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Marco Fontana1 and K. Alan Loper2
1Department of Mathematics, University of Studies Roma Tre,
Roma, Italy
2Department of Mathematics, Ohio State University-Newark,
Newark, Ohio, USA

Let R be a commutative ring and let Spec�R� denote the collection of prime ideals of
R. We define a topology on Spec�R� by using ultrafilters and demonstrate that this
topology is identical to the well-known patch or constructible topology. The proof is
accomplished by use of a von Neumann regular ring canonically associated with R.
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Let R be a commutative ring and let Spec�R� denote the collection of prime
ideals of R. On Spec�R� we can define a topology known as Zariski’s topology:
the collection of all sets V�I� �= �P ∈ Spec�R� � I ⊆ P�, where I is an ideal of R
constitutes the closed sets in this topology.

Zariski’s topology has several attractive properties related to the geometric
aspects of the study of the set of prime ideals (Eisenbud, 1994, Chapter I). For
example, Spec�R� is always quasicompact (that is, every open covering has a
finite refinement). On the other hand, this topology is very coarse. For example,
Spec�R� is almost never Hausdorff (that is, two distinct points have nonintersecting
neighborhoods).

Many authors have considered a finer topology, known as the patch topology
(Hochster, 1969) and as the constructible topology (Grothendieck and Dieudonné,
1970, pp. 337–339 or Atiyah and Macdonald, 1969, Chapter 3, Exercises 27, 28
and 30), which can be defined starting from Zariski’s topology.

Consider two collections of subsets of Spec�R�:

(1) The sets V�I� defined above for I an ideal of R;
(2) The sets D�a� �= Spec�R�\V�a� where a ∈ R (where, as usual, V�a� denotes the

set V�aR�).
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2918 FONTANA AND LOPER

The patch topology is then the smallest topology in which both of the above
classes consist of closed sets. The patch topology is a refinement of Zariski’s
topology which is always Hausdorff.

It is easy and natural to define another topology on Spec�R� by introducing
the notion of an ultrafilter.

We start with definitions, some notation, and some preliminary results.
Given an infinite set S, an ultrafilter � on S is a collection of subsets of S

such that:

(1) If A ∈ � and A ⊆ B ⊆ S, then B ∈ �;
(2) If A�B ∈ �, then A ∩ B ∈ �;
(3) If A ∪ B ∈ � and A ∩ B is empty, then exactly one of A and B lies in �.

Note that (1) implies that any nonempty ultrafilter on a set S contains the set
S itself. It then follows from (3) that the empty set can never be a member of an
ultrafilter. Hence an ultrafilter on a set S is always a proper subset of the power set
of S.

A principal ultrafilter on S can be defined as follows. If d ∈ S, then the
principal ultrafilter of d on S is the collection of all subsets of S which contain
d. Zorn’s Lemma can be used to prove that nonprincipal ultrafilters exist on any
infinite set.

Let C be a subset of Spec�R�, and let � be an ultrafilter on the set C. Set
P� �= �a ∈ R �V�a� ∩ C ∈ ��. By an argument similar to that used in Cahen et al.
(2000, Lemma 2.4) it can be easily shown that P� is a prime ideal of R. We call P�

an ultrafilter limit point of C. This notion of ultrafilter limits of collections of prime
ideals has been used to great effect in several recent articles (Cahen et al., 2000;
Loper, 1997, 1998). If � is a principal ultrafilter, then there is a prime P ∈ C such
that � consists of all subsets of C which contain P. It is clear then that P� = P ∈ C.
On the other hand, if � is nonprincipal, then it is not at all clear that P� should lie
in C. That motivates our definition.

Definition 1. Let R and C be as above. We say that C is ultrafilter closed if it
contains all of its ultrafilter limit points.

It is not hard to see that the ultrafilter closed subsets of Spec�R� define a
topology on the set Spec�R�, called the ultrafilter topology on Spec�R�. In fact:

(i) Suppose that C1� C2� � � � � Cn are ultrafilter closed subsets of Spec�R�. Let
C �=C1 ∪ C2 ∪ · · · ∪ Cn. Let � be an ultrafilter on C. Then � defines an
ultrafilter limit prime P�. We want to show that P� ∈ C. Note that at least
one of the sets Ci lies in �. Without loss of generality, suppose that C1 ∈ �.
The collection of sets �1 �= �C1 ∩ B �B ∈ �� is then an ultrafilter on C1 and the
ultrafilter prime it defines is indentical to P�. In particular,

(1) Let d ∈ P�1
. We know that V�d� ∩ C1 ∈ �1. Since C1 ∈ �, then every set in

�1 is also in �. Hence V�d� ∩ C1 ∈ �. Then note that V�d� ∩ C1 ⊆ V�d� ∩ C
and so V�d� ∩ C ∈ �. Hence, d ∈ P�;

(2) Let d ∈ P�. Then V�d� ∩ C ∈ �. The definition of �1 then implies that
V�d� ∩ C1 = �V�d� ∩ C� ∩ C1 ∈ �1. Hence, d ∈ P�1

.
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PATCH AND ULTRAFILTER TOPOLOGY 2919

Hence, P� ∈ C since it is in the ultrafilter closure of C1 which is an ultrafilter
closed set.

(ii) Suppose that �C� � � ∈ 	� is a collection of ultrafilter closed subsets of Spec�R�.
Let C �= ⋂

�∈	 C�. Let � be an ultrafilter on C and P� the ultrafilter limit
prime associated to �. We want to show that P� lies in C. For each � ∈ 	,
the collection �� �= �B ⊆ C� �B ∩ C ∈ �� is an ultrafilter on C�. Moreover, it
defines the same limit prime P� as the ultrafilter � defines on C (using an
argument similar to that given above for finite unions). Since C� is ultrafilter
closed, then we have proven that P� ∈ C�, for each � ∈ 	, and hence P� ∈ C.

Note: The above discussion assumes that the sets are infinite and the
ultrafilters are nonprincipal. The proofs are completely routine otherwise.

It is natural to ask then how this topology compares with the other topologies
we have defined on Spec�R�. The goal of this article is to demonstrate that the
ultrafilter topology coincides with the patch topology.

It should be noted that related results were obtained recently in Cáceres-Duque
and Nelson (2003).

One direction is easy. We begin with that result.

Proposition 2. Let R be a ring and let C ⊆ Spec�R� be a collection of prime ideals.
Suppose that C is closed in the patch topology. Then C is also closed in the ultrafilter
topology.

Proof. We consider each of the defining classes of closed sets for the patch
topology separately.

Suppose that C = V�I� for some ideal I ⊆ R. Let � be a nonprincipal
ultrafilter on C and construct the prime ideal P�. Let a ∈ I . Then a ∈ P for every
prime P ∈ C. Hence C ⊆ V�a�. Since our ultrafilter was defined on C, we know that
C ∈ � and so V�a� ∩ C = C ∈ �. Hence, I ⊆ P�. Since C is defined as the collection
of all primes that contain I this implies that P� ∈ C.

Now assume that C = D�a� for some element a ∈ R. Let � be a nonprincipal
ultrafilter on C and construct the prime ideal P�. Then the set V�a� contains none of
the primes in C. Hence, ∅ = V�a� ∩ C is not in � since, as noted earlier, no ultrafilter
contains the empty set. Hence, a is not an element of P�. It follows by definition
that P� ∈ C.

Finally note that, in both of the above settings, the assertion that P� ∈ C is
trivial if the ultrafilter � is principal. Therefore, we have proven that all of the closed
sets which generate the patch topology are also closed in the ultrafilter topology.
The result follows immediately. �

The opposite direction is somewhat harder. We make use of the von Neuman
regular ring T�R� canonically associated with the ring R (details below). We start
by recalling a notation and some easy facts concerning the von Neumann regular
rings. If f � R → S is a ring homomorphism, fa � Spec�S� → Spec�R� denotes the
map defined by fa�Q� �= f−1�Q�, for each Q ∈ Spec�S�.

Lemma 3. The following are equivalent:

(i) R is von Neumann regular (i.e., for each a ∈ R there exists x ∈ R such that
a2x= a);
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2920 FONTANA AND LOPER

(ii) For each a ∈ R there exists a unique element a�−1� ∈ R (called the punctual inverse
of a) such that a2a�−1� = a and �a�−1��2a = a�−1�.

Lemma 4. Let R be a von Neumann regular ring and set e�a� �= aa�−1�, for each
a ∈ R. Then the following hold:

(1) e�a� is idempotent;
(2) aR = e�a�R;
(3) If a� b ∈ R, then aR+ bR = e�a�R+ e�b�R = �e�a�+ e�b��1− e�a��R.

Proposition 5. Let R be any ring, let �Xa � a ∈ R� be a family of indeterminates
(one for each element a ∈ R) and let IR be the ideal generated by �a2Xa − a� aX2

a −
Xa � a ∈ R� in the polynomial ring R
Xa � a ∈ R�. Set

T�R� �= R
Xa � a ∈ R�

IR
�

Then:

(1) T�R� is von Neumann regular (thus, in particular, every finitely generated ideal of
T�R� is principal);

(2) The canonical embedding � � R → T�R� is an epimorphism;
(3) � � R → T�R� is an isomorphism if and only if R is von Neumann regular;
(4) Let Spec�R�Z [respectively, Spec�T�R��Z] be Spec�R� [respectively, Spec�T�R��]

endowed with the Zariski topology and let �a � Spec�T�R�� → Spec�R� be the
canonical map associated to � � R → T�R�. Then �a � Spec�T�R��Z → Spec�R�Z is
continuous and bijective;

(5) Let Spec�R�C [respectively, Spec�T�R��C] be Spec�R� [respectively, Spec�T�R��]
endowed with the patch topology. Then �a � Spec�T�R��Z → Spec�R�C is an
homeomorphism. In particular, Spec�T�R��Z coincides with Spec�T�R��C .

Details concerning the von Neumann regular ring T�R� canonically associated
with the ring R and the proof of the previous (and related) results can be found in
Olivier (1967/1968, 1968), Atiyah and Macdonald (1969, Chapter 3, Exercise 30),
Bourbaki (1961, Chapitre 1, §1, Exercices 16, 17, 18; Chapitre 2 §4, Exercice 16),
Lafon (1977, pp. 99, Exercice 8, p. 119), and Dobbs et al. (1981).

For the sake of simplicity, from now on, we identify R with its canonical image
in T�R�. Consider a subset C of Spec�T�R��. Then consider also the corresponding
collection CR �= �P ∩ R �P ∈ C� of primes in R. Note that by Proposition 5 (4),
we can identify the sets of primes of R and T�R� by using just the elements that lie
in R. Define an ultrafilter � on C. Then we can define a corresponding ultrafilter
�R on CR. Consider the prime P� of T�R� defined by �. Consider the prime P� ∩ R
of R. Choose an element d ∈ R ⊆ T�R�. Define VR�d� to be all the primes of R which
contain d. Recall that P� = �d ∈ T�R� �V�d� ∩ C ∈ ��. Then since we are assuming
that d ∈ R, we have d ∈ P� exactly when VR�d� ∩ CR ∈ �R. But this is exactly the
condition necessary for d to lie in P�. The point of this is that the ultrafilter limit
primes of a collection of primes of T�R� will correspond precisely to the ultrafilter
limit primes of the corresponding collection of primes of R. This implies that the
contraction map �a � Spec�T�R�� → Spec�R� and its inverse send closed sets to closed
sets with respect to the ultrafilter topologies. The following result is then clear.
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PATCH AND ULTRAFILTER TOPOLOGY 2921

Proposition 6. The contraction map �a � Spec�T�R�� → Spec�R� is a
homeomorphism with respect to the ultrafilter topologies.

So we have homeomorphisms between Spec�T�R�� and Spec�R� with respect
to both the patch topology and the ultrafilter topology. All that remains is to show
that the ultrafilter and patch topologies coincide on Spec�T�R��.

We can use the result of Proposition 2 to show that a subset of
Spec�T�R�� which is closed in the patch topology (or, in the Zariski topology by
Proposition 5(5)) is also closed in the ultrafilter topology. We prove the converse.

Proposition 7. Let R be a ring and let C be a collection of prime ideals in
Spec�T�R��. Suppose that C is closed in the ultrafilter topology. Then C is also closed
in the patch topology.

Proof. We prove the contrapositive.
Suppose that C is a collection of prime ideals in Spec�T�R��which is not

closed in the patch topology. Let I �= ⋂
P∈C P �⊆T�R��. Since C is not closed in

the patch topology (or, equivalently, in the Zariski topology) of Spec�T�R�� then
V�I� is properly larger than C. Let P be a prime ideal in T�R� such that I ⊆ P but
P � C. Choose a nonzero element a ∈ P. We claim that a ∈ Q, for some Q ∈ C.
Suppose not. We can find an element x ∈ T�R� such that a2x − a = 0. Note then
that a�ax− 1�= 0. It follows that any prime which does not contain a must contain
ax − 1. Hence, ax − 1 is contained in every prime in C. This implies that ax − 1 is
contained in I . This then implies that ax − 1 is contained in P. Since a and ax − 1
are relatively prime and are both contained in P, we have a contradiction.

For each element a ∈ P let VC�a� represent all of the primes of C which
contain a (i.e., VC�a� = V�a� ∩ C). (Note that we have proven in the preceding
paragraph that VC�a� is not empty.) Our goal is to build an ultrafilter on C such
that each set VC�a� is in the ultrafilter. If we can show that a collection of nonempty
subsets of a set is closed under finite intersection, then we will have shown that all
subsets in the collection lie in a filter. Then note that the collection of all filters on
a set can be partially ordered under inclusion. Zorn’s Lemma implies that maximal
filters exist, and that every filter is contained in a maximal filter. The maximal filters
correspond precisely to the ultrafilters. So our goal is to prove that the collection
of sets of the form VC�a�, with a ∈ P, is closed under finite intersections. This is
equivalent to showing that if J is a nonzero finitely generated ideal contained in P,
then there is some prime Q ∈ C such that J ⊆ Q. Recall however, that in T�R� all
finitely generated ideals are principal (Proposition 5(1)). It follows that such an ideal
J is actually principal and since the generator must lie in P, we have already proven
what we need. (Note that we have proven that a finite intersection of ideals of the
form VC�a� has that same form and hence is not empty.) So we let � �= ��P� be
an ultrafilter which contains all of the sets VC�a� for a ∈ P. Then we construct the
ultrafilter limit prime P�. The construction was designed so that P ⊆ P�. However,
T�R� is a zero-dimensional ring so we have actually proven that P = P�. Since we
assumed that P is not in C this implies that C is not ultrafilter closed. �

The preceding result finishes the last step in our main theorem.
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2922 FONTANA AND LOPER

Theorem 8. Let R be a ring. Then the patch topology and the ultrafilter topology on
the collection Spec�R� of prime ideals of R are identical.
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