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 1018 FONTANA, GABELLI, AND HOUSTON 

in certain pullback constructions; as an application, we show that a domain has Priifer 
integral closure if and only if all its overrings are UMT-domains. 

Introduction 

UMT-domains were introduced in [13] and received some attention 

in [7] and 151. (They were also briefly mentioned in [16].) The purpose of 

this paper is to study this class of rings in greater detail. 

We begin by reviewing the v- and t-operations. Recall that if I is 

an nonzero fractional ideal of a domain R with quotient field I<, then the 

inverse, the u- (or divisorial) closure, and the t-closure of I are given, 

respectively, by I-l = {z E I< I z I  E R},  I, = (I-')-~, and It = U { J ,  I J 

is a nonzero finitely generated subideal of I}. The v- and t-operations are 

examples of star-operations, and the reader is referred to (101 and to [14] for 

a discussion of their properties, which we shall use freely (usually 

without reference). Of particular importance are the standard facts that 

every &idea] js contained in a maximal t-ideal, that maximal t-ideals are 

prime, and that any prime minimal over a t-ideal is a prime t-ideal (t- 
prime). In particular, height one prime ideals are t-primes. We also recall 

that if T is a flat overring of a domain R, then t-ideals of T contract to t- 

ideals of R (cf., e.g., [9, Proposition 0.71). 

Now recall that a nonzero prime ideal U of the polynomial ring 

R [ X ]  (in one indeterminate X) with U n R = 0 is called an uDDer to zero. 

The domain R is said to be a UMT-domain if every upper to zero in R[X]  

is a maximal t-ideal. UMT-domains are closely related to a class of rings 

that has received a good deal of attention in the literature: the class of 

Priifer v-multiplication domains. (See, e.g., Ill], [17], (151, and [6].) A 
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UMT-DOMAINS 1019 

domain R  is said to be a Priifer v-multiplication domain (PVMD) if every 

nonzero finitely generated ideal I of R is t-invertible, i.e., satisfies 

(11-l)t = R. It was observed in [13, Proposition 3.21 that a domain R is a 

PVMD if and only if R is an integrally closed UMT-domain. Thus UMT- 

domains are "PVMD's with the integrally closed hypothesis removed." 

In the first section, we collect for easy reference the known facts 

about UMT-domains and prove a number of useful characterizations, of 

which perhaps the most important is that a domain R is a UMT-domain if 

and only if its localizations at maximal t-ideals have Priifer integral 

closure. The second section is devoted to a study of polynomial rings over 

UMT-domains; among other things, we show that, for an arbitrary set 

{X,} of indeterminates, R is a UMT-domain if and only if R[{X,}] is. In 

the third section, we characterize UMT-domains in certain types of 

pullback constructions, and we give several applications, proving, for 

example, that a domain R has Priifer integral closure each overring of R 

is a UMT-domain. 

Notation is generally standard as in [ lo] .  We shall use R' to denote 

the integral closure of a domain R. 

1. Elementary Properties 

Let R be a domain with quotient field I<. For f E R [ X ] ,  we denote 

the content of f ,  i.e., the ideal of R generated by the coefficients of f ,  by 

c(f). For an ideal I of R [ X ] ,  c ( I )  is the ideal generated by the contents of 

all the polynomials in I. It will be convenient to begin with a result which 

follows easily from facts about UMT-domains proved in [13]. 
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 1020 FONTANA, GABELLI, AND HOUSTON 

Theorem 1.1. Let R be a domain. Then the following statements are 

equivalent. 

(a) R is a UMT-domain. 

(b) C ( U ) ~  = R for every upper to zero U in R[X]. 

(c) For every upper to zero U in R[X], 3 f E U with c(f), = R. 

(d) U is t-invertible for every upper to zero U in R[X]. 

(e) Every prime of R[XIS is extended from R, where S = {f E R[X] I 
c(f  1, = R> 
(f) U $ P [ X ]  for each upper to zero U in R[X] and each t-prime P of R. 

(g) U $ M [ X ]  for each upper to zero U in R[X] and each maximal t-ideal 

M of R. 

Proof: The equivalence of statements (a)-(d) follows from [13, Theorem 

1.41, and statements (a) and (e) are equivalent by [13, Theorem 3.11. It is 

clear that (c) implies (f) and that (f) implies (g). Finally, (g) implies (a) 

by [13, Proposition 1.11. C] 

An extension R C T of domains is said to be t-linked if I - ~  = R for 

a finitely generated ideal I of R implies (T:IT) = T. The notion of t- 

linked extension (restricted to overrings) was introduced in (61 and has 

been studied in several papers since (cf. [5, 31). It was shown in [13, page 

19621 that a t-linked overring of a UMT-domain is again a UMT-domain 

(and therefore, since localizations are t-linked by [6, Proposition 2.21, the 

UMT-property is preserved by localization); in fact, the argument given 

actually works for any algebraic t-linked extension. Hence we state the 

following result without proof. 
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UMT-DOMAINS 102 1 

Proposition 1.2. Let R E T be an extension of domains, and assume that 

(the quotient field of) T is algebraic over (the quotient field of) R. If 

R C_ T is t-linked and R is a UMT-domain, then T is a UMT-domain. In 

particular, if R is a UMT-domain, then so is every localization of R. 

Remark. The hypothesis that the extension be algebraic cannot be 

dispensed with in Proposition 1.2. To see this, let T be any domain with 

characteristic zero which is not a UMT-domain. Then, considering the ring 

Z to be a subring of T, the extension 7 C T is t-linked since I - I  # Z for 

each nonzero proper ideal I of Z. 

Even though the UMT-property is preserved by localization, the 

property of being a t-ideal is not in general preserved by localization. (See 

[19] for a discusssion and examples of this phenomenon.) Fortunately, t- 

ness does localize for UMT-domains. Indeed much more is true, as 

Proposition 1.4 below shows. First, we need a lemma. 

Lmma 1.3. Let P be a prime ideal of the domain R, and assume that P is 

not a t-prime. Then there is an upper to zero U in R[X]  with U C P [X ] .  

Proof: Since P is not a t-ideal, we may pick ao,al,. . .,an E P with 

(ao,. . .,an), $ P. Let f = all +. . . + a,,Xn E R[X], and shrink PIX] to a 

prime U minimal over f .  Then U is a t-prime of R[X]. If U = (U n R ) [ X ] ,  

then U n R is a (nonzero) t-prime of R (this is well known and follows 

easily from [12, Proposition 4.3]), and we have c(f) C U n R, whence 
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1022 FONTANA, GABELLI, AND HOUSTON 

c ( f ) ,  C U fi R  C P, a contradiction. Hence U # (U fl R ) [ X ] ,  and it now 

follows from [la, Theorem A] that U is an upper to zero. O 

Proposition 1.4. Let P be a t-prime of the UMT-domain R, let T be a 

domain which is an algebraic extension of R,  and let Q be a prime of T 

with Q fl R = P. Then Q is a t-prime of T. 

Proof: If Q is not a t-prime of T, then by Lemma 1.3, there is an upper to 

zero U in T [ X ]  with U C Q[X] .  Then since T is algebraic over R, U n R[X]  

is nonzero and is therefore an upper to zero in R[X] with U n R [ X ]  C P[X].  

However, since R  is a UMT-domain, this contradicts (a) + (f) of Theorem 

1.1. 0 

Recall from [6, Theorem 2.61 and 15, page 14641 that a domain R is 

t-linkative if either of the following equivalent conditions holds: (1) R C T 

is t-linked for every overring T of R, (2) every nonzero maximal ideal of R 

is a *-;deal. We use the notion of t-linkativity to prove a characterization 

of UMT-domains which we shall find extremely useful. 

Theorem 1.5. The following statements are equivalent for a domain R. 

(1) R is a UMT-domain. 

(2) Rp has Priifer integral closure for each prime t-ideal P of R. 

(3) RM has Priifer integral closure for each maximal t-ideal M of R. 

(4) RM is a t-linkative UA4T-domain for each maximal t-ideal M of R. 

Proof: (1) + (2): If R is a UMT-domain, then by Proposition 1.4 PRp is 
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UMT-DOMAINS 1023 

a t-prime of the UMT-domain Rp,  whence Rp is also t-linkative. By [5, 

Theorem 2.41, R p  has Priifer integral closure. 

(2) a (3): Trivial. 

(3) =+ (4): By (5, Theorem 2.41. 

(4) (1): For each maximal t-ideal M of R, RM is a UMT-domain and 

MRM is a t-prime of RM. Hence by Theorem 1.1, MRM[X] contains no 

uppers to zero in RAt[X]. It follows that M [ X ]  contains no uppers to zero 

in R[X]. Therefore, again by Theorem 1.1, R is a UMT-domain. 0 

Remark. Griffin showed [ l l ,  Theorem 5) that a domain R is a PVMD e 

RM is a valuation doma.in for each maximal t-ideal M of R. Thus ((1) H 

(3) of) Theorem 1.5 may be thought of as a UMT-analogue of Griffin's 

result. 

Corollary 1.6. Let R be a UMT-domain, and let P E Q be prime ideals of 

R. If Q is a t-prime, then P is a t-prime. 

Proof: By Theorem 1.5, RQ has Priifer integral closure. Hence, since 

Rp' > RQ1, Rpl is also a Priifer domain. By [5, Theorem 2.41, R p  is a t- 

linkative UMT-domain. In particular, PRp is a maximal t-ideal of Rp. It 

is well known that this implies that P is a t-prime of R. 0 

2. Polynomial rings over a UMT-domain 

Throughout this section, R denotes a domain with quotient field I<, 

and {X,} denotes a set of indeterminates over R. We begin with a lemma. 
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FONTANA, GABELLI, AND HOUSTON 

Lemma 2.1. 

(1) If I is a fractional ideal of R, then Iv[{Xff)] = (I[(X,)])v, and 

I t [{XdI  = (I({XOIl)t~ 

(2) If I is a t-ideal (v-ideal) of R,  then I[{X,)] is a t-ideal (v-ideal) of 

R[{X'all. 

(3) If J is a t-ideal of R[{X,)] for which J n R # 0, then J n R is a t-ideal 

of R. 

(4) If M is maximal t-ided of R,  then M[{X,)] is a maximal t-ideal of 

R[{x,ll. 

(5) The extension R E R[{X,}] is t-linked. 

Proof: Extending the argument from [12, Proposition 4.31 to the case of an 

arbitrary set of indeterminates, we have that I-~[{x,)] = (I[{x,)])-l, 

V a l  = I V  and It[{Xff)l= (I[{Xff)l)t, for each nonD3-0 

fractional ideal I of R. (Here, the inverse, the v-, and the t-operations on 

the right sides of the equalities are taken with respect to the ring R[{X,)].) 

This proves (1). Statements (2) and (5) follow easily from these equalities. 

Let J be a t-ideal of R[{X,}] for which J n  R # 0. Using ( I ) ,  we have 

( J n R ) , [ { X , ) ] = ( ( J n R ) [ { X , ) ] ) , c J ,  from which it follows that 

(J n R), J n R. This proves (3). To prove (4), let M be a maximal t- 

ideal of R. First suppose that {X,) consists of the single indeterminate X .  

By (2) M[X] is a t-ideal of R[X]. Let Q be a maximal t-ideal of R[X] 

which contains M[X]. By [13, Proposition 1.11, Q = (Q f l  R)[X], and by (3) 

Q n R is a t-prime of R. Hence, since M is a maximal t-ideal, M = Q n R 

and M [ X ]  = Q is a maximal t-ideal of R[X].  The case of a finite number 

of indeter~rhates now follows by induction. NOW suppose that N is a 
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UMT-DOMAINS 1025 

maximal t-ideal of R[{X,)] containing M[{X,}]. If the containment is 

proper, choose f E N \ M[{X,}]. Then there is a finite subset {XI, .  . ., X,} 

of {X,) with f E N n RIXI,. . ., X,] but f Q MIXI ,..., X,]. BY (3), 

N n RIXl,. . ., X,] is a t-prime of RIX1,. . ., X,]. However, this contradicts 

the fact that MIXI,. . ., X,] is a maximal t-ideal of RIXl,. . ., X,]. 0 

Proposition 2.2. Let Q be a maximal t-ideal of R[{X,)], and let 

P = Q n R. Then either P = 0 or P is a maximal t-ideal of R and 

Q = P[{X,JI. 

Proof: Suppose that P # 0. That Q = P[{X,}] follows from a 

straightforward extension of the argument in [13, Proposition 1.11. (This 

argument depends on the content formula, which is valid for any set of 

indeterminates [lo, Corollary 28.31.) If P C M for some maximal t-ideal M 

of R, then Q C M[{X,)]; since Q is a maximal t-ideal of R[{X,}], we have 

that P = M ,  and P is a maximal t-ideal. 

Lemma 2.3. Let Q be a maximal t-ideal of R[{X,}] with Q n R = 0. Then 

R[{X,}IQ is a valuation domain. 

Proof: We first suppose that {X,) is the finite set {XI, .  . .,Xn) and that Q 

is a maximal t-ideal of RIX1,. . ., X,] with Q n R = 0. If n = 1, the result 

follows from the well-known fact that a localization of R[X] at an upper to 

zero is a valuation domain. Suppose n > 1, and let P = 

Q n RIXl,. . ., X ,  - ,I. If P = 0, the result follows from the case n = 1. If 

P # 0, then by Proposition 2.2, P is a maximal t-ideal of RIX1,. ..,X,- 

(with P n R = 0). By induction, V = RIXl,. . ., X, - is a valuation 
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1026 FONTANA, GABELLI, AND HOUSTON 

domain. Again by Proposition 2.2, Q = P[Xn]. Hence RIX1,. . ., XnIQ = 

RIXI,. ..,X,IPlxnl = VIXn]pylXnI, which is easily seen to be a vduation 

domain. For the general case, let u E I(({X,}), and choose finitely many 

indeterminates X .  X { X }  such that u E I ( X 1  X )  and 

Q n R[X,,. . . ,Xn] # 0. By Proposition 2.2, Q f l  RIXI,. . . ,Xn] is a maximal 

t-ideal of RIX1,. . ., Xn]. Hence, by the case of finitely many 

indeterminates, u or u-I E R [ X , ,  . ., Xn]* R ~ X l , .  . ., Xnl c R[{XdQ. 

Theorem 2.4. R is a UMT-domain R[{X,)] is a UMT-domain. 

Proof: We first prove the result in the case where R is a quasi-local 

domain whose maximal ideal M is a t-prime. Assume that R is a UMT- 

domain. Then (since M is a t-prime) by Theorem 1.5, R' is a Pr.iifer 

domain. Again by Theorem 1.5, to show that R[{X,)] is a UMT-domain, 

it suffices to show that (R[{X,)JN)' is a Priifer domain for each maximal t- 

ideal N of R[{X,}]. If N n R = 0, then R[{X,)lN is a valuation domain 

by Lemma 2.3. Hence by Proposition 2.2, we may assume that 

N = Al[{X,)]. Note that (R[{X,)IN)' = R'[{X,}]s, where S = R[{X,}] \ 
M[{X,)]. A maximal ideal of R'[{X,}IS has the form QR1[{X,)IS, where 

Q is a prime ideal of R1[{X,)] which is maximal with respect to missing S. 

It follows from going up in the integral extension R[{X,)] C Rt[{X,)] that 

QnR[{X,)]=M[{X,)], and by incomparability, we have that 

Q = P[{X,)] for some prime P of R' with P n R = M. Thus 

- R'[{"ct)lPI{x,ll' ( R ' [ ~ x ~ ~ ~ ~ ) Q ~ ~ ~ ~ ~ , l l s  - which is a valuation domain, 

since R' is a Priifer domain. I t  follows that (R[{X,)IN)' is a Priifer 

domain. Hence R[{X,}] is a UMT-domain. Conversely, assume that 
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UMT-DOMAINS 1027 

R[{X,}J is a UMT-domain. Let P be a maximal ideal of R'. Since by 

Lemma 2.1, M[{X,)] is a t-prime in the UMT-domain R[{X,}], 

(R[{X,}]M[{Xa)I) '  is a Priifer domain; hence its localization 

R b [ { X ~ } l ~ ~ j r [ { ~ , } l  is a valuation domain. It follows easily that Rlp is a 
valuation domain (cf. [lo, Theorem 33.41). Hence R' is a Priifer domain, 

i.e., R is a t-linkative UMT-domain. 

We now attack the general case. Suppose that R is a UMT-domain. 

Let & be a maximal t-ideal of R[{X,}]. We shall show that R[{Xff}IQ is a 

t-linkative UMT-domain; and for this we may assume by Proposition 2.2 

and Lemma 2.3 that Q = M[{X,)] for some maximal t-ideal M of R. By 

the local case, RM[{X,)] is a UMT-domain, and as a localization of 

RMI{X~II ,  R[{Xa} l~ f I l x , l l  is a UMT-domain as well. By Proposition 1.4 

and Lemma 2.1, MRAf[{X,}] is a t-prime, whence by Proposition 1.4, 

M R [ { X ~ } I , ~ { I , ) ~  = M R n r [ { X d l ~ ~ , ~ ~ ~ , } ~  is a t-.prime of 

R [ { X ~ } ] ~ [ { ~ , ) ] .  Hence R [ { X a } l ~ [ { ~ a ) I  is a t-linkative UMT-domain. 

By Theorem 1.5, R[{X,}] is a UMT-domain. Conversely, assume that 

R[{X,}] is a UMT-domain, and let M be a maximal t-ideal in R. By 

Lemma 2-11 M({Xa)] is a maximal t-ideal of R[{X,}],  whence by Theorem 

1.5, R[{Xa}Jhf[lxell  = Rw[{Xff}]MR,[(na)l is a t-linkative UMT-domain. 

It follows that MR,, is a maximal t-ideal of Rnf,  and since the localization 

RM[{Xf f ) ]  of R[{X,)J is a UMT-domain, we have that RM is a t-linkative 

UMT-domain by the local case. Hence, again by Theorem 1.5, R is a 

UMT-domain. 0 

For a domain R, we denote by R<{X,}> the ring R[{Xff)IS,  where 

S = {f E R[{X,)] I ~ ( f ) ,  = R). This ring has been studied by several 
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1028 FONTANA, GABELLI, AND HOUSTON 

authors. In particular, it is well known that a domain R is a PVMD -++ 
R<{X,)> is a Priifer domain. (See [15] for a particularly nice proof.) We 

generalize this result to UMT-domains. 

Theorem 2.5. The following statements are equivalent for a domain R. 

(1) R is a UMT-domain. 

(2) R<(X,)> is a UMT-domain. 

(3) R<{X,)> has Priifer integral closure. 

Proof: (1) + (2): If R is a UMT-domain, then by Theorem 2.4, so is 

R[{X,)]. Since R<{X,}> is a localization of R[(X,)], R<{X,)> is also a 

UMT-domain. 

(2) + (3): By [ 5 ,  Theorem 2.41, it suffices to show that every 

maximal ideal of R<{X,)> is a t-ideal. By [15, Prop 2.11 a maximal ideal 

of R<{X,)> has the form MR<(X,)> for some maximal t-ideal M of R, 

and by [15, Corollary 2.31, MR<{X,)> is a t-ideal. 

(3) 3 (1); By Theorem 2.4, it suffices to show that R[{X,)] is a 

UMT-domain, and for this it is enough to show that for & a maximal t- 

ideal of R[{X,)] ,  R[{X0)IQ has Priifer integral closure (Theorem 1.5). By 

Proposition 2.2 and Lemma 2.3, we may as well assume that Q = M[(X , ) ]  

for some maximal t-ideal 34 of R, in which case R[{X,)IQ is an overring of 

R<{X,)> and therefore has Priifer integral closure. 0 

3. Pullbacks 

Let T be a domain, let M be a maximal ideal of T, let D be a 

proper subring of k = T/Ad, let 4: T -+ k denote the canonical 
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UMT-DOMAINS 1029 

epimorphism, and let R be the pullback of the following diagram 

(The downward arrows represent inclusion.) Thus R = &-I (D) .  Following 

[9], we shall refer to this diagram as a pullback diagram of type 0. The 

case where k is the quotient field of D is particularly important, and we 

shall refer to this case as a pullback diagram of type O*. It is well known 

(see [8] for details) that the prime spectrum of R in the diagram 0 is 

intimately related to the spectra of D and T. In particular, for each prime 

P of R with P 8 M, there is a unique prime Q of T with Qn R = P; and 

for this prime Q, we have R p  = TQ. We shall also make use of the fact 

that M is the conductor of T to R and is therefore divisorial in R. 

It will often be convenient to  adjoin an indeterminate to the rings in 

the diagram 0, resulting in the following pullback diagram 

We continue to use q5 to denote the horizontal maps. 

Proposition 3.1. In a pullback diagram of type 0, T is a t-linked overring 

of R. 

Proof: Let I be a (finitely generated) ideal of R with I-' = R. Let 

u E (T: IT). Then uI  C T, whence uIM 5 M 2 R, and uM C I-l = R. 

Thus u(M + I) 2 T. However, M is maximal ideal of T and I  $ M (since 
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1030 FONTANA, GABELLI, AND HOUSTON 

M is divisorial in R and I, = R). Thus ( M  + I ) T  = T, and we have u E T .  

Hence ( T :  I T )  = T .  0 

Corollary 3.2. Consider a pullback diagram of type 0. If R is a UMT- 

domain, then T is a UMT-domain, and M is a maximal t-ideal of T. 

Proof: That T is a UMT-domain follows immediately from Propositons 3.1 

and 1.2, and Proposition 1.4 shows (since M is a divisorial ideal, and 

therefore a t-ideal, of R) that M is a t-ideal of T. 0 

Lemma 3.3. Consider a pullback diagram of type 0 ,  let Q be a prime ideal 

of T which is incomparable to M, and set P = Qn R. Then Q is a 

maximal t-ideal of T H P is a maximal t-ideal of R. 

Proof: We begin by observing that if I is a t-ideal of R which is 

incomparable to M, then ( IT) t  # T. Otherwise, there is a finitely 

generated ideal J of R with J E I and (T: (T: JT) )  = T. Then 

J-1 c T :  JT = T,  lvhence J ,  2 R:T = M and I 2 J ,  3, M ,  a contradic- 

tion. 

Now assume that Q is a maximal t-ideal of T. By Proposition 3.1, 

T is t-linked over R, whence by (6, Proposition 2.11, Pt # R. Hence 

Pi 2 N for some maximal t-ideal N of R. We claim that N is 

incomparable to M. To see this, pick x E Q \ M. Since M is maximal in 

T, we can write 1 = tx f m for some t E T,m 6 M. It is easy to check that 

m E M \ N (and that tx E N \ M). Hence, by the observation above, 

(NT)t # T, and we have N T  5 N' for some maximal t-ideal N' of T.  Since 

N' 2 NT 2 PT, N' 2 Q. It follows that N' = Q and N = P. 
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UMT-DOMAINS 103 1 

Conversely, assume that P is a maximal t-ideal of R. Again by the 

observation above, (PT) t  # T, whence (PT)t C_ Q' for some maximal t-ideal 

Q' of T (which is necessarily incomparable to M). By what we have 

already proved, &'n R is a maximal t-ideal of R, and it is easy to see that 

we must have Q' n R = P. It follows that Q' = Q. 0 

By Theorem 1.1, if R is a UMT-domain and U is an upper to zero 

in R[X], then 3g E U with c(g), = R. For convenience we insert a lemma 

which gives the same conclusion when U is any nonzero ideal contracted 

from K[X] (where IC  is the quotient field of R). 

Lemma 3.4. Let R be a domain with quotient field I(. Then R is a UMT- 

domain -% for each nonconstant f E R[X] ,  3 g E  f K [ X ] n  R[X] with 

4?), = R. 
Proof: Suppose that R is a UMT-domain. Write f = f l...f, with each f 

irreducible in Ii'[X]. Since R is a UMT-domain, for each i, 3 

gi E f iIc[X] n R[X] with c(gi), = R. Then g = gl.. .g, E f K[X] n R[X], 

and, via a standard argument involving the content formula [lo, Theorem 

28.11, c(g),  = R. The converse is trivial. 0 

Proposition 3.5. Consider a pullback diagram of type O*. Then R is a 

UMT-domain e+ D and T are UMT-domains, and M is a maximal t-ideal 

of T. 

Proof: First assume that R is a UMT-domain, and let U be an upper to 

zero in D [ X ] .  Then $-'(u) is an upper to M in R[X] .  If U C Q [ X ]  for 
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 1032 FONTANA, GABELLI, AND HOUSTON 

some t-prime Q of D, then (-'(u) ~- ' (Q)[x] .  However, 4 - l ( ~ )  is a t- 

prime of R  (9, Corollary 1.91, and by [18, Theorem A] we can find an upper 

to zero U' in R [ X ]  with U' 2 4 - ' ( ~ )  C 4-'(Q)[x], contradicting the fact 

that R is a UMT-domain (Theorem 1.1). Hence U  $ Q [ X ]  for ail 1-primes 

Q of D, and D is a UhiIT-domain. Corollary 3.2 shows that T  is a UMT- 

domain and that M is a maximal t-ideal of T. 

Conversely, assume that D and T are UMT-domains and that M is 

a t-ideal of T. Let P be a maximal t-ideal of R ,  and let U be an upper to 

zero in R [ X ] .  We shall show that U $ PIX].  We first suppose P 3 M. In 
# 

this case, we may as well assume that U + M [ X ]  # R [ X ] .  Let U' denote 

the upper to zero in T [ X ]  for which U ' n  R [ X ]  = U. Since M [ X ]  is a 

common ideal of R [ X ]  and T [ X ] ,  it is easy to see that U'+ M [ X ]  # T [ X ] .  

Hence $(U1) = q5(U'+ M [ X ] )  is a proper ideal of k [ X ] .  It follows that 

4(U) = q5(U1) n D [ X ]  is of the form f k ( X ]  rl D [ X ]  with f E D [ X ] .  B y  [9, 

Corollary 1.91, d(P) is a t-prime of D. Hence, since D is a UMT-domain, 

Lemma 3.4 assures that ([[I) $ #(P)[XJ, from which it follows that 

U $ P [ X ] .  This takes care of the case P > M. If P  does not properly 
# 

contain M,  then P = M or P is incomparable to M. In the former case, 

since k  is the quotient field of Dl we have RM = T,,, and the fact that TM 

has Priifer integral closure shows that U $ M I X ]  = P [ X ] .  In the latter 

case, let Q denote the unique prime of T with Q n T = P. By Lemma 3.3, 

Q is a maximal t-ideal of T. Since T is a UMT-domain, Rp = TQ has 

Priifer integral closure, from which it follows that U $ P [ X ] .  B y  Theorem 

1.5, R is a UMT-domain. 0 
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UMT-DOMAINS 1033 

Proposition 3.6. Consider a pullback diagram of type 0, and assume that 

D = F is a field. Then R is a UMT-domain + T is a UMT-domain, M is 

a maximal t-ideal of T, and li is algebraic over F. 

Proof: Assume that R is a UMT-domain. We first show that k is algebraic 

over F. Let u = d ( t )  E k ( t  E T ) ,  and let U denote the kernel of the map 

from R[X]  to I( (the quotient field of R) which sends X to t. Since R is a 

UMT-domain (and M is a t-prime of R), 3 f = a,Xn +-.. + a. E U \ 
M [ X ] .  Let m be the largest integer j for which a j  6 M. Since 

artr E M R for n > T > m, the equation f ( t )  = 0 shows that m > 0. By 

absorbing the terms a,tr, n 2 r > m, into the constant term, we obtain an 

equation amtm + .-.  = 0. The image of this equation under q5 is an equation 

showing that u is algebraic over F. This half of the proof can now be 

completed by appealing to Corollary 3.2. 

For the converse, first observe that, since F is a field, we have the 

following pullback diagram. 

The fact that X. is algebraic over F then shows that TM is integral over 

RM and therefore that RM' = TAdl. Since T,, is a UMT-domain and M is 

a maximal t-ideal of T, this shows that RM1 is a Priifer domain. If P is a 

maximal t-ideal of R which is incomparable to M and Q is the unique 

prime of T with Q f l  R = P, then Q is a maximal t-ideal of T by Lemma 

3.3. Hence, since T is a UMT-domain, Rp  =TQ has Priifer integral 

closure. By Theorem 1.5, R is a UMT-domain. 0 
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1034 FONTANA, GABELLI, AND HOUSTON 

Theorem 3.7. Consider a pullback diagram of type 0. Then R is a UMT- 

domain D  and T are UMT-domains, M is a maximal t-ideal of T, and k 

is algebraic over the quotient field F of D. 

Proof: The pullback diagram 0 can be split into two pullback diagrams as 

follows. 

R - D  

Here, R 1  is the pullback of the lower diagram. Assume that R is a UMT- 

domain. The upper diagram is a pullback diagram of type CI*. By 

Proposition 3.5, R1 and D are UMT-domains, and M is a maximal t-ideal 

of R1. The other conclusions now follow from Proposition 3.6 applied to 

the lower diagram. For the converse, apply Proposition 3.6 to the lower 

diagram to conclude that R1 is a UMT-domain (and note that M is 

divisorial and is therefore a maximal t-ideal of R1). Then R is a UMT- 

domain by Proposition 3.5. O 

As a corollary, we recover the characterization of PVMD's in 

pullback constructions given in [9, Theorem 4.11 (which generalized a 

"D + M7' characterization in [I]). 

Corollary 3.8. Consider a pullback diagram of type 0. Then R is a PVMD 

D and T are PVMD7s, M is a maximal t-ideal of T, and k is the 

quotient field of D. 
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UMT-DOMAINS 1035 

Proof: Recall from [13, Proposition 3.21 that a domain is a PVMD it is 

an integrally closed UMT-domain. Assume that R is a PVMD. Then by 

Theorem 3.7, D and T are UMT-domains, M is a maximal t-ideal of T, 

and k is algebraic over the quotient field F of D. Since R is integrally 

closed (in T), it follows from standard pullback theory that k = F and that 

D is integrally closed (cf. [8, Corollary 1.51). Thus D is a PVMD. Now, 

since TQ = RQn n for each maximal ideal Q of T, T is integrally closed, 

whence T is a PVMD also. 

For the converse, we immediately obtain from Theorem 3.7 that R 

is a UMT-domain. By [8, Corollary 1.51, R is also integrally closed and 

therefore a PVMD. 0 

Now recall from [4] the notion of CPI(comp1ete pre-image)- 

extension of a domain R with respect to a prime ideal P of R; this is 

denoted R(P)  and is defined by the following pullback diagram: 

Here 4 is the canonical homomorphism. By (5,  Theorem 2.41, R p  has 

Priifer integral closure * it is a t-linkative UMT-domain, i.e., it is a UMT- 

domain and P R p  is maximal t-ideal. The following result now follows 

from Proposition 3.5. 

Corollary 3.9. Let R be an integral domain, and let P be a t-prime of R. 

Then the CPI-extension R(P)  is a UMT-domain * RIP is a UMT-domain 

and R p  has Priifer integral closure. 
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1036 FONTANA, GABELLI. AND HOUSTON 

Corollary 3.10. Consider a pullback diagram of type 0. Then R  has Prufer 

integral closure H D and T have Priifer integral closure and k is algebraic 

over F. 

Proof: (Again from [5, Theorem 2.41,) a domain has Priifer integral closure 

e it is a t-linkative UMT-domain. The theorem now follows from 

Theorem 3.7 and [5, Theorem 3.51. 0 

Corollary 3.11. A domain R has Priifer integral closure each overring of 

R is a UMT-domain. 

Proof: If R has Prufer integral closure, then R is a UMT-domain ([5, 

Theorem 2.41). Since an overring of R also has Priifer integral closure, it is 

also a UMT-domain. To prove the converse, we may assume that (R, M) 

is a quasi-local domain which is integrally closed but is not a valuation 

domain; we shall show that R possesses a non-UMT-overring. Choose an 

element u  in the quotient field I( of R for which neither u  nor u-' lies in 

R ,  and let U denote the kernel of the natural map from R [ X ]  to K sending 

X to u. Set T = R[u]  cz R [ X ] / U .  B y  the u, u-' lemma [ lo ,  Lemma 19.141, 

we have U 5 M [ X ] .  In the natural isomorphism T 2 R [ X ] / U ,  let the 

prime ideal N of T correspond to M [ X ] / U .  Note that T I N  21 ( R / M ) [ X ] .  

Consider the following pullback diagram. 

S - RIM 

The pullback S is an overring of R. Since TN/NTAr (which is the quotient 

field of T I N )  is not algebraic over RIM, Theorem 3.7 (or Proposition 3.6) 

shows that S is not a UMT-domain. O 



D
ow

nl
oa

de
d 

B
y:

 [O
hi

o 
S

ta
te

 U
ni

ve
rs

ity
] A

t: 
14

:1
4 

12
 J

ul
y 

20
08

 

UMT-DOMAINS 1037 

As a final corollary, we recover the following known result (see [2, 

Lemme 1.21). 

Corollary 3.12. If R is a domain with Priifer integral closure, then R I P  

has Priifer integral closure for each prime P of R. 

Proof: Let P be a prime of R. As an overring of R, R(P), the CPI- 

extension of R with respect to P ,  is a UMT-domain by Corollary 3.11. 

Hence, by Corollary 3.9, R I P  is also a UMT-domain. It is well known that 

an overring of R I P  is of the form T/Q, where T is an overring of R and Q 

is a prime ideal of T. (This can be proved by inserting the overring of 

R I P  between R I P  and Rp/PRp in the CPI-extension diagram above and 

pulling back to obtain T.) As an overring of R, T has Priifer integral 

closure, whence, by what was just proved, T/Q is a UMT-domain. Thus 

each overring of R I P  is a UMT-domain, and R I P  has Priifer integral 

closure by Corollary 3.11. 0 
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