
Beitr Algebra Geom (2017) 58:453–476
DOI 10.1007/s13366-017-0340-z

ORIGINAL PAPER

Topological properties of semigroup primes
of a commutative ring

Carmelo A. Finocchiaro1 · Marco Fontana2 ·
Dario Spirito2

Received: 17 April 2016 / Accepted: 4 April 2017 / Published online: 13 April 2017
© The Managing Editors 2017

Abstract A semigroup prime of a commutative ring R is a prime ideal of the semi-
group (R, ·). One of the purposes of this paper is to study, from a topological point of
view, the spaceS(R) of prime semigroups of R. We show that, under a natural topology
introduced by B. Olberding in 2010, S(R) is a spectral space (after Hochster), spectral
extension of Spec(R), and that the assignment R �→ S(R) induces a contravariant
functor. We then relate—in the case R is an integral domain—the topology on S(R)

with the Zariski topology on the set of overrings of R. Furthermore, we investigate the
relationship between S(R) and the space X (R) consisting of all nonempty inverse-
closed subspaces of Spec(R), which has been introduced and studied in Finocchiaro
et al. (submitted). In this context, we show that S(R) is a spectral retract of X (R)

and we characterize when S(R) is canonically homeomorphic to X (R), both in gen-
eral and when Spec(R) is a Noetherian space. In particular, we obtain that, when
R is a Bézout domain, S(R) is canonically homeomorphic both to X (R) and to the
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space Overr(R) of the overrings of R (endowed with the Zariski topology). Finally,
we compare the space X (R) with the space S(R(T )) of semigroup primes of the
Nagata ring R(T ), providing a canonical spectral embedding X (R) ↪→ S(R(T ))

which makes X (R) a spectral retract of S(R(T )).

Keywords Spectral space · Spectral map · Zariski topology · Constructible topology ·
Inverse topology · Semistar operation · Semigroup prime · Nagata ring

Mathematics Subject Classification 13A15 · 13G05 · 13B10 · 13C11 · 13F05 ·
14A05 · 54A10

1 Introduction and preliminaries

The concept of prime ideal, and the closely related concept of localization, play a
fundamental role in commutative ring theory. In the forties of the last century, the
concept of prime ideal was introduced in the setting of semigroups, and some analo-
gies and differences between the ring and semigroup theories were pointed out [cf.,
for instance, Rees (1940), Grimble (1950), and Kist (1963)]. Since a ring R can be
also regarded as a semigroup (by considering only the multiplicative structure), it is
reasonable to bring back the concept of semigroup prime from semigroups to rings:
hence, we define a semigroup prime of a ring R to be a prime ideal of the semigroup
(R, ·).

Clearly, every prime ideal of R is also a semigroup prime, but not conversely: the set
S(R) of all semigroup primes of R is in general much larger than the prime spectrum
Spec(R) of R. An additional link ties the two concepts: semigroup primes of R turn
out to be the complement of saturated multiplicatively closed subsets of R and so they
give rise to general ring of fractions, while prime ideals give rise to localizations.

Nevertheless, for a long time, semigroup primes of a commutative ring were left
out from the mainstream of investigation, even in the natural context of multiplicative
ideal theory of rings and integral domains.

Recently, Olberding (2010) has considered the spaceS(R), equipped with a Zariski-
like topology, for obtaining new important properties of the spaces of overrings and
valuation overrings of an integral domain R.

In this paper, we pursue the study of S(R), mainly from a topological point of
view, considering the general case of a commutative ring R with applications to the
special case of when R is an integral domain. The relevant topologies that turn out to be
useful in our investigation are the hull-kernel topology [classically introduced by Stone
(1937)] or Zariski topology, the constructible or patch topology (cf. Grothendieck and
Dieudonné 1970; Hochster 1969), with an underlying ultrafilter theoretic approach (cf.
Fontana and Loper 2008; Finocchiaro 2014; Loper et al. 2011) and the inverse topology
introduced by Hochster on arbitrary spectral spaces (Hochster 1969) (definitions and
properties used in the present paper will be recalled later in this section).

As a starting point, we prove that S(R), when endowed with the hull-kernel
topology, is a new unconventional example of spectral space (after Hochster), that
the inclusion map Spec(R) ↪→ S(R) is a spectral map, and that the assignment

123



Beitr Algebra Geom (2017) 58:453–476 455

R �→ S(R) induces a contravariant functor. Next, we compare the spectral space
S(R) with the space X (R) consisting of all nonempty inverse-closed subspaces of
Spec(R), which has been introduced and studied in Finocchiaro et al. (submitted) to
classify, from a topological point of view, distinguished classes of Krull closure opera-
tions, namely the e.a.b. semistar operations and the stable semistar operations of finite
type. In particular, we prove here that S(R) is a spectral retract of X (R) (Proposition
2.11) and we characterize when S(R) is canonically homeomorphic to X (R), both in
general and when Spec(R) is a Noetherian space. In the general case, this happens
under the purely algebraic condition that the radical of every finitely generated ideal of
R is the radical of a principal ideal (Theorem 2.13) and, in the Noetherian space case,
when every prime ideal of R is the radical of a principal ideal (Corollary 2.14). When
R is a Bézout domain, we prove thatS(R) is canonically homeomorphic both toX (R)

and to the space Overr(R) of the overrings of R endowed with the Zariski topology
(Corollary 3.3). When R is a Dedekind domain, S(R) is canonically homeomorphic
to X (R) if and only if the ideal class group of R is torsion (Remark 3.5). Each of
the previous homeomorphisms can be interpreted as a topological “dual” statement to
Hilbert’s Nullstellensatz, providing a one-to-one correspondence, compatible with the
natural orders, between inverse-closed subspaces of Spec(R) and semigroup primes
of R.

In the final section, we compare the space X (R) with the space S(R(T )) of semi-
group primes of the Nagata ring R(T ) (where T is an indeterminate over R). In
particular, we provide a canonical spectral embedding X (R) ↪→ S(R(T )) which
makes X (R) a spectral retract of S(R(T )) (Propositions 4.2 and 4.4).

In order to facilitate the reader, we recall next some preliminary notions and results
that will be used in the present paper.

1.1 Spectral spaces

A topological space is spectral (after Hochster 1969) if it is homeomorphic to the
prime spectrum of a (commutative) ring. While defined in algebraic terms, this concept
admits a purely topological characterization: a topological space X is spectral if and
only if it is T0, quasi-compact, it admits a basis of open and quasi-compact subspaces
that is closed under finite intersections, and every irreducible closed subset of X has
a (unique) generic point (i.e., it is the closure of a one-point set) (Hochster 1969). If
X and Y are spectral spaces, a spectral map f : X → Y is a map such that f −1(U )

is a quasi-compact open subspace of X , for each quasi-compact open subspace U
of Y ; spectral maps are the morphisms in the category having the spectral spaces as
objects.

It is well known that the prime spectrum of a commutative ring endowed with
the Zariski topology is always T0, but almost never Hausdorff (it is Hausdorff if and
only if the ring has Krull dimension zero). Thus, many authors have considered a
finer topology on the prime spectrum of a ring, known as the constructible topol-
ogy (Grothendieck and Dieudonné 1970, pages 337–339) or as the patch topology
(Hochster 1969).
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As in Schwartz and Tressl (2010), we introduce the constructible topology by a
Kuratowski closure operator: if X is a spectral space, for each subset Y of X , we set:

Clcons(Y ) :=⋂{U∪(X \V ) | U and V open and quasi-compact in X,

U∪(X \V ) ⊇ Y } .

We denote by Xcons the set X , equipped with the constructible topology. For Noethe-
rian topological spaces, the closed sets of this topology coincide with the “constructible
sets” classically defined in Chevalley and Cartan (1955–1956). It is well known that
Xcons is a spectral space and that the constructible topology is a refinement of the
given topology which is always Hausdorff.

1.2 The inverse topology on a spectral space

Recall that the given topology on a spectral space X induces a canonical partial order
≤X , denoted simply by ≤ when no danger of confusion can arise, defined by x ≤X y
if y ∈ Cl({x}), for x, y ∈ X , where Cl(Y ) denotes the closure of a subset Y of X .
The set Y gen := {x ∈ X | y ∈ Cl({x}), for some y ∈ Y } is called closure under
generizations of Y . Similarly, using the opposite order, the set Y sp := {x ∈ X | x ∈
Cl({y}), for some y ∈ Y } is called closure under specializations of Y . We say that Y
is closed under generizations (respectively, closed under specializations) if Y = Y gen

(respectively, Y = Y sp). It is straightforward that, for two elements x, y in a spectral
space X , we have:

x ≤ y ⇔ {x}gen ⊆ {y}gen ⇔ {x}sp ⊇ {y}sp .

Given a spectral space X , Hochster (1969, Proposition 8) introduced a new topology
on X , that we call here the inverse topology, by defining a Kuratowski closure operator,
for each subset Y of X , as follows:

Clinv(Y ) :=
⋂

{U | U open and quasi-compact in X, U ⊇ Y } .

If we denote by Xinv the set X equipped with the inverse topology, Hochster
proved that Xinv is still a spectral space and the partial order on X induced by the
inverse topology is the opposite order of that induced by the given topology on X
(Hochster 1969, Proposition 8). In particular, the closure under generizations {x}gen
of a singleton is closed in the inverse topology of X , since {x}gen = ⋂{U | U ⊆
X quasi-compact and open, x ∈ U }. On the other hand, it is trivial, by the defini-
tion, that the closure under specializations of a singleton {x}sp is closed in the given
topology of X , since {x}sp = Cl({x}).

Finally, recall that, by Finocchiaro et al. (2013, Remark 2.2), we have Clinv(Y ) =
(Clcons(Y ))gen. It follows that each closed set in the inverse topology (called for
short, inverse-closed) is closed under generizations and, from Finocchiaro et al. (2013,
Proposition 2.6), that a quasi-compact subspace Y of X closed for generizations is
inverse-closed. On the other hand, the closure of a subset Y in the given topology of
X , Cl(Y ), coincides with (Clcons(Y ))sp, by Finocchiaro et al. (2013, Remark 2.2).
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1.3 The spectral space of the inverse-closed subspaces

Given a spectral space X , let X (X) := {Y ⊆ X | Y 
= ∅, Y = Clinv(Y )}, that is,
X (X) is the set of all nonempty subset of X that are closed in the inverse topology.

If X = Spec(R) for some ring R, we write for short X (R) instead of
X (Spec(R)).

We define a Zariski topology on X (X) by taking, as subbasis (in fact, a basis) of
open sets, the sets of the form

U(�) := {Y ∈ X | Y ⊆ �},

where � varies among the quasi-compact open subspaces of X . Note that ∅ 
= � ∈
U(�), since a quasi-compact open subset � of X is a closed in the inverse topology
of X . Note also that, when X = Spec(R), for some ring R, a generic basic open set
of the Zariski topology on X (R) is of the form

U(D(J )) = {Y ∈ X (R) | Y ⊆ D(J )},

where J is any finitely generated ideal of R, and, as usual,

V(J ) := {P ∈ Spec(R) | J ⊆ P} and D(J ) := Spec(R) \ V(J ) .

It was proved in (Finocchiaro et al. submitted, Theorem 3.4) that:

1. the space X (X), endowed with the Zariski topology, is a spectral space;
2. the canonical map ϕ : X ↪→ X (X), defined by ϕ(x) := {x}gen, for each x ∈ X , is

a spectral embedding (and, in particular, an order-preserving embedding between
ordered sets, with the ordering induced by the Zariski topologies).

1.4 Semistar operations

Let D be an integral domain with quotient field K . Let F(D) (respectively, F(D);
f (D)) be the set of all nonzero D–submodules of K (respectively, nonzero fractional
ideals; nonzero finitely generated fractional ideals) of D (thus, f (D) ⊆ F(D) ⊆
F(D)).

A mapping � : F(D) −→ F(D), E �→ E�, is called a semistar operation of D
if, for all z ∈ K , z 
= 0 and for all E, F ∈ F(D), the following properties hold:
(�1) (zE)� = zE�; (�2) E ⊆ F ⇒ E� ⊆ F�; (�3) E ⊆ E�; and (�4) E�� :=
(E�)� = E�. We denote the set of all semistar operations on D by SStar(D).

Given a semistar operation � on D, a nonzero ideal I of D is called a quasi-�-ideal
if I = I � ∩ D. A quasi-�-prime is a quasi-�-ideal which is also a prime ideal. The
set of all quasi-�-prime ideals of D is denoted by QSpec�(D). The set of maximal
elements in the set of proper quasi-�-ideals of D (ordered by set-theoretic inclusion)
is denoted by QMax�(D) and it is a subset of QSpec�(D).
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A semistar operation � is of finite type if, for every E ∈ F(D),

E� =
⋃

{F� | F ⊆ E, F ∈ f (D)}.

It is well known that if � is a semistar operation of finite type then QMax�(D) is
nonempty (Fontana and Loper 2003, Lemma 2.3(1)).

For more details on semistar operations see, for instance, Epstein (2012, 2015),
Halter-Koch (2001, 2011), Matsuda (2011) and Okabe and Matsuda (1994); for the
case of star operations see, for instance, Anderson (1988), Anderson and Anderson
(1990), Anderson and Clarke (2005), Elliott (2010) and Gilmer (1972).

The set of all semistar operations of finite type is denoted by SStar f (D).
In Finocchiaro and Spirito (2014), the set SStar(D) of all semistar operation was

endowed with a topology (called the Zariski topology) having, as a subbasis of open
sets, the sets of the type

VE := {� ∈ SStar(D) | 1 ∈ E�}, where E is a nonzero D-submodule of K .

This topology makes SStar(D) into a quasi-compact T0 space, and SStar f (D)

into a spectral space.

1.5 Spectral semistar operations

Let D be a domain and Y ⊆ Spec(D) be nonempty. The semistar operation sY is
defined as the map such that

EsY =
⋂

{EDP | P ∈ Y } for every E ∈ F(D).

The semistar operations on D that can be written as sY , for some Y , are called
spectral; the set of all finite type spectral semistar operations, denoted by S̃Star(D),
is a spectral space (Finocchiaro et al. 2016b, Theorem 4.6). By Finocchiaro and Spirito
(2014, Corollary 4.4), sY is of finite type if and only if Y is quasi-compact, as a
subspace of Spec(D), endowed with the Zariski topology (see also Fontana and
Huckaba 2000; Halter-Koch 2001).

There is a canonical map

�̃ : SStar(D) −→ S̃Star(D)

� �−→ �̃,

where �̃ is defined as the map such that, for every E ∈ F(D),

E �̃ := ⋃{(E : J ) | J nonzero finitely generated ideal of D
such that J � = D�}.

The map �̃ is a topological retraction (Finocchiaro et al. 2016b, Proposition 4.3(2));
in particular, � = �̃ if and only if � is spectral and of finite type (Fontana and Huckaba
2000, Corollary 3.9(2)).
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The space S̃Star(D) can also be seen as a natural “extension” of Spec(D),
since the canonical map s : Spec(D) ↪→ S̃Star(D), defined by P �→ s{P}, is a
topological embedding.

An alternative way to see the space S̃Star(D) is through the space X (D) recalled
in Sect. 1.3. By (Finocchiaro et al. submitted, Proposition 5.2), we have the following.

• The map s� : X (D) → S̃Star(D), defined by Y �→ sY , and the map � :
S̃Star(D) → X (D), defined by � �→ QSpec�(D), are homeomorphisms and
are inverse of each other.

• If ϕ : Spec(D) ↪→ X (D) is the canonical embedding defined in 1.3(2), then
s� ◦ ϕ = s.

Remark 1.1 Let � be a semistar operation of finite type on the integral domain D.
It is well known that QMax�(D) = QMax̃�(D) and �̃ = sQSpec�(D) = sQMax�(D) =
sQMax̃�(D) (Fontana and Loper 2003, Lemma 2.4 and Corollaries 2.7 and 3.5). More-
over, since QSpec̃�(D) is closed in the inverse topology of Spec(D) and the maps
�,s� are homeomorphisms (see above), it follows that Clinv(QSpec�(D)) =
QSpec̃�(D). Therefore, by Finocchiaro and Spirito (2014, Proposition 5.8), we also
have

�̃ = sClinv(QSpec�(D)) = sQSpec̃�(D).

1.6 The set of overrings of an integral domain

Let Overr(D) be the set of all overrings of D, endowed with the topology whose
basic open sets are of the form B(x1, x2, . . . , xr ) := Overr(D[x1, x2, . . . , xn]), for
x1, x2, . . . , xn varying in K (Zariski and Samuel 1960, Ch. VI, §17). For recent inves-
tigations on topological spaces of overrings of an integral domain see, for instance,
Finocchiaro et al. (2016a, b), Olberding (2010), Olberding (2011), Olberding (2015a),
Olberding (2015b).

It is known that:

1. The topological space Overr(D) is a spectral space (Finocchiaro 2014, Proposi-
tion 3.5) and the map ι : Overr(D) ↪→ SStar f (D), defined by ι(T ) := ∧{T },
for each T ∈ Overr(D), is a topological embedding (Finocchiaro and Spirito
2014, Proposition 2.5).

2. The map π : SStar f (D) → Overr(D), defined by π(�) := D�, for any � ∈
SStar f (D), is a topological retraction (Finocchiaro et al. 2016a, Proposition 3.2).

2 The space of semigroup primes

Let R be a ring. The purpose of the present section is to investigate a natural spectral
extension of Spec(R) which is intermediate between Spec(R) and X (R), namely
the embeding of the prime spectrum into the set of semigroup primes.

Using the terminology of Olberding (2010), we recall the following definition:
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Definition 2.1 A semigroup prime is a nonempty proper subset Q of a ring R such
that:

(a) for each r ∈ R and for each π ∈ Q, rπ ∈ Q;
(b) for all σ, τ ∈ R\Q, στ ∈ R\Q.

Obviously, every prime ideal of R is also a semigroup prime of R. More generally,
if Y is a nonempty collection of prime ideals of R, then P(Y ) := ⋃{P ∈ Spec(R) |
P ∈ Y } is a semigroup prime of R. A more precise result is given next.

Lemma 2.2 Let Q be a proper subset of a ring R. Then, Q is a semigroup prime of
R if and only if there exists a nonempty collection of prime ideals Y of R such that
Q = P(Y ).

Proof We just need to prove the “only if” part. For each semigroup primeQ of R, R\Q
is a multiplicatively closed subset of R and it is also saturated, since if αβ ∈ R\Q
then, from (a) of the previous definition, it follows immediately that both α and β

belong to R\Q. Since a saturated multiplicatively closed set is the complement of the
union of prime ideals (Kaplansky 1970, Theorem 2), if Y is a nonempty set of prime
ideals of R such that R\P(Y ) coincides with the saturated multiplicatively closed set
R\Q, then Q = P(Y ). ��

Let S(R) := {Q | Q is a semigroup prime of R}. As in Olberding (2010, (2.3)),
the set S(R) can be endowed with the hull kernel topology, defined by taking as a
basis for the open sets the subsets

U(x1, x2, . . . , xn) := {Q | xi /∈ Q for some i, 1 ≤ i ≤ n} ,

where x1, x2, . . . , xn ∈ R.

Proposition 2.3 Let R be a ring.

1. The set S(R) of semigroup primes of R with the hull-kernel topology is a spectral
space.

2. The collection of sets {U(x) | x ∈ R} is a basis of open and quasi-compact
subspaces of S(R).

3. The set theoretic inclusion i : Spec(R) ↪→ S(R) is a spectral embedding.

Proof 1. Since R\Q is a saturated multiplicative set of R for each Q ∈ S(R), then
U(xy) = U(x)∩U(y) for each pair x, y ∈ R. By definition, it follows easily that
a basis of open sets for S(R) is given by {U(x) | x ∈ R}.
By Finocchiaro (2014, Corollary 3.3), to show that S(R) is a spectral space it
suffices to show that, for any ultrafilter U on S(R), the set

{Q ∈ S(R) | ∀x ∈ R, Q ∈ U(x) ⇔ U(x) ∈ U }

is nonempty. Set QU := {r ∈ R | S(R)\U(r) ∈ U }. An easy argument shows
that QU is a semigroup prime of R. Moreover, by definition, for each x ∈ R,
QU ∈ U(x) if and only if U(x) ∈ U .
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2. By Finocchiaro (2014, Propositions 2.11, 3.1(3,b) and 3.2), the sets U(x) are
clopen, with respect to the constructible topology of S(R) and, a fortiori, they are
quasi-compact with respect to the hull-kernel topology.

3. The conclusion follows from the fact that the hull-kernel topology ofS(R) induces
the Zariski topology on Spec(R), since i−1(U(x)) = U(x) ∩ Spec(R) = D(x)
and from the fact that i(D(x)) = U(x) ∩ i(Spec(R)), for each x ∈ R. ��

Remark 2.4 Let S be a semigroup. A prime ideal of S is a nonempty proper subset
I ⊆ S such that xs ∈ I for every x ∈ I , s ∈ S and such that st ∈ S\I for every
s, t ∈ S\I (see, for example, Grimble 1950; Kist 1963). Under this terminology, a
prime semigroup of a ring R is just a prime ideal of the multiplicative semigroup
(R, ·).

The topology we introduced above in the case of prime semigroups of a ring can
be extended naturally to the set S(S) of the prime ideals of the semigroup S; likewise,
the proof of Proposition 2.3(1) can be transferred verbatim to the case of semigroups,
showing the slightly more general result that S(S) is a spectral space.

Remark 2.5 The subspace Spec(R) of S(R) is dense in S(R). In fact, the closure of
Spec(R) is the set of all Q ∈ S(R) containing the nilradical of R, which is S(R)

(since each Q contains at least one prime P ∈ Spec(R)).
Following Grothendieck and Dieudonné (1970, Définition (2.6.3)), recall that a

subset X0 of a topological space X is said to be very dense in X if, for any open sets
U, V ⊆ X , the equality U ∩ X0 = V ∩ X0 implies U = V , that is, in our setting, if
the map U �→ U ∩ Spec(R), from the open subsets of S(R) to the open subsets of
Spec(R), is injective. Under this terminology, Spec(R) is not very dense in S(R).
For instance, consider a 1-dimensional Bézout domain D with exactly two maximal
ideals, say M and N . Then, S(D) has a maximal element (namely M ∪ N ) that is a
closed point but does not belong to Spec(D).

Given a ring homomorphism f : R1 → R2, we can canonically associate to f a
map

S( f ) : S(R2) −→ S(R1)

Q �−→ f −1(Q).
(1)

We investigate next the properties of this map.

Proposition 2.6 Let f : R1 → R2 be a ring homomorphism, let S( f ) be the map
defined above and let f a : Spec(R2) → Spec(R1) be the continuous map canoni-
cally associated to f . Assume thatS(R1) andS(R2) are endowed with the hull-kernel
topology. Then:

1. S( f ) is well-defined, (continuous) and spectral;
2. if ik : Spec(Rk) −→ S(Rk) is the set-theoretic inclusion (k = 1, 2), then

S( f ) ◦ i2 = i1 ◦ f a;
3. the assignment R �→ S(R), f �→ S( f ), is a functor from the category of rings

to the category of spectral spaces.

Proof 1. Let Q be a semigroup prime of R2, let r ∈ R1 and π ∈ f −1(Q). Then,
f (πr) = f (π) f (r) ∈ f (r)Q ⊆ Q, so that rπ ∈ f −1(Q); moreover, if σ, τ /∈
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f −1(Q), then f (σ ), f (τ ) /∈ Q and thus f (σ ) f (τ ) /∈ Q, that is, στ /∈ f −1(Q).
Hence, S( f ) is well-defined. Moreover, S( f )−1(U(x)) = U( f (x)) for each
x ∈ R1, and thus S( f ) is continuous. By the last part of Proposition 2.3(1), the
collection {U(y) | y ∈ A} is a basis of quasi-compact subsets of S(A), for any
ring A. Thus, the previous reasoning implies that S( f ) is a spectral map.

2. is straightforward.
3. follows from the previous points and the fact that, given two ring homomorphisms

f : R1 → R2 and g : R2 → R3, S(g ◦ f ) = S( f ) ◦ S(g), which is a direct
consequence of the definitions. ��

We now start the study of the relationship between the spectral spaces S(R) and
X (R).

Proposition 2.7 Let R be a ring.

1. For each Q ∈ S(R), set �Q := R\Q and RQ := �−1
Q R. The map

j : S(R) −→ X (R)

Q �−→ λa(Spec(RQ)),

where λa : Spec(RQ) → Spec(R) is the spectral map associated to the local-
ization homomorphism λ : R → RQ , is a topological embedding. Moreover,
j (Q) = {P ∈ Spec(R) | P ⊆ Q}, for each Q ∈ S(R).

2. The canonical spectral embedding ϕ : Spec(R) ↪→ X (R) [Finocchiaro et al.
submitted, Theorem 3.4(3)] coincides with j ◦ i .

Proof 1. The map j is clearly injective. In order to prove that j is continuous we
have to verify that, given a nonzero finitely generated ideal J of R, then

H := j−1(U(D(J ))) = {Q ∈ S(R) | j (Q) ⊆ D(J )}

is open in S(R). Take a point Q ∈ H and assume that J ⊆ Q. Then J is disjoint
from �Q , and thus there exists a prime ideal P of R disjoint from �Q and such that
J ⊆ P . On the other hand, keeping in mind thatQ ∈ H and P∩�Q = ∅, we have
P ∈ j (Q) ⊆ D(J ), contradiction. This shows that J � Q, and thus there exists
an element x ∈ J\Q. It follows that Q ∈ U(x) and, moreover, U(x) ⊆ H . Since
{U(x) | x ∈ R} is a basis of open sets for S(R), it follows that H is open and j is
continuous. Now, the fact that j is a topological embedding follows immediately
from the equality j (U(x)) = j (S(R)) ∩ U(D(x)) that holds for each x ∈ R.
For the last statement, we have P ∈ λa(Spec(RQ)) if and only if P ∩ �Q = ∅,
i.e., if and only if P ⊆ Q.

2. is a straightforward consequence of the definitions. ��
Proposition 2.8 Let f : R1 → R2 be a ring homomorphism, f a : Spec(R2) →
Spec(R1) the associated map of spectra, S( f ) the map defined in (1), X ( f a) :
X (R2) → X (R1) the spectral map defined in Finocchiaro et al. (submitted, Propo-
sition 4.1) and let ik : Spec(Rk) → S(Rk) (respectively, jk : S(Rk) → X (Rk))
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the spectral embedding defined in Proposition 2.3 (respectively, Proposition 2.7), for
k = 1, 2. Then, the diagram:

Spec(R2)
i2−−−−→ S(R2)

j2−−−−→ X (R2)

f a
⏐
⏐
� S( f )

⏐
⏐
� X( f a)

⏐
⏐
�

Spec(R1)
i1−−−−→ S(R1)

j1−−−−→ X (R1)

(2)

commutes.

Proof The left square of (2) commutes by Proposition 2.6(2).
Let now Q ∈ S(R2). Then, using Proposition 2.7(1),

j1 ◦ S( f )(Q) = j1( f
−1(Q)) = {P | P ⊆ f −1(Q)},

while
X ( f a) ◦ j2(Q) = X ( f a) ({P | P ⊆ Q})

= ( f a ({P | P ⊆ Q}))gen
= ({ f −1(P) | P ⊆ Q})gen .

Let Q ∈ Spec(R1). If Q ∈ X ( f a) ◦ j2(Q), then Q ⊆ f −1(P) for some P ⊆ Q;
hence, Q ⊆ f −1(Q) and Q ∈ j1 ◦ S( f )(Q).

Conversely, suppose Q ∈ j1◦S( f )(Q), then Q ⊆ f −1(Q). Therefore, f (Q) ⊆ Q
and so f (Q)R2 ∩ �Q = ∅, where �Q := R2\Q. It follows that f (Q)R2 extends
to a proper ideal of �−1

Q R2, and in particular there is a prime ideal P of R2 such

that f (Q) ⊆ P and �−1
Q P 
= �−1

Q R2. Therefore, P ⊆ Q. It follows that Q ⊆
f −1( f (Q)) ⊆ f −1(P) (⊆ f −1(Q)), and so Q ∈ X ( f a) ◦ j2(Q). Therefore, also
the right square of (2) commutes. ��

It is obvious that, if f is an isomorphism, S( f ) is a homeomorphism. The con-
verse does not hold; for example, if R1 ⊂ R2 is a proper integral extension of
one-dimensional local domains, thenS( f ) (like f a andX ( f a)) is a homeomorphism,
but f is not an isomorphism. More generally, we have:

Corollary 2.9 Let f : R1 → R2 be a ring homomorphism, and let f a : Spec(R2) →
Spec(R1) be the associated spectral map. If f a is a topological embedding (respec-
tively, a homeomorphism) then so is S( f ).

Proof If f a is a topological embedding then, by Finocchiaro et al. (submitted, Propo-
sition 4.5(1)), so is X ( f a), and thus also X ( f a) ◦ j2 is a topological embedding. By
Proposition 2.8, it follows that j1 ◦ S( f ) is a topological embedding, and thus so is
S( f ).

If f a is a homeomorphism, then by the previous paragraph S( f ) is a topological
embedding. Let Q ∈ S(R1), and let L := ⋃{rad( f (P)R2) | P ⊆ Q}. Since f a is
a homeomorphism, rad( f (P)R2) is a prime ideal of R2 (since the irreducible closed
V(P) subspace of Spec(R1) is homeomorphic to V(rad( f (P)R2)) in Spec(R2)),
and so L is a prime semigroup. We claim that S( f )(L ) = Q. Clearly if q ∈ Q
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then f (q) ∈ L , and q ∈ f −1(L ) = S( f )(L ). Conversely, if q ∈ S( f )(L ), then
f (q)n ∈ f (P)R2 for some P ⊆ Q and for some n ≥ 1. Hence qn ∈ f −1( f (P)R2) =
P , the last equality coming from the bijectivity of f a . Thus, q ∈ P ⊆ Q. Therefore,
S( f ) is surjective, and thus a homeomorphism. ��
Remark 2.10 Despite the similarity between the properties enjoyed by X (R) and
S(R), there is however a significant difference: while X (R) is a purely topological
construction [depending only on the topology of Spec(R), see (Finocchiaro et al.
submitted, Theorem 3.4 and Proposition 4.10)], S(R) depends also on the algebraic
properties of R. In particular, S(R), in contrast with X (R) (Finocchiaro et al. sub-
mitted, Theorem 4.5) cannot be obtained from Spec(R) alone through a universal
property. We provide now an example of this fact, and another example will be given
later (Example 3.4).

Unlike in the case of X (R) (Finocchiaro et al. submitted, proof of Proposition 4.5),
the image of Spec(R) in S(R) cannot be determined uniquely by topological means.
For example, let R be a unique factorization domain, and let P(R) be the set of
equivalence classes of prime elements of R modulo multiplication by units. Any prime
semigroup in S(R) is uniquely determined by the prime elements that it contains,
and thus there is a bijective correspondence between S(R) and the power set B :=
B(P(R)) of P(R), which becomes a homeomorphism if we take, as a subbasis for
B, the family of the subsets of B of the form V (p) := {B ∈ B | p /∈ B}, as p runs
in P(R). In particular, the topology of S(R) depends uniquely on the cardinality of
P(R), and thus it does not depend on other properties of R or Spec(R): for example,
it does not depend on the dimension of R. Hence, by cardinality reasons, there exists
a homeomorphism S(Z) � S(Z[X ]), but j (Spec(Z)) and j (Spec(Z[X ])) are not
homeomorphic, and so they do not correspond under any homeomorphism between
S(Z) and S(Z[X ]).

We prove next that the spectral space S(R) is a retract of the spectral space X (R).

Proposition 2.11 Let R be a ring, j : S(R) → X (R) the canonical embedding
defined in Proposition 2.7(1) and let P : X (R) → S(R) be the map defined by
setting P(Y ) := ⋃{P | P ∈ Y } for each Y ∈ X (R). Then:

1. P is surjective and spectral;
2. P ◦ j is the identity on S(R);
3. for every Y ∈ X (R), ( j ◦ P)(Y ) = ⋂{D(a) | Y ⊆ D(a)}.
Proof (1) and (2). Let U(x) be a basic open set of S(R), with x ∈ R. Then,

P−1(U(x)) = {Y ∈ X (R) | P(Y ) ∈ U(x)} =
= {Y ∈ X (R) | x /∈ P(Y )}
= {Y ∈ X (R) | x /∈ ⋃{P | P ∈ Y }}
= {Y ∈ X (R) | x /∈ P for every P ∈ Y } =
= {Y ∈ X (R) | Y ⊆ D(x)} = U(D(x))

which is a basic quasi-compact open set of X (R). Hence, P is (continuous and)
spectral.
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The fact that P ◦ j is the identity on S(R) follows directly from Lemma 2.2 and
Proposition 2.7(1), and in particular it implies that P is surjective.

(3) Let Y ∈ X (R). If Y ⊆ D(a), then a /∈ P for every P ∈ Y , and thus a /∈⋃{P | P ∈ Y } = P(Y ). Hence, if Q ∈ ( j ◦ P)(Y ) then a /∈ Q and so Q ∈ D(a).
Conversely, suppose Q belongs to the given intersection. If Q /∈ ( j ◦P)(Y ), then an
element q ∈ Q\P(Y ) would exist. But this would imply Y ⊆ D(q) while Q /∈ D(q),
which is absurd. ��
Remark 2.12 As we observed at the beginning of the present section, we can define
P(Y ) := {P | P ∈ Y } for each nonempty subset Y of Spec(R). In this case, we
can show that if Y1, Y2 ⊆ Spec(R) and if Clinv(Y1) ⊆ Clinv(Y2) then P(Y1) ⊆
P(Y2). In particular, if Clinv(Y1) = Clinv(Y2), then P(Y1) = P(Y2), hence
P(Y ) = P(Clinv(Y )) for each nonempty subset Y of Spec(R).

As a matter of fact, let x ∈ R be such that x ∈ P(Y1)\P(Y2). Then D(x) contains
Y2, and it is a closed set, with respect to the inverse topology of Spec(R). Thus,
by assumption, D(x) ⊇ Clinv(Y2) ⊇ Clinv(Y1) ⊇ Y1. On the other hand, since
x ∈ P(Y1), there exist a prime ideal P ∈ Y1 such that x ∈ P , and hence Y1 � D(x),
which is a contradiction.

In the next result, we characterize when the canonical embedding S(R) ↪→ X (R)

is a homeomorphism and, as a consequence, we deduce that, in general, there are rings
R and inverse-closed subspaces Y of Spec(R) such that Y � ( j ◦ P)(Y ).

Theorem 2.13 Let R be a ring. The following statements are equivalent.

(i) The canonical embedding j : S(R) ↪→ X (R) (defined in Proposition 2.7(1)) is
a homeomorphism.

(ii) The radical of every finitely generated ideal of R is the radical of a principal
ideal.

(iii) If I is a finitely generated ideal of R and I ⊆ Q := ⋃{Qλ | λ ∈ �} ∈ S(R)

(where Qλ ∈ Spec(R) for each λ), then I ⊆ Qλ for some λ ∈ �.
(iv) Abasis for the open sets for theZariski topology ofX (R) is given by the collection

{U(D(x)) | x ∈ R}.
Proof (i) ⇒ (ii). By Proposition 2.7(1), j is a homeomorphism if and only if it is
surjective. Suppose j is a homeomorphism, and suppose there is a nonzero finitely
generated ideal I such that rad(I ) 
= rad(aR) for every a ∈ R. Consider Y := D(I ):
then, Y is open and quasi-compact in the Zariski topology, and thus it is a closed set
in the inverse topology. Since j is surjective, there is a prime semigroup Q such that
Y = j (Q). Set �Q := R\Q and RQ := �−1

Q R. Suppose I ⊆ Q: then, I RQ 
= RQ ,
so that there is a prime ideal P such that I ⊆ P and PRQ 
= RQ . Therefore,
P /∈ D(I ) = Y . On the other hand, P ⊆ Q, and thus P ∈ j (Q) = Y : a contradiction.
Henceforth, I � Q, i.e., there exists an element s ∈ I ∩ �Q . However, since the
radical of the ideal sR cannot be equal to rad(I ), and sR ⊆ I , there is a prime ideal
Q containing sR but not I . Hence, Q ∈ Y , while QRQ = RQ , and thus Q /∈ j (Q).
Again, this conflicts with the assumptions, and so we conclude that Y is not in the
image of j .
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(ii) ⇒ (iii). Let I be a nonzero finitely generated ideal of R and assume that
I ⊆ Q. By hypothesis, rad(I ) = rad(sR) for some s, and we can suppose s ∈ I .
Since I ⊆ ⋃{Qλ | λ ∈ �}, then s ∈ Qλ for some λ ∈ � and, hence, I ⊆ rad(I ) =
rad(sR) ⊆ Qλ.

(iii) ⇒ (i). Let Y ∈ X (R), and let P(Y ) = ⋃{Qλ | λ ∈ �} ∈ S(R). We claim
that j (P(Y )) = Y . Clearly, Y ⊆ j (P(Y )) (Proposition 2.11(3)). On the other hand,
suppose P ∈ j (P(Y ))\Y . Then, since Y = Clinv(Y ), there is a basic closed set
� = D(I ) of the inverse topology on Spec(R), such that Y ⊆ � but P /∈ �. Since
� is quasi-compact in the Zariski topology, we can suppose I finitely generated.
The fact that P /∈ D(I ) implies I ⊆ P . On the other hand, P ∈ j (P(Y )), hence
P ⊆ ⋃{Q | Q ∈ Y }. Therefore, by hypothesis, there is a Q ∈ Y (⊆ �) such that
I ⊆ Q; but this would imply Q /∈ D(I ), which is absurd. Hence, Y is in the image of
j , and so j is surjective.

Clearly, (ii)⇒(iv) since a basis for the open sets of X (R) is given by U(D(J )) for
J varying among the finitely generated ideals of R. Conversely, let J be a nonzero
finitely generated ideal of R. SinceD(J ) ∈ U(D(J )), by assumption there is an element
x ∈ R such that D(J ) ∈ U(D(x)) ⊆ U(D(J )), that is, D(x) = D(J ) and, in other
words, rad(x R) = rad(J ). ��

An example where the previous theorem can be applied is when R contains an
uncountable field but its spectrum is only countable (Sharp and Vámos 1985, Propo-
sition 2.5).

In case Spec(R) is a Noetherian space, we have the following.

Corollary 2.14 Let R be a ring. The following statements are equivalent.

(i) The canonical embedding j : S(R) → X (R) is a homeomorphism and
Spec(R) is a Noetherian space.

(ii) Every prime ideal of R is the radical of a principal ideal.
(iii) If I is an ideal of R and I ⊆ Q := ⋃{Qλ | λ ∈ �} ∈ S(R) (where Qλ ∈

Spec(R) for each λ), then I ⊆ Qλ for some λ ∈ �.
(iv) If P is a prime ideal of R and P ⊆ Q := ⋃{Qλ | λ ∈ �} ∈ S(R) (where

Qλ ∈ Spec(R) for each λ), then P ⊆ Qλ for some λ ∈ �.

Proof The equivalence of (i) and (ii) follows from the previous theorem, since
Spec(R) is Noetherian if and only if every radical ideal is the radical of a finitely
generated ideal (see for instance Ohm and Pendleton (1968) or Fontana et al. (1997,
Theorem 3.1.11)). The equivalences (ii) ⇔ (iii) ⇔ (iv) are due to Smith (1971). ��
Remark 2.15 Rings verifying property (iii) of the previous corollary has been called
compactly packed in Reis and Viswanathan (1970).

Remark 2.16 It is well known that the rings verifying the equivalent conditions (ii)–
(iv) of the previous corollary have Noetherian spectrum. On the other hand, Theorem
2.13 implies that j is surjective for any Bézout domain and there are examples of
Bézout domains (or, even, valuation domains) R such that Spec(R) is not Noethe-
rian. Therefore, for an arbitrary ring R, conditions (ii) ⇔ (iii) ⇔ (iv) of the previous
corollary do not provide a characterization of when j : S(R) −→ X (R) is a homeo-
morphism. In other words, the property that j : S(R) −→ X (R) is a homeomorphism
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does not depend only on the topology of the spectrum of R, but also on the algebraic
structure of R.

Remark 2.17 (a) Let R be a ring. If T := {Qα | α ∈ A} is a nonempty subset of
S(R), then

⋃{Qα | α ∈ A} is a prime semigroup of R, and it is easily seen that it is
the supremum of T in S(R), with the order induced by the hull-kernel topology, that
is the set theoretic inclusion.

For investigating the existence of the infimum of T , we cannot argue in a dual way,
since the natural candidate

⋂{Qα | α ∈ A} is not, in general, a prime semigroup (for
example, if P and Q are incomparable prime ideals of R, they are both prime semi-
groups, but P ∩ Q is not). However, we can show that an infimum can be determined
in many cases. More precisely, let j : S(R) ↪→ X (R) be the topological embedding
defined in Proposition 2.7(1). Then, the set j (T ) := { j (Qα) | α ∈ A} is a family of
closed subsets in the inverse topology of Spec(R), and so if CT := ⋂{ j (Qα) | α ∈
A} is nonempty (for instance, since Xinv is compact, for this assumption it suffices
that the set of the j (Qα) satisfies the finite intersection property), then it still belongs
to X (R), and it is the infimum of j (T ) in X (R). We claim that CT = j (Q0) for
some Q0 ∈ S(R). More precisely, we claim that Q0 = ⋃{Q | Q ∈ CT }.

Indeed, if Q ∈ CT then Q ∈ j (Q0) by Proposition 2.7(1). Conversely, if P ∈
j (Q0), then P ⊆ Q0 ⊆ Qα for every α ∈ A, and thus (again, by Proposition 2.7(1))
P ∈ j (Qα) for every α, i.e., P ∈ CT . Therefore, j (Q0) is the infimum of j (T ) in
j (S(R)), and since j is a homeomorphism between S(R) and its image in X (R), it
follows that Q0 is the infimum of T in S(R).

(b) From (a), it follow by construction that the topological embedding j : S(R) ↪→
X (R) preserves the infimum, in the cases where it exists. However, the embedding j
in general does not preserve the supremum.

For example, let D be a local unique factorization domain of dimension 2, and
let Y1,Y2 be two nonempty disjoint sets of prime ideals such that Y1 ∪ Y2 is the set
Spec1(D) of height-one prime ideals of D. If Qi := ⋃{P | P ∈ Yi }, then j (Qi ) =
Yi ∪ {(0)}, and thus j (Q1) ∪ j (Q2) = Spec1(D) ∪ {(0)} � Spec(D). However,
Q1 ∪ Q2 is equal to the set of non-units of D, so that j (Q1 ∪ Q2) = Spec(D).

On the other hand, if {P1, P2, . . . , Pn} is a finite set of prime ideals (and thus, in
particular, of prime semigroups) of R, then j (P1 ∪ P2 ∪ · · · ∪ Pn) = j (P1)∪ j (P2)∪
· · · ∪ j (Pn). Indeed, by Proposition 2.7(1), Q ∈ j (P1 ∪ P2 ∪ · · · ∪ Pn) if and only if
Q ⊆ P1 ∪ P2 ∪ · · · ∪ Pn and, by prime avoidance, this is equivalent to Q ⊆ Pi for
some i , and thus to Q ∈ j (Pi ) for some i .

3 The integral domain case

Let D be an integral domain, and recall that the set Overr(D) of the overrings of R
has a natural topological structure (see Sect. 1.6). Then, there is a natural map

�0 : Spec(D) −→ Overr(D)

P �−→ DP ,
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which is a topological embedding (Dobbs et al. 1987, Lemma 2.4). We show next that
S(D) admits a similar interpretation with respect to Overr(D).

Proposition 3.1 Let D be an integral domain with quotient field K and letOverr(D)

be the set of the overrings of D, endowed with the Zariski topology.

1. Let Q ∈ S(D) and set as above �Q := D\Q and DQ := �−1
Q D. The map

� : S(D) −→ Overr(D)

Q �−→ DQ

is a topological embedding that extends the map �0 defined above.
2. The map

ω : Overr(D) −→ X (D)

T �−→ QSpec ∧̃{T }(D)

is a continuous map of spectral spaces. Moreover, if T ∈ Overr(D) and the
canonical embedding τ : D −→ T is flat, then ω(T ) = τ a(Spec(T )).

3. The compositionω◦� : S(D) ↪→ X (D) coincideswith the topological embedding
j defined in Proposition 2.7(1).

Proof (1) Since {B(x) | x ∈ K } is a subbasis of open sets for Overr(D), to get
continuity of � it suffices to prove that, if x ∈ K , then �−1(B(x)) is open in S(D).
Take a semigroup prime Q ∈ �−1(B(x)), and let d, s ∈ D with s /∈ Q such that
x = d

s ∈ DQ . Then, we have Q ∈ U(s) ⊆ �−1(B(s−1)) ⊆ �−1(B(x)), that is,
�−1(B(x)) is open in S(D).

To prove that � is a topological embedding it is now sufficient to note that, for any
nonzero element f ∈ D, we have �(U( f )) = �(S(D)) ∩B( f −1). The inclusion ⊆ is
trivial. Conversely, if T ∈ �(S(D))∩B( f −1), then there are a semigroup primeQ and
elements d, s ∈ D such that s /∈ Q and 1

f = d
s ∈ DQ = T . It follows s = d f /∈ Q

and, a fortiori, by definition of semigroup prime, f /∈ Q. Then T ∈ �(U( f )), and
thus the proof is complete.

(2) It is sufficient to note that ω is the composition of three continuous maps,
namely the topological embedding ι : Overr(D) ↪→ SStar(D) [defined, for each
overring T of D, by ι(T ) := ∧{T } (Finocchiaro and Spirito 2014, Proposition 2.5)],
the continuous surjection �̃ : SStar(D) � S̃Star(D) [defined, for each � ∈
SStar(D), by �̃(�) := �̃ (Finocchiaro et al. 2016b, Proposition 4.3(2))], and the
homeomorphism � : S̃Star(D)

∼−→ X (D) (defined, for each � ∈ S̃Star(D), by
�(�) := QSpec�(D) (Finocchiaro et al. submitted, Proposition 5.2(1)).

Suppose T is flat over D. In order to show that QSpec ∧̃{T }(D) = {Q ∩ D | Q ∈
Spec(T )} we observe that, even if T is not D-flat, the equality QSpec ∧̃{T }(D) =
Clinv(QSpec∧{T }(D)) holds, in view of Remark 1.1, since ∧{T } is a semistar opera-
tion of finite type. Moreover, P ∈ QSpec∧{T }(D) if and only if P = PT ∩ D. Hence,
τ a(Spec(T )) = {Q ∩ D | Q ∈ Spec(T )} ⊆ QSpec∧{T }(D). Conversely, assuming
that T is D-flat, if P ∈ QSpec∧{T }(D) and if Q ∈ Spec(T ) and it is minimal over
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PT then, by flatness, Q ∩ D = P (Kaplansky 1970, Section 1–6, Exercise 37) and so
P ∈ τ a(Spec(T )).

(3) is a straightforward consequence of the definitions. ��
When we specialize our investigation to the class of Prüfer domains, we obtain

more precise statements.

Proposition 3.2 Let D be a Prüfer domain. Then, the chain of canonical maps

Overr(D)
ι−−→ SStar f (D)

�̃−−→ S̃Star(D)
�−−→ X (D)

is a chain of homeomorphisms, and �̃ is the identity.Moreover, the composition�◦�̃◦ι

coincides with the map ω defined in Proposition 3.1(2), and ω(T ) := QSpec∧{T }(D)

for all T ∈ Overr(D).

Proof The map � : S̃Star(D) → X (D) (defined by �(�) := QSpec�(D) for each
� spectral semistar operation of finite type on D) is a homeomorphism by Finocchiaro
et al. (submitted, Proposition 5.2(1)).

Since D is a Prüfer domain, each of its overrings is D-flat (Fontana et al. 1997,
Theorem 1.1.1). Then, the canonical map �̃ ◦ ι : Overr(D) −→ S̃Star(D), T �→
∧{T } = ∧̃{T }, is a topological embedding (proof of Proposition 3.1(2) or Finocchiaro
and Spirito (2014, Proposition 2.5)).

We need to show that SStar f (D) = S̃Star(D). Indeed, if � ∈ SStar f (D),
then the domain D�, as an overring of a Prüfer domain, is still a Prüfer domain. Hence,
∧{D�} = ∧̃{D�} , since D� is D-flat, and D� admits a unique star operation of finite
type. It follows that �|F(D�) : F(D�) → F(D�) is the identity star operation of D�.
On the other hand note that, for each F ∈ f (D),

F� = (FD)� = (FD�)� = FD� .

Therefore, we have � = ∧{D�} and so ι is surjective.
The equality ω = � ◦ �̃ ◦ ι holds in general (see the proof of Proposition 3.1(2))

and the last claim follows from the fact that ∧{T } = ∧̃{T }, since every overring T of
the Prüfer domain D is D-flat. ��

Recall that an integral domain D is a QR-domain if each overring of D is a ring
of fractions of D (for more details see, for example, Gilmer and Ohm 1964; Heinzer
1970). For example, a Bézout domain is a QR-domain (Gilmer 1972, page 250, Exer-
cise 10(b)).

Corollary 3.3 Let D be a QR-domain. Then, the chain of maps

S(D)
�−−→ Overr(D)

ω−−→ X (D)

is a chain of homeomorphisms.
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Proof By Proposition 2.7(3), � is a topological embedding, and the hypothesis that D
is a QR-domain guarantees that � is also surjective. Therefore, � is a homeomorphism.
Since a QR-domain is—in particular—a Prüfer domain (Gilmer 1972, p. 334), then
we know from Proposition 3.2 that ω is a homeomorphism. The claim follows. ��
Example 3.4 Consider a Dedekind domain D such that the class group Cl(D) of D is
not a torsion group (an explicit example is given by D := K [X,Y ]/(X2 −Y 3+Y +1),
where K is an algebraically closed field; see Gilmer and Ohm (1964, Sections 3 and 4)
and Rees (1958, page 146), and for a general result Fossum (1973, Theorem 14.10)).
Then, there is a maximal ideal P of D such that the class [P] has infinite order in
Cl(D), i.e., Pn is never principal or, equivalently, no principal ideal is P-primary
(Fossum 1973, Proposition 6.8). Let Y := Spec(D)\{P}: then, Y is closed in the
inverse topology, since it is a quasi-compact open subspace of Spec(D), endowed
with the Zariski topology. We claim that Y /∈ j (S(D)). If it was, say Y = j (Q),
then Q ∈ S(D) must contain every element of Y , but there must be an x ∈ P such
that x /∈ Q. However, the ideal xD is not P-primary, and so there also exists a prime
ideal Q of D, Q 
= P , such that x ∈ Q. This contradicts Y = j (Q), and so j is not
surjective.

On the other hand, if D′ is a principal ideal domain, then j ′ : S(D′) → X (D′) is
surjective (Corollary 3.3). Moreover, we can always find a principal ideal domain D′
such that the cardinality of Max(D′) is equal to the cardinality of Max(D) (it suffices
to take D′ := F[T ], where F is a field with the same cardinality of Max(D) and
T is an indeterminate over F). Then, Spec(D′) and Spec(D) are homeomorphic
(it is enough to take any bijection between Max(D′) and Max(D) then extend it to
a bijection ρ : Spec(D′) → Spec(D) such that ρ((0)) = (0)), but j ′ is surjective
while j is not.

Remark 3.5 Note that, by Reis and Viswanathan (1970, Theorem 2.2), when R := D
is a Dedekind domain, the condition that the canonical map S(D) → X (D) is a
homeomorphism and, hence, the equivalent conditions of Corollary 2.14 are equivalent
to the following:

(iv) The ideal class group of D is torsion.
(v) D is a QR-domain.

4 The space of semigroup primes of the Nagata ring

Our next goal is to show that, for each ring R, the spectral spaceX (R) can be embedded
in a space of prime semigroups of a different ring A: more precisely, we will show
that we can choose A to be the Nagata ring of R.

Recall that, given a ring R and an indeterminate T over R, the Nagata ring R(T )

of R is the localization S−1R[T ], where S is the multiplicative set of all the primitive
polynomials of R[T ]. It is well known by Gilmer (1972, Proposition 33.1(1)) that S =
R[T ]\⋃{M[T ] | M ∈ Max(R)}. Let g : R ↪→ R(T ) be the canonical embedding.
For the sake of simplicity, we identify R with g(R) inside R(X). It is clear that the
spectral map ga : Spec(R(T )) → Spec(R) is surjective. For uses of Nagata rings
and related rings of rational functions in the context of star and semistar operations, see
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Gilmer (1972), Fontana and Loper (2003), Fontana and Loper (2006), Chang (2006),
Chang (2008), Chang (2010), Chang and Kang (2011), Dobbs and Sahandi (2011),
Halter-Koch (2003), Kang (1989), Jara (2015) and Okabe and Matsuda (1997).

Now, we consider another map γ : Spec(R) → Spec(R(T )) by setting γ (P) :=
PR(T ) for each P ∈ Spec(R): this map is well-defined and injective (since I R(T )∩
R = I , for all ideals I of R by Gilmer (1972, Proposition 33.1(4))). Clearly, γ ◦ ga is
the identity map of Spec(R). Further properties are given next.

Lemma 4.1 Let γ : Spec(R) → Spec(R(T )) and ga : Spec(R(T )) → Spec(R)

be as above.

1. The map γ is a spectral embedding and ga is a spectral retraction.

Let Y and Z two nonempty subsets of Spec(R), and, for any X ⊆ Spec(R), let
Q(X) := ⋃{PR(T ) | P ∈ X} ⊆ R(T ).

2. If Clinv(Y ) = Clinv(Z), then also Clinv(γ (Y )) = Clinv(γ (Z)).
3. The equality Q(Y ) = Q(Z) holds if and only if Clinv(Y ) = Clinv(Z).

Proof 1. Take a nonzero element f/p ∈ R(T ), where f, p ∈ R[T ] and p is primitive,
and write f := a0 + a1T + . . . + anT n . For any prime ideal P of R, we have:

f

p
/∈ PR(T ) ⇐⇒ f /∈ PR[T ] ⇐⇒ P � (a0, a1 · · · , an)R,

that is, γ −1
(
D

(
f
p R(T )

))
= D((a0, a1, . . . , an)R). This proves that γ is (contin-

uous and) spectral. Moreover, for each x ∈ R we have γ (D(x R)) = D(x R(T )) ∩
Im(γ ), and thus γ is a topological embedding. The conclusion follows from the
fact that ga ◦ γ is the identity of Spec(R).

2. Assume that Clinv(Y ) = Clinv(Z). By definition, a basis for closed sets for the
inverse topology of Spec(R(T )) is given by the quasi-compact open subspaces of
Spec(R(T )) (when endowed with the Zariski topology). Thus, we have to prove
that, for any nonzero finitely generated ideal J of R(T ), we have γ (Y ) ⊆ D(J ) if
and only if γ (Z) ⊆ D(J ). Let f1

p1
,

f2
p2

, . . . ,
fr
pr

∈ R(T ) be generators of the ideal
J , where fi , pi ∈ R[T ] and pi is primitive, for i = 1, 2, . . . , r , and let Ci be the
content of fi . Then γ (Y ) ⊆ D(J ) if and only if for any P ∈ Y there is some index
i such that fi

pi
/∈ PR(T ), that is fi /∈ PR[T ] = PR(T ) ∩ R[T ]. In other words,

P � Ci , i.e., P ∈ D(Ci ). If we setC := C1 +C2 +· · ·+Cr , the previous argument
shows that γ (Y ) ⊆ D(J ) if and only if Y ⊆ D(C). Since C is a finitely generated
ideal of R, the set D(C) is a quasi-compact open subspace of Spec(R), and thus
also Z ⊆ D(C), because Y and Z have the same closure, with respect to the inverse
topology. Thus, any prime ideal Q of Z does not contain some coefficient of some
polynomial fi , and then fi

pi
/∈ QR(T ), that is γ (Z) ⊆ D(J ).

3. If Clinv(Y ) = Clinv(Z) then Clinv(γ (Y )) = Clinv(γ (Z)), by part (2). Thus,
the equality Q(Y ) = Q(Z) holds by Remark 2.12. Conversely, assume that
Q(Y ) = Q(Z), and let J := (a0, a1, . . . , an)R be a nonzero finitely gener-
ated ideal of R. We have to prove that Y ⊆ D(J ) if and only if Z ⊆ D(J ).
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Suppose that Y ⊆ D(J ). Then, if f := a0 + a1T + · · · + anT n ∈ R[T ], we have
f /∈ PR[T ] = PR(T ) ∩ R[T ], for each P ∈ Y , that is f

1 /∈ Q(Y ) = Q(Z). In
other words, f /∈ QR[T ], for each Q ∈ Z , i.e., Z ⊆ D(J ). ��

Now, we are in condition to prove that the spectral space X (R) can be embedded
in the spectral space of prime semigroups of the Nagata ring R(T ).

Proposition 4.2 Let R be a ring, j : S(R) ↪→ X (R) the spectral embedding defined
in Proposition 2.7(1), g : R ↪→ R(T ) the canonical ring embedding and let S(g) :
S(R(T )) → S(R) be the spectral map associated to g defined in (1). Define ν as the
map

ν : X (R) −→ S(R(T ))

Y �−→
⋃

{PR(T ) | P ∈ Y }.

The following properties hold.

1. ν is a spectral embedding.
2. S(g) ◦ ν ◦ j is the identity of S(R). In particular, S(g) : S(R(T )) → S(R) is a

topological retraction.
3. IfP : X (R) → S(R) is the map defined in Proposition 2.11, thenP = S(g)◦ν.

Proof 1. By Lemma 4.1(3), the map ν is injective. Now, let 0 
= f
p ∈ R(T ), where

f, p ∈ R[T ] and p is primitive and let C be the content of the polynomial f .
Then, using the notation of Lemma 4.1(3),

ν−1
(
U

(
f
p

))
= {Y ∈ X (R) | f

p /∈ Q(Y )}
= {Y ∈ X (R) | f /∈ PR[T ] for all P ∈ Y } = U(D(C)).

This proves that ν is continuous and spectral. On the other hand, with similar
arguments, it can be shown that, given a0, a1, . . . , an ∈ R, if f := a0 + a1T +
· · · + anT n ∈ R[T ] we have

ν (D(a0, a1, . . . an)) = Im(ν) ∩ U
(

f

1

)

,

that is, ν is a topological embedding.
2. Let P ∈ S(R). Let Y be a nonempty set of prime ideals of R such that P =

P(Y ) = ⋃{P ∈ Spec(R) | P ∈ Y } (Lemma 2.2). Set Q(Y ) := ⋃{PR(T ) |
P ∈ Y } ∈ S(R(T )). Recall that, for each prime ideal P ∈ Spec(R), PR(T ) ∩
R = g−1(PR(T )) = P (Gilmer 1972, Proposition 33.1(4)). Then,

S(g) ◦ ν ◦ j (P) = S(g)(Q(Y )) = g−1(Q(Y ))

= (⋃{PR(T ) | P ∈ Y }) ∩ R
= ⋃

({PR(T ) | P ∈ Y } ∩ R)

= ⋃{P ∈ Spec(R) | P ∈ Y } = P .
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3. Let Y ∈ X (R). Then, we have

(S(g) ◦ ν)(Y ) = g−1(ν(Y )) = g−1

(
⋃

P∈Y
PR(T )

)

=
⋃

P∈Y
g−1(PR(T )).

However, as noted above, g−1(PR(T )) = P for every P ∈ Spec(R), and thus
(S(g) ◦ ν)(Y ) = ⋃{P | P ∈ Y }, which is exactly the definition of P(Y ). ��

We now introduce some notation that will be used in the following Remark 4.3 and
Proposition 4.4, where we will show that, given a ring R, X (R) is a topological retract
of the spectral space S(R(T )).

If Q ∈ S(R(T )), then we set �Q := R(T )\Q, R(T )Q := �−1
Q R(T ). We denote

by g : R → R(T ) and λ1 : R(T ) → R(T )Q the canonical flat homomorphisms and
we set λ := λ1 ◦ g : R → R(T )Q .

Remark 4.3 In Dobbs et al. (1981) the authors introduced and studied what they called
the flat topology on Spec(R), where R is any ring, by taking as closed subspaces the
subset ρa(Spec(R′)) for ρ : R → R′ varying among the flat ring homomorphisms.
By Dobbs et al. (1981, Theorem 2.2) the flat topology on Spec(R) coincides with the
inverse topology.

We are in condition to give an explicit description of the inverse-closed subspaces
of Spec(R). Let Y ⊆ Spec(R), set as above Q(Y ) := ⋃{PR(T ) | P ∈ Y } ∈
S(R(T )). Then, it is straightforward to see that Q(Y ) = Q(λa(Spec(R(T )Q(Y )))),
where λ : R → R(T )Q(Y ) is the canonical flat embedding. Thus, in view of Lemma
4.1(3) and of the fact that the image of λa is closed in the inverse topology, being λ

flat, we have Clinv(Y ) = λa(Spec(R(T )Q(Y ))). In particular, Y = Clinv(Y ) if and
only if Y = λa(Spec(R(T )Q(Y ))).

Proposition 4.4 Let R be a ring. With the notation introduced above, the map

χ : S(R(T )) −→ X (R)

Q �−→ λa(Spec(R(T )Q))

is continuous and surjective. Moreover, if ν : X (R) ↪→ S(R(T )) is the spectral
embedding defined in Proposition 4.2(1), then χ ◦ ν is the identity on X (R).

Proof Note that χ is well-defined by Remark 4.3, since, for any Q ∈ S(R(T )), the
canonical homomorphism λ : R → R(T )Q is flat. Let X (ga) : X (R(T )) → X (R)

be the spectral map associated to the canonical flat ring embedding g : R → R(T ) and
defined by X (ga)(Y ) := ga(Y )gen = ga(Y ) = {g−1(Q) | Q ∈ Y } = {Q ∩ R | Q ∈
Y }, for each Y ∈ X (R(T )) (see Finocchiaro et al. (submitted, Proposition 4.1) and
Dobbs et al. (1981, Proposition 2.7)). Then, the map χ coincides with the composition
of the topological embedding j : S(R(T )) ↪→ X (R(T )) (Proposition 2.7(1)) with
X (ga). In fact,
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Fig. 1 Maps between S- and X-type spaces

(X (ga) ◦ j)(Q) = X (ga)({Q ∈ Spec(R(T )) | Q ⊆ Q})
= X (ga)(λa(Spec(R(T ))Q)) = ga(λa(Spec(R(T )Q)))

= X (λa)(Spec(R(T )Q)) = λa(Spec(R(T )Q)) = χ(Q).

Hence χ is continuous as a composition of continuous maps [Proposition 2.7(1) and
(Finocchiaro et al. submitted, Proposition 4.1)].

Let now Y ∈ X (R). Set, as usual, Q(Y ) := ⋃{PR(T ) | P ∈ Y }. Then, a direct
calculation shows that (χ ◦ ν)(Y ) is the canonical image of Spec(R(T )Q(Y )) into
Spec(R), which is is clearly equal to Y (Remark 4.3). Therefore χ ◦ ν is the identity.
This implies that χ is surjective.

The various maps between S- and X -type spaces are summarized in Fig. 1 ��
Remark 4.5 Given a ring R, there is another possible natural way to define a continuous
map S(R(T )) −→ X (R). Indeed, define χ ′ as the map (see Fig. 1)

χ ′ : S(R(T )) −→ X (R)

Q �−→ {P ∈ Spec(R) | g(P) ⊆ Q}.

Clearly, χ(Q) ⊆ χ ′(Q), for each Q ∈ S(R(T )). Moreover, a direct calculation
shows that χ ′ = j ◦ S(g), so that χ ′ is continuous. Furthermore, by Proposition
4.2(3), we have

χ ′ ◦ ν = j ◦ S(g) ◦ ν = j ◦ P.

Recall that χ ◦ ν is the identity on X (R) (Proposition 4.4) and, in general, χ ′ ◦ ν (=
j ◦ P) is not (Proposition 2.11(3)). We note that χ ′, unlike χ , is not surjective: for
example, let D be a 2-dimensional Noetherian local ring and let Spec1(D) be the
set of the height-1 primes of D. Then, Z := Spec1(D) ∪ {(0)} is inverse-closed in
Spec(D), and the maximal ideal M of D is contained in the union of the elements
of Z . Hence, MD(T ) ⊆ Q(Z), and thus M ∈ {P ∈ Spec(D) | g(P) ⊆ Q(Z)} =
χ ′(Q(Z)). Therefore, χ ′(Q(Z)) = Spec(D). On the other hand, M /∈ χ(Q(Z)),
since Z = χ(Q(Z)), because Z is inverse-closed (Remark 4.3). We easily conclude
that Z is not in the range of χ ′. As a matter of fact, suppose there exists a semigroup
prime Q� of D(T ) such that Z = χ ′(Q�) = {P ∈ Spec(D) | P ⊆ g−1(Q�)}.
Thus, the union of all the prime ideals belonging to Z is contained in g−1(Q�) and, a
fortiori, M ⊆ g−1(Q�). It follows that M ∈ χ ′(Q�) = Z , a contradiction.
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