 2 P . Since .PB WB b/ ¤ B , we can
choose a minimal element, say Q, of VB.PB WB b/; of course, Q 2 AssB.B=PB/.
Since f .a/ 2 .PB WB b/ � Q and it follows from (2) that af .Q/ D P , we can
conclude that a 2 P , as desired.


We next offer some considerations involving homomorphisms associated to the
overrings of an extensionally straight ring. Then we give some topological conse-
quences; observe some divided-like behavior of straight domains; and close the sec-
tion with a remark summarizing two parallel theories that focus on certain subclasses
of prime morphisms defined in terms of associated or attached prime ideals.


Theorem 2.2. Let A be an extensionally straight ring and B an overring of A such that
B is an A-algebra of finite type. Let P be a prime ideal of A that survives in B . Then:


(a) The total quotient ring of B=PB is Noetherian and Min.B=PB/ is a finite set.


(b) If, in addition, the inclusion map A ! B satisfies INC, then the total quotient
ring of B=PB is Artinian and Min.B=PB/ D Ass.B=PB/.


Proof. (a) Denote the fiber of A ! B at P by FB.P / WD k.P / ˝A B Š BP =PBP .
Since B is a finite-type A-algebra, FB.P / is a finite-type k.P /-algebra and hence (by
the Hilbert Basis Theorem) a Noetherian ring.


Since A ! B is a prime morphism and PB ¤ B , it follows from Proposition 2.1
that A=P ! B=PB induces a ring homomorphism k.P / ! Tot.B=PB/. By tensor-
ing this with the canonical map B ! Tot.B=PB/ and multiplying, one obtains a ring
homomorphism ˇ W k.P /˝A B ! Tot.B=PB/. On the other hand, the canonical ring
homomorphism ˛ W B=PB ! BP =PBP is an injection, since [8, Proposition 2.2 (a)]
ensures that PBP \ B D PB (in light of A ! B being a prime morphism). Note
that the inclusion map B=PB ! Tot.B=PB/ factors as the composite of ˛ and ˇ.
Note also that ˛ is a flat epimorphism, because it is inferred from the flat epimorphism
A=P ! k.P / by base change. Since any flat epimorphism is essential [15, Propo-
sition 2.1, page 111], it follows that ˇ is an injection. Thus, FB.P / is a Noetherian
overring of B=PB , and so Tot.B=PB/ D Tot.FB.P // is a Noetherian ring.


It remains to prove that Min.B=PB/ is a finite set. Since the Noetherian property
ensures that Min.Tot.B=PB// is a finite set, it suffices to show that the canonical
map Spec.Tot.B=PB//! Spec.B=PB/ restricts to a surjection Min.Tot.B=PB//!
Min.B=PB/. Standard facts imply that each minimal prime ideal of the base ring
of any ring extension is lain over by some minimal prime ideal (cf. [14, Exercise 1,
page 41; and Theorem 10]). Therefore, the assertion follows because the inclusion map
B=PB ! Tot.B=PB/ satisfies GD (as a consequence of the flatness of Tot.B=PB/
over B=PB).







188 D. E. Dobbs and G. Picavet


(b) It is well known that Spec.FB.P // is order-isomorphic to the set of all the
prime ideals of B that lie over P . Since we are assuming that A ! B satisfies
INC, it follows that FB.P / is zero-dimensional. As we saw above that FB.P / is
also Noetherian, it must be Artinian. Hence (passing to a ring of fractions), so is
Tot.FB.P // D Tot.B=PB/.


It remains to prove that Min.B=PB/ D Ass.B=PB/. We claim that if C is any ring
and g W C ! Tot.C / the inclusion map, then ag.Ass.Tot.C /// D Ass.C /. Consider
the multiplicatively closed set S WD Reg.C / WD C nZ.C /. By [4, Exercise 17 (d), page
289], the assignment P 7! PS gives a bijection from ¹P 2 Ass.C / j P \ S D ¿º to
Ass.CS /, whose inverse map is induced by the canonical contraction map. Of course,
CS D Tot.C /, and each P 2 Ass.C / satisfies P \ S D ¿ since C n S D Z.C / D
U.Ass.C //. The upshot is a bijection between Ass.C / and Ass.Tot.C //, whose inverse
map is induced by contraction. This proves the claim.


It is known that ifC is an Artinian ring, then Min.C / D Ass.C /. (In detail, whenC
is Artinian, the corresponding fact follows for the classical notion of associated primes
by [4, Corollary 2, page 274], but that classical notion leads to the same Ass.C / as
we built via weak Bourbaki associated primes because C is Noetherian [4, Exercise
17 (g), page 289].) In particular, Min.Tot.B=PB// D Ass.Tot.B=PB//. Hence, the
claim that was established above allows us to conclude that ag.Min.Tot.B=PB/// D
Ass.B=PB/. Therefore, it suffices to show that ag.Min.Tot.B=PB/// D Min.B=PB/.
But this was shown in the course of proving (a). This completes the proof of (b).


Following [19], we say that a domain A is an INC-domain if the inclusion map
A! B satisfies INC for each overring B of A. An equivalent condition is that A be a
quasi-Prüfer domain, in the sense that the integral closure A0 of A is a Prüfer domain
[19, Proposition 2.26]. The literature offers many classes of domains A for which A0


is a Prüfer domain.


Corollary 2.3. LetA be an INC-domain. Then the following conditions are equivalent:


(1) A is a going-down domain, and Tot.B=PB/ is an Artinian ring whenever B is an
overring of finite type over A and P is a prime ideal of A that survives in B;


(2) A is a straight domain.


Proof. (2) ) (1). Recall that any straight domain is a going-down domain. As the
inclusion map A ! B satisfies INC for each overring B of A, the assertion now
follows from Theorem 2.2 (b).


(1) ) (2). Assume (1). By [8, Proposition 2.4], it is enough to prove that the
inclusion map i W A ! B is a prime morphism for each overring B of A which is
a finite-type A-algebra. By reworking the proof of Theorem 2.2, we see that if P
is a prime ideal of A that survives in B , then Min.B=PB/ D Ass.B=PB/. Next,
note from fact (c) earlier in this section that if � W B ! B=PB is the canonical
surjection, then AssB.B=PB/ is a subset of a�.Ass.B=PB// and, hence, is a subset
of a�.Min.B=PB//. By Proposition 2.1 [(2) ) (1)], it suffices to show that if q 2
Min.B=PB/, then ai.a�.q// D P . An equivalent task is to show that if Q is minimal
as a prime ideal ofB that contains PB , thenQ\A D P . This, in turn, follows because
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the hypothesis that A is a going-down domain ensures that A ! B satisfies GD. The
proof is complete.


Proposition 2.4. Let A be an extensionally straight ring (with integral closure A0), let
B be an overring of A such that the inclusion map f W A ! B satisfies INC, and P
be a prime ideal of A that survives in B . Then:


(a) The fiber BP =PBP is a zero-dimensional ring.


(b) The minimal spectrum Min.B=PB/ is compact (in the Zariski topology).


(c) Min.A0=QA0/ is compact andA0Q=QA
0
Q is a zero-dimensional ring for eachQ 2


Spec.A/.


(d) If, in addition,A is a quasilocal (straight) domain andQ 2 Spec.A/, thenQA0 D
QA0Q, or equivalently, QA0 D aQA0 for each a 2 A nQ.


Proof. (a) Observe that any prime ideal Q of B that lies over P must contain PB .
By Zorn’s Lemma, Q contains some prime ideal M which is minimal with respect to
containing PB . It suffices to show thatQ DM . As f is a prime morphism, it satisfies
GD, and so M \ A D P . Hence, INC ensures that Q DM .


(b) Since f is a prime morphism, [8, Proposition 2.2 (a)] yields that the canonical
map g W B=PB ! BP =PBP is an injection. Moreover, g is a flat epimorphism since
it is obtained from the flat epimorphism A=P ! k.P / by change of base. As is
well known [15, Proposition 1.5, page 49], these conditions ensure that the induced
map ag W Spec.BP =PBP / ! Spec.B=PB/ is an injection. However, the flatness of
g ensures that g satisfies GD (cf. [14, Exercise 37, page 44]). As all minimal prime
ideals are lain over in any extension [14, Exercise 1, page 41] and dim.BP =PBP / D 0
by (a), the upshot is that the image of ag is Min.B=PB/. Then (b) follows from the
fact that any continuous image of a compact space is compact.


(c) It is well known that any integral ring extension satisfies INC. Thus, (c) follows
by applying (a) and (b), with B WD A0.


(d) Since A is a quasilocal going-down domain, it follows from [6, Lemma 2.4 (a)]
that A � ACQAQ is an integral (and unibranched) ring extension. Hence, A0CQA0Q
is an integral overring of A0 (because QA0Q D .QAQ/A


0), and so QA0Q � A
0. Since


the “equivalently” assertion results from a routine calculation, it remains only to show
that QA0Q D QA0. As one inclusion is trivial, we will show that QA0Q � QA0.
Consider any element � 2 QA0Q. Then there exists z 2 A nQ such that z� 2 QA0.
Since the inclusion map A ! A0 is a prime morphism and � 2 A0, it follows that
� 2 QA0, as desired.


Corollary 2.5. Let A be a straight domain with quotient field K, let I be a finitely
generated ideal of A, and let P be any prime ideal of A. Then:


(a) .IP WK IP /=P.IP WK IP / is a zero-dimensional ring.


(b) The ring .I WK I /=P.I WK I / has compact minimal spectrum.
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Proof. Since I is a finitely generated ideal of A, we have that .I WK I / is an integral
overring of A and .I WK I /P D .IP WK IP /. As integral ring extensions satisfy INC
and the lying-over property, the assertions follow directly from parts (a) and (b) of
Proposition 2.4, with B WD .I WK I /.


Note that Proposition 2.4 (d) implies that any integrally closed quasilocal straight
domain must be a divided domain, but we know more generally (cf. [6]) that any inte-
grally closed quasilocal going-down domain is a divided domain. The next two results
give some kinds of divided-like behavior for certain quasilocal going-down domains.


Corollary 2.6. Let A be a quasilocal straight domain and P a prime ideal of A. Then:


(a) P is comparable to any ideal of A which is contracted from A0.


(b) If a 2 A, then either A0a \ A � P or P � A0a \ A.


(c) P is comparable to each radical ideal of A, to each valuation ideal of A (i.e.,
each ideal which is the contraction of an ideal of some valuation overring of A),
to each common ideal of A and A0, to the integral closure I 0 of any ideal I of A
and hence to any integrally closed ideal of A.


Proof. (a), (b) By Proposition 2.4 (d), PA0 D PA0P , or equivalently, PA0 D aPA0 for
each a 2 A n P . Thus, if I is an ideal of A such that I 6� P , then PA0 � IA0, and so
P � IA0 \ A. Then (a) follows easily; and (b) is a special case of (a).


(c) In view of (a), it is enough to prove that P is comparable to I 0. Recall that if I
is an ideal of A, then the integral closure of I is defined to be


I 0 WD ¹a 2 A j there exist an integern > 0 and elements ai 2 I i ; i D 1; : : : ; n;


such that an C a1a
n�1
C � � � C an D 0º:


It is well known that I 0 D \IV \ A, where the index V runs through the set of all
valuation overrings of A. In particular, I 0 is a contracted ideal from A0, and so (c)
follows from (a).


In view of [5], the set of all the contracted ideals of a given domain A is the set of
all the valuation ideals of A (resp., all the integrally closed ideals of A) if and only if A0


is a valuation domain, i.e., if and only if A is a quasilocal i -domain. Now consider any
quasilocal i -domain A with integral closure V . If I is an ideal of A and P 2 Spec.A/,
then IV is comparable to any prime ideal of V which lies over P , and so I 0 D IV \A
is comparable to P . Thus, the converse of Corollary 2.6 (a) is not valid, since there
exists a quasilocal i -domain which is not a straight domain.


LetA be a domain andR an overring ofA. If P 2 Spec.A/, another type of integral
closure P of P in R was defined in [3, page 63], as follows:


P WD ¹r 2 R j p.r/ D 0 for some p.X/ D Xn C p1X
n�1
C � � � C pn 2 P ŒX�º:


Let A WD A0 \ R, the integral closure of A in R. Then P D
p
PA by [3, Lemma


5.14]. It follows that if A is a going-down domain (more generally, if A � A0 satisfies
GD), then P D \¹Q 2 Spec.A/ j Q \ A D P º.
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Proposition 2.7. Let A be a quasilocal going-down domain and R an overring of A
such that A is integrally closed in R. Then P D PAP \ R for each P 2 Spec.A/.
Hence, a prime ideal P of A is divided if AP � R.


Proof. Without loss of generality, P is nonzero and distinct from the maximal ideal
of A. As A is integrally closed in R, it follows from the above remarks that P D P .
By reworking the proof of [6, Lemma 2.4 (a)], we can show that PAP \ R � P .
Hence, P D PAP \R. The final assertion is then clear.


The final remark of the section considers some similar theories that result from
tweaking the definition of extensionally straight rings.


Remark 2.8. We describe the basics of two theories that achieve somewhat greater
stability by focussing on particular types of prime morphisms. Let f W A ! B be a
ring homomorphism. We say that f is an Ass-homomorphism if af .AssB.B=IB// �
AssA.A=I / for each ideal I of A. Similarly, we say that f is an Att-homomorphism if
af .AttB.B=IB// � AttA.A=I / for each ideal I of A. It follows from Proposition 2.1
that all Ass-homomorphisms and all Att-homomorphisms are prime morphisms. It can
be shown that each flat ring homomorphism is an Att-homomorphism and that all Ass-
homomorphisms and all Att-homomorphisms are torsion-free. Moreover, the classes
of Ass-homomorphisms and Att-homomorphisms are each stable under composition
(an improvement over the situation for arbitrary prime morphisms as reported in [8,
Proposition 2.6]).


Let us say that a ring A is an extensionally strong straight ring if the inclusion
map A ! B is an Att-homomorphism for each overring B of A. The definitions of
strong straight domain and strong straight ring parallel the corresponding definitions
of straight domains and straight rings. Since each Att-homomorphism is a prime mor-
phism, each strong straight domain is a straight domain. Since each flat homomorphism
is an Att-homomorphism, each Prüfer domain is a strong straight domain. Any domain
of dimension at most 1 is a strong straight domain. If A is a Noetherian domain, then:
A is a strong straight domain , dim.A/ � 1 , A is a straight domain , A is a
going-down domain, A is a weak straight domain, A is a locally divided domain.


3 Prime, primal and primary


We begin the section by giving some new characterizations of prime morphisms, com-
plementing some results of [8]. Recall that an ideal I of a ring A is said to be primal if
the set of all x 2 A such that .I W x/ � I (equivalently, such that the canonical image
of x inA=I is a zero-divisor ofA=I ) is an ideal P , necessarily prime. This prime ideal
P is then called the adjoint ideal of the primal ideal I [11, Preliminaries], and we will
say that I is P -primal. Note that I � P for any P -primal ideal I ¤ A.


Let A � B be a ring extension (or A ! B an injective ring homomorphism)
and J an ideal of the ring B . If Q 2 Spec.A/, let SatQ.J / denote the canonical
inverse image of JQ in B; i.e., SatQ.J / D ¹x 2 B j there exists s 2 A n Q such
that sx 2 J º. We next show that this concept is related to the background on weak
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Bourbaki associated primes that was recalled in Section 2, together with the fact that
p
J D \¹Q j Q 2 AssA.J /º.


Proposition 3.1. Let f W A ! B be an injective ring homomorphism and P 2
Spec.A/ such that PB ¤ B . Then the following six conditions are equivalent:


(1) f W A! B is prime at P ;


(2) If b 2 B n PB , then P D .PB WA b/;


(3) af .AssA.PB// D ¹P º;


(4) SatP .PB/ D PB;


(5) PB is the intersection of some family ¹Jiºi2I of Qi -primal ideals Ji of B such
that Qi 2 Spec.B/ and Qi \ A D P for each i 2 I .


(6) .PB WA b/ � P for each b 2 B n PB .


Moreover, when (5) holds, Ji \ A D P for each i 2 I .


Proof. If (1) holds, with b 2 B n PB and a 2 .PB WA b/, then ab 2 PB implies
a 2 P ; thus, (1) ) (2). If (2) holds, with a 2 A n P and b 2 B n PB such that
ab 2 PB , then a 2 P , which is absurd; thus, (2)) (1). Then (1) is clearly equivalent
to (4) and to (6). Moreover, (1), (3) by the proof of Proposition 2.1.


(1) ) (5). Assume (1). Using [11, Theorem 3.5 and Lemma 2.2], we see that
PB D \¹SatQ.PB/ j Q 2 XPBº, where XPB denotes the set of all maximal elements
in the set of all prime ideals that are the unions of elements in AssA.PB/. Moreover,
each SatQ.PB/ is a Q-primal ideal. As Q is a union of some elements in AssA.PB/,
we have Q \ A D P , by (3). To obtain (5), note that Ji � Qi for all i .


(5) ) (1). Assume (5). Consider a 2 P and b 2 B such that ab 2 PB and
b … PB . Then there exists an index i such that b … Ji and ab 2 Ji . Since Ji is a
Qi -primal ideal, a 2 Qi , whence a 2 Qi \ A D P , thus yielding (1).


Recall that a ring A is called extensionally straight if the inclusion map A! B is a
prime morphism for each overring B of A. Bearing in mind that an empty intersection
of ideals of an overring B is conventionally taken to be B , we see that the preceding
proposition has the following immediate consequence.


Corollary 3.2. Let A be a ring. Then A is extensionally straight if and only if, for each
P 2 Spec.A/ and each overring B of A, PB is the intersection of some Qi -primal
ideals such that Qi 2 Spec.B/ and Qi \ A D P for each i .


Proposition 3.1 specializes as follows in case A is an i -domain.


Corollary 3.3. Let A be an i -domain, B an overring of A, and P 2 Spec.A/ such that
PB ¤ B . Then the following conditions are equivalent:


(1) The inclusion map A! B is prime at P ;


(2) PB is a Q-primal ideal of B for some Q 2 Spec.B/ such that Q \ A D P ;







Straight rings, II 193


(3) AssA.B=PB/ has only one element;


(4) PB is a primary ideal of B such that
p
PB \ A D P .


Moreover, when (2) holds, Z.PB/ D Q.


Proof. The assertions follow easily from Proposition 3.1 and the proof of Proposi-
tion 2.1, since A being a going-down domain ensures that each minimal prime ideal of
PB lies over P .


We next recall some material from [22, Section 1]. Let A be a domain. Let
Specass.A/ (resp., Specp.A/) denote the set of all prime ideals P of A such that P
is a minimal prime ideal of an ideal of A of the form .Aa WA Ab/ for some a; b 2 A
(resp., of the form Aa for some a 2 A). Also, we let Specatt.A/ denote the set of all
prime ideals P of A for which there is some a 2 A such that for each finitely gener-
ated ideal I � P of A, there is some b 2 A such that I � .Aa WA Ab/ � P . Then
Specp.A/ � Specass.A/ � Specatt.A/; and each nonzero prime ideal ofA is the union
of some elements of Specp.A/ (resp., of Specatt.A/; resp., of Specp.A/). Moreover
A D \¹AP j P 2 Specass.A/º.


Recall that the t -operation on the set of all nonzero ideals J of a domainA is defined
by Jt WD [Iv , where I runs through the set of all finitely generated ideals I � J of
A (and Iv WD .I�1/�1). An ideal J is called a t -ideal if J D Jt . According to [22,
Proposition 1.23], any element of Specatt.A/ is a prime t -ideal of A. We let Spect.A/
denote the set of all prime t -ideals of A; then Specass.A/ � Spect.A/ .


The following observation will be useful in the proof of the next result. IfA! B is
an injective ring homomorphism and ¹Piºi2I is a directed family of prime ideals of A,
then the prime ideal P WD [¹Pi j i 2 I º of A satisfies SatP .PB/ � [¹SatPi


.PiB/ j
i 2 I º.


We next characterize straight domains within the universe of treed domains.


Proposition 3.4. Let A be a domain. Then the following conditions are equivalent:


(1) A is a treed domain and, for each overring B of A, the inclusion map A ! B
is prime at each P 2 Specp.A/ (resp., at each P 2 Spect.A/; resp., at each
P 2 Specass.A/; resp., at each P 2 Specatt.A/);


(2) A is a straight domain.


Proof. Any straight domain is a going-down domain, and hence a treed domain. Thus,
if A is treed, it follows from the above remarks that each prime ideal of A is the union
of a linearly ordered set contained in Spect.A/ (resp., Specass.A/, resp., Specatt.A/).
In view of Proposition 3.1 [(1), (4)], the conclusion easily follows from the above
observation (and the fact that PB D [PiB).


We next show that in order to check the “straight domain” property for an INC-
domain A, it is enough to consider the overrings B of A such that the inclusion map
A ! B makes B a finite(ly generated) A-module. We say that such an overring is
finite. We also say that an overring B of A is of finite type if the inclusion map A! B
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makes B an A-algebra of finite type. Notice that a domain A is an i -domain if and only
if A is a quasi-Prüfer domain such that the inclusion map A! A0 is unibranched.


Proposition 3.5. Let A be a quasi-Prüfer domain. Then the following conditions are
equivalent:


(1) For each finite overring B of A, the inclusion map A! B is a prime morphism;


(2) For each finite overring B of A and each P 2 Spec.A/, we have PB D Q1 \


� � � \Qn, where, for all i , Qi is a Pi -primary ideal and Pi lies over P ;


(3) A is a treed domain and, for each finite overringB ofA and each P 2 Specatt.A/
(resp., P 2 Specass.A/; resp., P 2 Specp.A/), we have PB D Q1 \ � � � \Qn,
where, for all i , Qi is a Pi -primary ideal and Pi lies over P ;


(4) A is a straight domain.


Moreover, if either (2) or (3) holds, then Qi \ A D P for all i .


Proof. By [8, Proposition 2.4], A is a straight domain if and only if A ,! B is a prime
morphism for each overring B of finite type over A. In this case, the fact that A � B
satisfies INC means that A ,! B is quasi-finite [26, Corollary 1.8]. By Zariski’s Main
Theorem, A ,! B can be factored as A ! A0 ! B , where A ! A0 is finite and
A0 ! B is an open immersion, that is, a flat epimorphism of finite presentation [24,
Corollaire 2, page 42]. Hence A is a straight domain if and only if A ,! B is a prime
morphism for each finite overring B , by [8, Propositions 2.1 (b) and 2.6 (a)]. In other
words, (1), (4).


Next, an appeal to [4, Corollary 3, page 327] shows the following. Let B be a
finite overring of A, and let P 2 Spec.A/. Then there are only finitely many prime
ideals P1BP ; : : : ; PnBP of BP that lie over PAP . Moreover, PBP D Q01 \ � � � \Q


0
n


where each Q0i D SatPiBP
.PBP / is primary. As each PiBP contains PBP , we have


that Q0i � PiBP . Each PiBP is maximal in BP =PBP , and the ideals PiBP are the
maximal ideals of BP that contain PBP . Hence, each Q0i is PiBP -primary. Assume,
in addition, that the inclusion map A ! B is prime at P . It follows that PB D
SatP .PB/ D .Q01\B/\� � �\ .Q


0
n\B/ is an intersection of finitely many Pi -primary


ideals, where each Pi lies over P . Thus, (1)) (2). The converse is a consequence of
Proposition 3.1. Finally, the proof of Proposition 3.4 shows that (2), (3).


We can now infer a characterization of the straight domains which are i -domains.


Corollary 3.6. Let A be an i -domain with integral closure A0. Then A is a straight
domain if and only if PB is a primary ideal of B for each finite overring B of A and
each P 2 Spec.A/ (resp., P 2 Specass.A/). If these equivalent conditions hold, then
PA0 is a primary ideal of A0 for each P 2 Spec.A/.


Proof. Note that any i -domain is a treed domain. If PB is a primary ideal of B , its
radical lies over P when A ,! B is finite. Therefore, the first assertion follows by
combining Proposition 3.5 and Corollary 3.3. To infer the final assertion from the first
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assertion, express A0 as the direct limit of the finite overrings B of A, and then use the
fact that A0=PA0 is the direct limit of the rings B=PB .


Corollary 3.7. Let A be a quasi-Prüfer domain. Then the following conditions are
equivalent:


(1) PB is a primary ideal of B for each P 2 Spec.A/ and each finite overring B of
A;


(2) A is a straight i -domain.


Proof. (2)) (1) by Corollary 3.6. Conversely, assume (1). It follows that PA0 is a
primary ideal of A0 for each P 2 Spec.A/. Reasoning as above, we see that A ,! A0


is unibranched, for
p
PA0 \ A D P . (To see this, note that if Q 2 Spec.A0/ is such


that Q \ A D P , then PA0 � Q implies
p
PA0 � Q, and so by incomparability,


p
PA0 D Q.) Thus, A is an i -domain, and so (2) follows by Corollary 3.6.


4 More properties of straight domains


The following observation of Roby [25, Théorème 4, page 11] will lead us to some new
concepts and new facts concerning straight domains. If f W A! B is an epimorphism
in the category of commutative rings and Q 2 Spec.B/ lies over P 2 Spec.A/, then
Q WD SatP .PB/ is a prime ideal of B , whence af W Spec.B/ ! Spec.A/ is an
injection. Thus, if A is an extensionally straight ring and B is an epimorphic overring
of A, we see, using Proposition 3.1 [(1), (4)], that Q D PB .


Next, recall from [8] (or [7]) that a ring homomorphism f W A ! B is called
prime-producing if, for each P 2 Spec.A/, either PB 2 Spec.B/ or PB D B . Each
prime-producing homomorphism is a prime morphism. The above result of Roby and
further considerations prompt us to introduce the following definition. We say that a
ring homomorphism f W A ! B is a surjectively prime morphism if f �1.Q/B D Q
for each Q 2 Spec.B/. Clearly, any surjectively prime morphism f is prime at each
P 2 Im.af / and is an i -morphism.


Lemma 4.1. LetA be a straight domain andB an overring ofA such that the inclusion
map f W A! B is a surjectively prime morphism. Then f W A! B is an i -morphism
and B is a straight domain.


Proof. By the above remarks, f is an i -morphism. To show thatB is a straight domain,
consider any overring R of B and any prime ideal Q of B . Put P WD Q \ A. By our
earlier work, QR D PR is an intersection of Pi -primal ideals Qi such that P D
Pi \ A. Then Pi \ B D Q, because A! B is an i -morphism. It follows that B is a
straight domain.


Let f W A! B be a ring homomorphism andP 2 Spec.A/. Note that SatP .PB/ �p
PB characterizes the property that f satisfies going-down to P . In this way, we see


that the next result gives some properties of a very special type of homomorphism that
satisfies GD.
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Lemma 4.2. LetB be an overring of a domainA such that the inclusion map f W A!
B satisfies INC and GD. Suppose that SatP .PB/ 2 Spec.B/ whenever Q 2 Spec.B/
and P WD Q \ A. Then:


(a)
p
PB D Q D SatP .PB/ whenever Q 2 Spec.B/ and P WD Q \ A.


(b) f W A! B is an i -morphism.


(c) If, in addition, f W A! B is a prime morphism, then f is surjectively prime.


Proof. Since f satisfies GD, we get PB � SatP .PB/ �
p
PB � SatP .PB/, so


that
p
PB D SatP .PB/ � Q. Then SatP .PB/ � Q, SatP .PB/ \ A D P , and the


incomparability of f combine to yield Q D SatP .PB/, thus proving (a). Then (b) is
an easy consequence of (a); and (c) follows from the fact that SatP .PB/ D PB when
A! B is a prime morphism.


Proposition 4.3. Let A be a straight domain which is also a quasi-Prüfer domain.
Let B be an overring of A such that SatP .PB/ is a prime ideal of B whenever Q 2
Spec.B/ and P WD Q \ A. Then the inclusion map A ,! B is a surjectively prime
morphism and B is a straight domain.


Proof. In view of the above two lemmas, it is enough to observe that A being quasi-
Prüfer implies that A ,! B satisfies INC; and that SatP .PB/ D PB since A is a
straight domain.


Corollary 4.4. Let A be an i -domain. Then the following conditions are equivalent:


(1) The inclusion map A! B is surjectively prime for each finite overring B of A;


(2) PB is a radical ideal of B for each finite overring B of A and each P 2 Spec.A/
(resp., P 2 Specp.A/);


(3) A is a straight domain and SatP .PB/ is a prime ideal ofB for each finite overring
B of A and each P 2 Spec.A/.


Moreover, if the above equivalent conditions hold, then each integral overring of A is
a straight domain.


Proof. (1)) (2). Straightforward.
(2)) (1). Assume (2). Let B be a finite overring of A and let P 2 Spec.A/. By


(2),
p
PB D PB; let Q denote the unique prime ideal of B which is minimal over


PB . Then PB D Q, since each minimal prime ideal of PB must lie over P because
A � B satisfies GD. It follows that A ! B is surjectively prime, and so A ! B is a
prime morphism (because A � B satisfies the lying-over property). Therefore, A is a
straight domain, by Proposition 3.5 [(1), (4)].


(1)) (3). Assume (1). Let P 2 Spec.A/ and let B be a finite overring of A. Then
(1) implies that SatP .PB/ is a prime ideal of B , since PB is a prime ideal that lies
over P . Moreover, A is a straight domain, as we saw in the above proof that (2)) (1).


(3)) (1). Apply Proposition 4.3.
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Finally, assume that the above equivalent conditions hold. By Lemma 4.1, each
finite overring of A is a straight domain. But each integral overring B of A is a direct
limit of finite overrings of A, and so an application of [8, Proposition 3.14] shows that
B is a straight domain, to complete the proof.


We pause to note that the preceding corollary admits a slight generalization, as
follows. Let A be a going-down domain such that PB is a radical ideal for each P 2
Spec.A/ and each overring B of A. Then A is a straight domain. The crux of the proof
is that PB � SatP .PB/ �


p
PB .


The next remark collects some facts about epimorphisms, some of which will figure
in the proof of Proposition 4.6.


Remark 4.5. Let A be a straight domain with quotient field K. Then:


(a) If an inclusion map A ! B is a flat epimorphism, then B is an extensionally
straight ring. For a proof, first recall that AP ! BQ is an isomorphism for each
Q 2 Spec.B/, where P WD Q\A [15, Lemme 1.2, page 109]; as Tot.B/ is a von
Neumann regular ring [23, Lemme 2.5], the assertion follows from [8, Proposition
III.5]. Also, under the above conditions, if A is a (locally) divided domain, then
so is B; the crux of the proof is that each ideal J of B is of the form .J \ A/B .


(b) Let B be an overring of A such that the inclusion map A ! B is locally an
epimorphism, i.e., AP ! BQ is an epimorphism for each Q 2 Spec.B/, where
P WD Q \A. Then B is a straight domain by Lemma 4.1. Also, [21, Proposition
2.9] yields that PB D SatP .PB/ D


p
PB , since A � B satisfies GD.


If A is a domain with quotient field K, then A is called anodal (or u-closed) if the
relations u2 � u; u3 � u2 2 A for u 2 K imply u 2 A. The reader is referred to,
for instance, [21] for the definitions and properties of u-integral morphisms and the
u-closure of A.


Proposition 4.6. Let A be a domain with u-closure U . Then:


(a) If A is a straight domain, U is a straight domain.


(b) If A is a locally divided domain, U is a locally divided domain.


(c) If A is an i -domain, then A is a locally u-closed domain, hence u-closed.


Proof. By [21, Corollary 2.23], any u-integral morphism is locally an epimorphism.
By Remark 4.5 (b), the u-closureU of a straight domainA is a straight domain, because
the inclusion map A ! U is u-integral. This proves (a). As for the analogue for the
locally divided case in (b), the proof is similar. Finally, for (c), we see via [21, Theorem
2.26] that U D A if A is an i -domain and A is u-closed; as the i -domain property
localizes, A is then a locally u-closed domain.


To close the section, we give one more result where a property such as INC is
enough to force the “straight domain” condition to be inherited by a certain type of
overring.
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Proposition 4.7. Let B be an overring of a straight domain A such that the inclusion
map A! B is prime-producing and satisfies INC. Then B is a straight domain.


Proof. Let Q be a prime ideal of B , and put P WD Q \ A. Since PB is a prime ideal
of B and PB � Q, we have PB D Q. An application of Lemma 4.1 completes the
proof.


5 Some going-down domains defined by ideal-theoretic properties


In this section, we introduce some new classes of going-down domains. They are gen-
eralizations of the class of divided domains and figure in a characterization of divided
domains within the class of straight domains.


Definition 5.1. An almost-divided domain (an ADD) (respectively, a quasi-divided
domain) is a domain A such that, for each prime ideal P of A, there is an integer n > 0
such that P nAP D P n (respectively, P nAP � P ). Moreover, a domain A is called
n-divided if n is a positive integer such that P nAP D P n for each P 2 Spec.A/.


The following facts are clear. The 1-divided domains are the same as the divided
domains. If m � n are positive integers, then each m-divided domain is an n-divided
domain. In particular, each divided domain is n-divided, for each positive integer n.
Also, each ADD is a quasi-divided domain. Each n-divided domain is an ADD and,
hence, a quasi-divided domain.


Proposition 5.2. Each quasi-divided domain is a quasilocal going-down domain.


Proof. Let A be a quasi-divided domain. Let M 2 Spec.A/ and s a positive integer
such that M sAM �M . If N is an ideal of A, then either N �M or M s � NM , and
so either N � M or M s � N . In particular, it cannot be the case that M and N are
distinct maximal ideals of A. Thus, A is quasilocal.


To show that A is a going-down domain, we adapt part of the proof of [6, Proposi-
tion 2.1]. If the assertion fails, there exist P 2 Spec.A/, an overring B of A, and Q
minimal among prime ideals of B that contain P such that PB\ .AnP /.B nQ/ ¤ ¿.
Thus,


Pk
iD1 pibi D ab for some elements pi 2 P; bi 2 B; a 2 AnP and b 2 B nQ.


By hypothesis, there exists a positive integer n such that P nAP � P . Raising the
previous equation to the nth power and dividing by an, we find that bn 2 P nAPB �
PB � Q, whence b 2 Q, the desired contradiction.


We next give a result that was promised at the beginning of this section.


Proposition 5.3. Let A be a domain. Then A is a divided domain if and only if A is a
straight domain and a quasi-divided domain.


Proof. The “only if” assertion follows from the above comments and the fact that each
divided domain is a straight domain. For the converse, it suffices to note that if A is a
straight domain and P 2 Spec.A/, then PAP D P C P nAP for each positive integer
n [8, Theorem 4.20 (c)].
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We next recall a definition from [2] and introduce an n-variant of it.


Definition 5.4 ([2, Definition 5.5]). Let A be a domain with quotient field K. Then A
is called an almost valuation domain (in short, an AVD) if, for each x 2 K n ¹0º, there
exists a positive integer n such that either xn or x�n belongs to A (equivalently, there
exist positive integers m; n such that either xn 2 A or x�m 2 A). For any positive
integer n, we call A an n-AVD if, for each x 2 K n ¹0º, either xn 2 A or x�n 2 A.


By [2, Theorem 5.6], a domain A is an AVD if and only if its integral closure A0


is a valuation domain and A � A0 is a root extension. In particular, any AVD is a
quasilocal i -domain. One interesting way to construct AVDs is the following. Let B
be a domain, M a maximal ideal of B , and D a subring of K WD B=M ; let k denote
the quotient field of D. Then, by [17, Theorem 2.2], the pullback A WD D �K B is an
AVD if and only if B and D are AVDs and k � K is a root extension.


Note that each n-AVD is an AVD. Also, it is clear that a 1-AVD is the same as a
valuation domain. An example of a 2-AVD was provided in [1, page 2454], namely,
the domain A WD Z2ŒŒY


2; Y 3��. As this domain A is quasilocal and of Krull dimen-
sion 1, it is a divided domain and, hence, a straight domain. In fact, we will show in
Corollary 5.6 that within the universe of n-AVDs, there is no difference between the
concepts of “divided domain” and “straight domain”.


We will unify and slightly generalize two results of D. D. Anderson and Zafrullah
[2, Theorem 6.12 and Theorem 6.14]. Let I be an ideal of a ring A and n a positive
integer. Recall that In denotes the ideal of A generated by the elements of the form xn


where x runs through I . It is clear that In � I n.


Proposition 5.5. Let A be an n-AVD. Then PnAP � P for each P 2 Spec.A/.


Proof. PnAP is generated as an A-module by the set of elements of the form xn=s,
where x 2 P and s 2 A n P . Consider any elements x 2 P and s 2 A n P .
If a WD .s=x/n 2 A, then sn D axn 2 P , whence s 2 P (since P is prime), a
contradiction. As A is an n-AVD, it must be the case that b WD .x=s/n 2 A. Therefore,
bsn D xn 2 P n � P , which implies that b 2 P ; that is, xn=sn 2 P . Hence
xn=s D .xn=sn/sn�1 2 P and the assertion follows.


We show next that for n-AVDs, the “quasi-divided domain” condition can be deleted
from the statement of Proposition 5.3.


Corollary 5.6. Let A be an n-AVD. Then A is a divided domain if and only if A is a
straight domain.


Proof. Any divided domain is a straight domain. It remains to prove that any straight
domainA that is an n-AVD must be a quasi-divided domain. We will show that PAP �
P for each P 2 Spec.A/. Let k be a positive integer. Note that any nonzero element
of PkAP is a sum of nonzero elements of the form x D akb=s, where a 2 P; b 2 A,
and s 2 A n P . Given such data x; a; b and s, we next use [8, Proposition 4.18 (a)]
(with B WD A). This result applies because A is assumed to be a straight domain. Also,
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being an AVD, A is quasilocal. The upshot is an equation x D � C a2k.b2=s2/g.x/,
for some � 2 P and some polynomial g 2 PAŒX�. Thus, x D � C akC1v, for some
v 2 AP . It follows that x 2 PCPkC1AP , and so PkAP � PCPkC1AP . As P1 D P ,
iterating the argument enough times leads to PAP D P1AP � PnAP . An application
of Proposition 5.5 completes the proof.


Let I be an ideal of a ring A and n a positive integer. Let I.n/ denote the set of
elements of the form �1x


n
1 C � � � C �px


n
p where each xk 2 I and each �k is a unit of A.


Proposition 5.7. LetA be a ring and n a positive integer such that nŠ is invertible inA.
(For instance, suppose that the ring A contains a field whose characteristic is either 0
or a prime number p such that 0 < n < p.) If I is an ideal of A, then I n D I.n/ D In.


Proof. Since In � I n, it is enough to prove that I n � I.n/ � In. Consider any
subset ¹x1; : : : ; xnº of n elements of A. For each subset H of ¹1; 2; : : : ; nº, let xH WDP
i2H xi . Note that xH 2 I if each xi 2 I . It is known that


P
H .�1/n�jH j.xH /n D


nŠx1 � � � xn. The assertion now follows easily.


Recall that the Grothendieck characteristic c.A/ of a quasilocal domain .A;M/ is
defined to be the nonnegative integer p such that M \ Z D pZ; that is, the charac-
teristic of the field A=M . If p D 0, then Q D ZM\Z ,! AM D A; if p > 0, then
Z=pZ ,! A=M . We say that a quasilocal domain A avoids a positive integer n if
either c.A/ D 0 or the prime number c.A/ > n. It follows from the above comments
that if A avoids n, then nŠ is a unit in A. With this background in hand, we can now
close the section with a characterization of valuation domains in terms of the “n-AVD”
concept. To motivate Proposition 5.8, note that the 2-AVD A WD Z2ŒŒY


2; Y 3�� has
c.A/ D 2, does not avoid 2, and is not a valuation domain.


Proposition 5.8. Let A be a domain. Then the following conditions are equivalent:


(1) There exists a positive integer n such that A is an n-AVD that avoids n;


(2) A is a valuation domain.


Proof. It is easy to see that if (2) holds, then (1) holds with n WD 1. Conversely, assume
(1). According to [13, Théorème 8.2], if B is any ring and b 2 B , the given positive
integer n leads to an equation of the form


nŠb D


n�1X
hD0


.�1/n�1�h


 
n � 1
h


!
Œ.b C h/n � hn�:


Take B WD A0, the integral closure of A. Then, for any b 2 A0, each .b C h/n 2 A
and each hn 2 A since A � A0 is an n-root extension. The displayed equation now
yields that nŠb 2 A. But we noted above that nŠ is a unit in A (since A avoids n), and
so b 2 A. It follows that A0 D A. To complete the proof, use the fact that A being an
AVD implies that A0 is a valuation domain.
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6 Conductor overrings of i -domains


Let A be a domain with quotient field K. A conductor overring of A is a ring of the
form .I WK I / for some ideal I of A. In this section, we study certain conductor
overrings of a quasilocal i -domain. The upshot in Corollary 6.3, which can be viewed
as a companion for Proposition 5.3, is a characterization of the divided domains within
the universe of quasilocal straight i -domains of finite (Krull) dimension.


Recall that a quasilocal domain A is an i -domain if and only if A0 is a valuation
domain V , or equivalently, if and only if each overring of A is quasilocal [19, Corol-
lary 2.15, Proposition 2.34]. We will show in Proposition 6.1 (a) that if .A;M/ is
a quasilocal i -domain, then .M n WK M n/ � A0 for each positive integer n. The
proof will depend, in part, on facts about weak Bourbaki associated primes that were
recalled in Section 2. Also, recall that if A is a domain with quotient field K, then
A0 D [¹.I WK I / j I 2 If º, where If denotes the set of all nonzero finitely generated
ideals of A.


Proposition 6.1. Let .A;M/ be a quasilocal i -domain with quotient field K; let
.V;M 0/ denote the integral closure of A. (Note that V is a valuation domain.) Then:


(a) .P n WK P n/ � VP for each prime ideal P of A and each positive integer n. In
particular, .M n WK M n/ � V and so .M n WK M n/ is integral over A for each
positive integer n.


(b) Assume, in addition, that A has finite (Krull) dimension. If B is a (necessarily
quasilocal) overring of A and its maximal ideal N lies over P in A, then AP �
B � VP WD VAnP and VP is the integral closure of B . Moreover, dim.AP / D
dim.B/ D dim.VP /.


(c) Let P be a nonzero nonmaximal prime ideal of A. Then AP D .M n WK M n/P
for each positive integer n. Moreover, P is a common ideal of A and .M WK M/.
Suppose that P � M n for some positive integer n (this holds for n D 1). Then
the inclusion map A ! .M n WK M n/ is prime at P if and only if P is a prime
ideal of .M n WK M


n/, or equivalently, if and only if P D .P WK M n/.


(d) Suppose, in addition, that M is not a principal ideal of A. Then .M WK M/ D
¹u 2 K jM � Iuº, where Iu WD .A WA u/ for any u 2 K.


Proof. (a) We consider the case P D M . By [10, Lemma 3.1.9], I WD M nV satisfies
.I WK I / D VQ, where Q is the prime ideal of V such that Q=I is the set of zero-
divisors in V=I . Now, Q is the union of the prime ideals P 0 that are minimal over
.M nV W r 0/ for some r 0 2 V (i.e., of the weak Bourbaki prime ideals P 0 associated to
I ). Any such ideal P 0 is contained in M 0 and contains MV , whence P 0 \ A D M ,
and so P 0 D M 0 as A � V satisfies INC. Thus, Q D M 0. Therefore, .M n W M n/ �
.M nV WM nV / D VM 0 D V .


Now, let P be any nonzero prime ideal of A. As AP is an i -domain with integral
closure VP , we see from .P n W P n/ � .P nAP W P


nAP / � VP (where the last
inclusion follows from the above case) that .P n W P n/ � VP , as asserted.
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(b) Since the inclusion map A ! B is an i -morphism, dim.B/ � dim.A/ < 1.
As P D N \ A, we have AP � BN D B . Note next that the inclusion map AP ! B
is an i -morphism that satisfies GD (since AP is an i -domain and, hence, a going-down
domain). It follows easily that dim.AP / D dim.B/. Then VP D .A0/P D .AP /0 � B 0,
and B 0 has the same finite (Krull) dimension as the valuation domain VP . Hence
B 0 D VP , and so AP � B � B 0 D VP . The final assertion is clear because integral
ring extensions preserve (Krull) dimension.


(c) If x 2 .M n WK M n/, then snx 2 M n � A for any s 2 M n P , and so
.M n WK M n/ � AP . Thus, .M n WK M n/P � AP . The reverse inclusion is clear, and
so .M n WK M n/P D AP . Suppose next that P � M n. We claim that P is a common
ideal of A and .M n WK M


n/.
To simplify the notation in this paragraph, we putB WD .M n WK M


n/. AsM n 6� P
and M n � .A WK B/, we have that .A WK B/ 6� P . By a well-known result (cf. [14,
Exercise 41 (b), page 46]), it follows that there is a unique prime ideal of B that lies
over P . Therefore, PB \ A D P . As P � M n, we have PB D P.M n WK M n/ �
M n � A, and so PB D PB\A D P . In other words, P is an ideal of B , thus proving
the above claim.


It now follows easily that the inclusion mapA! .M n WK M
n/ is prime at P if and


only if P is a prime ideal of .M n WK M n/. (Use [8, Proposition 2.2 (c)] for the “only
if” assertion and the basic definitions for the “if” assertion.) The final equivalence in
the assertion follows immediately from [18, Corollary 1.5].


(d) Note that if � 2 .M WK M/, thenM � I� . IfD WD ¹u 2 KjM � Iuº, it follows
that .M WK M/ � D. To prove the reverse inclusion, let u 2 D. Then Mu is an ideal
of A. IfMu D A, thenM is invertible, hence a principal ideal of A [14, Theorem 59],
which is absurd. Hence Mu �M for each u 2 D, and so D � .M WK M/.


The following is an interesting consequence of Proposition 6.1(c). If .A;M/ is a
quasilocal i -domain, then the inclusion map A ! .M WK M/ is a prime morphism if
and only if Spec.A/ n ¹M º D Spec.M WK M/ n ¹N º, where N denotes the unique
maximal ideal of .M WK M/.


Proposition 6.2. Let .A;M/ be a finite-dimensional quasilocal i -domain with integral
closure V . (Note that V is a valuation domain.) Let P be a nonzero prime ideal of A
and let n be a positive integer. Then:


(a) dim.A/ � dim.P n WK P n/ � ht.P /.


(b) P nAP D P n , ht.P / D dim.P n WK P n/ , VP is the integral closure of
.P n WK P


n/.


(c) dim.A/ D dim.P n WK P n/ , .P n WK P n/ � V , .P n WK P n/ is integral
over A.


Proof. For simplicity of notation, we let B WD .P n WK P n/ in the proof. If P D M ,
all the assertions follow from the final conclusion in Proposition 6.1 (a). Suppose
henceforth that P �M .
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(a) If 0 � P1 � � � � � Pn�1 � M is the prime spectrum of A, we have P D Pk
with 1 � k � n � 1. By [18, Proposition 1.3 (a), (b)],


0 � ..P1 \ P
n/ WK P


n/ � � � � � ..Pk�1 \ P
n/ WK P


n/


is a strictly increasing chain of prime ideals of B , dominating 0 � � � � � Pk . As
P nB D P n ¤ B , we have PB ¤ B , and so the fact that A � B satisfies GD (because
A is a going-down domain) provides N 2 Spec.B/ such that N \ A D P . It follows
via going-down that dim.B/ � ht.P /. Moreover, by Proposition 6.1 (b), we have
AQ � B � VQ, where Q WD N 0 \ A; N 0 denotes the maximal ideal of B , and VQ is
the integral closure of B . To conclude the proof of (a), note that


dim.B/ D dim.B 0/ D dim.VQ/ � dim.V / D dim.A0/ D dim.A/:


(b) We continue using the notation that was introduced in the proof of (a). As N �
N 0, we have that P D N \ A � N 0 \ A D Q, whence VQ � VP . Suppose first that
P nAP D P n. Then AP � .P n WK P n/ D B , and so VQ D B 0 � .AP /


0 D .A0/P D
VP � VQ, whence VP D VQ D B 0. However, it follows easily that dim.VP / D
ht.P / since the inclusion map A ! B is an i -morphism that satisfies GD. Thus,
ht.P / D dim.B 0/ D dim.B/.


Suppose next that dim.B/ D ht.P /. By the above reasoning, ht.P / D dim.VP /,
and so dim.VQ/ D dim.B 0/ D dim.B/ D ht.P / D dim.VP /. As VP is a localization
of (the finite-dimensional valuation domain) VQ, we must have VP D VQ D B 0.


Finally, it remains to show that if B 0 D VP , then P nAP D P n. Assume that
B 0 D VP . We will show that AP � .P n WK P n/. Let r 2 A n P . Then r is a
unit in AP , hence a unit in VP D B 0, and hence by integrality (more specifically, the
Lying-over Theorem) a unit in B D .P n WK P n/. It follows that .1=r/P n D P n for
all r 2 A n P , and so AP � .P n WK P n/.


(c) We continue using the notation that was introduced in the proof of (a). It is clear
that: B � V ) B integral over A ) dim.A/ D dim.B/. It remains only to prove
that if dim.A/ D dim.B/, then B � V . Suppose that dim.A/ D dim.B/. It follows
easily from Proposition 6.1(b) that the maximal ideal of B must lie over M and that
B � VM D V , as desired.


Corollary 6.3. Let .A;M/ be a quasilocal i -domain of finite (Krull) dimension, and
let K be the quotient field of A. Then:


(a) The following conditions are equivalent:


(1) A is an almost-divided domain;


(2) For each P 2 Spec.A/ n ¹0;M º, there is a positive integer n such that
ht.P / D dim.P n WK P n/.


(b) A is a divided domain if and only if A is a straight domain and for each nonzero
nonmaximal prime idealP ofA, there exists a positive integer n such that ht.P /D
dim.P n WK P n/.
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Proof. For (a), use Proposition 6.2 (b). As for (b), it follows from (a) that the assertion
comes down to the following: A is a divided domain if and only if A is a straight
domain and an almost-divided domain. The “if” assertion of this formulation follows
from the proof of Proposition 5.3, while the “only if” assertion follows by combining
Proposition 5.3 with the fact that each divided domain is a quasi-divided domain.


Remark 6.4. Consider a two-dimensional quasilocal i -domain A, with integral closure
a valuation domain V and quotient fieldK. Let P denote the only height 1 prime ideal
of A. There are two cases: (1) A is not an almost-divided domain; (2) A is an almost-
divided domain.


By the earlier results in this section, (1), dim.P n WK P n/ D 2 for each positive
integer n , .P n WK P n/ is integral over A for each positive integer n. If (1) holds,
then A is not a divided domain.


(2), dim.P n WK P n/ D 1 for some positive integer n. We do not know if (2)
implies that A is a divided domain. We close with a more general open question: does
there exist an almost-divided domain which is not a divided domain?
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On TV-domains
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Abstract. We give some new characterizations of TV-domains and answer some open questions on
these domains.
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1 Introduction


In 1988 E. Houston and M. Zafrullah [12] introduced the notion of TV-domains, i.e.,
domains in which each t -ideal is divisorial. This concept is extremely useful in study-
ing some classical integral domains such as Mori and Krull domains. This work was
also a starting point of the investigations of several analogous concepts, see for instance
[9], [15], [16] and [5]. In this note we give some new characterizations of TV-domains
and answer some questions left open in [12].


Let D be an integral domain with quotient field K. Let F.D/ denote the set of all
nonzero fractional ideals of D and f .D/ denote the subset of finitely generated mem-
bers of F.D/. We shall use the language of star operations. The reader is referred to
[7, Sections 32, 34] and [13] for the properties of star operations, which we shall use
freely. Let I 2 F.D/. Recall that the v-closure of I is given by Iv WD .I�1/�1 and
the t -closure of I by It D [¹Jv j J is a finitely generated nonzero subideal of I º.
A fractional ideal I is said to be a v-ideal or divisorial (respectively, a t -ideal) if
I D Iv (respectively, I D It ). The ideal I is v-finite or of finite type if Iv D Jv
for some J 2 f .D/. The v- and t -closure are the best known non trivial star op-
erations. Recall that a star operation � on D is of finite type if I � D [¹J � j
J is a finitely generated nonzero subideal of I º for all I 2 F.D/. Noting that if J 2
F.D/ is finitely generated Jt D Jv we conclude that the t -operation is of finite type. A
prime ideal that is also a t -ideal is called a t -prime ideal. The set of (integral) t -ideals
of D has maximal elements under inclusion, called t -maximal ideals, and these ideals
are prime. We denote by t -Max.D/ the set of t -maximal ideals of D.


Recently a new star operation called the w-operation has received much more in-
terest. The w-operation on D is defined by Iw D \¹IDM j M 2 t -Max.D/º (equiv-
alently, Iw D [¹.I W H/ j H 2 f .D/ andHv D Dº for all I 2 F.D/). The
w-operation is of finite type. For more details on the w-operation, see [11], [17] and
[18]. For each I 2 F.D/, we have I � Iw � It � Iv , the inclusions may be strict
(cf. [19, page 105] and [15, Proposition 1.2]).
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An integral domainD is a Prüfer v-multiplication domain (PVMD) if every finitely
generated nonzero fractional ideal I ofD is t -invertible (i.e., .II�1/t D D). It is well
known that D is a PVMD if and only if for each t -maximal ideal M of D, DM is a
valuation domain [8, Theorem 5]. Finally, when a property is satisfied by the quotient
rings of a domain D at each of its t -maximal ideals, we say that such a property is
t -local.


2 Main results


Recall that a domain D is divisorial (respectively, w-divisorial) if v D d (respectively,
v D w) onD. Note that for a domain, divisorial) w-divisorial) TV, these implica-
tions cannot be reversed in general, see [15, Example 2.7, (2)–(3)]. A domain D such
that w D t is called a T W -domain [15]. Thus a TV-domain is a w-divisorial domain if
and only if it is a TW-domain. In [10] (respectively, [5]), it was shown that the property
of divisoriality (respectively, w-divisoriality) is local (respectively, t -local). Moreover,
a complete characterization of these properties in terms of their localization were es-
tablished, see [3, Proposition 5.4] and [5, Theorem 1.5]. In [12], the authors proved TV
analogues of several results of [10]. They remarked that some properties of divisorial
domains do not carry over to those of TV-domains and left some questions open. Al-
most all of these questions have been solved and developed, but the question of whether
the TV-property is t -local remained open. The main result of this paper is to give an
affirmative answer to this problem. More precisely, we give a new characterization of
the TV-property in terms of its t -localization.


Lemma 2.1. LetD be an integral domain andM a prime ideal ofD. Then the follow-
ing are equivalent:


(1) For every family ¹I˛º˛ of divisorial integral ideals of D such that \I˛ 6D 0,
\I˛ �M ) I˛ �M for some ˛.


(2) For every family ¹I˛º˛ of divisorial (fractional) ideals of D such that \I˛ 6D 0,
.\I˛/DM D \.I˛DM /.


(3) For every nonzero ideal I of D, .IDM /�1 D I�1DM . In particular, .IDM /v D
IvDM .


Proof. (1) ) (2). Clearly .\I˛/DM � \.I˛DM /. For the opposite inclusion, let
x 2 \.I˛DM /. Then, for each ˛, there exists s˛ 2 D nM such that s˛x 2 I˛ . Set
J˛ D .I˛ WD x/, for each ˛. The J˛’s form a collection of divisorial ideals of D such
that J˛ ª M for all ˛ (since s˛ 2 J˛). We claim that \J˛ 6D 0. Let y 2 D such that
0 6D y 2 \I˛ and set x D z=t , where 0 6D t; z 2 D. Then ytx D yz 2 \I˛ and
hence yt 2 J˛ for all ˛. Hence \J˛ 6D 0. Thus \J˛ ª M . Let s 2 \J˛ such that
s … M . Write x D .xs/=s. Since s 2 \J˛ , sx 2 \I˛ . So x 2 .\I˛/DM . Hence
\.I˛DM / � .\I˛/DM .


(2)) (1). Suppose that there exists a family ¹I˛º˛ of integral divisorial ideals of
D such that \I˛ 6D 0 and \I˛ � M , but I˛ ª M for all ˛. Then .\I˛/DM D
\.I˛DM / D DM , which is impossible.
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(2), (3). See [1, Lemma 5.5].


We call an ideal I of D transportable through a family X of prime ideals of D if
.IDM /


�1 D I�1DM for all M 2 X ([20, page 437]). It is well known that nonzero
finitely generated ideals are transportable through Spec.D/. Note that an ideal trans-
portable through a prime ideal M satisfies the equivalent conditions of Lemma 2.1.


The following theorem gives an affirmative answer to the open question in [12, page
298] mentioned above.


Theorem 2.2. Let D be an integral domain. Then the following are equivalent:


(1) D is a TV-domain;


(2) D is a t -locally TV-domain and every nonzero ideal is transportable through
t -Max.D/.


Proof. (1)) (2). Let M be a t -maximal ideal of D. We first show that M satisfies
(1) of Lemma 2.1. Let ¹I˛º˛ be a family of divisorial integral ideals of D such that
\I˛ 6D 0 and \I˛ � M , but I˛ ª M for all ˛. Let A D \I˛ . Then A is a t -ideal of
D and A � M , which is impossible by [12, Lemma 1.2]. By Lemma 2.1, it follows
that every ideal is transportable through t -Max.D/. To complete the proof, let I be a
t -ideal of DM . Then I \D is a t -ideal of D and so J WD I \D D Jv because D is
a TV-domain. But then I D JvDM D .JDM /v D Iv . Thus every t -ideal of DM is a
v-ideal.


(2) ) (1). Consider the map � W F.D/ ! F.D/, I � D \¹.IDM /t j M 2


t -Max.D/º. It is not hard to check that � is a star operation on D. Whence � � v.
Let I 2 F.D/. Then .IDM /t D .IDM /v D IvDM , for each M 2 t -Max.D/.
Hence Iv � I �. Consequently, � D v. Now, let x 2 Iv D I �. Then for every
M 2 t -Max.D/, there exists JM 2 f .D/, JM � I , such that x 2 .JMDM /v .
Moreover, we have .JMDM /v D .JM /vDM D .JM /tDM . Hence x 2 .JM /tDM
for all M 2 t -Max.D/. Set J D


P
JM . Then x 2 JtDM for all M 2 t -Max.D/.


Thus x 2 \¹JtDM j M 2 t -Max.D/º D Jt � It . Hence Iv � It . Therefore D is a
TV-domain.


Remark 2.3. (1) The TV-property of a domain D need not be inherited by a quotient
ring of D at a (t -) prime ideal. To see this, recall that a valuation domain is diviso-
rial if and only if its maximal ideal is a principal ideal [10, Lemma 5.2]. The same
characterization for valuation TV-domains holds [12, Remark 1.5]. The example as in
[10, Remark 5.4] will do the job. That is, we take V a rank two valuation domain with
maximal principal ideal M and a minimal prime N such that VN is not discrete.


(2) A domain D which satisfies the transportable property through t -Max.D/ is not
necessarily a TV-domain. Indeed, let V be a valuation domain with idempotent max-
imal ideal M . The transportable property through t -Max.V / D ¹M º in V is trivial.
But V is not a TV-domain since M is not principal.


(3) A TV-domain which is t -locally divisorial is a w-divisorial domain, see [5, Theo-
rem 1.5].
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Recall that a nonempty family X of nonzero prime ideals ofD is of finite character
if each nonzero element of D belongs to at most finitely many members of X and that
X is said to be independent if no two members of X contain a common nonzero prime
ideal (cf. [1]). The domain D has finite character (respectively, t -finite character) if
Max.D/ (respectively, t -Max.D/) is of finite character. If the set Max.D/ is indepen-
dent of finite character, the domain D is called an h-local domain. A domain D such
that t -Max.D/ is independent of finite character is called in [1] a weakly Matlis do-
main; hence D is a weakly Matlis domain if it has t -finite character and each t -prime
ideal is contained in a unique t -maximal ideal. In a T V -domain the t -finite character
property is satisfied [12, Theorem 1.3], but a t -prime ideal may be contained in more
than one t -maximal ideal [12, Example 4.1], and hence a TV-domain is not in general
a weakly Matlis domain. We recall the following lemma from [5]:


Lemma 2.4 ([5, Lemma 1.2]). Let D be an integral domain. The following conditions
are equivalent:


(1) D is a weakly Matlis domain;


(2) For each t -maximal ideal M of D and a collection ¹I˛º˛ of w-ideals of D such
that \˛I˛ ¤ 0, if \˛I˛ �M , then I˛ �M for some ˛.


Corollary 2.5. Let D be an integral domain such that each t -prime ideal is contained
in a unique t -maximal ideal. Then the following are equivalent:


(1) D is a TV-domain;


(2) D is a t -locally TV-domain and has t -finite character.


Proof. (1)) (2). This follows from Theorem 2.2 and [12, Theorem 1.3].
(2)) (1). This is a consequence of Lemmas 2.1 and 2.4 and Theorem 2.2.


Remark 2.6. (1) It was mentioned in [12, Remark 4.2] that by a similar proof like that
one of [10, Theorem 3.6], we can show that a TV-domain in which each t -prime ideal is
contained in a unique t -maximal ideal is a t -locally TV-domain. This is also justified
by the fact that weakly Matlis domains satisfy the transportable property through t -
maximal ideals (Lemmas 2.1 and 2.4). However, in [12, Example 4.1], the authors
give an example of a Noetherian domain (and hence a TV-domain) which has a t -prime
ideal contained in two t -maximal ideals. Note that a Noetherian domainD satisfies the
transportable property through Spec.D/. So there is a Noetherian domain that is not
a weakly Matlis domain. It would be instructive to have some more examples of TV-
domains that are not weakly Matlis.


(2) An important class of t -locally TV-domains are the generalized Krull domains. In
fact they are t -locally divisorial domains [4, Remark 3.10]. In particular, generalized
Dedekind domains are (t -)locally TV-domains. Since in a PVMD w D t [14, Theorem
3.1], then a PVMD is a TV-domain if and only if it isw-divisorial. Thus by [5, Theorem
3.5], a generalized Krull domain D is a TV-domain if and only if each t -prime ideal
of D is contained in a unique t -maximal ideal of D. However, a generalized Krull
domain need not be a TV-domain, see the example below.
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Example 2.7. A t -locally TV-domain which has t -finite character need not be a TV-
domain. Consider a finite family of rank one DVRs ¹ViºniD1, n � 2, with the same quo-
tient field. Let ¹Miºi denote their corresponding maximal ideals. Then D D \Vi is a
Dedekind domain with a finite set of maximal ideals, say ¹miºi . LetK denote the quo-
tient field of D. Set T D KŒŒt �� D K CM and R D DCM . By [6, Theorem 4.1], R
is a generalized Dedekind domain, and hence (t -)locally TV-domain. The (t-)maximal
ideals of R are ¹mi CM ºniD1. In particular, R has (t -)finite character. We claim that
R is not a TV-domain. Otherwise, R will be a divisorial domain since it is a Prüfer
domain. But the ideal M is contained in the maximal ideals mi C M with n � 2,
which is impossible by [10, Theorem 2.4].


Another question in [12] which needs more development is the case of integrally
closed TV-domains. As an analogue of the fact that an integrally closed divisorial
domain is Prüfer [10, Theorem 5.1], one may suspect that an integrally closed TV-
domain is a PVMD. However, in [12, Remark 3.2] the authors give an example showing
that this is not the case. Nevertheless, by a suitable choice of integrality we can get a
PVMD. Recall that the pseudo-integral closure of a domain D is the overring QD D
¹.Jv W Jv/ j J 2 f .D/º. A domain D is said to be pseudo-integrally closed if
QD D D. A pseudo-integrally closed domain is integrally closed. For more details,


see [2].


Theorem 2.8. Let D be an integral domain. The following conditions are equivalent:


(1) D is a pseudo-integrally closed TV-domain;


(2) D is an integrally closed w-divisorial domain;


(3) D is a weakly Matlis PVMD and each t -maximal ideal of D is t -invertible.


Proof. (1)) (2). Let I 2 f .D/. Let x 2 .II�1/�1, then xII�1 � D which implies
that xIv � Iv . Thus x 2 QD D D. Hence .II�1/�1 D D, that is .II�1/v D D.
Since D is a TV-domain, .II�1/t D D. Hence D is a PVMD. Whence w D t on D.
Therefore, D is an integrally closed w-divisorial domain.


(2), (3). See [5, Theorem 3.2].
(3)) (1). By .2/, .3/,D is a TV-domain and one can easily check that a PVMD


is pseudo-integrally closed (see [2]).


Acknowledgments. I would like to thank the referees for their comments and sugges-
tions.
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Integral basis of cubic number fields


Lhoussain El Fadil


Abstract. In this paper, for a cubic number field K, a p-integral basis of K is given for each prime
integer p. The discriminant dK and an integral basis of K are then obtained from its p-integral
bases.


Keywords. p-integral bases, index, Newton polygon.
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Introduction


Let K be a cubic number field defined by an irreducible polynomial P.X/ D X3 C
aX2 C bX C c 2 ZŒX�, ˛ a complex root of P , ZK the ring of integers of K, dK its
discriminant and ind.P / D ŒZK W ZŒ˛�� the index of ZŒ˛� in ZK . It is well known that
4 D NK=Q.P 0.˛// D .ind.P //2dK , where4 is the discriminant of P .


Let p be a prime integer. A p-integral basis of K is a set of integral elements
¹w1; w2; w3º such that p does not divide the index ŒZK W ƒ�, where ƒ D P3


iD1 Zwi .
In that case, we say that ƒ is a p-maximal order of K. A triangular p-integral basis of
K is a p-integral basis of K .1; w2; w3/ such that w2 D ˛Cx1


pr1 and w3 D ˛2Cy2˛Cx2
pr2 .


In Theorem 1.1, for every prime p, a triangular p-integral basis of K is given. For
every prime p and .x;m/ 2 Z2, let xp WD x


pvp.x/ and xŒm� denote the remainder of the
Euclidean division of x by m.


In this paper, an improvement of the index theorem, announced in [3], is made. This
will allow us to give a new detailed proof of [1, Theorem 2.1]. Remark 3.4 provides a
method to generalize these results to any cubic number field defined by an irreducible
polynomial P.X/ D X3 C aX2 C bX C c 2 ZŒX�.


1 Newton polygon


Let p be a prime integer such that p2 divides 4 and �.X/ is an irreducible divisor of
P.X/ modulo p. Set m D deg.�.X// and let


P.X/ D a0.X/�.X/
t C a1.X/�.X/


t�1 C � � � C at .X/
be the �.X/-adic development of P.X/ (every ai .X/ 2 ZŒX�, deg ai .X/ < m). To
any coefficient ai .X/ we attach the integer ui D vp.ai .X// and the point of the plane
Pi D .i; ui /, if ui <1.


This work is supported by the Spanish Ministry of Higher Education (Ref: SB 2006-0128).
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The �-Newton polygon of P.X/ is the lower convex envelope of the set of points
Pi D .i; ui /, ui < 1, in the cartesian plane. This (open) polygon is denoted by
N�.P /. For instance, for a �-development of degree 7 with ui D 0; 3; 0;1; 2; 2; 4; 6
for i D 0; 1; : : : ; 7, the polygon is N : the �.X/-Newton polygon of P.X/.
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The length, `.N�.P //, and height, h.N�.P //, of the polygon are the respective
lengths of the projection to the horizontal and vertical axes. Clearly,


degP.X/ D m`.N�.P //C deg a0.X/:


The �-Newton polygon is the union of different adjacent sides S1; : : : ; St with increas-
ing slopes �1 < �2 < � � � < �t . We shall write N�.P / D S1 C � � � C St . The points
joining two different sides are called the vertexes of the polygon. The polygon deter-
mined by the sides of positive slope of N�.P / is called the principal part �-polygon
of P.X/ and denoted by NC� .P /. The length and height of NC� .P / are the respective
lengths of the projection to the horizontal and vertical axes.


For instance, the polygon of the figure has three sides S1; S2; S3 with slopes 0 <
2=3 < 2 and NC� .P / D S2 C S3. For every side S of the principal part NC� .P /. The
length, `.S/, and height, h.S/, of S are the respective lengths of the projection to the
horizontal and vertical axis. The slope of S is the quotient h.S/=`.S/. The positive
integer d.S/ WD gcd.h.S/; `.S// is called the degree of S . Denote d WD d.S/ the
degree of S , h WD h.S/=d and e WD `.S/=d positive coprime integers such that h=e is
the slope of S . Let s D b n


m
c, where n D deg.P /, m D deg.�/ and b n


m
c is the integral


part of n
m


. For every 1 � j � s, let Hj be the length of the projection of Pj to the


horizontal axis, hj its integral part and tj D red
�aj .X/


p
hj


�
(tj D 0 if Pj 62 S ). If i is the


abscissa of the initial point of S , let PS .Y / be the residual polynomial attached to S
to be


PS .Y / WD tiY d C tiCeY d�1 C � � � C tiC.d�1/eY C tiCde 2 F� ŒY �:


The following theorem is an improvement and a special case for cubic number fields
of the theorem of index (in [3, p. 328], it was supposed that Nf D X r modulo p and
NC.f / is one side).
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Theorem 1.1. Let p be a prime integer, f D X3 C aX2 C bX C c a polynomial of
ZŒX�, and Nf D X r � �.X/ its factorization modulo p, where r � 2, vp.a/ D 0 or
vp.b/ � 1 or vp.c/ � 2. Let N be the X -Newton polygon of f and NC its principal
part. Then indN .f / D h1 C h2 WD the number of points with integer coordinates that
lie below the polygon N and whose abscissas satisfy 1 � j � 2, excluding those on
both axes.


If NC D S1 C S2 such that for every i , PSi
.Y / is square free, then vp.ind.f // D


indN .f / and .1; ˛Ca
ph1


; ˛
2Ca˛


ph2
/ is a p-integral basis of ZK .


Proof. Since vp.a/ D 0 or vp.b/ � 1 or vp.c/ � 2, we have h1 D 0 and let h2 D h,
wh D ˛2Ca˛


ph . Then chwh
.X/ D X3 C b


phX
2 C ac


p2h is the characteristic polynomial
of the endomorphism lwh


of K, defined by the multiplication of wh. To show that
wh 2 ZK , it suffices to show that vp.b/ � h and vp.ac/ � 2h.


(i) vp.a/ � 1, vp.b/ � 2 and vp.c/ D 2. Since h2 D 1, w1 2 ZK , vp.ind.f // D 1
and .1; ˛; ˛


2Ca˛
p


/ is a p-integral basis of ZK .


(ii) vp.a/ � 1, vp.b/ � 2 and vp.c/ D 1. Since h2 D 0, vp.ind.f // D 0 and
.1; ˛; ˛2/ is a p-integral basis of ZK .


(iii) vp.a/ D 0, vp.b/ � 1 and (2vp.b/ D vp.c/ and vp.b2 � 4ac/ D 0) or 2vp.b/ >
vp.c/. Then h2 D bvp.c/


2 c and vp.ind.f // D h2. Since 2vp.b/ � vp.c/, ph2


divides b and p2h2 divides ac. Thus, wh2 2 ZK and .1; ˛; ˛
2Ca˛


ph2
/ is a p-integral


basis of ZK .


(iv) vp.a/ D 0, vp.b/ � 1 and 2vp.b/ < vp.c/ � 2. Then h2 D vp.b/, vp.ind.f // D
vp.b/, wh2 2 ZK and .1; ˛; ˛


2Ca˛


ph2
/ is p-integral basis of ZK .


2 p-integral basis of a cubic number field


In this section, a new detailed proof, based on Newton polygon, of Theorem 2.1 an-
nounced in [1] is given.


Lemma 2.1. Let K D QŒ˛�, where ˛ is a complex root of an irreducible polynomial
P.X/ D X3 C bX C c 2 ZŒX�, p be a prime integer and w D z˛2Cy˛Cx


pi 2 K. Then


ch D X3 C A2.w/


pi X2 C A1.w/


p2i X C A0.w/


p3i is the characteristic polynomial of lw the
endomorphism of K defined by lw.x/ D wx, where


A0.w/ D �.x3 � 2bx2z C 3cxyz C b2xz2 C c2z3 C bxy2 � cy3/;


A1.w/ D 3x2 � 4bxz C b2z2 C 3cyz C by2/;


A2.w/ D 2bz � 3x:


In particular, w is integral if and only if, for every 1 � j � 2, Aj .w/


pji 2 Z.
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The following theorem gives us a triangular p-integral basis of K, vp.4/ and
vp.dK/ for every prime integer p.


Theorem 2.2. Let K D QŒ˛�, where ˛ is a complex root of an irreducible polynomial
P.X/ D X3 C bX C c 2 ZŒX� and p � 5 be a prime integer. Under the above
hypotheses, a p-integral (resp., a 2-integral, resp., a 3-integral) basis of ZK is given
in Table A (resp., Table B, resp., Table C) below.


case conditions vp.4/ p-integral basis vp.dK/


1 vp.c/ D 2; vp.b/ � 2 4 .1; ˛; ˛
2


p
/ 2


2 vp.c/ D 2; vp.b/ D 1 3 .1; ˛; ˛
2


p
/ 1


3 vp.c/ D 1; vp.b/ � 1 2 .1; ˛; ˛2/ 2
4 vp.c/ D 0; vp.b/ � 1 0 .1; ˛; ˛2/ 0
5 vp.b/ D 0; vp.c/ � 1 0 .1; ˛; ˛2/ 0
6 vp.bc/ D 0 ?? .1; ˛; ˛


2Ct˛�2t2
pr / vp.4/ Œ2�


r D bvp.4/


2 c,
2bt D �3c Œp2rC1�


Table A


case conditions v3.4/ 3-integral basis v3.dK/


1 v3.c/ D 2; v3.b/ D 2 6 .1; ˛; ˛
2


3 / 4
2 v3.c/ D 2; v3.b/ � 3 7 .1; ˛; ˛


2


3 / 5
3 v3.c/ � 2; v3.b/ D 1 3 .1; ˛; ˛


2


3 / 1
4 v3.c/ D 1; v3.b/ D 1 3 .1; ˛; ˛2/ 3
5 v3.c/ D 1; v3.b/ � 2 5 .1; ˛; ˛2/ 5
6 v3.b/ D 0 0 .1; ˛; ˛2/ 0
7 v3.c


2 � 1/ � 2; v3.b/ � 2; 3 .1; ˛; ˛
2�c˛C1


3 / 1
8 v3.c


2Cb�1/ � 2; b D 3 Œ9� 3 .1; ˛; ˛
2�c˛C1


3 / 1
9 v3.c


2Cb�1/ D 1; b D 3 Œ9� 3 .1; ˛; ˛2/ 3
10 v3.c


2Cb�1/ D 1; b D 6 Œ9� 4 .1; ˛; ˛2/ 4
11 v3.c


2Cb�1/ D 2; b D 6 Œ9� 5 .1; ˛; ˛
2�c˛C1


3 / 3


12 v3.c
2Cb�1/ � 3; b D 6 Œ9� � 6 .1; ˛Cc3 ; ˛


3Cy˛Cx
3r / v3.4/ � 2r


r D b42 c � 1,
x D 2b3 Œ3r �,


2b3y D �c Œ3r �


Table B
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case conditions v2.4/ 2-integral basis v2.dK/


1 v2.c/ D 2, v2.b/ � 2 4 .1; ˛; ˛
2


2 / 2
2 v2.c/ D 2, v2.b/ D 1 4 .1; ˛; ˛


2


2 / 2
3 v2.c/ D 2; b D 1 Œ4� 2 .1; ˛; ˛2/ 2
4 v2.c/ D 2; b D 3 Œ4� 2 .1; ˛; ˛


2C˛
2 / 0


5 v2.c/ D 1; v2.b/ � 1 2 .1; ˛; ˛2/ 2
6 v2.c/ D 1; b D 3 Œ4� 3 .1; ˛; ˛2/ 3
7 v2.c/ D 1; b D 1 Œ4�, 2rC1 .1; ˛; ˛


2�t˛�2t2
2r�1 /, 3


4 D 2r C 1 (bt D �3c2 Œ2r �)
8 v2.c/ D 1; b D 1 Œ4�, 2r .1; ˛; ˛


2�t˛�2t2
2r�1 /, 2


4 D 2r;42 D 3 Œ4� (bt D �3c2 Œ2r�1�)
9 v2.c/ D 1; b D 1 Œ4�, 2r .1; ˛; ˛


2�t˛�2t2
2r /, 0


4 D 2r;42 D 1 Œ4� (bt D �3c2 Œ2r �)
10 v2.b/ � 1; v2.c/ D 0 0 .1; ˛; ˛2/ 0
11 v2.bc/ D 0 0 .1; ˛; ˛2/ 0


Table C


Proof. First, 4 D �.27c2 C 4b3/ and the proof is based on the Newton polygon. For
every prime p and for every P D X3 C a1X


2 C a2X C a3, let ui D vp.ai /, NP .X/
the reduction of P modulo p, N the X -Newton polygon of P and NC its principal
part.


(i) Case 1. If vp.c/ D 2 and vp.b/ � 2, then N D S is one side such that FS .Y / D
Y C cp . Thus, vp.ind.P // D indN .P / D 1, .1; ˛; ˛


2


p
/ is a p-integral basis of ZK . Let


b D p2B and c D p2C , where vp.C / D 0 and vp.B/ � 0. Then4 D �p4.4B3p2C
27C 2/. It follows that: if p ¤ 3, then vp.4/ D 4 and vp.dK/ D 2. For p D 3, if
v3.b/ � 3, then v3.4/ D 7 and vp.dK/ D 5. If v3.b/ D 2, then v3.4/ D 6 and
v3.dK/ D 4.


(ii) Case 2. If vp.c/ D 2 and vp.b/ D 1, then N D S1 C S2 such that every FSi
.Y /


is of degree 1. Thus, vp.ind.P // D indN .P / D 1, .1; ˛; ˛
2


p
/ is a p-integral basis of


ZK . Let b D pB and c D p2C (vp.BC/ D 0). Then 4 D �p3.4B3 C 27C 2p/. It
follows that: if p ¤ 2, then vp.4/ D 3 and vp.dK/ D 1. For p D 2, then v2.4/ D 4
and vp.dK/ D 2.


(iii) Case 3. If vp.c/ � 1 and vp.b/ D 0, then NF .X/ D X.X2 C b/. It follows that:
if p ¤ 2, then NF is square free, .1; ˛; ˛2/ is a p-integral basis of ZK and vp.dK/ D
vp.4/ D 0.


For p D 2, let P.X/ D F.X C 1/ D X3 C AX2 C BX C C such that A D 3,
B D 3C b and C D 1C b C c. Then v2.A/ D 0, v2.B/ � 1 and v2.C / � 1.
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(a) vp.c/ � 2.
If b D 1 Œ4�, then v2.C / D 1, .1; ˛; ˛2/ is a 2-integral basis of ZK and v2.dK/ D
v2.4/ D 2.


If b D 3 Œ4�, then v2.B/ D 1 and v2.C / � 2. So, .1; ˛; ˛
2C˛
2 / is a 2-integral basis


of ZK , v2.4/ D 2 and v2.dK/ D 0.


(b) vp.c/ D 1.
If b D 3 Œ4�, then v2.C / D 1, .1; ˛; ˛2/ is a 2-integral basis of ZK and v2.dK/ D
v2.4/ D 2.
If b D 1 Œ4�, then v2.B/ � 2 and v2.C / � 2. Let t 2 Z such that v2.btC3c2/ D s
(bt D �3c2C 2sK) and P.X/ D F.X C t / D X3CAX2CBX CC such that
A D 3t , B D 3t2 C b and C D t3 C bt C c. Then b2B D �4


4 � 9:2sC1Kc2


modulo 22s and b3C D c2
4


4 � 44 :2sK � 9:22sK2c2 modulo 23s . It follows that:


(1) If vp.4/ D 2rC1, then for s D r , we have v2.B/ D rC1, v2.C / D 2r�1.
Thus, v2.ind.f // D r�1, v2.dK/ D 3 and .1; �; �


2C3t�
2r�1 / is a 2-integral basis


of ZK , where � D ˛ � t .
(2) If vp.4/ D 2r , then for s D r � 1, we have v2.B/ D r and b3C D


22r�2c2.42 � K2/ modulo 23r�3. Since K2 D 1 modulo 4, it follows that:
if 42 D 1 modulo 4, then v2.C / � 2r , v2.ind.f // D r , v2.dK/ D 0 and
.1; �; �


2C3t�
2r / is a 2-integral basis of ZK , where � D ˛ � t .


If42 D 1 modulo 4, then v2.C / D 2r�1, v2.ind.f // D r�1, v2.dK/ D 2
and .1; �; �


2C3t�
2r�1 / is a 2-integral basis of ZK .


(iv) Case 4. vp.c/ D 1 and vp.b/ � 1. Since vp.c/ D 1, N D S is one side, FS .Y /
is of degree 1. Therefore, vp.ind.P // D indN .P / D 0, .1; ˛; ˛2/ is a p-integral basis
of ZK .


Let b D pB and c D pC (vp.C / D 0 and vp.B/ � 0). Then4 D �p2.4B3p2 C
27C 2/. It follows that: if p ¤ 3, then vp.4/ D vp.dK/ D 2. For p D 3, if
v3.b/ � 2, then v3.4/ D v3.dK/ D 5. If v3.b/ D 1, then v3.4/ D v3.dK/ D 3 and
vp.dK/ D vp.4/ D 2.


(v) Case 5. If vp.c/ D 0 and vp.b/ � 1, then NF .X/ D X3 C c. So, if p ¤ 3, then NF
is square free, .1; ˛; ˛2/ is a p-integral basis of ZK and vp.dK/ D vp.4/ D 0.


For p D 3, let P.X/ D F.X � c/ D X3 C AX2 C BX C C , where A D �3c,
B D 3c2 C b and C D �c.c2 C b � 1/. Then v3.A/ D 1, v3.B/ � 1 and v3.C / � 1.
It follows that:


(a) If v3.b/ � 2 and v3.c
2 � 1/ � 2, then v3.B/ D 1 and v3.C / � 2. Thus,


v3.ind.F // D 1, .1; ˛; ˛
2�c˛C1


3 / is a 3-integral basis of ZK and v2.4/ D 3 and
v2.dK/ D 1.


(b) If v3.b/ D 1 and v3.c
2 C b � 1/ D 1, then v3.C / D 1, .1; ˛; ˛2/ is a 3-integral


basis of ZK and if b D 3 Œ9�, then v2.dK/ D v2.4/ D 3. If b D 3 Œ9�, then
v2.dK/ D v2.4/ D 4


(c) If b D 3 Œ9� and v3.c
2 C b � 1/ � 2, then v3.B/ D 1 and v3.C / � 2. Thus,
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v3.ind.F // D 1, .1; ˛; ˛
2�c˛C1


3 / is a 3-integral basis of ZK , v2.4/ D 3 and
v2.dK/ D 1.


(d) If b D 6 Œ9� and v3.c
2 C b � 1/ D 2, then v3.ind.F // D 1, .1; ˛; ˛


2�c˛C1
3 / is a


3-integral basis of ZK , v2.4/ D 5 and v2.dK/ D 3.
(e) If b D 6 Œ9� and v3.c


2Cb�1/ � 3, then ˛Cc
3 2 ZK . Let r D b42 c�1 and .x; y/ 2


Z2 such that x D 2b3, 2b3y D �c modulo 3r and w D ˛3Cy˛Cx
3r . Replacing


the Ai .w/ as defined in Lemma 2.1, we have A2.w/ D 0 modulo 3r , A1.w/ D 0
modulo 32r and A0.w/ D 0 modulo 33r . Finally w 2 ZK , v3.ind.f // D r ,
.1; ˛Cc3 ; ˛


3Cy˛Cx
3r / is a 3-integral basis of ZK and v3.dk/ D v3.4/ Œ2�.


(vi) Case 6, vp.bc/ D 0, NF .X/ D X3 C bX C c. If p 2 ¹2; 3º, then vp.4/ D 0.
Thus, .1; ˛; ˛2/ is a 2-integral basis of ZK and v2.dK/ D v2.4/ D 0.


For p � 5, if 4 ¤ 0 Œp�, then gcd.F; F 0/ D 1, .1; ˛; ˛2/ is a p-integral basis of
ZK and vp.dK/ D vp.4/ D 0.


If 4 D 0 Œp�, then gcd.F; F 0/ D 2bX C 3c. In that case, let t 2 Z such that
vp.2bt C 3c/ D vp.4/ D s and P.X/ D F.X C t / D X3CAX2CBX CC , where
vp.A/ D 0,B D 3t2Cb andC D t3CbtCc. Let 2bt D �3cCpsK (s � vp.4). Then
4a2B D 0 modulo 4 and 8b3C D �b4 modulo 42. Thus, vp.ind.F // D bvp.4/


2 c
and .1; ˛; ˛


2�2t˛Ct2
pr / is a p-integral basis of ZK and vp.dK/ D vp.4/ Œ2�, where


r D b42 c.


3 An integral basis of a cubic number field


Remark 3.1. (1) Let p be a prime integer such that p2 divides 4. For every 2 � i �
3, let wi;p D L


p


i
.˛/


p
ri;p


, where Lpi .X/ 2 ZŒX� is a monic polynomial of degree i � 1
such that F D .1; w2;p; w3;p/ is a triangular p-integral basis of K. Then r2;p � r3;p ,
vp.4/ D r2 C r3 and vp.dK/ D vp.4/ � 2.r2 C r3/.


(2) Let p1; : : : ; pr be the primes such that every p2
i divides 4. For every 2 � i � 3,


denote di D
Qr
jD1 p


rij
j , where for every j , wi;j D L


pj


i
.˛/


p
rij


and .1; w2;j ; w3;j / is a
pj -integral basis of K. Then 1 j d2 j d3 are the elementary divisors of ZK=ZŒ˛�. In
particular, d3 is the conductor of the order ZŒ˛� and d2d3 D � ind.f /.


(3) We can always assume that a triangular p-integral basis has the property: if r2 D
r3, then we can take w3 D ˛w2:


One can recover a triangular integral basis from different triangular p-integral bases
for all p as follows.


Proposition 3.2. Let p1; : : : ; ps be the prime integers such that p2 divides4 and 1; d2
and d3 are the elementary divisors of the Abelian group ZK=ZŒ˛�. For every j , let


Fj D .1; w2;j ; w3;j / be a triangular pj -integral basis of K, i.e., wi;j D L
j


i
.˛/


p
rij


j


such
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that everyLji .X/ is a monic polynomial of ZŒX� of degree i . ThenB D .1; w2; w3/ is a
triangular integral basis ofK, where everywi D Li .˛/


di
,Li .X/ D Lji .X/modulo prijj .


Proof. Since ind.f / D d2d3, we need only to check that every wi 2 ZK . Let 2 � i �
3. Since for every i the integers . di


p
rij


j


/1�j�s are pairwise coprime, there exist integers


t1; : : : ; ts such that
Ps
jD1 tj


di


p
rij


j


D 1. Hence, Li .˛/
di
D Ps


jD1 tj
Li .˛/


p
rij


j


2 ZK ; because


all Li .˛/


p
rij


j


2 ZK .


Corollary 3.3. (i) Let .b; c/ 2 Z2 such that f D X3 C bX C c is an irreducible
polynomial and for every prime p, vp.b/ � 1 or vp.c/ � 2.


If b ¤ 6 modulo 9 or c2Cb�1 ¤ 0 modulo 27, then .1; ˛; ˛
2Cy˛Cx
d2


/ is an integral
basis of ZK , where d2 is defined in Remarks 3.4 (use Lemma 2.1 to compute x
and y).


If b D 6 modulo 9 and c2 C b � 1 D 0 modulo 27, then .1; ˛Cu3 ; ˛
2Cy˛Cx
d2


/ is an
integral basis of ZK , where d2 is defined in Remarks 3.4 and u D 0 Œp� for every
prime p ¤ 3, u D c Œ3� (use Lemma 2.1 to compute x and y).


(ii) Let b D Qr
iD1 p


ei


i , c D .
Qr
iD1 pi /


2 and � D Qr
iD1 pi , where every ei � 1


and b ¤ 6 modulo 9. Then .1; ˛; ˛
2


�
/ is an integral basis of ZK and dK D


�:
Q
ei�2 pi .


Remark 3.4. (1) Let f D X3 C bX C c be an irreducible polynomial. If vp.b/ � 2
and vp.c/ � 3, then K D QŒ ˛


pk �, where k D gcd.k1; k2/, k1 and k2 are the quotient
of the Euclidean division of vp.b/ and vp.c/ by 2 and 3, respectively, and H.X/ D
X3 C b0X C c0 2 ZŒX� is the minimal polynomial of ˛


pk , where b


p2k and c


p3k . So, we
can assume that for every prime p, vp.b/ � 1 or vp.c/ � 2.


(2) Let K D QŒ˛�, where ˛ is a complex root of an irreducible polynomial P D
X3CaX2CbXCc. Then f D X3CBXCC is the minimal polynomial of � D 3˛Ca,
where B D .9b � 3a2/ and C D �9abC 27c C 2a3. So, to compute an integral basis
of ZK , it suffices to replace ˛ by � and the polynomial P by f D X3 C BX C C .


Example 3.5. (1) Let f D X3C 300X C 150000 andK D QŒ˛�, where ˛ a complex
root of f . Since4 D �29:33:56:29:97 is the discriminant of f , for every prime p � 7,
.1; ˛; ˛2/ is a p-integral basis of ZK .
Since v2.300/ D 2, v2.150000/ D 4, v5.300/ D 2 and v5.150000/ D 5, we have
� D ˛


10 2 ZK . Let H D X3 C 3X C 150 be the minimal polynomial of � . Then
4 D �23:33:29:97 is the discriminant of H . Thus, for every prime p ¤ 2, .1; �; �2/
is a p-integral basis of ZK .
On the other hand, v2.30/ D 1 and v2.150/ D 1, then .1; �; �2/ is an integral basis
of ZK .
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(2) Let b 2 Z such that v3.b/ D 0, P D X3 C 3bX2 C bX C 9b2 an irreducible
polynomial and K D QŒ˛�, where ˛ a complex root of P . Then .1; �; �


2


b� / is an
integral basis of ZK , where b� is the product of all primes dividing b.


(3) let P D X3 C 8X2 C 10X C 6 and K D QŒ˛�, where ˛ a complex root of P .
Then f D X3 � 102X C 466 is the minimal polynomial of � D 3˛ C 8. Since
4 D �22:37:5:37 is the discriminant of f , for every prime p � 5, .1; �; �2/ is a
p-integral basis of ZK . Since v2.102/ D 1 and v2.466/ D 1, then v2.ind.f // D 0.
For p D 3, B D �102 D 6 modulo 3 and C 2 C B � 1 D 0 modulo 27. Then
.1; �C1


3 ; �
2�7��98


9 / is an integral basis of ZK .
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Some new approaches to integer-valued polynomial rings


Jesse Elliott


Abstract. We present some new results on and approaches to integer-valued polynomial rings. One
of our results is that, for any PvMD D, the domain Int.D/ of integer-valued polynomials on D is
locally free as aD-module if Int.Dp/ D Int.D/p for every prime ideal p ofD. This fact allows us in
particular to strengthen the main results of J. Algebra 318 (2007), 68–92, to prove, for example, that
the multivariable integer-valued polynomial ring Int.Dn/ decomposes as the n-th tensor power of
Int.D/ over D for any such PvMD D. We also present a survey of some new techniques for study-
ing integer-valued polynomial rings – such as universal properties, tensor product decompositions,
pullback constructions, and Bhargava rings – that may prove useful.


Keywords. Integer-valued polynomials, PvMD, Krull domain, domain extensions.
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1 Introduction


Because they possess a rich theory and provide an excellent source of examples and
counterexamples, integer-valued polynomial rings have attained some prominence in
the theory of non-Noetherian commutative rings. As with ordinary polynomial rings,
much of commutative algebra has some bearing on the subject. Today there remain
many open problems concerning, for example, their module structure, ideal structure,
prime spectrum, and Krull dimension.


Their definition is simple: for any integral domain D with quotient field K, any set
X , and any subsetE ofKX , the ring of integer-valued polynomials onE is the subring


Int.E;D/ D ¹f .X/ 2 KŒX� W f .E/ � Dº


of the polynomial ring KŒX�. As is standard in the literature, we write Int.DX / D
Int.DX ;D/ and Int.D/ D Int.D;D/. We also write Int.Dn/ D Int.DX / if X is a set
of cardinality n.


Historically, many of the results currently known about integer-valued polynomial
rings were first proved for number rings and later generalized to larger classes of do-
mains. Research on integer-valued polynomial rings began with some challenging
questions surrounding their module structure, and in particular with the search for
module bases for them. In more recent years it was discovered that integer-valued
polynomial rings also have intricate ideal structures and prime spectra, and questions
surrounding their ring-theoretic properties were formulated. From this research sev-
eral natural settings in which to study integer-valued polynomial rings have emerged.
In particular, they have been studied in connection with Dedekind domains, almost
Dedekind and Prüfer domains, Noetherian domains, Krull domains, PvMD’s, and Mori
domains, among many other classes of domains. It is a general thesis of this article that
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insight into integer-valued polynomial rings may be gained not only from a module-
theoretic or ring-theoretic point of view, but also from a category-theoretic viewpoint.
For example, at the most basic level they can be characterized via universal properties,
and these universal properties motivate questions concerning integer-valued polyno-
mial rings that have not been considered before.


We begin in Section 2 by examining a condition first studied in [11], and later stud-
ied in [8] and given the name polynomial regularity. This condition generalizes an-
other important condition, namely, the condition Int.S�1D/ D S�1Int.D/, appearing
throughout the literature.


In Section 3 we examine int primes, as defined in [5], and their relation to t -maximal
ideals. We prove that the int primes of an arbitrary H-domain (as defined in [12]) are
precisely its prime conductor ideals having finite residue field. We also show that, for
any Krull domainD, or more generally for any PvMDD such that Int.Dp/ D Int.D/p
for every prime ideal p ofD, the domain Int.D/ of integer-valued polynomials onD is
locally free as aD-module. This fact allows us in particular to strengthen several of the
main results in [8], including [8, Theorem 1.3]. It also represents some progress toward
a classification of those domains D such that Int.D/ is flat as a D-module. Moreover,
it allows us to prove in Section 4 that the multivariable integer-valued polynomial ring
Int.Dn/ decomposes as the n-th tensor power of Int.D/ over D for any such PvMD
D. The tensor product decomposition offers a new approach to studying integer-valued
polynomial rings and is discussed further in Section 4.


In Section 5 we motivate some universal characterizations of integer-valued polyno-
mial rings. One of the main ideas is this. In contrast to characterizing the polynomially
dense subsets of a given domain, we consider the problem of characterizing those do-
mains that contain a given domain as a polynomially dense subset. We say that an
extension A of a domain D is polynomially complete if D is a polynomially dense
subset of A, that is, if every polynomial with coefficients in the quotient field of A
mapping D into A actually maps all of A into A. It turns out that, for any set X , the
domain Int.DX / is the free polynomially complete extension of D generated by the
set X , provided only that D is not a finite field [8, Proposition 2.4].


In Section 6 we present some connections to AC XBŒX� and other pullback con-
structions and to Bhargava rings. Finally, in the last section, we define some important
D-module lattices contained in Int.D/ and exhibit their relation to the factorial ideals
nŠDE , as defined in [6, Definition 1.2]. The main results in these last two sections are at
this stage somewhat philosophical in nature, although experts in ring-theoretic pullback
constructions or module lattices who are also interested in the study of integer-valued
polynomial rings may find these approaches useful.


2 The condition Int.D; A/ D AInt.D/


The condition Int.S�1D/ D S�1Int.D/ for a multiplicative subset S of D is well
known to be extremely important to the study of integer-valued polynomial rings. If
D is Noetherian or even Mori then this condition is known to hold for all multiplica-
tive subsets S of D [4, Proposition 2.1], but even for almost Dedekind domains the
condition is rather subtle, as seen for example by [17, Theorem 2.4].
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The condition Int.S�1D/ D S�1Int.D/ can be subsumed under another condi-
tion that appears in the literature. As in [8, Section 3], we say that an extension
A of a domain D, by which we mean a domain containing D together with its D-
algebra structure, is polynomially regular if Int.D;A/ D AInt.D/, where AInt.D/
denotes the A-module (or, equivalently, the A-algebra) generated by Int.D/. Since
Int.D; S�1D/ D Int.S�1D/ by [3, Corollary I.2.6], it follows that Int.S�1D/ D
S�1Int.D/ if and only if S�1D is a polynomially regular extension of D. Thus the
condition Int.S�1D/ D S�1Int.D/ can be subsumed under the polynomial regularity
condition.


The condition of polynomial regularity appears in the literature as early as 1993 in
an important paper by Gerboud [11], although the condition is not given a name there.
There, in another guise, appears the following result, whose proof is trivial.


Proposition 2.1. For any polynomially regular extension A of a domainD, the follow-
ing conditions are equivalent.


(1) D is a polynomially dense subset of A, that is, Int.D;A/ D Int.A/.


(2) Int.A/ is equal to the A-module generated by Int.D/.


(3) Int.A/ � Int.D/.


Note that, for an extension A of a domain D that is not necessarily polynomially
regular, conditions (1) and (2) each imply condition (3), but (1) need not imply (2)
and (2) need not imply (1). For example, if D is a domain containing a multiplicative
subset S for which Int.S�1D/ ¤ S�1Int.D/, then A D S�1D is an extension of
D satisfying (1) but not (2). Conversely, the extension A D ZŒT=2� of D D ZŒT �
satisfies condition (2) but not condition (1), by [8, Example 7.3].


The following is another result from [11].


Theorem 2.2. Let D be a Dedekind domain. Then any extension of D is polynomially
regular, and for any extension A of D, the domain D is a polynomially dense subset
of A if and only if the extension A of D has trivial residue field extensions, and is
unramified, at every nonzero prime ideal of D with finite residue field.


The latter of the two equivalent conditions of the theorem is to be understood as
follows: for every nonzero prime ideal p ofD with finite residue field and every prime
ideal P of A lying over p one has A=P D D=p and pAP D PAP.


The result above was recently extended to flat extensions of Krull domains [8, The-
orem 1.3]. In particular, it was shown that every flat extension of a Krull domain is
polynomially regular. In the next section we will prove a stronger version of that theo-
rem, Theorem 3.8.


3 Int primes and the condition Int.D/ � S �1DŒX�


Another condition important for studying integer-valued polynomial rings is the con-
dition Int.D/ � S�1DŒX�, or equivalently S�1Int.D/ D S�1DŒX�, for multiplicative
subsets S ofD. Recall that a conductor ideal ofD is an ideal of the form .aD WD bD/







226 J. Elliott


for some a; b 2 D with a ¤ 0. Define dn.X/ 2 ZŒX� D ZŒX0; X1; : : : ; Xn� by


dn.X/ D
Y


0�j <i�n


.Xi �Xj /:


The following result follows immediately from [17, Theorem 1.5].


Proposition 3.1. For any multiplicative subset S of an integral domain D, one has
Int.D/ � S�1DŒX� if and only if every conductor ideal of D that contains dn.D


nC1/
for some positive integer n meets S .


Following [5], we say that a prime ideal p of a domain D is a polynomial prime
of D if Int.D/ � DpŒX�, or equivalently if Int.D/p D DpŒX�; otherwise p is said
to be an int prime of D. For a nonzero ideal I of D, we let Iv denote the divisorial
closure .I�1/�1 of I , where I�1 D .D WK I /, where K is the quotient field of D. A
nonzero ideal I of D is said to be divisorial if I D Iv , and I is said to be a t -ideal
if Jv � I for every nonzero finitely generated ideal J � I . Every divisorial ideal of
D is a t -ideal, and if the converse holds then D is said to be a TV-domain. An ideal I
of D is t -maximal if it is maximal among the proper t -ideals of D. Every t -maximal
ideal is prime, and by an application of Zorn’s lemma, every proper t -ideal is contained
in some t -maximal ideal. A domain D is said to be an H-domain if every t -maximal
ideal of D is divisorial, or equivalently if every t -maximal ideal of D is a conductor
ideal of D [12]. The H-domains are a large class of domains properly containing the
Mori domains and the TV-domains, and in fact one has Noetherian)Mori) TV)
H [20].


A prime ideal p of D is said to be a Bourbaki associated prime of a D-module
M if p equals an annihilator of some element of M . A prime ideal p is said to be
a weak Bourbaki associated prime of M if p is minimal over an annihilator of some
element of M . The sets of all such primes p of D are denoted Ass.M/ and wAss.M/,
respectively. A prime p lies in wAss.K=D/ (resp., Ass.K=D/) if and only if p is
minimal over (resp., equal to) some conductor ideal of D.


If p is a prime t -ideal of D such that pDp is a t -ideal (hence a t -maximal ideal)
of Dp, then p is said to be a t -localizing, or well behaved, prime of D [2, 19]. A
prime ideal p of D is said to be a strong Krull prime, or Northcott attached prime, of
a D-module M if for every finitely generated ideal I � p there exists an m 2M such
that I � ann.m/ � p [7]. We let sKr.M/ denote the set of all strong Krull primes of
D. One has wAss.M/ � sKr.M/ for anyD-moduleM by [7, Proposition 2]. By [19,
Proposition 1.1] (or by [15, Proposition 2.2]), one has the following.


Proposition 3.2. Let D be an integral domain with quotient field K. A prime ideal p
ofD is t -localizing if and only if p 2 sKr.K=D/, that is, if and only if for every finitely
generated ideal I � p there exists a conductor ideal J of D such that I � J � p.


In particular, one has


Ass.K=D/ � wAss.K=D/ � sKr.K=D/ � t -Spec.D/


for any domain D, where t -Spec.D/ denotes the set of prime t -ideals of D.
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By [5, Proposition 1.2], every int prime of a domain is a t -ideal. The proof in fact
leads to the following generalization of that result.


Proposition 3.3. Let D be an integral domain with quotient field K, and let p be any
prime ideal of D with finite residue field. Each of the following conditions implies the
next:


(a) p 2 Ass.K=D/.


(b) p is an int prime of D.


(c) There exists a conductor ideal I of D contained in p such that the residue fields
of the prime ideals of D containing I have bounded cardinality.


(d) p 2 wAss.K=D/.


(e) p 2 sKr.K=D/.


(f) p is t -maximal.


Moreover, ifD is an H-domain, or more generally a domain such that every t -maximal
ideal of D with finite residue field is a conductor ideal, then these six conditions are
equivalent.


Proof. Suppose that (a) holds. Then p D .aD WD bD/ for some a; b 2 D with
a ¤ 0. Letting ¹u1; u2; : : : ; uqº be a system of representatives modulo p, we see that
the polynomial f .X/ D b


a


Qq
iD1.X�ui / lies in Int.D/ but not inDpŒX�, and therefore


(b) holds. Thus (a) implies (b). Suppose that (b) holds. By Proposition 3.1 there
exists a positive integer n such that dn.D


nC1/ is contained in some conductor ideal I
contained in p. Let q be any prime ideal of D containing I . Since dn.D


nC1/ � q, it
follows that, among any nC 1 elements of D, at least two of them must be congruent
modulo q, whence the residue field of q has cardinality at most n. Thus (b) implies
(c). If (c) holds, then every prime ideal containing I , including p, is maximal, and
therefore minimal over I , whence (d) holds. Next, we have (d) ) (e) ) (f) since
wAss.K=D/ � sKr.K=D/ � t -Spec.D/. Finally, if every t -maximal ideal of D with
finite residue field is a conductor ideal, then (f) implies (a) and the six conditions are
equivalent.


Corollary 3.4. For any H-domain D, the int primes of D are precisely the prime con-
ductor ideals of D with finite residue field.


Note that Corollary 3.4 is already known to hold for the Noetherian domains; see
[3, Theorem I.3.14].


Recall that an integral domain D is said to be a PvMD if Dp is a valuation domain
for every t -maximal ideal p of D. The domain Int.D/ is said to have a regular basis
if it has a free D-module basis consisting of exactly one polynomial of each degree.
Proposition 3.3 can also be used to prove the following.


Proposition 3.5. LetD be a PvMD such that Int.Dp/ D Int.D/p for every prime ideal
p of D. Then Int.Dp/ has a regular basis for every prime ideal p of D, and therefore
the D-module Int.D/ is locally free, hence faithfully flat.
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Proof. If Int.Dp/ D DpŒX�, then Int.Dp/ clearly has a regular basis. Suppose on the
other hand that Int.Dp/ ¤ DpŒX�. Then Int.D/p ¤ DpŒX�, whence p is an int prime
of D. Therefore p is a t -maximal ideal of Dp with finite residue field, by Proposition
3.3 (or alternatively by [5, Proposition 2.1]). SinceD is a PvMD, it follows thatDp is a
valuation domain, and since Int.Dp/ ¤ DpŒX�, it follows from [3, Proposition I.3.16]
that the maximal ideal pDp is principal. But in that case it is known that Int.Dp/ has a
regular basis; see [3, Exercise II.16], for example.


For any Krull domain (or in fact for any Mori domain) D, one has Int.Dp/ D
Int.D/p for every prime ideal p of D, by [4, Proposition 2.1]. Thus we have the
following.


Corollary 3.6. For any Krull domain D, the D-module Int.D/ is locally free, hence
faithfully flat.


Remark 3.7. The referee has pointed out an alternative proof of Corollary 3.6. Let
D be a Krull domain. If p is a height one prime ideal of D, then Dp is a DVR and
Int.Dp/ is well known to be free over Dp in that case, and by [3, Proposition I.2.8]
one has Int.D/p D Int.Dp/. If p has height at least two, then as a special case of [14,
Theorem 3] we have Int.D/p D Int.Dp/ D DpŒX�. Thus, for any Krull domain D
and any prime ideal p of D, the Dp-module Int.D/p D Int.Dp/ is free.


As a consequence of Corollary 3.6 above, we can prove a strengthening of [8,
Theorem 1.3]. An extension A of a Krull domain D is said to be divisorial if A DT


p2X1.D/Ap, where X1.D/ denotes the set of height one prime ideals of D. For ex-
ample, any flat extension of a Krull domain is divisorial, and Int.Dn/ is a divisorial
extension ofD for any Krull domainD and any positive integer n. (A divisorial exten-
sion of a Krull domain D is equivalently a t -linked extension of D, or an extension of
D satisfying the condition PDE, both as defined in [1], for example.) Given Corollary
3.6 above, we obtain from [8, Corollary 6.13 and Theorem 1.3] the following.


Theorem 3.8. Any divisorial extension of a Krull domain D is polynomially regular,
and for any such extensionA ofD, the domainD is a polynomially dense subset ofA if
and only if the extension A of D has trivial residue field extensions, and is unramified,
at every height one prime ideal of D with finite residue field.


Note that if D is a UFD, then Int.D/ is free and in fact has a regular basis, by [10,
Theorem 3.6 Corollary 1]. If D is a Dedekind domain then Int.D/ is a non-finitely
generated projective module and is therefore free, but it may or may not have a regular
basis. Remarkably, we do not know of an example of a domain D such that Int.D/ is
not free. However, we conjecture that such an example does exist.


Flatness is another question altogether. Does there exist a domain D such that
Int.D/ is not flat as a D-module? For which domains D, if not for all domains, is
Int.D/ flat as a D-module? These are open questions.
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4 Tensor product decompositions


The question of the flatness of Int.D/ over D is motivated by considering that for any
domain D and any set X there exists a canonical D-algebra homomorphism


�X W


O
X2X


Int.D/ �! Int.DX /;


where the (possibly infinite) tensor product is a tensor product of D-algebras. One
might hope, if not expect, that this homomorphism be an isomorphism, at least if
integer-valued polynomials are expected to behave anything like ordinary polynomi-
als in this regard. After all, one does have Int.Int.DX /Y / D Int.DXqY / for any
infinite domain D and any sets X and Y , in perfect analogy with ordinary polynomial
rings over anything but a finite field; and indeed for several large classes of domains it
turns out that �X is an isomorphism for all X , as is discussed below. However, it has
not been proved that �X is always an isomorphism, nor has there been found a coun-
terexample. Proving injectivity is equivalent to showing that the given tensor product
isD-torsion-free, and the easiest way to do that seems to be to prove that Int.D/ is flat
as a D-module.


If D is a domain such that the homomorphism �X above is an isomorphism for
any set X , we say that D is polynomially composite. Polynomial compositeness is
useful for studying integer-valued polynomial rings of several variables in terms of
those of a single variable, but that is not its only use. In Proposition 5.2, we will see
that the polynomial compositeness of a domain D implies that Int.DX / for any set X
has a universal property that may not otherwise hold. In fact, it also implies the exis-
tence of the structure on Int.D/ of a monoid object in the category D-D-birings, also
known as a D-D-biring triple, or a D-plethory. In particular, for any polynomially
composite domain D the set HomD.Int.D/; A/ is endowed with a natural D-algebra
structure for any D-algebra A, and the endofunctor HomD.Int.D/;�/ of the category
of D-algebras has a left adjoint. (The same is always true for DŒX�, but the end-
ofunctor HomD.DŒX�;�/ is just the identity functor.) We will take up these topics
elsewhere [9].


A domain D is said to be Newtonian if there exists an infinite sequence ¹anº
1
nD0 of


distinct elements of D such that the polynomials fn.X/ D
Qn�1


kD0
X�ak


an�ak
lie in Int.D/


for all nonnegative integers n [6, Section 3]; in that case the polynomials fn.X/ form
a regular basis for Int.D/. For example, every local ring with infinite residue field or
principal maximal ideal is Newtonian. The following proposition provides the simplest
examples of polynomially composite domains.


Proposition 4.1. LetD be an integral domain. Each of the following conditions implies
the next:


(a) D is a UFD or a Newtonian domain.


(b) Int.D/ has a regular basis.


(c) Int.D/ is free as a D-module.


(d) D is polynomially composite.
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Proof. If D is a UFD, then Int.D/ has a regular basis by [10, Theorem 3.6 Corollary
1], or by [3, Exercise II.23]. Thus (a) implies (b). Clearly (b) implies (c), and (c)
implies (d) by [8, Proposition 6.8].


To state our next result, we recall some further definitions from [8]. A domain D is
absolutely polynomially regular if every extension of D is polynomially regular. For
example, every Dedekind domain is absolutely polynomially regular, by Theorem 2.2,
while ZŒT � is not, by [8, Example 7.3]. A prime ideal p of a domain D is said to be
Newtonian if Dp is Newtonian and Int.Dp/ D Int.D/p. Finally, a domain D is almost
Newtonian if every maximal (or prime) ideal of D is Newtonian. For example, every
Dedekind domain is almost Newtonian. Note that every Newtonian domain is almost
Newtonian, and every almost Newtonian domain is absolutely polynomially regular.


Proposition 4.2. LetD be an integral domain. Each of the following conditions implies
the next:


(a) D is a Krull domain or an almost Newtonian domain.


(b) Int.D/ is flat over D, and D is a locally finite intersection of flat, polynomially
regular, and absolutely polynomially regular overrings.


(c) Int.D/ is flat over D, and every flat extension of D is polynomially regular.


(d) D is polynomially composite.


Proof. This follows readily from Corollary 3.6 and [8, Corollary 6.9].


In fact, we also have the following.


Proposition 4.3. LetD be an integral domain. Each of the following conditions implies
the next:


(a) D is a PvMD such that Int.Dm/ D Int.D/m for every maximal ideal m of D, or
D is almost Newtonian.


(b) Every maximal ideal m of D such that Int.Dm/ ¤ DmŒX� is Newtonian.


(c) Int.Dm/ has a regular basis, and Int.Dm/ D Int.D/m, for every maximal ideal
m of D.


(d) Int.Dm/ is free as a Dm-module, and Int.Dm/ D Int.D/m, for every maximal
ideal m of D.


(e) D is polynomially composite.


Proof. Condition (a) implies condition (b) by [8, Lemma 5.2] and the proof of Propo-
sition 3.5. The remainder of the proposition follows from [8, Proposition 6.10].


5 Universal properties


Although the domain Int.D/ is not functorial inD, it can nevertheless be characterized
by universal properties. We say that an extension A of a domain D is polynomially
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complete if D is a polynomially dense subset of A, that is, if Int.D;A/ D Int.A/,
or, what is the same, if every polynomial with coefficients in the quotient field of A
mapping D into A actually maps all of A into A. It turns out that, for any set X ,
the domain Int.DX / is the free polynomially complete extension of D generated by
the set X , provided only that D is not a finite field [8, Proposition 2.4]. In other
words, the functor X 7�! Int.DX / is a left adjoint for the forgetful functor from the
category of polynomially complete extensions ofD (with morphisms as theD-algebra
homomorphisms) to the category of sets, in the sense that the natural map


HomD.Int.DX /; A/ �! Hom.X;A/


is a bijection for any set X and any polynomially complete extension A of D. Thus,
rather than only consider the subsets of a given domain that are polynomially dense,
it is natural also to consider those domains containing a given domain as a polyno-
mially dense subset. There are several existing theorems in the literature that do this.
Examples from this article are Theorem 2.2 (appearing first in [11]) and Theorem 3.8.


As shown by Proposition 2.1, if A is a polynomially regular extension of a domain
D, then A is a polynomially complete extension of D if and only if Int.A/ � Int.D/.
Generally, if the containment Int.A/ � Int.D/ holds, then, as in [8], we will say that the
extension A of D is weakly polynomially complete. Polynomial completeness implies
weak polynomial completeness, but the converse is not true in general, as shown by
the extension ZŒT=2� of ZŒT �. Nevertheless, there are conditions besides polynomial
regularity under which these two conditions are equivalent. The most general such
condition we know of is given in [8, Proposition 3.3], restated below.


Proposition 5.1. Let A be an extension of a domain D. Suppose that A D
T


i2I Ai ,
where the Ai are overrings of A that are polynomially regular extensions of D. Then
the following conditions are equivalent:


(1) A is a polynomially complete extension of D.


(2) Int.A/ D
T


i2I Ai Int.D/.


(3) A is a weakly polynomially complete extension of D.


Note that an extension A of D is weakly polynomially complete if and only if
for every a 2 A there exists a (unique) D-algebra homomorphism Int.D/ �! A
sending the variable X to a. This equivalence, together with results like Proposition
2.1, indicates that weak polynomial completeness is a natural condition to consider.


Interestingly, there is a third condition weaker than polynomial completeness but
a priori stronger than weak polynomial completeness that in some sense bridges a
gap between the two conditions. As in [8] we say that an extension A of a domain
D is almost polynomially complete if Int.An/ � Int.Dn/ for every positive integer
n, or, equivalently, if for every a1; a2; : : : ; an 2 A there exists a (unique) D-algebra
homomorphism Int.Dn/ �! A sending Xi to ai for all i . We note that there exist
almost polynomially complete extensions of some domains that are not polynomially
complete. The extension ZŒT=2� of ZŒT � again is an example.
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As we remarked earlier, provided thatD is not a finite field, the domain Int.DX / is
the free polynomially complete extension of D generated by X , for any set X . Like-
wise, by [8, Proposition 7.7], the domain Int.DX / is the free almost polynomially
complete extension of D generated by X . There also exists a free weakly polynomi-
ally complete extension of D generated by X . Let Intw.DX / be the intersection of
all D-subalgebras of Int.DX / containing DŒX� that are closed under pre-composition
by elements of Int.D/. The domain Intw.DX / is the smallest weakly polynomially
complete extension of D containing DŒX�. By [8, Proposition 7.8], it is also the free
weakly polynomially complete extension of D generated by X . Although we can only
prove that Int.DX / D Intw.DX / for allX for certain classes of domainsD, such as the
Krull domains, we do not know a counterexample. Nevertheless, by [8, Propositions
7.8 and 7.9] we have the following.


Proposition 5.2. Let D be a domain. The following conditions are equivalent:


(1) Int.DX / is the free weakly polynomially complete extension generated by X , for
any set X .


(2) Int.DX / D Intw.DX / for every set X .


(3) Every weakly polynomially complete extension of D is almost polynomially com-
plete.


Moreover, if D is polynomially composite, then all of the above conditions hold.


As indicated in Section 4, we do not know an example of a domain D that is not
polynomially composite. To prove that a given domain D is not polynomially com-
posite, it would suffice by Proposition 5.2 to find a weakly polynomially complete
extension of D that is not almost polynomially complete.


6 Pullback constructions and Bhargava rings


Another way in which to characterize integer-valued polynomial rings is via the fol-
lowing pullback construction.


Proposition 6.1. Let D be a domain with quotient field K, let X be a set, and let E
be a subset of KX . Let evalE W KŒX� 7�! KE be the evaluation homomorphism
f .X/ 7�! .f .a//a2E . Then Int.E;D/ is the pullback ofDE along evalE . In fact, the
commutative square


Int.E;D/


��


// DE


��


KŒX�
evalE


// KE


is both cartesian and co-cartesian.


The proof of the above proposition is routine, so we omit it.
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Generally speaking, more information can be obtained about pullbacks along ho-
momorphisms that are surjective onto a field. See [13, Theorem 2.4] for a typical
example. Although the homomorphism evalE along which Int.E;D/ is a pullback is
not surjective onto a field unless E is a singleton, some of the known techniques may
still extend to this situation.


It has been suggested that there are connections between integer-valued polynomial
rings and the so-called AC XBŒX� domains, both of which have been studied exten-
sively in the literature. Here we make one such connection explicit. First, we note
that the domainDCXKŒX� is the pullback ofD along theK-algebra homomorphism
eval0 W KŒX� �! K sending f .X/ to f .0/; in fact the square


D CXKŒX�


��


// D


��


KŒX�
eval0


// K


is cartesian and co-cartesian. We first observe that the domain Int.E;D/, for any subset
E of K, may be represented as an intersection over E of subrings of KŒX� isomorphic
to D CXKŒX�.


Proposition 6.2. Let D be a domain with quotient field K, and let E be a subset of
K. One has Int.E;D/ D


T
a2E D C .X � a/KŒX�: Moreover, for all a 2 E the map


D C .X � a/KŒX� �! D C XKŒX� acting by f .X/ 7�! f .X C a/ is a D-algebra
isomorphism.


Proof. IfE D ¹0º, then Int.E;D/ is just the pullbackDCXKŒX�. For any a 2 E the
map f .X/ 7�! f .XCa/ is aD-algebra isomorphism from Int.¹aº;D/ to Int.¹0º;D/.
It follows that Int.¹aº;D/ D DC .X � a/KŒX � a� D DC .X � a/KŒX�. Therefore


Int.E;D/ D
\
a2E


Int.¹aº;D/ D
\
a2E


D C .X � a/KŒX�:


This completes the proof.


We may reinterpret Proposition 6.2 diagrammatically as follows.


Proposition 6.3. Let D be a domain with quotient field K, and let E be a subset of
K. Let tE W KŒX� �! KŒX�E be the K-algebra homomorphism acting by f .X/ 7�!
.f .X C a//a2E . Then the commutative squares


Int.E;D/


��


// .D CXKŒX�/E


��


// DE


��


KŒX�
tE


// KŒX�E
evalE0


// KE


are both cartesian and co-cartesian.
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As with ACXBŒX� domains, we may make explicit connections between integer-
valued polynomial rings and Bhargava rings [18]. For any subset E of a domain D
and any a 2 D, let


Ba.E;D/ D ¹f .X/ 2 KŒX� W f .aX C b/ 2 DŒX� for all b 2 Eº


denote the Bhargava ring of D over E at a. Clearly one has


Ba.E;D/ D
\
b2E


D
hX � b


a


i
for all a ¤ 0, and B0.E;D/ D Int.E;D/. In fact, by the proof of [18, Proposition 1.1],
if S is any system of representatives of E modulo aD, then


Ba.E;D/ D
\
b2S


D
hX � b


a


i
:


Moreover, by the proof of [18, Theorem 1.4], one has


Int.E;D/ D
[


a2Dn¹0º


Ba.E;D/;


and in fact this union may be interpreted as a direct limit over the partially ordered set
of principal ideals ofD ordered by inclusion. This yields a potentially useful technique
for proving Int.D/ flat as a D-module: since flatness is preserved under direct limits,
the question of flatness of Int.D/ can be reduced to the question of flatness of the
Bhargava rings Ba.D;D/.


Proposition 6.4. Let E be a subset of a domain D. Suppose that Ba.E;D/ is flat as a
D-module for every a 2 Dn¹0º. Then Int.E;D/ is also flat as a D-module.


As with Int.E;D/ in Proposition 6.3, we may characterize the Bhargava rings
Ba.E;D/ as pullbacks.


Proposition 6.5. Let D be a domain with quotient field K, let E be a subset of K, and
let a 2 D. Let tE;a W KŒX� �! KŒX�E be the K-algebra homomorphism acting by
f .X/ 7�! .f .aX C b//b2E : The commutative square


Ba.E;D/


��


// DŒX�E


��


KŒX�
tE;a


// KŒX�E


is cartesian and co-cartesian.
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Note that the pullback squares of Proposition 6.1 (for X a singleton) and Proposi-
tion 6.5 fit neatly into the following commutative diagram.


Ba.E;D/ //


&&LLLLLLLLLL


��


DŒX�E


##GGGGGGGG


��


Int.E;D/


��


// DE


��


KŒX�
tE;a


//


id


&&LLLLLLLLLL
KŒX�E


evalE0


##GGGGGGGG


KŒX�
evalE


// KE


7 Lattices and factorial ideals


Let E be a subset of a domain D. The set Intn.E;D/ of polynomials in Int.E;D/ of
degree at most n is a D-submodule of Int.E;D/. Since


Int.E;D/ D
[
n�0


Intn.E;D/;


the D-module Int.E;D/ is a direct limit of the D-modules Intn.E;D/. The submod-
ules Intn.E;D/ afford another technique for studying the module structure of Int.D/.
For example, we have the following result, whose proof is clear.


Proposition 7.1. Let E be a subset of a domainD. If Intn.E;D/ is flat as aD-module
for all n, then Int.E;D/ is flat as a D-module. The converse is true if Intn.E;D/ is
pure in Int.E;D/ for all n.


Note that Intn.D/ is projective for all n if D is a Dedekind domain, by [3, Corol-
lary II.3.6], and [10, Theorem 3.4] suggests that the same might be true if D is a Krull
domain.


The rank of a D-module M is the dimension of the K-vectorspace K ˝D M ,
where K is the quotient field of D. A torsion-free D-module M is a D-lattice if D is
contained in a finitely generated D-submodule of K ˝D M , or, equivalently, if D is
contained in a free D-module of the same finite rank.


For any n let DŒX�n denote the free D-module consisting of the polynomials in
DŒX� of degree at most n. The n-th factorial ideal of E with respect to D is the ideal


nŠDE D .DŒX�n WD Intn.E;D//
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of D [6, Definition 1.2]. Note that nŠZZ D nŠZ for all n, so factorial ideals generalize
ordinary factorials. The factorial ideals nŠDE form a descending sequence of ideals of
D with 0ŠDE D D. Factorial ideals and D-lattices afford yet further techniques for
studying integer-valued polynomial rings. Of particular interest in this regard is the
following elementary result.


Proposition 7.2. Let D be a domain, and let E be a subset of D of cardinality at
least nC 1. For any sequence a0; a1; : : : ; an of nC 1 distinct elements of E, one has
dn 2 nŠ


D
E , or equivalently


Intn.E;D/ � .1=dn/DŒX�n;


where
dn D


Y
0�j <i�n


.ai � aj /


for all i . In particular the D-module Intn.E;D/ is a D-lattice of rank nC 1.


Proof. This is a restatement of [3, Proposition I.3.1].


We end with the following result.


Proposition 7.3. Let E be a subset of a domain D. The n-th factorial ideal nŠDE is
divisorial for every positive integer n.


Proof. Let In.E;D/ denote the D-submodule of K generated by all of the coeffi-
cients of all of the polynomials in Intn.E;D/. By definition one clearly has nŠDE D
In.E;D/


�1. Moreover, In.E;D/ is a fractional ideal of D by Proposition 7.2 above.
Since I�1 is a divisorial fractional ideal for any fractional ideal I ofD, the proposition
follows.
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v-ordering sequences and countable sets


Youssef Fares


Abstract. The notion of v-ordering for a subset E of the domain V of a valuation v introduced by
M. Bhargava turns out to be very useful for both the construction of regular bases of the V -module
Int.E; V / of integer-valued polynomials on E and the construction of orthonormal bases of the ring
C.E; V / of continuous functions from E to V . The aim of this paper is to show that, when E
is a countable and precompact subset of V , one can construct a v-ordering of E in which every
element of E occurs exactly once. In order to do this, we use the notion of polynomial equivalence
introduced by D. McQuillan.


Keywords. Integer-valued polynomial, valuation domain.


AMS classification. 13F20.


1 Polynomial equivalence


Let A be a domain with quotient field K and let E be a nonempty subset of A. Recall
that Int.E;A/ is the sub-A-algebra of KŒX� formed by all integer-valued polynomials
on E, that is,


Int.E;A/ D ¹f 2 KŒX� j 8x 2 E ; f .x/ 2 Aº:


For every k 2 N, one denotes by Intk.E;A/ the sub-A-module of KŒX� formed by all
integer-valued polynomials on E with degree � k, that is,


Intk.E;A/ D ¹f 2 KŒX� j degf � k;8x 2 E ; f .x/ 2 Aº:


The following notion of polynomial equivalence was introduced by McQuillan [7].


Definition 1.1. Let E and F be two subsets of A.


(1) The polynomial closure of E in A is the subset


E D ¹x 2 A j 8f 2 Int.E;A/; f .x/ 2 Aº:


(2) The subset E is said to be polynomially closed in A if E D E.


(3) The subsets E and F are said to be polynomially equivalent if Int.E;A/ D
Int.F;A/.


(4) The subset E is said to be polynomially dense in F if E � F and if E and F are
polynomially equivalent.


Remark 1.2. (1) Every finite subset of A is polynomially closed [3, Exercise IV.1].


(2) Every cofinite subset of A is polynomially dense in A [3, Proposition I.1.5].
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We add the following definitions.


Definition 1.3. Let n 2 N.


(1) The polynomial closure up to the order n of E in A is the subset


E
n
D ¹x 2 A j 8f 2 Intn.E;A/; f .x/ 2 A º:


(2) The subsets E and F of V are said to be polynomially equivalent up to the order
n if Intn.E;A/ D Intn.F;A/, that is, if E


n
D F


n
.


Remark 1.4. Let E be a subset of A.


(1) Obviously, one has


8n 2 N; E
nC1
� E


n
and E D


\
n2N


E
n
:


(2) Consequently, form � n, if E is polynomially closed up to the order n, then E is
polynomially closed up to the order m.


(3) If E is finite of cardinality s, then, according to Lagrange’s interpolation, E is
polynomially closed up to the order s C 1.


2 Polynomial closure in a valuation domain


In the fundamental case of rings of integers of number fields and, more generally, of
Dedekind domains, the previous notions behave well under localization. Thus, we will
work with discrete valuation domains and, more generally, with rank-one valuation
domains.


Notation. From now on, we will denote by V the ring of a rank-one valuation v, and
by K the quotient field of V . Recall that in this case v.K�/ is a subgroup of R.


For every nonempty subset E of V , one has


Int.E; V / D ¹f 2 KŒX� j 8x 2 E ; v.f .x// � 0º:


Since polynomial functions are continuous for the v-adic topology, we obviously have:


Proposition 2.1. For every subset E of V , the topological closure of E in V is con-
tained in the polynomial closure of E in V .


Proposition 2.2. Let E and F be two nonempty subsets of V and n 2 N. Then E
n
D


F
n


if and only if, for every f 2 KŒX� of degree � n,


inf
x2E


v.f .x// D inf
x2F


v.f .x//:
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Proof. Clearly, the condition is sufficient. Conversely, suppose that there exists f 2
KŒX� of degree � n such that infx2E v.f .x// > infx2F v.f .x//. Then, there is
d 2 K such that


inf
x2E


v.f .x// � v.d/ > inf
x2F


v.f .x//:


Then f
d
2 Int.E; V / and f


d
62 Int.F; V /:


Remark 2.3. It is not difficult to extend the previous definitions to subsets ofK. Recall
that a subset E of K is fractional if there exists a nonzero d 2 V such that dE � V .
Clearly,


Proposition 2.4. (1) If dE � V , then dE � V .


(2) If E is not fractional, then E D K.


Remark 2.5. (1) If ¹Eiºi2E is a family of polynomially closed subsets of V , thenT
i2I Ei is also polynomially closed. Indeed, for every i 2 I ,


T
i2I Ei � Ei D Ei ,


then
T
i2I Ei �


T
i2I Ei , this implies the equality. In addition, V D V and ¿ D ¿.


Thus, if a finite union of polynomially closed subsets is closed, then we could define a
polynomial topology onK whose closed subsets were the polynomially closed subsets.


(2) If ¹Eiºi2E is a family of polynomially closed up to the order n subsets of V , thenT
i2I Ei is also polynomially closed up to the order n.


(3) We know that such a notion of polynomial topology does not hold in the global case
(see [3, Remark IV.1.10]: 2Z and 3Z are polynomially closed in Z, while 2Z [ 3Z D
Z). But, the question remains to be answered in the local case.


3 v-orderings


The notion of v-ordering has been introduced by M. Bhargava [1] for subsets of discrete
valuation domains and generalized by J.-L. Chabert [4] to subsets of rank-one valuation
domains. First, we recall some general results.


Definition 3.1. Let N 2 N [ ¹1º. A sequence .an/0�n�N of elements of E is a
v-ordering of length N of E if, for every n 2 ¹0; : : : ; N º, one has


v


� n�1Y
kD0


.an � ak/


�
D inf
x2E


v


� n�1Y
kD0


.x � ak/


�
:


Remark 3.2. If either v is discrete or E is a precompact subset of V , then E always
admits v-orderings.


The following proposition proved by Bhargava [1] for discrete valuations may be
extended to rank-one valuations [4].
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Proposition 3.3. Suppose N � card.E/ � 1. Let .an/0�n�N be a sequence of distinct
elements of E. The sequence .an/0�n�N is a v-ordering of E if and only if the polyno-
mials fn.X/ D


Qn�1
kD0


X�ak


an�ak
.0 � n � N/ form a basis of the V -module IntN .E; V /:


Corollary 3.4. Let N 2 N and let .an/0�n�N be a v-ordering of E. Then, the subsets
¹ak j 0 � k � N º and E are polynomially equivalent up to the orderN . In particular,
for every P 2 KŒX� of degree d � N , one has


inf¹v.P.x//I x 2 Eº D inf¹v.P.ak//I 0 � k � dº:


For n 2 N, according to [1], the n-th factorial ideal of E in V is the following
ideal:


.nŠ/VE D ¹y 2 V j yInt.E; V / � V ŒX�º:


Notation. Proposition 3.3 shows that if the sequence .an/0�n�N is a v-ordering of E,
then the product


Qn�1
kD0.an�ak/ generates the ideal .nŠ/VE , and hence its valuation does


not depend on the choice of the v-ordering .an/0�n�N . One puts


wE .n/ D v.nŠ/
V
E D v


� n�1Y
kD0


.an � ak/


�
:


Remark 3.5. (1) A sequence .bn/0�n�N of elements of E is a v-ordering of length N
if, for every 0 � n � N , one has


v


� n�1Y
kD0


.bn � bk/


�
D wE .n/:


(2) If E � F , then wE .n/ � wF .n/ for every n, because Intn.F; V / � Intn.E; V /.


(3) If E � F and E D F , then a sequence of elements of E is a v-ordering of E if
and only if it is a v-ordering of F .


(4) If F D ¹as C b j s 2 Eº where a and b are two elements of V , then


.nŠ/VF D a
n.nŠ/VE :


In particular, if a is invertible in V , then E and F have the same factorials.


(5) Note bV and bE the completions of V and E for the v-adic topology. If .an/0�n�N
is a v-ordering of E, then .an/0�n�N is also a v-ordering of bE in bV :
(6) When V D Zp where p is a prime number and v D vp is the p-adic valuation, the
sequence .n/n2N is a vp-ordering of Zp . Thus, according to Legendre’s formula,


wZp
.n/ D vp.nŠ/ D


X
k�1


�
n


pk


�
:
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Pólya generalized this formula: if V is a discrete valuation domain with finite residue
field of cardinality q, then


wV .n/ D v.nŠV / D
X
k�1


�
n


qk


�
:


Now, we give a technical result which will be useful for the proof of our main
theorem.


Proposition 3.6. Let E be an infinite subset of V . A sequence of elements of E which
is a simple limit of a sequence of v-orderings of E is a v-ordering of E.


Proof. Let a D .ak/k2N be a sequence of elements of E and, for every i 2 N, let
ai D .ai


k
/k�0 be a v-ordering ofE. Assume that, for every k 2 N, ak D limi!C1 a


i
k


.
Fix an integer n. By hypothesis, there exists an integer i such that v.ai


k
�ak/ > wE .n/


for every 0 � k � n. Then, for every 0 � k < n, we have, v.an � ak/ D v.ain � a
i
k
/


because .an � ak/ D .an � ain/C .a
i
n � a


i
k
/C .ai


k
� ak/ and wE .n/ � v.ain � a


i
k
/ for


0 � k < n. Consequently,


v


� n�1Y
kD0


.an � ak/


�
D v


� n�1Y
kD0


.ain � a
i
k/


�
D wE .n/;


and the sequence .an/n2N is a v-ordering of E:


4 v-orderings and isolated points


Definition 4.1. Let E be a subset of V and x an element of E.


(1) The element x is said to be polynomially isolated in E if


Int.E; V / 6D Int.E n ¹xº; V /:


(2) If x is polynomially isolated in E, we say that x is polynomially isolated up to
the order n if n is the smallest integer such that


Intn.E; V / 6D Intn.E n ¹xº; V /:


Proposition 4.2. Let n 2 N. An element x ofE is polynomially isolated up to the order
n if and only if every v-ordering of length n contains x and n is the smallest integer k
such that every v-ordering of E of length k contains x.


Proof. Assume that x is polynomially isolated in E up to the order n: n is the smallest
integer k such that Intk.E; V / 6D Intk.En¹xº; V /. If there exists a sequence a0; : : : ; ak
which is a v-ordering of E and which does not contain x, then a0; : : : ; ak is also a v-
ordering of E n ¹xº. Hence, Intk.E; V / D Intk.E n ¹xº; V / and k < n. Thus, for
k � n, every v-ordering of E of length k contains x.
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Conversely, assume that k is such that every v-ordering of E of length k contains
x, then, Intk.E; V / 6D Intk.E n ¹xº; V / because a v-ordering of E n ¹xº cannot be a
v-ordering of E. Consequently, x is polynomially isolated in E up to some order n
and k � n.


Corollary 4.3. Suppose that E admits a v-ordering. Let n be a positive integer. Then,
every subset E of V contains at most n isolated points up to the order n.


Recall that x is topologically isolated in E if


sup
x2E;y 6Dx


v.y � x/ <1:


If x is not topologically isolated in E we have the following technical lemma that will
be useful for the proof of our main result.


Lemma 4.4. Let E be an infinite subset of V . Let x be a topologically non-isolated
point of E and let .an/n2N be a v-ordering of E not containing x. Then, there exist
infinitely many integers n such that a0; : : : ; an�1; x is a v-ordering of E (of length n).


Proof. Let M be a real number. By hypothesis, there exists k 2 N such that v.ak �
x/ > M . Let n be the smallest integer k such that v.ak � x/ > M . Then, v.x� ai / D
v.an � ai / for every 0 � i � n � 1. Thus, v.


Qn�1
iD0.x � ai // D v.


Qn�1
iD0.an � ai // D


wE .n/. Consequently, a0; : : : ; an�1; x is a v-ordering of E of length n.


From now on, we have to assume that E is a precompact subset of V , that is, its
completion bE is compact. The following proposition is a consequence of the v-adic
Stone–Weierstrass theorem ([1], [3]). One can find a direct proof in [5].


Proposition 4.5. IfE is a precompact infinite subset of V , then every infinite v-ordering
of E is dense in E.


If E is not precompact, a v-ordering is not necessarily dense in E as shown by the
following counterexample.


Example 4.6. Let V be a discrete valuation domain with maximal ideal M and with
infinite residue field. Clearly, every sequence formed by elements of V that are non-
congruent modulo M is a v-ordering of V , while the sequence is not dense in V .


Proposition 4.7. If E is precompact, then an element of E is topologically isolated in
E if and only if it is polynomially isolated in E.


Proof. According to Proposition 2.1, it is sufficient to prove that, if x is topologically
isolated, then x is polynomially isolated. IfE is a finite subset, the assertion is obvious.
Thus, we assume that E is infinite and that supx2E;y 6Dx v.y � x/ < 1. Since E is
precompact, it follows from Remark 3.2, that there exists a v-ordering .an/n2 of E.
According to Proposition 4.5, supn2N v.an � x/ D 1. According to Proposition 4.2,
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there exists n 2 N such that an D x. Thus, every v-ordering of E contains x. As a
consequence, a v-ordering of E n ¹xº cannot be a v-ordering of E. In particular,


Int.E; V / 6D Int.E n ¹xº; V /:


Remark 4.8. In fact, the last proposition shows that the polynomial closure and the
topological closure of a precompact subset are equal.


5 v-orderings of a countable set


Theorem 5.1. Let V be a rank-one valuation domain and E be a countable and pre-
compact subset of V . Then, it is possible to construct a v-ordering of E in which every
element of E occurs exactly once.


In other words, if E D ¹bn j n 2 Nº, then there is a one-to-one correspondence �
of N onto N such that .b�.n//n2N is a v-ordering of E.


Proof. If E is a finite subset, the proposition is obvious. Assume that E is infinite and
let E D ¹bn j n 2 Nº.


Let a0 D .a0
n/n2N be a v-ordering of E. We know that the an are distinct.


(1) If the sequence .a0
n/n2N runs over the whole subset E, then our aim is reached.


(2) If not, let r1 be the smallest integer r such that br 62 ¹a0
n j n 2 Nº. Then there are


indices k0; k1; : : : ; kr�1 such that


b0 D a
0
k0
; b1 D a


0
k1
; : : : ; br1�1 D a


0
kr1�1


:


Since br1 does not belong to the v-ordering a0, br1 is not polynomially iso-
lated in E (Proposition 4.2), and hence br1 is not topologically isolated in E
(Proposition 4.7). Then, thanks to Lemma 4.4, there exists u such that u �
max.k0; k1; : : : ; kr1�1/ and a0


0; : : : ; a
0
u; br1 is a v-ordering of E. Let u1 be the


smallest such integer u.


Let a1 D .a1
n/n2N be a v-ordering of E whose first elements are a0


0; a
0
1; : : : ; a


0
u1
;


br1 . If a1 runs over the whole subset E, then our aim is reached.


(3) If not, we iterate the process. If the iteration is finite, our aim is reached.


(4) If not, the process leads to the construction of a sequence .ai /i2N of v-orderings
of E. Moreover, for every j 2 N, there exists i0 2 N such that for i � i0,
the sequence .ain/n2N contains b0 � � � bj . By construction, for every n 2 N, the
sequence .ain/i2N is ultimately constant. We denote by an its limit (of course, an
is an element of E). According to Proposition 3.6, the sequence .an/n2N is also
a v-ordering of E. The construction shows that the sequence .an/n2N runs over
the whole set E.
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Remark 5.2. In her thesis, J. Yeramian proved that if A is a semi-local Dedekind do-
main with finite residue fields, then there exists a sequence which is simultaneously a
v-ordering of A for all maximal ideals of A. Now, let E be a subset of such a domain
A. Can we find a sequence of elements of E which is simultaneously a v-ordering
of E?


The answer is negative in general as shown by the following example.


Example 5.3. Let Z¹2;3;5º D ¹x 2 Q j vp.x/ � 08p 6D 2; 3; 5º. Then, Z¹2;3;5º is
a semi-local Dedekind domain with maximal ideals 2Z¹2;3;5º, 3Z¹2;3;5º and 5Z¹2;3;5º.
Consider the subset E D 30Z [ ¹2; 3; 5º of Z¹2;3;5º. Then, the points 2; 3 and 5 are
isolated up to the order 1 respectively for the topologies associated to the maximal
ideals 3Z¹2;3;5º; 5Z¹2;3;5º and 2Z¹2;3;5º. It follows from Corollary 4.3 that E cannot
admit a sequence which is simultaneously a v-ordering of E for each topology.


More generally, if M1; : : : ;Mr are the maximal ideals of a semi-local Dedekind
domain A and if the subset E of A has more than r isolated points up to the order r ,
then such a simultaneous sequence does not exist.
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Mixed invertibility and Prüfer-like monoids and domains


Franz Halter-Koch


Abstract. We give a systematic theory of Prüfer-like domains using ideal systems on commuta-
tive cancellative monoids. Based on criteria for mixed invertibility of ideals, we unify and gen-
eralize characterizations of various classes of Prüfer-like monoids and domains and furnish them
with new proofs. In particular, we generalize and extend criteria for v-domains recently proved by
D. D. Anderson, D. F. Anderson, M. Fontana and M. Zafrullah.


Keywords. Prüfer domain, ideal system, star operation, v-domain, (generalized) GCD domain.
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1 Introduction


Prüfer domains and their various generalizations are topics of outstanding interest in
non-Noetherian multiplicative ideal theory. For an overview of the more classical re-
sults we refer to [6], [9] and [15]. Among the various generalizations involving star
operations studied in the literature we mention the following ones.


� Prüfer v-multiplication domains (PvMD’s, first studied in [10] and called “pseu-
do-Prüfer domains” in [5, Ch. VII, § 2, Ex. 19]),


� general �-multiplication domains (investigated in [13] and in [12]),
� v-domains (called “regularly integrally closed domains” in [5, Ch. VII, §1, Ex. 30,


31], see [19] for an overview and the history of this concept),
� Generalized GCD-domains (GGCD domains, studied in [1]),
� Pseudo-Dedekind domains (introduced in [17] under the name “Generalized De-


dekind domains” and thorough investigated in [3]),
� pre-Krull domains (investigated in [18]).


Several of these concepts have only recently successfully been generalized to the
case of semistar operations (see [7] and [8]).


By the very definitions, the above-mentioned concepts can be defined in a purely
multiplicative manner without referring to the ring addition, and thus they can be stud-
ied in the context of commutative cancellative monoids. In a systematic way, the ideal
theory of commutative cancellative monoids was first developed by P. Lorenzen [16],
and a thorough presentation of that theory in the language of ordered abelian groups
was given by P. Jaffard [14]. A modern treatment of multiplicative ideal theory in the
context of commutative monoids (including all above-mentioned generalizations) was
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given by the author in the monograph [11], which serves as the main reference for the
present paper.


A first attempt to a general theory covering the various generalizations of Prüfer do-
mains was made in [4] but not pursued further on. Only recently, these investigations
were revived in [2] together with several completely new ideal-theoretic characteri-
zations of v-domains. In this paper we continue these investigations. We show that
the results of [2] and several of their refinements and generalizations remain valid in
the context of commutative cancellative monoids, and we provide them with new (and
simpler) proofs.


The paper is organized as follows. In Section 2 we fix our notations. Section 3
contains the basic result on mixed invertibility (Theorem 3.1) which is fundamental for
the following investigations. In Section 4 we apply the concept of mixed invertibility to
characterizations of Dedekind-like and Prüfer-like monoids and domains, and finally in
Section 5 we continue the investigations of v-domains (resp. v-Prüfer monoids) started
in [2].


2 Notations


For any set X , we denote by jX j 2 N0 [ ¹1º its cardinality, by P .X/ the set of all
subsets and by Pf.X/ the set of all finite subsets of X .


Throughout this paper, let D be a commutative multiplicative monoid with unit
element 1 2 D and a zero element 0 2 D (satisfying 0x D 0 for all x 2 D) such
that D� D D n ¹0º is cancellative, and let K D q.D/ D D��1D be its total quotient
monoid (then K� is a quotient group of D�). The most important example we have
in mind is when D is the multiplicative monoid of an integral domain (then K is the
multiplicative monoid of its quotient field).


For subsets X; Y � K, we set .X WY / D ¹z 2 K j zY � Xº, X�1 D .D WX/, and
the set X is called D-fractional if X�1 \D� ¤ ¿. We denote by F .D/ the set of all
D-fractional subsets of K.


Throughout, we use the language of ideal systems as developed in my book “Ideal
Systems” [11], and all undefined notions are as there. For an ideal system r on D, let
Fr.D/ D ¹Xr j X 2 F .D/º D ¹A 2 F .D/ j Ar D Aº be the semigroup of all
fractional r-ideals, equipped with the r-multiplication, defined by .A;B/ 7! .AB/r
and satisfying .AB/r D .ArB/r D .ArBr/r for all A;B 2 F .D/. We denote by
Fr;f.D/ D ¹Er j E 2 Pf.K/ � Fr.D/ the subsemigroup of all r-finite (that is,
r-finitely generated) fractional r-ideals of D.


For any subset X � P .K/, we set X� D X n ¹¹0ºº. In particular, if J is any set of
ideals, then J� D J n ¹0º (where 0 D ¹0º denotes the zero ideal). In this way we use
the notions F .D/�, Fr.D/


�, Fr;f.D/
� etc.


For an ideal system r onD, the associated finitary ideal system of r will be denoted
by rf (it is denoted by rs in [11]). It is given by


Xrf D


[
E2Pf.X/


Er for every X 2 F .D/;


and it satisfies Fr;f.D/ D Frf;f.D/. The ideal system r is called finitary if r D rf.
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For any two ideal systems r and q on D we write r � q if Fq.D/ � Fr.D/. Note
that r � q holds if and only ifXr � Xq (equivalently,Xq D .Xr/q) for allX 2 F .D/.


We denote by s D s.D/ the system of semigroup ideals, given by Xs D DX for all
X 2 F .D/; by v D v.D/ the ideal system of multiples (“Vielfachenideale”), given
by Xv D .X�1/�1 for all X 2 F .D/, and by t D t .D/ D vf the associated finitary
system. The systems s and t are finitary, the system v usually not. For every ideal
system r on D we have s � rf � r � v and rf � t . We shall frequently use that
Fv.D/ D ¹A


�1 j A 2 F .D/º (see [11, Theorem 11.8]).
If D is an integral domain, then the (Dedekind) ideal system d D d.D/ of usual


ring ideals is given by Xd DD hXi for all X 2 F .D/ (that is, Xd is the fractional
D-ideal generated by X ). d is a finitary ideal system, and there is a one-to-one corre-
spondence between ideal systems r � d and star operations on D, given as follows:


If � W Fd .D/
� ! Fd .D/


� is a star operation on D and r� W F .D/ ! F .D/ is
defined by Xr� DD hXi


� for X 2 F .D/� and Xr� D ¹0º if X � ¹0º, then r� is an
ideal system satisfying r� � d . Conversely, if r � d is an ideal system, and if we
define �r by J �r D Jr for all J 2 Fd .D/


�, then �r is a star operation, and by the very
definition we have r�r D r and �r� D �.


Throughout this paper, we fix a (basic) ideal system ı on D and assume that all
ideal systems r considered in this manuscript satisfy r � ı. Of course, we may always
assume that ı D s.D/, but if D is an integral domain, it may also be convenient to
assume that ı D d.D/ in order to make the connection with star operations more
apparent.


In any case, we denote by F .D/ D Fı.D/
� the set of all non-zero fractional ı-


ideals and by f .D/ D Fı;f.D/ the set of all ı-finite non-zero fractional ı-ideals ofD.
Then Fr.D/


� D ¹Ar j A 2 F .D/º and Fr;f.D/
� D ¹Fr j F 2 f .D/º for every ideal


system r on D.


3 Mixed invertibility


Mixed invertibility means, that we investigate the invertibility of ideals of one ideal
system with respect to another ideal system. We start by recalling some basic facts
concerning the concept invertibility in the theory of ideal systems. For details and
proofs concerning the following remarks we refer to [11, Theorem 12.1].


Let r be an ideal system on D. A fractional ideal A 2 F .D/ is called r-invertible
if .AA�1/r D D (equivalently, .AB/r D D for some B 2 F .D/). Hence a fractional
ideal A 2 F .D/ is r-invertible if and only if Ar is r-invertible. By definition, a frac-
tional r-ideal is r-invertible if and only if it is an invertible element of the semigroup
Fr.D/. If A;B 2 F .D/, then AB is r-invertible if and only if A and B are both
r-invertible.


We denote by Fr.D/
� the group of all r-invertible fractional r-ideals. If q is an


ideal system such that r � q, then Fr.D/
� � Fq.D/


� is a subgroup (this holds in
particular, if q D v). If r is finitary, then Fr.D/


� D Fr;f.D/
� (that is, if A 2 Fr.D/


is r-invertible, then both A and A�1 are r-finite). This may fail if r is not finitary;
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then it may occur that Fr;f.D/
� ¨ Fr.D/


� \ Fr;f.D/ (it is well known that not every
v-domain is a PvMD).


Theorem 3.1 (Mixed invertibility). Let r; q and y be ideal systems on D, q � y, and
B 2 F .D/. Then the following assertions are equivalent:


(a) Bq is r-invertible.


(b) B�1 is r-invertible, and Bq D Bv .


(c) For every A 2 F .D/ such that Ar � Bq there exists some C 2 Fr.D/ satisfying
Ar D .BqC/r .


(d) .A WB�1/r D .ABq/r for all A 2 F .D/.


(e) .A WBq/r D .AB�1/r for all A 2 F .D/.


(f) Œ.A WB/q�r D .AqB�1/r for all A 2 F .D/.


(g) .Aq WB/r D .AqB�1/r for all A 2 F .D/.


(h) .Aq WB�1/r D .AqBq/r for all A 2 F .D/.


(i) .Av WB�1/ D .AvBq/r for all A 2 F .D/.


(j) .Ar WB�1/ D .ABq/r for all A 2 F .D/.


(k) .By WA/r D .BqA�1/r for all A 2 F .D/.


(l) Œ.B WA/y �r D .BqA�1/r for all A 2 F .D/.


(m) .Bv WA�1/ D .BqAv/r for all A 2 F .D/.


Proof. (a)) (b). If Bq is r-invertible, then Bq D .Bq/v D Bv , and .BqB�1/r D D.
Hence B�1 is r-invertible.


(b) ) (c). If A 2 F .D/ and Ar � Bq , then C D .ArB
�1
q /r 2 Fr.D/, and


.BqC/r D .BqB
�1
q Ar/r D Œ.BqB


�1
q /rA�r D Ar D A, since B�1 is r-invertible and


thus .BqB�1
q /r D .BvB


�1/r D Œ.B
�1/�1B�1�r D D.


(c)) (a). If a 2 B�q , then aD D .aD/r � Bq , and thus aD D .BqC/r for some
C 2 Fr.D/. Hence D D ŒBq.a�1C/�r , and thus Bq is r-invertible.


(a)) (d). Let A 2 F .D/. Since ABqB�1 � A.BqB
�1/r D AD D A, it follows


that ABq � .A W B�1/ and .ABq/r � .A W B�1/r . To prove the reverse inclusion,
let x 2 .A W B�1/r . Then xB�1 � .A W B�1/rB


�1 � Œ.A W B�1/B�1�r � Ar and
x 2 xD D .xBqB


�1/r � .ArBq/r D .ABq/r .
(d)) (j). For every A 2 F .D/, we may apply (d) with Ar instead of A and obtain


.Ar WB
�1/ D .Ar WB


�1/r D .ArBq/r D .ABq/r .
(j)) (i). For every A 2 F .D/, we may apply (j) with Av instead of A and obtain


.Av WB
�1/ D ..Av/r WB


�1/ D .AvBq/r .
(i)) (a). With A D B�1 D Av , (i) implies D � .BqB�1/r D .B�1 WB�1/ � D


and therefore .BqB�1/r D D.
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(d)) (h). For every A 2 F .D/, we apply (d) with Aq instead of A.
(h)) (i). For every A 2 F .D/, we may apply (h) with Av instead of A and obtain


.Av WB
�1/ D ..Av/q WB


�1/r D ..Av/qBq/r D .AvBq/r .
(b)) (e). By (a)) (d), applied with B�1 instead of B . In doing so observe that


.B�1/q D B
�1 and .B�1/�1 D Bv D Bq .


(e)) (g). For every A 2 F .D/, we may apply (e) with Aq instead of A and obtain
.Aq WB/r D .Aq WBq/r D .AqB


�1/r .
(a)) (f). Let A 2 F .D/. Then AB�1B � A implies AB�1 � .A WB/ and thus


.AqB
�1/r � Œ.A WB/q�r . For the reverse inclusion, it suffices to show that .A WB/q �


.AqB
�1/r . If x 2 .A W B/q , then xBq � .A W B/qBq � Œ.A W B/B�q � Aq , and


consequently x 2 xD D .xBqB�1/r � .AqB
�1/r .


(f)) (a) and (g)) (a). In both cases, we set A D Bq , observe that .Bq WB/ � D
and obtain .B�1Bq/r � D, whence .B�1Bq/r D D.


(a) ) (k) and (a) ) (l). Let A 2 F .D/. Since BA�1A � B , it follows that
BA�1 � .B W A/ � .By W A/, hence BqA�1 � .BA�1/q � .B W A/q � .B W A/y
and .BA�1/q � .By W A/q D .By W A/. Thus we obtain .BqA�1/r � .By W A/r and
.BqA


�1/r � Œ.B WA/y �r .
For the reverse inclusions it suffices to show that .By W A/ � .BqA


�1/r and .B W
A/y � .BqA


�1/r . Thus assume that either x 2 .By W A/ or x 2 .B W A/y . Since
.B WA/y � .By WA/y D .By WA/, we obtain xA � By in both cases. Now it follows
that xAB�1 � ByB


�1 � D, hence xB�1 � A�1 and x 2 .xBqB�1/r � .BqA
�1/r .


(k)) (a) and (l)) (a). With A D B we obtain .BqB�1/r D .By WB/r � D from
(k) and .BqB�1/r D Œ.B WB/y �r � D from (l). Hence .BqB�1/r D D follows in both
cases.


(k)) (m). Let A 2 F .D/. By the equivalence of (a) and (k) it follows that (k)
holds with y D v. We apply (k) with y D v and with A�1 instead of A. Then we
obtain .Bv WA�1/ D .Bv WA


�1/r D .BqAv/r .
(m)) (a). With A D B�1 we obtain D � .BqB�1/r D .Bv WBv/ � D and thus


.BqB
�1/r D D.


Remark 3.2. Let assumptions be as in Theorem 3.1, and assume moreover that r � q.
Then the conditions (f), (g), (h), (k) and (l) simplify by the relations Œ.A WB/q�r D .A W
B/q , .Aq W B/r D .Aq W B/, .Aq W B�1/r D .Aq W B


�1/, .By W A/r D .By W A/ and
Œ.B WA/y �r D .B WA/y .


Moreover, condition (g) is obviously equivalent to


(g)0 .Aq WBq/ D .AqB�1/r for all A 2 F .D/ (compare [2, Remark 1.6]).


Corollary 3.3. Let r; q and x be ideal systems on D, x � r and B 2 F .D/. Then Bq
is r-invertible if and only if .Ax WB�1/ D .AxBq/r for all A 2 F .D/.


Proof. Let first Bq be r-invertible and A 2 F .D/. By Theorem 3.1 (j), applied with
Ax instead of A, we obtain .Ax WB�1/ D ..Ax/r WB


�1/ D .AxBq/r .
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To prove the converse, we assume that .Ax WB�1/ D .AxBq/r for all A 2 F .D/.
For any A 2 F .D/, we apply this relation with Av instead of A, and then we obtain
.Av WB


�1/ D ..Av/x WB
�1/ D ..Av/xBq/r D .AvBq/r . Hence Bq is r-invertible by


Theorem 3.1 (i).


Corollary 3.4. Let r be an ideal system on D and B 2 F .D/. Then Bv is r-invertible
if and only if .AB/�1 D .A�1B�1/r for all A 2 F .D/.


Proof. Note that .XY /�1 D .X�1 WY / for all X; Y 2 F .D/ [11, Corollary 11.7 ii)].
Let first Bv be r-invertible and A 2 F .D/. By Theorem 3.1 (f), applied with q D r


and A�1 instead of A, we obtain


.A�1B�1/r D Œ.A
�1/vB


�1�r D Œ.A
�1
WB/v�r D .A


�1
WB/ D .AB/�1:


Assume now that .A�1B�1/r D .AB/
�1 for all A 2 F .D/. For every A 2 F .D/,


we apply this relation with A�1 instead of A and obtain


.AvB
�1/r D Œ.A


�1/�1B�1�r D .A
�1B/�1


D ..A�1/�1
WB/ D .Av WB/r :


Hence Bv is r-invertible by Theorem 3.1 (g), applied with q D v.


4 .r; q/-Dedekind and .r; q/-Prüfer monoids


We use the notions of r-Prüfer monids and r-Dedekind monoids (resp. domains) as in
[11, §17 and §23]. For any property P of monoids we say that an integral domain D is
a P-domain if its multiplicative monoid is a P-monoid.


Definition 4.1. Let r and q be ideal systems on D such that r � q.


(1) D is called an .r; q/-Dedekind monoid if Fq.D/
� � Fr.D/


� [that is, every non-
zero fractional q-ideal is r-invertible, or, equivalently, .BqB�1/r D D for all
B 2 F .D/].


(2) D is called an .r; q/-Prüfer monoid if Fq;f.D/
� � Fr.D/


� [that is, every non-
zero fractional q-finite q-ideal is r-invertible, or, equivalently, .FqF �1/r D D
for all F 2 f .D/].


By definition, D is an r-Dedekind monoid [an r-Prüfer monoid] if and only ifD is
an .r; r/-Dedekind monoid [an .r; r/-Prüfer monoid].


A v-Dedekind monoid is a completely integrally closed monoid [11, Theorem 14.1],
a t -Dedekind monoid is a Krull monoid [11, Theorem 23.4], and an .r; v/-Prüfer
monoid is an r-GCD-monoid [11, Def. 17.6]. Consequently, a v-Dedekind domain
is a completely integrally closed domain, a t -Dedekind domain is a Krull domain, and
a d -Dedekind domain is just a Dedekind domain. A v-Prüfer domain is a v-domain
(that is, a regularly integrally closed domain in the sense of [5, Ch. VII, §1, Ex. 30,
31]), a t -Prüfer domain is a PvMD (that is, a pseudo-Prüfer domain in the sense of [5,
Ch. VII, §2, Ex. 19]), and a d -Prüfer domain is just a Prüfer domain. A .d; v/-Prüfer
domain is a GGCD-domain (generalized GCD-domain, see [11, Def. 17.6]).
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In [2], r-Dedekind domains are called r-CICDs (r-completely integrally closed do-
mains) and .r; v/-Dedekind domains are called .r; v/-CICDs (note that [2, Proposition
1.1] follows from the equivalence of (a) and (c) in Theorem 3.1).


The definition of r-Dedekind domains given in [2] coincides with ours if r is fini-
tary. In general, an r-Dedekind domain in the sense of [2] is an rf-Dedekind domain
according to our definition.


Lemma 4.2. Let r; p; q be ideal systems on D such that r � p � q.
If D is an .r; p/-Dedekind monoid, then D is an .r; q/-Dedekind monoid, and if


D is an .r; q/-Dedekind monoid, then D is a .p; q/-Dedekind monoid. In particular,
if D is an r-Dedekind monoid, then D is an .r; q/-Dedekind monoid, and if D is an
.r; q/-Dedekind monoid, then D is a q-Dedekind monoid.


The same assertions hold true if “Dedekind” is replaced by “Prüfer”. Moreover, if
r � qf, then D is an .r; q/-Prüfer monoid if and only if D is an .r; qf/-Prüfer monoid.


Proof. The statements concerning Dedekind-like monoids follow from the contain-
ments Fq.D/


� � Fp.D/
� and Fr.D/


� � Fp.D/
�.


For the proof of the statements concerning Prüfer-like monoids, assume first thatD
is an .r; p/-Prüfer monoid, and let F 2 f .D/. Then D D .FpF �1/r � .FqF


�1/r �
D, hence .FqF �1/r D D, and D is an .r; q/-Prüfer monoid. If D is an .r; q/-Prüfer
monoid and F 2 f .D/, then D D .FqF


�1/r � .FqF
�1/p � D implies that also


.FqF
�1/p D D, and thus D is a .p; q/-Prüfer monoid.


The last statement follows since Fq;f.D/ D Fqf;f.D/.


The statements of Theorem 3.1 provide a wealth of criteria for a monoid to be an
.r; q/-Dedekind monoid or an .r; q/-Prüfer monoid. In the case of integral domains,
most of them are already in [2] (in different arrangements and with different proofs).
A detailed identification is left to the reader. The following two propositions highlight
two special cases.


Proposition 4.3. Let r and q be ideal systems onD such that r � q. Then the following
assertions are equivalent:


(a) D is an .r; q/-Dedekind monoid.


(b) D is an .r; v/-Dedekind monoid and q D v.


(c) For all A;B 2 F .D/ we have .AB/�1 D .A�1B�1/r , and q D v.


(d) D is a q-Dedekind monoid, and .AB/v D .AvBv/r for all A;B 2 F .D/.


Proof. (a)) (b). Since Fq.D/ � Fr.D/
� � Fv.D/, it follows that q D v.


(b)) (c). If A;B 2 F .D/, then Bv is r-invertible, and thus Corollary 3.4 implies
.AB/�1 D .A�1B�1/r .


(c)) (d). For every B 2 F .D/, Corollary 3.4 implies that Bq D Bv is r-inver-
tible, hence q-invertible, and thus D is a q-Dedekind monoid. For any A;B 2 F .D/,
then we apply (c) twice and obtain


.AB/v D ..AB/
�1/�1


D ..A�1B�1/r/
�1
D .A�1B�1/�1


D .AvBv/r :
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(d)) (a). If A 2 Fq.D/
�, then A is q-invertible. Hence D D .A�1A/q , and since


A;A�1 2 Fv.D/, we obtain D D .A�1A/v D .A
�1A/r .


Proposition 4.4. Let r be an ideal system on D. Then the following assertions are
equivalent:


(a) D is an .r; v/-Prüfer monoid.


(b) .AF /�1 D .A�1F �1/r for all A 2 F .D/ and F 2 f .D/.


(c) D is a v-Prüfer monoid, and .AF /v D .AvFv/r holds for all A 2 F .D/ and
F 2 f .D/.


Proof. (a) ) (b). If A 2 F .D/ and F 2 f .D/, then Fv is r-invertible. Hence
Corollary 3.4 implies .AF /�1 D .A�1F �1/r .


(b)) (c). If F 2 f .D/, then Fv is r-invertible and thus v-invertible by Corollary
3.4. HenceD is a v-Prüfer monoid. ForA 2 F .D/ and F 2 f .D/, we apply (b) twice
and obtain .AF /v D ..AF /�1/�1 D ..A�1F �1/r/


�1 D .A�1F �1/�1 D .AvFv/r .
(c) ) (a). If F 2 f .D/, then F is v-invertible and F �1 2 F .D/. Hence we


obtain D D .F �1F /v D .F
�1Fv/r , and therefore Fv is r-invertible.


5 Characterization of r-Prüfer monoids


Most assertions of the following Theorem 5.1 is well known in the context of finitary
ideal systems (see [11, §17] which is modeled after the antetype of [15, Theorem 6.6]).
For star operations which are not necessarily of finite type such results was first proved
in [2].


Theorem 5.1. Let r and y be ideal systems on D such that y � r . Then the following
assertions are equivalent:


(a) D is an r-Prüfer monoid.


(b) For all a; b 2 D�, the r-ideal ¹a; bºr is r-invertible.


(c) Œ.Ay \ By/.A [ B/�r D .AB/r for all A;B 2 F .D/.


(d) Œ.Ay \ By/.A [ B/�r D .AB/r for all A;B 2 f .D/.


(e) ŒF .Ar \ Br/�r D .FA/r \ .FB/r for all A;B; F 2 f .D/.


(f) ŒF .Ar \ Br/�r D .FA/r \ .FB/r for all F 2 f .D/ and A;B 2 F .D/.


(g) For all I; J 2 Fr.D/
� we have I \ J 2 Fr.D/


� and .I [ J /r 2 Fr.D/
�.


(h) For all I; J 2 Fr.D/
� we have .I [ J /r 2 Fr.D/


�.


(i) For every family .Ai /i2I in F .D/ and all F 2 f .D/ we have��[
i2I


Ai
�
y
W F
�
r
D


�[
i2I


�
.Ai /y WF


��
r
:







Mixed invertibility and Prüfer-like monoids and domains 255


(j)
�
.A [ B/y WF


�
r
D Œ.Ay WF / [ .By WF /�r for all A;B 2 F .D/ and F 2 f .D/.


(k)
�
.A [ B/y WF


�
r
D Œ.Ay WF / [ .By WF /�r for all A;B; F 2 f .D/.


(l)
�
Ay W.Fr\Gr/


�
r
D Œ.Ay WFr/[.Ay WGr/�r for allA 2 F .D/ and F;G 2 f .D/.


(m) Œ.a�1bD \D/ [ .ab�1D \D/�r D D for all a; b 2 D�.


Proof. (a)) (b), (c)) (d), (f)) (e), (g)) (h) and (i)) (j)) (k). Obvious.
(b), (m). Let a; b 2 D�. Then ¹a; bº�1 D a�1D \ b�1D and therefore


.¹a; bº¹a; bº�1/r D .a¹a; bº
�1
[ b¹a; bº�1/r


D Œa.a�1D \ b�1D/ [ b.a�1D \ b�1D/�r


D Œ.a�1bD \D/ [ .ab�1D \D/�r :


Hence ¹a; bºr is r-invertible if and only if Œ.a�1bD \D/ [ .ab�1D \D/�r D D.
(b)) (c) and (d)) (c). Let A;B 2 F .D/. Then obviously


.Ay \ By/.A [ B/ � AyB \ ABy � .AB/r ;


which implies Œ.Ay \ By/.A [ B/�r � .AB/r .
For the reverse inclusion, it suffices to prove thatAB � Œ.Ay\By/.A[B/�r . Thus


let a 2 A and b 2 B . Since ab¹a; bº�1 D ab.a�1D\b�1D/ D aD\bD, (b) implies
that


ab 2 Œab¹a; bº¹a; bº�1�r D Œa.aD \ bD/ [ b.aD \ bD/�r


D ŒaD [ bD/.aD \ bD/�r � Œ.Ay \ By/.A [ B/�r :


By (d), it follows that


ab 2 Œ.aD/.bD/�r D ŒaD [ bD/.aD \ bD/�r � Œ.Ay \ By/.A [ B/�r ;


and thus we obtain AB � Œ.Ay \ By/.A [ B/�r in both cases.
(c)) (g). If I; J 2 Fr.D/


�, then


Œ.I \ J /.I [ J /r �r D Œ.I \ J /.I [ J /�r D .IJ /r 2 Fr.D/
�;


which implies I \ J 2 Fr.D/
� and .I [ J /r 2 Fr.D/


�.
(h) ) (a). We must prove that Er 2 Fr.D/


� for every finite non-empty subset
E � D�, and we proceed by induction on jEj. The assertion is obvious if jEj D 1. If
jEj � 1, Er 2 Fr.D/


� and a 2 D�, then .E [ ¹aº/r D .Er [ aD/r 2 Fr.D/
�, and


thus the assertion follows by induction on jEj.
(a)) (f). Let F 2 f .D/ and A;B 2 F .D/. Then


.FA/r \ .FB/r D .FF
�1/r Œ.FA/r \ .FB/r �


�
�
F Œ.F �1FA/r \ .F


�1FB/r �
�
r
D ŒF .Ar \ Br/�r :


Since F.Ar \Br/ � FAr \FBr � .FA/r \ .FB/r , the reverse inclusion is obvious.
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(e)) (d). As we have already proved the equivalence of (d) and (a), it suffices to
show that (d) holds with y D r . Thus let A;B 2 f .D/, and set F D .A [ B/ı . Then
F 2 f .D/, and Œ.Ar \Br/.A[B/�r D Œ.Ar \Br/F �r D .FA/r \ .FB/r � .AB/r .
On the other hand, we obviously have .Ar \ Br/.A [ B/ � ArB [ ABr � .AB/r ,
which implies the reverse inclusion.


(a) ) (i). Let .Ai /i2I be a family in F .D/ and F 2 f .D/. Since Fr is r-
invertible, Theorem 3.1 (f) (applied with q D r) implies��[


i2I


Ai
�
y
WF
�
r
D


��[
i2I


Ai
�
r
F �1


�
r
D


�[
i2I


AiF
�1
�
r


�


�[
i2I


.Ai /rF
�1
�
r
D


�[
i2I


�
.Ai /y WF


��
r
;


and the reverse inclusion is obvious.


(k)) (b). Let a; b 2 D� and apply (k) with A D aD, B D bD and F D ¹a; bºı .
Then we obtain


D � .¹a; bºy W ¹a; bº/r D Œ.aD W ¹a; bº/ [ .bD W ¹a; bº/�r


D .a¹a; bº�1
[ b¹a; bº�1/r D .¹a; bº¹a; bº


�1/r


D .¹a; bºr¹a; bº
�1/r � D:


Hence equality holds, and ¹a; bºr is r-invertible.


(a) ) (l). Let A 2 F .D/ and F;G 2 f .D/. Then the fractional r-ideals Fr ,
Gr , F �1 and G�1 are r-invertible, and since we have already proved that (a) implies
(g), it follows that Fr \Gr and .F �1 [G�1/r are also r-invertible. Observe now that
Fr D .F


�1/�1, Gr D .G�1/�1 and


.F �1
[G�1/r D Œ.F


�1
[G�1/�1��1


D Œ.F �1/�1
\ .G�1/�1��1


D .Fr \Gr/
�1:


We apply Theorem 3.1 (f) with q D r and obtain�
Ay W.Fr \Gr/


�
r
D ŒAr.Fr \Gr/


�1�r D ŒAr.F
�1
[G�1/r �r


D Œ.ArF
�1/r [ .ArG


�1/r �r D Œ.Ay WFr/ [ .Ay WGr/�r :


(l) ) (m). Let a; b 2 D�, and apply 12. with A D aD \ bD, F D aD and
G D bD. Then we obtain


D � ..aD \ bD/ W.aD \ bD//r D
��
.aD \ bD/ WaD


�
[
�
.aD \ bD/ WbD


��
r


D Œ.D \ a�1bD/ [ .D \ ab�1D/�r � D;


and consequently Œ.a�1bD \D/ [ .ab�1D \D/�r D D.
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Remark 5.2. The presence of the ideal system y in Theorem 5.1 makes the criteria
more flexible. The extremal cases y D ı and y D r are the most interesting ones.
Indeed, for y D r the criteria become most transparent, for y D d in the domain case
they become comparable with criteria usually formulated in the literature, while the
case y D ı is suitable for the monoid case.


Corollary 5.3. Let r and q be ideal systems on D such that r � q, and let D be an
.r; q/-Prüfer monoid. Then the following assertions are equivalent:


(a) D is an r-Prüfer monoid.


(b) .A [ B/r D .A [ B/q for all A;B 2 Fr.D/
�.


(c) .A [ B/r D .A [ B/q for all A;B 2 Fr;f.D/ \ Fr.D/
�.


(d) ¹a; bºr D ¹a; bºq for all a; b 2 D�.


Proof. (a)) (b). By Theorem 5.1 (h) we have .A [ B/r 2 Fr.D/
� � Fq.D/ and


therefore .A [ B/r D Œ.A [ B/r �q D .A [ B/q .
(b)) (c)) (d). Obvious.
(d)) (a). For all a; b 2 D� we have ¹a; bºr D ¹a; bºq 2 Fq;f.D/


� � Fr.D/
�,


since D is an .r; q/-Prüfer monoid. Thus it follows that D is an r-Prüfer monoid by
Theorem 5.1 (b).
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Chain conditions in rings of the form
A C XBŒX� and A C XIŒX�


S. Hizem


Abstract. In this paper we study different chain conditions in pullbacks of the form A C XBŒX�,
A C XBŒŒX�� where A � B is an extension of commutative rings, A C XI ŒX� and A C XI ŒŒX��
where I is a proper ideal of A. We give necessary and sufficient conditions for these rings to be
Noetherian, to have Noetherian spectrum, to be Laskerian or to satisfy the ascending chain conditions
for principal ideals when rings are supposed to be présimplifiable.


Keywords. Chain condition, Noetherian ring, Noetherian spectrum, ACCP, Laskerian ring, pullback.


AMS classification. 13E05, 13E99, 13B25, 13J05.


1 Introduction


All the rings considered below are commutative with unity, ¹X1; : : : ; Xnº is a finite
non-empty set of analytically independent indeterminates over any ring. As usual if A
is a commutative ring then AŒX� and AŒŒX�� denote the rings of polynomials and of
formal power series, respectively over A. In this paper we study different chain condi-
tions (for ideals, for radical ideals, for principal ideals, Laskerian rings) in pullbacks of
the form ACXBŒX� and ACXBŒŒX�� where A � B is an extension of commutative
rings andACXI ŒX� andACXI ŒŒX��whereA is a commutative ring and I is a proper
ideal of A.


In the first section we give necessary and sufficient conditions for these rings to
be Noetherian. We generalize some known results ([7] and [13]). We prove first that
ACXBŒX� and ACXBŒŒX�� are Noetherian if and only if they are nonnil-Noetherian
if and only if A is Noetherian and B is a finitely generated A-module. Recall that a
commutative ring A is said to be nonnil-Noetherian if each ideal of A which is not
contained in the nilradical of A is finitely generated. For the rings of the form A C
XI ŒX� and ACXI ŒŒX��, using [14], we have the following:


Let A be a commutative ring with unity and I a proper ideal of A. The following
statements are equivalent:


(1) A is Noetherian and I 2 D I .


(2) AC .X1; : : : ; Xn/I ŒX1; : : : ; Xn� is Noetherian.


(3) AC .X1; : : : ; Xn/I ŒŒX1; : : : ; Xn�� is Noetherian.


In the second part of our paper, we characterize when rings of the form ACXBŒX�
and ACXI ŒX� have Noetherian spectrum (or equivalently satisfy the ascending chain
condition for radical ideals) using results on pullbacks from [12]. We prove that AC
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XBŒX� has Noetherian spectrum if and only if A and B do. And A C XI ŒX� has
Noetherian spectrum if and only if A has Noetherian spectrum.


In the third part, we generalize the ascending chain condition for principal ideals
(ACCP) to présimplifiable rings. Recall that a ring is présimplifiable ([6]) if 8x; y 2
A; .xy D x H) x D 0 or y 2 U.A// or equivalently Z.A/ � 1C U.A/, where Z.A/
and U.A/ denote the set of zero divisors and invertible elements of A respectively. It is
known that for an integral domain A we have the equivalence: A satisfies ACCP if and
only if AŒX� does if and only if AŒŒX�� does. In [2] and [9], the authors gave necessary
and sufficient conditions for the rings ACXBŒX� and ACXBŒŒX�� to satisfy ACCP.
We generalize some of these results under the assumption that rings are présimplifiable.


Finally, recall that a Laskerian ring is one for which every ideal is a finite intersec-
tion of primary ideals and a ringA is called a ZD ring (zero divisor ring) if for any ideal
I of A the set ¹a 2 A j there exists s 2 AnI such that as 2 I º is a union of finitely
many prime ideals. In [18], the authors proved that for a commutative ring A, the ring
AŒX� is Laskerian if and only if it is ZD if and only if A is Noetherian. In the case of
the power series ring Gilmer and Heinzer proved the equivalence AŒŒX�� is Laskerian
if and only if A is Noetherian but they gave an example of a non-Noetherian ring such
that AŒŒX�� is ZD.


In the last part we study Laskerian rings of the form ACXBŒX� and ACXBŒŒX��.
We generalize some results given by [1], [3] and [21]. We prove among others that if
B is a finitely generated A-module then the following are equivalent:


(1) ACXBŒX� is ZD.


(2) ACXBŒX� is Laskerian.


(3) ACXBŒX� is strongly Laskerian.


(4) ACXBŒX� is Noetherian.


But in general we can have Laskerian rings of the form AC XBŒX� which are not
Noetherian.


In this paper, Rn and Sn will denote the rings A C .X1; : : : ; Xn/BŒX1; : : : ; Xn�,
AC .X1; : : : ; Xn/BŒŒX1; : : : ; Xn�� respectively. Tn and Vn will denote respectively the
rings AC .X1; : : : ; Xn/I ŒX1; : : : ; Xn� and AC .X1; : : : ; Xn/I ŒŒX1; : : : ; Xn��.


2 Noetherian rings of the form A C XBŒX�, A C XBŒŒX��,
A C XIŒX� and A C XIŒŒX��


Proposition 2.1. Let A � B be an extension of commutative rings with unity. The
following statements are equivalent:


(1) The ring A is Noetherian and B is a finitely generated A-module.


(2) Rn is Noetherian.


(3) Sn is Noetherian.


(4) Rn is nonnil-Noetherian.


(5) Sn is nonnil-Noetherian.
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Proof. For the equivalence (1) ” (2) (resp. (1) ” (3)) we apply [7, Proposi-
tion 1] to the rings Rn (resp. Sn), BŒX1; : : : ; Xn� (resp. BŒŒX1; : : : ; Xn��) and the com-
mon ideal .X1; : : : ; Xn/BŒX1; : : : ; Xn� (resp. .X1; : : : ; Xn/BŒŒX1; : : : ; Xn��). Now we
prove that 2 is equivalent to 4. If Rn is Noetherian, then it is nonnil-Noetherian. Con-
versely, let p 2 spec.A/. Then p C .X1; : : : ; Xn/BŒX1; : : : ; Xn� 2 spec.Rn/, more-
over, it’s a nonnil ideal so it is finitely generated, which implies that A is Noetherian.
The ideal X1BŒX1; : : : ; Xn� of R is nonnil, so it is finitely generated, which implies
that B is a finitely generated A-module. So Rn is Noetherian. The proof is the same
for Sn.


Example 2.2. Let K � L be an extension of fields. It is known that the ring K C
.X1; : : : ; Xn/LŒX1; : : : ; Xn� is Noetherian if and only if L=K is finite.


Remark 2.3. The ring Rn is an integral domain if and only if B is an integral do-
main. In this case qf.Rn/ D qf.BŒX1; : : : ; Xn�/ as they have the common ideal
.X1; : : : ; Xn/BŒX1; : : : ; Xn�.


If A � B , the ring Rn is never principal. In fact it is never UFD because it is never
completely integrally closed: if b 2 BnA, then b 2 qf.Rn/nRn and for each n 2 N,
X1b


n 2 Rn.


Noetherian rings of the form A C XI ŒX1; : : : ; Xn� are characterized in [14, The-
orem 1]. The proof given there works also for power series rings. So we have the
following result:


Proposition 2.4. Let A be a commutative ring with unity and I a proper ideal of A.
The following are equivalent:


(1) The ring A is Noetherian and I 2 D I .


(2) Tn is Noetherian.


(3) Vn is Noetherian.


Corollary 2.5. If the ideal I ª Nil.A/, then A C XI ŒX� is nonnil-Noetherian if and
only if it is Noetherian.


Proof. Obviously, ifACXI ŒX� is Noetherian then it is nonnil-Noetherian. Conversely,
let p 2 spec.A/. Then p C XI ŒX� 2 spec.A C XI ŒX�/, moreover it is a nonnil
ideal, so it is finitely generated which implies that p is finitely generated and then A is
Noetherian. The ideal I ŒX� is a nonnil ideal of AC XI ŒX�, so it is finitely generated.
Let f1; : : : ; fs 2 I ŒX� such that I ŒX� D f1.ACXI ŒX�/C � � � C fs.ACXI ŒX�/. We
reduce modulo I 2 and we compare the degrees, which implies that I 2 D I . Using the
previous proposition we conclude that ACXI ŒX� is Noetherian.


Remark 2.6. The ring ACXI ŒX� is an integral domain if and only if A is an integral
domain. In this case qf.A C XI ŒX�/ D qf.AŒX�/. If I is a proper ideal of A, then
A C XI ŒX� is never principal. In fact it is never UFD: let a 2 AnI . Then aX 2
qf.AŒX�/ D qf.A C XI ŒX�/. Let b 2 In.0/. Then for each n 2 N, b.aX/n D
banXn 2 ACXI ŒX�. So ACXI ŒX� is never completely integrally closed.
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3 Rings with Noetherian spectrum of the form A C XBŒX� and
A C XIŒX�


Recall that a ringA has Noetherian spectrum if it satisfies the ascending chain condition
for radical ideals. It is known that a ringA has Noetherian spectrum if and only ifAŒX�
has Noetherian spectrum.


Proposition 3.1. The ring Rn has Noetherian spectrum if and only if A and B have
Noetherian spectrum.


Proof. Suppose that Rn has Noetherian spectrum. As A is a quotient ring then the
spectrum of A is Noetherian. If the spectrum of B is not Noetherian, then there exists
a radical ideal I of B which is not the radical of a finitely generated ideal of B . Let
b0 2 I . Then


p
b0B � I , so there exists b1 2 In


p
b0B . By induction, we con-


struct a sequence .bi /i of elements of I such that
p
b0B �


p
b0B C b1B � � � � �p


b0B C b1B C � � � C biB � � � � . We obtain the following sequence of radical ideals
of Rn: p


b0X1Rn �


p
b0X1Rn C b1X1Rn


� � � � �


p
b0X1Rn C b1X1Rn C � � � C biX1Rn � � � � :


The sequence is strictly increasing, otherwise there exist k;p 2N, such thatXp
1 b


p


kC1D


X1b0f0 C � � � CX1bkfk , with f0; : : : ; fk in Rn, so bp


kC1 D b0˛0 C � � � C bk˛k , where
˛i 2 B . So bkC1 2


p
b0; : : : ; bk in B , which is a contradiction. Conversely, consider


the commutative diagram:


Rn ! A


# #


BŒX1; : : : ; Xn� ! BŒX1; : : : ; Xn�=.X1; : : : ; Xn/BŒX1; : : : ; Xn�


Using [12, Corollary 1.6], spec.Rn/ and spec.B/ are Noetherian if and only if spec.A/
and spec.BŒX1; : : : ; Xn�/ are Noetherian. So if A and B have Noetherian spectrum,
then so are A and BŒX1; : : : ; Xn� and then spec.Rn/ is Noetherian.


Example 3.2. Let A � B be two Noetherian rings such that B is not a finitely gen-
erated A-module then Rn has Noetherian spectrum but is not Noetherian. For exam-
ple suppose that K � L is an extension of fields of infinite degree. Then the ring
K C .X1; : : : ; Xn/LŒX1; : : : ; Xn� has Noetherian spectrum but is not Noetherian.


Remark 3.3. The equivalence is false in the case of formal power series. In fact, let
A D B be a non-discrete valuation domain of rank 1. Then A has Noetherian spectrum
but inAŒŒX��, there exists an infinite chain of prime ideals soAŒŒX�� has not Noetherian
spectrum.
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We show that Tn has Noetherian spectrum if and only if spec.A/ is Noetherian.


Proposition 3.4. Let A be a commutative ring with unity and I a proper ideal of A.
Then Tn has Noetherian spectrum if and only if spec.A/ is Noetherian.


Proof. If spec.Tn/ is Noetherian, then so is spec.A/. Conversely, consider the com-
mutative diagram:


Tn ! A


# #


AŒX1; : : : ; Xn� ! AŒX1; : : : ; Xn�=.X1; : : : ; Xn/I ŒX1; : : : ; Xn�


By [12, Corollary 1.6], spec.Tn/ and spec.AŒX1; : : : ;Xn�=.X1; : : : ;Xn/I ŒX1; : : : ;Xn�/
are Noetherian if and only if spec.A/ and spec.AŒX1; : : : ; Xn�/ are Noetherian. So, if
spec.A/ (and then spec.AŒX1; : : : ; Xn�/) is Noetherian, then Tn has also Noetherian
spectrum.


Remark 3.5. Here also the equivalence is false in the case of formal power series. Take
A to be a non-discrete valuation domain of rank 1 and I the unique maximal ideal of
A, then I is not an SFT ideal and using [19] there exists an infinite chain of prime
ideals in A C XI ŒŒX�� so spec.A C XI ŒŒX��/ is not Noetherian, although spec.A/ is
Noetherian.


4 Ascending chain condition for principal ideals in rings of the form
A C XBŒX� and A C XIŒX�


First we recall from [9] some necessary and sufficient conditions for the rings Rn and
Sn in order to satisfy the ascending chain condition for principal ideals, then we prove
an analogous result for the rings Tn and Vn when the rings are supposed to be integral
domains. In the second part we generalize these results under the assumption that rings
are présimplifiable.


Proposition 4.1. If f D a0 C g 2 Rn, then f 2 U.Rn/ if and only if a0 2 U.A/ and
g 2 .X1; : : : ; Xn/Nil.B/ŒX1; : : : ; Xn�.


Proof. If a0 2 U.A/ and g 2 Nil.B/ŒX1; : : : ; Xn�\ .X1; : : : ; Xn/BŒX1; : : : ; Xn�, then
f is the sum of a nilpotent element and an invertible element so f is invertible in
Rn. Conversely, we prove the result by induction on n. For n D 1, if f D a0 C


a1X C � � � C anX
n 2 U.A C XBŒX�/, then there exists g D b0 C b1X C � � � C


bmX
m 2 A C XBŒX� such that fg D 1, which implies that a0b0 D 1, so a0 2


U.A/. On the other hand, as f 2 U.A C XBŒX�/ � U.BŒX�/, then ai 2 Nil.B/,
8i � 1. Let n � 2. Suppose that the result is true for n � 1, we show it for n. Let
f D f0 C f1X1 C � � � C fsX


s
1 with f0 2 AC .X2; : : : ; Xn/BŒX2; : : : ; Xn� and fi 2


.X2; : : : ; Xn/BŒX2; : : : ; Xn� for i � 1. As f 2 U.AC .X1; : : : ; Xn/BŒX1; : : : ; Xn�/,
then f0 2 U.AC .X2; : : : ; Xn/BŒX2; : : : ; Xn�/ and 8i � 1; fi 2 Nil.B/ŒX2; : : : ; Xn�.
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By induction, we have f0 D a0 C h, where h 2 Nil..X2; : : : ; Xn/BŒX2; : : : ; Xn�/, so
a0 2 U.A/ and h 2 Nil.B/ŒX2; : : : ; Xn�. Then, g 2 Nil.B/ŒX1; : : : ; Xn�.


Recall the following results from [9]:


Lemma 4.2 ([9, Remark 1.1]). Let A be an integral domain. Then A satisfies the
ACCP if and only if for each sequence .an/ of non-invertible elements of A, we haveT


n�1 a1 � � � anA D .0/.


Proposition 4.3 ([9, Proposition 1.2] and [9, Remark 1.4]). Let A � B be an extension
of integral domains. The following are equivalent:


(1) AC .X1; : : : ; Xn/BŒX1; : : : ; Xn� satisfies the ACCP.


(2) AC .X1; : : : ; Xn/BŒŒX1; : : : ; Xn�� satisfies the ACCP.


(3) For each sequence .aj / of non-invertible elements of A,
T


j�1 a1 � � � ajB D .0/.


Lemma 4.4. The element f D a0 C g 2 Tn is invertible in Tn if and only if a0 is
invertible in A and g is nilpotent.


Proof. Let f D a0C g 2 U.Tn/ � U.AŒX1; : : : ; Xn�/. So a0 is invertible in A and all
the coefficients of g are nilpotent. Conversely, if a0 2 U.A/ and g is nilpotent, then f
is invertible as it is the sum of an invertible and a nilpotent element.


It is easy to prove the following lemma:


Lemma 4.5. The element f D a0 C g 2 Vn is invertible in Vn if and only if a0 is
invertible in A.


Proposition 4.6. Let A be an integral domain and I be a proper ideal of A. The
following are equivalent:


(1) Tn satisfies the ACCP.


(2) Vn satisfies the ACCP.


(3) A satisfies the ACCP.


Proof. The equivalence between (2) and (3) is proved in [19]. We show the equivalence
between (1) and (3). Let a1A � � � � � anA � � � � be a sequence of principal ideals
of A. We obtain the sequence a1Tn � � � � � anTn � � � � in Tn. Since the ring Tn


satisfies the ACCP, there exists k0 2 N such that 8k � k0, akTn D ak0Tn: So, there
exists fk 2 U.Tn/ D U.A/ such that ak D fkak0 . So akA D ak0A 8k � k0.
Conversely, let .fk/k be a sequence of non-invertible polynomials in Tn. We show
that


T
k�1 f1 � � � fkTn D .0/. If the sequence contains an infinite subsequence of non-


constant polynomials, then
T


k�1 f1 � � � fkTn D .0/. We can suppose that almost all
the fi are constant. If all the fi are in A, so


T
k�1 f1 � � � fkTn D


T
k�1 f1 � � � fkAC


.X1; : : : ; Xn/.
T


k�1 f1 � � � fkI /ŒX1; : : : ; Xn� D .0/. In general, there exists l � 1
such that 8k > l , fk 2 A. Let g D f1 � � � fl . Then we have


T
k�1 f1 � � � fkTn D


g
T


k�lC1 flC1 � � � fkTn D .0/.







Chain conditions in rings of the form ACXBŒX� and ACXI ŒX� 265


Recall the definition of a “présimplifiable” ring [6]. A présimplifiable ring is a ring
with zero divisors which is nearly an integral domain, in the sense that many domain
properties are saved.


Proposition 4.7. Let A be a commutative ring. The following are equivalent:


(1) 8x; y 2 A, .xy D x H) x D 0 or y 2 U.A//.


(2) Z.A/ � 1C U.A/.


Definition 4.8. If the equivalent conditions of the preceding proposition are satisfied,
A is said to be a “présimplifiable” ring.


Proposition 4.9 ([6]). Let A be a commutative ring. Then AŒX1; : : : ; Xn� is présimpli-
fiable if and only if Z.A/ D N.A/.


Remark 4.10. If A is présimplifiable then we don’t have AŒX� présimplifiable in gen-
eral. We can take A a local ring (which implies that A is présimplifiable) such that
N.A/ ¤ Z.A/. For example, let K be a field. In KŒŒX; Y ��, we take I D hXY; Y 2i


and A D KŒŒX; Y ��=I . Then A is local, so présimplifiable. But X 2 Z.A/nN.A/.
In fact X … N.A/ otherwise there exists n 2 N such that Xn 2 I , so there exist
f; g 2 KŒŒX; Y �� such that Xn D XYf C Y 2g. Take Y D 0, then Xn D 0, which is
impossible. In the other hand X 2 Z.A/, as XY D 0 and Y ¤ 0.


Proposition 4.11. A is présimplifiable if and only if AŒŒX1; : : : ; Xn�� is présimplifiable.


Proof. Using induction on n, we can prove the result for n D 1. Using [5], if AŒŒX��
is présimplifiable, then so is A. Conversely, let f D


P
i�0 aiX


i 2 Z.AŒŒX��/; there
exists g 2 AŒŒX��n.0/ such that fg D 0. Let g D


P
i�0 biX


i and k D inf¹i 2 N j
bi ¤ 0º. As fg D 0, then a0bk D 0 with bk ¤ 0, so a0 2 Z.A/ � 1C U.A/ because
A is présimplifiable. So f � 1 2 U.AŒŒX��/.


Proposition 4.12. (1) Nil.Rn/ D Nil.A/C .X1; : : : ; Xn/Nil.B/ŒX1; : : : ; Xn�.


(2) f 2 Z.Rn/ if and only if there exists b 2 Bn.0/ such that bf D 0.


Proof. (1) Let f 2 Nil.Rn/ � Nil.BŒX1; : : : ; Xn�/ D Nil.B/ŒX1; : : : ; Xn�. So all the
coefficients of f are nilpotent and f 2 Nil.A/ C .X1; : : : ; Xn/Nil.B/ŒX1; : : : ; Xn�.
The other inclusion is clear.


(2) Let f 2 Z.Rn/ � Z.BŒX1; : : : ; Xn�/; there exists b 2 Bn.0/ such that bf D 0.
Conversely, let f 2 Rn such that there exist b 2 Bn.0/ and bf D 0. Then bX1f D 0,
and f 2 Z.Rn/.


Proposition 4.13. The ring Rn is présimplifiable if and only if Z.B/ D Nil.B/.


Proof. If b 2 Z.B/, then bX1 2 Z.Rn/ � 1C U.Rn/. So 1 � bX1 2 U.Rn/, which
implies that b 2 Nil.B/. Conversely, let f 2 Z.Rn/; there exists b 2 Bn.0/ such that
bf D 0. So all the coefficients of f are in Z.B/ � Nil.B/. So f 2 Nil.Rn/. And
f � 1 2 U.Rn/.
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Proposition 4.14. Sn is présimplifiable if and only if Z.B/ \ A � 1C U.A/.


Proof. If a 2 Z.B/\A, then a 2 Z.Sn/ � 1CU.Sn/. So a 2 1CU.A/. Conversely, let
f 2 Z.R/. Then the constant term of f; a0 2 Z.B/\A � 1CU.A/. So f �1 2 U.Sn/.
And f 2 1C U.Sn/.


Lemma 4.15 ([24]). The ring R is présimplifiable if and only if for every a; b 2 Rn.0/
such that .a/ D .b/ and a D bc, then c 2 U.R/.


Proposition 4.16. Let A be a présimplifiable ring. Then A satisfies ACCP if and only
if AŒŒX1; : : : ; Xn�� satisfies ACCP.


Proof. It is sufficient to prove the result for n D 1.
Let .f1/ � .f2/ � � � � be an increasing sequence of principal ideals of AŒŒX��. We


can simplify by a convenient power of X , and suppose that fi .0/ ¤ 0 for each i . We
obtain the increasing sequence of non-zero principal ideals of A: .f1.0// � .f2.0// �
� � � . As A satisfies ACCP, there exists k 2 N such that for each n � k, .fk.0// D
.fn.0//. But for each n � k, there exists gn 2 AŒŒX�� such that fk D gnfn, so
fk.0/ D gn.0/fn.0/. AsA is présimplifiable, then gn.0/ 2 U.A/. So gn 2 U.AŒŒX��/.
And for each n � k, .fn/ D .fk/.


Conversely, let .a1/ � .a2/ � � � � be an increasing sequence of principal ideals of
A. We obtain the sequence a1AŒŒX�� � a2AŒŒX�� � � � � in AŒŒX��. But AŒŒX�� satisfies
ACCP, so there exists k 2 N such that for each n � k, we have anAŒŒX�� D akAŒŒX��,
which implies that anA D akA.


Remark 4.17. We use [16] to prove that ifA is présimplifiable and satisfies ACCP, then
AŒX� does not satisfy ACCP in general. First, we recall the counter-example of Heinzer
and Lantz: Let K be a field and .Ai /i�1 indeterminates over K and S D KŒAi ; i �
1�=hAn.An�1 � An/; n � 2i. Let an the image of An in S and P D .a1; a2; : : : /S .
Take R D SP . Then S is a graded ring. If f 2 S , then the order of f is the smallest
degree of non-zero terms of f . If f; g 2 S , then ord.fg/ � ord.f / C ord.g/. Each
f … .a1; a2; : : : /S has a non-zero term of degree 0 which is invertible, so for such
an element f and for each g 2 S , ord.fg/ D ord.g/. Moreover the elements of S
of order 0 are invertible in R. We prove that R is présimplifiable, which is equivalent
to: for each a; b 2 Rn.0/ such that .a/ D .b/ and a D bc, then c 2 U.R/. It is
sufficient to take f1; f2 2 S such that f1R D f2R and f1 D


g
h
f2 where ord.g/ � 0


and ord.h/ D 0. We have to prove that g
h
2 U.R/. As f2 2 f1R, then f2 D f1


g0


h0


where ord.h0/ D 0. So f1 D
g
h


g0


h0 f1 D
gg0f1


hh0 . So there exists u 2 SnP such that
uhh0f1 D ugg0f1. Then ord.hh0f1/ D ord.f1/ � ord.g/ C ord.g0/ C ord.f1/. We
conclude that ord.g/ D ord.g0/ D 0, and g; g0 2 U.R/. So, g


h
2 U.R/.


Proposition 4.18. Let A be a présimplifiable ring and I a proper ideal of A. Then A
satisfies ACCP if and only if ACXI ŒŒX�� does.


Proof. ((H) Let a1A � a2A � � � � be an increasing sequence of principal ideals of A.
We obtain the sequence a1.ACXI ŒŒX��/ � a2.ACXI ŒŒX��/ � � � � in ACXI ŒŒX��.
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As A C XI ŒŒX�� satisfies ACCP, then there exists n 2 N such that for any k � n,
ak.ACXI ŒŒX��/ D an.ACXI ŒŒX��/ so akA D anA.


(H)) Let f1.AC XI ŒŒX��/ � f2.AC XI ŒŒX��/ � � � � be an increasing sequence
of principal ideals of A C XI ŒŒX��. We can simplify by a convenient power of X ,
and suppose that fi .0/ ¤ 0 for each i . We obtain the increasing sequence of non-
zero principal ideals of A W .f1.0// � .f2.0// � � � � . As A satisfies ACCP, there
exists k 2 N such that for any n � k, .fk.0// D .fn.0//: For each n � k, there
exists gn 2 A C XI ŒŒX�� such that fk D gnfn, so fk.0/ D gn.0/fn.0/. As A is
présimplifiable, then gn.0/ 2 U.A/. So gn 2 U.A C XI ŒŒX��/ and for each n � k,
.fn/ACXIŒŒX�� D .fk/ACXIŒŒX��.


Remark 4.19. If A is présimplifiable and satisfies ACCP, then A C XI ŒX� does not
satisfy ACCP in general. Take in the counter-example of Heinzer and Lantz I D
.SnP /�1P which is a proper ideal of R. Let f1 D 1C a1X; : : : ; fn D 1C anX; : : : .
Then fn�1 D fn..an�1 � an/X C 1/. So fn�1.R C XI ŒX�/ � fn.R C XI ŒX�/.
These are proper inclusions. In fact, suppose that there exists n � 2 and b.X/ 2
R C XI ŒX� such that .1C an�1X/b.X/ D 1C anX . Let b.X/ D b0 C b1X C � � � .
Then .1C an�1X/.b0 C b1X C � � � / D 1C anX , which implies that b0 D 1 and for
n � 1, bm D .�1/m�1am�1


n�1 .an � an�1/, so each bm is non-zero and b.X/ is not a
polynomial which is impossible.


Lemma 4.20. Let A � B be an extension of commutative rings such that B is présim-
plifiable. If U.B/ \ A D U.A/, then A is présimplifiable.


Proof. As Z.B/ � 1 C U.B/, then Z.A/ � Z.B/ \ A � .1 C U.B// \ A D 1 C
U.B/ \ A D 1C U.A/. So A is présimplifiable.


In the next proposition we prove using [2], that we have the same necessary and
sufficient condition, as in the case of integral domains, for the ring A C XBŒŒX�� to
satisfy ACCP if we suppose that B is a présimplifiable ring.


Proposition 4.21. Let A � B be an extension of commutative rings such that B is
présimplifiable. ThenACXBŒŒX�� satisfies ACCP if and only if U.B/\A D U.A/ and
for each sequence .bn/ of B such that bn=bnC1 2 A, the sequence b1B � b2B � � � �
is stationary.


Proof. (H)) Let a 2 U.B/ \ A. Consider the sequence .a�1X/.A C XBŒŒX��/ �
.a�2X/.ACXBŒŒX��/ � � � � . There exists n 2 N such that .a�nX/.ACXBŒŒX��/ D
.a�.nC1/X/.A C XBŒŒX��/. So a�.nC1/X D a�nX.c C Xf /, where c 2 A and
f 2 BŒŒX��. We obtain a�1 D c CXf , and a�1 D c 2 A.


Let .bn/ be a sequence ofB such that bn D bnC1anC1 for each n 2 N . The element
Xbn 2 XbnC1.ACXBŒŒX��/ as Xbn D XbnC1anC1 with anC1 2 ACXBŒŒX��. The
sequence .Xbn.A C XBŒŒX��// is increasing so it stops. Then there exists n 2 N
such that for each k � n, Xbn.A C XBŒŒX��/ D Xbk.A C XBŒŒX��/. So Xbk 2


Xbn.ACXBŒŒX��/ and bk 2 bn.ACXBŒŒX��/. Then bk 2 bnB and bnB D bkB for
each k � n.
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((H) Let f1.ACXBŒŒX��/ � f2.ACXBŒŒX��/ � � � � be an increasing sequence
of principal ideals of A C XBŒŒX��. We can suppose that bn D fn.0/ 2 Bn.0/ and
bn=bnC1 D anC1 2 A. So the sequence b1B � b2B � � � � stops. Let n0 2 N such
that for each n � n0, bnB D bnC1B . As bn D bnC1anC1 and B is présimplifiable, we
have anC1 2 U.B/ \ A D U.A/. So fn.ACXBŒŒX��/ D fnC1.ACXBŒŒX��/.


5 Laskerian rings of the form A C XBŒX� and A C XBŒŒX��


A ring A is Laskerian if every ideal of A is a finite intersection of primary ideals. Let
A be a commutative ring and E an A-module, Ass.E/ is the set of prime ideals of A
which are associated to E in the weak Bourbaki sense that is P 2 Ass.E/ if and only
if there exists x 2 E such that P is a minimal prime ideal over ann.x/.


Proposition 5.1 ([23]). A ring A is Laskerian if and only if for every cyclic A-module
E, Ass.E/ is finite and 8P 2 Ass.E/, 9x 2 E such that ann.x/ is P -primary.


Definition 5.2. A ring A is strongly Laskerian if it is Laskerian and for each ideal I of
A, there exists k 2 N such that .


p
I /k � I .


A submodule Q of M is primary if Q ¤ M and every zero divisor on M=Q is
nilpotent that is if x 2 A and m 2 M are such that xm 2 Q, then m 2 Q or there
exists k > 0 such that xkM � Q.


If Q is a primary submodule then Q W M is a primary ideal. In fact, if a; b 2 A,
ab 2 Q W M and a … Q W M then abM � Q and aM ª Q, so there exists m 2 M
such that am … Q. But abm 2 Q and Q is primary so there exists k such that
bkM � Q then bk 2 Q WM .


Proposition 5.3. If M is a Laskerian A-module then for any submodule N of M ,
Ass.M=N/ is finite .�/ (Ass.M=N/ is the set of prime ideals of A which are minimal
over N W x where x 2 MnN/. Moreover, 8p 2 Ass.M=N/, there exists x 2 MnN
such that N W x is P -primary .��/.


Proof. Let N be a submodule ofM . Consider a reduced decomposition of N D Q1\


� � �\Qn and let Pi D rM .Qi / 2 spec.A/. We prove that the Pi are independent of the
decomposition, in fact we show that the Pi are exactly the prime ideals of A which are
of the form


p
N W x where x 2 MnN . Let x 2 MnN . Then N W x D .


T
1�i�nQi W


x/ D
T


1�i�n.Qi W x/, so
p
N W x D


T
1�i�n


p
Qi W x. But if x 2 Qi , Qi W x D A,


otherwise Qi W x is Pi -primary. Let x 2 MnN such that
p
N W x 2 spec.A/; there


exists i such that
p
N W x D Pi . Conversely, we show that 81 � i � n, there exists


x 2 MnN such that Pi D
p
N W x. We take x 2


T
i¤j Qj nQi (the decomposition is


reduced), then
p
N W x D Pi . So if M is a Laskerian A-module, then Ass.M=N/ is


finite. In fact, let P 2 Ass.M=N/; there exists x 2 MnN such that P is a minimal
prime ideal over N W x, so N W x � P , then


p
N W x D \Pi � P , so there exists j


such that Pj � P as P is minimal over N W x, we have P D Pj . Moreover, we have
8i , Pi D


p
N W x where x 2


T
i¤j Qj nQi , so N W x is Pi -primary.







Chain conditions in rings of the form ACXBŒX� and ACXI ŒX� 269


Recall [22] that an A-module M satisfies accr if the ascending chain of residuals
of the form N W I � � � � � N W I n � � � � terminates for every submodule N of
M and every finitely generated ideal I of A and this is equivalent to: the ascending
chain of submodules of the form N W a � � � � � N W an � � � � terminates for every
submodule N of M and every element a of A. A ring A satisfies accr if it does as a
module over itself.


Proposition 5.4. If R D A C XBŒX� (resp. A C XBŒŒX��) is Laskerian, then A is
Laskerian andB is Noetherian. Moreover ifA is an integral domain then theA-module
B satisfies the conditions .�/ and .��/ of the preceding proposition.


Proof. We prove the result in the case of the polynomial ring. The proof is almost the
same in the case of the formal power series ring. IfR is Laskerian, thenA ' R=XBŒX�
is Laskerian. Moreover R Laskerian implies that R satisfies accr which implies that B
is Noetherian. (Otherwise, let J1 � � � � � Jn � � � � be a strictly increasing chain of
ideals of B , and I the ideal of R consisting of all polynomials of the form


Pn
iD0 aiX


i ,
where ai 2 Ji for every i D 1; : : : ; n. Then we obtain the following strictly increasing
chain J W X � � � � � J W Xn � � � � in R, which is impossible as R satisfies accr).


Suppose now that A is an integral domain. Let J be an A-submodule of B . Then
X.JCXBŒX�/ is an ideal ofR which is Laskerian, so Ass.R=X.JCXBŒX�/ is finite.
We are going to characterize Ass.R=X.J CXBŒX�//.
P 2 Ass.R=X.J C XBŒX�// if and only if there exists f 2 RnX.J C XBŒX�/


such that P is minimal overX.JCXBŒX�/ W f . Let f D a0Ca1XC� � �CanX
n 2 R.


Then f 2 RnX.J CXBŒX�/, a0 ¤ 0 or a1 … J . Let g D b0Cb1XC� � �CbsX
s 2


X.J C XBŒX�/ W f , so fg 2 X.J C XBŒX�/, which is equivalent to a0b0 D 0 and
a0b1 C a1b0 2 J . We have two cases:


First case: a0 ¤ 0, as A is an integral domain, then b0 D 0 and a0b1 2 J , so
g 2 XBŒX�. But X.J C XBŒX�/ � X.J C XBŒX�/ W f � XBŒX�, and p is a
minimal prime ideal over X.J CXBŒX�/ W f , then P contain X and so P D XBŒX�.


Second case: a0 D 0, so a1b0 2 J with a1 … J . Let J W a1 D ¹a 2 A j aa1 2 J º.
Then X.J CXBŒX�/ W f D J W a1CXBŒX�. So P is minimal over X.J CXBŒX�/ W
f H) P D p C XBŒX� with p minimal over J W a1. So p 2 Ass.B=J / D ¹p 2
spec.A/ j 9x 2 BnJ and p is minimal over J W xº. Conversely, let p 2 Ass.B=J /.
Then there exists a1 2 BnJ such that p is minimal over J W a1. So P D p C XBŒX�
is minimal over X.J CXBŒX�/ W f where f D a1X . So Ass.R=X.J CXBŒX�// D
¹XBŒX�; p CXBŒX� with p 2 Ass.B=J /º. Then Ass.B=J / is finite.


Let p 2 Ass.B=J /, then P D p C XBŒX� 2 Ass.R=X.J C XBŒX�//. As R is
Laskerian, there exists f 2 RnP such that the ideal X.J CXBŒX�/ W f is P -primary.
Let f D a0 C a1X C � � � . If a0 ¤ 0, then


p
X.J CXBŒX�/ W f D XBŒX� in this


case p D 0, that is there exists x 2 BnJ such that J W x D 0 and J W x is p primary.
If a0 D 0, then a1 … J in this case


p
X.J CXBŒX�/ W f D


p
J W a1 CXBŒX� Dp


J W a1 C XBŒX�. Moreover, J W a1 C XBŒX� is P -primary implies that J W a1 is
p-primary. So, we have Ass.B=J / is finite for every submodule J of B and 8p 2
Ass.B=J / there exists x 2 BnJ such that J W x is P -primary.
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Example 5.5. The ring ZCXQŒX� is not Laskerian because the Z-module Q does not
verify the condition .�/ of Proposition 5.3. For instance, let J D Z, the Z-submodule
of Q, and x D 1


p
with p prime, x … J . We have J W x D ¹a 2 Z such that


a
p
2 Zº D pZ. So ¹pZ, p prime integerº � Ass.Q=Z/, so Ass.Q=Z/ is infinite, so


ZCXQŒX� is not Laskerian.


Remark 5.6. (1) In [1], the author shows that if R D
L1


iD0Ri is a graded ring with
R0 D K, a field and if k � K is a subfield of K and A D ¹r 2 R j r0 2 kº, then
R is Laskerian (resp. strongly Laskerian) if and only if A is Laskerian (resp. strongly
Laskerian). In particular, as KŒX� is strongly Laskerian, then for any extension of
fields k � K, the ring k CXKŒX� is strongly Laskerian.
So, the conditions B is a finitely generated A-module or B is a Noetherian A-module
are not necessary to have ACXBŒX� Laskerian.


(2) If A is Laskerian and B is Noetherian then spec.A/ and spec.B/ are Noetherian
so spec.AC XBŒX�/ is also Noetherian. So for each ideal I of R, ¹


p
I W f ; f 2 Rº


satisfies the ascending chain condition. Then using [17, Lemma 3.2], we can deduce
that each element of Ass.AC XBŒX�=I / is of the form


p
I W f for some f 2 RnI ,


that is each associated of I in the weak Bourbaki sense is an associated of I in the
Zariski–Samuel sense.


We can prove directly that if we have an extension of fieldsA � B , thenACXBŒX�
is Laskerian.


Proposition 5.7. Let A � B be an extension of integral domains. Then A C XBŒX�
(resp. A C XBŒŒX��) is of Krull dimension 1 if and only if A � B is an extension of
fields. In this case ACXBŒX� and ACXBŒŒX�� are Laskerian.


Proof. Recall that for a domain of Krull dimension 1, the following are equivalent:
R Laskerian, R is a ZD ring and spec.R/ is Noetherian. First, we prove the re-
sult in the polynomial case. If A � B is an extension of integral domains, then
htACXBŒX�.XBŒX�/� 1 and max.dimAChtACXBŒX�.XBŒX�/, dimBŒX�/ � dim.AC
XBŒX�/ � dimAC dimBŒX�. So we have dim.AC XBŒX�/ D 1” A � B is an
extension of fields and in this case, using the paragraph 2, we have spec.AC XBŒX�/
is Noetherian so ACXBŒX� is Laskerian.


For the case of power series, using [8, Theorem 11], we have the inequalities:


1Cmax.dim.BŒŒX��ŒX�1�/; dim.A/C �.A;B// � dim.ACXBŒŒX��/


� dim.BŒŒX��ŒX�1�/C dim.A/:


So dim.A C XBŒŒX��/ D 1 if and only if dimA D dimB D 0, so A � B is an
extension of fields. But in this case using [12, Corollary 1.6,], we can deduce that
spec.ACXBŒŒX��/ is Noetherian and then ACXBŒŒX�� is Laskerian.


Recall that a ring A is called a ZD ring (zero divisor ring) if for any ideal I of A the
set ¹a 2 A j there exists s 2 AnI such that as 2 I º is a union of finitely many prime
ideals.
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Proposition 5.8. If ACXBŒX� is a ZD ring, then B is Noetherian and A is ZD.


Proof. The proof is similar to [18]. As A ' .A C XBŒX�/=XBŒX�, then A is ZD.
We prove that B is Noetherian. Otherwise there exists an increasing chain of ideals of
B W .b1/ � .b1; b2/ � � � � . Let f0 D X; f1 D 1C X; : : : ; fi D 1C f0f1 � � � fi�1 � � � ,
and 8i � 1, gi D Xfi 2 A C XBŒX�. Let I be the ideal of A C XBŒX� generated
by the elements .b1g1; b2g1g2; : : : ; bng1 � � �gn; : : : /. We show that 8n 2 N, gn 2


Z.A C XBŒX�=I /. We have bng1 � � �gn�1gn 2 I and bng1 � � �gn�1 … I . Otherwise
the element bng1 � � �gn�1 2 hb1g1; b2g1g2; : : : ; bng1 � � �gn; : : : i. Consider the ring
B D B=hb1; : : : ; bn�1i, then in BŒX�, we obtain bng1 � � �gn�1 2 hbng1 � � �gn; : : : i. As
the element Xn�1 is regular, then we obtain bnf1 � � � fn�1 2 hbnXf1 � � � fn; : : : i, but
f1 � � � fn�1 is also regular so bn 2 hbnXfn; : : : i. Then bn D 0 and bn 2 hb1; : : : ; bn�1i,
which is impossible.


Proposition 5.9. Let A � B be an extension of rings and B a finitely generated A-
module. Then the following are equivalent:


(1) ACXBŒX� is ZD.


(2) ACXBŒX� is Laskerian.


(3) ACXBŒX� is strongly Laskerian.


(4) ACXBŒX� is Noetherian.


Proof. If AC XBŒX� is Noetherian, then it is ZD. Conversely, if AC XBŒX� is ZD,
then B is Noetherian and as B is a finitely generated A-module, we have by [10] that
A is Noetherian so ACXBŒX� is Noetherian.


Proposition 5.10. If ACXBŒX� (resp. ACXBŒŒX��/ is Laskerian, then the A-module
B satisfies accr.


Proof. As A C XBŒX� is Laskerian, then it satisfies accr. Let J be an A-submodule
of B and a 2 A. Then I D X.J C XBŒX�/ is an ideal of A C XBŒX�. The chain
I W a � � � � � I W an � � � � terminates, which implies that the chain .J WB an/
terminates. In fact, let n 2 N such that I W an D I W anC1. If b 2 J WB anC1, then
banC1 2 J , so .Xb/anC1 2 I , and .Xb/an 2 I . Then ban 2 J that is b 2 J W an.


Proposition 5.11. If A � B is an extension of commutative rings such that B is an
A-module satisfying accr, then U.B/ \ A D U.A/. So if B is a field then A is a field.


Proof. Let B be an A-module satisfying accr. Let a 2 U.B/ \ A, the chain A W a �
A W a2 � � � � terminates, so there exists n 2 N such that A W an D A W anC1. But


1
anC1 2 B and 1


anC1 a
nC1 2 A, so 1


anC1 2 A W a
n, and 1


a
2 A, so a 2 U.A/.


Remark 5.12. If AC XBŒX� (resp. AC XBŒŒX��) is Laskerian and B D L is a field,
then A is a field [3, Theorem 6].
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Corollary 5.13. If AC XBŒX� (resp. AC XBŒŒX��) is Laskerian then ¹m \ A j m 2
Max.B/º � Max.A/.


Example 5.14. If A is a valuation domain and B is an overring of A, then ACXBŒX�
(resp. A C XBŒŒX��) is Laskerian if and only if B D A and A is a discrete valuation
domain of rank 1. In fact, if B D A and A is a discrete valuation domain of rank 1,
then A C XBŒX� D AŒX� is Noetherian so Laskerian. Conversely if A C XBŒX� is
Laskerian and A is a valuation domain, then A is a valuation domain of rank 1 (the
only valuation domains which are Laskerian), moreover if B is an overring of A, then
B D qf.A/ or B D A, but if B D qf.A/ and as ACXBŒX� is Laskerian, then A must
be a field which is not possible as A is of rank 1.


Lemma 5.15. Let P 2 spec.R/ such that X … P and Q the unique prime ideal of
BŒX� (resp. BŒŒX��) such that Q \ R D P . Let I be an ideal of R. Then P 2
Ass.R=I / if and only if Q 2 Ass.BŒX�=IBŒX�/ (resp. Ass.BŒŒX��=IBŒŒX��/).


Proof. Apply [17, Proposition 1.2].


Lemma 5.16. Suppose that A is Laskerian and B is Noetherian. Let I be an ideal of
R D AC XBŒX�. Then the set of prime ideals P of R which are associated to R=I
and do not contain X is finite and for such prime ideal P there exists f 2 RnI such
that I W f is P -primary.


Proof. Let P be a prime ideal of R associated to R=I and which does not contain X .
Using the preceding lemma, P 2 Ass.R=I / if and only if Q 2 Ass.BŒX�=IBŒX�/.
As B is Noetherian, then BŒX� is Laskerian. So Ass.BŒX�=IBŒX�/ is finite, and the
number of such prime ideal P is finite. Now we prove that there exists f 2 RnI such
that I W f is P -primary. In fact there exists f 2 BŒX�nIBŒX� such that IBŒX� is
Q-primary. We prove that I W Xf is P -primary. We have


p
I W Xf D P . In fact, let


g 2 I W Xf . Then Xfg 2 I � IBŒX�, and Xg 2 IBŒX� W f � Q, but X … Q, so
g 2 Q \ R D P , and I W Xf � P . Conversely, let g 2 P � Q D


p
IBŒX� W f .


Then there exists n 2 N such that gn 2 IBŒX� W f , so gnf 2 IBŒX�, and gnXf 2 I


that is gn 2 I W Xf and g 2
p
I W Xf . We prove that I W Xf is primary. Let g; h 2 R


such that gh 2 I W Xf and g … P . Then Xgh 2 IBŒX� W f and Xg … Q, so
h 2 IBŒX� W f , which implies that hf 2 IBŒX� so Xhf 2 I and h 2 I W Xf .


Lemma 5.17. If I is a radical ideal of R containing X , then I D .I \ A/CXBŒX�.


Proof. We prove that if I is a radical ideal containing X , then it contains XBŒX�. Let
f 2 BŒX�. Then .Xf /2 D X.Xf 2/ 2 I , so Xf 2


p
I D I .


Proposition 5.18. If A D k is a field and B is Noetherian, then k C XBŒX� is Laske-
rian.


Proof. We use a similar proof as [21]. In fact, let I be an ideal of R. We show
that Ass.R=I / is finite and 8P 2 Ass.R=I /, 9f 2 RnI such that I W f is P -
primary. Let P 2 Ass.R=I /. For the P which does not contain X this is done. If
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X 2 P then P D p C XBŒX� with p 2 spec.A/. As A is a field then p D .0/, so
P D XBŒX� 2 max.R/: We prove that there exists g 2 R such that P D XBŒX� is
minimal over I W f . As P D XBŒX� 2 Ass.R=I /, there exists f 2 RnI such that
XBŒX� is minimal over I W f .


First case. I W f is not contained in other prime ideal, so
p
I W f D XBŒX� 2


max.R/. So I W f is primary.
Second case. I W f is contained in other prime ideals minimal over I W f . Let


P1; : : : ; Pk the prime minimal over I W f other than P (as Ass.R=I / is finite, there
is a finite number of such ideals). We have


p
I W f D .


T
1�i�k Pi / \ P and X 2


P n.
T


1�i�k Pi /. As Pi ª P , there exists fi 2 PinP . Let z D f1 � � � fn … P .
We show that there exists n 2 N such that I W znf is P -primary. We have Xz 2p
I W f D .


T
1�i�k Pi / \ P . So there exists n 2 N such that Xnznf 2 I , and


Xn 2 I W znf , so X 2
p
I W znf which is a radical ideal of R, containing X , so it is


of the form J C XBŒX� where J is an ideal of A which is a field, so J D .0/. Thenp
I W znf D XBŒX� and I W znf is P -primary.


Example 5.19. If K � L is an extension of fields then k C XLŒX�ŒY1; : : : ; Yn� is
Laskerian.


Acknowledgments. I would like to thank Professor A. Benhissi for his valuable sug-
gestions.
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On .n; d/-perfect rings


A. Jhilal and N. Mahdou


Abstract. In this paper, we introduce the concept of .n; d/-perfect rings which is – in some way –
a generalization of the notion of S -rings. We give some basic results on these rings and investigate
the correlation between the A.n/ and .n; d/-perfect properties. We also study the .n; d/-perfect
property in some pullback constructions.


Keywords. .n; d/-perfect ring, A.n/ ring, n-presented, homological dimension, pullback.
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Dedicated to Alain Bouvier


1 Introduction


The object of this paper is to introduce a doubly filtered set of classes of rings which
may serve to shed further light on the structures of non-Noetherian rings. Throughout
this work, all rings are commutative with identity element and all modules are unitary.
By a “local” ring we mean a (not necessarily Noetherian) ring with a unique maximal
ideal.


Let R be a ring and letM be an R-module. As usual, we use pdR.M/ and fdR.M/
to denote the usual projective and flat dimensions of M , respectively. The classical
global and weak global dimension of R are denoted by gldim.R/ and wdim.R/, re-
spectively. If R is an integral domain, we denote its quotient field by qf.R/.


An R-module M is n-presented if there is an exact sequence


Fn �! Fn�1 �! � � � �! F0 �!M �! 0


of R-modules in which each Fi is a free finitely generated R-module. In particular,
0-presented and 1-presented R-modules are respectively finitely generated and finitely
presented R-modules. We recall that a coherent ring is a ring such that each finitely
generated ideal is finitely presented. As in [2, 15], we set �R.M/ D sup¹n j M is
n-presentedº except that we set �R.M/ D �1 if M is not finitely generated. Note that
�R.M/ � n is a way to express the fact that M is n-presented.


This paper introduces and studies a new class of rings; namely, .n; d/-perfect rings
which generalize the notion of A.n/ ring introduced by Cox and Pendleton in [4]. The
second section presents the definition of this new class of rings along with (mostly
well-known) basic results. The third section establishes its relationship with the A.n/
property. The fourth section investigates the transfer of the .n; d/-perfect property in
pullback constructions. General background material can be found in Rotman [14] and
Glaz [10].
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2 Definition and basic results


In this section we introduce and study the concept of .n; d/-perfect rings which are
defined as follows.


Definition 2.1. Let n and d be nonnegative integers. A ring R is said to be an .n; d/-
perfect ring, if every n-presented module with flat dimension at most d , has projective
dimension at most d .


We illustrate this notion with the following example. First it is well known that if a
flat R-module M is finitely presented, or finitely generated with R either a semilocal
ring or an integral domain, then M is projective [7, Theorem 2]. A ring R is called an
S -ring if every finitely generated flat R-module is projective [13].


Example 2.2. (1) R is an S -ring if and only if R is a .0; 0/-perfect ring.


(2) If R is a semilocal ring, then R is an .n; n/-perfect ring for every n � 0.


(3) If R is a domain, then R is an .n; n/-perfect ring for every n � 0.


(4) If R is an .n; d/-perfect ring, then R is an .n0; d /-perfect ring for every n0 � n.


(5) For every n > d , R is an .n; d/-perfect ring.


(6) If R is a perfect ring, then R is .n; d/-perfect for every n � 0 an d � 0.


Proof. Obvious.


The following proposition gives two results concerning Noetherian rings and co-
herent rings.


Proposition 2.3. (1) If R is a Noetherian ring, then R is an .n; d/-perfect ring for
every n � 0 and d � 0.


(2) If R is a coherent ring, then R is an .n; d/-perfect ring for every n � 1 and
d � 0.


Proof. Obvious.


Furthermore, we construct an example of a ring which is a .0; 1/-perfect ring and
not a .0; 0/-perfect ring (Example 2.4). Also we exhibit an example of a .1; 1/-perfect
ring which is not a .0; 1/-perfect ring (Example 2.5).


Example 2.4. Let R be a hereditary and von Neumann regular ring which is not semi-
simple. Then R is a .0; 1/-perfect ring which is not a .0; 0/-perfect ring.


Proof. The ring R is a .0; 1/-perfect ring since R is a hereditary ring. If R is a .0; 0/-
perfect ring, then every finitely generated R-module is projective (since R is a von
Neumann regular ring), hence we have a contradiction with the fact that R is not semi-
simple.


Example 2.5. Let R be a non-Noetherian Prüfer domain. Then R is a .1; 1/-perfect
domain which is not a .0; 1/-perfect domain.
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Proof. The ring R is a .1; 1/-perfect ring since R is a domain. On the other hand,
we show that R is not a .0; 1/-perfect ring. Let I be a not finitely generated ideal
of R (since R is not Noetherian). Then I is not projective. Of course I is flat since
wdim.R/ � 1. Thus R=I is 0-presented with fdR.R=I / � 1 and pdR.R=I / � 2, as
desired.


Next we give a homological characterization of an .n; d/-perfect ring.


Theorem 2.6. Let R be a commutative ring. Then the following statements are equiv-
alent:


(1) R is an .n; d/-perfect ring.


(2) ExtdC1
R .M;N / D 0 for allR-modulesM ,N such that �R.M/ � n, fdR.M/ � d


and fdR.N / � d .


(3) ExtdC1
R .M;N / D 0 for all R-modules M , N such that �R.M/ � n, �R.N / �


n � .d C 1/, fdR.M/ � d and fdR.N / � d .


The proof of this theorem involves the following lemmas.


Lemma 2.7. LetR be a ring, and letM be an n-presented flatR-module, where n � 0.
Then M is projective if and only if Ext1R.M;N / D 0 for all R-modules N such that
�R.N / � n � 1 and N is a flat R-module.


Proof. Necessity is clear. To prove sufficiency, let 0 �! K �! F �! M �! 0 be
an exact sequence with F a finitely generated free R-module. Then K is an .n � 1/-
presented flat R-module, hence by hypothesis Ext1R.M;K/ D 0. It follows that the
exact sequence splits, making M a direct summand of F . Therefore M is a projective
R-module.


Lemma 2.8. Let R be a ring andM an n-presented R-module such that fdR.M/ � d .
Then pdR.M/ � d if and only if ExtdC1


R .M;N / D 0 for all R-modules N such that
�R.N / � n � .d C 1/ and fdR.N / � d .


Proof. This follows from Lemma 2.7 by dimension shifting.


Proof of Theorem 2.6. (1)) (2). Let M be an R-module such that �R.M/ � n and
fdR.M/ � d . Then, pdR.M/ � d since R is an .n; d/-perfect ring. Therefore,
ExtdC1


R .M;N / D 0 for any R-module N .
(2)) (3). Obvious.
(3)) (1). LetM be an R-module such that �R.M/ � n and fdR.M/ � d . Hence


by .3/, ExtdC1
R .M;N / D 0 for any R-module N such that �R.N / � n � .d C 1/ and


fdR.N / � d . Then, by Lemma 2.8, pdR.M/ � d . Therefore, R is an .n; d/-perfect
ring.


Next we prove that the .n; d/-perfect property descends into a faithfully flat ring
homomorphism.
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Theorem 2.9. Let R �! S be a ring homomorphism making S a faithfully flat R-
module. If S is an .n; d/-perfect ring, then R is an .n; d/-perfect ring.


Proof. LetM be an n-presentedR-module with fdR.M/ � d . Our aim is to show that
pdR.M/ � d . We have �S .M ˝R S/ � n and fdS .M ˝R S/ � d since S is a flat
R-module, so pdS .M ˝R S/ � d since S is an .n; d/-perfect ring.


Let 0 �! P �! Fd�1 �! � � � �! F1 �! F0 �! M �! 0 be an exact
sequence of R-modules, where Fi is a free R-module for each i and P is a flat R-
module. Thus P ˝R S is a projective S -module. By [11, Example 3.1.4, page 82], P
is a projective R-module.


We use this result to study the .n; d/-perfect property in some particular rings.


Corollary 2.10. (1) Let A � B be two rings such that B is a flat A-module. Let
S D AC XBŒX�, where X is an indeterminate over B . If S is an .n; d/-perfect
ring, then so is A.


(2) LetR be a ring andX an indeterminate overR. IfRŒX� is an .n; d/-perfect ring,
then so is R.


Proof. (1) The ring B is a flat A-module and XBŒX� Š BŒX� thus S D AC XBŒX�
is a faithfully flat A-module. By Theorem 2.9 the ring A is .n; d/-perfect since S is an
.n; d/-perfect ring.


(2) Obvious via (1).


We close this section by establishing the transfer of the .n; d/-perfect property to
finite direct products.


Theorem 2.11. Let .Ri /iD1;:::;m be a family of rings. Then
Qm


iD1Ri is an .n; d/-
perfect ring if and only if Ri is an .n; d/-perfect ring for each i D 1; : : : ; m.


The proof of this theorem involves the following results.


Lemma 2.12 ([12, Lemma 2.5]). Let .Ri /iD1;2 be a family of rings and Ei be an Ri -
module for i D 1; 2. We have


(1) pdR1�R2
.E1 �E2/ D sup¹pdR1


.E1/; pdR2
.E2/º.


(2) �R1�R2.E1 �E2/ D inf¹�R1.E1/; �R2.E2/º.


Lemma 2.13. Let .Ri /iD1;2 be a family of rings and Ei be an Ri -module for i D 1; 2.
We have fdR1�R2.E1 �E2/ D sup¹fdR1.E1/; fdR2.E2/º.


Proof. This proof is analogous to the proof of Lemma 2.12 (1).


Proof of Theorem 2.11. We use induction on m, it suffices to prove the assertion for
m D 2. Let R1 and R2 be two rings such that R1 � R2 is an .n; d/-perfect ring. Let
E1 be an R1-module such that fdR1.E1/ � d , �R1.E1/ � n and let E2 be an R2-
module such that fdR2.E2/ � d , �R2.E2/ � n. By Lemma 2.13, fdR1�R2.E1 �
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E2/ D sup¹fdR1.E1/; fdR2.E2/º. So �R1�R2.E1 � E2/ D inf¹�R1.E1/; �R2.E2/º
by Lemma 2.12 (2). Thus �R1�R2.E1 � E2/ � n and fdR1�R2.E1 � E2/ � d . So
pdR1�R2


.E1 � E2/ � d since R1 � R2 is an .n; d/-perfect ring. By Lemma 2.12 (1)
pdR1�R2


.E1 �E2/ D sup¹pdR1
.E1/; pdR2


.E2/º. Thus pdR1
.E1/ � n and pdR2


.E2/ �
n. Therefore R1 is an .n; d/-perfect ring and R2 is an .n; d/-perfect ring.


Conversely, letR1 andR2 be two .n; d/-perfect rings and letE1�E2 be anR1�R2-
module where Ei is an Ri -module for each i D 1; 2, such that fdR1�R2.E1 �E2/ � d
and �R1�R2.E1 � E2/ � n. By Lemma 2.12, �R1.E1/ � n, �R2.E2/ � n and by
Lemma 2.13, fdR1.E1/ � d , fdR2.E2/ � d , then pdR1


.E1/ � d and pdR2
.E2/ � d ,


since R1 and R2 are .n; d/-perfect rings. By Lemma 2.12, pdR1�R2
.E1 � E2/ � d .


Therefore R1 �R2 is an .n; d/-perfect ring.


3 Relationship between the A.n/ and .n; d/-perfect properties


The purpose of the present section is to investigate the correlation between A.n/ rings
and .n; d/-perfect rings. First, we recall the definition of an A.n/ ring introduced
in [4].


Definition 3.1 ([4, page 139]). Let n be a nonnegative integer. A ring R is said to be
an A.n/ ring if given any exact sequence 0 �! M �! E1 �! � � � �! En of finitely
generated R-modules with M flat and Ei free for each i , then M is projective.


Next we state the main theorem of this section.


Theorem 3.2. A ring R is an A.n/ ring if and only if R is an .n; n/-perfect ring.


Proof. Assume thatR is anA.n/ ring and letM be anR-module such that �R.M/ � n
and fdR.M/ � n. Then there exists an exact sequence 0 �! P �! Fn�1 �! � � � �!


F0 �! M �! 0 of finitely generated R-modules with P flat and Fi free for each i .
So P is projective. Therefore R is an .n; n/-perfect ring.


Conversely, assume that R is an .n; n/-perfect ring. Let 0 �! M �! F1 �!


� � �
un
�! Fn be an exact sequence of finitely generated R-modules with M flat and Fi


free for each i . We show that M is projective. The exact sequence


0 �!M �! F1 �! � � �
un
�! Fn �! Cokerun �! 0


shows that �R.Cokerun/ � n and fdR.Cokerun/ � n. Hence, pdR.Cokerun/ � n
since R is an .n; n/-perfect ring and so M is projective. Therefore R is an A.n/ ring.


Theorem 3.2 combined with the results obtained by Cox and Pendleton in [4] may
be used to state several corollaries.


Corollary 3.3. Let ' W R ,! T be an injective ring homomorphism.


(1) If T is a .0; 0/-perfect ring, then so is R.
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(2) If T is an .n; n/-perfect ring .n � 1/ and T is a flat R-module, then R is an
.n; n/-perfect ring.


Proof. By [4, Theorem 2.4] and Theorem 3.2.


Corollary 3.4. A ringR is a .1; 1/-perfect ring if and only if each pure ideal ofR which
is the annihilator of a finitely generated ideal of R is generated by an idempotent.


Proof. By [4, Theorem 3.8] and Theorem 3.2.


The next example gives a .1; 1/-perfect ring R and a multiplicative set S of R such
that S�1R is not a .1; 1/-perfect ring.


Example 3.5 ([4, Example 5.17]). Let R D ZŒf; x1; x2; : : : �, with defining relations
f xi .1� xj / D 0, 1 � i < j , and 2f xi D 0, 1 � i . Put S D ¹f n j n � 1º. Then R is
a .1; 1/-perfect ring, but S�1R is not a .1; 1/-perfect ring.


4 Transfer of the .n; d/-perfect property in pullbacks


Pullbacks occupy an important niche in homological algebra because they produce
interesting examples (see for instance [10, Section 1, Chapter 5], [8, Appendix 2] and
[9, pages 582–584]).


The following theorem is the main result of this section.


Theorem 4.1. Let A ,! B be an injective flat ring homomorphism and letQ be a pure
ideal of A such that QB D Q and �A.Q/ � n � 1.


(1) Assume that B is an .n; d/-perfect ring. Then A=Q is an .n; d/-perfect ring if
and only if A is an .n; d/-perfect ring.


(2) Assume that B D S�1A, where S is a multiplicative set of A. Then A is an
.n; d/-perfect ring if and only if B and A=Q are .n; d/-perfect rings.


Before proving this theorem, we establish the following lemmas.
At the start, we recall the notion of flat epimorphism of rings, which is defined as


follows: Let ˆ W A ! B be a ring homomorphism. B .or ˆ/ is called a flat epi-
morphism of A, if B is a flat A-module and ˆ is an epimorphism, that is, for any


two ring homomorphisms B
f


�
g
C , satisfying f ı ˆ D g ı ˆ, we have f D g; see


[10, pages 13–14]. For example S�1A is a flat epimorphism of A for every multiplica-
tive set S of A. Also, the quotient ring A=I is a flat epimorphism of A for every pure
ideal I of A, that is, A=I is a flat A-module [10, Theorem 1.2.15].


Lemma 4.2. Let A and B be two rings such that ˆ W A ! B is a flat epimorphism
of A and �A.B/ � n. If A is an .n; d/-perfect ring, then B is an .n; d/-perfect ring.
In particular, if A is an .n; d/-perfect ring, then so is the quotient ring A=I for every
pure ideal I of A such that �A.I / � n � 1 .n � 0/.
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Proof. Let M be a B-module such that �B.M/ � n and fdB.M/ � d . Our aim is to
show that pdB.M/ � d . By hypothesis we have TorA


k .M;B/ D 0 for all k > 0. By
[3, Proposition 4.1.3], we have for any B-module N


ExtdC1
A .M;N ˝A B/ Š ExtdC1


B .M ˝A B;N ˝A B/: .�/


From [10, Theorem 1.2.19] we get M ˝A B Š M and N ˝A B Š N . On the other
hand, we have fdA.M/ � fdB.M/ � d [3, Exercise 10, p. 123] and �A.M/ � n
[5, Lemma 2.6]. Thus pdA.M/ � d since A is an .n; d/-perfect ring. Hence, .�/
implies ExtdC1


B .M;N / D 0, therefore pdB.M/ � d .


The Example 3.5 shows that Lemma 4.2 is not true in general without assuming
that �A.B/ � n.


Lemma 4.3. Let A ,! B be an injective flat ring homomorphism and let Q be a pure
ideal of A such that QB D Q. Let E be an A-module. Then:


(1) �A.E/ � n, �B.E ˝A B/ � n and �A=Q.E ˝A A=Q/ � n.


(2) fdA.E/ � d , fdB.E ˝A B/ � d and fdA=Q.E ˝A A=Q/ � d .


(3) pdA.E/ � d , pdB.E ˝A B/ � d and pdA=Q.E ˝A A=Q/ � d .


Proof. Similar to the proof of [6, Lemma 2.4].


Proof of Theorem 4.1. (1) If A is an .n; d/-perfect ring sinceQ is an .n�1/-presented
pure ideal of A, by Lemma 4.2 A=Q is an .n; d/-perfect ring. Conversely, assume that
B andA=Q are .n; d/-perfect rings. LetM be anA-module such that �A.M/ � n and
fdA.M/ � d . Then �B.M˝AB/ � n and fdB.M˝AB/ � d . So pdB.M˝AB/ � d
since B is an .n; d/-perfect ring. Also �A=Q.M ˝A A=Q/ � n and fdA=Q.M ˝A


A=Q/ � d . So pdA=Q.M ˝A A=Q/ � d since A=Q is an .n; d/-perfect rings. By
Lemma 4.3. pdA.M/ � n. Therefore A is an .n; d/-perfect ring.


(2) Follows from Lemma 4.2, Lemma 4.3 and (1).


Corollary 4.4. Let D be an integral domain, K D qf.D/ and let n � 2, m � 0 and
d � 0 be positive integers. Consider the quotient ring S D KŒX�=.Xn � X/ D
KCXKŒX� D KCI with I D XKŒX�. SetR D DCI . ThenR is an .m; d/-perfect
ring if and only if D is an .m; d/-perfect ring.


Proof. First we show that I is a pure ideal of R. Let u WD X i .a0 C a1X C � � � C
an�1X


n�1/ be an element of I , where ai 2 K for 1 � i � n � 1, and a0 ¤ 0. Hence
u.1�Xn�1/ D 0 .�/ sinceX i .1�Xn�1/ D X i �XnC.i�1/ D X i �XnX i�1 D X i �


X i D 0. Therefore, I is a pure ideal of R by [10, Theorem 1.2.15] since Xn�1 2 I .
Our aim is to show that �R.I / D 1. We have RXn�1 D .D C XKŒX�/Xn�1 D


DXn�1 C XKŒX� D DXn�1 C I D I since Xn D X . We claim that AnnR.I / D
R.1�Xn�1/. Indeed, by .�/ R.1�Xn�1/ � AnnR.I /. Conversely, let v WD dCa1XC
� � �C an�1X


n�1 2 AnnR.I /, where d 2 D and ai 2 K. Hence 0 D .d C a1X C � � �C
an�1X


n�1/Xn�1 D a1X C � � � C .d C an�1/X
n�1 and so a1 D a2 D � � � D an�2 D 0
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and dCan�1 D 0. This means, v D d.1�Xn�1/ 2 R.1�Xn�1/ as desired. Also, the
same proof as above shows that AnnR.R.1 � Xn�1// D I . Therefore, �R.I / D 1.
On the other hand, S is an Artinian ring and hence a perfect ring [1, Corollary 28.8].
So S is an .m; d/-perfect ring. We conclude via Theorem 4.1.


From this corollary we deduce easily the following example.


Example 4.5. Let D be an integral domain such that gldim.D/ D d . Let K D qf.D/
and n � 2. Consider the quotient ring S D KŒX�=.Xn�X/ D KCXKŒX� D KC I
with I D XKŒX�. Set R D D C I . Then R is a .1; d /-perfect ring.
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t-class semigroups of Noetherian domains


S. Kabbaj and A. Mimouni


Abstract. The t -class semigroup of an integral domain R, denoted St .R/, is the semigroup of
fractional t -ideals modulo its subsemigroup of nonzero principal ideals with the operation induced
by ideal t -multiplication. This paper investigates ring-theoretic properties of a Noetherian domain
that reflect reciprocally in the Clifford or Boolean property of its t -class semigroup.
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regular, Boole t -regular, t -stable domain, Noetherian domain, strong Mori domain.
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Dedicated to Alain Bouvier


1 Introduction


Let R be an integral domain. The class semigroup of R, denoted S.R/, is the semi-
group of nonzero fractional ideals modulo its subsemigroup of nonzero principal ideals
[3], [19]. We define the t -class semigroup of R, denoted St .R/, to be the semigroup
of fractional t -ideals modulo its subsemigroup of nonzero principal ideals, that is, the
semigroup of the isomorphy classes of the t -ideals of R with the operation induced
by t -multiplication. Notice that St .R/ stands as the t -analogue of S.R/, whereas the
class group Cl.R/ is the t -analogue of the Picard group Pic.R/. In general, we have


Pic.R/ � Cl.R/ � St .R/ � S.R/


where the first and third containments turn into equality if R is a Prüfer domain and
the second does so if R is a Krull domain.


A commutative semigroup S is said to be Clifford if every element x of S is (von
Neumann) regular, i.e., there exists a 2 S such that x D ax2. A Clifford semigroup S
has the ability to stand as a disjoint union of subgroups Ge , where e ranges over the set
of idempotent elements of S , and Ge is the largest subgroup of S with identity equal
to e (cf. [7]). The semigroup S is said to be Boolean if for each x 2 S , x D x2. A
domain R is said to be Clifford (resp., Boole) t -regular if St .R/ is a Clifford (resp.,
Boolean) semigroup.


This paper investigates the t -class semigroups of Noetherian domains. Precisely,
we study conditions under which t -stability characterizes t -regularity. Our first result,
Theorem 2.2, compares Clifford t -regularity to various forms of stability. Unlike regu-
larity, Clifford (or even Boole) t -regularity over Noetherian domains does not force the


This work was funded by KFUPM under Project # MS/t-Class/257.
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t -dimension to be one (Example 2.4). However, Noetherian strong t -stable domains
happen to have t -dimension 1. Indeed, the main result, Theorem 2.6, asserts that “R is
strongly t -stable if and only if R is Boole t -regular and t -dim.R/ D 1.” This result is
not valid for Clifford t -regularity as shown by Example 2.9. We however extend this
result to the Noetherian-like larger class of strong Mori domains (Theorem 2.10).


All rings considered in this paper are integral domains. Throughout, we shall use
qf.R/ to denote the quotient field of a domain R, I to denote the isomorphy class of a
t -ideal I of R in St .R/, and Maxt .R/ to denote the set of maximal t -ideals of R.


2 Main results


We recall that for a nonzero fractional ideal I of R, Iv WD .I�1/�1, It WD
S
Jv


where J ranges over the set of finitely generated subideals of I , and Iw WD
S
.I W J /


where the union is taken over all finitely generated ideals J of R with J�1 D R. The
ideal I is said to be divisorial or a v-ideal if I D Iv , a t -ideal if I D It , and a w-
ideal if I D Iw . A domain R is called strong Mori if R satisfies the ascending chain
condition on w-ideals [5]. Trivially, a Noetherian domain is strong Mori and a strong
Mori domain is Mori. Suitable background on strong Mori domains is [5]. Finally,
recall that the t -dimension of R, abbreviated t -dim.R/, is by definition equal to the
length of the longest chain of t -prime ideals of R.


The following lemma displays necessary and sufficient conditions for t -regularity.
We often will be appealing to this lemma without explicit mention.


Lemma 2.1 ([9, Lemma 2.1]). Let R be a domain. We have


(1) R is Clifford t -regular if and only if, for each t -ideal I of R, I D .I 2.I W I 2//t .


(2) R is Boole t -regular if and only if, for each t -ideal I of R, I D c.I 2/t for some
c 6D 0 2 qf.R/.


An ideal I of a domainR is said to beL-stable (hereL stands for Lipman) ifRI WDS
n�1.I


n W I n/ D .I W I /, and R is called L-stable if every nonzero ideal is L-stable.
Lipman introduced the notion of stability in the specific setting of one-dimensional
commutative semi-local Noetherian rings in order to give a characterization of Arf
rings; in this context, L-stability coincides with Boole regularity [12].


Next, we state our first theorem of this section.


Theorem 2.2. Let R be a Noetherian domain and consider the following statements:


(1) R is Clifford t -regular.


(2) Each t -ideal I of R is t -invertible in .I W I /.


(3) Each t -ideal is L-stable.


Then (1) H) (2) H) (3). Moreover, if t -dim.R/ D 1, then (3) H) (1).
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Proof. (1) H) (2). Let I be a t -ideal of a domain A. Then for each ideal J of A,
.I W J / D .I W Jt /. Indeed, since J � Jt , then .I W Jt / � .I W J /. Conversely, let
x 2 .I W J /. Then xJ � I implies that xJt D .xJ /t � It D I , as claimed. So x 2
.I W Jt / and therefore .I W J / � .I W Jt /. Now, let I be a t -ideal of R, B D .I W I /
and J D I.B W I /. Since I is regular in St .R/, then I D .I 2.I W I 2//t D .IJ /t . By
the claim, B D .I W I / D .I W .IJ /t / D .I W IJ / D ..I W I / W J / D .B W J /. Since
B is Noetherian, then .I.B W I //t1 D Jt1 D Jv1 D B , where t1- and v1 denote the t -
and v-operations with respect to B . Hence I is t -invertible as an ideal of .I W I /.


(2) H) (3). Let n � 1, and x 2 .I n W I n/. Then xI n � I n implies that xI n.B W
I / � I n.B W I /. So x.I n�1/t1 D x.I n.B W I //t1 � .I n.B W I //t1 D .I n�1/t1 .
Now, we iterate this process by composing the two sides by .B W I /, applying the t -
operation with respect to B and using the fact that I is t -invertible in B , we obtain that
x 2 .I W I /. Hence I is L-stable.


(3) H) (1). Assume that t -dim.R/ D 1. Let I be a t -ideal of R and J D
.I 2.I W I 2//t D .I 2.I W I 2//v (since R is Noetherian, and so a TV-domain). We
wish to show that I D J . By [10, Proposition 2.8.(3)], it suffices to show that
IRM D JRM for each t -maximal ideal M of R. Let M be a t -maximal ideal of
R. If I 6� M , then J 6� M . So IRM D JRM D RM . Assume that I � M .
Since t -dim.R/ D 1, then dim.R/M D 1. Since IRM is L-stable, then by [12,
Lemma 1.11] there exists a nonzero element x of RM such that I 2RM D xIRM .
Hence .IRM W I 2RM / D .IRM W xIRM / D x�1.IRM W IRM /. So I 2RM .IRM W
I 2RM / D xIRMx


�1.IRM W IRM / D IRM . Now, by [10, Lemma 5.11], JRM D
..I 2.I W I 2//v/RM D .I 2.I W I 2//RM /v D .I 2RM .IRM W I


2RM //v D .IRM /v D
IvRM D ItRM D IRM .


According to [2, Theorem 2.1] or [8, Corollary 4.3], a Noetherian domainR is Clif-
ford regular if and only if R is stable if and only if R is L-stable and dim.R/ D 1. Un-
like Clifford regularity, Clifford (or even Boole) t -regularity does not force a Noether-
ian domain R to be of t -dimension one. In order to illustrate this fact, we first establish
the transfer of Boole t -regularity to pullbacks issued from local Noetherian domains.


Proposition 2.3. Let .T;M/ be a local Noetherian domain with residue field K and
� W T �! K the canonical surjection. Let k be a proper subfield of K and R WD
��1.k/ the pullback issued from the following diagram of canonical homomorphisms:


R �! k


# #


T
�
�! K D T=M


Then R is Boole t -regular if and only if so is T .


Proof. By [4, Theorem 4] (or [6, Theorem 4.12]) R is a Noetherian local domain with
maximal ideal M . Assume that R is Boole t -regular. Let J be a t -ideal of T . If
J.T W J / D T , then J D aT for some a 2 J (since T is local). Then J 2 D aJ and so
.J 2/t1 D aJ , where t1 is the t -operation with respect to T (note that t1 D v1 since T
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is Noetherian), as desired. Assume that J.T W J / ¨ T . Since T is local with maximal
ideal M , then J.T W J / � M . Hence J�1 D .R W J / � .T W J / � .M W J / � J�1


and therefore J�1 D .T W J /. So .T W J 2/ D ..T W J / W J / D ..R W J / W J / D
.R W J 2/. Now, since R is Boole t -regular, then there exists 0 6D c 2 qf.R/ such that
.J 2/t D ..Jt /


2/t D cJt . Then .T W J 2/ D .R W J 2/ D .R W .J 2/t / D .R W cJt / D
c�1.R W Jt / D c�1.R W J / D c�1.T W J /. Hence .J 2/t1 D .J 2/v1 D cJv1 D cJt1 D
cJ , as desired. It follows that T is Boole t -regular.


Conversely, assume that T is Boole t -regular and let I be a t -ideal of R. If II�1 D


R, then I D aR for some a 2 I . So I 2 D aI , as desired. Assume that II�1 ¨ R.
Then II�1 � M . So T � .M W M/ D M�1 � .II�1/�1 D .Iv W Iv/ D .I W I /.
Hence I is an ideal of T . If I.T W I / D T , then I D aT for some a 2 I and so
I 2 D aI , as desired. Assume that I.T W I / ¨ T . Then I.T W I / � M , and so
I�1 � .T W I / � .M W I / � I�1. Hence I�1 D .T W I /. So .T W I 2/ D ..T W
I / W I / D ..R W I / W I / D .R W I 2/. But since T is Boole t -regular, then there exists
0 6D c 2 qf .T / D qf.R/ such that .I 2/t1 D ..It1/


2/t1 D cIt1 . Then .R W I 2/ D .T W
I 2/ D .T W .I 2/t1/ D .T W cIt1/ D c�1.T W It1/ D c�1.T W I / D c�1.R W I /. Hence
.I 2/t D .I


2/v D cIv D cIt D cI , as desired. It follows that R is Boole t -regular.


Now we are able to build an example of a Boole t -regular Noetherian domain with
t -dimension ‰ 1.


Example 2.4. Let K be a field, X and Y two indeterminates over K, and k a proper
subfield of K. Let T WD KŒŒX; Y �� D K CM and R WD k CM where M WD .X; Y /.
Since T is a UFD, then T is Boole t -regular [9, Proposition 2.2]. Further, R is a Boole
t -regular Noetherian domain by Proposition 2.3. Now M is a v-ideal of R, so that
t -dim.R/ D dim.R/ D 2.


Recall that an ideal I of a domain R is said to be stable (resp., strongly stable) if
I is invertible (resp., principal) in its endomorphism ring .I W I /, and R is called a
stable (resp., strongly stable) domain provided each nonzero ideal of R is stable (resp.,
strongly stable). Sally and Vasconcelos [17] used this concept to settle Bass’ conjecture
on one-dimensional Noetherian rings with finite integral closure. Recall that a stable
domain is L-stable [1, Lemma 2.1]. For recent developments on stability, we refer the
reader to [1] and [14, 15, 16]. By analogy, we define the following concepts:


Definition 2.5. A domain R is t -stable if each t -ideal of R is stable, and R is strongly
t -stable if each t -ideal of R is strongly stable.


Strong t -stability is a natural stability condition that best suits Boolean t -regularity.
Our next theorem is a satisfactory t -analogue for Boolean regularity [8, Theorem 4.2].


Theorem 2.6. LetR be a Noetherian domain. The following conditions are equivalent:


(1) R is strongly t -stable;


(2) R is Boole t -regular and t -dim.R/ D 1.
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The proof relies on the following lemmas.


Lemma 2.7. Let R be a t -stable Noetherian domain. Then t -dim.R/ D 1.


Proof. Assume t -dim.R/ � 2. Let .0/ � P1 � P2 be a chain of t -prime ideals of
R and T WD .P2 W P2/. Since R is Noetherian, then so is T (as .R W T / 6D 0) and
T � R D R0, where R and R0 denote respectively the complete integral closure and
the integral closure of R. Let Q be any minimal prime over P2 in T and let M be a
maximal ideal of T such that Q � M . Then QTM is minimal over P2TM which is
principal by t -stability. By the principal ideal theorem, ht.Q/ D ht.QTM / D 1. By
the Going-Up theorem, there is a height-two prime ideal Q2 of T contracting to P2 in
R. Further, there is a minimal prime ideal Q of P2 such that P2 � Q ¤ Q2. Hence
Q\R D Q2\R D P2, which is absurd since the extension R � T is INC. Therefore
t -dim.R/ D 1.


Lemma 2.8. Let R be a one-dimensional Noetherian domain. If R is Boole t -regular,
then R is strongly t -stable.


Proof. Let I be a nonzero t -ideal of R. Set T WD .I W I / and J WD I.T W I /.
Since R is Boole t -regular, then there is 0 6D c 2 qf.R/ such that .I 2/t D cI . Then
.T W I / D ..I W I / W I / D .I W I 2/ D .I W .I 2/t / D .I W cI / D c�1.I W I / D c�1T .
So J D I.T W I / D c�1I . Since J is a trace ideal of T , then .T W J / D .J W
J / D .c�1I W c�1I / D .I W I / D T . Hence Jv1 D T , where v1 is the v-operation
with respect to T . Since R is one-dimensional Noetherian domain, then so is T ([11,
Theorem 93]). Now, if J is a proper ideal of T , then J � N for some maximal ideal
N of T . Hence T D Jv1 � Nv1 � T and therefore Nv1 D T . Since dim.T / D 1,
then each nonzero prime ideal of T is t -prime and since T is Noetherian, then t1 D v1.
So N D Nv1 D T , a contradiction. Hence J D T and therefore I D cJ D cT is
strongly t -stable, as desired.


Proof of Theorem 2.6. (1) H) (2). Clearly R is Boole t -regular and, by Lemma 2.7,
t -dim.R/ D 1.


(2) H) (1). Let I be a nonzero t -ideal of R. Set T WD .I W I / and J WD I.T W I /.
Since R is Boole t -regular, then there is 0 6D c 2 qf.R/ such that .I 2/t D cI . Then
.T W I / D ..I W I / W I / D .I W I 2/ D .I W .I 2/t / D .I W cI / D c�1.I W I / D c�1T .
So J D I.T W I / D c�1I . It suffices to show that J D T . Since T D .I W I / D
.II�1/�1, then T is a divisorial (fractional) ideal of R, and since J D c�1I , then J is
a divisorial (fractional) ideal of R too. Now, for each t -maximal ideal M of R, since
RM is a one-dimensional Noetherian domain which is Boole t -regular, by Lemma 2.8,
RM is strongly t -stable. If I 6� M , then TM D .I W I /M D .IRM W IRM / D RM
and JM D I.T W I /M D RM . Assume that I � M . Then IRM is a t -ideal of RM .
Since RM is strongly t -stable, then IRM D aRM for some nonzero a 2 I . Hence
TM D .I W I /RM D .IRM W IRM / D RM . Then JM D IM .TM W IM / D RM D
TM . Hence J D Jt D


T
M2Maxt .R/


JM D
T
M2Maxt .R/


TM D Tt D T . It follows
that I D cJ D cT and therefore R is strongly t -stable.
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An analogue of Theorem 2.6 does not hold for Clifford t -regularity, as shown by
the next example.


Example 2.9. There exists a Noetherian Clifford t -regular domain with t -dim.R/ D 1
such that R is not t -stable. Indeed, let us first recall that a domain R is said to be
pseudo-Dedekind if every v-ideal is invertible [10]. In [18], P. Samuel gave an example
of a Noetherian UFD domain R for which RŒŒX�� is not a UFD. In [10], Kang noted
that RŒŒX�� is a Noetherian Krull domain which is not pseudo-Dedekind; otherwise,
Cl.RŒŒX��/ D Cl.R/ D 0 forces RŒŒX�� to be a UFD, absurd. Moreover, RŒŒX�� is a
Clifford t -regular domain by [9, Proposition 2.2] and clearly RŒŒX�� has t -dimension 1
(since Krull). But for RŒŒX�� not being a pseudo-Dedekind domain translates into the
existence of a v-ideal of RŒŒX�� that is not invertible, as desired.


We recall that a domain R is called strong Mori if it satisfies the ascending chain
condition on w-ideals. Noetherian domains are strong Mori. Next we wish to extend
Theorem 2.6 to the larger class of strong Mori domains.


Theorem 2.10. Let R be a strong Mori domain. Then the following conditions are
equivalent:


(1) R is strongly t -stable;


(2) R is Boole t -regular and t -dim.R/ D 1.


Proof. We recall first the following useful facts:
Fact 1 ([10, Lemma 5.11]). Let I be a finitely generated ideal of a Mori domain R


and S a multiplicatively closed subset ofR. Then .IS /v D .Iv/S . In particular, if I is a
t -ideal (i.e., v-ideal) ofR, then I is v-finite, that is, I D Av for some finitely generated
subideal A of I . Hence .IS /v D ..Av/S /v D ..AS /v/v D .AS /v D .Av/S D IS and
therefore IS is a v-ideal of RS .


Fact 2. For each v-ideal I of R and each multiplicatively closed subset S of R,
.I W I /S D .IS W IS /. Indeed, set I D Av for some finitely generated subideal A of
I and let x 2 .IS W IS /. Then xA � xAv D xI � xIS � IS . Since A is finitely
generated, then there exists � 2 S such that x�A � I . So x�I D x�Av � Iv D I .
Hence x� 2 .I W I / and then x 2 .I W I /S . It follows that .I W I /S D .IS W IS /.


(1) H) (2). Clearly R is Boole t -regular. Let M be a maximal t -ideal of R.
Then RM is a Noetherian domain ([5, Theorem 1.9]) which is strongly t -stable. By
Theorem 2.6, t -dim.RM / D 1. Since MRM is a t -maximal ideal of RM (Fact 1), then
ht.M/ D ht.MRM / D 1. Therefore t -dim.R/ D 1.


(2) H) (1). Let I be a nonzero t -ideal of R. Set T WD .I W I / and J WD I.T W I /.
Since R is Boole t -regular, then .I 2/t D cI for some nonzero c 2 qf.R/. So J D
c�1I . Since J and T are (fractional) t -ideals of R, to show that J D T , it suffices
to show it t -locally. Let M be a t -maximal ideal of R. Since RM is one-dimensional
Noetherian domain which is Boole t -regular, by Theorem 2.6, RM is strongly t -stable.
By Fact 1, IM is a t -ideal of RM . So IM D a.IM W IM /. Now, by Fact 2, TM D
.I W I /M D .IM W IM / and then IM D aTM . Hence JM D IM .TM W IM / D TM , as
desired.
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We close the paper with the following discussion about the limits as well as possible
extensions of the above results.


Remark 2.11. (1) Unlike Clifford regularity, Clifford (or even Boole) t -regularity
does not force a strong Mori domain to be Noetherian. Indeed, it suffices to consider a
UFD domain which is not Noetherian.


(2) Example 2.4 provides a Noetherian Boole t -regular domain of t -dimension two.
We do not know whether the assumption “t -dim.R/ D 1” in Theorem 2.2 can be
omitted.


(3) Following [8, Proposition 2.3], the complete integral closure R of a Noetherian
Boole regular domain R is a PID. We do not know if R is a UFD in the case of Boole
t -regularity. However, it’s the case if the conductor .R W R/ 6D 0. Indeed, it’s clear that
R is a Krull domain. But .R W R/ 6D 0 forces R to be Boole t -regular, when R is Boole
t -regular, and by [9, Proposition 2.2], R is a UFD.


(4) The Noetherian domain provided in Example 2.4 is not strongly t -discrete since
its maximal ideal is t -idempotent. We do not know if the assumption “R strongly t -
discrete, i.e.,R has no t -idempotent t -prime ideals” forces a Clifford t -regular Noether-
ian domain to be of t -dimension one.
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Gorenstein dimensions in trivial ring extensions


N. Mahdou and K. Ouarghi


Abstract. In this paper, we show that the Gorenstein global dimension of trivial ring extensions is
often infinite. Also we study the transfer of Gorenstein properties between a ring and its trivial ring
extensions. We conclude with an example showing that, in general, the transfer of the notion of
Gorenstein projective module does not carry up to pullback constructions.
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1 Introduction


Throughout this work, all rings are commutative with identity element and all modules
are unital. Let R be a ring and M an R-module. We use pdR.M/, idR.M/ and fdR.M/
to denote the usual projective, injective and flat dimensions of M, respectively. It is
convenient to use “local” to refer to (not necessarily Noetherian) rings with a unique
maximal ideal.


In 1967–69, Auslander and Bridger [1, 2] introduced the concept of G-dimension
for finitely generated modules over Noetherian rings. Several decades later, Enochs,
Jenda and Torrecillas [10, 11, 12] extended this notion by introducing three homo-
logical dimensions called Gorenstein projective, injective, and flat dimensions, which
have all been studied extensively by their founders and also by Avramov, Christensen,
Foxby, Frankild, Holm, Martsinkovsky, and Xu among others [3, 8, 9, 14, 16, 22]. For
a ring R, the Gorenstein projective, injective and flat dimension of an R-module M
denoted GpdR.M/, GidR.M/ and GfdR.M/, respectively, is defined in terms of reso-
lutions of Gorenstein projective, injective and flat modules, respectively (see [16]). The
Gorenstein projective dimension is a refinement of projective dimension to the effect
that GpdR.M/ � pdR.M/ and equality holds when pdR.M/ is finite.


Recently, in [5], the authors introduced three classes of modules called strongly
Gorenstein projective, injective and flat modules. These modules allowed for nice char-
acterizations of Gorenstein projective and injective modules [5, Theorem 2.7], similar
to the characterization of projective modules via the free modules. In [6], the authors
started the study of Gorenstein homological dimensions of a ring R; namely, the Goren-
stein global dimension of R, denoted G-gldim.R/, and the Gorenstein weak (global)
dimension of R, denoted G-wgldim.R/, and defined as follows: G-gldim.R/ D
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sup¹GpdR.M/ j M R-moduleº D sup¹GidR.M/ j M R-moduleº [6, Theorem 3.2]
and G-wgldim.R/ D sup¹GfdR.M/ j M R-moduleº. They proved that, for any ring
R, G-wgldim.R/ � G-gldim.R/ [6, Theorems 4.2] and that the Gorenstein weak and
global dimensions are refinements of the classical ones, i.e., G-gldim.R/ � gldim.R/
and G-wgldim.R/ � wgldim.R/ with quality holding if the weak global dimension of
R is finite [6, Propositions 3.11 and 4.5].


This paper studies the Gorenstein dimensions in trivial ring extensions. Let A be
a ring and E an A-module. The trivial ring extension of A by E is the ring R WD
A Ë E whose underlying group is A � E with multiplication given by .a; e/.a0; e0/ D
.aa0; ae0Ca0e/ [17, 18]. Specifically, we investigate the possible transfer of Gorenstein
properties between a ring A and its trivial ring extensions. Section 2 deals with the
descent and ascent of the (strongly) Gorenstein properties between A-modules and R-
modules, where R is a trivial ring extension of A (Theorem 2.1, Corollary 2.3 and
Proposition 2.4). The last part of this section is dedicated to the Gorenstein global
dimension (Theorem 2.5). In Section 3, we compute G-gldim.A Ë E/ when .A; m/ is
a local ring with mE D 0 (Theorem 3.1) as well as G-gldim.D Ë E/ when D is an
integral domain and E is an qf.D/-vector space (Theorem 3.5). The last theorem gives
rise to an example showing that, in general, the notion of Gorenstein projective module
does not carry up to pullback constructions (Example 3.10).


2 Transfer of Gorenstein properties to trivial ring extensions


Throughout this section, we adopt the following notation: A is a ring, E an A-module
and R D A Ë E, the trivial ring extension of A by E. We study the transfer of
(strongly) Gorenstein projective and injective notions between A and R. We start this
section with the following theorem which handles the transfer of strongly Gorenstein
properties between A-modules and R-modules.


Theorem 2.1. Let M be an A-module. Then:


(1) (a) Suppose that pdA.E/ < 1. If M is a strongly Gorenstein projective A-
module, then M ˝A R is a strongly Gorenstein projective R-module.


(b) Conversely, suppose that E is a flat A-module. If M ˝A R is a strongly
Gorenstein projective R-module, then M is a strongly Gorenstein projective
A-module.


(2) Suppose that ExtpA.R; M/ D 0 for all p � 1 and fdA.R/ <1. If M is a strongly
Gorenstein injective A-module, then HomA.R; M/ is a strongly Gorenstein injec-
tive R-module.


Proof. (1) (a) Suppose that M is a strongly Gorenstein projective A-module. Then
there is an exact sequence of A-modules:


0!M ! P !M ! 0 .?/


where P is projective [5, Proposition 2.9]. It is known that R D A ˚A E and since
pdA.E/ <1 we have pdA.R/ <1 and from the exact sequence .?/, Tori


A.M; R/ D
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0, 8 i � 1. Then the sequence 0 ! M ˝A R ! P ˝A R ! M ˝A R ! 0
is exact. Note that P ˝A R is a projective R-module. On the other hand, for any
R-module projective Q, pdA.Q/ < 1 [7, Exercise 5, page 360]. Then, since M is
strongly Gorenstein projective, ExtR.M ˝A R; Q/ D ExtA.M; Q/ D 0 [7, page 118].
Therefore M ˝A R is a strongly Gorenstein projective R-module [5, Proposition 2.9].


(b) If E is a flat A-module, then R D A Ë E is a faithfully flat A-module. Suppose
that M ˝A R is strongly Gorenstein projective; combining [5, Remark 2.8] and [5,
Proposition 2.9], there is an exact sequence of R-modules:


0!M ˝A R! F !M ˝A R! 0 .??/


where F D R.J / is a free R-module. Then the sequence .??/ is equivalent to the exact
sequence:


0!M ˝A R! A.J /
˝A R!M ˝A R! 0:


Since R is a faithfully flat A-module, the sequence of A-module 0 ! M ! A.J / !


M ! 0 is exact. On the other hand, let P be a projective A-module. Then P ˝A R is
a projective R-module and ExtkA.M; P ˝A R/ D ExtkR.M ˝A R; P ˝A R/ D 0, since
TorA


i .M; R/ D 0 and by [7, Proposition 4.1.3, page 118]. But 0 D ExtkA.M; P ˝A


R/ Š ExtkA.M; P / ˚A ExtkA.M; P ˝A E/, then ExtkA.M; P / D 0. Therefore M is a
strongly Gorenstein projective A-module.


(2) If M is a strongly Gorenstein injective A-module, there exists an exact sequence
of A-modules:


0!M ! I !M ! 0


where I is an injective A-module. Since ExtA.R; M/ D 0, the sequence


0! HomA.R; M/! HomA.R; I /! HomA.R; M/! 0


is exact. Note that HomA.R; I / is an injective R-module. On the other hand, for any
injective R-module J , we have idA.J / <1 (since fdA.R/ <1 and by [7, Exercise 5,
page 360]) and ExtiR.J; HomA.R; M// Š ExtiA.J; M/ D 0 [7, Proposition 4.1.4,
page 118]. Therefore HomA.R; M/ is a strongly Gorenstein injective R-module.


Remark 2.2. The statements (1)(a) and (b) in Theorem 2.1 hold for any homomor-
phism from A to R of finite projective dimension in (a) and faithfully flat in (b), re-
spectively. But here we restrain our study to trivial ring extensions.


Corollary 2.3. Let M be an A-module. Then:


(1) Suppose that pdA.E/ < 1. If M is a Gorenstein projective A-module, then
M ˝A R is a Gorenstein projective R-module.


(2) Suppose that ExtpA.R; M/ D 0 for all p � 1 and fdA.R/ < 1. If M is a
Gorenstein injective A-module, then HomA.R; M/ is a Gorenstein injective R-
module.
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Next we compare the Gorenstein projective (resp., injective) dimension of an A-
module M and the Gorenstein projective (resp., injective) dimension of M˝AR (resp.,
HomA.R; M/) as an R-module.


Proposition 2.4. Let M be an A-module. Then:


(1) Suppose that GpdA.M/ is finite and Tork
A.M; R/ D 0, 8 k � 1. Then:


GpdA.M/ � GpdR.M ˝A R/:


(2) Suppose that GidA.M/ is finite and ExtkA.R; M/ D 0, 8 k � 1. Then:


GidA.M/ � GidR.HomA.R; M//:


Proof. (1) By hypothesis Tork
A.M; R/ D 0 for all k � 1. So, by [7, Proposition 4.1.3,


page 118], for any A-module P and all n � 1 we have


ExtkA.M; P ˝A R/ Š ExtkR.M ˝A R; P ˝A R/:


Suppose that GpdR.M ˝A R/ � d for some integer d � 0. Let P be a projec-
tive A-module. Then by [16, Theorem 2.20], 0 D ExtdC1


R .M ˝A R; P ˝A R/ Š


ExtdC1
A .M; P ˝A R/. But we have 0 D ExtdC1


A .M; P ˝A R/ Š ExtdC1
A .M; P / ˚


ExtdC1
A .M; P ˝A E/. So ExtdC1


A .M; P / D 0 for any projective A-module P . There-
fore GpdA.M/ � d .


(2) The proof is essentially dual to (1). Here we use [7, Proposition 4.1.4, page 118]
instead of [7, Proposition 4.1.3, page 118].


The following theorem gives a relation between G-gldim.A/ and G-gldim.R/.


Theorem 2.5. Suppose that G-gldim.A/ is finite and fdA.E/ D r , for some integer
r � 0. Then:


G-gldim.A/ � G-gldim.R/C r:


Proof. Let M be an A-module and let


Pr


fr
! Pr�1


fr�1
! � � �!P0


f0
!M ! 0 (i)


be an exact sequence of A-modules where each Pi is projective. Since R D A˚A E
as an A-modules, fdA.E/ D fdA.R/ D r . Then for all k � 1 we have


Tork
A.Im fr ; R/ Š TorkCr


A .M; R/ D 0 (ii)


If G-gldim.R/ � n, then GpdR.Im fr ˝A R/ � n, and by Proposition 2.4 we have
GpdA.Im fr/ � n. From (i), we have 0 D ExtnC1


A .Im fr ; P / Š ExtrCnC1
A .M; P /, for


every projective A-module P . Therefore GpdA.M/ � n C r and so G-gldim.A/ �
nC r [6, Lemma 3.3].
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3 Gorenstein global dimension of some trivial ring extensions


In this section, we study the Gorenstein global dimension of particular trivial ring ex-
tensions. We start by investigating the Gorenstein global dimension of R D A Ë E,
where .A; m/ is a local ring with maximal ideal m and E is an A-module such that
mE D 0. Recall that a Noetherian ring R is quasi-Frobenius if idR.R/ D 0 and a ring
R is perfect if all flat R-modules are projective [21].


Next we announce the first main result of this section.


Theorem 3.1. Let .A; m/ be a local ring with maximal ideal m and E an A-module
such that mE D 0. Let R D A Ë E. Then:


(1) If A is a Noetherian ring which is not a field and E is a finitely generated A-
module (i.e., R is Noetherian), then G-gldim .R/ D1.


(2) If A is a perfect ring, then G-gldim .R/ D either1 or 0. Moreover, in the case
G-gldim .R/ D 0, necessarily A D K is a field and E is a K-vector space with
dimk E D 1 (i.e., R D K Ë K).


To prove this theorem, we need the following lemmas.


Lemma 3.2 ([6, Lemma 3.4]). Let R be a ring with G-gldim.R/ < 1 and let n 2 N.
Then the following statements are equivalent:


(1) G-gldim.R/ � n;


(2) pdR.I / � n, for all injective R-modules I .


The next lemma gives a characterization of quasi-Frobenius rings.


Lemma 3.3 ([20, Theorem 1.50]). For a ring R, the following statements are equiva-
lent:


(1) R is quasi-Frobenius;


(2) R is Noetherian and AnnR.AnnR.I // D I for any ideal I of R, where AnnR.I /
denotes the annihilator of I in R.


Recall that the finitistic Gorenstein projective dimension of a ring R, denoted by
FGPD.R/, is defined in [16] as follows:


FGPD.R/ WD ¹GpdR.M/ j M R-module and GpdR.M/ <1º:


Proof of Theorem 3.1. (1) Suppose that G-gldim.R/ D n < 1 for some positive in-
teger n. If n � 1, let I be an injective R-module. By [6, Lemma 3.4], pdR.I / � n.
Then there is an exact sequence of R-modules


0 �! Pn �! Pn�1 �! � � � �! P0 �! I �! 0


with Pi projective and hence free (R is local). Since A is local and mE D 0, every
finitely generated ideal of R has a nonzero annihilator. From [15, Corollary 3.3.18],
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coker.Pn �! Pn�1/ is flat. Then fdR.I / � .n � 1/. Therefore from [6, Theorem
4.11] and [16, Theorem 3.14] we obtain


G-wgldim.R/ � n � 1 D G-gldim.R/ � 1: .?/


On the other hand, R is Noetherian by [13, Theorem 25.1], and from [6, Corollary 2.3]
we get


G-wgldim.R/ D G-gldim.R/: .??/


So from .?/ and .??/ we conclude that G-gldim.R/ D1.
Now if G-gldim.R/ D 0, then R is quasi-Frobenius. First we claim that A is a


quasi-Frobenius ring. Since A is Noetherian and by Lemma 3.3 we must prove only
that AnnA.AnnA.I // D I for any ideal I of A. Let I be an ideal of A. Since R is quasi-
Frobenius it is easy to see that AnnR.AnnR.I ËE// D AnnA.AnnA.I //ËE D I ËE.
Hence I D AnnA.AnnA.I // and A is quasi-Frobenius; thus G-gldim.A/ D 0. On the
other hand, since R is quasi-Frobenius, R is self-injective. Then ExtiR.A; R/ D 0 for
any integer i � 1 and so idA.m˚A E/ D idR.R/ D 0 by [13, Lemma 4.35]. Hence,
m ˚A E is a projective A-module by Lemma 3.2; in particular E is a projective A-
module and so E is free since A is local. Contradiction since mE D 0 and m ¤ 0.
Therefore, we conclude that G-gldim.R/ D1.


(2) First, suppose that G-gldim.R/ <1. Note that since A is perfect, R is perfect
too by [13, Proposition 1.15]. Combining [4, Corollary 7.12] and [16, Theorem 2.28]
we conclude that FGPD.R/ D FPD.R/ D 0 and so G-gldim.R/ D FGPD.R/ D 0.
Then from Lemma 3.2 and [20, Theorem 7.56] R is quasi-Frobenius. In particular R
is Noetherian and by (1) A D K is a field. Now we claim that dimK E D 1. Assume
that dimK E � 2 and let E 0 ¨ E be a proper submodule of E. Obviously 0 Ë E �
AnnR.AnnR.0 Ë E 0// ¤ 0 Ë E 0, this is a contradiction since R is quasi-Frobenius and
by Lemma 3.3. Therefore dimK E D 1 and E Š K. Then R D K Ë K.


Example 3.4. Let K be a field, let X1; X2; : : : ; Xn be n indeterminates over K, A D
KŒŒX1; : : : ; Xn�� the power series ring in n variables over K, and R WD A Ë K. Then,
G-gldim.R/ D1.


Next we announce the second main theorem of this section.


Theorem 3.5. Let D be an integral domain which is not a field, K its quotient field, E
a K-vector space, and R WD D Ë E. Then G-gldim.R/ D1


To prove this theorem we need the following lemmas.


Lemma 3.6 ([6, Remarks 3.10]). For a ring R, if G-gldim.R/ is finite, then


G-gldim.R/ D sup¹GpdR.R=I / j I ideal of Rº


D sup¹GpdR.M/ jM finitely generated R-moduleº:


Lemma 3.7 ([20, Corollary 1.38]). Let A be a ring. If A is self-injective (i.e., idA.A/ D
0), then AnnA.AnnA.I // D I for any finitely generated ideal I of A.
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Proof of Theorem 3.5. First we claim that R
0ËE


is not a Gorenstein projective R-mod-
ule. For this, let 0 ¤ a 2 D a non-invertible element, then R.0; a/ D 0 Ë Da is an
ideal of R. Clearly, 0 Ë Da   0 Ë E � AnnR.AnnR.0 Ë Da//, and by Lemma 3.7,
idR.R/ ¤ 0 D idD.E/, then ExtiR. R


0ËE
; R/ Š ExtiR.D; R/ ¤ 0, for some i � 1


[13, Proposition 4.35]. So R
0ËE


is not a Gorenstein projective R-module [16, Proposi-
tion 2.3]. Now we claim that 0 Ë E is not a Gorenstein projective R-module. Suppose
the opposite, i.e., that 0 Ë E is a Gorenstein projective R-module. Then there is an
exact sequence of R-modules


0 �! 0 Ë E �! F �! G �! 0 .1/


where F Š RI is a free R-module and G is Gorenstein projective by [16, Proposi-
tion 2.4]. Consider the pushout diagram


0 0
# #


0 �! 0 Ë E �! R �!
R


0ËE
�! 0


Î # #


0 �! 0 Ë E �! RI �! C 0 �! 0
# #


RI 0 D RI 0


# #


0 0


Combining the exact sequence .1/ and the short exact sequence in the pushout
0 ! 0 Ë E ! RI ! C 0 ! 0, yields C 0 Š G is Gorenstein projective. Then from
the short exact sequence 0 ! R


0ËE
! C 0 ! RI 0 ! 0, we get R


0ËE
is Gorenstein


projective [16, Theorem 2.5]. But this contradicts the fact that R
0ËE


is not Gorenstein
projective in the first part of the proof. Then 0 Ë E is not Gorenstein projective. On the
other hand, from the short exact sequence 0 �! .0 Ë E/J �! RJ �! 0 Ë E �! 0
we obtain GpdR.0ËE/ D1 [16, Proposition 2.18]. Therefore G-gldim.R/ D1.


Note that the condition “D is not a field” in Theorem 3.5 is necessary. For, the next
corollary shows that for any field K, G-gldim.K Ë K/ D 0. However [19, Lemma 2.2]
asserts that gldim.K Ë K/ D1.


Corollary 3.8. Let K be a field. Then:


(1) G-gldim.K Ë K/ D 0.


(2) G-gldim.K Ë Kn/ D1, for any n � 2.


Example 3.9. Let R WD Z Ë Q, where Z is the ring of integers and Q the field of
rational numbers. Then G-gldim.R/ D1.
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Next we exhibit an example showing that, in general, the transfer of the notion of
Gorenstein projective module does not carry up to pullback constructions.


Example 3.10. Let .D; m/ be a discrete valuation domain and K D qf.D/. Consider
the following pullback:


R D D Ë K �! T D K Ë K


# #


D Š R
0ËK


�! K


Let 0 ¤ a 2 m and I D 0 Ë Da. Consider the following short exact sequence of
R-modules


0 �! 0 Ë K �! R
u
�! 0 Ë Da �! 0


where u.b; e/ D .b; e/.0; a/ D .0; ba/. Similar arguments used in the proof of Theo-
rem 3.5 yield 0 Ë Da is not Gorenstein projective, I ˝R T Š 0 Ë K is a Gorenstein
projective ideal of T , and I ˝R


R
0ËK
Š


R
0ËK


is a free R
0ËK


-module, then Gorenstein
projective.
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Note on Prüfer ?-multiplication domains and class groups


R. Matsuda


Abstract. D. F. Anderson, M. Fontana and M. Zafrullah [2] investigated Prüfer ?-multiplication
domains and class groups. We study [2] and give semigroup analogs for its theorems. Thus, let
D be an integral domain and let S be a grading monoid (or a g-monoid). We show that there is a
canonical monomorphism from the v-class group Clv.D/ to Clv.DŒS�/, we show that Clv.S/ Š
Clv.SŒX�/, and we compute Clv.V ŒX�/ for one-dimensional valuation semigroups V . We also
show that S is a Prüfer v-multiplication semigroup if and only if e.fg/v D .e.f / C e.g//v for
every f; g 2 DŒS� � ¹0º.


Keywords. Semistar operation, commutative semigroup, class group.


AMS classification. 13A15.


1 Introduction


Let D be an integral domain with quotient field K. Let NF.D/ be the set of non-zero
submodules of K, let F.D/ be the set of non-zero fractional ideals I of D, i.e., I 2
NF.D/ and dI � D for some d 2 D � ¹0º, and let f.D/ be the set of non-zero finitely
generatedD-submodules ofK. A semistar operation onD is a mapping ? W NF.D/ �!
NF.D/, I 7�! I ?, such that the following properties hold for every x 2 K � ¹0º
and for every I; J 2 NF.D/: .xI /? D xI ?I I � I ?I .I ?/? D I ?I I � J implies
I ? � J ?. For subsets I; J of K, the subset ¹x 2 K j xI � J º of K is denoted
by .J W I /, the subset .D W I / of K is denoted by I�1, and .I�1/�1 is denoted by
I v . For every I 2 F.D/, I v is the intersection of principal fractional ideals of D
containing I (cf. [8, Theorem 34.1]). The mapping I 7�! I v (resp., I 7�! I ) from
NF.D/ to NF.D/ is a semistar operation, and is called the v-semistar operation (resp., the
d -semistar operation). A semistar operation ? on D is said of finite type if, for every
I 2 NF.D/; I ? D [¹J ? j J 2 f.D/ with J � I º. A semistar operation ? on D is said
stable if .I \ J /? D I ? \ J ? for every I; J 2 NF.D/.
D is called a P?MD1 (or, a Prüfer ?-multiplication domain1) if, for every I 2 f.D/,


there is J 2 f.D/ with IJ � D such that .IJ /? D D? (cf. M. Fontana, P. Jara and
E. Santos [5]). D is called a P?MD2 if, for every I 2 f.D/, there is J 2 f.D/
such that .IJ /? D D?. Clearly, P?MD1 implies P?MD2. An element I 2 F.D/ is
called ?-invertible1 if .IJ /? D D? for some J 2 F.D/ with IJ � D. I is called
?-invertible2 if .IJ /? D D? for some J 2 F.D/. Set Inv?.D/1 D ¹I ? j I 2 F.D/
which is ?-invertible1º, and set Inv?.D/2 D ¹I ? j I 2 F.D/ which is ?-invertible2º.
Inv?.D/1 (resp., Inv?.D/2) is a group under the multiplication .I ?; J ?/ 7�! .I ?J ?/?.
Set Inv?.D/1


Prin.D/ D Cl?.D/1, and set Inv?.D/2
Prin.D/ D Cl?.D/2, where Prin.D/ D ¹.a/? j a 2
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K�¹0ºº (cf. D. F. Anderson [1], M. Fontana and G. Picozza [7]). Cl?.D/1 and Cl?.D/2
are called ?-class groups of D.


If D? D D, we have that P?MD1 D P?MD2, ?-invertible1 D ?-invertible2,
Inv?.D/1 D Inv?.D/2 and Cl?.D/1 D Cl?.D/2. If D? D D, we denote P?MD1
(resp., ?-invertible1, Inv?.D/1, Cl?.D/1) by P?MD (resp., ?-invertible, Inv?.D/,
Cl?.D/). An element of Invd .D/ is called invertible, Cld .D/ is called the Picard
group of D, and Cld .D/ is denoted also by Pic.D/.


A maximal member in the set ¹I j I is a non-zero ideal of D with I 63 1 such that
I ? \ D D I º is called a quasi-?-maximal ideal of D. The set of quasi-?-maximal
ideals of D is denoted by QMax?.D/.


For every f 2 KŒX� � ¹0º, cD.f / (or, c.f /) denotes the D-submodule of K
generated by the coefficients of f .


D. F. Anderson, M. Fontana and M. Zafrullah [2] investigated P?MD1, P?MD2,
and Clv.D/. The theorems in [2] are the following,


Theorem 1.1 ([2, Theorem 1.1]). LetD be an integral domain with quotient fieldK, let
X be an indeterminate over K, and let ? be a stable and finite type semistar operation
on D. Then the following are equivalent:


(1) cD.fg/? D .cD.f /cD.g//? for every f; g 2 KŒX� � ¹0º.


(2) DP is a valuation domain for every P 2 QMax?.D/.


(3) D is a P?MD1.


Theorem 1.2 ([2, Theorem 2.7]). Let � be a subgroup of the additive group R of real
numbers, let V be a one-dimensional valuation domain with value group � .


(1) If V is discrete, then Pic.V / D 0 and Clv.V / D 0.


(2) If V is not discrete, then Pic.V / D 0 and Clv.V / Š R=� .


Theorem 1.3 ([2, Theorem 3.5]). Let V be a valuation domain with maximal ideal M ,
and let P ¤ M be a prime ideal of V . Then Clv.V / Š Clv.V=P /.


In this paper, we are interested in semigroup versions of Theorems 1.1, 1.2 and
1.3, and will translate them to semigroups, and will answer the question ([2]): Find
analogs of Theorems 1.2 and 1.3 for valuation semigroups. This paper consists of
three sections. Section 1 is an introduction, Section 2 contains results for g-monoids,
and Section 3 contains the proofs for our results.


2 Semigroups


A submonoid S of a torsion-free abelian additive group is called a grading monoid
(or, a g-monoid). Throughout the paper, we assume that S ¥ ¹0º. The set Z0 of
non-negative integers is a g-monoid. For the general theory of g-monoids, we refer to
[3], [9], [11] and [12]. Thus, let S be a g-monoid. Then the additive group ¹s � s0 j
s; s0 2 Sº is called the quotient group of S , and is denoted by q.S/. A non-empty
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subset I of S is called an ideal of S if S C I � I . An ideal P ¤ S is called a prime
ideal of S if, for every a; b 2 S; a C b 2 P implies a 2 P or b 2 P . An ideal
Q ¤ S of S is called a primary ideal of S if, for every a; b 2 S; a C b 2 Q and
b 62 Q implies na 2 Q for some positive integer n. We see easily that if S is not
a group, then S has a unique maximal ideal. Let P be a prime ideal of S . Then the
g-monoid ¹s � t j s 2 S; t 2 S � P º is denoted by SP . Assume that there are prime
ideals P1; : : : ; Pn of S such that P1 ¤ � � � ¤ Pn and that there are not prime ideals
Q1; : : : ;QnC1 such that Q1 ¤ � � � ¤ QnC1, then n is called the dimension of S .


Set G D q.S/. Let NF.S/ be the set of non-empty subsets I of G such that S C I �
I . An element I of NF.S/ is called a fractional ideal of S if s C I � S for some
s 2 S . Let F.S/ be the set of fractional ideals of S , and let f.S/ be the set of finitely
generated fractional ideals of S . If a mapping I 7�! I ? from NF.S/ to NF.S/ satisfies
the following conditions, then ? is called a semistar operation on S : For every a 2 G
and for every I; J 2 NF.S/, we have .aC I /? D aC I ?, I � I ?, .I ?/? D I ?, I � J
implies I ? � J ?. For subsets I; J of G, the subset ¹x 2 G j x C I � J º of G is
denoted by .J W I /, the subset .S W I / of G is denoted by I�1, and .I�1/�1 is denoted
by I v (we let ¿�1 D G). For every I 2 F.S/, I v is the intersection of principal
fractional ideals of S containing I . The mapping I 7�! I v (resp., I 7�! I ) from
NF.S/ to NF.S/ is a semistar operation, and is called the v-semistar operation (resp.,
the d -semistar operation). A semistar operation ? is said of finite type if, for every
I 2 NF.S/, I ? D [¹J ? j J 2 f.S/ with J � I º. ? is said stable if .I \J /? D I ?\J ?


for every I; J 2 NF.S/.
S is called a P?MS1 (or, a Prüfer ?-multiplication semigroup1) if, for every I 2


f.S/, there is a J 2 f.S/ with I C J � S such that .I C J /? D S?. S is called
a P?MS2 if, for every I 2 f.S/, there is a J 2 f.S/ such that .I C J /? D S?.
An element I 2 F.S/ is called ?-invertible1 if .I C J /? D S? for some J 2 F.S/
with I C J � S . I is called ?-invertible2 if .I C J /? D S? for some J 2 F.S/.
Set Inv?.D/1 D ¹I ? j I 2 F.S/ which is ?-invertible1º, and set Inv?.S/2 D ¹I ? j
I 2 F.S/ which is ?-invertible2º. Inv?.S/1 (resp., Inv?.S/2) is a group under the
multiplication: .I ?; J ?/ 7�! .I ? C J ?/?. Set Inv?.S/1


Prin.S/ D Cl?.S/1, and set Inv?.S/2
Prin.S/ D


Cl?.S/2, where Prin.S/ D ¹.a/? j a 2 Gº. Cl?.S/1 and Cl?.S/2 are called ?-class
groups of S .


If S? D S , we have P?MS1 D P?MS2, ?-invertible1 D ?-invertible2, Inv?.S/1 D
Inv?.S/2 and Cl?.S/1 D Cl?.S/2. If S? D S , we denote P?MS1 (resp., ?-invertible1,
Inv?.S/1, Cl?.S/1) by P?MS (resp., ?-invertible, Inv?.S/, Cl?.S/). An element of
Invd .S/ is called invertible, and Cld .S/ is denoted also by Pic.S/.


For totally ordered abelian additive groups and valuations on fields, we refer to [8].
Thus, the cardinality of the set of convex subgroups ¤ � is called the rank of � , and is
denoted by rank.�/. If H1 and H2 are distinct convex subgroups of � such that there
is no convex subgroup of � properly between H1 and H2, then H1 and H2 are called
adjacent. � is called discrete if, for every pair H1, H2 of adjacent convex subgroups
of � (say, H1 ¤ H2), the ordered factor group H2=H1 is order isomorphic with Z. If
rank.�/ D 1 and � is discrete, then � is order isomorphic with Z. If rank.�/ D 1
and � is not discrete, then � is order isomorphic with a dense subgroup of the additive
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group R of the real numbers (cf. [8, p. 193]). Let w be a valuation on a field K, let
� be the value group of w, and let V be the valuation domain belonging to w. The
rank.�/ is called the rank of w (resp., V / and is denoted by rank.w/ (resp., rank.V /).
Then rank.V / equals the dimension dim.V / of V . If � is discrete, then w (resp., V )
is called discrete. w (resp., V ) is discrete if and only if every primary ideal of V is a
power of its radical ([8, III, Exercises 22]).


LetG be a torsion-free abelian additive group, and let � be a totally ordered abelian
additive group. A mappingw fromG onto � is called a valuation if, for every a; b 2 G,
w.a C b/ D w.a/ C w.b/. � is called the value group of w, the subset V D ¹a 2
G j w.a/ � 0º of G is called the valuation semigroup of (or, belonging to) w, and w
is called a valuation on G belonging to V .


Letw be a valuation onG with value group � , and let V be the valuation semigroup
of w. IfH is a convex subgroup ¤ � , then the set ¹a 2 V j a 62 H º is a prime ideal of
V , and thus there is a canonical bijection from the set of convex subgroups ¤ � onto
the set Spec.V / of prime ideals of V . rank.�/ is called the rank of w (resp., V / and is
denoted by rank.w/ (resp., rank.V /). Then rank.V / equals the dimension dim.V / of
V . If � is discrete, then w (resp., V ) is called discrete. w (resp., V ) is discrete if and
only if every primary ideal of V is a multiple of its radical.


Let S be a g-monoid with quotient group G. Let P be a prime ideal of S . Then
S�P is a g-monoid. We denote S�P by S=P . Then q.S=P / is canonically regarded
as a subgroup of G.


Let V be a valuation semigroup, letG D q.V /, letw be a valuation onG belonging
to V , and let � be the value group of w. Let P be a prime ideal of V , let H be the
convex subgroup of � associated to P . Then the restriction Nw of w to q.V=P / is a
valuation on q.V=P /, H is the value group of Nw, and V=P is the valuation semigroup
of Nw. If I is an ideal of V with I ¥ P , then I�P is an ideal of V=P , and is denoted by
I=P . If J is an ideal of V=P , there is a unique ideal I ¥ P of V such that J D I=P .


Let D be an integral domain with quotient field K, and let S be a g-monoid with
quotient group G. Then the semigroup ring of S over D is denoted by DŒS� (or, by
DŒX IS�). DŒX IS� is the ring of elements


P
finite aiX


si for every ai 2 D and every
si 2 S . For an element f D


P
aiX


ti 2 KŒX IG� with ai ¤ 0 and ti ¤ tj for every
i ¤ j , theD-module


P
Dai is denoted by cD.f / (or, c.f /) and [.SC ti / is denoted


by eS .f / (or, e.f /).
A maximal member in the set ¹I j I is an ideal of S with I 63 0 such that I ?\S D


I º is called a quasi-?-maximal ideal of S . The set of quasi-?-maximal ideals of S is
denoted by QMax?.S/.


The g-monoid ¹s C kX j s 2 S; k 2 Z0º is called the polynomial semigroup of X
over S , and is denoted by SŒX�.


In this paper, we will prove the following Propositions 2.1, 2.2, 2.4, Theorems 1.10,
1.20, 1.30 and Corollaries 2.3, 2.5.


Proposition 2.1. Let D be an integral domain, and let ? be a stable and finite type
semistar operation on D. Then the following assertions are equivalent:


(1) D is a P?MD1.
(2) D is a P?MD2.
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Theorem 1.10. Let D be an integral domain, let S be a g-monoid with quotient group
G, let X be an indeterminate over G, and let ? be a stable and finite type semistar
operation on S . Then the following assertions are equivalent:


(1) eS .fg/? D .eS .f /C eS .g//? for every f; g 2 DŒX IG� � ¹0º.


(2) SP is a valuation semigroup for every P 2 QMax?.S/.


(3) S is a P?MS1.


(4) S is a P?MS2.


Proposition 2.2. There is a canonical monomorphism from Clv.D/ to Clv.DŒX I S�/.


Corollary 2.3. There is a canonical monomorphism from Clv.D/ to Clv.DŒX�/.


Proposition 2.4. There is a canonical isomorphism from Clv.S/ onto Clv.SŒX�/.


Corollary 2.5. Let � be a subgroup of R, let V be a one-dimensional valuation semi-
group with value group � .


(1) If V is discrete, then Clv.V ŒX�/ D 0.


(2) If V is not discrete, then Clv.V ŒX�/ Š R=� .


Theorem 1.20. Let � be a subgroup of R and V a one-dimensional valuation semi-
group with value group � .


(1) Pic.S/ D 0 for every g-monoid S .


(2) If V is discrete, then Clv.V / D 0.


(3) If V is not discrete, then Clv.V / Š R=� .


Theorem 1.30. Let V be a valuation semigroup with maximal idealM and let P ¤ M
be a prime ideal of V . Then Clv.V / Š Clv.V=P /.


3 Proofs


Proof of Proposition 2.1. Assume that D is a P?MD2. Let f; g 2 KŒX� � ¹0º. By
the Dedekind–Mertens lemma (cf. [8, Theorem 28.1]), there is a positive integer m
such that c.f /mc.fg/ D c.f /mC1c.g/. There is J 2 f.D/ such that .c.f /J /? D
D?. Since .c.f /mc.fg/Jm/? D .c.f /mC1c.g/Jm/?, it follows that c.fg/? D
.c.f /c.g//?. By [2, Theorem 1.1], D is a P?MD1.


An ideal I of S is called a cancelation ideal if, for every ideals J1 and J2 of S ,
I C J1 D I C J2 implies J1 D J2. Clearly, every invertible ideal of S is a cancelation
ideal. We will give an outline of the proof of lemma for the convenience of the reader.
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Lemma 3.1 ([15, Theorem 8.2]). Let I be a cancelation ideal of S . Then I is a prin-
cipal ideal.


Proof (outline). Let I be a cancelation ideal of S . Suppose that I is not principal.
Then I ¤ S , because S D .0/ is principal. Let M be the maximal ideal of S . If
I C S D I C M , then S D M ; a contradiction. Hence I C M ¤ I . Choose
an element x 2 I with x 62 I C M . Since I is not principal, we have .x/ ¤ I .
Choose an element y 2 I with y 62 .x/, and put a D x C y. Then clearly, we have
a 62 .2x/. There is a maximal member J in the set of ideals that do not contain a, and
then 2x 2 J . Since J 63 a, and since I is a cancelation ideal, I C J does not contain
I C a. Hence there is b 2 I with b C a 62 I C J . The case where b 2 .x/: Then
bC a 2 .y C 2x/ � I C J ; a contradiction. The case where b 62 .x/: If a 2 .bC y/,
then a D bCyC s for some s 2 S . Since x 62 I CM , we have s 62M , and b 2 .x/; a
contradiction. Hence a 62 .bCy/ and bCy 2 J . Then bCa D xC .bCy/ 2 I CJ ;
a contradiction.


Lemma 3.2. We have Pic.S/ D 0.


Proof. We have Invd .S/ D Prin.S/ by Lemma 3.1. Hence Pic.S/ = 0.


Let w be a valuation on G with value group � . For every subset X � G, we set
w.X/ D ¹w.x/ j x 2 Xº � � .


Lemma 3.3 (A semigroup version of Theorem 1.2(1)). Let V be a one-dimensional
valuation semigroup. If V is discrete, then Clv.V / D 0.


Proof. Letw be a valuation onG D q.V / belonging to V , and let � be the value group
of w. Since � is of rank 1 and discrete, we may assume that � D Z. Let I 2 F.V /.
Then there is a 2 I such that min w.I / D w.a/, and we have I D .a/. Then
I v D .a/ D I d , hence v D d . By Lemma 3.2, we have Clv.V / = Cld .V / D 0.


If X is a subset of R, the infimum of X in R is denoted by infRX .


Lemma 3.4. Let V be a one-dimensional valuation semigroup which is not discrete
and with value group � , where � is a dense subgroup of R. Let w be a valuation on
G D q.V / belonging to V . For every I 2 F.V /, set f .I / = infRw.I /, and define a
mapping f from F.V / to R.


(1) Let I 2 F.V / with f .I / D ˛. Then I�1 D ¹x 2 G j w.x/ � �˛º and
f .I�1/ D �˛.


(2) Let I 2 F.V / with f .I / D ˛. Then I v D ¹x 2 G j w.x/ � ˛º and f .I v/ D ˛.


(3) f .I C J / D f .I /C f .J / for every I; J 2 F.V /.


Proof. (1) The first assertion follows from the definitions. And the second assertion
follows from the first one.


(2) The assertion follows by applying (1) for I�1.
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(3) Set f .I / D ˛ and f .J / D ˇ. f .ICJ / � ˛Cˇ is obvious. Let R 3  > ˛Cˇ.
There are ˛1 > ˛ and ˇ1 > ˇ such that ˛1 C ˇ1 <  . Then there are i 2 I and j 2 J
such that w.i/ < ˛1 and w.j / < ˇ1. Then we have w.i C j / < ˛1 C ˇ1 <  , hence
f .I C J / D ˛ C ˇ.


Lemma 3.5 (A semigroup version of Theorem 1.2(2)). Let V be a one-dimensional
valuation semigroup which is not discrete and with value group � , where � is a sub-
group of R. Then Clv.V / Š R=� .


Proof. Let w be a valuation on G D q.V / with value group � . Since � is not discrete,
� is a dense subgroup of R. For every I 2 Invv.V /, set '.I / D f .I / 2 R=� , where
f is as in Lemma 3.4. Throughout the proof, we will use Lemma 3.4.


� ' is a mapping onto R=� .
For, let ˛ 2 R. Let I D ¹x 2 G j w.x/ � ˛º. Then we have f .I / D ˛.


Since f .I�1/ D �˛, we have f .I C I�1/ D f .I / C f .I�1/ D 0. Therefore
.I C I�1/v D ¹x 2 G j w.x/ � 0º D V , that is, I is v-invertible. On the other
hand, we have I v D ¹x 2 G j w.x/ � ˛º D I . It follows that I 2 Invv.V / and
'.I / D f .I / D N̨ .


� If '.I / D N0, then I 2 Prin.V /.
For, since f .I / 2 � , there is a 2 G such that f .I / D w.a/. Then we have


I v D ¹x 2 G j w.x/ � w.a/º D .a/. Since I 2 Invv.V /, we have I v D I , and
hence I D .a/ 2 Prin.V /.


� For every I; J 2 Invv.V /, we have '..I C J /v/ D '.I /C '.J /.
For, f ..I C J /v/ D f .I C J / D f .I /C f .J /.


The proof is complete.


Lemmas 3.2, 3.3 and 3.5 complete the proof of Theorem 1.20.
An ideal I of a g-monoid is called v-ideal if I v D I .


Lemma 3.6 (A semigroup version of [2, Lemma 3.3]). Let V be a valuation semigroup
with maximal ideal M , let P be a prime ideal of V with M ¥ P , let I be an ideal of
V with I ¥ P . Then I v=P D .I=P /v . In particular, I=P is a v-ideal of V=P if and
only if I is a v-ideal of V .


Proof. Let w be a valuation on G D q.V / belonging to V . Set ¹a 2 V j w.a/ is
a lower bound of w.I /º D ¹a� j � 2 ƒº. Since I v is the intersection of principal
fractional ideals of V containing I , we have \�.a�C V / D I v . Set ¹b 2 V=P j w.b/
is a lower bound of w.I=P /º D ¹b� j � 2 †º. Similarly, we have \� .b� C V=P / D
.I=P /v . Easily we have ¹a� j � 2 ƒº D ¹s 2 V � P j w.s/ is a lower bound of
w.I /º and ¹b� j � 2 †º D ¹s 2 V � P j w.s/ is a lower bound of w.I /º, and hence
¹a� j � 2 ƒº D ¹b� j � 2 †º. It follows that .I=P /v D \�¹.b� C V / � P º D
\� .b� C V / � P D \�.a� C V / � P D I


v � P D I v=P .


Let V be a valuation semigroup. We note that every two ideals of V are comparable.
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Lemma 3.7 (A semigroup version of [2, Lemma 3.4]). Let V be a valuation semigroup
with maximal idealM , let P be a prime ideal of V with P ¤ M , and let I be an ideal
of V with I ¥ P . Then I=P is a v-invertible v-ideal of V=P if and only if I is a
v-invertible v-ideal of V .


Proof. We will use Lemma 3.6. Assume that I is a v-invertible v-ideal of V . We have
I C I�1 � M . For, if I C I�1 6� M , there is a 2 M such that a 62 I C I�1. Then
I C I�1 � .a/, hence .I C I�1/v � .a/ ¤ V ; a contradiction.


Choose s 2 I � P , and set J D s C I�1. J is an ideal of V . If J � P , then
s 2 s C I�1 � P ; a contradiction. Hence P ¤ J . Then we have .I=P C J=P /v D
. ICJ
P
/v D sCV


P
D s C V=P . Hence I=P is v-invertible.


The proof of the necessity is similar.


Proof of Theorem 1.30. We will use Lemmas 3.6 and 3.7. Let I be a v-invertible v-
ideal of V . Then I C I�1 � M by a proof similar to that of Lemma 3.7. Since
P ¤ I C I�1, there is j 2 I�1 such that P ¤ I C j . Set I C j D J . Since J
is a v-invertible v-ideal of V , J=P is a v-invertible v-ideal of V=P . For the element
ŒI � 2 Clv.V /, we set '.ŒI �/ D ŒJ=P � 2 Clv.V=P /.


� Then ' is well-defined.
For, let I; J 2 Invv.V / such that P ¤ I � V and P ¤ J � V . Assume that


ŒI � D ŒJ �. We may assume that I D t C J for some t 2 V . Then t 62 P , and then
I=P D tCJ


P
D t C J=P .


� ' is injective.
For, assume that ŒI=P � D ŒJ=P �. We may assume there I=P D tCJ=P for some


t 2 V=P . Then I D t C J .


� ' is a mapping onto Clv.V=P /.
For, let I=P 2 Invv.V=P / such that P ¤ I � V . Then I 2 Invv.V /.


� ' is a homomorphism.
For, let I; I 0 2 Invv.V / such that P ¤ I � V and P ¤ I 0 � V . Then we have


.ICI 0/v


P
D . ICI


0


P
/v D .I=P C I 0=P /v .


Lemma 3.8. Let ? be semistar operation on a g-monoid S .


(1) ([4], [14, §1, (2.6)(2)]) The mapping Q? W E 7�! [¹.E W I / j I is a finitely
generated ideal of S with I ? 3 0º from NF.S/ to NF.S/ is a semistar operation
on S .


(2) ([4, Corollary 3.9.(2)], [14, §1, (2.11)(2)]) ? D Q? if and only if ? is stable of finite
type.


(3) ([6, Corollary 2.7], [13, §2, (1.8)]) If ? is of finite type, then, for every E 2 NF.S/,
E Q? D \¹E C SP j P 2 QMax?.S/º.


Lemma 3.9 ([10, Proposition 6.2] The Dedekind–Mertens lemma for semigroups). Let
D be a domain with quotient field K, and let S be a g-monoid with quotient group G.
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For every f; g 2 KŒX IG� � ¹0º, there is a positive integer m such that meS .f / C
eS .fg/ D .mC 1/eS .f /C eS .g/.


If every finitely generated ideal of an integral domain D is principal, then D is
called a Bézout domain.


Lemma 3.10 ([16, Lemma 13]). If every finitely generated ideal of a g-monoid S is
principal, then S is a valuation semigroup.


Lemma 3.11 ([8, Corollary 28.5, Theorem 28.6]). Let D be an integral domain, and
let G D q.S/. The following statements are equivalent:


(1) S is a valuation semigroup.


(2) eS .fg/ D eS .f /C eS .g/ for every f; g 2 DŒX IG� � ¹0º.


Proof. (1) H) (2). By Lemma 3.9.
(2) H) (1). Let s; t 2 S with s ¤ t . Set f D X s C X t and g D X s � X t . Then


2.s; t/ D .2s; 2t / by the assumption. Then sC t 2 .2s; 2t /. It follows that .s; t/ D .s/
or .s; t/ D .t/. Lemma 3.10 completes the proof.


Proof of Theorem 1.10. For every I 2 NF.S/, I ? D \¹I C SP j P 2 QMax?.S/º by
Lemma 3.8. Then easily we have I ? C SP D I C SP for every P 2 QMax?.S/.


(1) H) (2). Let f; g 2 DŒX IG� � ¹0º, and let P 2 QMax?.S/. Then we have
eSP


.fg/ D e.fg/ C SP D .e.fg//? C SP D .e.f / C e.g//? C SP D .e.f / C
e.g//C SP D eSP


.f /C eSP
.g/.


By Lemma 3.11, we have that SP is a valuation semigroup.
(2) H) (3). Let I 2 f.S/. Then .I C I�1/? D \¹.I C I�1/ C SP j P 2


QMax?.S/º D \¹ICSPC I�1CSP j P 2 QMax?.S/º D \¹ICSP C.ICSP /�1 j


P 2 QMax?.S/º = \¹SP j P 2 QMax?.S/º = S?.
(3) H) (1). Let f; g 2 DŒX IG� � ¹0º. By Lemma 3.9, there is a positive integer


m such that me.f /C e.fg/ D .mC 1/e.f /C e.g/. Since .e.f /C e.f /�1/? D S?,
we have e.fg/? D .e.f /C e.g//?.


(4) H) (1). The proof follows from Lemma 3.9.
(3) H) (4). Straightforward.


Lemma 3.12. The following hold:


(1) If I v D I 2 F.D/, then .IDŒX IS�/v D IDŒX IS�.


(2) Let I v D I 2 F.D/, and let b 2 K�¹0º. Then II�1 � .b/ if and only if I � Ib.


(3) Let I v D I 2 F.D/, and let ' 2 q.DŒX IS�/ � ¹0º. Then


IDŒX IS�.IDŒX IS�/�1
� 'DŒX IS� if and only if IDŒX IS� � IDŒX IS�':


(4) Let I 2 Invv.D/, and set ˛.I / D IDŒX IS�. Then ˛.I / 2 Invv.DŒX IS�/.
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(5) Let I 2 Invv.D/, ŒI � 2 Clv.D/, and set N̨ .ŒI �/ D ŒIDŒX IS�� 2 Clv.DŒX IS�/.
Then the mapping N̨ : Clv.D/ �! Clv.DŒX IS�/, ŒI � 7�! ŒIDŒX IS�� is well-
defined.


(6) N̨ is an injection.


Proof. (1) There is a subset ¹a� j � 2 ƒº � K such that I D \�.a�/. Then
IDŒX IS� D \�a�DŒX IS�.


(2) If II�1 � .b/, then .I 1
b
/I�1 � D. Hence I 1


b
� I v D I , and hence I � Ib.


The converse is similar.
(3) We have .IDŒX IS�/v D IDŒX IS� by (1). Then (2) completes the proof.
(4) We have .IDŒX IS�/v D IDŒX IS� by (1).
Let IDŒX IS�.IDŒX IS�/�1 � 'DŒX IS� with ' 2 q.DŒX IS�/. Set 1


'
D F . Then


IF � IDŒX IS� by (3). Hence F 2 KŒX IS�. Set F D
P
biX


si with bi 2 K � ¹0º
and si ¤ sj for i ¤ j . Since IF � IDŒX IS�, we have Ibi � I for every i . Hence
II�1 � . 1


bi
/ for every i by (2). Since .II�1/v D D, we have . 1


bi
/ 3 1, and hence


bi 2 D. Hence 'DŒX IS� D 1
F
DŒX IS� 3 1, and hence .IDŒX IS�.IDŒX IS�/�1/v D


DŒX IS�.
(5) Let I; J 2 Invv.D/ such that ŒI � D ŒJ �. Easily we have J D Ib for some


b 2 K � ¹0º. It follows that ŒJDŒX IS�� D ŒIDŒX IS�b� D ŒIDŒX IS��.
(6) Let I; J 2 Invv.D/ such that ŒIDŒX IS�� D ŒJDŒX IS��. Then JDŒX IS� D


IDŒX IS�' for some ' 2 q.DŒX IS�/. Since I' � JDŒX IS�, we have ' 2 KŒX IS�.
Since J � IDŒX IS�', we have ' 2 K � ¹0º. Set ' D b. Then JDŒX IS� D
IDŒX IS�b, hence I D Jb, and hence ŒJ � D ŒI �.


Lemma 3.13. For every I 2 F.D/, we have .IDŒX IS�/v D I vDŒX IS�.


Proof. Since IDŒX IS� � I vDŒX IS�, we have .IDŒX IS�/v � I vDŒX IS� by Lem-
ma 3.12(1). Let IDŒX IS� � 'DŒX IS� with ' 2 q.DŒX IS�/.


To prove I vDŒX IS� � .IDŒX IS�/v , we need to show the inclusion I vDŒX IS� �
'DŒX IS�. Set 1


'
D F . Then we have F 2 KŒX IS�. Let F D


P
biX


si with every
bi 2 K � ¹0º and si ¤ sj for i ¤ j . Since IF � DŒX IS�, we have Ibi � D, hence
bi 2 I


�1. Since I vI�1 � D, we have I vF � DŒX IS�, hence I v � 'DŒX IS�, and
hence I vDŒX IS� � 'DŒX IS�.


Let I; J 2 Invv.D/. By Lemma 3.13, we have


.IDŒX IS�JDŒX IS�/v D .IJDŒX IS�/v D .IJ /vDŒX IS�:


Therefore N̨ is a homomorphism. The proof of Proposition 2.2 is complete.
Since DŒX IZ0� D DŒX�, Corollary 2.3 follows from Proposition 2.2.


Lemma 3.14. The following hold:


(1) If I v D I 2 F.S/, then .I C SŒX�/v D I C SŒX�.


(2) Let I v D I 2 F.S/, and let b 2 G. Then I C I�1 � .b/ if and only if I � I Cb.
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(3) Let I v D I 2 F.S/, and let ' 2 q.SŒX�/. Then I C SŒX� C .I C SŒX�/�1 �


' C SŒX� if and only if I C SŒX� � .I C SŒX�/C '.


(4) Let I 2 Invv.S/, and set ˛.I / D I C SŒX�. Then ˛.I / 2 Invv.SŒX�/.


(5) Let I 2 Invv.S/, let ŒI � 2 Clv.S/, and set N̨ .ŒI �/ D ŒI C SŒX�� 2 Clv.SŒX�/.
Then the mapping N̨ : Clv.S/ �! Clv.SŒX�/, ŒI � 7�! ŒI CSŒX�� is well-defined.


(6) N̨ is an injection.


(7) N̨ is a homomorphism.


The proof is similar to those for Lemmas 3.12 and 3.13.


Lemma 3.15. N̨ is a mapping onto Clv.SŒX�/.


Proof. Let Invv.SŒX�/ 3 J with J � SŒX�, let J D ¹a˛ C k˛X j ˛ 2 Aº with
min˛k˛ D 0, and let I D ¹a˛ j ˛ 2 Aº. Then I is an ideal of S . It is sufficient to
show that I 2 Invv.S/ and ˛.I / D J . Set ¹x 2 G j I � S C xº D ¹x� j � 2 ƒº.
Then we have I v D \�.SCx�/. SetL D ¹xClX 2 q.SŒX�/ j J � xClXCSŒX�º,
and set R D ¹x� C lX j � 2 ƒ; l � 0º.


We have L D R. For, let x C lX 2 L. For every ˛, we have a˛ C k˛X 2 J �
xC lX CSŒX�, hence a˛ 2 xCS . Hence I � S C x, and hence x D x� for some �.
Therefore L � R. Conversely, let x� C lX 2 R. Note that l � 0. Since I � S C x�,
we have J � I C SŒX� � x� C SŒX� � x� C lX C SŒX�. Hence x� C lX 2 L.
Therefore, R � L, and hence L D R.


� We have J D \�.x� C SŒX�/.
For, J D J v D \¹x C lX C SŒX� j x C lX 2 Lº D \�.x� C SŒX�/.


� I v D I .
For, let x 2 I v . Then x 2 S C x� for every �. It follows that x 2 J . Then


x D a˛ C k˛X for some ˛. Hence x D a˛ 2 I .


� J D I C SŒX�.
For, let a 2 I . Since a 2 S C x� for every �, we have a 2 \�.x� C S/ � J .


Hence I � J .


� We have .I C I�1/v D S .
For, let I C I�1 � b C S for b 2 G. Then I � I C b by Lemma 3.14(2),


hence I C SŒX� � I C SŒX� C b, and hence J C J�1 � b C SŒX� by Lemma
3.14(3). Since .J C J�1/v D SŒX�, we have 0 2 bCSŒX�, hence �b 2 S . Therefore
.I C I�1/v D S .


We have proved that I 2 Invv.S/ and ˛.I / D J .


The proof of Proposition 2.4 is complete.
The proof of Corollary 2.5 follows from Theorem 1.20 and Proposition 2.4.
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Schubert varieties with inequidimensional singular locus


S. B. Mulay


Abstract. We present a class of determinantal ideals (of mixed type) whose singular loci fail to be
equidimensional (with arbitrarily large dimension-gap). Since these ideals are the defining ideals of
a class of Schubert varieties, we get a family of Schubert varieties (as subvarieties of a variety of full
flags or of a Grassmannian) possessing inequidimensional singular locus.


Keywords. Schubert varieties, singularities.


AMS classification. 14M15, 14M18.


Examples of Schubert varieties whose singular locus consists of components of dif-
fering dimensions, have been of some interest (see [3]). The author of this article
discovered a class of such examples, well over a dozen years ago, as a consequence of
his investigations related to the intersections of Schubert subvarieties of the (classical)
space of full flags. Since then, the existence of these examples has been orally com-
municated by the author in professional meetings etc (most recently in Abhyankar’s
70th birthday conference, July 2000) but the details remained unpublished as yet. This
article, it is hoped, will serve as a convenient reference.


In this article, k is assumed to be an integral domain and X WD ŒXij �; with 1 � i �
m and 1 � j � n; is assumed to be an m � n matrix whose entries are indeterminates
over k: By kŒX� we mean the polynomial ring over k in the mn indeterminates Xij :
Let Y be the m � t submatrix of X consisting of the first t columns of X: Let p be a
positive integer not exceeding the minimum ofm; n and let I.p;X/ denote the ideal of
kŒX� generated by all the p � p minors of X: It is well known that I.p;X/ is a prime
ideal of kŒX� of height .m � p C 1/.n � p C 1/ (see [1] or [2]). More generally, the
results illustrated in the introduction of [5] (which are consequences of Theorem 4 of
that article) yield the following as a special case.


Theorem. Assume q is a positive integer with q � min¹t; pº: Then I.q; Y /C I.p;X/
is a prime ideal of kŒX�: Furthermore, if .p�q/ < .n�t /; then the height of I.q; Y /C
I.p;X/ is .m � p C 1/.n � p C 1/C .p � q/.t � q C 1/:


In fact, the results of [5] also relate I WD I.q; Y /C I.p;X/ to a Schubert variety
by the results of [4]. This relationship is important for our considerations in this arti-
cle. We proceed to provide a brief description of this relationship through a concrete
example in which X has size 5 � 6; submatrix Y has size 5 � 3; p D 4 and q D 2:
Temporarily assume k to be an algebraically closed field and let V denote the (affine)
variety defined by I WD I.2; Y /C I.4; X/ in the affine space over k whose coordinate
ring is kŒX�: Let FL.11; k/ be the variety of full-flags on an 11-dimensional k-vector
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space and let � denote the permutation of ¹1; 2; : : : ; 11º defined by


� WD .11; 6; 5; 10; 9; 4; 8; 7; 3; 2; 1/


where the vector on the right has �.i/ as its i -th (from the left) component. Fix a
Bruhat decomposition of FL.11; k/: Then the Schubert variety C� corresponding to �
intersects the ‘Opposite big cell’ in an affine variety V� : The varieties V and V� are
related by the equation


V� D V �A25
k :


Thus, the singular locus of C� can be studied by investigating the singular locus of V:
In passing we mention that expert readers will have no difficulty relating V to a Schu-
bert subvariety of the Grassmannian of 6-dimensional subspaces of an 11-dimensional
vector space over k:


Definitions. Let X and Y be as above. Assume


2 � p � min¹m; nº and 1 � t � n � p C 1:


(i) Given a subset S of the entries ofX; let kŒS� denote the subring of kŒX� obtained
by adjoining members of S to k: If A is a submatrix of X; then we also use A to
denote (by abuse of notation) the set of entries of A: With this convention, given
a sequence A1; : : : ; Ar where each Ai is either a submatrix of X or a subset of
the entries of X; by kŒA1; : : : ; Ar � we mean kŒA1 [ � � � [ Ar �:


(ii) For each integer � with 1 � � < n define W� to be the m � .n � �/ submatrix
of X consisting of the last n � � columns of X:


(iii) Define Z WD Wn�pC1 and let D denote the .p � 1/ � .p � 1/ minor of Z
determined by the first .p � 1/ rows of Z:


(iv) Let Ts denote the .p � 1/ � t submatrix of X determined by the first .p � 1/
rows and the first s columns of X: Define T WD Tn�pC1:


(v) For each .i; j / with 1 � i � m and 1 � j � n let N.i; j / be the p � p ma-
trix determined by the row-sequence ¹1; : : : ; p � 1; iº and the column-sequence
¹j; .n � p C 2/; : : : ; nº of X:


(vi) For p � i � m let H1.i/; : : : ;Hp�1.i/ be the (uniquely determined) homoge-
neous polynomials of degree p � 1 in kŒZ� such that given any j with 1 � j �
n � p C 1


detN.i; j / D XijD �
� X


1�r�p�1


XrjHr.i/


�
where det stands for the determinant.


(vii) For each .i; j / with p � i � m and 1 � j � s; define


Uij WD Xij �


� X
1�r�p�1


Xrj
Hr.i/


D


�
:


Let Us denote the set of these Uij and U WD Un�pC1:
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(viii) Define
h W kŒX�Œ1=D�! kŒX�Œ1=D�


to be the k-homomorphism of rings such that if p � i � m as well as 1 � j �
n � p C 1; then


h.Xij / D
X


1�r�p�1


Xrj
Hr.i/


D


and for all other .i; j / we have h.Xij / D Xij :


The following Lemma 1 is basic in nature and crucial for our main results. Although
most assertions of this lemma are known, their proofs are fairly short (some differing
in details from those in the literature) and hence by providing them here, we wish to
make our article more self-contained as well as easier to follow.


Lemma 1. Along with the above notation, suppose q is a positive integer such that
q � min¹t; mº:


(i) kŒX�Œ1=D� D kŒU; T;Z�Œ1=D�:


(ii) There exists a .m � p C 1/ � .p � 1/ matrix A WD ŒAij � with DAij 2 kŒZ� such
that


X �


"
I


A


#
Tn mod UkŒX�Œ1=D�


where (the block) I is the .p � 1/ � .p � 1/ identity matrix.


(iii) I.q; Y /kŒX�Œ1=D� � UtkŒX�Œ1=D�C I.q; Tt /kŒX�Œ1=D�:


(iv) Homomorphism h maps kŒX�Œ1=D� onto kŒT;Z�Œ1=D�: Furthermore, the kernel
of h is given by


Ker h D I.p;X/kŒX�Œ1=D� D UkŒX�Œ1=D�:


(v) If q � p and I WD I.q; Y /C I.p;X/; then


h.I / D I.q; Tt /kŒT;Z�Œ1=D�


and IkŒX�Œ1=D� is a prime ideal of height


ht I D .m � p C 1/.n � p C 1/C .p � q/.t � q C 1/:


(vi) There exists a .p � 1/ � .n � p C 1/ matrix C WD ŒCij � with DCij 2 kŒTn� �
kŒT;Z� and


h.X/ D ZŒC j I �


where (the block) I is the .p � 1/ � .p � 1/ identity matrix.
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(vii) Let 2 � e be a positive integer. Then


I.e; X/ � I.e � 1; x/.2/:


Furthermore, the singular locus of I.e; X/ is defined by I.e � 1; X/:


Proof. Assertion (i) is straightforward to verify. To prove (ii) observe that for each
.i; j / with p � i � m and n � p C 2 � j � n we have


0 D XijD �
� X


1�r�p�1


XrjHr.i/


�
since the sum on the right is the determinant of N.i; j / and in this case N.i; j / has
two identical columns. Define


Aij WD
Hi .p � 1C j /


D


for 1 � i � m � p C 1 and 1 � j � p � 1: Clearly,


detN.i; j / � 0 mod UkŒX�Œ1=D�


for p � i � m and 1 � j � n � p C 1: Hence (ii) follows.
To prove (iii) it suffices to show that given a q � q minor � of Y the image � is in


the ideal generated by I.q; Tt / modulo UkŒX�Œ1=D�: From (ii) it follows that modulo
UkŒX�Œ1=D� the rows of Y are linear combinations of the rows of Tt : Thus � is easily
seen to be in the ideal generated by the I.q; Tt / modulo UkŒX�Œ1=D�:


Let h.X/ denote the matrix whose ij -th entry is h.Xij /: Since U is contained in
the kernel of h; assertion (ii) implies that h.X/ has rank at most p � 1: Hence Ker.h/
contains I.p;X/: Clearly, h is surjective onto kŒT;Z�Œ1=D� and


UkŒX�Œ1=D� � I.p;X/kŒX�Œ1=D�:


Using (i) we get the asserted equality. In particular h.X/ has rank p � 1: This estab-
lishes (iv).


Since I.q; Tt /kŒT;Z�Œ1=D� is a prime ideal of height .p � q/.t � q C 1/ assertion
(v) follows from assertions (iii) and (iv).


For each j with 1 � j � n � p C 1 let Gn�pC2.j /; : : : ; Gn.j / be the (uniquely
determined) homogeneous polynomials of degree p � 1 in kŒTn� such that given any i
with p � i � m


detN.i; j / D XijD �
� X
n�pC2�r�n


XirGr.j /


�
:


Then, for each i with 1 � i � p� 1 the sum on the right is 0 since in this case N.i; j /
has two identical rows (and the sum is equal to the determinant ofN.i; j /). Now define


Cij WD
Gn�pCiC1.j /


D
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for 1 � i � p � 1 and 1 � j � n � p C 1: From the very definition of h we have
det h.N.i; j // D 0 for p � i � m and 1 � j � n � p C 1: Thus (vi) follows.


Lastly, we prove (vii). If e D 2; then it is clear that I.2; X/ � I.1; X/2:Henceforth
assume 3 � e: Let M be an e � e submatrix of X: We claim that � WD detM is in
the symbolic square of the prime ideal I.e � 1; X/: Since this claim is invariant under
permutations of the rows and the columns of X; we may assume, without loss, M to
be the submatrix determined by the first e rows and the last e columns of X: Letting
p D e � 1 in (iii) we deduce that I.e � 1; X/kŒX�Œ1=D� D UkŒX�Œ1=D�: For each
.i; j / with e � 1 � i � e and n � e C 1 � j � n if the entry Xij in M is replaced by


xij WD XijD �


� X
1�r�e�2


XrjHr.i/


�
;


then the determinant of the resulting e � e matrix is D2�: On the other hand, for each
n � e C 3 � j � n we have xij D 0 since it is a determinant of p � 1 � p � 1 matrix
with a repeated column. Consequently,


D2� D ˙D3.Ua˛Ubˇ � UaˇUb˛/


where .a; b/ WD .e � 1; e/ and .˛; ˇ/ WD .n � e C 1; n � e C 2/: Hence � is
in I.e � 1; X/.2/ and thereby we have shown that I.e � 1; X/ is in the singular
locus of I.e; X/: Conversely, let sing I.e; X/ � Spec kŒX� denote the singular lo-
cus of I.e; X/: Suppose sing I.e; X/ has a prime not containing I.e � 1; X/: Since
sing I.e; X/ remains invariant under permutations of rows and columns of X; it must
also have a prime not containing E where E denotes the e � 1 � e � 1 minor of X
determined by the first e � 1 rows and the last e � 1 columns of X: But such a prime is
necessarily in the singular locus of I.e; X/kŒX�Œ1=E�: By letting p D e in assertions
(ii) and (iii) we deduce that the singular locus of I.e; X/kŒX�Œ1=E� is empty. In other
words, each member of sing I.e; X/ contains I.e � 1; X/:


Lemma 2. We continue to use all the above notation. Again, I WD I.q; Y /C I.p;X/
and Y is assumed to have at most n � p C 1 columns, i.e. t � n � p C 1:


(i) Assume 2 � q and e is a positive integer. Let � denote the .q � 1/ � .q � 1/
minor of Y determined by the first q�1 rows and the last q�1 columns of Y (i.e.
columns t � q C 2; : : : ; t ). Then,


I.e; X/kŒX�Œ1=�� � .I.q; Y /C I.e;Wt�qC1//kŒX�Œ1=��:


(ii) Assume either 2 � q � p or 1 � q < p: Then, the prime ideal


Q WD I.q; Y /C I.p � 1; X/


is in the singular locus of I: Moreover, if 1 < q < p and J is a prime ideal (of
kŒX�) in the singular locus of I not containing �; then Q � J:
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(iii) Assume 1 < q < p: Then, the prime ideal


P WD I.q � 1; Y /C I.p;X/


is in the singular locus of I:Moreover, the singular locus of I is defined by P \Q:


Proof. Let Sl denote the submatrix of Y determined by the first q � 1 rows and the
first l columns and let S WD St�qC1: If X;D; p are replaced by Y;�; q respectively,
in assertions (iv) and (vi) of Lemma 1, then it follows that


R WD
kŒX�Œ1=��


I.q; Y /kŒX�Œ1=��
D kŒS;Wt�qC1�Œ1=��


and the first t � q C 1 columns of Y are kŒSt �-linear combinations of its last q � 1
columns. Consequently, modulo I.q; Y /kŒX�Œ1=��; an e� e minor of X is in the ideal


I.e;Wt�qC1/kŒS;Wt�qC1�Œ1=��:


This proves (i).
By the theorem quoted above, Q is a prime ideal of kŒX�: If 2 � q D p; then


I D I.p;X/ and Q D I.p � 1; X/: In this case (vii) of Lemma 1 implies that Q is in
the singular locus of I: If 1 D q < p; then I D I.1; Y /CI.p;Wt /; Q D I.p�1; Wt /
and kŒX� D kŒY;Wt �: In this case too, (vii) of Lemma 1 shows Q to be in the singular
locus of I: Suppose 1 < q < p: Now,� is obviously not inQ: Let R be the factor ring
as in the proof of (i) and letQ; I denote the canonical images ofQ; I (respectively) in
R: Applying (i) with e D p � 1; p we deduce the equalities


Q D I.p � 1; Wt�qC1/kŒS;Wt�qC1�Œ1=��;


I D I.p;Wt�qC1/kŒS;Wt�qC1�Œ1=��:


Since 2 � p; assertion (vii) of Lemma 1 implies thatQ defines the singular locus of I :
Hence Q defines the singular locus of I away from � i.e. given a prime ideal J � I
(of kŒX�) not containing �; the singular locus of I contains J if and only if Q � J:
This establishes (ii).


Lastly we prove (iii). Again, by the theorem quoted above, P is a prime ideal of
kŒX�: Since t � n�pC1; the minorD is not an element of P: Thus it suffices to show
that PkŒX�Œ1=D� is in the singular locus of IkŒX�Œ1=D�: By assertion (v) of Lemma
1, h.I / D I.q; Tt /kŒT;Z�Œ1=D� and replacing q by q�1 in that same assertion we get
h.P / D I.q � 1; Tt /kŒT;Z�Œ1=D�: It follows from (vii) of Lemma 1 that h.P / is in
the singular locus of h.I /: Hence P is in the singular locus of I: Next let J be a prime
ideal contained in the singular locus of I such that J does not contain P: Clearly, J
does not contain I.q � 1; Y /: We claim that Q � J: Say � is a .q � 1/ � .q � 1/
minor of Y which is not in J: Since I.p � 1; X/; I.p;X/; I.q � 1; Y /; I.q; Y / all are
invariant under any permutation of the rows of X and also under any permutation of
the columns of Y; we may assume � D � without any loss. But then our claim follows
from (ii).
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Theorem 1. Suppose p; q are positive integers such that


(a) 1 < q � t � n � p C 1 and


(b) q < p � min¹m; nº:


As above, let I WD I.q; Y / C I.p;X/, P WD I.q � 1; Y / C I.p;X/ and Q WD
I.q; Y /C I.p � 1; X/: Then,


(i) I; P;Q are prime ideals of kŒX� having heights


ht I D .m � p C 1/.n � p C 1/C .p � q/.t � q C 1/;


htP D .m � p C 1/.n � p C 1/C .p � q C 1/.t � q C 2/;


htQ D .m � p C 2/.n � p C 2/C .p � q � 1/.t � q C 1/


respectively.


(ii) The (reduced) singular locus of I is defined by P \Q:


(iii) If .mCn/ ¤ Œ2tC3.p�q/�; then the singular locus of I is not equidimensional.
In fact, by choosing m; n; t; p; q appropriately the difference between the heights
of P and Q can be made arbitrarily large.


Proof. Our hypotheses (a), (b) allow us to apply Lemma 2 thereby deducing (i) as well
as (ii). The first half of (iii) is straightforward to verify. Let d be a positive integer.
Set m D d C 3, n D 6, t D 3, p D 4 and q D 2: Then the above hypotheses on
m; n; t; p; q are satisfied. By (i), heights of P;Q are 3d C 9, 4d C 6 respectively.
Hence, choosing d to be arbitrarily large, the difference between the heights of P;Q
can be made as large as desired.


Definition. Let r;m;N be positive integers such that


m � r C 3 and N � mC r C 5:


(i) Let � be a map from the set Œ1; N � WD ¹1; : : : ; N º into itself given by


�.i/ WD


8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:


N C 1 � i if 1 � i � r ,
N C 1C r �m � i if r C 1 � i � r C 2,
N C 3 � i if r C 3 � i � r C 4,
N �m � 2 if i D r C 5,
N C 4 � i if r C 6 � i � mC 3,
N C 1 � i if mC 4 � i � N:


(ii) Define q WD r C 1, t WD r C 2, p WD r C 3 and n WD r C 5:


(iii) For an algebraically closed field k identify kŒX� as the affine coordinate ring of
Amn
k


and let V be the subvariety of this affine space defined by the ideal


I WD I.r C 1; Y /C I.r C 3; X/:
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(iv) For an algebraically closed field k let FL.N; k/ denote the (smooth) variety of full
flags on the k-vector-space kN : Fix a Bruhat decomposition of FL.N; k/ and for
each permutation � of Œ1; N � letX.�/ denote the Schubert subvariety of FL.N; k/
corresponding to �:


Theorem 2. For each positive integer r the above defined map � is a permutation
of Œ1; N �: The singular locus of X.�/ has exactly two irreducible components whose
dimensions differ by m � r � 5: In particular, the singular locus of X.�/ is inequidi-
mensional.


Proof. It is easy to verify that for each positive integer r; the map � is a permutation of
Œ1; N �: Let W denote the ‘Opposite big cell’ (with respect to our fixed Bruhat decom-
position) of FL.N; k/: In this situation, Theorem 4 (or Lemma 10) of [5] asserts that the
affine varietyX.�/\W is isomorphic to the product of V with the .N.N�1/=2�mn/-
dimensional affine space over k: Since m; n; t; q; p are easily seen to satisfy require-
ments (a), (b) of Theorem 1, our assertion follows from Theorem 1.


Remarks. (i) In the proof of Theorem 2 along with referring to Theorem 4 of [5], the
reader may find it helpful to refer also to (2.9) of [4].


(ii) It is possible to replace FL.N; k/ by the Grassmannian of n-dimensional subspaces
of kN and take the Schubert subvariety corresponding to � in that Grassmannian.
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On Matlis domains and Prüfer sections
of Noetherian domains


B. Olberding


Abstract. The class of Matlis domain, those integral domains whose quotient field has projective
dimension 1, is surprisingly broad. However, whether every domain of Krull dimension 1 is a Matlis
domain does not appear to have been resolved in the literature. In this note we construct a class
of examples of one-dimensional domains (in fact, almost Dedekind domains) that are overrings of
KŒX; Y � but are not Matlis domains. These examples fit into a larger context of what we term
“Prüfer sections” of Noetherian domains, a notion we also consider briefly, and with emphasis on
Prüfer sections of two-dimensional Noetherian domains.


Keywords. Matlis domain, Prüfer domain, almost Dedekind domain.
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1 Introduction


In the monograph [1], Fuchs and Salce remark that, “In the category of R-modules,
there exists one module which has a tremendous influence on the entire category once
its projective dimension is declared to be � 1: this is nothing else than Q, the quotient
field of R.” A domain whose quotient field has projective dimension 1 is said to be
a Matlis domain, in honor of Eben Matlis, who was the first to recognize the power-
ful consequences of this assumption. Matlis domains have been well-studied; see [1]
for an overview. As we recall in Section 3, a remarkable theorem of Lee shows that
these domains can be characterized in an entirely non-homological way by the prop-
erty thatQ=R is the direct sum of countably generated submodules. Thus examples of
Matlis domains include countable domains, one-dimensional Noetherian domains, and
integral domains having a nonzero element contained in every nonzero prime ideal.
However, there does not seem to appear in the literature an example of a domain of
Krull dimension 1 that is not a Matlis domain. In this note we exhibit a class of such
examples. Our examples are in fact almost Dedekind domains, meaning that each lo-
calization at a maximal ideal is a Dedekind domain (equivalently, a rank one discrete
valuation ring, or DVR). Our examples are also overrings of KŒX; Y �, where K can be
chosen to be any uncountable non-algebraically closed field. The rings are instances
of what we term “Prüfer sections” of Noetherian domains. More precisely, they are
Prüfer domains formed by taking the intersection of valuation overrings of a Noether-
ian domain, each centered over a different maximal ideal of D. In Corollary 3.5 we
give a somewhat organic construction of a Prüfer section of KŒX; Y � that is an almost
Dedekind domain but is not a Matlis domain.
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Notation. For a ring R, we denote by Max.R/ the set of all maximal ideals of R. If I
is an ideal of R, then Z.I / is the set of all maximal ideals of R containing I . Since we
sometimes consider several rings at once (e.g.D � R), we always reserve the notation
Z.I / for maximal ideals of the ring R (as opposed to, say, D).


2 Prüfer sections of Noetherian domains


An integral domain R is a Prüfer domain if for each maximal ideal M of R, RM is a
valuation domain. A domain R is a QR-domain if each overring of R is a quotient ring
of R; i.e., a localization of R at a multiplicatively closed set. Thus a QR-domain is
necessarily a Prüfer domain. Moreover, a Prüfer domain is a QR-domain if and only if
the radical of each finitely generated ideal is the radical of a principal ideal [3, Theorem
27.5]. A special case of QR-domains are the Bézout domains, those domains for which
every finitely generated ideal is a principal ideal.


Let D be a domain, and let † be a collection of valuation overrings of D. Then we
say the ring R D


T
V 2† V is a Prüfer section of D if R is a Prüfer domain and each


V 2 † is centered on a different maximal ideal of D. (The center of V in D is the
prime ideal of D that is the intersection of the maximal ideal of V with D.) We say
that each V 2 † is a representative of R, and that† is the set of representatives of R.1


We show in Theorem 2.3 that if R is a Prüfer section of D, then † is unique in
the sense that it is irredundant (no member can be omitted), and it is the unique set
of irredundant representatives of R. To motivate these notions, we collect in the next
proposition some examples of how Prüfer sections arise. Versions of statement (1)
can be found in [2], [10] and [15]. Statement (2) is a special case of (1): see the
discussion on pp. 332–333 of [12]. Statement (3) is contained in Theorem 6.6 of [14],
and statement (4) is proved in Lemma 4.2 of [13].


Proposition 2.1. Let D be a domain, and let † be a collection of valuation overrings
of D, each centered on a different maximal ideal of D.


(1) If there exists a nonconstant monic polynomial f .X/ in DŒX� that does not have
a root in the residue field of any V 2 †, then R is a QR-section of D.


(2) If D contains a non-algebraically closed field K, and the residue field of each
V 2 † is contained in a purely transcendental extension of K, then R is a QR-
section of D.


(3) If D contains a field K of cardinality greater than the cardinality of †, then R is
a Bézout section of D.


(4) If † has finite character (meaning every nonzero element of D is a unit in all but
finitely many members of †) and for each V 2 †, each nonzero prime ideal of V
contracts to a maximal ideal of D, then R is a Prüfer section of D.


1The terminology of sections is motivated by the fact that if R is a Prüfer section, then † is, as we will
show, unique, and if Zar.D/ is the space of valuation overrings ofD and f W Zar.D/! Spec.D/ denotes the
continuous mapping that takes each valuation ring to its center, then the mapping f �1.f .†//! f .†/ has a
right inverse, i.e., a section.
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Remark 2.2. Statements (1)–(3) of Proposition 2.1 remain true without the assumption
that each valuation ring in † is centered on a distinct maximal ideal of D, in the sense
that the resulting intersection is a QR-domain in the case of (1) and (2), and a Bézout
domain in (3). Of course in this more general setting, these rings need no longer be
sections of D.


In Theorem 2.3 we make some general observations regarding Prüfer sections of
Noetherian domains, most of which are consequences of results in [4]. We use the
following notation throughout the rest of this article. For each V 2 †, let MV denote
the maximal ideal of V , MV DMV \R and mV DMV \D.


Theorem 2.3. Let D be a Noetherian domain, let R be a Prüfer section of D and let
† be a (by (1) below, “the”) set of representatives of R. Then:


(1) R D
T
V 2† V is an irredundant intersection of valuation rings, and it the unique


representation of R as an irredundant intersection of valuation overrings.


(2) For each V 2 †, MV is a maximal ideal of R and it is the radical of a finitely
generated ideal of R.


(3) A maximal ideal M of R contains a finitely generated ideal that is contained in
no other maximal ideal of R if and only if M DMV for some V 2 †. Moreover,
for each V 2 †, this finitely generated ideal can be chosen to be mVR.


(4) A maximal ideal M of R is the radical of a finitely generated ideal if and only if
M DMV for some V 2 †.


(5) A maximal ideal M of R is finitely generated if and only if M D MV for some
valuation ring V 2 † having a principal maximal ideal.


Proof. Since R is a Prüfer domain, for each V 2 †, we have V D RMV
[3, Theo-


rem 26.2]. Thus R D
T
V 2†RMV


. For each V 2 †, there exists a finitely generated
ideal of D, namely, mV , that is contained in MV but in no other MW , where W 2 †
with W ¤ V . Thus by Proposition 1.4 of [4], the representation R D


T
V 2†RMV


is
irredundant. Also, Lemma 1.6 and Theorem 1.7 of [4] show that ¹MV W V 2 †º is pre-
cisely the set of maximal idealsM of R such thatM contains a finitely generated ideal
that is contained in no other maximal ideal of R, and for this finitely generated ideal,
one may choose mVR, where V is such that M D MV . This proves (3). Moreover,
Theorem 1.7 of [4] implies thatR D


T
V 2† V is the unique irredundant representation


of R, and hence proves (1). Also, since a valuation overring of a Noetherian domain
necessarily has finite Krull dimension [3, Theorem 25.8], the fact that for each V 2 †,
the finitely generated ideal mV is contained in MV but no other maximal ideal im-
plies easily that MV is the radical of a finitely generated ideal. This proves (2) and
(4). If also V D RMV


has a principal maximal ideal, say, MRMV
D xRMV


for some
x 2 M , then since mVR is contained in M but no other maximal ideal of R, we have
M D xRCmVR, which proves (5).


We restrict next to Krull dimension 2, and derive stronger results in this case. The
following technical lemma needed for Theorem 2.6 will also be crucial in the next sec-
tion.
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Lemma 2.4. Let D be an integrally closed Noetherian domain of Krull dimension 2,
let R be a QR-section of D, and let † be the set of representatives of R.


(1) If M is a maximal ideal of R, then either M D MV for some V 2 † or M D
pDp \ R for some height 1 prime ideal p of D such that RM D Dp and p is
contained in infinitely many members of ¹mV W V 2 †º.


(2) Each nonmaximal prime ideal of R is contracted from a nonmaximal prime ideal
of a valuation ring in †.


(3) If f 2 D and Z.f / is infinite, then f is an element of infinitely many members
of ¹mV W V 2 †º.


(4) If r D f=g 2 R for some f; g 2 D such that .f; g/D has height 2, then Z.g/ is
finite, Z.f / D Z.g/ [Z.r/ and Z.f / nZ.r/ is finite.


Proof. (1) LetM be a maximal ideal of R, and let p DM \D. Then since R is a QR-
domain there exists r 2 R such that


p
pR D


p
rR. But then, since R D


T
V 2†RMV


,
it follows that r 2 MV for some V 2 †, and hence p � MV \ D D mV . If p
is a maximal ideal of D, then necessarily, mV D p � M . But then Theorem 2.3(3)
implies thatMV is the only maximal ideal ofR containing p, and this forcesM DMV .
Otherwise, if p is not a maximal ideal of D (and hence M ¤MV for all V 2 †), then
since D is integrally closed and has Krull dimension 2, Dp is a DVR with Dp � RM .
Consequently, Dp D RM . Moreover, if p is contained in only finitely many members
of ¹mV W V 2 †º, then pR is contained in only finitely many members of ¹MV W


V 2 †º, say MV1 ;MV2 ; : : : ;MVn
. In this case, choose m 2 M n .MV1 [ � � � [MVn


/.
Then the ideal pR C mR � M is a proper finitely generated contained in no MV ,
V 2 †, which is impossible since every proper finitely generated ideal of R must be
contained in at least one MV , V 2 †. (This follows from the fact that R is a QR-
domain with R D


T
V 2†RMV


.) Therefore, p is contained in infinitely many members
of ¹mV W V 2 †º, and this proves (1).


(2) Let P be a nonmaximal prime ideal of R, and let M be a maximal ideal of R
containing P . If M D MV for some V 2 †, then PRMV


is a prime ideal of the
valuation ring RMV


D V 2 †, so P is contracted from a prime ideal of a valuation
ring in †. Otherwise, if M ¤ MV for all V 2 †, then by (1), there exists a height 1
prime ideal p of D such that RM D Dp, which forces M to have height 1. Yet P is a
nonmaximal prime ideal of R contained in M , so necessarily P D 0, and hence P is
contracted from the 0 ideal of any valuation ring in †.


(3) The element f of D is contained in at most finitely many height 1 prime ideals
of the Noetherian domain D, so by (1) all but finitely many members of Z.f / are of
the form MV , V 2 †. Thus since for each V 2 †, mV D MV \ D, and each MV


contracts to a unique maximal ideal of D, (3) follows.
(4) Since the ideal .f; g/D of D has height 2, and the Krull dimension of D is 2,


the ideal .f; g/D is contained in finitely many members of ¹mV W V 2 †º. Thus if
Z.g/ is infinite, then by (3), there must exist V 2 † such that g 2 mV but f 62 mV .
But then f is a unit in V , so that r�1 D g=f 2 MV , contrary to the assumption
that r D f=g 2 R � V . Therefore, Z.g/ is finite, and since f D gr , we have
Z.f / D Z.g/ [Z.r/. In particular, Z.f / nZ.r/ is finite.
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We also require a more general lemma, one that holds beyond the setting of QR-
sections:


Lemma 2.5. LetD be a Noetherian domain of Krull dimension 2, let† be a collection
of valuation overrings of D, and let R D


T
V 2† V . If p is a height one prime ideal of


D that is contained in infinitely many mV WD MV \ D, V 2 †, then R � Dp and
P WD pDp \R is a height 1 prime ideal of R with RP D Dp.


Proof. Let r 2 R, and write r D f=g, where f; g 2 D. Suppose by way of contradic-
tion that r 62 Dp. Then since Dp is a valuation ring, g=f D r�1 2 pDp, so that we
may assume g 2 p and f 2 D n p. Now since D=p is a one-dimensional Noetherian
domain, p is the intersection of any set of infinitely many maximal ideals of D that
contain p. In particular, p is the intersection of the infinitely many mV that contain p.
Thus since f 62 p, there exists V 2 † such that p � mV but f 62 mV , and hence f is
a unit in V . But then, since g 2 p �MV , we have g=f 2MV , and at the same time,
f=g 2 R � V , a contradiction that implies R � Dp. Since Dp � RP and Dp is a
DVR, it follows that Dp D RP .


Theorem 2.6. Let D be an integrally closed Noetherian domain of Krull dimension 2,
letR be a QR-section ofD, and let P be the set of height one prime ideals p ofD such
that p is contained in infinitely many mV WDMV \D, V 2 †.


(1) Spec.R/ D ¹P \R W P is a prime ideal of some V 2 †º [ ¹pDp \R W p 2 P º:


(2) If every representative of R has Krull dimension 1, then R has Krull dimension
1, every ideal of R can be represented uniquely as an irredundant intersection of
irreducible ideals, and


Max.R/ D ¹MV W V 2 †º [ ¹pDp \R W p 2 P º:


(3) If every representative of R is a DVR, then R is an almost Dedekind domain
such that every nonzero proper ideal of R can be represented uniquely as an
irredundant intersection of powers of maximal ideals.


Proof. (1) The inclusion � is clear in light of Lemma 2.4(1) and (2). To see that the
reverse inclusion holds it is enough to observe that by Lemma 2.5, for each p 2 P ,
pDp \R is a prime ideal of R.


(2) and (3). By Lemma 2.4(1), a localization of R at a maximal ideal is either a
representative of R or a DVR of the form Dp, where p is a height 1 prime ideal of D.
Thus if every member of † has Krull dimension 1, then R has Krull dimension 1, and
if every representative of R is a DVR, then R is an almost Dedekind domain. Since the
calculation of Max.R/ in (2) is a consequence of (1), it remains to prove the assertions
about ideal decompositions in (2) and (3). To verify the decomposition in (2), since R
is a Prüfer domain of Krull dimension 1, it suffices by Corollary 2.10 of [5] to show
that for each nonzero proper ideal I of R, the ring R=I has at least one maximal ideal
that is the radical of a finitely generated ideal. If this last property is satisfied and also
R is an almost Dedekind domain, then Theorem 2.8 and Corollary 3.9 in [5] show that
every nonzero proper ideal of R is an irredundant intersection of powers of maximal
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ideals of R. Therefore, to complete the proof of both (2) and (3), we show that for
every proper nonzero ideal I of R, R=I has a maximal ideal that is the radical of a
finitely generated ideal.


Let I be a proper nonzero ideal ofR. If I is contained in someMV , V 2 †, then by
Theorem 2.3(4), the maximal ideal MV =I of R=I is the radical of a finitely generated
ideal. Otherwise, if I is not contained in any MV , V 2 †, then by Lemma 2.4(1),
every maximal ideal of R containing I is contracted from the maximal ideal of a ring
of the formDp, where p is a height 1 prime ideal ofD. Since the collection of all such
localizations Dp of D has finite character, it follows in this case that I is contained in
only finitely many maximal ideals of R. Let M be a maximal ideal of R containing I ,
and choose m 2 M such that m is not in any other maximal ideal of R containing I .
Then the radical of .mRC I /=I in R=I is M=I , and the theorem is proved.


Remark 2.7. In Remarks 2.11 and 3.10 of [5], it is noted that a construction from
[11] can be used to create examples of interesting (D non-Dedekind) almost Dedekind
domains such that each nonzero proper ideal is an irredundant intersection of powers of
maximal ideals. These examples have nonzero Jacobson radical. By contrast the order
holomorphy rings we consider in Corollary 3.5 of the next section have trivial Jacobson
radical, and satisfy Theorem 2.6(2). Thus the rings in the corollary provide a new class
of examples of non-Dedekind domains for which every nonzero proper ideal can be
represented uniquely as an irredundant intersection of powers of maximal ideals.


3 Matlis domains


In this section we first characterize among QR-domains of Krull dimension 1 those
that are Matlis in terms of their maximal spectra. It is this characterization we use
later to give examples of one-dimensional domains that are not Matlis domains. Our
characterization in Lemma 3.3 is a consequence of the following theorem, due to Sang
Bum Lee; it allows us to completely avoid homological arguments in what follows.


Theorem 3.1 (Lee [9]). A domain R with quotient field Q is a Matlis domain if and
only if Q=R is the direct sum of countably generated submodules.


To prove Lemma 3.3, we need the following routine observation about QR-domains.


Lemma 3.2. Let R be a QR-domain with quotient field Q, and let 0 ¤ q 2 Q. Then
there exists r 2 R such that RŒq� D RŒ1=r�.


Proof. Since R is a Prüfer domain, the ideal R \ q�1R is finitely generated; see for
example [4, Proposition 1.2]. So since R is a QR-domain, there exists r 2 R such
that
p
rR D


p
R \ q�1R. Also since R is a Prüfer domain, every overring of R is an


intersection of localizations of R at prime ideals [3, Theorem 26.2]. Thus to prove that
RŒq� D RŒ1=r�, it is enough to check that for each prime ideal P of R, RŒq� � RP if
and only if RŒ1=r� � RP . And since


p
R \ q�1R D


p
rR, this is indeed the case, for


if P is a prime ideal of R, then RŒq� � RP if and only if R \ q�1R 6� P ; if and only
if r 62 P ; if and only if RŒ1=r� � RP .
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Lemma 3.3. Let R be a QR-domain.


(1) If R is a Matlis domain, then there exist a set A and nonzero elements r˛;i 2 R,
where ˛ 2 A and i 2 N, such that the sets Z˛ D


S1
iD1Z.r˛;i / form a disjoint


partition of Max.R/.


(2) Conversely, if R has Krull dimension 1 and there exist a set A and nonzero ele-
ments r˛;i 2 R, with ˛ 2 A and i 2 N, such that the sets Z˛ D


S1
iD1Z.r˛;i /


form a disjoint partition of Max.R/, then R is a Matlis domain


Proof. (1) Suppose thatR is a Matlis domain. Then by Theorem 3.1, there exist count-
ably generated R-submodules T˛ of Q containing R such that Q=R D


L
˛ T˛=R.


In such a decomposition, each T˛ is necessarily a ring [1, Lemma IV.4.2]. Thus by
Lemma 3.2, there exist for each ˛, elements r˛;i , i 2 N, such that T˛ D RŒ1=r˛;i W i 2
N�. We show that the sets Z˛ WD


S1
iD1Z.r˛;i / form a disjoint partition of Max.R/.


Let M be a maximal ideal of R. Then
P
˛ T˛ D Q 6� RM , so there exist ˇ and j > 0


such that RŒ1=rˇ;j � 6� RM , and hence rˇ;j 2 M . Consequently, M 2 Z.rˇ;j /, and
this shows that Max.R/ D


S
˛ Z˛ . To see that this is in fact a disjoint union, suppose


by way of contradiction that ˛; ˇ 2 A with ˛ ¤ ˇ, and there is a maximal ideal M
with M 2 Z˛ \ Zˇ . Then there exist i; j > 0 such that M 2 Z.r˛;i / \ Z.rˇ;j /,
and consequently, T˛ 6� RM and Tˇ 6� RM . However, R D T˛ \ .


P
¤˛ T /, and


so RM D T˛RM \ .
P
¤˛ T /RM . Since RM is a valuation domain, it must be then


that T˛ � RM or
P
¤˛ T � RM . The former case we have already ruled out, and


the latter is also impossible, since Tˇ �
P
¤˛ T , with Tˇ 6� RM . Therefore, we


conclude that the sets Z˛ , ˛ 2 A, form a disjoint partition of Max.R/.
(2) Conversely, suppose that R has Krull dimension 1 and there exist a set A and


nonzero elements r˛;i 2 R, ˛ 2 A, i 2 N, such that the sets Z˛ WD
S1
iD1Z.r˛;i /


form a disjoint partition of Max.R/. For each ˛, define T˛ D RŒ1=r˛;i W i 2 N�.
We show that Q=R is a direct sum of the countably generated R-modules T˛=R. If
Q ¤


P
˛ T˛ , then since R is a Prüfer domain, there exists a nonzero prime ideal P of


R such that
P
˛ T˛ � RP . But since R has Krull dimension 1, P is a maximal ideal of


R, and hence by assumption there exist ˇ 2 A and j > 0 such that rˇ;j 2 P . But then
Tˇ 6� RP , a contradiction that forces us to conclude Q D


P
˛ T˛ . Next, fix ˇ 2 A.


We claim that R D Tˇ \ .
P
˛¤ˇ T˛/. To this end, it suffices to show that for each


maximal ideal M of R, RM D TˇRM \ .
P
˛¤ˇ T˛/RM . Let M be a maximal ideal


of R, and suppose by way of contradiction that RM ¤ TˇRM \ .
P
˛¤ˇ T˛/RM . Then


necessarily, Tˇ 6� RM and
P
˛¤ˇ T˛ 6� RM . Hence there exist ˛ ¤ ˇ and i; j > 0


such that RŒ1=rˇ;i � 6� RM and RŒ1=r˛;j � 6� RM . But then M 2 Z.rˇ;i / \Z.r˛;j / �
Zˇ \Z˛ , which is impossible since the latter intersection is empty. Therefore, for each
ˇ 2 A, R D Tˇ \ .


P
˛¤ˇ T˛/, and we conclude that Q=R D


L
˛ T˛=R. Hence by


Theorem 3.1, R is a Matlis domain.


We consider now the special case D D KŒX; Y �, where K is an uncountable field.
If E � K2, then we say that a Prüfer section with set of representatives † is over E
when ¹mV W V 2 †º D ¹.X � a; Y � b/D W .a; b/ 2 Eº.
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Theorem 3.4. Let K be an uncountable field, let A and B be uncountable subsets of
K, and let E be a subset of K2 containing A � B . Then no QR-section of KŒX; Y �
over E whose representatives have Krull dimension 1 is a Matlis domain.


Proof. Let D D KŒX; Y �, and suppose that R is a QR-section over E that is also a
Matlis domain. Then by Lemma 3.3, there exists an index set A and a set of elements
¹r˛;i W ˛ 2 A; i 2 Nº of R such that the sets Z˛ WD


S
i>0Z.r˛;i / form a disjoint


partition of Max.R/. We prove a series of claims to show that such a decomposition
of Max.R/ is impossible. For each ˛ 2 A; i 2 N, write r˛;i D f˛;i=g˛;i for relatively
prime elements f˛;i and g˛;i of D.


Claim 1. For each ˛, there exist at most countably many a 2 A such that Z.X �
a/ nZ˛ is finite and countably many b 2 B such that Z.Y � b/ nZ˛ is finite.


Fix ˛ 2 A. To simplify notation for the proof of Claim 1, we letZ D Z˛ , ri D r˛;i ,
fi D f˛;i and gi D g˛;i . First we verify that ¹a 2 A W Z.X � a/ nZ is finiteº � ¹a 2
A W Z.X � a/ \ Z.ri / is uncountable for some i > 0º. Suppose that a 2 A such that
Z.X � a/ nZ is finite. Now


Z.X � a/ \Z D


1[
iD1


Z.X � a/ \Z.ri /;


and sinceZ.X�a/ is uncountable, it follows from the assumption thatZ.X�a/nZ is
finite thatZ.X �a/\Z is uncountable. Therefore, sinceZ.X �a/\Z is represented
by a countable union of the sets Z.X � a/\Z.ri /, there necessarily exists i > 0 such
that Z.X � a/ \Z.ri / is uncountable.


Thus, in light of the inclusion, ¹a 2 A W Z.X � a/ n Z is finiteº � ¹a 2 A W
Z.X �a/\Z.ri / is uncountable for some i > 0º, to prove the claim that there exist at
most countably many a 2 A such that Z.X � a/ nZ is finite, we need only verify that
there are at most countably many a 2 A such thatZ.X �a/\Z.ri / is uncountable for
some i . And to show this is the case, it suffices to show for each i , there exist at most
finitely many a 2 A such that Z.X � a/ \Z.ri / is uncountable. To this end, suppose
that a 2 A and there exists i > 0 such that Z.X � a/ \ Z.ri / is uncountable. Then
since Z.ri / � Z.fi /, we have that Z.X �a; fi / D Z.X �a/\Z.fi / is uncountable,
so that X � a and fi are not relatively prime. Indeed, relative primeness would force
.X �a; fi /D to be height 2, and hence contained in only finitely many maximal ideals
of D; yet, as in the proof of Lemma 2.4(3), all but finitely many maximal ideals of
R in Z.X � a; fi / contract to a different maximal ideal of D, and hence if Z.X �
a; fi / is infinite, so is the set of maximal ideals of D containing .X � a; fi /D. This
contradiction implies that X � a and fi are not relatively prime. But then since X � a
is irreducible, it must be that fi 2 .X � a/D. Yet since D is a Noetherian domain,
fi is contained in only finitely many prime ideals of height 1, and so there are at most
finitely many possible choices for a. This proves there exist at most countably many
a 2 A such that Z.X � a/ nZ is finite, and a similar argument shows that there are at
most countably many b 2 B such that Z.Y � b/ nZ is finite.
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Claim 2. For each a 2 A, there exists a unique ˛ 2 A, which we denote by
˛.a/, such that Z.X � a/ n Z˛ is finite, and for each b 2 B , there exists a unique
ˇ D ˇ.b/ 2 A such that Z.Y � b/ nZˇ is finite.


Let a 2 A. Then X � a 2 .X � a;X � b/D for all b 2 B , so that since B is
infinite, we have by Lemma 2.5 that R � D.X�a/. Thus PX�a WD .X �a/D.X�a/\R
is a prime ideal of R. By Theorem 2.6(2), PX�a 2 Max.R/, so there exist ˛ and j
such that f˛;j D g˛;j r˛;j 2 PX�a. Hence f˛;j 2 PX�a \ D D .X � a/D, and so
Z.X �a/ � Z.f˛;j /. By Lemma 2.4(4), Z.f˛;j /nZ.r˛;j / is finite, soZ.X �a/nZ˛
is finite. In fact, the choice of ˛ is unique, since otherwise there exists ˛0 ¤ ˛ such
that Z.X � a/ n Z˛0 is finite. But if this were the case, then since Z˛ and Z˛0 are
disjoint, we would have Z.X � a/ � Zc˛ [ Z


c
˛0 (where . /c denotes the complement


in Max.R/), so that


Z.X � a/ D .Z.X � a/ nZ˛/ [ .Z.X � a/ nZ˛0/;


a situation which forces Z.X � a/ to be finite, a contradiction. Therefore, for each
a 2 A, there exists a unique ˛ D ˛.a/ such that Z.X � a/=Z˛ is finite. A similar
argument shows that for each b 2 B , there exists a unique ˇ D ˇ.b/ 2 A such that
Z.Y � b/=Zˇ is finite. This proves Claim 2.


Claim 3. Let S D ¹˛.a/ W a 2 Aº and T D ¹ˇ.b/ W b 2 Bº: Then there exist
uncountable sets S1 � S and T1 � T such that S1 \ T1 is empty.


By Claim 1, given ˛ 2 A, there are at most countably many a 2 A such that
Z.X � a/ nZ˛ is finite, and hence for any a 2 A, there exist at most countably many
a0 2 A such that ˛.a/ D ˛.a0/. Therefore, since A is uncountable, it follows that S is
uncountable. Similarly, sinceB is uncountable, T is uncountable. Now we may choose
two uncountable sets S1 � S and T1 � T such that S1 \ S2 is empty. For suppose that
S \ T is countable; then necessarily since S and T are uncountable, S n .S \ T / and
T n .S \T / are uncountable. In this case, set S1 D S n .S \T / and T1 D T n .S \T /,
and observe that S1 and T1 are disjoint. Otherwise, if S \ T is uncountable, then it
is a standard fact of set theory that we may write S \ T as a disjoint union of two
uncountable sets, S1 and T1 [7, Theorem 13, p. 41]. This proves Claim 3.


Claim 4. For each a 2 A and b 2 B , let M.a;b/ D .X � a; Y � b/D. Then there
exist uncountable sets A1 � A and B1 � B such that for all a 2 A1 and b 2 B1, the
“lines” `a WD ¹.a; b/ W b 2 B1 and M.a;b/ 2 Z˛.a/º and `b WD ¹.a; b/ W a 2 A1 and
M.a;b/ 2 Zˇ.b/º have empty intersection.


For each  2 S1, we may choose a 2 A such that  D ˛.a /, and hence all
but finitely many elements of Z.X � a / are in Z . Similarly, for each ı 2 T1, there
exists bı 2 B such that all but finitely many elements of Z.Y � bı/ are in Zı . Let
A1 D ¹a W  2 S1º and B1 D ¹bı W ı 2 T1º. Then A1 has the same cardinality as S1,
since for any ;  0 2 S1, a D a 0 implies  D ˛.a / D ˛.a 0/ D  0. Similarly, B1
has the same cardinality as T1.


We claim that for every a 2 A1 and b 2 B1, `a \ `b is empty. Indeed, the only
element possibly in `a \ `b is .a; b/. But if .a; b/ 2 `a \ `b , then M.a;b/ 2 Z˛.a/ \
Zˇ.b/: However, ˛.a/ and ˇ.b/ are distinct (they are in the disjoint sets S1 and T1,
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respectively), so Z˛.a/ and Zˇ.b/ are disjoint. Hence `a \ `b is empty, and Claim 4
is proved.


Claim 5. R is not a Matlis domain.
We define a matrix Œta;b�a2A1;b2B1 by ta;b D 1 if .a; b/ 62 `a and ta;b D 0 if


.a; b/ 2 `a. Then for a 2 A1 and b 2 B1, we have ta;b D 1 if and only if .a; b/ 62 `a;
if and only if M.a;b/ 2 Z.X � a/ nZ˛.a/: But for a 2 A1, the set Z.X � a/ nZ˛.a/ is
finite, so there are at most finitely many b 2 B1 such that M.a;b/ 62 Z˛.a/. Therefore,
each row of the matrix Œta;b� has at most finitely many 1’s.


We claim similarly that each column of the matrix Œta;b� has at most finitely many
0’s. Indeed, let b 2 B1. Then for each a 2 A1, ta;b D 0 if and only if .a; b/ 2 `a.
Thus since by Claim 4, `a \ `b is empty, if ta;b D 0, then .a; b/ 62 `b , and hence
M.a;b/ 62 Zˇ.b/. By Claim 2, Z.Y � b/ n Zˇ.b/ is finite, so there are at most finitely
many a 2 A1 such that M.a;b/ 62 Zˇ.b/. Therefore, for each b 2 B1, there are most
finitely a 2 A1 such that ta;b D 0, and this proves that each column of the matrix Œta;b�
has at most finitely many 0’s.


Now since each row of the matrix Œta;b� has finitely many 1’s, and since A1 is
uncountable, it follows that there exists n � 0 such that infinitely many rows contain
exactly n occurrences of 1. Moreover, n > 0, since otherwise there are infinitely many
rows that consist entirely of 0’s, which contradicts the fact that each column has at
most finitely many 0’s. In light of this, there exists a sequence of distinct elements
¹aiºi2N of A1 such that for each i , the i th row Œtai ;b�b2B1 has exactly n occurrences
of 1 in it. Similarly, there exists m � 0 such that infinitely many columns of Œta;b�
contain exactly m occurrences of 0. Note also that m > 0, since otherwise there are
infinitely many columns consisting of all 1’s, which would force the existence of rows
having infinitely many 1’s, contrary to the fact that each row has finitely many 1’s.
Thus there exists a sequence of distinct elements ¹bj ºj2N of B1 such that for each j ,
the j th column Œta;bj


�a2A1 has exactly m occurrences of 0 in it.
Now we form a (finite) matrix F D Œtai ;bj


�, where i D 1; 2; : : : ; 2m and j D
1; 2; : : : ; 2n C 1. Let k denote the number of occurrences of 1 in the matrix F . We
will calculate k first by counting the number of 1’s in the rows, then recalculate it by
counting the number of 1’s in the columns, and we will see that these two calculations
cannot be reconciled. Now each row of F has at most n occurrences of 1, so, since
there are 2m rows of F , the matrix F contains at most 2mn occurrences of 1; i.e.,
k � 2mn. Next we count the number of 1’s by using columns rather than rows. Each
column has at most m occurrences of 0. In fact, since each entry of F is either 1 or 0,
each column of F has at least 2m �m D m occurrences of 1. Since there are 2nC 1
columns of F , this means that the matrix F contains at leastm.2nC 1/ occurrences of
1. Thus m.2nC 1/ � k. But this shows that m.2nC 1/ � k � 2mn, a contradiction
to m ¤ 0. This proves that R is not a Matlis domain.


It is not hard to use Theorem 3.4 to create examples of one-dimensional domains
that are not Matlis domains. For example, one could choose a field K that has cardi-
nality greater than the continuum, choose subsets A and B of K that have cardinality
that of the continuum, and then choose for each point .a; b/ 2 A � B , a valuation
overring of D D KŒX; Y � of Krull dimension 1 that is centered on .X � a; Y � b/D.
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By Proposition 2.1(3), the intersectionR of all these valuation rings is a Bézout section
over A � B , and by Theorem 2.6, R has Krull dimension 1. Yet by Theorem 3.4, R
is not a Matlis domain. Moreover, by choosing each representative of R to be a DVR,
one obtains that R is an almost Dedekind domain (Theorem 2.6). In general, there are
many ways to choose these one-dimensional valuation overrings; see for example [8]
or [16].


However, to illustrate the theorem in more concrete terms, we give a direct construc-
tion of an almost Dedekind domain that is not a Matlis domain. We first recall the no-
tion of an order valuation: LetD be a Noetherian domain, and let m be a maximal ideal
ofD such thatDm is a regular local ring. Define a mapping ordm W Dm ! Z[¹1º by
ordm.0/ D1 and ordm.f / D sup¹k W f 2 mkº for all f 2 Dm. SinceDm is a regu-
lar local ring, the mapping ordm extends to a rank one discrete valuation on the quotient
field of D, and this valuation (the order valuation with respect to m) has residue field
purely transcendental over the residue field of Dm of transcendence degree 1 less than
the Krull dimension of Dm [6, Theorem 6.7.9].


Now consider the setting of Theorem 3.4, so that K is an uncountable field and
D D KŒX; Y �. Suppose also that K is not algebraically closed. If E is a subset of K2,
then we say the order holomorphy ring with respect to E is the ring R D


T
p2E Vp ,


where for each p D .a; b/ 2 E, Vp is the order valuation ring of D.X�a;Y�b/. It is
clear that each member of † WD ¹Vp W p 2 Eº lies over a different maximal ideal
of D. Therefore, by Proposition 2.1(2), since the residue field of each Vp is purely
transcendental of transcendence degree 1 over the non-algebraically closed fieldK, we
have thatR is a QR-section ofD. Moreover, by Theorem 2.6, R is an almost Dedekind
domain. Making sure that E is large enough, we obtain by Theorem 3.4 that R is not a
Matlis domain:


Corollary 3.5. Let K be an uncountable non-algebraically closed field, let A and B
be uncountable subsets of K, and let E be a subset of K2 containing A � B . Then the
order holomorphy ring R of KŒX; Y � with respect to E is an almost Dedekind domain
that is not a Matlis domain.


Remark 3.6. It is not enough in Theorem 3.4 or Corollary 3.5 to assume simply that E
is uncountable. For example, let D D RŒX; Y �, let I be an infinite compact subset of
R, and let E D ¹.t; et / W t 2 I º (here ex is the usual exponential function). Then the
uncountable set of maximal ideals ¹.X � t; Y � et / W t 2 I º has the property that each
nonzero element of D is contained in at most finitely many of these maximal ideals
[13, Proposition 5.6]. Thus if we let R be the order holomorphy ring ofD with respect
to E, we have that R is an almost Dedekind domain for which every nonzero ideal
is contained in at most finitely many maximal ideals, and therefore R is a Dedekind,
hence Matlis, domain.


Acknowledgments. I thank Luigi Salce for suggesting to me the question of whether
every one-dimensional domain is a Matlis domain, and I thank the referee for helpful
comments that improved the paper.
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Transfinite self-idealization and commutative rings of
triangular matrices


Luigi Salce


Abstract. The self-idealization of a commutative ring is iterated countably many times, producing
an inverse-direct system of rings. We investigate the rings which are the inverse limit and the direct
limit of this system.
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Introduction


There are many different ways to produce new commutative rings by means of finite
or infinite matrices, starting with a commutative ring R with 1. For instance, looking
at finite matrices, one can consider 2 � 2 matrices of the form 


r �s


s r


!


.r; s 2 R/, that form a commutative ring containing the subring of the scalar matrices,
which is isomorphic to R. This is the way the complex numbers are viewed as 2 � 2
matrices with real entries. Another example is furnished by circulant n � n matrices
with entries in R, which form a commutative R-algebra isomorphic to RŒX�=.Xn� 1/
(see [8, p. 70, Ex. 10]).


Passing to infinite matrices, one can consider ! � ! upper triangular matrices with
entries in R, with equal elements along the diagonals parallel to the principal diagonal
(from now on shortly called diagonals). These are a special kind of Toeplitz matrices,
and form a commutative R-algebra isomorphic to RŒŒX��, the ring of power series over
R. The subring of the matrices with almost all zero diagonals is isomorphic to the ring
RŒX� of polynomials over R. The finite n � n sections of these matrices form a ring
isomorphic to RŒX�=.Xn/.


Another well-known construction introduced by Nagata [15] in 1956 (see also [13])
is the idealization, which is a particular case of a more general construction, described
by Shores in [16]. This construction, starting with the commutative ring R and an
R-algebra B (neither commutative in general, nor with 1), produces a new R-algebra
S , containing R as subring and B as two-sided ideal. Following Shores (but inverting
the order), we denote this algebra by R ı B . When the algebra B is commutative, the
ring R ıB is also commutative; when B has the trivial multiplication, R ıB coincides
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with the Nagata idealization of B (called trivial extension in [10]), usually denoted by
R .C/ B . In case B is an ideal of the total ring of fractions of R, R ı B is called the
amalgamated duplication of R along B by D’Anna and Fontana, and is investigated in
[5], [7] and [6]. It is worthwhile to remark that the R-algebra S D R ı B constructed
by Shores coincides, in the terminology used by Corner [4], with the split extension of
R by its ideal B; this means that there are a ring embedding � W R ! S and a ring
projection � W S ! R such that � � � D 1R and B D Ker� .


Shores considered in [16] a transfinite process of idealization, starting with a field
F . While at the non-limit steps the process is just a self-idealization of the ring (i.e.,
idealization of the ring itself), the construction at limit steps is a bit artificial, since
its goal is to produce a local perfect ring, which is not obtainable by a “canonical”
construction.


The main goal of this note is to investigate the two rings which are obtained, starting
from an arbitrary commutative ring R, by changing the !-th step in Shores’ construc-
tion, using the “canonical” processes of the inverse limit and of the direct limit, taking
as ring homomorphisms the canonical projections of the self-idealization in the first
case, and the canonical ring embeddings of the self-idealization in the latter case. Ac-
tually, these maps give rise to an inverse-direct system as defined by Eklof–Mekler in
[9, Chapter XI], but of rings and not only of Abelian groups.


The ring obtained via the inverse limit is isomorphic to a ring denoted by OT!.R/,
and the ring obtained via the direct limit is isomorphic to a ring denoted by T!.R/. The
letter T reminds that we are dealing with upper triangular matrices. In fact, we will
see in Section 2 that OT!.R/ consists of the ! � ! upper triangular matrices identified
by their first row and by a certain “diagonal rule”, which describes how to insert in the
k-th upper diagonal (the main diagonal has index 1) either 0 or a fixed element rk 2 R
(depending on the diagonal). The ring OT!.R/ contains as subring the ring T!.R/, that
consists of the matrices in OT!.R/ with almost all the diagonals zero. As expectable,
the two rings are never Noetherian. We will see that OT!.R/ is the completion of T!.R/
with respect to a suitable topology.


Notice that the self-idealization of a ring R is isomorphic to the ring RŒX�=.X2/,
hence the ring OT!.R/ can be viewed also as the inverse limit of the factor rings
RŒX1; : : : ; Xn�=.X


2
1 ; : : : ; X


2
n/ with respect to the canonical projections; similarly,


T!.R/ is isomorphic to the ring RŒXn j n 2 !�=.X2
n j n 2 !/. However we will


prefer the matricial setting and notation, instead of those of polynomials.
We will show in Section 3 that OT!.R/ is the idealization of its ideal of the so called


even matrices, viewed as ideal of its subring of the so called odd matrices (which
is isomorphic to the whole ring OT!.R/). Odd (respectively, even) matrices are those
matrices of OT!.R/ such that the entries of the first row with even (respectively, odd)
index are zero. From this decomposition of OT!.R/ we obtain a strictly descending
chain of subrings OT!.R/ > O1 > O2 > O3 > � � � , and a strictly ascending chain of
ideals 0 < E1 < E2 < E3 < � � � , such that, for each integer n > 1, OT!.R/ D On ı En,
the algebra obtained via the Shores construction.
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Section 4 is devoted to determine the structure of the groups of the units of the two
rings T!.R/ and OT!.R/. We will show that they are isomorphic, as additive Abelian
groups, to the direct sum of the group of the units of R (written additively) and of a
direct sum (respectively, a direct product) of countably many copies of the additive
group of the ring R itself.


It is worthwhile to remark that a slight modification of the transfinite self-ideali-
zation given in Section 2, extended to the first uncountable ordinal, is performed in
[11] to construct a commutative ring admitting modules whose behaviour reminds that
of uncountably generated uniserial modules over valuation rings, and gives rise to non-
isomorphic clones, as the non-standard uniserial modules (see [12, Chapter X]).


1 Self-idealization and Shores’ constructions


We summarize the basic constructions quoted in the Introduction. Given a commutative
ringR and a leftR-algebraB , we can define the newR-algebraRıB , whoseR-module
structure is R˚ B , endowed by the multiplication:


.r; b/ � .r 0; b0/ D .rr 0; rb0 C r 0b C bb0/:


Some properties of this R-algebra are mentioned in [16]. As recalled in the Introduc-
tion, when B is an R-submodule of the total ring of fractions of R, R ıB is called the
amalgamated duplication of R along B (see [7] and papers quoted there).


If B is an R-module, we can endow B by the trivial multiplication. In this case the
multiplication in R ı B is given by


.r; b/ � .r 0; b0/ D .rr 0; rb0 C r 0b/


so that we can identify the pair .r; b/ with the 2x2 matrix 
r b


0 r


!
and the multiplication in R ı B with the usual multiplication of matrices. The ring
R ı B is denoted in this case by R .C/ B and is called the idealization of B . This
construction, started by Nagata in [15], is described in [13] and has been investigated
recently in [2], [3] and [1].


We are interested in the R-algebra R .C/ R, called the self-idealization of R.
The following facts are well known (see [13], [16] and [3]).


(1) There is a canonical ring embedding � W R ! R .C/ R mapping r to .r; 0/; in
this way we can identify R and its action on R .C/ R with its image in R .C/ R
and its action as subring.


(2) The subset .0/ ˚ R is an ideal of the ring R .C/ R, and there is a canonical
surjective ring homomorphism � W R .C/ R ! R, mapping .r; s/ to r , with
kernel .0/˚R.
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(3) The two maps � and � defined above satisfy � �� D 1R, that is, R .C/R is a split
extension of R by itself.


(4) If I and J are ideals of R such that I � J , then I ˚ J is an ideal of R .C/ R
and .R .C/ R/=.I ˚ J / Š .R=I / .C/ .R=J /. Ideals of R .C/ R of this form are
called homogeneous; if R is a domain,


every ideal of R .C/ R is homogeneous if and only if R is a field.


(5) Spec.R/ corresponds bijectively to Spec.R .C/ R/, since every prime ideal of
R .C/ R is homogeneous of the form P ˚R for some prime ideal P of R; hence
the nilradical of R .C/ R coincides with Nil.R/˚R.


(6) If R is local with maximal ideal P , then R .C/ R is local with maximal ideal
P ˚ R and socle .R .C/ R/ŒP ˚ R� D .0/ ˚ RŒP �; furthermore, if n � 1,
.P ˚R/n D P n ˚ P n�1 and the n-th socle of R .C/ R is RŒP n�1�˚RŒP n�.


Shores proves [16, Theorem 7.5] that, given any non-limit ordinal ˛, there exists a
commutative local semiartinian ring R˛ whose Loewy length is ˛. His construction is
by transfinite induction, starting with a field F . We repeat part of this construction, but
starting with an arbitrary commutative ring R.


The finite steps are iterated self-idealizations; let R1 D R and, for each n > 1, set


RnC1 D Rn .C/ Rn:


Each Rn is a commutative ring and its elements can be viewed as 2n�1 � 2n�1 upper
triangular matrices with entries in R; for n > 1 they are in block form: 


A B


0 A


!


where A;B 2 Rn�1 are 2n�2 � 2n�2 matrices. Rn embeds into RnC1 by means of the
canonical embedding �n W Rn ! RnC1 defined by:


�n.A/ D


 
A 0
0 A


!
.A 2 Rn/:


We have also the canonical ring projections �n W RnC1 ! Rn defined by:


�n


 
A B


0 A


!
D A .A;B 2 Rn/:


For every n � 1, the ideal Jn of Rn consisting of the matrices with entries 0 on the
main diagonal satisfies J nn D 0, as is easily checked by induction on n. The maximal
ideals of Rn are the ideals of the form P ˚ Jn, where P is a maximal ideal of R.
Obviously, Jn is a prime (respectively, maximal) ideal if and only if R is a domain
(respectively, field).
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The following result is quite obvious by fact (6) above.


Proposition 1.1. If R is a local perfect ring of Loewy length ˛, then the ring RnC1
obtained by iterating n times the self-idealization is a local perfect ring of Loewy length
˛ C n.


For the sake of completeness, we remind Shores’ construction at ! for R D F . In
the above notation, let J! D


L
n Jn, which is an F -vector space of dimension ! and


an F -algebra with the pointwise multiplication. LetR0! D F �J! . Its unique maximal
ideal is J 0! D 0˚ J! , and its socle is isomorphic to the direct sum of the socles of the
rings Rn (this requires some effort).


Consider now the submodule � of R0! generated by the differences xn � xm .m <
n/, where xn is a generator of the socle of Rn. Then set R! D R0!=�. It can be shown
that all the dimensions of the factors of the Loewy series of R0! and R! coincide,
except the first one, since R! has simple socle.


2 Inverse and direct limits of self-idealizations


We introduce now a set OT!.R/ of upper triangular ! � ! matrices with entries in a
fixed commutative ring R, which turns out to be a commutative subring of the ring of
all upper triangular ! � ! matrices with entries in R. The elements of the set OT!.R/
are those ! � ! triangular matrices which have the k-th diagonal containing either 0
or a fixed element rk of R depending on the diagonal itself, according to the following
rule (we emphasize that the main diagonal has index 1).


The Diagonal Rule
� The 1-st diagonal is constantly equal to r1: Œr1; r1; r1; r1; : : : �.


� The k-th diagonal (k > 1) is defined inductively on n � 0, for 2n < k � 2nC1:


Case n D 0: k D 2; the 2-nd diagonal is Œr2; 0; r2; 0; r2; 0; : : : �,


Case n > 0: assume 2n < k � 2nC1 and the h-th diagonal defined for h � 2n;


� the k-th diagonal is periodical of period 2nC1;


� the first 2n entries are equal to the first 2n entries of the (k�2n/-th diagonal, with
rk replacing rk�2n ;


� the entries from the .2n C 1/-th to the .2nC1 � 1/-th are 0.


Thus such an ! � ! upper triangular matrix is uniquely determined by its first
row Œr1; r2; r3; : : : � and by the Diagonal Rule. We represent it as T .r1; r2; r3; : : : /, or,
shortly, as T .rn/, to remind that it is an upper triangular matrix determined by the first
row. We say that the matrix T .rn/ is generated by the sequence .rn/n�1; in particular,
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if almost all the elements rn are zero, we say that T .rn/ is finitely generated. T .rn/
has the following shape (where � means 0):0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@


r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 � � �


� r1 � r3 � r5 � r7 � r9 � r11 � r13 � r15 � � �


� � r1 r2 � � r5 r6 � � r9 r10 � � r13 r14 � � �


� � � r1 � � � r5 � � � r9 � � � r13 � � �


� � � � r1 r2 r3 r4 � � � � r9 r10 r11 r12 � � �


� � � � � r1 � r3 � � � � � r9 � r11 � � �


� � � � � � r1 r2 � � � � � � r9 r10 � � �


� � � � � � � r1 � � � � � � � r9 � � �


� � � � � � � � r1 r2 r3 r4 r5 r6 r7 r8 � � �


� � � � � � � � � r1 � r3 � r5 � r7 � � �


� � � � � � � � � � r1 r2 � � r5 r6 � � �


� � � � � � � � � � � r1 � � � r5 � � �


� � � � � � � � � � � � r1 r2 r3 r4 � � �


� � � � � � � � � � � � � r1 � r3 � � �


� � � � � � � � � � � � � � r1 r2 � � �


� � � � � � � � � � � � � � � r1 � � �


:::
:::


:::
:::


:::
:::


:::
:::


:::
:::


:::
:::


:::
:::


:::
::: � � �


1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
This shape shows that the diagonal blocks of size 2n, for a fixed positive integer n,


are all equal and correspond to a matrix in RnC1, the ring obtained by iterating n times
the self-idealization described in the preceding section, starting with the ring R1 D R,
as is easily seen by induction on n. The next two results describe the structure of
OT!.R/.


Proposition 2.1. OT!.R/ is a commutative subring of the ring of the ! �! upper trian-
gular matrices with entries in R.


Proof. OT!.R/ is obviously closed under pointwise addition and it contains the unit
matrix I D T .1; 0; 0; 0; : : : /. Let T .rn/ and T .sn/ be two matrices in OT!.R/. We
must prove that the upper triangular matrix T .rn/ � T .sn/ obtained by the “rows by
columns” product still satisfies the Diagonal Rule. Fix an index k � 1 and look at
the entries in the k-th diagonal of T .rn/ � T .sn/. Choose n such that k � 2n. All the
2n � 2n diagonal blocks of T .rn/ � T .sn/ are the products of the two corresponding
2n � 2n diagonal blocks of T .rn/ and T .sn/, so they are all the same. The entries of
the k-th diagonal of T .rn/ � T .sn/ outside of these blocks are all 0, as one can see by
decomposing T .rn/ and T .sn/ into 2n � 2n upper triangular blocks. This shows that
the k-th diagonal is periodical of period 2n and that the other two conditions of the
Diagonal Rule are satisfied. Since the product of the diagonal blocks commute, the
product in OT!.R/ is commutative.
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The iteration of the self-idealization exposed in Section 1, starting from the ring
R, produces the inverse system of commutative rings ¹Rn j �n W RnC1 ! Rnº. The
inverse limit of this system is isomorphic to the ring OT!.R/.


Proposition 2.2. The ring OT!.R/ is isomorphic to the inverse limit lim
 �


Rn, where the
connecting maps are the canonical projections �n W RnC1 ! Rn.


Proof. Define for each n � 1 the epimorphism �n W OT!.R/ ! Rn by sending the
matrix T .rk/ to its first 2n�1 � 2n�1 diagonal block. Note that Ker.�n/ D ¹T .rk/ j
rk D 0 for all k � 2n�1º. Then we have the commutative diagrams


OT!.R/ OT!.R/


�nC1


??y ??y�n


RnC1
�n


����! Rn


If, for a commutative ring S , we have commutative diagrams


S S


�nC1


??y ??y�n


RnC1
�n
����! Rn


then there is a ring homomorphism � W S ! OT!.R/ making all the diagrams


S S


�


??y �n


??y
OT!.R/


�n
����! Rn


commutative. The map � is defined in the following way: for s 2 S , �.s/ D T .rn/,
where, for each n � 1, Œr1; r2; : : : ; r2n � is the first row of the matrix �nC1.s/.


As an R-module, OT!.R/ is isomorphic to
Q
! R, the direct product of ! copies


of R. Let us set Kn D Ker.�n/; then OT!.R/, as an inverse limit, is complete in the
topology having the chain of ideals


K1 > K2 > K3 > K4 > � � �


as basis of neighborhoods of 0.


The ring OT!.R/ contains the subset T!.R/ consisting of the finitely generated ma-
trices, which is an R-module isomorphic to


L
! R, the direct sum of ! copies of R.


Clearly
T!.R/ D


[
n�1


Tn.R/
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where Tn.R/ is the subset of T!.R/ consisting of the matrices generated by the se-
quences .rk/k�1 such that rk D 0 for k > 2n�1. These matrices are of the form
Diag.A;A;A; : : : /, with A 2 Rn. Hence Tn.R/ is a ring, isomorphic to the ring Rn
via the map which sends Diag.A;A;A; : : : / into A. Consequently, T!.R/, as union of
a chain of subrings, is a ring. Thus we have the following


Proposition 2.3. The ring T!.R/ is isomorphic to the direct limit lim
�!


Rn, where the
connecting maps are the canonical embeddings �n W Rn ! RnC1.


Proof. It is enough to note that the commutative diagrams


T!.R/ T!.R/


�n


x?? x??�nC1


Rn
�n
����! RnC1


are obtained defining �n.A/ D Diag.A;A;A; : : : / for each A 2 Rn.


Proposition 2.4. The two rings OT!.R/ and T!.R/ are both split extensions of the rings
Rn, for every n � 1.


Proof. Let � 0n W Rn ! OT!.R/ be the composition of the map �n followed by the
inclusion map of T!.R/ into OT!.R/, and let �0n W T!.R/! Rn be the restriction of �n
to T!.R/. Then �n � � 0n D 1Rn


D �0n � �n gives the claim.


Let us set, for each n � 1, Hn D Kn \ T!.R/ D Ker.�0n/. The Hn form a
descending chain of ideals of T!.R/ and we have


T!.R/=Hn Š .Kn C T!.R//=Kn D OT!.R/=Kn


since Kn C T!.R/ D OT!.R/, as is easily seen. So T!.R/ is dense in OT!.R/ with
respect to the topology which has the Kn’s as basis of neighborhoods of 0, and OT!.R/
is the completion of T!.R/ in the topology of the ideals Hn.


3 Even and odd matrices


We continue by assuming that R is an arbitrary commutative ring. Given two matrices
T .rn/ and T .sn/ in OT!.R/, their product is a certain matrix T .tn/ 2 OT!.R/, where the
elements tn 2 R (n � 1) are sums of products risn�i , for suitable 0 � i � n.


The particular shape of the matrices in OT!.R/ ensures that the following conditions
are satisfied:


(i) t2iC1 has no summands of the form r2mC1s2n or r2ms2nC1.


(ii) t2i has no summands of the form r2ms2n or r2mC1s2nC1.


(iii) t2iC1 has no summands of the form r2ms2n.
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Conditions (i) and (ii) depend on the fact that in every column of a matrix in OT!.R/
one has alternately elements with odd and even indices; in order to check (iii), it is
enough to notice that, in the column of the matrix T .sn/ whose first element is s2iC1,
the second, fourth, sixth, . . . entries are all zero.


We introduce now a basic distinction among the matrices in OT!.R/.


Definition. A matrix T .rn/ 2 OT!.R/ is called even (respectively, odd) if r2nC1 D 0
(respectively, r2n D 0/ for all n.


We shall need in this section a special family of matrices, which will play a dis-
tinguished role for the ideal theoretic structure of OT!.R/. For all n � 1 let I.n/ D
T .0; : : : ; 0; 1; 0; : : : / be the matrix whose first row has a unique non-zero entry equal
to 1 at the n-th place. The matrices we are interested in are the matrices I.2n C 1/
for n � 0. It is easy to see that I.2n C 1/ is the ! � ! block diagonal matrix
Diag.Jn; Jn; Jn; : : : /, where Jn is the 2nC1 � 2nC1 matrix


Jn D


 
0 In


0 0


!
:


Theorem 3.1. (a) The set O of the odd matrices is a subring of OT!.R/ isomorphic to
OT!.R/;


(b) the set E of the even matrices is a principal ideal of OT!.R/, generated by the
matrix I.2/ and satisfying E2 D 0;


(c) OT!.R/ D O .C/ E , the idealization of the O-module E .


Proof. (a) The set O is obviously closed under differences; it is also closed under
products by property (ii) above. Since the unit matrix is an odd matrix, O is a subring
of OT!.R/. Consider now the map ı W OT!.R/! O defined by setting


ı.T .r1; r2; r3; r4; : : : // D T .r1; 0; r2; 0; r3; 0; r4; : : : /:


The map ı is obviously a bijection. It is additive and it sends the unit matrix I to itself;
in order to see that it is also multiplicative, it is better to look at ı�1, which sends the
odd matrix O D T .r1; 0; r3; 0; r5; 0; : : : / to the matrix ı�1.O/ D T .r1; r3; r5; r7; : : : /.
The map ı�1 sends each 2 � 2 block 


r2nC1 0
0 r2nC1


!


to the single element r2nC1 of ı�1.O/. Since the multiplication in O can be made on
the 2 � 2 blocks, ı�1 is a ring homomorphism.


(b) It is easy to check that I.2/ � T .r1; r2; r3; : : : / D T .0; r1; 0; r3; 0; r5; 0; : : : /,
hence I.2/ OT!.R/ D E . The square of E vanishes, since I.2/2 D 0.
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(c) It is obvious that every matrix T 2 OT!.R/ can be uniquely written as T D O C
E, withO 2 O and E 2 E; for the multiplication we have that .OCE/ � .O 0CE 0/ D
OO 0 C OE 0 C O 0E, since EE 0 D 0, which is the multiplication in the idealization
ring.


We call the maps ı the “diluting” isomorphism and ı�1 the “squeezing” isomor-
phism. Note that


ı.I.2// D I.3/; ı.I.3// D I.5/; : : : ; ı.I.2n C 1/ D I.2nC1
C 1/; : : : :


Consider now the ring embedding � W OT!.R/ ! OT!.R/ acting as the diluting iso-
morphism ı. Setting On D Im.�n/, we have an infinite descending chain of subrings
of OT!.R/


OT!.R/ > O D O1 > O2 > O3 > � � �


such that On Š OT!.R/ for all n, and
T
n On D T1.R/ Š R.


It is immediate to check that, for each n � 1, the matrix T .ri / belongs to On if and
only if the only possibly non-zero elements ri are those indexed by 2n �kC1 for k � 0.


On the other hand, the ideal E of the even matrices coincides with Ker. /, where


 W OT!.R/
�
�! O


ı�1


��! OT!.R/


is the surjective ring homomorphism obtained by composing the canonical projection
� W OT!.R/ ! O defined by �.T .rn// D T .r1; 0; r3; 0; r5; : : : /, with the squeezing
isomorphism ı�1 W O ! OT!.R/; in fact, we have


 .T .r1; r2; r3; r4; r5; : : : // D T .r1; r3; r5; : : : /;


thus  .T .ri // D 0 if and only if T .ri / 2 E .
For every n � 1 set En D Ker. n/. Since for each n � 1 one has


 n.T .ri // D T .r1; r2nC1; r2n2C1; r2n3C1; r2n4C1; : : : /


we derive that
En D ¹T .ri / j r2nkC1 D 0 for all kº:


Therefore we have the infinite ascending chain of ideals of OT!.R/:


0 < E D E1 < E2 < E3 < � � �


which shows that OT!.R/ is not a Noetherian ring. For each n we have a ring isomor-
phism OT!.R/=En Š OT!.R/.


Also the chain of ideals of T!.R/:


0 < E1 \ T!.R/ < E2 \ T!.R/ < E3 \ T!.R/ < � � �


is strictly increasing, hence also the ring T!.R/ is not Noetherian. Since the restric-
tion of  to T!.R/ induces a surjective ring homomorphism onto T!.R/, we have
analogously that T!.R/=.En \ T!.R// Š T!.R/ for all n.


The following technical result will be needed.
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Lemma 3.2. (a) A matrix T .ri / belongs to the principal ideal I.2n C 1/ � OT!.R/ for
n � 0 if and only if ri D 0 for all indices i satisfying.


2n2k < i � 2n.2k C 1/ .k D 0; 1; 2; : : : /:


(b) If r < s, then I.2r C 1/ � I.2s C 1/ D I.2r C 2s C 1/.


Proof. (a) It is enough to observe that, given a matrix T .ri / 2 OT!.R/, I.2nC1/ �T .ri /
coincides with the matrix T .si / whose first row coincides with the .2n C 1/-th row of
T .ri /; this row starts with 2n zeros, then has 2n entries r2nC1; r2nC2; : : : ; r2nC1 , then
there are again 2n zeros, and then the 2n entries r2nC1C1; r2nC1C2; : : : ; r2nC2 , and so on.


(b) Recall that I.2r C 1/ � I.2s C 1/ coincides with the matrix T .ri /, where Œri � is
the .2r C 1/-th row of I.2s C 1/. An inspection to this row completes the proof.


The following result collects some properties of the subrings On and of the ide-
als En.


Theorem 3.3. (a) For every n � 1, OT!.R/ D On ı En;


(b) the ideal En is generated by the matrices I.2/; I.3/; : : : ; I.2n�1 C 1/;


(c) for every n � 1, En is a nilpotent ideal of index nC 1.


Proof. (a) The above discussion shows that every matrix T 2 OT!.R/ can be written in
a unique way as T D On C En, with On 2 On and En 2 En; note that E2


n ¤ 0 for
n > 1. For the multiplication we have that .OnCEn/ �.O 0nCE


0
n/ D OnO


0
nCOnE


0
nC


O 0nEn CEnE
0
n, which is the multiplication in the Shores’ construction.


(b) Recall that En D ¹T .ri / j r2nkC1 D 0 for all k � 0º. The only indices such
that the corresponding entries of the first row in each of I.2/; I.3/; : : : ; I.2n�1 C 1/
are zero are exactly those of the form 2nk C 1 for all k � 0, by Lemma 3.2 (a); hence
the claim follows.


(c) The elements of EnC1
n are linear combination with coefficients in OT!.R/ of prod-


ucts of nC1 matrices taken in the set I.2/; I.3/; : : : ; I.2n�1C1/; hence in each of these
products it appears one of these matrices with exponent 2, hence the product vanishes.
Moreover, Lemma 3.2 (b) shows that the product I.2/ �I.3/ � : : : �I.2n�1 C 1/ ¤ 0.


By Theorem 3.1 (c), OT!.R/ D O1 .C/ E1, and, by Theorem 3.1 (a), we have the
ring isomorphism ı W OT!.R/! O1; we deduce from Theorem 3.1 (b) that


O1 D ı.O1/ .C/ ı.E1/ D O2 .C/ ı.I.2//O1 D O2 .C/ I.3/O1:


From these facts we derive that


OT!.R/ D ŒO2 .C/ I.3/O1� .C/ I.2/O0


where we have set OT!.R/ D O0.
Iterating this process, and recalling that ı.I.2n C 1// D I.2nC1 C 1/, we have the


following
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Corollary 3.4. For every n � 1, OT!.R/ decomposes in the following way:


ŒŒ� � � ŒOn .C/I.2n�1
C1/On�1� .C/I.2n�2


C1/On�2� .C/ : : : � .C/I.3/O1� .C/I.2/O0:


The next result gives information on the ideal N which is the union of the ideals En.


Corollary 3.5. (a) The ideal N D
S
n�1 En of OT!.R/ is contained in the nilradical


of OT!.R/ and it is not nilpotent;


(b) N D
L
n�1 I2n�1C1On�1.


Proof. (a) From Theorem 3.3 (c) it follows that every element of N is nilpotent.
Lemma 3.2 (b) shows that, fixed 1 � r1 < r2 < � � � < rk , the product I.2r1 C 1/ �
: : : � I.2rk C 1/ is not zero, hence N is not nilpotent.


(b) From Corollary 3.4 we derive that, for every n � 1, we have the direct decom-
position of R-modules:


En D I.2n�1
C 1/On�1 ˚ I.2n�2


C 1/On�2 ˚ � � � ˚ I.2/O0


from which the conclusion immediately follows.


4 Units


Our goal in this section is to describe the groups of the units of the two rings T!.R/
and OT!.R/. Furthermore, in view of Theorem 3.1 (c) and Theorem 3.3 (a), we are
interested in describing also the groups of the units of rings which are idealizations of
a commutative ring R by an R-module B , and, more generally, of rings of the form
R ı B , where B is an R-algebra (possibly without 1).


We start with the following very simple result.


Lemma 4.1. Let S D R .C/ B be the idealization of the commutative ring R by the
R-module B , and look at R as a subring of S via the canonical embedding. Then


(a) for the group of the units of S we have that U.S/ D U.R/ � V , where V is the
subgroup of U.S/: V D ¹Œ1 b� j b 2 Bº;


(b) the multiplicative group V is isomorphic to the additive group of B .


Proof. (a) The vector Œr b� 2 S (r 2 R; b 2 B) is a unit of S if and only if r 2 U.R/
and r�1b D �rb0 for some b0 2 B; hence b is an arbitrary element of B . In this case,
Œr b� can be written in a unique way as a product


Œr 0� � Œ1 r�1b�


hence U.S/ is the direct product of its subgroups U.R/ and V .
(b) It is enough to note that Œ1 b� � Œ1 b0� D Œ1 b C b0�.
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From Lemma 4.1 we can easily derive the structure of the group of the units of the
ring T!.R/.


Proposition 4.2. Given a commutative ring R with 1, the group of the units of the ring
T!.R/ is isomorphic to the additive Abelian group U ˚F , where U is the group of the
units of R written additively, and F is the additive group of the free R-module


L
@0
R.


Proof. As in Section 1, denote by R1 the ring R itself, and by Rn the ring which
is the .n � 1/-th step in the process of self-idealization, starting with R1. Applying
repeatedly Lemma 4.1, we see that, for n > 1, U.Rn/ D U.R/ � V1 � � � � � Vn, where
Vn is a multiplicative subgroup of U.Rn/ isomorphic to the additive group of Rn�1.
But Rn�1 is isomorphic as R-module to Rn�1, and T!.R/ is the union of the subrings
Tn.R/ Š Rn, hence U.T!.R// is isomorphic to the direct limit, with respect to the
canonical embeddings, of the Abelian groups U.Rn/ D U.R/ � V1 � � � � � Vn. This
direct limit is clearly isomorphic to U ˚ F , where F is the additive group of the free
R-module


L
@0
R.


The structure of the group of the units of the ring OT!.R/ is similar to that of
U.T!.R//, but putting the direct product in place of the direct sum.


Proposition 4.3. Given a commutative ring R with 1, the group of the units of the ring
OT!.R/ is isomorphic to the additive Abelian group U ˚ F 0, where U is the group of


the units of R written additively, and F 0 is the additive group of the R-module
Q
@0
R.


Proof. We have the isomorphisms


U. OT!.R// Š U.lim
 �


Rn/ Š lim
 �


U.Rn/:


In the proof of Proposition 4.2 we have seen thatU.Rn/ D U.R/�V1�� � ��Vn, and the
maps in the inverse system considered above are the canonical projections, therefore
the inverse limit is isomorphic to the additive Abelian group U ˚ F 0, where F 0 is the
additive group of the direct product


Q
@0
R.


From Lemma 4.1 and Theorem 3.1, we derive another characterization of the group
of the units of OT!.R/, which, however, does not say anything new on its structure,
since obviously


Q
@0
R is isomorphic to its square.


Corollary 4.4. U. OT!.R// Š U. OT!.R//�W , whereW is a multiplicative subgroup of
U. OT!.R// isomorphic to the additive group of


Q
@0
R.


Proof. Apply Lemma 4.1 to the idealization OT!.R/DO.C/E given in Theorem 3.1(c),
and remind that the ring O is isomorphic to OT!.R/. Moreover, the R-module E is
isomorphic to


Q
@0
R, so the claim follows.
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Looking at Theorem 3.3 (a), we are now interested in describing the group U.S/,
where S D R ı B , for R an arbitrary commutative ring and B an R-algebra.


We need to introduce a new notion. Given a commutative algebra (possibly with-
out 1) B , consider the new binary operation ŒC� defined on B in the following way:


b ŒC� b0 D b C b0 C bb0:


It is easy to check that this operation is associative and commutative, and that the
neutral element of .B; ŒC�/ is 0, the neutral element with respect to the original sum
C. The operation ŒC� is similar to the circle operation defined in [14, p. 55] for a ring
(not necessarily unitary), where the product bb0 is replaced by its opposite �bb0.


An element b 2 B has an opposite with respect to ŒC� exactly if there exists a
b0 2 B such that b C b0 C bb0 D 0. If such a b0 does exist, it is unique, but in general
no such b0 exists, as one can see by considering easy examples. As a matter of fact, if
B has a unit 1, then �1 has never an opposite with respect to ŒC�. Note that, if B is a
zero-ring, then the new sum ŒC� coincides with the original sumC.


Let us denote by B ŒC� the subset of the elements of B which have an opposite with
respect to ŒC�. Obviously .B ŒC�; ŒC�/ is an Abelian group.


We give some examples of groups B ŒC�, for some simple R-algebras B . We leave
to the reader the easy check.


Examples. (1) If R D Z D B , then B ŒC� D ¹0;�2º.


(2) If R D Z and B D pZ, where p is an odd prime number, then B ŒC� D ¹0º.


(3) If R D K D B is a field, then B ŒC� D K n ¹�1º.


(4) If the algebra B has a unit 1, then B ŒC� D ¹b 2 B j b 2 .1C b/Bº.


We can now prove the result we are interested in.


Proposition 4.5. Given the commutative ring S D R ı B , where R is a commutative
ring andB a commutativeR-algebra, and looking atR as a subring of S , thenU.S/ D
U.R/ �W , where W D ¹Œ1 b� j b 2 B ŒC�º is a multiplicative group isomorphic to the
additive group B ŒC�.


Proof. The vector Œr b� (r 2 R; b 2 B) is a unit of S if and only if r 2 U.R/ and
there exists an element b0 2 B such that r�1b C rb0 C bb0 D 0, or, equivalently,
r�1b C rb0 C .r�1b/.rb0/ D 0. In this case, Œr b� can be written in a unique way as a
product


Œr 0� � Œ1 r�1b�;


where, by what we have seen above, r�1b 2 B ŒC�. Hence U.S/ is the direct product
of its subgroups U.R/ and W . To conclude, note that W is isomorphic to the additive
group of B ŒC�, via the map which sends Œ1 b� to b; in fact we have


Œ1 b� � Œ1 b0� D Œ1 b C b0 C bb0� D Œ1 b ŒC� b0�:
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As an immediate application of Proposition 4.5 and Theorem 3.3 (a) we get another
characterization of the group of the units of the ring OT!.R/.


Corollary 4.6. For every commutative ring R and n > 1 we have


U. OT!.R// D U.On/ �Wn


where Wn is a multiplicative subgroup of U. OT!.R// isomorphic to the additive group
E
ŒC�
n .
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Bass numbers and semidualizing complexes


Sean Sather-Wagstaff


Abstract. Let R be a commutative local Noetherian ring. We prove that the existence of a chain
of semidualizing R-complexes of length .d C 1/ yields a degree-d polynomial lower bound for
the Bass numbers of R. We also show how information about certain Bass numbers of R provides
restrictions on the lengths of chains of semidualizing R-complexes. To make this article somewhat
self-contained, we also include a survey of some of the basic properties of semidualizing modules,
semidualizing complexes and derived categories.


Keywords. Bass number, semidualizing complex, semidualizing module, totally reflexive.
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Introduction


Throughout this paper .R;m; k/ is a commutative local Noetherian ring.
A classical maxim from module theory states that the existence of certain types of


R-modules forces ring-theoretic conditions on R. For instance, if R has a dualizing
module, then R is Cohen–Macaulay and a homomorphic image of a Gorenstein ring.


This paper is concerned with the consequences of the existence of nontrivial semi-
dualizing R-modules and, more generally, semidualizing R-complexes. In this intro-
duction, we restrict our attention to the modules. Essentially, a semidualizing module
differs from a dualizing module in that the semidualizing module is not required to have
finite injective dimension. (See Section 1 for definitions and background information.)
The set of isomorphism classes of semidualizing R-modules has a rich structure. For
instance, it comes equipped with an ordering based on the notion of total reflexivity.


It is not clear that the existence of nontrivial semidualizing R-complexes should
have any deep implications for R. For instance, every ring has at least one semidu-
alizing R-module, namely, the free R-module of rank 1. However, Gerko [21] has
shown that, whenR is artinian, the existence of certain collections of semidualizingR-
modules implies the existence of a lower bound for the Loewy length of R; moreover,
if this lower bound is achieved, then the Poincaré series of k has a very specific form.


The first point of this paper is to show how the existence of nontrivial semidualizing
modules gives some insight into the following questions of Huneke about the Bass
numbers �iR.R/ D rankk.ExtiR.k; R//.


Question A. Let R be a local Cohen–Macaulay ring.


(a) If the sequence ¹�iR.R/º is bounded, must it be eventually 0, that is, must R be
Gorenstein?
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(b) If the sequence ¹�iR.R/º is bounded above by a polynomial in i , must R be
Gorenstein?


(c) If R is not Gorenstein, must the sequence ¹�iR.R/º grow exponentially?


Some progress on these questions has been made by Borna Lorestani, Sather-
Wagstaff and Yassemi [8], Christensen, Striuli and Veliche [14], and Jorgensen and
Leuschke [26]. However, each of these questions is still open in general. The following
result gives the connection with semidualizing modules. It is contained in Theorem 3.5
and Corollary 3.6. Note that this result does not assume that R is Cohen–Macaulay.


Theorem B. Let R be a local ring. If R has a semidualizing module that is neither
dualizing nor free, then the sequence of Bass numbers ¹�iR.R/º is bounded below by a
linear polynomial in i and hence is not eventually constant. Moreover, ifR has a chain
of semidualizing modules of length dC1, then the sequence of Bass numbers ¹�iR.R/º
is bounded below by a polynomial in i of degree d .


For readers who are familiar with semidualizing modules, the proof of this result
is relatively straightforward when R is Cohen–Macaulay. We outline the proof here.
Pass to the completion of R in order to assume that R is complete, and hence has a
dualizing module D. The Bass series IRR .t/ of R then agrees with the Poincaré series
PRD .t/ of D, up to a shift. Because of a result of Gerko [21, (3.3)] the given chain of
semidualizing modules yields a factorization PRD .t/ D P1.t/ � � �PdC1.t/ where each
Pi .t/ is a power series with positive integer coefficients. The result now follows from
straightforward numerics. The proof in the general case is essentially the same: after
passing to the completion, use semidualizing complexes and the Poincaré series of a
dualizing complex for R.


The second point of this paper is to show how information about certain Bass num-
bers of R force restrictions on the set of isomorphism classes of semidualizing R-
modules. By way of motivation, we recall one of the main open questions about this
set: must it be finite? Christensen and Sather-Wagstaff [13] have made some progress
on this question, but the general question is still open. While the current paper does
not address this question directly, we do show that this set cannot contain chains of
arbitrary length under the reflexivity ordering. This is contained in the next result
which summarizes Theorems 4.1 and 4.2. Note that the integer �gR.R/ in part (b) is
the Cohen–Macaulay type of R.


Theorem C. Let R be a local ring of depth g.


(a) If R has a chain of semidualizing modules of length d , then d 6 �
gC1
R .R/.


Thus, the ringR does not have arbitrarily long chains of semidualizing modules.


(b) Assume that R is Cohen–Macaulay. Let h denote the number of prime factors of
the integer �gR.R/, counted with multiplicity. If R has a chain of semidualizing
modules of length d , then d 6 h 6 �


g
R.R/. In particular, if �gR.R/ is prime,


then every semidualizing R-module is either free or dualizing for R.


As an introductory application of these ideas, we have the following:
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Example D. Let k be a field and set R D kŒŒX; Y ��=.X2; XY /. For each semidual-
izing R-module C , one has C Š R. Indeed, the semidualizing property implies that
ˇR0 .C /�


0
R.C / D �0


R.R/ D 1 where ˇR0 .C / is the minimal number of generators of
C . It follows that C is cyclic, so C Š R=AnnR.C / Š R. See Facts 1.4 and 1.20.


We prove more facts about the semidualizing objects for this ring in Example 4.4.
We now summarize the contents of and philosophy behind this paper. Section 1


contains the basic properties of semidualizing modules needed for the proofs of The-
orems B and C. Section 2 outlines the necessary background on semidualizing com-
plexes needed for the more general versions of Theorems B and C, which are the sub-
jects of Sections 3 and 4. Because the natural habitat for semidualizing complexes
is the derived category D.R/, we include a brief introduction to this category in Ap-
pendix A for readers who desire some background.


Sections 1 and 2 are arguably longer than necessary for the proofs of the results of
Sections 3 and 4. Moreover, Section 1 is essentially a special case of Section 2. This is
justified by the third point of this paper: We hope that, after seeing our applications to
Question A, some readers will be motivated to learn more about semidualizing objects.
To further encourage this, Section 1 is a brief survey of the theory for modules. We
hope this will be helpful for readers who are familiar with dualizing modules, but
possibly not familiar with dualizing complexes.


Section 2 is a parallel survey of the more general semidualizing complexes. It is
written for readers who are familiar with dualizing complexes and the category of chain
complexes and who have at least some knowledge about the derived category.


For readers who find their background on the derived category lacking, Appendix A
contains background material on this subject. Our hope is to impart enough information
about this category so that most readers get a feeling for the ideas behind our proofs. As
such, we stress the connections between this category and the category of R-modules.


1 Semidualizing modules


This section contains an introduction to our main players when they are modules. These
are the semidualizing modules, which were introduced independently (with different
terminology) by Foxby [17], Golod [22], Vasconcelos [30] and Wakamatsu [31]. They
generalize Grothendieck’s notion of a dualizing module [24] and encompasses duality
theories with respect to dualizing modules and with respect to the ring R.


Definition 1.1. Let C be an R-module. The homothety homomorphism associated to
C is the R-module homomorphism �RC WR ! HomR.C; C / given by �RC .r/.c/ D rc.
The R-module C is semidualizing if it satisfies the following conditions:


(1) the R-module C is finitely generated;


(2) the homothety map �RC WR! HomR.C; C / is an isomorphism; and


(3) for all i > 1, we have ExtiR.C; C / D 0.


An R-module D is dualizing if it is semidualizing and has finite injective dimension.
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The set of isomorphism classes of semidualizingR-modules is denoted S0.R/, and
the isomorphism class of a given semidualizing R-module C is denoted ŒC �.


Example 1.2. The R-module R is semidualizing, so R has a semidualizing module.


Remark 1.3. For this article, we have assumed that the ring R is local. While this
assumption is not necessary for the definitions and basic properties of semidualizing
modules, it does make the theory somewhat simpler.


Specifically, let S be a commutative Noetherian ring, not necessarily local, and let
C be an S -module. Define the homothety homomorphism �SC WS ! HomS .C; C /,
the semidualizing property, and the set S0.S/ as in 1.1. It is straightforward to show
that the semidualizing property is local, that is, that C is a semidualizing S -module
if and only if Cn is a semidualizing Sn-module for each maximal ideal n � S . For
instance, every finitely generated projective S -module of rank 1 is semidualizing. In
other words, the Picard group Pic.S/ is a subset of S0.S/. Also, the group Pic.S/
acts on S0.S/ in a natural way: for each semidualizing S -module C and each finitely
generated projective S -module L of rank 1, the S -module L ˝S C is semidualizing.
This action is trivial when S is local as the Picard group of a local ring contains only
the free module of rank 1.


While this gives the nonlocal theory more structure to investigate, one can view this
additional structure as problematic, for the following reason. Fix a semidualizing S -
module C and a finitely generated projective S -module L of rank 1. Define the terms
“totally C -reflexive” and “totally L ˝S C -reflexive” as in 1.10. It is straightforward
to show that an S -module G is totally C -reflexive if and only if it is totally L˝S C -
reflexive. In particular, when Pic.S/ is nontrivial, the reflexivity ordering on S0.S/,
defined as in 1.17, is not antisymmetric. Indeed, one has ŒC � E ŒL˝S C � E ŒC �, even
though ŒC � D ŒL˝S C � if and only if L Š S .


One can overcome the lack of antisymmetry by considering the set S0.S/ of orbits
in S0.S/ under the Picard group action. (Indeed, investigations of S0.S/ can be found
in the work of Avramov, Iyengar, and Lipman [7] and Frankild, Sather-Wagstaff and
Taylor [19].) However, we choose to avoid this level of generality in the current paper,
not only for the sake of simplicity, but also because our applications in Section 3 and 4
are explicitly for local rings.


For the record, we note that another level of complexity arises when the ring S is
of the form S1 � S2 where S1 and S2 are (nonzero) commutative Noetherian rings. In
this setting, the semidualizing S -modules are all of the form C1 ˚ C2 where each Ci
is a semidualizing Si -module. In other words, each connected component of Spec.S/
contributes a degree of freedom to the elements of S0.S/, and to S0.S/. For further
discussion, see [18, 19].


The next three facts contain fundamental properties of semidualizing modules.


Fact 1.4. Let C be a semidualizing R-module. The isomorphism R Š HomR.C; C /
implies that AnnR.C / D 0. It follows that SuppR.C / D Spec.R/ and so dim.C / D
dim.R/. Furthermore C is cyclic if and only if C Š R: for the nontrivial implication,
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if C is cyclic, then C Š R=AnnR.C / Š R. In particular, if C 6Š R, then ˇR0 .C / > 2.
Here ˇR0 .C / is the 0th Betti number of C , i.e., the minimal number of generators of C .


Furthermore, the isomorphism R Š HomR.C; C / also implies that AssR.C / D
Ass.R/. It follows that an element x 2 m is C -regular if and only if it is R-regular.
When x is R-regular, one can show that the R=xR-module C=xC is semidualizing;
see [18, (4.5)]. Hence, by induction, we have depthR.C / D depth.R/.


Fact 1.5. If R is Gorenstein, then every semidualizing R-module is isomorphic to R;
see [11, (8.6)] or Theorem 4.1. (Note that the assumption that R is local is crucial here
because of Remark 1.3.) The converse of this statement holds when R has a dualizing
module by [11, (8.6)]; the converse can fail when R does not have a dualizing module
by [12, (5.5)]. Compare this with Fact 2.6.


Fact 1.6. A result of Foxby [17, (4.1)], Reiten [28, (3)] and Sharp [29, (3.1)] says thatR
has a dualizing module if and only ifR is Cohen–Macaulay and a homomorphic image
of a Gorenstein ring. Hence, if R is complete and Cohen–Macaulay, then Cohen’s
structure theorem implies that R has a dualizing module. Compare this with Fact 2.7.


We next give the first link between semidualizing modules and Bass numbers.


Fact 1.7. Assume that R is Cohen–Macaulay of depth g. If R has a dualizing module
D, then for every integer i > 0 we have �iCgR .R/ D ˇRi .D/. Moreover, if D0 is a


dualizing module forbR, then for each i > 0 we have�iCgR .R/ D �
iCgbR .bR/ D ˇbRi .D0/;


see e.g. [4, (1.5.3),(2.6)] and [23, (V.3.4)]. Compare this with Fact 2.8.


Here is one of the main open questions in this subject. An affirmative answer for
the case when R is Cohen–Macaulay and equicharacteristic is given in [13, (1)]. Note
that it is crucial that R be local; see Remark 1.3. Also note that, while Theorem 4.2
shows that chains in S0.R/ cannot have arbitrarily large length, the methods of this
paper do not answer this question.


Question 1.8. Is the set S0.R/ finite?


The next fact documents some fundamental properties.


Fact 1.9. When C is a finitely generated R-module, it is semidualizing for R if and
only if the completion bC is semidualizing for bR. See [11, (5.6)]. The essential point of
the proof is that there are isomorphisms


ExtibR.bC ;bC/ Š bR˝R ExtiR.C; C /:


(The analogous result holds for the dualizing property by, e.g., [9, (3.3.14)].) Thus, the
assignment C 7! bC induces a well-defined function S0.R/ ,! S0.bR/; this function is
injective since, for finitely generated R-modules B and C , we have B Š C if and only
if bB Š bC . From [12, (5.5)] we know that this map can fail to be surjective. Compare
this with Fact 2.13.
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Next we summarize the aspects of duality with respect to semidualizing modules
that are relevant for our results.


Definition 1.10. Let C and G be R-modules. The biduality homomorphism associated
to C andG is the map ıCG WG ! HomR.HomR.G; C /; C / given by ıCG.x/.�/ D �.x/.


Assume that C is a semidualizing R-module. The R-module G is totally C -
reflexive when it satisfies the following conditions:


(1) The R-module G is finitely generated;


(2) The biduality map ıCG WG ! HomR.HomR.G; C /; C / is an isomorphism; and


(3) For all i > 1, we have ExtiR.G; C / D 0 D ExtiR.HomR.G; C /; C /.


Fact 1.11. Let C be a semidualizingR-module. It is straightforward to show that every
finitely generated freeR-module is totally C -reflexive. The essential point of the proof
is that there are isomorphisms


ExtiR.R
n; C / Š


´
0 if i ¤ 0,
C n if i D 0,


ExtiR.HomR.R
n; C /; C / Š ExtiR.C


n; C / Š ExtiR.C; C /
n
Š


´
0 if i ¤ 0,
Rn if i D 0.


It follows that every finitely generated R-module M has a resolution by totally C -
reflexive R-modules � � � ! G1 ! G0 ! M ! 0. It is similarly straightforward to
show that C is totally C -reflexive because


ExtiR.C; C / Š


´
0 if i ¤ 0,
R if i D 0,


ExtiR.HomR.C; C /; C / Š ExtiR.R; C / Š


´
0 if i ¤ 0,
C if i D 0.


Compare this with Facts 2.19 and 2.20.


The next definition was introduced by Golod [22].


Definition 1.12. Let C be a semidualizingR-module, and letM be a finitely generated
R-module. If M has a bounded resolution by totally C -reflexive R-modules, then it
has finite GC -dimension and its GC -dimension, denoted GC -dimR.M/ is the length of
the shortest such resolution.


The next fact contains the ever-useful “AB-formula” for GC -dimension and is fol-
lowed by some of its consequences.
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Fact 1.13. Let C be a semidualizing R-module. If B is a finitely generated R-module
of finite GC -dimension, then GC -dimR.B/ D depth.R/� depthR.B/; see [11, (3.14)]
or [22]. WhenB is semidualizing, Facts 1.4 and 1.13 combine to show thatB has finite
GC -dimension if and only if B is totally C -reflexive.


Fact 1.14. Let C be a semidualizing R-module. If pdR.C / <1, then C Š R Indeed,
using Fact 1.4, the Auslander–Buchsbaum formula shows that C must be free, and
the isomorphism HomR.C; C / Š R implies that C is free of rank 1. (Note that this
depends on the assumption that R is local; see Remark 1.3.) It follows that, if C is a
non-free semidualizing R-module, then the Betti number ˇRi .C / is positive for each
integer i > 0. Compare this with Fact 2.14 and Lemma 3.2. Questions about the Betti
numbers of semidualizing modules akin to those in Question A are contained in 4.5.


The next facts contain some fundamental properties of this notion of reflexivity.


Fact 1.15. Let C be a semidualizing R-module. A finitely generated R-module G is
totally C -reflexive if and only if the completion bG is totally bC -reflexive. The essential
point of the proof is that there are isomorphisms


ExtibR.bG;bC/ Š bR˝R ExtiR.G; C /;


ExtibR.HombR.bG;bC/;bC/ Š ExtibR.bR˝R HomR.G; C /;bR˝R C/
Š bR˝R ExtiR.HomR.G; C /; C /:


Furthermore, a finitely generated R-module M has finite GC -dimension if and only ifcM has finite GbC -dimension. See [11, (5.10)] or [22]. Compare this with Fact 2.22.


Fact 1.16. Let C be a semidualizing R-module. IfM is a finitely generated R-module
of finite projective dimension, then M has finite GC -dimension by Fact 1.11.


Let D be a dualizing R-module. If M is a maximal Cohen–Macaulay R-module,
then M is totally D-reflexive by [9, (3.3.10)]. The converse holds because of the
AB-formula 1.13. It follows that every finitely generated R-module N has finite GD-
dimension, as the fact that R is Cohen–Macaulay (cf. Fact 1.6) implies that some
syzygy of N is maximal Cohen–Macaulay. Compare this with Fact 2.20.


Here is the ordering on S0.R/ that gives the chains discussed in the introduction.


Definition 1.17. Given two classes ŒB�; ŒC � 2 S0.R/, we write ŒB� E ŒC � when C is
totally B-reflexive, that is, when C has finite GB -dimension; see Fact 1.13. We write
ŒB� G ŒC � when ŒB� E ŒC � and ŒB� ¤ ŒC �.


The next facts contain some fundamental properties of this ordering.


Fact 1.18. Let C be a semidualizing R-module. Fact 1.16 implies that ŒC � E ŒR� and,
if D is a dualizing R-module, then ŒD� E ŒC �.
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Fact 1.15 says that ŒB� E ŒC � in S0.R/ if and only if ŒbB� E ŒbC � in S0.bR/; also
ŒB� G ŒC � in S0.R/ if and only if ŒbB� G ŒbC � in S0.bR/ by Fact 1.9. In other words, the
injection S0.R/ ,! S0.bR/ perfectly respects the orderings on these two sets. Compare
this with Fact 2.25.


Fact 1.19. LetB and C be semidualizingR-modules such that C is totallyB-reflexive,
that is, such that ŒB� E ŒC �. By definition, this implies that ExtiR.C;B/ D 0 for
all i > 1. In addition, the R-module HomR.C;B/ is semidualizing and totally B-
reflexive; see [11, (2.11)]. Compare this with Fact 2.26.


Here is the key to the proofs of our main results when R is Cohen–Macaulay.


Fact 1.20. Consider a chain ŒC 0� E ŒC 1� E � � � E ŒC d � in S0.R/. Gerko [21, (3.3)]
shows that there is an isomorphism


C 0
Š HomR.C


1; C 0/˝R � � � ˝R HomR.C
d ; C d�1/˝R C


d :


(Note that Fact 1.19 implies that each factor in the tensor product is a semidualizing
R-module.) The proof is by induction on d , with the case d D 1 being the most
important: The natural evaluation homomorphism �WHomR.C


1; C 0/ ˝R C
1 ! C 0


given by � ˝ x 7! �.x/ fits into the following commutative diagram:


R


�R


HomR.C 1;C 0/


Š


//


�R


C 0 Š


��


HomR.HomR.C
1; C 0/;HomR.C


1; C 0//


HomR.C
0; C 0/


HomR.�;C
0/


// HomR.HomR.C
1; C 0/˝R C


1; C 0/:


Š


OO


The unspecified isomorphism is Hom-tensor adjointness. The homomorphisms �R
C 0


and �RHomR.C 1;C 0/
are isomorphisms because C 0 and HomR.C


1; C 0/ are semidualiz-
ing; see Fact 1.19. It follows that the homomorphism HomR.�; C


0/ is an isomorphism.
Since C 0 is semidualizing, it follows that � is also an isomorphism; see [10, (A.8.11)].


Moreover, if F i is a free resolution of HomR.C
i ; C i�1/ for i D 1; : : : ; d and F dC1


is a projective resolution of C d , then the tensor product from Definition A.16


F 1
˝R � � � ˝R F


d
˝R F


dC1


is a free resolution of C 0. Compare this with Fact 2.27.


The final fact of this section demonstrates the utility of 1.20. It compares to 2.28.


Fact 1.21. The ordering on S0.R/ is reflexive by Fact 1.11. Also, it is antisymmetric
by [2, (5.3)]. The essential point in the proof of antisymmetry comes from Fact 1.20.
Indeed, if ŒB� E ŒC � E ŒB�, then


B Š HomR.C;B/˝R HomR.B; C /˝R B:
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It follows that there is an equality of Betti numbers


ˇR0 .B/ D ˇ
R
0 .HomR.C;B//ˇ


R
0 .HomR.B; C //ˇ


R
0 .B/


and so HomR.C;B/ and HomR.B; C / are cyclic. Fact 1.19 implies that HomR.C;B/
is semidualizing, so we have HomR.C;B/ Š R by Fact 1.4. This yields the second
isomorphism in the next sequence:


C Š HomR.HomR.C;B/; B/ Š HomR.R;B/ Š B:


The first isomorphism follows from the fact that C is totally B-reflexive, and the third
isomorphism is standard. We conclude that ŒC � D ŒB�.


The question of transitivity for this relation is another open question in this area. It
is open, even for artinian rings containing a field. Compare this to Question 2.29.


Question 1.22. Let A, B and C be semidualizing R-modules. If B is totally A-
reflexive and C is totally B-reflexive, must C be totally A-reflexive?


2 Semidualizing complexes


This section contains definitions and background material on semidualizing complexes.
In a sense, these are derived-category versions of the semidualizing modules from the
previous section. (For notation and background information on the derived category
D.R/, consult Appendix A.) Motivation also comes from Grothendieck’s notion of a
dualizing complex [23] and Avramov and Foxby’s notion of a relative dualizing com-
plex [4]. The general definition is due to Christensen [11].


Definition 2.1. Let C be an R-complex. The homothety morphism associated to C in
the category of R-complexes C.R/ is the morphism �RC WR ! HomR.C; C / given by
�RC .r/.c/ D rc. This induces a well-defined homothety morphism associated to C in
D.R/ which is denoted �RC WR! RHomR.C; C /.


The R-complex C is semidualizing if it is homologically finite, and the homothety
morphism �RC WR ! RHomR.C; C / is an isomorphism in D.R/. An R-complex D is
dualizing if it is semidualizing and has finite injective dimension.


The first fact of this section describes this definition in terms of resolutions.


Fact 2.2. Let C be an R-complex. The morphism �RC WR ! RHomR.C; C / in D.R/
can be described using a free resolution F of C , in which case it is represented by the
morphism �RF WR! HomR.F; F / in C.R/. It can also be described using an injective
resolution I of C , in which case it is represented by �RI WR ! HomR.I; I /. Compare
this with [10, (2.1.2)]. As this suggests, the semidualizing property can be detected by
any free (or injective) resolution ofC ; and, whenC is semidualizing, the semidualizing
property is embodied by every free resolution and every injective resolution. Here is
the essence of the argument of one aspect of this statement; the others are similar. The
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resolutions F and I are connected by a quasiisomorphism ˛WF
'
�! I which yields the


next commutative diagram in C.R/:


R
�R


F //


�R
I


��


HomR.F; F /


HomR.F;˛/'


��
HomR.I; I /


HomR.˛;I /


'


// HomR.F; I /:


Hence, �RF is a quasiisomorphism if and only if �RI is a quasiisomorphism.


The next fact compares Definitions 1.1 and 2.1.


Fact 2.3. An R-module C is semidualizing as an R-module if and only if it is semid-
ualizing as an R-complex. To see this, let F be a free resolution of M . The condition
ExtiR.C; C / D 0 is equivalent to the condition H�i .HomR.F; F // D 0 because of the
following isomorphisms:


ExtiR.C; C / Š H�i .RHomR.C; C // Š H�i .HomR.F; F //:


(See, e.g., Fact A.21.) Thus, we assume that ExtiR.C; C / D 0 for all i > 1. In partic-
ular, since Hi .R/ D 0 for all i ¤ 0, the map Hi .�RC /WHi .R/ ! Hi .RHomR.C; C //
is an isomorphism for all i ¤ 0. Next, there is a commutative diagram of R-module
homomorphisms where the unspecified isomorphisms are from Facts A.3 and A.23:


R
�R


C //


Š


��


HomR.C; C /


Š


��
H0.R/


H0.�
R
C
/


// H0.RHomR.C; C //:


It follows that �RC is an isomorphism if and only if H0.�
R
C / is an isomorphism, that is,


if and only if �RC is an isomorphism in D.R/.


The next fact documents the interplay between the semidualizing property and the
suspension operator.


Fact 2.4. It is straightforward to show that an R-complex C is semidualizing if and
only if some (equivalently, every) shift ΣiC is semidualizing; see [11, (2.4)]. The
essential point of the proof is that Fact A.22 yields natural isomorphisms


RHomR.Σ
iC;ΣiC/ ' Σi�iRHomR.C; C / ' RHomR.C; C /


that are compatible with the homothety morphisms �RC and �R
ΣiC


. The analogous state-
ment for dualizing complexes follows from this because of the equality idR.ΣiC/ D
idR.C / � i from Fact A.15.
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Remark 2.5. As in Remark 1.3, we pause to explain some of the issues that arise when
investigating semidualizing complexes in the non-local setting. Let S be a commu-
tative Noetherian ring, not necessarily local, and let C be an S -complex. Define the
homothety homomorphism �SC WS ! HomS .C; C /, the semidualizing property, and
the set S.S/ as in 2.1.


When Spec.S/ is connected, the set S.S/ behaves similarly to S0.S/: a nontrivial
Picard group makes the ordering on S.S/ non-antisymmetric, and one can overcome
this by looking at an appropriate set of orbits.


However, when Spec.S/ is disconnected (that is, when S is of the form S1 � S2 for
(nonzero) commutative Noetherian rings S1 and S2) things are even more complicated
than in the module-setting. Indeed, the semidualizing S -complexes are all of the form
ΣiC1 ˚ ΣjC2 where each Ci is a semidualizing Si -complex. In other words, each
connected component of Spec.S/ contributes essentially two degrees of freedom to
the elements of S.S/. For further discussion, see [7, 18, 19].


The next two facts are versions of 1.5 and 1.6 for semidualizing complexes.


Fact 2.6. If R is Gorenstein, then every semidualizing R-complex C is isomorphic in
D.R/ to ΣiR for some integer i by [11, (8.6)]; see also Theorem 4.1. (Note that the
assumption that R is local is crucial here because of Remark 2.5.) If R is Cohen–
Macaulay, then every semidualizing R-complex C is isomorphic in D.R/ to ΣiB for
some integer i and some semidualizing R-module B by [11, (3.4)]. (In each case, we
have i D inf.C /. In the second case, we have B Š Hi .C /; see Facts A.4 and A.8.
Again, this hinges on the assumption thatR is local.) The converses of these statements
hold when R has a dualizing complex by [11, (8.6)] and Fact 1.6; the converses can
fail when R does not have a dualizing complex; see [12, (5.5)].


Fact 2.7. Grothendieck and Hartshorne [23, (V.10)] and Kawasaki [27, (1.4)] show that
R has a dualizing complex if and only if R is a homomorphic image of a Gorenstein
ring. In particular, if R is complete, then Cohen’s structure theorem implies that R has
a dualizing complex.


The next fact generalizes 1.7.


Fact 2.8. Assume for this paragraph that R has a dualizing complexD. Then there is a
coefficientwise equality IRR .t/ D t


sPRD .t/ where s D dim.R/� sup.D/; that is, for all
i 2 Z we have �iR.R/ D ˇRi�s.D/; see e.g. [4, (1.5.3), (2.6)] and [23, (V.3.4)]. Also,
we have sup.D/ � inf.D/ D dim.R/ � depth.R/, that is, the range of nonvanishing
homology of D is the same as the Cohen–Macaulay defect of R; see [11, (3.5)].


More generally, let D0 be a dualizing complex for bR. Then we have


IRR .t/ D I
bRbR .t/ D t sPbRD0.t/


where s D dim.bR/ � sup.D0/; in other words, for all i 2 Z we have �iR.R/ D
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ˇbRi�s.D0/. Furthermore, we have


sup.D0/ � inf.D0/ D dim.bR/ � depth.bR/ D dim.R/ � depth.R/:


Compare this with Fact 1.7.


Fact 1.4 implies that a cyclic semidualizing R-module must be isomorphic to the
ring R. Using the previous fact, we show next that a version of this statement for
semidualizing complexes fails in general. Specifically, there exists a ring R that has
a semidualizing R-complex C that is not shift-isomorphic to R even though its first
nonzero Betti number is 1. See Example 4.4 for more on this ring.


Example 2.9. Let k be a field and set R D kŒŒX; Y ��=.X2; XY /. Then R is a complete
local ring of dimension 1 and depth 0. Hence R has a dualizing complex D. Apply a
shift if necessary to assume that inf.D/ D 0. Then Fact 2.8 provides the first equality
in the next sequence:


PRD .t/ D I
R
R .t/ D 1C 2t C 2t2 C � � �


while the second equality is from, e.g., [14, Ex. 1]. In particular, we have ˇR0 .D/ D 1
and ˇRi .D/ D 0 for all i < 0 even though D 6' ΣjR for all j 2 Z.


We shall use the next definition to equate semidualizing complexes that are es-
sentially the same. This compares with the identification of isomorphic modules in
Definition 2.1; see Fact 2.11.


Definition 2.10. Given two R-complexes B and C , if there is an integer i such that
C ' ΣiB , then B and C are shift-isomorphic.1 The set of “shift-isomorphism classes”
of semidualizing R-complexes is denoted S.R/, and the shift-isomorphism class of a
semidualizing R-complex C is denoted ŒC �.


The next fact compares Definitions 1.1 and 2.10.


Fact 2.11. It is straightforward to show that the natural embedding of M.R/ inside
D.R/ induces a natural injection S0.R/ ,! S.R/; see Facts 2.3 and A.3. This injec-
tion is surjective when R is Cohen–Macaulay by Fact 2.6. (Note that the assumption
that R is local is essential here because of Remark 2.5.)


Here is the version of Question 1.8 for semidualizing complexes. Again, Re-
mark 2.5 shows that the assumption that R is local is crucial. Fact 2.11 shows that
an affirmative answer to Question 2.12 would yield an affirmative answer to Ques-
tion 1.8. Also note that the methods of this paper do not answer this question, even
though Theorem 4.2 shows that S.R/ cannot have arbitrarily long chains.


Question 2.12. Is the set S.R/ finite?
1This yields an equivalence relation on the class of all semidualizing R-complexes: (1) One has C ' Σ0C ;


(2) If C ' ΣiB , then B ' Σ�iC ; (3) If C ' ΣiB and B ' ΣjA, then C ' ΣiCjA.
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The next properties compare to those in Fact 1.9.


Fact 2.13. When C is a homologically finite R-complex, it is semidualizing for R if
and only if the base-changed complex bR ˝L


R C is semidualizing for bR. The essential
point of the proof is that Fact A.22 provides the following isomorphism in D.bR/


RHombR.bR˝L
R C;


bR˝L
R C/ '


bR˝L
R RHomR.C; C /


which is compatible with the corresponding homothety morphisms. The parallel state-
ment for dualizing objects also holds; see [11, (5.6)] and [23, (V.3.5)].


Given two homologically finite R-complexes B and C , we have C ' ΣiB if and
only if bR ˝L


R C '
bR ˝L


R ΣiB by [18, (1.11)]. Combining this with the previous
paragraph, we see that the assignment C 7! bR ˝L


R C induces a well-defined injective
function S.R/ ,! S.bR/. The restriction to S0.R/ is precisely the induced map from
Fact 1.9, and thus there is a commutative diagram


S0.R/
� � //


� _


��


S0.bR/� _


��


S.R/
� � // S.bR/:


The following fact compares to 1.14; see also Lemma 3.2 and Question 4.5.


Fact 2.14. If C is a semidualizing R-complex and pdR.C / < 1, then C ' ΣiR
where i D inf.C / by [11, (8.1)]. (As in Fact 1.14, this relies on the local assumption
on R.)


Here is a version of Definition 1.10 for semidualizing complexes. It originates
with the special cases of “reflexive complexes” from [23, 32]. The definition in this
generality is from [11].


Definition 2.15. Let C and X be R-complexes. The biduality morphism associated
to C and X in C.R/ is the morphism ıCX WX ! HomR.HomR.X; C /; C / given by
..ıCX /p.x//q.¹�j ºj2Z/ D .�1/pq�p.x/. This yields a well-defined biduality morphism
ıCX WX ! RHomR.RHomR.X; C /; C / associated to C and X in D.R/.


Assume that C is a semidualizing R-complex. The R-complex X is C -reflexive
when it satisfies the following properties:


(1) the complex X is homologically finite;


(2) the biduality morphism ıCX WX ! RHomR.RHomR.X; C /; C / in D.R/ is an
isomorphism; and


(3) the complex RHomR.X; C / is homologically bounded, i.e., finite.
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Remark 2.16. When C is a semidualizing R-complex, every homologically finite R-
complex X has a well-defined GC -dimension which is finite precisely when X is
nonzero and C -reflexive. (Note that this invariant is not described in terms of resolu-
tions.) We shall not need this invariant here; the interested reader should consult [11].


Remark 2.17. Avramov and Iyengar [6, (1.5)] have shown that condition (3) of Def-
inition 2.15 is redundant when C D R. The same proof shows that this condition is
redundant in general. However, the proof of this fact is outside the scope of the present
article, so we continue to state this condition explicitly.


The next fact shows that, as with the semidualizing property, the reflexivity property
is independent of the choice of resolutions.


Fact 2.18. Let C and X be R-complexes and assume that C is semidualizing. The
biduality morphism ıCX WX ! RHomR.RHomR.X; C /; C / in D.R/ can be described
using an injective resolution I of C , in which case it is represented by the morphism
ıIX WX ! HomR.HomR.X; I /; I /. Compare this with [10, (2.1.4)]. As with the semid-
ualizing property, reflexivity can be detected by any injective resolution of C ; and,
when X is C -reflexive, the reflexivity is embodied by every injective resolution. Here
is the essence of the argument. Let I and J be injective resolutions of C . Fact A.21
implies that


HomR.X; I / ' RHomR.X; C / ' HomR.X; J /


and so HomR.X; I / is homologically bounded if and only if HomR.X; J / is homolog-
ically bounded. Furthermore, there is a quasiisomorphism ˛W I


'
�! J , and this yields


the next commutative diagram in C.R/:


X
ıI


X //


ıJ
X


��


HomR.HomR.X; I /; I /


' HomR.HomR.X;I/;˛/


��
HomR.HomR.X; J /; J /


HomR.HomR.X;˛/;J /


'


// HomR.HomR.X; I /; J /:


Hence ıIX is a quasiisomorphism if and only if ıJX is a quasiisomorphism.


We next compare Definition 2.15 with the corresponding notions from Section 1.


Fact 2.19. Let C be a semidualizing R-module, and let G be a finitely generated R-
module. If G is totally C -reflexive, then it is C -reflexive as a complex. Indeed, the
following isomorphisms imply that RHomR.G; C / is homologically bounded.


Hi .RHomR.G; C // Š Ext�i .G; C / Š


´
0 if i ¤ 0,
HomR.G; C / if i D 0.
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(See Fact A.21.) Fact A.4 explains the first isomorphism in the next sequence


RHomR.G; C / ' H0.RHomR.G; C // Š Ext0R.G; C / Š HomR.G; C /


Hi .RHomR.RHomR.G; C /; C // Š Hi .RHomR.HomR.G; C /; C //


Š Ext�iR .HomR.G; C /; C /


Š


´
0 if i ¤ 0,
G if i D 0


and the others follow from the previous display and Fact A.21. Thus, for all i ¤ 0, the
function Hi .ıCG /WHi .G/ ! Hi .RHomR.RHomR.G; C /; C // maps from 0 to 0 and
thus is an isomorphism. To show that G is C -reflexive, it remains to show that the map
H0.ı


C
G / is an isomorphism. Check that there is a commutative diagram


G
ıC


G


Š


//


Š


��


HomR.HomR.G; C /; C /


Š


��
H0.G/


H0.ı
C
G
/


// H0.RHomR.RHomR.G; C /; C //


where the unspecified isomorphisms are essentially from Fact A.3. Thus H0.ı
C
G / is an


isomorphism as desired.
More generally, a finitely generated R-module has finite GC -dimension if and only


if it is C -reflexive as an R-complex. (Thus, the converse of the second sentence of the
previous paragraph fails in general.) Furthermore, a homologically finite R-complex
X is C -reflexive if and only if there is an isomorphism X ' H in D.R/ where H is a
bounded complex of totally C -reflexive R-modules. See [25, (3.1)].


The next fact includes versions of 1.11 and 1.16 for semidualizing complexes.


Fact 2.20. Let C be a semidualizing R-complex. Every finitely generated free R-
module is C -reflexive, as is C itself. The essential point of the proof is that the follow-
ing isomorphisms are compatible with the corresponding biduality morphisms:


RHomR.RHomR.R; C /; C / ' RHomR.C; C / ' R;


RHomR.RHomR.C; C /; C / ' RHomR.R; C / ' C:


See [11, (2.8)] and Fact A.22.
If X is a homologically finite R-complex of finite projective dimension, then X is


C -reflexive by [11, (2.9)]. If D is a dualizing R-complex, then every homologically
finite R-complex is D-reflexive. Conversely, if the residue field k is C -reflexive, then
C is dualizing. See [11, (8.4)] or [23, (V.2.1)].


As with the semidualizing property, reflexivity is independent of shift.
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Fact 2.21. Let C be a semidualizing R-complex. It is straightforward to show that
an R-complex X is C -reflexive if and only if some (equivalently, every) shift ΣiX is
ΣjC -reflexive for some (equivalently, every) integer j . The point is that Fact A.22
yields natural isomorphisms


RHomR.Σ
iX;ΣjC/ ' Σj�iRHomR.X; C /;


RHomR.RHomR.Σ
iX;ΣjC/;ΣjC/ ' RHomR.Σ


j�iRHomR.X; C /;Σ
jC/


' Σj�.j�i/RHomR.RHomR.X; C /; C /


' ΣiRHomR.RHomR.X; C /; C /


that are compatible with ıCX and ıΣ
jC


ΣiX
.


The next fact is a version of 1.15 for semidualizing complexes.


Fact 2.22. If C is a semidualizing R-complex, then a given homologically finite R-
complexX is C -reflexive if and only if the base-changed complex bR˝L


RX is bR˝L
RC -


reflexive; see [11, (5.10)]. The main point of the proof is that Fact A.22 provides the
following isomorphisms in D.bR/


RHombR.bR˝L
R X;


bR˝L
R C/ '


bR˝L
R RHomR.X; C /;


RHombR.RHombR.bR˝L
R X;


bR˝L
R C/;


bR˝L
R C/


' RHombR.bR˝L
R RHomR.X; C /;bR˝L


R C/


' bR˝L
R RHomR.RHomR.X; C /; C /


and that these isomorphisms are compatible with ıCX and ı
bR˝L


R
CbR˝L


R
X


.


Here is the ordering on S.R/ used in our main results.


Definition 2.23. Given two classes ŒB�; ŒC � 2 S.R/, we write ŒB� E ŒC � when C is
B-reflexive; we write ŒB� G ŒC � when ŒB� E ŒC � and ŒB� ¤ ŒC �.


The following fact compares this relation with the one from Definition 1.17.


Fact 2.24. Combining Fact 1.13 and the last paragraph of Fact 2.19, we see that, if B
and C are semidualizing R-modules, then ŒB� E ŒC � in S.R/ if and only if ŒB� E ŒC �
in S0.R/, and ŒB� G ŒC � in S.R/ if and only if ŒB� G ŒC � in S0.R/ That is, the map
S0.R/ ,! S.R/ perfectly respects the orderings on these two sets.


The next facts compare with 1.18 and 1.19.
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Fact 2.25. Let C be a semidualizing R-complex. Fact 2.20 implies that ŒC � E ŒR�,
and if D is a dualizing R-complex, then ŒD� E ŒC �.


Fact 2.22 says that ŒB� E ŒC � in S.R/ if and only if ŒbR ˝L
R B� E ŒbR ˝L


R C � in
S.bR/; also ŒB�G ŒC � in S.R/ if and only if ŒbR˝L


RB�G Œ
bR˝L


RC � in S.bR/ by Fact 2.13.
That is, the injection S.R/ ,! S.bR/ perfectly respects the orderings on these two sets.


Fact 2.26. Let B and C be semidualizingR-complexes such that C is B-reflexive, that
is, such that ŒB� E ŒC �. This implies that the complex RHomR.C;B/ is homologically
finite, by definition. Moreover [11, (2.11)] shows that RHomR.C;B/ is semidualizing
andB-reflexive. The main point of the proof is that there is a sequence of isomorphisms


RHomR.RHomR.C;B/;RHomR.C;B//


' RHomR.RHomR.C;B/˝
L
R C;B/


' RHomR.C;RHomR.RHomR.C;B/; B//


' RHomR.C; C /


' R:


The first two isomorphisms are Hom-tensor adjointness A.22. The third isomorphism
is from the assumption that C is B-reflexive, and the fourth isomorphism is from the
fact that C is semidualizing.


The next fact compares to 1.20. It is the key tool for our main results.


Fact 2.27. Consider a chain ŒC 0� E ŒC 1� E � � � E ŒC d � in S.R/. Gerko [21, (3.3)]
shows that there is an isomorphism


C 0
' RHomR.C


1; C 0/˝L
R � � � ˝


L
R RHomR.C


d ; C d�1/˝L
R C


d :


(Note that each factor in the tensor product is a semidualizingR-complex by Fact 2.26.)
The proof is by induction on d , with the case d D 1 being the most important. Consider
the natural evaluation morphism


�WRHomR.C
1; C 0/˝L


R C
1
! C 0


which fits into the following commutative diagram:


R


�R


RHomR.C 1;C 0/


'


//


�R


C 0 '


��


RHomR.RHomR.C
1; C 0/;RHomR.C


1; C 0//


RHomR.C
0; C 0/


RHomR.�;C
0/


// RHomR.RHomR.C
1; C 0/˝L


R C
1; C 0/:


'


OO


The unspecified isomorphism is adjointness A.22. The morphisms �RRHomR.C 1;C 0/
and


�R
C 0 are isomorphisms in D.R/ since C 0 and RHomR.C


1; C 0/ are semidualizing; see
Fact 2.26. Hence, the morphism RHomR.�; C


0/ is an isomorphism in D.R/. Since C 0


is semidualizing, it follows that � is also an isomorphism; see [10, (A.8.11)].
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The final fact in this section compares to 1.21.


Fact 2.28. The ordering on S.R/ is reflexive by Fact 2.19. Also, it is antisymmetric
by [2, (5.3)]. The essential point in the proof of antisymmetry comes from Fact 2.27.
Indeed, if ŒB� E ŒC � E ŒB�, then


B ' RHomR.C;B/˝
L
R RHomR.B; C /˝


L
R B:


It follows that there is an equality of Poincaré series


PRB .t/ D P
R
RHomR.C;B/


.t/PRRHomR.B;C/
.t/PRB .t/:


Since each Poincaré series has nonnegative integer coefficients, this display implies
that PRRHomR.C;B/


.t/ D t r and PRRHomR.B;C/
.t/ D t�r for some integer r . So, we have


RHomR.C;B/ ' ΣrR. This yields the second isomorphism in the next sequence


C ' RHomR.RHomR.C;B/; B/ ' RHomR.Σ
rR;B/ ' ΣrB:


The first isomorphism follows from the fact that C is B-reflexive, and the third iso-
morphism is cancellation A.22. We conclude that ŒC � D ŒB�.


As in the module-setting, the question of the transitivity of this order remains
open. An affirmative answer to Question 2.29 would yield an affirmative answer to
Question 1.22 as the map S0.R/ ,! S.R/ is order-preserving by Fact 2.24. Ques-
tions 1.22 and 2.29 are equivalent when R is Cohen–Macaulay since, in this case, the
map S0.R/ ,! S.R/ is surjective by Fact 2.11. (Again, this hinges on the local
assumption for R by Remark 2.5.)


Question 2.29. Let A, B and C be semidualizing R-complexes. If B is A-reflexive
and C is B-reflexive, must C be A-reflexive?


3 Bounding Bass numbers


We begin with three lemmas, the first of which essentially says that semidualizing
complexes over local rings are indecomposable. Note that Remark 2.5 shows that the
local hypothesis is essential.


Lemma 3.1. Let R be a local ring and let C be a semidualizing R-complex. If X and
Y are R-complexes such that C ' X ˚ Y , then either X ' 0 or Y ' 0.


Proof. The condition C ' X ˚ Y implies that Hi .C / Š Hi .X/ ˚ Hi .Y / for each
index i . Hence, the fact that C is homologically finite implies that X and Y are both
homologically finite as well.


We assume that X 6' 0 and show that Y ' 0. Fact A.27 yields the following
equality of formal Laurent series:


I
RHomR.X;X/
R .t/ D PRX .t/I


X
R .t/:
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The condition X 6' 0 implies PRX .t/ ¤ 0 and IXR .t/ ¤ 0 by Fact A.27. The display
implies that IRHomR.X;X/


R .t/ ¤ 0, and thus RHomR.X;X/ 6' 0. The fact that C is a
semidualizing R-complex yields the first isomorphism in the next sequence:


R ' RHomR.C; C / ' RHomR.X ˚ Y;X ˚ Y /


' RHomR.X;X/˚ RHomR.X; Y /˚ RHomR.Y;X/˚ RHomR.Y; Y /:


The third isomorphism is additivity A.22. Because R is local, it is indecomposible as
an R-module. By taking homology, we conclude that three of the summands in the
second line of the previous sequence are homologically trivial, that is ' 0. Since
RHomR.X;X/ 6' 0, it follows that RHomR.Y; Y / ' 0. Another application of
Fact A.27 implies that


0 D IRHomR.Y;Y /
R .t/ D PRY .t/I


Y
R .t/:


Hence, either PRY .t/ D 0 or IYR .t/ D 0. In either case, we conclude that Y ' 0.


The next lemma generalizes Fact 2.14. See also Fact 1.14 and Question 4.5. It is
essentially a corollary of Lemma 3.1.


Lemma 3.2. Let R be a local ring and let C be a semidualizing R-complex. Set
i D inf.C /. If there is an integer j > i such that ˇRj .C / D 0, then C ' ΣiR.


Proof. By Fact 2.14, it suffices to show that pdR.C / < 1. Let F be a minimal free
resolution of C . The assumption ˇRj .C / D 0 implies that Fj D 0 by Fact A.27. Note
that Fi ¤ 0 since Hi .C / ¤ 0, so we have j > i . Thus F has the following form:


F D � � �
@F


jC2
���! FjC1 ! 0! Fj�1


@F
j�1
���! � � �


@F
iC1
���! Fi ! 0:


Hence, we have C ' F Š F 1 ˚ F 2 where


F 1
D � � � ����! 0 ��! 0! Fj�1


@F
j�1
���! � � �


@F
iC1
���! Fi ! 0;


F 2
D � � �


@F
jC2
���! FjC1 ! 0 ��! 0 ����! � � � ���! 0 �! 0:


The condition Fi ¤ 0 implies F 1 6' 0 as F 1 is minimal; see Fact A.14. Lemma 3.1
yields F 2 ' 0, so C ' F 1 ˚ F 2 ' F 1, which has finite projective dimension.


When R is Cohen–Macaulay, the gist of the proof of the next lemma is found
in Fact 1.20: the minimal free resolution of D factors as a tensor product of d C 1
minimal free resolutions of modules of infinite projective dimension. Note that the
Cohen–Macaulay hypothesis in the final sentence of the statement is essential because
of Example 2.9.
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Lemma 3.3. LetR be a local ring of depth g such that S.R/ contains a chain of length
d C1. Then there exist power series P0.t/; : : : ; Pd .t/ with positive integer coefficients
such that


IRR .t/ D t
gP0.t/ � � �Pd .t/:


If, in addition, R is Cohen–Macaulay, and p is the smallest prime factor of �gR.R/,
then the constant term of each Pi .t/ is at least p.


Proof. Assume that S.R/ contains a chain ŒC 0� G ŒC 1� G � � � G ŒC d � G ŒC dC1�.
We begin by proving the result in the case where R has a dualizing complex D.


Applying a suspension if necessary, we assume that sup.D/ D dim.R/; see Fact 2.4.
It follows that inf.D/ D g by Fact 2.8. From Fact 2.8 we conclude that there is a
formal equality of power series IRR .t/ D PRD .t/. Fact 2.25 implies that ŒD� E ŒC 0�.
Hence, we may extend the given chain by adding the link ŒD� E ŒC 0� if necessary in
order to assume that C 0 D D. Similarly, we assume that C dC1 D R.


Fact 2.26 implies that, for i D 0; : : : ; d the R-complex RHomR.C
iC1; C i / is


semidualizing and C i -reflexive. We observe that ŒRHomR.C
iC1; C i /� ¤ ŒR�. In-


deed, if not, then RHomR.C
iC1; C i / ' ΣjR for some j , and this explains the second


isomorphism in the following sequence:


C iC1
' RHomR.RHomR.C


iC1; C i /; C i / ' RHomR.Σ
jR;C i / ' ΣjC i :


The first isomorphism is by Definition 2.15(2), and the third one is cancellation A.22.
These isomorphisms imply ŒC iC1� D ŒC i �, contradicting our assumption ŒC iC1�GŒC i �.


Set mi D inf.RHomR.C
iC1; C i //. Lemma 3.2 implies that


ˇRj .RHomR.C
iC1; C i // > 1


for each j > mi . It follows that the series


Pi .t/ D


1X
nD0


ˇRnCmi
.RHomR.C


iC1; C i //tn


is a power series with positive integer coefficients such that


PRRHomR.C iC1;C i /
.t/ D tmiPi .t/: (3.3.1)


Fact 2.27 yields the first isomorphism in the following sequence:


D D C 0
' RHomR.C


1; C 0/˝L
R � � � ˝


L
R RHomR.C


dC1; C d /˝L
R C


dC1


' RHomR.C
1; C 0/˝L


R � � � ˝
L
R RHomR.C


dC1; C d /:
(3.3.2)


The equality and the second isomorphism are from the assumptions C 0 D D and
C dC1 D R. It follows from Fact A.23 that


g D inf.D/ D
dX
iD0


mi : (3.3.3)
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The second equality in the next sequence follows from (3.3.2) using Fact A.27:


IRR .t/ D P
R
D .t/


D PRRHomR.C 1;C 0/
.t/ � � �PRRHomR.CdC1;Cd /


.t/


D .tm0P0.t// � � � .t
mdPd .t//


D tgP0.t/ � � �Pd .t/:


The first equality is by the choice ofD; the third equality is from (3.3.1); and the fourth
equality is from (3.3.3).


Assume for this paragraph that R is Cohen–Macaulay. Fact 2.6 yields an isomor-
phism RHomR.C


iC1; C i / ' ΣsiB i where si D inf.RHomR.C
iC1; C i // and B i is


the semidualizing R-module Hsi .RHomR.C
iC1; C i //. Since RHomR.C


iC1; C i / is
non-free, Fact 1.4 implies that ˇR0 .B


i / > 2; this is the constant term of Pi .t/. The
formula IRR .t/ D tgP0.t/ � � �Pd .t/ implies that �gR.R/ is the product of the constant
terms of the Pi .t/; since each constant term is at least 2, it must be at least p. This
completes the proof in the case where R has a dualizing complex.


Finally, we prove the result in general. The completion bR has a dualizing complex
by Fact 2.7. Also, the given chain gives rise to the following chain in S.bR/


ŒbR˝L
R C


0� G ŒbR˝L
R C


1� G � � � G ŒbR˝L
R C


d � G ŒbR˝L
R C


dC1�


by Fact 2.25. The previous case yields power series P0.t/; : : : ; Pd .t/ with positive
integer coefficients such that IbRbR .t/ D tdepth.bR/P0.t/ � � �Pd .t/. Hence, the desired


conclusion follows from the equalities g D depth.R/ D depth.bR/ and IRR .t/ D I
bRbR .t/,


and the fact that R is Cohen–Macaulay if and only if bR is Cohen–Macaulay.


Remark 3.4. It is straightforward to use Fact 2.25 to give a slight strengthening of
Lemma 3.3. Indeed, the condition “S.R/ contains a chain of length d C 1” is stronger
than necessary; the proof shows that one can derive the same conclusions only assum-
ing that S.bR/ contains a chain of length d C 1. Similar comments hold true for the
remaining results in this section and for the results of Section 4.


The next two results contain Theorem B from the introduction and follow almost
directly from Lemma 3.3.


Theorem 3.5. LetR be a local ring. If S.R/ contains a chain of length dC1, then the
sequence of Bass numbers ¹�iR.R/º is bounded below by a polynomial in i of degree d .


Proof. Assume that S.R/ contains a chain of length d C 1. Lemma 3.3 implies that
there exist power series P0.t/; : : : ; Pd .t/ with positive integer coefficients satisfying







370 S. Sather-Wagstaff


the equality in the following sequence:


IRR .t/ D t
depth.R/P0.t/ � � �Pd .t/ � t


depth.R/


 
1X
nD0


tn


!dC1


:


The inequality follows from the fact that each coefficient of Pj .t/ is a positive integer.
It is well known that the degree-i coefficient of the series


�P1
nD0 t


n
�dC1 is given


by a polynomial in i of degree d . It follows that the same is true of the coefficients
of the series tdepth.R/


�P1
nD0 t


n
�dC1. Hence, the degree-i coefficient of the Bass series


IRR .t/, i.e., the i th Bass number �iR.R/, is bounded below by such a polynomial.


Corollary 3.6. Let R be a local ring. If R has a semidualizing complex that is neither
dualizing nor free, then the sequence of Bass numbers ¹�iR.R/º is bounded below by a
linear polynomial in i and hence is not eventually constant.


Proof. The assumption on R yields a chain in S.bR/ of the form ŒD0� G ŒbC � G ŒbR�, so
the result follows from Theorem 3.5 using the equality �iR.R/ D �


ibR.bR/.
4 Bounding lengths of chains of semidualizing complexes


In this section we use Lemma 3.3 to show how the Bass numbers of R in low degree
can be used to bound the lengths of chains in S.R/. The first two results contain
Theorem C from the introduction and focus on the first two nonzero Bass numbers.
The results of this section are not exhaustive. Instead, they are meant to give a sampling
of applications of Lemma 3.3. For instance, the same technique can be used to give
similar bounds in terms of higher-degree Bass numbers.


Theorem 4.1. Let R be a local Cohen–Macaulay ring of depth g, and let h denote the
number of prime factors of the integer �gR.R/, counted with multiplicity. If R has a
chain of semidualizing modules of length d , then d 6 h 6 �


g
R.R/. In particular, if


�
g
R.R/ is prime, then every semidualizing R-module is either free or dualizing for R.


Proof. By Lemma 3.3, the existence of a chain in S0.R/ of length d yields a factor-
ization IRR .t/ D tgP1.t/ � � �Pd .t/ where each Pi .t/ is a power series with positive
integer coefficients and constant term ai > 2. We then have


�
g
R.R/ D a1 � � � ad


so the inequalities d 6 h 6 �
g
R.R/ follow from the basic properties of factorizations


of integers.
Assume now that �gR.R/ is prime and let C be a semidualizing R-module. The


ring bR has a dualizing moduleD0 by Fact 1.6, and Fact 1.18 shows that there is a chain
ŒD0� E ŒbC � E ŒbR� in S.bR/. This chain must have length at most 1 since the Bass
number �gbR.bR/ D �gR.R/ is prime. Hence, either bC Š bR or bC Š D0. From Fact 1.9,
it follows that the R-module C is either free or dualizing for R.
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Theorem 4.2. Let R be a local ring of depth g. If R has a chain of semidualizing
complexes of length d , then d 6 �


gC1
R .R/. In particular, the set S.R/ does not


contain arbitrarily long chains.


Proof. Assume that S.R/ contains a chain of length d . Lemma 3.3 yields power series
P1.t/; : : : ; Pd .t/ with positive integer coefficients such that


IRR .t/ D t
gP1.t/ � � �Pd .t/: (4.2.1)


For each index i , write Pi .t/ D
P1
jD0 ai;j t


j . By calculating the degree g C 1 coeffi-
cient in (4.2.1), we obtain the first equality in the following sequence:


�
gC1
R .R/ D


dX
iD1


a1;0 � � � ad;0


ai;0
ai;1 >


dX
iD1


ai;1 >
dX
iD1


1 D d:


The inequalities are from the conditions aj;0; ai;1 > 1.


The next result gives an indication how other Bass numbers can also give informa-
tion about the chains in S.R/.


Proposition 4.3. Let R be a local ring of depth g.


(a) If �iR.R/ 6 i � g for some index i > g, then every semidualizing R-complex is
either free or dualizing for R.


(b) Assume that R is Cohen–Macaulay and let p be the smallest prime divisor of
�
g
R.R/. If �iR.R/ < 2p C i � g � 1 for some index i > g, then every semidu-


alizing R-module is either free or dualizing for R.


Proof. We prove the contrapositive of each statement. Assume that R has a semi-
dualizing complex that is neither free nor dualizing. The set S.bR/ then has a chain
ŒD� G ŒC � G ŒR�, so Lemma 3.3 yields power series P1.t/; P2.t/ with positive integer
coefficients such that IRR .t/ D tgP1.t/P2.t/. Write P1.t/ D


P1
iD0 ai t


i and P2.t/ DP1
iD0 bi t


i . It follows that, for each index i > g, we have


�iR.R/ D


i�gX
jD0


aj bi�g�j : (4.3.1)


(a) Since each aj ; bj > 1, the equation (4.3.1) implies that


�iR.R/ D


i�gX
jD0


aj bi�g�j >
i�gX
jD0


1 D i � g C 1 > i � g:


(b) Assume that R is Cohen–Macaulay. Lemma 3.3 implies that a0; b0 > p. As-
suming that i > g, equation (4.3.1) reads


�iR.R/ D


i�gX
jD0


aj bi�g�j > a0 C b0 C


i�g�1X
jD1


1 > 2p C i � g � 1:
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The next example shows how Proposition 4.3 applies to the ring from 2.9.


Example 4.4. Let k be a field and set R D kŒŒX; Y ��=.X2; XY /. Then R is a complete
local ring of dimension 1 and depth 0. From Example 2.9 we have �2


R.R/ D 2, so
Proposition 4.3 implies that S.R/ D ¹ŒR�; ŒD�º.


We conclude this section with some questions that arise naturally from this work
and from the literature on Bass numbers, followed by some discussion.


Question 4.5. Let R be a local ring and C a non-free semidualizing R-complex.


(a) Must the sequence ¹ˇRi .C /º eventually be strictly increasing?


(b) Must the sequence ¹ˇRi .C /º be nondecreasing?


(c) Must the sequence ¹ˇRi .C /º be unbounded?


(d) Can the sequence ¹ˇRi .C /º be bounded above by a polynomial in i?


(e) Must the sequence ¹ˇRi .C /º grow exponentially?


(f) If C is not dualizing for R, must the sequence ¹�iR.R/º be strictly increasing?


Remark 4.6. Question 4.5(a) relates to [14, Question 2] where it is asked whether the
Bass numbers of a non-Gorenstein local ring must eventually be strictly increasing.
(Note that Example 2.9 shows that they need not be always strictly increasing.) If
Question 4.5(a) is answered in the affirmative, then so is [14, Question 2] since the
Bass numbers of R are given as the Betti numbers of the dualizing complex for bR.
Part (b) is obviously similar to part (a), and parts (c)–(e) of Question 4.5 relate similarly
to Question A.


Question 4.5(f) is a bit different. The idea here is that the existence of a semid-
ualizing R-complex that is not free and not dualizing provides a chain of length 2
in S.bR/. Hence, Lemma 3.3 gives a nontrivial factorization IRR .t/ D tgP1.t/P2.t/


where each Pi .t/ D tmiPR
C i .t/ for some non-free semidualizing R-complex C i . If


the coefficients of each Pi .t/ are strictly increasing, then the coefficients of the product
IRR .t/ D tgP1.t/P2.t/ are also strictly increasing. Note, however, that the positivity
of the coefficients of the Pi .t/ is not enough to ensure that the coefficients of IRR .t/ are
strictly increasing. For instance, we have


.2C t C t2 C t3 C � � � /.5C t C t2 C t3 C � � � / D 10C 7t C 8t2 C 9t3 C � � � :


A Homological algebra for complexes


This appendix contains notation and useful facts about chain complexes for use in
Sections 2–4. We do not attempt to explain every detail about complexes that we
use. For this, we recommend that the interested reader consult a text like [20] or [23].
Instead, we give heuristic explanations of the ideas coupled with explicit connections
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to the corresponding notions for modules. This way, the reader who is familiar with
the homological algebra of modules can get a feeling for the subject and will possibly
be motivated to investigate the subject more deeply.


Definition A.1. A chain complex of R-modules, or R-complex for short, is a sequence
of R-module homomorphisms


X D � � �
@X


iC1
���! Xi


@X
i
��! Xi�1


@X
i�1
���! � � �


such that @Xi @
X
iC1 D 0 for each i 2 Z. The i th homology module of an R-complex


X is the R-module Hi .X/ D Ker.@Xi /= Im.@XiC1/. A morphism of chain complexes
f WX ! Y is a sequence of R-module homomorphisms ¹fi WXi ! Yiºi2Z making the
following diagram commute:


X


f


��


� � �


@X
iC1


// Xi
@X


i //


fi


��


Xi�1


@X
i�1 //


fi�1
��


� � �


Y � � �


@Y
iC1


// Yi
@Y


i // Yi�1


@Y
i�1 // � � �


that is, such that @Yi fi D fi�1@
X
i for all i 2 Z. A morphism f WX ! Y induces an


R-module homomorphism Hi .f /WHi .X/! Hi .Y / for each i 2 Z. The morphism f
is a quasiisomorphism if the map Hi .f / is an isomorphism for each i 2 Z.


Notation A.2. The category of R-complexes is denoted C.R/. The category of R-
modules is denoted M.R/. Isomorphisms in each of these categories are identified by
the symbolŠ, and quasiisomorphisms in C.R/ are identified by the symbol'.


The derived category of R-complexes is denoted D.R/. Morphisms in D.R/ are
equivalence classes of diagrams of morphisms in C.R/. Isomorphisms in D.R/ corre-
spond to quasiisomorphisms in C.R/ and are identified by the symbol'.


The connection between D.R/ and M.R/ comes from the following.


Fact A.3. Each R-module M is naturally associated with an R-complex concentrated
in degree 0, namely the complex 0 ! M ! 0. We use the symbol M to designate
both the module and the associated complex. With this notation we have


Hi .M/ Š


´
M if i D 0,
0 if i ¤ 0.


This association gives rise to a full embedding of the module category M.R/ into the
derived category D.R/. In particular, for R-modules M and N we have M Š N in
M.R/ if and only if M ' N in D.R/.
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Fact A.4. Let X and Y be R-complexes. If X ' Y in D.R/, then we have Hi .X/ Š
Hi .Y / for all i 2 Z. The converse fails in general. However, there is an isomorphism
X ' H0.X/ in D.R/ if and only if Hi .X/ D 0 for all i ¤ 0. In particular, we have
X ' 0 in D.R/ if and only if Hi .X/ D 0 for all i 2 Z.


The next invariants conveniently measure the homological position of a complex.


Definition A.5. The supremum and infimum of an R-complex X are, respectively


sup.X/ D sup¹i 2 Z j Hi .X/ ¤ 0º and inf.X/ D inf¹i 2 Z j Hi .X/ ¤ 0º


with the conventions inf ¿ D1 and sup ¿ D �1.


Fact A.6. Let X be an R-complex. If X 6' 0, then �1 6 inf.X/ 6 sup.X/ 6 1.
Also inf.X/ D 1 if and only if X ' 0 if and only if sup.X/ D �1. If M ¤ 0 is an
R-module, considered as an R-complex, then inf.M/ D 0 D sup.M/.


The next construction allows us to “shift” a given R-complex, which is useful, for
instance, when we want the nonzero homology modules in nonnegative degrees.


Definition A.7. Let X be an R-complex. For each integer i , the i th suspension or shift
of X is the complex ΣiX given by .ΣiX/j D Xj�i and @ΣiX


j D .�1/i@Xj�i .


Fact A.8. If X is an R-complex, then ΣiX is obtained by shifting X to the left by i
degrees and multiplying the differential by .�1/i . In particular, if M is an R-module,
then ΣiM is a complex that is concentrated in degree i . It is straightforward to show
that Hj .ΣiX/ Š Hj�i .X/, and hence inf.ΣiX/ D inf.X/ C i and sup.ΣiX/ D
sup.X/C i .


For most of this investigation, we focus on R-complexes with only finitely many
nonzero homology modules, hence the next terminology.


Definition A.9. An R-complex X is bounded if Xi D 0 for ji j � 0. It is homologi-
cally bounded below if Hi .X/ D 0 for i � 0. It is homologically bounded above if
Hi .X/ D 0 for i � 0. It is homologically bounded if Hi .X/ D 0 for ji j � 0. It is
homologically degreewise finite if each homology module Hi .X/ is finitely generated.
It is homologically finite if the module H.X/ D


`
i2Z Hi .X/ is finitely generated.


The next fact summarizes elementary translations of these definitions.


Fact A.10. An R-complex X is homologically bounded below if inf.X/ > �1. It is
homologically bounded above if sup.X/ < 1. Hence, it is homologically bounded if
inf.X/ > �1 and sup.X/ <1, that is, if it is homologically bounded both above and
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below. The complex X is homologically finite if it is homologically both degreewise
finite and bounded.


Each of the properties defined in A.9 is invariant under shift. For instance, an R-
complex X is homologically finite if and only if some (equivalently, every) shift ΣiX
is homologically finite; see Fact A.8.


For modules, many of these notions are trivial:


Fact A.11. An R-module M is always homologically bounded as an R-complex. It is
homologically finite as an R-complex if and only if it is finitely generated.


As with modules, there are various useful types of resolutions of R-complexes.


Definition A.12. Let X be an R-complex. An injective resolution2 of X is an R-
complex J such that X ' J in D.R/, each Ji is injective, and Ji D 0 for i � 0. The
complex X has finite injective dimension if it has an injective resolution J such that
Ji D 0 for i � 0. More specifically, the injective dimension of X is


idR.X/ D inf¹sup¹i 2 Z j J�i ¤ 0º j J is an injective resolution of Xº:


Dually, a free resolution of X is an R-complex F such that F ' X in D.R/, each Fi
is free, and Fi D 0 for i � 0. The complex X has finite projective dimension3 if it
has a free resolution F such that Fi D 0 for i � 0. More specifically, the projective
dimension of X is


pdR.X/ D inf¹sup¹i 2 Z j Fi ¤ 0º j F is a free resolution of Xº:


A free resolution F of X is minimal4 if for each index i , the module Fi is finitely
generated and Im.@Fi / � mFi�1.


For modules, the notions from A.12 are the familiar ones.


Fact A.13. Let M be an R-module. An injective resolution of M as an R-module, in
the traditional sense of an exact sequence of the form


0!M ! J0
@0
�! J�1


@�1
��! � � �


where each Ji is injective, gives rise to an injective resolution of M as an R-complex:


0! J0
@0
�! J�1


@�1
��! � � � :


Conversely, every injective resolution of M as an R-complex gives rise to an injective
resolution of M as an R-module, though one has to work a little harder. Accordingly,


2Note that our injective resolutions are bounded above by definition. There are notions of injective (and
projective) resolutions for unbounded complexes, but we do not need them here. The interested reader should
consult [3] for information on these more general constructions.


3Since the ring R is local, every projective R-module is free. For this reason, we focus on free resolutions
instead of projective ones. On the other hand, tradition dictates that the corresponding homological dimension is
the “projective dimension” instead of the possibly confusing (though, potentially liberating) “free dimension”.


4There is also a notion of minimal injective resolutions of complexes, but it is slightly more complicated, and
we do not need it here.
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the injective dimension of M as an R-module equals the injective dimension of M as
an R-complex. Similar comments apply to free resolutions and projective dimension.


The next fact summarizes basic properties about existence of these resolutions.


Fact A.14. Let X be an R-complex. Then X has a free resolution if and only if it is
homologically bounded below; when these conditions are met, it has a free resolution
F such that Fi D 0 for all i < inf.X/; see [5, (2.11.3.4)] or [15, (6.6.i)] or [16, (2.6.P)].
Dually, the complex X has an injective resolution if and only if it is homologically
bounded above; when these conditions are satisfied, it has an injective resolution J
such that Ji D 0 for all i > sup.X/. If X is homologically both degreewise finite and
bounded below, then it has a minimal free resolution F , and one has Fi D 0 for all
i < inf.X/; see [1, Prop. 2] or [5, (2.12.5.2.1)].


These invariants interact with the shift operator as one might expect:


Fact A.15. It is straightforward to show that, if X is an R-complex and i is an integer,
then idR.ΣiX/ D idR.X/ � i and pdR.Σ


iX/ D pdR.X/C i .


The next constructions extend Hom and tensor product to the category C.R/.


Definition A.16. Let X and Y be R-complexes. The tensor product complex X ˝R Y
and homomorphism complex HomR.X; Y / are defined by the formulas


.X ˝R Y /i D
a
j2Z


Xj ˝R Yi�j ;


@
X˝RY
i .¹xj ˝ yi�j ºj2Z/ D ¹@


X
j .xj /˝ yi�j C .�1/j�1xj�1 ˝ @


Y
i�jC1.yi�jC1/º;


HomR.X; Y /i D
Y
j2Z


HomR.Xj ; YjCi /;


@
HomR.X;Y /
i .¹�j ºj2Z/ D ¹@


Y
jCi�j � .�1/i�j�1@


X
j º:


When one of the complexes in this definition is a module, the resulting complexes
have the form one should expect:


Fact A.17. Let X be an R-complex and M an R-module. The complexes X ˝R M ,
M ˝R X and HomR.M;X/ are exactly the complexes you would expect, namely


X ˝R M D � � �
@X


iC1˝M


������! Xi ˝M
@X


i
˝M


�����! Xi�1 ˝M
@X


i�1˝M


������! � � � ;


M ˝R X D � � �
M˝@X


iC1
������!M ˝Xi


M˝@X
i


�����!M ˝Xi�1
M˝@X


i�1
������! � � � ;


HomR.M;X/ D


� � �


Hom.M;@X
iC1/


���������! Hom.M;Xi /
Hom.M;@X


i
/


��������! Hom.M;Xi�1/
Hom.M;@X


i�1/


���������! � � � :







Bass numbers and semidualizing complexes 377


On the other hand, the complex Hom.X;M/ has the form you would expect, but the
differentials differ by a sign:


HomR.X;M/ D


� � �
.�1/i Hom.@X


i
;M/


������������! Hom.Xi ;M/
.�1/iC1 Hom.@X


iC1;M/


��������������! Hom.Xi�1;M/ � � � :


Note that this sign difference does not change the homology since it changes neither
the kernels nor the images of the respective maps.


Here are some standard isomorphisms we shall need.


Fact A.18. Let X , Y and Z be R-complexes. The following natural isomorphisms are
straightforward to verify, using the counterparts for modules in the first five, and using
the definition in the last:


HomR.R;X/ Š X; (cancellation)


X ˝R Y Š Y ˝R X; (commutativity)


HomR.X ˚ Y;Z/ Š HomR.X;Z/˚ HomR.Y;Z/; (additivity)


HomR.X; Y ˚Z/ Š HomR.X;Z/˚ HomR.X; Y /; (additivity)


HomR.X ˝R Y;Z/ Š HomR.X;HomR.Y;Z//; (adjointness)


HomR.Σ
iX;ΣjY / Š Σj�i HomR.X; Y /: (shift)


Let S be a flat R-algebra. If each R-module Xi is finitely generated and Xi D 0 for
i � 0, then


HomS .S ˝R X;S ˝R Y / Š S ˝R HomR.X; Y /: (base-change)


Bounded complexes yield bounded homomorphism and tensor product complexes.
More specifically, the next fact follows straight from the definitions.


Fact A.19. Let X and Y be R-complexes. If Xi D 0 D Yj for all i < m and all j < n,
then .X ˝R Y /i D 0 for all i < mC n. If Xi D 0 D Yj for all i < m and all j > n,
then HomR.X; Y /i D 0 for all i > n �m.


Here is the notation for derived functors in the derived category D.R/.


Notation A.20. Let X and Y be R-complexes. The left-derived tensor product and
right-derived homomorphism complexes in D.R/ are denoted, respectively X ˝L


R Y
and RHomR.X; Y /.


The complexes X ˝L
R Y and RHomR.X; Y / are computed using the same rules as


for computing Tor and Ext of modules:
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Fact A.21. Let X and Y be R-complexes. If F is a free resolution of X and G is a free
resolution of Y , then


X ˝L
R Y ' F ˝R Y ' F ˝R G ' X ˝R G:


If F is a free resolution of X and I is an injective resolution of Y , then


RHomR.X; Y / ' HomR.F; Y / ' HomR.F; I / ' HomR.X; I /:


It follows that, if M and N are R-modules, then TorRi .M;N / Š Hi .M ˝L
R N/ and


ExtiR.M;N / Š H�i .RHomR.M;N // for every integer i .


The next isomorphisms follow from Fact A.18 using appropriate resolutions.


Fact A.22. If X , Y and Z are R-complexes, then there are isomorphisms in D.R/


RHomR.R;X/ ' X; (cancellation)


X ˝L
R Y ' Y ˝


L
R X; (commutativity)


RHomR.X ˚ Y;Z/ ' RHomR.X;Z/˚ RHomR.Y;Z/; (additivity)


RHomR.X; Y ˚Z/ ' RHomR.X;Z/˚ RHomR.X; Y /; (additivity)


RHomR.X ˝
L
R Y;Z/ ' RHomR.X;RHomR.Y;Z//; (adjointness)


RHomR.Σ
iX;ΣjY / ' Σj�iRHomR.X; Y /: (shift)


Let S be a flat R-algebra. If X is homologically both degreewise finite and bounded
below, then


RHomS .S ˝
L
R X;S ˝


L
R Y / ' S ˝


L
R RHomR.X; Y /: (base-change)


The following homological bounds are consequences of Fact A.19.


Fact A.23. Let X and Y be homologically bounded below R-complexes. Let F and G
be free resolutions X and Y , respectively, such that Fi D 0 for i < inf.X/ and Gi D 0
for i < inf.Y /. It follows that, for i < inf.X/C inf.Y /, we have


Hi .X ˝L
R Y / Š Hi .F ˝R G/ D 0


and hence inf.X ˝L
R Y / > inf.X/C inf.Y /. Furthermore, the right exactness of tensor


product yields the second isomorphism in the next sequence


Hinf.X/Cinf.Y /.X ˝
L
R Y / Š Hinf.X/Cinf.Y /.F ˝R G/ Š Hinf.X/.X/˝R Hinf.Y /.Y /:


This corresponds to the well-known formula TorR0 .M;N / ŠM ˝RN for modulesM
and N . If Hinf.X/.X/ and Hinf.Y /.Y / are both finitely generated, e.g., if X and Y are
both homologically degreewise finite, then Nakayama’s Lemma implies that


Hinf.X/Cinf.Y /.X ˝
L
R Y / Š Hinf.X/.X/˝R Hinf.Y /.Y / ¤ 0
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and thus inf.X˝L
RY / D inf.X/C inf.Y /. Note that this explicitly uses the assumption


that R is local.
A similar argument shows that, when Z is homologically bounded above, then


the complex RHomR.X;Z/ is homologically bounded above: there is an inequality
sup.RHomR.X;Z// 6 sup.Z/ � inf.X/ and an isomorphism


Hsup.Z/�inf.X/.RHomR.X;Z// Š HomR.Hinf.X/.X/;Hsup.Z/.Z//:


The next fact is a derived category version of the finite generation of Ext and Tor of
finitely generated modules. It essentially follows from A.21.


Fact A.24. LetX and Y beR-complexes that are homologically both degreewise finite
and bounded below. Let F and G be free resolutions of X and Y , respectively, such
that each Fi andGi is finitely generated. Then F ˝RG is a free resolution ofX˝L


R Y ,
and eachR-module .F˝RG/i is finitely generated. In particular, the complexX˝L


RY
is homologically both degreewise finite and bounded below. If F and G are minimal,
then F ˝R G is a minimal free resolution of X ˝L


R Y .
It takes a little more work to show that, if Z is homologically both degreewise


finite and bounded above, then the R-complex RHomR.X;Z/ is homologically both
degreewise finite and bounded above.


Here are some homological invariants that are familiar for modules.


Definition A.25. Let X be a homologically finite R-complex. The i th Bass number
of X is the integer �iR.X/ D rankk.H�i .RHomR.k;X///, and the Bass series of X
is the formal Laurent series IXR .t/ D


P
i2Z �


i
R.X/t


i . The i th Betti number of X is
the integer ˇRi .X/ D rankk.Hi .k ˝L


R X//, and the Poincaré series of X is the formal
Laurent series PRX .t/ D


P
i2Z ˇ


R
i .X/t


i .


Fact A.26. If M is an R-module, then we have �iR.M/ D rankk.ExtiR.k;M// and
ˇRi .M/ D rankk.TorRi .k;M// D rankk.ExtiR.M; k//.


We conclude with useful formulas for the Poincaré and Bass series of, respectively,
derived tensor products and derived homomorphism complexes.


Fact A.27. LetX and Y beR-complexes that are homologically both degreewise finite
and bounded below. If F is a minimal free resolution of X , then ˇRi .X/ D rankR.Fi /
for all i 2 Z. (Indeed the complex k ˝R F has zero differential, and hence


Hi .k ˝L
R X/ Š Hi .k ˝R F / Š .k ˝R F /i Š k ˝R Fi :


The k-vector space rank of this module is precisely rankR.Fi /.) Combining this with
Fact A.24, we conclude that


PR
X˝L


R
Y
.t/ D PRX .t/P


R
Y .t/:
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Furthermore, the equality ˇRi .X/ D rankR.Fi / for all i 2 Z implies that PRX .t/ D 0
if and only if F D 0, that is, if and only if X ' 0. See also Fact A.23.


Given an R-complex Z that is homologically both degreewise finite and bounded
above, a different argument yields the next formula


I
RHomR.X;Z/
R .t/ D PRX .t/I


Z
R .t/:


Furthermore, we have IZR .t/ D 0 if and only if Z ' 0. See [4, (1.5.3)].


Acknowledgments. I am grateful to Lars W. Christensen, Jim Coykendall, David
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Every numerical semigroup is one over d of infinitely
many symmetric numerical semigroups


Irena Swanson


Abstract. For every numerical semigroup S and every positive integer d > 1 there exist infinitely
many symmetric numerical semigroups S such that S D ¹n 2 Z W dn 2 Sº. If d � 3, there exist
infinitely many pseudo-symmetric numerical semigroups S such that S D ¹n 2 Z W dn 2 Sº.


Keywords. Numerical semigroup, symmetric semigroup.


AMS classification. 20M14.


This note was motivated by the recent results of Rosales and García-Sánchez [5, 6]
that for every numerical semigroup S there exist infinitely many symmetric numerical
semigroups S such that S D ¹n 2 Z W 2n 2 Sº. The main result in this note,
Theorem 5, is that 2 is not a special integer, bigger positive integers work as well. The
Rosales–García-Sánchez construction for d D 2 gives all the possible S , whereas the
construction below does not.


Throughout, S stands for a numerical semigroup, F.S/ stands for its Frobenius
number, PF.S/ for the set of all pseudo-Frobenius numbers (i.e., all n 2 Z n S such
that nC .S n¹0º/ � S ), and d for a positive integer strictly bigger than 1. The notation
dS stands for the set ¹ds W s 2 Sº and S


d
stands for ¹n 2 N W dn 2 Sº.


The goal is to construct infinitely many symmetric numerical semigroups T such
that S D T


d
. Another goal is to construct, for d � 3, infinitely many pseudo-symmetric


numerical semigroups T such that S D T
d


.
The ring-theoretic consequence, by a result of Kunz [1], is that for any affine do-


main of the form A D kŒta1 ; : : : ; tam �, with a1; : : : ; am positive integers generating a
numerical semigroup and with k a field, there exist infinitely many (Gorenstein) affine
extension domains R of the same form such that any equation Xd � a with a 2 A has
a solution in A if and only if it has a solution in R. Such rings R are called d -closed.


It is clear that if S D T
a


and T D U
b


, then S D U
ab


. Thus it suffices to prove
that for every S and for every positive prime integer d there exist infinitely many
(symmetric) numerical semigroups T for which S D T


d
. The proofs below, however,


will not assume that d is a prime.


Definition 1. Let d be a positive integer. A numerical semigroup S is said to be d -
symmetric if for all integers n 2 Z, whenever d divides n, either n or F.S/ � n is
in S .


Observe that a symmetric numerical semigroup is d -symmetric for all d , that a
1-symmetric numerical semigroup S is symmetric, and that a 2-symmetric numerical
semigroup S is symmetric if F.S/ is an odd integer.
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Proposition 2. Let S � T be numerical semigroups such that F.S/ D F.T /. If S is
d -symmetric, so is T , and S


d
D


T
d


.


Proof. Let m 2 Z be a multiple of d . If m 62 T , then m 62 S , so by the d -symmetric
assumption on S , F.T /�m D F.S/�m 2 S � T . Thus T is d -symmetric. It remains
to prove that T


d
�


S
d


. Let m 2 T
d


. Suppose that m 62 S
d


. Then dm 2 T n S . Since S is
d -symmetric, F.S/�dm 2 S � T , whence F.T / D F.S/ D .F.S/�dm/Cdm 2 T ,
which is a contradiction.


In [4, Theorem 1, Proposition 2], Rosales and Branco show that every numerical
semigroup S with odd F.S/ can be embedded in a symmetric numerical semigroup T
such that F.S/ D F.T /. There are only finitely many choices for such T , but they
are in general not unique. For example, let S D h12; 16; 21; 22; 23i. Then S is 4-
symmetric, F.S/ D 41, and the numbers n for which n; F.S/ � n are not in S are
10; 11; 14; 15; 26; 27; 30; 31. If one adds 10 to S , then 2 � 10 C 21 D 41 would be in
the numerical semigroup, so the Frobenius number would not be preserved. Thus any
symmetric numerical semigroup T containing S with F.S/ D F.T / needs to contain
31. However, there are symmetric (and 4-symmetric) T that contain 11 and there are
those that contain 30. All the possible symmetric T containing S with F.S/ D F.T /
are as follows:


h11; 12; 16; 21; 22; 23; 26; 31i; h12; 14; 16; 21; 22; 23; 31i;


h12; 15; 16; 21; 22; 23; 31i; h12; 16; 21; 22; 23; 26; 27; 30; 31i:


Proposition 3. Let S be a numerical semigroup and d; t and e positive integers. Let
g1; : : : ; gt ; h1; : : : ; he be positive integers such that:


(1) For all distinct i; j 2 ¹1; : : : ; eº, d does not divide hi�hj , and does not divide hi .


(2) h1 D min¹h1; : : : ; heº.


(3) For all i D 1; : : : ; e, hi � d F.S/ > 1
2 h1.


(4) g1; : : : ; gt are not contained in S .


Set T D dSChhi�dgj W i D 1; : : : ; eI j D 1; : : : ; tiChh1C1; h1C2; : : : ; 2h1C1i.
Then T is a numerical semigroup, F.T / D h1, and S D T


d
.


If PF.S/ � ¹g1; : : : ; gtº, then T is d -symmetric.


Proof. The set hh1 C 1; : : : ; 2h1 C 1i is contained in T , and thus T is a numerical
semigroup with F.T / � h1. Suppose that h1 2 T . Then


h1 D ds C
X
i;j


aij .hi � dgj /


for some s 2 S and some non-negative integers aij . Since d does not divide h1, at
least one aij is non-zero. By condition (3), at most one aij is non-zero, and so it
is necessarily 1. Then h1 � hi D ds � dgj , so that by condition (1), i D 1 and
s D gj 2 S , which is a contradiction. This proves that h1 62 T , whence h1 D F.T /.
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By (3), h1 > 2d F.S/ > d F.S/.
Clearly dS � T , so S � T


d
. Let n 2 Z such that dn 2 T . We want to prove that


n 2 S . If dn � h1, by the previous paragraph n > F.S/, whence n 2 S . Now suppose
that dn < h1. Since dn 2 T , write


dn D ds C
X
i;j


aij .hi � dgj /;


for some s 2 S and some non-negative integers aij . As before, either dn D dsC hi �


dgj for some i; j , or dn D ds. The former case is impossible as hi is not a multiple
of d , so necessarily dn D ds and so n D s 2 S . This proves that S D T


d
.


It remains to prove that T is d -symmetric if PF.S/ � ¹g1; : : : ; gtº. Let n 2 Z with
n D dm for some m 2 Z. If n 62 T , then m 62 S , and by [3, Proposition 12] there exists
gi 2 PF.S/ such that gi�m 2 S . Then h1�n D h1�dm D .h1�dgi /Cd.gi�m/ 2
T . Thus T is d -symmetric.


Corollary 4 (Rosales–García-Sánchez [6]). Every numerical semigroup is one half of
infinitely many symmetric numerical semigroups.


Proof. Let PF.S/ D ¹g1; : : : ; gtº and let h1 be an arbitrary odd integer bigger than
4 F.S/. Then by Proposition 3, there exists a 2-symmetric numerical semigroup T
such that T


2 D S and such that F.T / D h1. We already observed that a 2-symmetric
numerical semigroup with an odd Frobenius number is symmetric. Since there are
infinitely many choices for h1, we are done.


In general, the construction in the proof of Proposition 3 does not necessarily give
a symmetric numerical group T . Say S D h3; 4i and d D 4. Then F.S/ D 5,
PF.S/ D ¹5º. The maximal possible e is d � 1 D 3, so if we take h1 D 41, h2 D 42,
h3 D 43, the hypotheses of the theorem are satisfied, and the construction gives T D
h12; 16; 21; 22; 23i. By the theorem, F.T / D 41 and S D T


4 , but T is not symmetric
as neither 10 nor 31 are in T . One can find a symmetric numerical semigroup U such
that S D U


4 by using the Rosales–García-Sánchez result above twice (with d D 2), or
one can apply the following main theorem of this paper:


Theorem 5. Let S be a numerical semigroup and let d be an integer greater than or
equal to 2. Then there exist infinitely many symmetric numerical semigroups T such
that S D T


d
.


Proof. By choosing large odd integers h1 that are not multiplies of d , applying Propo-
sition 3 with e D 1 and ¹g1; : : : ; gtº D PF.S/ gives a d -symmetric numerical semi-
group T such that S D T


d
and F.T / D h1. But then by Theorem 1 in [4] there exists a


symmetric numerical semigroup U containing T such that F.U / D F.T /. By Propo-
sition 2, T


d
D


U
d


. Thus there exists a symmetric numerical semigroup U such that
S D U


d
and F.U / D h1. Since there are infinitely many choices of h1, we are done.


Recall that a numerical semigroup S is pseudo-symmetric if F.S/ is even and if for
all n 2 Z n ¹F.S/=2º, either n or F.S/ � n is in S . The following is a modification of
the main theorem for pseudo-symmetric semigroups:
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Theorem 6. Let S be a numerical semigroup and let d be an integer greater than or
equal to 3. Then there exist infinitely many pseudo-symmetric numerical semigroups T
such that S D T


d
.


Proof. By choosing large even integers h1 that are not multiples of d , applying Propo-
sition 3 with e D 1 and ¹g1; : : : ; gtº D PF.S/ gives a d -symmetric numerical semi-
group T such that S D T


d
and F.T / D h1. Similar to Theorem 1 in [4], there exists a


pseudo-symmetric numerical semigroup U containing T such that F.U / D F.T /, say
U D T [ ¹n 2 N j h1=2 < n < h1; h1 � n 62 T º. By Proposition 2, T


d
D


U
d


. Thus U


is a pseudo-symmetric numerical semigroup such that S D U
d


and F.U / D h1. Since
there are infinitely many choices of h1, we are done.


The integer d D 2 has to be excluded from the theorem above: if T is pseudo-
symmetric with even Frobenius number F.T / and S D T


2 , then necessarily F.T / �
2 F.S/. But there are only finitely many such T .


A related result is in Rosales [2]: every numerical semigroup is of the form T
4


for some pseudo-symmetric numerical semigroup. Also, Rosales [2] proves that a
numerical semigroup is irreducible if and only if it is one half of a pseudo-symmetric
numerical semigroup.


Acknowledgments. I thank the referee for helping strengthen the original Proposi-
tion 3 and Theorem 6.
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