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Preface

A classical generalization of the Fundamental Theorem of Arithmetic states that
an integral domain is a principal ideal domain if and only if each of its proper
ideals can be factored as a finite product of principal prime ideals. If the “principal”
restriction is removed, one has a characterization of (nontrivial) Dedekind domains.
The purpose of this work is to study other types of ideal factorization. Most that we
consider involve writing certain types of ideals in the form J [T, where J is an ideal
of some special type and I7 is a (finite) product of prime ideals. For example, we say
that a domain has weak factorization if each nondivisorial ideal can be factored as
above with J the divisorial closure of the ideal and IT a product of maximal ideals.
In a different direction, we say that a domain has pseudo-Dedekind factorization if
each nonzero, noninvertible ideal can be factored as above with J invertible and /7 a
product of pairwise comaximal prime ideals. In each of these cases, if the domain in
question is integrally closed, then it must be a Priifer domain. While this implies, as
is often the case in multiplicative ideal theory, that Priifer domains play an important
role in our study, we do provide non-integrally closed examples for each of these
types of ideal factorization. On the other hand, we also consider domains in which
each proper ideal can be factored as a product of radical ideals, and such domains
must be almost Dedekind (hence Priifer) domains.

This volume provides a wide-ranging survey of results on various important types
of ideal factorization actively investigated by several authors in recent years, often
with new or simplified proofs; it also includes many new results. It is our hope that
the material contained herein will be useful to researchers and graduate students
interested in commutative algebra with an emphasis on the multiplicative theory of
ideals.

During the preparation of this work, Marco Fontana was partially supported by
a Grant MIUR-PRIN (Ministero dell’Istruzione, dell’Universita e della Ricerca,
Progetti di Ricerca di Interesse Nazionale), and Evan Houston and Thomas G. Lucas
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were supported by a visiting grant from GNSAGA of INdAM (Istituto Nazionale di
Alta Matematica).

Rome, Italy Marco Fontana
Charlotte, North Carolina Evan Houston
May 2012 Thomas G. Lucas
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Chapter 1
Introduction

Abstract In this introductory chapter we introduce several variations on factoring
ideals into finite products of prime ideals. For example, a domain has radical
factorization if each ideal can be factored as a finite product of radical ideals. Such
domains are also known as SP-domains. A domain has weak factorization if each
nonzero nondivisorial ideal can be factored as the product of its divisorial closure
and a finite product of maximal ideals. If one can always have such a factorization
where the maximal ideals are distinct, then the domain has strong factorization.
Finally, a domain has pseudo-Dedekind factorization if each nonzero noninvertible
ideal can be factored as the product of an invertible ideal and a finite product of
pairwise comaximal prime ideals with at least one prime in the product. In addition,
if each invertible ideal has such a factorization, then the domain has strong pseudo-
Dedekind factorization.

The property that every proper ideal of an integral domain can be written uniquely
as a product of prime ideals can be taken as a definition of a Dedekind domain,
which is classically defined via E. Noether’s Axioms ([54, Theorems 96 and 97]
or [34, Theorems 37.1 and 37.8]). More precisely, a classical theorem by Noether
in 1927 [66] shows that an integral domain is Dedekind if and only if every
proper ideal is uniquely a product of maximal ideals. In 1940, K. Kubo [55]
proved that, if every proper ideal can be factored uniquely as a product of prime
(but—a priori—not necessarily maximal) ideals, then the integral domain is still
Dedekind. A few years later, K. Matsusita in 1944 [62] showed that, in the previous
characterization theorems of Dedekind domains, the assumption of uniqueness can
be omitted. This result was implicitly contained in a paper by S. Mori in 1940 [64].
Mori considered factorization properties in rings with zero divisors. He defined a
ring to be a general ZPI-ring (or, a general Zerlegung Primideale ring) if every
proper ideal can be expressed as a product of prime ideals. A ZPI-ring is a general
ZPI-ring in which every proper ideal can be uniquely expressed as a product of
prime ideals.

M. Fontana et al., Factoring Ideals in Integral Domains, Lecture Notes of the Unione 1
Matematica Italiana 14, DOI 10.1007/978-3-642-31712-5_1,
© Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction

In 1964, H.S. Butts gave a rather different characterization of Dedekind domains.
He declared a proper ideal I of a domain R to be unfactorable if whenever I = AB
for ideals A and B, then at least one of A and B equals R (and the other equals 7).
Using this notion, he showed that R is a Dedekind domain if and only if
each nonzero factorable ideal can be expressed uniquely as a finite product of
unfactorable ideals [12, Theorem].

Essentially, all of the factorizations we will consider are variations and
generalizations on factoring each ideal as a finite product of prime ideals. The
first variation we will consider for factoring ideals is to simply replace the prime
factors with radical ones. We say that an ideal / has a radical factorization if there
are finitely many radical ideals Ji, J,...,J, suchthat I = J;J,---J,. Ina 1978
paper, N. Vaughan and R. Yeagy [75] studied the rings for which every proper
ideal has a radical factorization. They referred to such a ring as an SP-ring, for a
more descriptive name we will also say that such a ring has radical factorization.
One of their main results is that a domain with radical factorization is an almost
Dedekind domain [75, Theorem 2.4]. An example in [14] shows that there are
almost Dedekind domains that do not have radical factorization. The first complete
characterization of SP-domains is due to B. Olberding [69, Theorem 2.1].

For a different approach, we can first put a restriction on the type of ideal that
we wish to factor, and then ask that these ideals have some “nice” factorization
property. For example, a generalized Dedekind domain is a Priifer domain R
such that PRp is principal for each nonzero prime ideal P and each nonzero
prime is the radical of a finitely generated ideal (see Sect.3.3 for the original
definition of generalized Dedekind domains). In terms of factorization properties,
a Priifer domain R is a generalized Dedekind domain if and only if the set of
divisorial proper ideals consists of the ideals that can be factored as the product
of an invertible ideal (which may be R) and a finite product of comaximal prime
ideals (see [31, Theorem 3.3] and Theorem 3.3.6). We will also revisit the notion
of factoring families for almost Dedekind domains. Here one restricts to only
factoring finitely generated ideals. A factoring family (when it exists) is an indexed
set of finitely generated ideals {Jy | Jo Ry, = Mo Ruy,, My, € Max(R)} such that
each finitely generated nonzero ideal is a finite product of powers of the ideals from
the factoring family, with negative powers allowed. It is unknown whether or not
every almost Dedekind domain admits a factoring family.

In all of the other variations we consider, we will allow one factor to be other
than a prime ideal, but for this factor we would like it to have some special feature
to link it to Dedekind domains. Each nonzero prime ideal of a Dedekind domain
is maximal and each nonzero ideal is divisorial, so for an arbitrary domain R
we could restrict our factorization restrictions to just those nonzero ideals that
are not divisorial. We introduced two such factorizations in [19]. We say that a
domain R has weak factorization if for each nonzero nondivisorial ideal /, there are

finitely many maximal ideals M|, M5, ..., M, (not necessarily distinct) such that
I = 1"M\M,---M, (where I" = (R : (R : I))). If such a factorization always
exists with the maximal ideals M, M,, ..., M,, distinct, we say that R has strong

factorization. This definition varies somewhat from the original definition in [19].



1 Introduction 3

There the M; were further restricted to being those nondivisorial maximal ideals
M; where I Ry, # (IRy,)". Here we introduce the term very strong factorization
when the factorization is unique in the sense that the M; are restricted to being the
distinct nondivisorial maximal ideals for which I Ry, # (I Rp,)". As we will see, if
R is a Priifer domain, then it has very strong factorization if and only if it has strong
factorization. We leave open the question of whether very strong factorization and
strong factorization are equivalent for all domains.

Each nonzero ideal of a Dedekind domain is invertible, so another variation
would be to have each nonzero ideal factor as the product of an invertible ideal
(perhaps the domain itself) and a finite product of pairwise comaximal prime
ideals with at least one prime in the product. We will say that a domain has
strong pseudo-Dedekind factorization when this occurs. For a less restrictive
factorization, a domain has pseudo-Dedekind factorization if each noninvertible
ideal factors as a product of an invertible ideal and a finite product of pairwise
comaximal prime ideals. It seems rather remarkable that a domain R has strong
pseudo-Dedekind factorization if and only if each nonzero ideal factors as the
product of a finitely generated ideal (that may be R) and a finite product of
(not necessarily pairwise comaximal) prime ideals with at least one prime in the
second factor [70, Theorem 1.1]. However, the equivalence becomes clear once it is
known that the latter property implies the domain in question is a Priifer domain.

In Chap.2, we collect many of the definitions, properties, and results that we
will need in the following chapters, often improving the “classical” statements
or simplifying their proofs. In particular, we consider h-local domains, various
sharpness and trace properties (definitions are recalled later) and we discuss their
interrelations, with particular attention to the Priifer domain case and to ideal
factorization.

There are several types of factorizations that we have not included. For example,
in 1964, R. Gilmer showed that a one-dimensional integral domain R is an almost
Dedekind domain if and only if each primary ideal is a power of its radical
[32, Theorem 1]. Also, D.D. Anderson and L. Mahaney have characterized the
domains for which each nonzero ideal can be factored as a finite product of primary
ideals [3]. A domain with this property is referred to as a Q-domain. In 2002,
J. Brewer and W. Heinzer investigated domains for which each nonzero ideal can be
factored as a finite product of certain restricted types of pairwise comaximal ideals
[11]. They consider three different sets for the comaximal factors: (a) ideals with
prime radicals, (b) primary ideals, (c) ideals that are powers of prime ideals. They
established characterizations for each of these three sets. In 2004, C. Jayram [53]
considered the following generalization of the Anderson—Mahaney factorization
into primary ideals: “For what domains R is it the case that R, is a O-domain
for each maximal ideal M ?” An almost Dedekind domain that is not Dedekind has
Jayram’s local Q-domain property, but is not a 0 -domain.



Chapter 2
Sharpness and Trace Properties

Abstract In this chapter we collect many of the definitions, properties and results
that we will need in the following chapters, often improving the ‘“classical”
statements or simplifying their proofs. In particular, we consider i-local domains,
various sharpness and trace properties (definitions are recalled in the present
chapter) and we discuss their interrelations with particular attention to the Priifer
domain case and to ideal factorization. Special care has been given to the attributions
of the results and to the citations of the original references.

2.1 h-Local Domains

We start by recalling some standard properties of valuation domains.

Lemma 2.1.1. Let V be a valuation domain with quotient field K, where V # K,
and maximal ideal M .

(1) Either M is invertible or M~' = V (equivalently, M = M?). Therefore, M is
divisorial if and only if M is invertible (or, equivalently, finitely generated or,
equivalently, principal).

(2) Let I be a nonzero ideal of V. Then 1™ is a subring of K if and only if I is a
noninvertible prime ideal of V.

(3) If P is a noninvertible prime ideal of V, then P~' = Vp = (P : P).

(4) If I is a nonzero ideal of V', then (I : I) = Vp, where P is the prime ideal of
V of all the zero divisors in V /1. In particular, if Q is a nonzero primary ideal
of Vand P := /O, then (Q : Q) = Vp.

(5) If M is finitely generated (or, equivalently by (1), divisorial), then every ideal
of V is divisorial. If M is not finitely generated, then {xM | 0 # x € V'} is the
set of nondivisorial ideals of V.

The proofs of the statements collected in Lemma 2.1.1 can be found in
[24, Corollary 3.1.3, Proposition 3.1.4, Corollary 3.1.5, Lemma 3.1.9, and
Proposition 4.2.5].

M. Fontana et al., Factoring Ideals in Integral Domains, Lecture Notes of the Unione 5
Matematica Italiana 14, DOI 10.1007/978-3-642-31712-5_2,
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6 2 Sharpness and Trace Properties

Remark 2.1.2. We note that some of the statements of Lemma 2.1.1 have
appropriate generalizations to the case of a Priifer domain.

(1) The first part of statement (1) holds for any Priifer domain by
[24, Corollary 3.1.3] or [51, Corollary 3.4]; i.e., if M is a maximal ideal of
a Priifer domain R, then either M is invertible or M~ =R;in particular, a
maximal ideal M of R is invertible (or, equivalently, finitely generated) if and
only if it is divisorial.

(2) For statement (2), the situation is more complicated, and a relevant result will
be recalled later (see Theorem 2.3.2(1))

(3) A global version of Lemma 2.1.1(3) will be stated in Theorem 2.3.2
(see both (2) & (3)).

(4) The Priifer analogue of Lemma 2.1.1(4) is the following [24, Theorem 3.2.6]:
Let I be a nonzero ideal of a Priifer domain, { M} the set of maximal ideals of
R containing 1, and {Mg} the set of maximal ideals of R that do not contain
I. For each a, let Q4 Ry, be the prime ideal of all zero divisors of Ry, /I R,
Then (I : 1) = (N, Ro,) N (N Rury).

(5) Nowadays, much is known about divisoriality in Priifer domains, but our
knowledge remains incomplete.

We recall that a general ZPI-ring is a ring in which every proper ideal can be
expressed as a product of prime ideals. It is known that such a ring is Noetherian and,
at most, one-dimensional [76, Lemma 1 and Theorem 1]. A ZPI-ring is a general
ZPI-ring in which every proper ideal can be uniquely expressed as a product of
prime ideals. For integral domains a (general) ZPI-domain is the same as a Dedekind
domain.

Proposition 2.1.3. For an integral domain, the following notions coincide.

(i) General ZPI-domain.
(ii) ZPI-domain.
(iii) Dedekind domain.

About the proof, for (i)<(iii) see [34, Theorem 37.8 (1)&(3)]; (i))=(1) is
obvious, and the implication (i)=>(ii) follows easily from the following general
lemma.

Lemma 2.1.4. ([34, Lemma 37.6]) Let H be an invertible ideal in a commutative
ring R. If H can be expressed as a finite product of proper prime ideals of R, then
this representation is unique.

E. Matlis, in 1964 [60, §8], called an integral domain R h-local if:

(a) Each nonzero ideal of R is contained in only finitely many maximal ideals
(or, equivalently, R is a domain with finite character;i.e., each nonzero element
of R belongs to a finite number of maximal ideals).

(b) Each nonzero prime is contained in a unique maximal ideal.
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The notion of an /-local domain actually predates the work of Matlis. In 1952,
P. Jaffard [52] considered the class of commutative rings such that each nonzero
ideal can be factored as a finite product of ideals with each factor in a unique
(and distinct) maximal ideal. He referred to a ring with this property as an anneau du
type de Dedekind. It is clear that each nonzero prime ideal in such a ring is contained
in a unique maximal ideal. Also, each nonzero nonunit is contained in only finitely
many maximal ideals. Thus a domain of “Dedekind type” is h-local. The converse
holds as well. The proof illustrates a technique that we will find useful in those cases
where the domain in question satisfies condition (b) in the definition of /-local: each
nonzero prime lies in a unique maximal ideal.

Theorem 2.1.5. (P.Jaffard [52, Théoréme 6]) Let R be a domain. Then R is h-local
if and only if it is a domain of Dedekind type.

Proof. If P is a nonzero prime with a factorization, P = JJ; - -+ J,, with each J; in
a unique and distinct maximal ideal, then n = 1 and P = J;. For a nonzero proper
principal ideal rR, if rR = I, I,--- I, where each [; is in a unique maximal ideal
M;, then clearly M, M5, ..., M, are the only maximal ideals that contain r. Hence
a domain of Dedekind type is h-local.

For the converse, we first show that if / is a nonzero ideal of R and M is a
maximal ideal that contains /, then M is the only maximal ideal that contains
J := IRy (\R. By way of contradiction, assume N is a maximal ideal other
than M that contains J. Then each minimal prime of J that is contained in N
is comaximal with M. Let Q be such a prime and let ¢ € Q and m € M be such
that g +m = 1. As Q is minimal over J, there is a positive integer n and an element
t € R\Q such that tq" € J. But, clearly, this puts t € JRy (R = IRy [\ R,
a contradiction. Hence M is the only maximal ideal that contains J.

Next, let {My, M>, ..., M,} be the set of maximal ideals that contain / and set
I; := IRy, () R. Then M; is the only maximal ideal that contains /;. In particular,
I,-RM/. = RMj for all j # i. Checking locally shows that I = I 1,---I,,. O

The class of h-local domains simultaneously generalizes both Dedekind domains
and local domains. Matlis used the notion of /-local domain in order to study
integral domains R having (in common with Dedekind domains) the property
that each torsion R-module .7 admits a primary decomposition (i.e., J =
@D rreMax(r) Zm 160, Theorem 22]).

The h-local domain property was also used in the study of integral domains in
which each nonzero ideal is divisorial. In 1968, Heinzer established the following
characterization of integrally closed domains for which each nonzero ideal is
divisorial.

Theorem 2.1.6. (Heinzer [44, Theorem 5.1]) Let R be an integrally closed domain.
Then each nonzero ideal of R is divisorial if and only if R is an h-local Priifer
domain such that each maximal ideal is invertible.
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Remark 2.1.7. With a different approach, Matlis, also in 1968, proved a related
general result. Call a domain R reflexive if Homg(—, R) induces a duality on
submodules of finite rank of free R-modules. If R is a reflexive domain, then R
is h-local [61, Theorem 2.7] (see also [27, Proposition 5.6]). Note that a reflexive
domain is always a divisorial domain (i.e., an integral domain such that every
nonzero ideal is divisorial) and, for Noetherian domains, the two notions coincide
[61] or [27, Propositions 5.6 and 5.8].

The following statements demonstrate more clearly why the h-local domain
property is so useful when considering the local-global behavior of divisorial ideals.

Proposition 2.1.8. Let R be an integral domain with quotient field K.

(1) (Bazzoni-Salce [9, Lemma 2.3]) If R is an h-local domain and X C Y
are R-submodules of K, then (Y : X)Ry = (YRm : XRuy) for each
M e Max(R).

(2) (Olberding [67, Theorem 3.10]) Let R be a Priifer domain. The following
statements are equivalent.

(i) R is h-local.
(ii) (Y : X)Ry = (YRy : XRyy) for all nonzero R-submodules X and Y of
K such that X C Y and for all M € Max(R).
(iii) (R : I)Ry = (Ruy : IRy) for all nonzero ideals I of R and for all
maximal ideals M € Max(R).

In a recent paper, Olberding [71] gives an ample survey of h-local domains,
collecting several characterizations of different nature and discussing numerous
examples of this distinguished class of integral domains.

Remark 2.1.9. Note that in studying Priifer domains with Clifford class semigroup,
S.Bazzoni [7, Theorem 2.14 and Corollary 3.4] proved: If R is a Priifer domain with
finite character, then the following property holds:

(loc-inv) a nonzero ideal I of R is invertible if and only if IRy is a nonzero
principal ideal for every M € Max(R).

In that work [7, page 360], and in a following one [8, Question 6.2], she proposed
the following conjecture: A Priifer domain R satisfies the property (loc-inv) if and
only if R has finite character. This conjecture was recently proved by W.C. Holland,
J. Martinez, W.Wm. McGovern, and M. Tesemma in [49, Theorem 10] and,
independently, by F. Halter-Koch in [41, Theorem 6.11]. For a purely ring-theoretic
proof see M. Zafrullah [78] and W.Wm. McGovern [63].

We say that a maximal ideal M of an integral domain R is unsteady it MRy is
principal but M is not invertible. A maximal ideal is steady if it is not unsteady;
i.e., if either MR, is not principal or M is invertible. The following result is
straightforward.
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Lemma 2.1.10. Let R be a Priifer domain and M € Max(R). Then

(1) M is a steady maximal ideal of R if and only if it is either idempotent or
invertible.

(2) If M is not invertible (or, equivalently, nondivisorial by Remark 2.1.2(1)), then
either M is idempotent (i.e., steady) or M is locally principal (i.e., unsteady).

Note that from Remark 2.1.9, unsteady maximal ideals do not exist in a Priifer
domain with finite character. For a direct proof, note that if M is a maximal ideal of
a Priifer domain R (with finite character) such that M R}y is principal, then there is a
nonzero element r € M such that MRy, = rR),. By finite character, r is contained
in at most finitely many other maximal ideals, say, My, M, ..., M,. For each M;,
pick an element t; € M\M;. Then B := t;R + LR + --- + 1, R is contained in
M but in none of the M;. Checking locally, we have that M = rR + B, so M is
invertible.

2.2 Sharp and Double Sharp Domains

An integral domain R is called a #-domain if

(#) for each pair of nonempty subsets A’ and A” of Max(R), A" # A"
implies ([{Ry | M' € A’} # (W{Ru» | M" € A"} [34, page 331]
(see also [32, page 817]).

This notion was introduced by Gilmer in [33]. The integral domains such that
every overring is a #-domain were investigated in [35]; an integral domain with this
property is called a ##-domain.

Clearly, a Dedekind domain is a #-domain and, since an overring of a Dedekind
domain is a Dedekind domain, a Dedekind domain is in fact a ##-domain
[32, page 817 and Theorem 4(b)].

Recall that an integral domain R is an almost Dedekind domain if, for
each maximal ideal M of R, R, is a rank-one discrete valuation domain
(or, equivalently, a (local) Dedekind domain). For instance, the integral closure of
a rank-one discrete valuation domain (or, more generally, of an almost Dedekind
domain) in a finite extension of its quotient field is an almost Dedekind domain
[34, Theorem 36.1].

Even though a Dedekind domain is a ##-domain, an almost-Dedekind domain
is not necessarily a #-domain [33, Sect.3]. More precisely, in [33], one of the
reasons Gilmer gives for considering the (#) property is as a way to distinguish
between Dedekind domains and almost Dedekind domains that are not Dedekind.
Specifically,

Theorem 2.2.1. (Gilmer [33, Theorem 3]) An almost Dedekind domain is
Dedekind if and only if it satisfies (#).
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It is easy to see [33, Lemma 1] that for an integral domain R we have:

Ris a #-domain < Ry 2 ﬂ{RN | N € Max(R), N # M} forall M € Max(R).
For every ideal I of an integral domain R with quotient field K, set:

Max(R,I) :={N € Max(R) | N D I},
T'r(D):=I'I):={Rm | M € Max(R,I)} and
Or(I1):=60() := ({Ry | N € Max(R)\Max(R, )}

(where we set O (1) := K if Max(R, I') = Max(R) and, obviously, ®g(R) = R).
With this notation, the previous result can be stated as follows.

Proposition 2.2.2. (Gilmer [33, Lemma 1]) Let R be an integral domain. Then R
is a #-domain if and only if Ryy 2 @(M) for all M € Max(R).

Remark 2.2.3. With respect to Remark 2.1.9, Bazzoni in 1996 proved: If R is
a Priifer #-domain, then R satisfies (loc-inv) if and only if R is a domain with finite
character [7, Theorem 4.3], providing a basis for her conjecture.

In the case of Priifer domains, #-domains and ##-domains may be characterized
as follows.

Theorem 2.2.4. (Gilmer—Heinzer [35, Theorems 1 and 3 and Corollary 2]) Let R
be a Priifer domain.

(1) The following statements are equivalent.

(i) R is a #-domain.
(ii) Each maximal ideal M of R contains a finitely generated ideal I such that
Max(R, 1) = {M}.

(2) The following statements are equivalent.

(i) R is ##-domain.
(ii) Each prime ideal P of R contains a finitely generated ideal 1 such that
Max(R, 1) = Max(R, P).
(iii) For each nonzero prime P of R, Rp 2 ©(P).

The proofs of the statements collected in Theorem 2.2.4 can also be found in
[24, Theorems 4.1.4,4.1.6, and 4.17].

Condition (iii) of Theorem 2.2.4(2) has been adapted to considering individual
primes in a general integral domain as being sharp or not. Specifically, a nonzero
prime ideal of an integral domain R is called a sharp prime if Rp 2 ©(P) [20]
(cf. also [58, page 62]). Thus, by the previous considerations, a Priifer domain
is a #-domain (respectively, a ##-domain) if and only if each nonzero maximal
(respectively, prime) ideal is a sharp prime.
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Corollary 2.2.5. (Gilmer—Heinzer [35, Theorem 5]) If R is a Priifer domain with
finite character, then R is a ##-domain and each nonzero prime is sharp.

Proof. Let P be a nonzero prime of R and choose any nonzero element r € P.
By finite character, r is contained in at most finitely many maximal ideals that do
not contain P. For each such maximal ideal M; (if any), select an element #; €
P\M;. Nextset B:=rR+ 1R+ t,R +---+t, R where M|, M, ..., M, are the
maximal ideals that do not contain r. Clearly Max(R, B) = Max(R, P). Thus R is
##-domain and each nonzero prime is sharp. O

2.3 Sharp and Antesharp Primes

J. Huckaba and I. Papick proved that if P is a nonzero prime ideal of a Priifer
domain R, then (in our notation) @(P)(YRp = (P : P) € P~! C O(P)
[51, Theorems 3.2 and 3.8]. More precisely, we collect now some general results
that we will need later and which imply the previous inclusions. We start with some
further notation. For an ideal / of R, we let Min(R, I) denote the minimal primes
of I (in R). Then we set:

@r(I) == ®(I) :=({Rp | P € Min(R. 1)},
Qr(l):=2):=({Rp | P € Spec(R), P 2 I}.
Obviously, £2(1) € ©®(I). Using this notation we have:

Lemma 2.3.1. (Hays [42, Lemma 1]) If I is an ideal of an integral domain R, then
1=t 2(1) (€ ).
Theorem 2.3.2. (Huckaba—Papick [51, Theorems 3.2 and 3.8, Lemma 3.3, Propo-
sition 3.9]; Fontana—Huckaba—Papick [21]) Let R be a Priifer domain.
(1) Let I be a nonzero ideal of R. Then the following hold.

(@) O SUI) <17 < O).

(b) Moreover, I ™" is a ring implies ©(1) (" ®(I) = 1.
(2) Let P be a nonzero prime ideal of R. Then the following hold.

(a) O(P)(\Rp S P~ C O(P).

(b) Moreover, P noninvertible implies (P : P) = P~' = ®(P) [\ Rp.
In particular, PP~ = P.

(3) 07" = (Q : Q) for each nonzero nonmaximal prime Q of R.

The proofs of the statements in Theorem 2.3.2 can also be found in [24, Theorem
3.1.2, Corollary 3.1.8 and Lemma 4.1.9]. (Note that the inclusion I~ c O(1) in
(1)(a) is trivial consequence of the previous Lemma 2.3.1 since in general £2(/) C
o).
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Remark 2.3.3. With respect to Theorem 2.3.2(2)(b), note that the equality
Pl = (P : P) holds in more general settings. For instance, in [59, Lemma 15],
Lucas proved: Given a nonzero ideal I in an integrally closed domain, 1" is a ring
ifand only if 7" = (v/T)™" = (VT : ¥/T). An even more general result is given
in [24, Proposition 3.1.16].

Lemma 2.3.4. (Gilmer-Heinzer [35, Corollaries 2 and 3]) Let R be a Priifer
domain.

(1) Let P be a prime ideal of R and let {M,} be the set of maximal ideals of R
not containing P. Then Rp 2 (), Ru, if and only if there exists a finitely
generated ideal I of R contained in P such that I is contained in no M.

(2) Let M € Max(R). If there exists m € M such that m belongs to only finitely
many maximal ideals of R, then Ryy 2 (J{Ry | N € Max(R), N # M}.
Hence, if for each M, € Max(R) there is an element my, € M, such that m,
belongs to only finitely many maximal ideals of R, then R is a #-domain.

From Theorem 2.3.2 and Lemma 2.3.4(1), we have the following straightforward
consequences.

Proposition 2.3.5. Let R be a Priifer domain and let P be a nonzero prime ideal
of R.

(1) The following statements are equivalent.

(i) P is asharp prime (i.e., Rp 2 O(P)).
(ii) Max(R,I) = Max(R, P) for some finitely generated ideal I  P.
(iii) P~' < O(P).

(2) Assume also that P is noninvertible. Then the previous statements are
equivalent to the following.

(iv) (P : P) < O(P).

Remark 2.3.6. Note that Gilmer and Heinzer [36, Proposition 1.4] a more general
version of Lemma 2.3.4(1): Let { Py} | J{ P} be a set of primes in a Priifer domain
R, then (), Rp, € Rp if and only if each finitely generated ideal contained in P is
contained in some P,.

For a nonzero nonmaximal prime ideal P of a Priifer domain R, we know that P
is divisorial if and only if P~! € ©(P) or (R : ©®(P)) = P [24, Theorem 4.1.10].
Therefore, under the present assumptions on P, we have that P is sharp implies
that P is divisorial [21, Theorem 2.1]. In particular, for a Priifer ##-domain, we are
immediately able to determine some types of divisorial ideals.

Proposition 2.3.7. (Fontana—Huckaba—Papick [21, Corollary 2.6], [22, Proposi-
tion 12]) Let R be a Priifer domain which is also a ##-domain.

(1) If P is a nonzero nonmaximal prime ideal of R, then P is divisorial.
(2) The product of divisorial prime ideals is divisorial. In particular, for each
nonzero nonmaximal prime ideal P of R, P¢ is divisorial for all integers e > 1.
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The proof of this proposition can also be found in [24, Theorem 4.1.21].

Remark 2.3.8. With respect to Proposition 2.3.7(2), note that a prime ideal P of a
Priifer domain can be divisorial, even if P2 is not [24, Example 8.4.1]. On the other
hand, it is known that P? = (P?)" if and only if P¢ = (P°)" for all integers e > 1
[24, Corollary 4.1.18 and Theorem 4.1.19].

For general integral domains, sharp primes have a sort of “stability property
under specializations.” More precisely,

Proposition 2.3.9. Let P C P’ be a pair of nonzero prime ideals of a domain R.
If P is sharp and Max(R, P) = Max(R, P’), then P’ is sharp. In particular, if P
is sharp and contained in a unique maximal ideal M of R, then each prime that
contains P is sharp.

Proof. Since P’ contains P, Rpr € Rp. If P is sharp and Max(R, P) =
Max(R, P’), then Rp does not contain ®(P) and @(P) = O(P’). Hence we also
have that Rp/ does not contain @(P’). Therefore P’ is sharp. The “in particular”
statement follows easily. O

Recall that a branched prime is a prime ideal P having a proper P-primary ideal.
An unbranched prime is a prime ideal that is not branched. Sharp prime ideals that
are also branched can be easily characterized in Priifer domains.

Proposition 2.3.10. Let R be a Priifer domain and let P be a nonzero prime ideal
of R. Then P is both sharp and branched if and only if P = \/Efor some finitely
generated ideal B of R.

Proof. Since R is a Priifer domain, P is branched if and only it is minimal over
some finitely generated ideal [34, Theorem 23.3(e)]. Hence, if P is the radical of a
finitely generated ideal, then it is both branched and sharp, the latter conclusion by
Proposition 2.3.5(1). Conversely, if P is both sharp and branched, then it is minimal
over a finitely generated ideal J and it contains a finitely generated ideal / such that
the only maximal ideals that contain / are those that contain P. Clearly, P is the
radical of the finitely generated ideal / + J in this case. O

Regarding the proof of Proposition 2.3.10, note that if Q is a prime ideal that
contains /, then Q is contained in some maximal ideal that contains 7, and thus
in a maximal ideal that contains P. Since R is a Priifer domain, P and Q must be
comparable.

The next goal is to provide further characterizations for general sharp primes of
a Priifer domain.

Theorem 2.3.11. Let R be a Priifer domain and let P be a nonzero prime ideal of
R. The following statements are equivalent.

(i) P is sharp.
(ii) Thereis a prime ideal Q T P such that Q is the radical of a finitely generated
ideal with ©(Q) = ©(P).
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(iii) There is a prime ideal Q C P such that Q is the radical of a finitely generated
ideal and each maximal ideal that contains Q also contains P.

(iv) There is a prime ideal Q C P such that Q is the radical of a finitely generated
ideal and each prime that contains Q is comparable with P.

(v) There is a prime ideal Q C P such that Q is the radical of a finitely generated

ideal and each ideal that contains Q is comparable with P.

(vi) There is a finitely generated ideal I C P such that each ideal that contains 1
is comparable with P.

Moreover, the prime ideal Q in statements (ii)— (v) is sharp and branched.

Proof. Clearly (v) implies (iv), (iv) implies (iii), and (iii) implies (ii). Moreover, (ii)
implies (i) by Propositions 2.3.5 and 2.3.10.

We show next that (i) implies (v) and (vi).

Assume P is sharp and let / C P be a finitely generated ideal such that each
maximal ideal that contains / also contains P (Proposition 2.3.5(1)). Let O be a
prime minimal over /. Then each maximal ideal M that contains Q also contains
P. Since Ry, is a valuation domain (or, since Spec(R) is treed), P must contain Q.
It follows that Q is the unique minimal prime of 7, and therefore Q = /1.

For the rest, it suffices to start with an element x € R\ P suchthat xR+ P # R,
and then show that the ideal J := xR 4 I contains P. For this, we simply see what
happens when we localize at a maximal ideal. Clearly, if N is a maximal ideal that
does not contain 7, then JRy = Ry = PRy. On the other hand, if M is a maximal
ideal that contains /, then it also contains P. Since x ¢ P and so x ¢ I, we have
JRy = xRy + IRy = xRy 2 PRy . It follows that J 2 P.

To finish we show that (vi) implies (v). Assume / is a finitely generated ideal
of R with I € P and each ideal containing / is comparable with P. Let Q be a
prime minimal over /. Since Q is comparable with P, we must have Q € P. Since
Spec(R) is treed, Q must be the unique minimal prime of 7, so that Q = V.

The last statement is a consequence of Proposition 2.3.10. O

We collect in the next statement several characterizations of branched sharp
primes of a Priifer domain.

Theorem 2.3.12. Let P be a nonzero prime of a Priifer domain R.
(1) The following statements are equivalent.

(i) P is sharp and branched.
(ii) P is the radical of a finitely generated ideal.
(iii) PS2(P) = §2(P).
(iv) 2(P) < Rp.
(v) P71 ¢ Q(P).
(vi) If Q is a proper P-primary ideal, then
Q Q™! = P, whenever P is not maximal and
Q Q7! D P, whenever P is maximal.
(vii) There exists a proper P-primary ideal that is divisorial.
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(2) Assume in addition that P is not a maximal ideal of R. Then the previous
statements are equivalent to the following.

(viii) Each P-primary ideal of R is divisorial.

The proof of this result can be found in [20, Propositions 2.7 and 2.9]. (Note
that the equivalence of (i) with (ii) was already proved in Proposition 2.3.10
and the equivalence of (iv) with (v) follows easily from the following inclusions
(Theorem 2.3.2(2) and Lemma 2.3.1):

QP)(\Rr SOP)[\Rp S PT' S 2(P))

Before developing alternate characterizations of sharp primes, we present a few
basic results dealing with duals of ideals, trace ideals and endomorphism rings.

Recall from above that for a nonzero ideal I of R, I'(I) is the intersection
of the localizations R); at the maximal ideals M that contain / and ® (/) is the
intersection of the localizations Ry at the maximal ideals N that do not contain /.
Hence it is clear that I'(/) (©(I) = R. Also note that I'(I) = I'(J) and
O(I) = O(J), for all ideals J with I € J € (\{M | M € Max(R,I)}; in
particular, I'(I) = I'(+/T) and ©(I) = (/). Moreover, for each ideal B
of R, B C BI'(I) € BRy foreach M € Max(R,I) and B C BO(l) C
BRy for each N € Max(R)\Max(R, I) (if any). Hence, for each ideal B of R,
B = BI'(I)( BO(I). Recall also that an ideal I of a domain R is a frace ideal if
I = I17" (equivalently, I ' = (I : I)) (see Sect.2.4).

Lemma 2.3.13. Let I and J be a nonzero ideals of an integral domain R. If S and
T are overrings of R such that S (\T = R, then J™' = (S : JS)((T : JT). In
particular, J=™' = (I'(I) : )Y (OU) : J),and I = (I'(1) : I)(OU).

Proof. Assume S and T are overrings of R such that S (T = R. For J, itis clear
that both (S : J) = (S : JS)and (T : J) = (T : JT) contain J~' = (R : J). For
the reverse containment, if s € J andt € (S : J)(\(T : J),thenst € S(\T = R.
Thus J ' = (S : JS)N(T : JT).

It is always the case that I'(/) () ©@(I) = R when [ is a nonzero ideal of R.
Thus J~' = (I"(7) : J)((©UT) : J).

For N € Max(R)\Max(R, ), 1" € Ry.Thus I=' € ©®(I) € (O(I) : I) and
It =(r): 1N ed). O

Lemma 2.3.14. Let J be a nonzero trace ideal of an integral domain R, and let P
be a prime that contains J. Then B := JRp (| R is also a trace ideal of R.

Proof. Since J € B, B~' € J~!.Onthe otherhand, J = JJ ! and BRp = JRp,
whence BB™'Rp € BJ 'Rp = JJ'Rp = JRp = BRp. It follows that
BB~! = B. O

The proof of the next lemma requires us to look ahead to Sect. 2.4. Specifically,
we need to know that if Q is a nonzero primary ideal of a valuation domain such that
/0 is not the maximal ideal, then Q Q! = /O (see Propositions 2.4.1 and 2.4.9).
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Lemma 2.3.15. Let R be a Priifer domain, and let Q be a nonzero primary ideal
of R with radical P.

(1) (Q:0)=(P: P) = RpO(P).

(2) If P is maximal, then Q™' = (Rp : Q) [ O(P).

(3) If P is not maximal, then Q Q™' C P.

(4) If Q™' € P, then Q7' = (PRp : Q)(\O(P). In particular, Q7' =
(PRp : Q) O(P) whenever P is not maximal.

Proof. First note that since /O = P, I'(Q) = I'(P) and ©(Q) = O(P).

For (1), PRy, is the prime ideal of all zero divisors on both Ry / QR and
Ry / PRy for each maximal ideal M € Max(R, P). Hence (Q : Q) = (P : P) =
Rp () ©(P) by Theorem 2.3.2(2) and Remark 2.1.2(4).

Statement (2) is simply a restatement of the last conclusion in Lemma 2.3.13
since I'(Q) = Rp when P is maximal (and @(Q) = @ (P)).

For (3), if P is not maximal and M is a maximal ideal that contains P,
then QO 'Ry € (ORMm)(ORy)™' = PRy since Ry is a valuation domain
(as per the observation above). Hence Q0! C P.

For (4) assume Q Q~! € P. Then Q! is also contained in (PRp : Q). Since
it is always the case that Q~! € ©@(P), 07! < (PRp : Q)(\O(P). For
the reverse containment, suppose ¢t € (PRp : Q)()O(P) and ¢ € Q. Then
tg € PRp()O(P). Hence, for any maximal ideal M DO P, we have tq €
PRp = PRy < Ry, and we have tq € PRp(\T'(P)(\O(P) = P. Thus
0~ = (PRp: Q)N O(P). 0

The first two statements in the next result are easily derived from
Theorem 2.3.12(1). The third statement is simply a combination of
Theorem 2.3.2(2) and Lemma 2.3.15(1) (or Remark 2.1.2(4)).

Lemma 2.3.16. Let Q be a proper P-primary ideal of a Priifer domain R.

(1) If Q7" is not a ring, then either QQ~" = P or both QQ~' = R and P is
maximal.

(2) If QRp is invertible and P is both sharp and maximal, then Q is invertible.

(3) If O Visaring, then Q7' = (Q: Q)= (P : P)= P\,

Proof. For (1), assume Q™! is not a ring. Since @(P) = O(Q) contains Q!
(Lemma 2.3.13), we must have proper containment. Thus ®(P) 2 Q7! 2
(O : Q) = Rp()O(P) and we have that P is sharp by definition. Hence, by
Theorem 2.3.12(1), QQ~! = P whenever P is not maximal, and QQ~' D P
whenever P is maximal. This gives (1).

For (2), assume QRp is invertible and P is both sharp and maximal. Then
QRp = tRp for some t € Q. Also, by Proposition 2.3.10, P = +/B for some
finitely generated ideal B. Since Q > B’ for some positive integer m, checking
locally shows that Q = ¢tR + B™. Thus Q is invertible.

Finally for (3), the fact that (Q : Q) = (P : P) = Rp (\O(P) S P71 C Q7!
follows from Lemma 2.3.15(1) whether Q! is a ring or not. If Q~! is a ring,
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then we have Q' = (Q : Q) = (P : P) = P~! by Theorem 2.3.2 and
Lemma 2.3.15(1). O

Our next result adds more ways of characterizing sharp branched primes.

Theorem 2.3.17. The following are equivalent for a nonzero branched prime P of
a Priifer domain R.

(i) P is sharp.

(ii) OQ7'"Ry = (QRy)~" for each P-primary ideal Q and each maximal ideal
M of R.

(iii) There is a proper P-primary ideal Q and a maximal ideal M € Max(R, P)
such that Q7' Ry = (ORy) ™.

(iv) There is a P-primary ideal Q such that Q™" is not a ring.

(v) For each proper P-primary ideal Q of R, Q™" is not a ring.

(vi) If P is a minimal over a trace ideal I of R, then IRy; = PRy for each
maximal ideal M € Max(R, P).

Proof. With regard to statements (ii) and (iii), if N is a maximal ideal that does not
contain P, then QRy = Ry and Q™' C Ry for each P-primary ideal Q. Hence
O 'Ry = (ORy)™! = Ry in this case, regardless of whether P is sharp or not.

Obviously, (ii) implies (iii), and (v) implies (iv).

For (i) implies (ii), assume P is sharp and let Q be a P-primary ideal. As the
valuation domain Rp does not contain &(P), @(P)Rp = Rp, for some prime
Py & P (possibly with Py = (0)) and QRpRp, = Rp, which puts (Rp : Q)
inside Rp, = ©(P)Rp. First, suppose that P is maximal. If QRp is invertible,
then Q is invertible by Lemma 2.3.16(2), and in this case Q 'Ry = (QRy)™!
for each maximal ideal M. On the other hand, if QRp is not invertible, then
ORp(ORp)™" = PRp since the valuation domain Rp has the trace property
(Proposition 2.4.1). Hence (QRp)™' = (PRp : QRp) = (PRp : Q). By
Lemma 2.3.154), 07! = (PRp : Q)(\O(P), whence Q"'Rp = ((PRp :
0)NO(P)Rp = (PRp: Q) (O(P)Rp = (PRp : Q) = (QRp)™".

For the case where P is not maximal, let M be a maximal ideal that
contains P. Then QRp(QRy)™' = PRy = PRp by Propositions 2.4.1
and 2.4.9. Since P is sharp, PO(P) = ©(P). Thus @(P)Ry is a proper
overring of Rj in which P blows up and is therefore a proper overring
of Rp. Hence, by Lemma 2.3.15(4), Q_IRM = ((PRp : Q)NO(P)Ry =
(PRp : Q)Ru(O(P)Ry = (PRp : Q)Ry = (PRy : QRy) = (Ry :
ORy) = (ORy)™". Therefore (i) implies (ii).

To see that (iii) implies (iv), assume there is a proper P-primary ideal Q and a
maximal ideal M € Max(R, P) such that Q7'Ry; = (QRy/)~". In a valuation
domain, each proper primary ideal has a nontrivial inverse that cannot be a ring
(Lemma 2.1.1(2)). Thus Q_l cannot be a ring. The same reasoning proves that (ii)
implies (v).

For (iv) implies (i), let Q be a P-primary ideal such that Q™' is not a ring.
Since (P : P) = Rp(\O(P) € P~' € Q7' € ©(Q) = O(P) in all cases
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(by Theorem 2.3.2(2)), having Q! not a ring implies Rp () @(P) is properly
contained in ®(P). Hence P is sharp.

Assume the statement in (vi) holds, and let Q be a proper P-primary ideal. If
Q~lis aring, then Q is a trace ideal by Lemma 2.3.16(3). But, by assumption, this
implies QRy; = PRy for each maximal ideal M € Max(R, P), a contradiction.
Thus it must be that Q™! is not a ring. Hence (vi) implies (v).

To finish the proof, we show that (i) implies (vi). Assume P is sharp and let / be a
trace ideal with P minimal over /. Then P is a trace ideal by [48, Proposition 2.1]
(or see the proof of ((ii)=>(i)) for Corollary 2.4.13 and apply Theorem 2.3.2(2)).
Hence, by (ii), Rp = P7'Ry = (PRy)~" for each M e Max(R, P). By
Lemma 2.3.14, IRp (| R is a P-primary ideal that is also a trace ideal. Since P
is sharp, we have IRp (R = P by Theorem 2.3.12(1). Thus PRy = PRp =
IRp = IP'Ry, C II"'Ry = IRy Therefore IRy, = PRy for each
M € Max(R, P), and the proof is complete. O

Using Theorem 2.3.17 and Lemmas 2.3.15 and 2.3.16, we can give a
characterization of branched primes ideals that are not sharp.

Corollary 2.3.18. The following statements are equivalent for a nonzero branched
prime ideal P of a Priifer domain R.

(i) P is not sharp.
(ii) (P : P)=0O(P).
(iii) Q~' = O(P) for each P-primary ideal Q.
(iv) Q7' = O(P) for some proper P-primary ideal Q.

Proof. Proper P-primary ideals exist since P is branched. By Theorem 2.3.17[(i)
=(v)], if P is sharp, then there is no proper P-primary ideal Q such that Q7! is a
ring. Thus (iii) implies both (i) and (iv).

Let Q be a P-primary ideal. Then @(P)(\Rp € P7! € Q07! € O(P)
by Theorem 2.3.2(1)(a). Also, by Lemma 2.3.15, (Q : Q) = (P : P) =
O(P)(\Rp. If (P : P) = O(P), then we have Q~! = O(P). Moreover,
if 07! = ©(P), then we have ®(P) = 07! = (Q : Q) = (P : P)
(Lemma 2.3.16). Thus (ii), (iii) and (iv) are equivalent. If P is not sharp, then
Rp 2 ©(P) and we then have (P : P) = ®(P). Hence (i) implies (ii). O

For an unbranched maximal ideal M of a Priifer domain R, M is sharp if and
only if there is an infinite chain of sharp branched primes {P,} with | J P, = M
and Max(R, Py) = {M} [20, Proposition 2.10]. A similar condition characterizes
nonmaximal unbranched sharp primes, as we now show.

Theorem 2.3.19. Let P be a nonzero unbranched prime of a Priifer domain R.
Then P is sharp if and only if there is an infinite chain of sharp branched primes
{ Py} such that | ) Py = P with Max(R, P) = Max(R, P,) for each P,.

Proof. Assume P is sharp. Then it is both sharp and maximal in the ring (P : P)
(Corollary 2.3.21). For each prime Q < P, Q(P : P) = Q. Thus, by
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[20, Proposition 2.10], there is an infinite chain of branched primes { P, } in (P : P)
(and in R) with | J P, = P and Max((P : P), P,) = {P}. Since each maximal
ideal of R that does not contain P survives in (P : P), Max(R, Py) = Max(R, P)
for each P,.

For the converse, if P’ is a sharp branched prime that is contained in P such that
Max(R, P) = Max(R, P'), then P is sharp by Lemma 2.3.9. O

A nonzero prime P of an integral domain R is said to be antesharp if each
maximal ideal of (P : P) that contains P, contracts to P in R [20, Sect. 1].

We recall in the next proposition some characterizations of antesharp prime
ideals, paying particular attention to the Priifer domain case [20, Proposition 2.3].

Proposition 2.3.20. Let P be a nonzero nonmaximal prime ideal of an integral
domain R. Then the following are equivalent.

(i) P is antesharp.
(ii) Foreacha € R\P, the ideal A := aR + P is invertible.
(iii) For each prime Q of R that properly contains P, there is an invertible ideal
I C Q that properly contains P.

If, in addition, R is Priifer, then (i), (ii) and (iii) are also equivalent to the
following.

(iv) P is a maximal ideal of (P : P)

(v) Each prime ideal of (P : P) that contains P contracts to P in R and is a
maximal ideal of (P : P).

(vi) For each prime Q of R that properly contains P, there is a finitely generated
ideal I C Q that properly contains P.

If R is not a Priifer domain, then it is the still the case that (i) implies (vi).
However, the reverse implication does not hold in general: a simple example is the
prime P = (X, Y) of the polynomial ring K[X, Y, Z] where K is a field. Also note
that since each invertible ideal of a local domain is principal, if R is local, then P is
antesharp if and only if it is divided; i.e., P compares with each principal ideal.

From Proposition 2.3.20, we deduce that a sharp prime of a Priifer domain is
always antesharp, but a (nonmaximal) antesharp prime need not be sharp (see for
example [20, Example 4.9]). More precisely [20, Corollary 2.4],

Corollary 2.3.21. Let P be a (nonzero) prime ideal of an integral domain R.

(1) If P is antesharp and not maximal, then it is divisorial.

(2) If, moreover, R is a Priifer domain and P is sharp, then P is a sharp maximal
ideal of (P : P) and antesharp as a prime of R. Furthermore, if P is sharp and
not maximal, then it is both antesharp and divisorial.

We give next a new characterization of nonmaximal antesharp ideals in a Priifer
domain.
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Theorem 2.3.22. Let P be a nonzero prime of a Priifer domain R.

(1) If P is an idempotent maximal ideal, then P~'Ry = (PRy)~! for each
maximal ideal N.

(2) If P is not maximal, then P is antesharp if and only if P~ 'Ry = (PRy)™!
for each maximal ideal M of R.

Proof. For (1), if P is an idempotent maximal ideal of a Priifer domain R,
then P! = R and (PRp)™' = Rp (Remark 2.1.2(1)). As in the proof of
Theorem 2.3.17, it is also the case that P"'Ry = (PRy)~' = Ry for each
maximal ideal N # P.

For (2), assume P is not maximal. As above, if NV is a maximal ideal that does not
contain P, then PRy = Ry = P~'Ry = (PRy)~". Thus for (2), we only need
to consider what happens with regard to those maximal ideals M that contain P.

Since P is not maximal, P~! = (P : P) = Rp () O(P) (Theorem 2.3.2(2)),
regardless of whether P is antesharp or not (Corollary 2.3.21). Also, for each
maximal ideal M of R that contains P, considering the valuation domain R, it
is well known that (PRy;)~' = (PRy : PRy) = Rp (Lemma 2.1.1).

Assume P is not antesharp. Then P is not sharp (Corollary 2.3.21(2)) and there
is a prime P’ that properly contains P and survives in (P : P). Hence P™! =
(P : P) = ®(P) C Rps. Let M be a maximal ideal that contains P’. Then
P_IRM =O(P)Ry C Rp/ - Rp = (PRM)_I.

For the converse, assume P is antesharp. Then P is a maximal ideal of (P : P).
Let M be a maximal ideal that contains P and let Py be the largest prime that is
contained in M and survives in @(P) (use Zorn’s Lemma). Since ®(P) contains
(P : P) and P is maximal in (P : P), P, is contained in P. Thus P™'Ry =
(RPN O(P)Ry = Rp(\Rp, = Rp = (PRy)™". o

2.4 Trace Properties

Recall that given a ring R and an R-module B, the frace of B is the ideal of R
generated by the set {r € R | r = f(b) forsome b € B and f € Homg(B, R)}
(see for example, [24, Sect. 4.2]).

As we are dealing exclusively with integral domains R, Homg(/, R) is naturally
isomorphic to /™' (:= (R : I)) for each nonzero ideal I of R, and the trace of I is
simply the ideal 11 ~'. More generally, given an integral domain R, if C is the trace
of an R-module B, then C~! = (C : C) and so C = CC~' [24, Lemma 4.2.3].

As in [59] (and above in Sect.2.3), we say that a (nonzero) ideal / of a domain
R is a trace ideal of Rif I1™" = I, or equivalently, if /~!' = (I : I'). An integral
domain R has the trace property (or is a TP-domain) if each (proper) trace ideal is
prime [23, page 169] (equivalently, 7/~ is prime for each nonzero noninvertible
ideal I of R), and it has the radical trace property (or is an RTP-domain) if
each trace ideal is a radical ideal [46, page 110] (equivalently, /7" is a radical
ideal for each nonzero noninvertible ideal 7). If R is a Noetherian domain,
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then R is a RTP-domain if and only if Rp is a TP-domain for each P € Spec(R)
[46, Proposition 2.1].

Proposition 2.4.1. (D.D. Anderson-Huckaba—Papick [2, Theorem 2.8] and
Fontana—Huckaba—Papick [23, Proposition 2.1]) Every valuation domain is a TP-
domain.

A proof of this result can also be found in [24, Proposition 4.2.1]. Note
that a local one-dimensional integrally closed domain with the trace property is
not necessarily a valuation domain: an example is given by the domain k +
Yk(X)[Y]), where k is a field and X and Y are two indeterminates over k
[24, Example 8.4.4].

Clearly, every Dedekind domain is a TP-domain [23, Corollary 2.5]. But not
every Priifer domain has the trace property. In fact, there is an example of an
almost Dedekind domain with a unique noninvertible maximal ideal M such
that M2(M?)~! is not a prime ideal (cf. [38, Sect.6], [23, Example 4.3], and
[24, Example 4.2.10]). On the other hand, it is known [23, Propositions 2.8 and
2.9] that the following properties hold:

coherent integrally closed TP-domain = Priifer domain,
Noetherian integrally closed TP-domain <  Dedekind domain.

Proposition 2.4.2. (Fontana—Huckaba—Papick [23, Proposition 2.10, Corollary
2.11]) Let R be a TP-domain. If M is a noninvertible maximal ideal of R, then each
noninvertible ideal of R is contained in M. In particular, if R has a noninvertible
maximal ideal, then all the other maximal ideals of R are invertible.

For one proof of Proposition 2.4.2, see also [24, Lemma 2.4.7, Corollary 2.4.8].

Even more can be said about the ideals of a TP-domain. The following four
lemmas are quite useful in dealing with the various trace properties and with
factorizations.

Lemma 2.4.3. (Lucas [59, Lemmas O and 1]) Let P be a nonzero prime ideal of a
domain R.

(1) If PP~" properly contains P and I is an ideal such that P S I € PP™!, then
(R:I)=(P:P)=(R: PP = (PP !: PP_l).
(2) If B is a radical ideal contained in P, but P is not minimal over B, then

(R:P)Z (B:B).

Proof. For (1), first note that (P : P) < (PP~' : PP7') = (R : PP7!) C
(R : I). To establish the reverse containment, let € (R : ). As both ¢/ and P
are contained in R, (tP)I = (¢t1)P < P implies tP < P. Therefore (R : ) =
(P :P).

For statement (2), let¢ € (R : P). ThengP € R and ¢B < R. Hence gPB C
B. As P is not minimal over B, ¢B is contained in each minimal prime of B. Thus
gB C B. O
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Lemma 2.4.4. Let P be a nonzero prime ideal of a domain R. If PP~ 2 P and
foreachb € PP\ P there is a pair of elements s € (P : P) and p € P such that
b = b%s + p, then P is an invertible maximal ideal of R.

Proof. Suppose PP~! 2 P. We have at” € PP~! foreacha € PP~'\P and
t € (P: P)since (P : P) = (PP7': PP7") = (PP7!)~! (Lemma 2.4.3).
Further assume that for each » € PP !\ P, there is a pair of elements s € (P : P)
and p € P suchthath = b%s + p. Then b(1 —bs) = p € P with 1 —bs € R. Since
P is prime, | — bs € P and therefore both s(1 — bs) and bs? are in R. This puts
s € R, which then implies that bR + P = R. Thus P is invertible. Moreover, as b
was an arbitrary element of PP~'\ P = R\ P, P is also a maximal ideal of R. O

Lemma 2.4.5. (Lucas [59, Theorem 2]) Let R be a TP-domain. If P is a nonzero
prime of R such that P™' 2 (P : P), then P is an invertible maximal ideal of R.

Proof. Suppose P~ 2 (P : P)andleth € PP~'\P. Also, let I := b*R + P.
Then (R : I) = (P : P) (Lemma 2.4.3). Since R is a TP-domain, b € I/~ and
therefore there are elements s € /! = (P : P) and p € P such that b = b%s + p.
Hence P is an invertible maximal ideal by Lemma 2.4.4. O

The fourth (and final) lemma appears in both [48] and [59].

Lemma 2.4.6. (Lucas [59, Lemma 14] and Houston—Kabbaj—Lucas—Mimouni [48,
Theorem 3.4]) Let P and P’ be nonzero primes of a domain R. If (R : P) = (P :
P)and(R: P'y=(P': P'), then (R: P P)=(P\ P :PNP).

Proof. Lett € (R: P(\P)andsetJ := P(\P'.ThentJ C R, tP C (R :
PYy=(P': P)andtP' C (R : P) = (P : P). Thus J contains both tJP and
tJP'.Hence t*>JP C R and t?JP' C R, and therefore t>J € (P : P)(\(P': P).
It follows that (¢J)*> € J and we conclude with tJ C J since J is a radical ideal of
R (and tJ C R). ]

Theorem 2.4.7. Let R be a TP-domain. If R has at least one nonzero noninvertible
ideal, then the nonmaximal primes are linearly ordered, and there is a (unique)
prime ideal that contains all noninvertible ideals.

Proof. Suppose I is a nonzero noninvertible ideal of R. Since R is a TP-domain,
Q := II7"is a prime ideal of R. Also, Q! = (Q : Q) (no matter whether
R is a TP-domain or not). Therefore the set 2" := {P € Spec(R) | P7! =
(P : P)} is nonempty. Clearly, 2" contains each noninvertible maximal ideal (if
any). Moreover, by Lemma 2.4.5, each nonzero nonmaximal prime ideal of R is
in 2.

To see that the primes in 2  are linearly ordered, let P, P’ € 2.
Then (R : P) = (P : P)and (R : P’) = (P’ : P’). By Lemma 2.4.6,
(R: POP)= (PP : P P'). As R is a TP-domain, P (| P’ is a prime
ideal and hence P and P’ are comparable. It follows that the primes of 2 are
linearly ordered.
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Let N be the union of the primes in .2". Then N is a prime that contains every
nonmaximal prime of R. Lett € (R : N). Thent € (R : P) = (P : P) for
each P € 2 . It follows that tN € N, which puts N in .2". From above, the prime
0 = 1717 "isin 2 . Hence we have I C Q C N. Note that if N is not maximal,
then each maximal ideal of R is invertible. On the other hand, if N is maximal, then
all other maximal ideals (if any) are invertible. |

In case of Priifer ##-domains, a converse of Theorem 2.4.7 holds:

Proposition 2.4.8. (Fontana—Huckaba—Papick [23, Theorem 4.2]) Let R be a ##-
domain. If R is a Priifer domain in which the noninvertible prime ideals are linearly
ordered, then R is a TP-domain.

In the Priifer domains setting, the concept of RTP-domain provides a unified
framework for studying ##-domains and TP-domains. To demonstrate this, we
first recall a related trace property introduced by Lucas in 1996 [59, page 1095].
An integral domain R has the trace property for primary ideals (for short, R is
a TPP-domain) if, for each nonzero primary ideal Q, either Q Q! is prime or
Q Q7' = R. By [59, Corollary 8], if R is a TPP-domain and Q is a primary ideal,
then either 0 Q! = /O or QO ™' = R and /0 is maximal.

Proposition 2.4.9. (Lucas [59, Theorem 4 and Corollary 8]) Let R be an integral
domain. Then:

(1) If R is an RTP-domain then R is a TPP-domain.

(2) R is a TPP-domain if and only if, for each primary ideal Q of R, either
QQ~' = P, where P :== /O, or Q™' = R and P is a maximal ideal
of R.

A proof of Proposition 2.4.9 can also be found in [24, Theorem 4.2.17].

The converse of Proposition 2.4.9(1) is not known, except in certain special
cases; e.g., Noetherian domains, or more generally, Mori domains [59, Theorem 12].
What is more interesting in our setting is that the converse holds for Priifer
domains.

Theorem 2.4.10. (Lucas [59, Theorem 23]) Let R be a Priifer domain. Then the
following statements are equivalent.

(i) R is an RTP-domain.
(ii) R is a TPP-domain.
(iii) Each nonzero branched prime of R is the radical of a finitely generated ideal
(o, equivalently, by Proposition 2.3.10, each nonzero branched prime of R is
sharp).

A proof of Theorem 2.4.10 can also be found in [24, Theorem 4.2.27]. More
recently, S. El Baghdadi and S. Gabelli have shown that a Priifer domain is an
RTP-domain if and only if each nonzero principal ideal (equivalently, finitely
generated ideal) has only finitely many minimal primes [18, Corollary 1.9].
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The next result describes the relation between RTP-domains and ##- domains in
the Priifer domain setting.

Theorem 2.4.11. (Lucas [59, Corollaries 24, 25, and 26]) Let R be a Priifer
domain.

(1) If R is an RTP-domain, then every overring of R is a RTP-domain.

(2) If R is ##-domain, then R is a RTP-domain.

(3) If R is an RTP-domain and every maximal ideal of R is branched, then R is a
#-domain.

(4) If R is an RTP-domain and every nonzero prime ideal of R is branched, then R
is a ##-domain.

A proof of Theorem 2.4.11 also appears in [24, Theorem 4.2.28].
The next result is fundamental; it establishes the relationship among the classes
of h-local, ##-, and RTP-domains in the Priifer domain setting.

Theorem 2.4.12. (Olberding [67]) Let R be a Priifer domain. Then the following
statements are equivalent.

(i) R is h-local.
(ii) R is an RTP-domain and each nonzero prime ideal is contained in a unique
maximal ideal.
(iii) R is a (##)-domain and each nonzero prime ideal is contained in a unique
maximal ideal.
(iv) Each nonzero prime ideal of R is both sharp and contained in a unique
maximal ideal.

The equivalences (i)<> (ii) <> (iii) are proved in [67, Proposition 3.4]). To see that
(iii) and (iv) are equivalent, recall that by Theorem 2.2.4 (and the discussion which
follows it), a Priifer domain satisfies (##) if and only if each nonzero prime is sharp.

In the Priifer domain case, using some of the preceding results, we can describe
explicitly what is required to ensure that an RTP-domain is a TP-domain.

Corollary 2.4.13. Let R be a Priifer domain. The following statements are
equivalent.

(i) R is a TP-domain.
(ii) R is an RTP-domain and the noninvertible prime ideals of R are linearly
ordered.
(iii) Each nonzero branched prime of R is the radical of a finitely generated
ideal (or, equivalently, each nonzero branched prime of R is sharp), and the
noninvertible prime ideals of R are linearly ordered.

Proof. Clearly, (ii) < (iii) by Theorem 2.4.10.

To see that (i) implies (ii) simply note that a TP-domain is a RTP-domain. That
the primes are linearly ordered follows from Theorem 2.4.7.

To complete the proof assume (ii) holds. It is well known that if P is a minimal
prime ideal of a nonzero ideal I of an integral domain and if /™' is a ring,
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then P! is also a ring [48, Proposition 2.1]. Therefore, if J is a radical ideal of
R such that J ! is a ring, then it is easy to see that J must be a prime ideal. Hence
R is a TP-domain. O

We also want to recall that the notions of RTP-domain and ##-domain often
coincide in the Priifer domain case:

Theorem 2.4.14. Let R be a Priifer domain.

(1) (Heinzer—Papick [46, Theorem 2.7]) Assume that R satisfies the ascending
chain condition (for short, acc) on prime ideals (e.g., R is locally finite
dimensional). The following statements are equivalent.

(i) R is an RTP-domain.
(ii) Spec(R) is a Noetherian space (i.e., every nonempty set of closed
subspaces of Spec(R) has a minimal element with respect to inclusion
[10, Ch. II, §4, N. 2, Définition 3]).
(iii) R is a ##-domain.

(2) (Gilmer—Heinzer [35, Theorem 4]) The following statements are equivalent.

(i) R is a ##-domain and R satisfies the acc on prime ideals.

(ii) Every prime ideal of R is the radical of a finitely generated ideal (or,
equivalently, by Proposition 2.3.10, every nonzero prime ideal of R sharp
and branched).

A proof of Theorem 2.4.14 also appears in [24, Theorems 4.2.33 and 4.2.34].

Putting together some of the equivalent statements of Proposition 2.1.8 and
Theorem 2.4.12 (providing several characterizations for /-local domains), we have
that for a Priifer domain R, R is an RTP-domain and each nonzero prime ideal is
contained in a unique maximal ideal if and only if (R : I)Ry = (Ry : IRyy) for
each nonzero ideal I and each maximal ideal M .

Our next result deals with what happens when the ideals / in the previous
statement are restricted to primary ideals (or those that are locally primary).

Theorem 2.4.15. The following statements are equivalent for a Priifer domain R.

(i) R is an RTP-domain.
(ii) Q7'Ry = (ORwy)~" for each nonzero primary ideal Q and each maximal
ideal M of R.
(iii) I7'Ry = (IRy)~" for each nonzero locally primary ideal I of R and each
maximal ideal M .
(iv) For each maximal ideal M of R, I "'Ry; = (IRpy)~" whenever IRy is a
nonzero primary ideal of Ryy.

Proof. Since R is Priifer, it has the radical trace property if and only if each nonzero
branched prime is the radical of a finitely generated ideal; i.e., if and only if each
nonzero branched prime is sharp (Theorem 2.4.10). On the other hand, each nonzero
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branched prime is sharp if and only if Q7'Ry; = (QORys)~" for each primary ideal
0 of R, by Theorem 2.3.17. Hence (i) and (ii) are equivalent.

For the rest, it is clear that (iv) implies (iii) and (iii) implies (ii). Assume (ii)
and let / and M be ideals with M maximal and 7/ Rj, primary. Simply let Q :=
IRy () R. Then Q is a primary ideal that contains 7 and QRy = IRy . Hence we
have I7'Ryy € (IRy)™' = (ORy)™' = O7 'Ry € I7'Ry. Thus (ii) implies
(iv), completing the proof. O

According to Theorem 2.4.12, if R is a Priifer domain R in which each nonzero
prime is contained in a unique maximal ideal, then R is /-local if and only if it has
the radical trace property. Hence we have the following corollary to Theorem 2.4.15.

Corollary 2.4.16. The following statements are equivalent for a Priifer domain R.

(i) R is h-local.
(ii) Each nonzero prime is contained in a unique maximal ideal and Q 'Ry =
(QRwm) ™! for each primary ideal Q and maximal ideal M .
(iii) Each nonzero prime is contained in a unique maximal ideal and for each
nonzero ideal 1 and each maximal ideal M, I"'Ry = (IRy)~" whenever
IRy is primary.

In [19, page 3], we introduced a slightly weaker type of trace property for primary
ideals: An integral domain R has the weak trace property for primary ideals (or, R
is a wT'PP-domain) if, for each nonzero primary ideal Q with nonmaximal radical,
007! = /0. With a slight modification of the proof that a Priifer domain is a
TPP-domain if and only if each branched prime is the radical of a finitely generated
ideal (Theorem 2.4.10), we have the following.

Theorem 2.4.17. Let R be a Priifer domain. Then R is a wTPP-domain if and only
if each branched nonmaximal prime is the radical of a finitely generated ideal.

Proof. Since R is Priifer, PP~! = P for each nonzero nonmaximal prime P
(Theorem 2.3.2(2)). Also, by Theorem 2.3.12(1), if P is branched and nonmaximal,
then P is the radical of a finitely generated ideal if and only if Q Q! = P for each
proper P-primary ideal Q. O

A simple consequence of Theorem 2.4.17 is that if R is a Priifer domain with the
weak trace property for primary ideals, then each overring of R also has the weak
trace property for primary ideals.

By [19, Proposition 1.7], a Priifer domain with weak factorization is a wTPP-
domain. It turns out that such a domain has a slightly stronger trace property. We
say that an integral domain R has the almost radical trace property (or, is an aRTP-
domain) if for each nonzero noninvertible ideal I of R, I1~' Ry, is a radical ideal,
whenever M is either a steady maximal ideal or an unsteady maximal ideal that
is not minimal over 777!, In Theorem 4.2.12 below, we will show that a Priifer
domain R has weak factorization if and only if it is an aRTP-domain such that each
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nonzero prime is contained in a unique maximal ideal and each nonzero nonunit is
contained in at most finitely many noninvertible maximal ideals.

Theorem 2.4.18. The following are equivalent for a Priifer domain R.

(i) R is an aRTP-domain.
(ii) For each nonzero primary ideal Q, Q Q™' D /O except when /O is an
unsteady maximal ideal.
(iii) Each nonzero branched nonmaximal prime ideal is the radical of a finitely
generated ideal as is each steady branched maximal ideal.
(iv) Each nonzero branched nonmaximal prime ideal is sharp as is each steady
branched maximal ideal.

Proof. We start with (i) implies (ii). Assume that R is an aRTP-domain and let Q
be a nonzero primary ideal with radical P. If P is not maximal, then QQ~!' C P
(Lemma 2.3.15(3)). Hence in this case, Q Q_1 R}y is aradical ideal which must then
be PRy for each maximal ideal M. It follows that Q Q~! = P.If P is a steady
maximal ideal, then by aRTP, we have Q Q‘lR p 2 PRp which means that either
007! = P or Q is invertible.

To see that (ii) implies (iii), first note that by Lemma 2.3.15, Q™! € /O
whenever Q is a nonzero primary ideal such that /0 is not maximal. Thus a
Priifer domain whose nonzero primary ideals satisfy statement (2) has the weak
trace property for primary ideals. Hence, by Theorem 2.4.17, each nonzero branched
nonmaximal prime is the radical of a finitely generated ideal. If Q is primary with
/O a steady branched maximal ideal, then having Q0 Q~' D /O implies that
/0 is the radical of a finitely generated ideal by Theorem 2.3.12(1). Thus (ii)
implies (iii).

The equivalence of (iii) and (iv) follows immediately from Proposition 2.3.10.

To complete the proof, we show that (iii) implies (i). Assume that each branched
nonmaximal prime ideal is the radical of a finitely generated ideal, as is each steady
branched maximal ideal. Let / be a nonzero noninvertible ideal with J := 17!
and let M be a maximal ideal of R. If M does not contain J, then JRy; = Ry
is trivially a radical ideal of Rjs. Assume that M contains J, and if M is minimal
over J, then it is steady. Let P € M be a prime ideal that is minimal over J. If
P is unbranched, then PR); = JR) since P has no proper primary ideals. On the
other hand, if P is branched, then PRy; = JR)s by Theorem 2.3.17. In either case,
JR) is aradical ideal of R),. O

The “opposite” of a maximal ideal M being steady is for it to be unsteady,
meaning M R, is principal but M is not invertible. For Priifer domains we have
the following characterization of locally principal maximal ideals.

Lemma 2.4.19. Let M be a maximal ideal of a Priifer domain R. If M is unsteady,
then M is not sharp. Equivalently, if M is sharp and locally principal, then M is
invertible.
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Proof. We may assume that MRy; = aRy, for some a € M. If M is also sharp,
then it is the radical of a finitely generated ideal /. By checking locally, we have
M = aR + I, which is invertible. O

Since the property of being sharp is preserved in overrings (provided the prime
survives), a sharp prime of a Priifer domain cannot become unsteady in an overring.
Thus, as with the weak trace property for primary ideals, if R is a Priifer domain
that is an aRTP-domain, then each overring is an aRTP-domain.

2.5 Sharp Primes and Intersections

Recall that each ideal in an overring of a Priifer domain R is extended from an ideal
of R [34, Theorem 26.1]. In particular, if 7" is an overring of R (with R Priifer),
then each maximal ideal of T is extended from a prime ideal of R. For a nonzero
ideal I of the Priifer domain R, we can say even more about the maximal ideals of
the overring I'r(I) (:= I'(1) := ({Ry | M € Max(R, I)}).

Lemma 2.5.1. Let R be a Priifer domain and let I be a nonzero ideal of R.

(1) Max(I'(1)) ={MTI'(I) | M € Max(R, I)}.

(2) If VI = P is a prime ideal and P’ is the largest prime that is common to all
maximal ideals that contain I, then I'(I) = I'(P) = ['(P’) and IRp/ is an
ideal of I'(P). Moreover, IRp: = BI'(P) where B := IRp/ (| R.

Proof. Since R is Priifer, each prime ideal of its overring I"(/) is extended from
a unique prime ideal of R, and each prime of R that survives in I"(/) extends to
a prime ideal of I"(/). From this and from the definition of I"(/), it is clear that
each maximal ideal in the set Max(R, /) extends to a maximal ideal of I"(]). Let
O be a prime ideal of R that is comaximal with /. Then there are elements ¢ € Q
and a € I such that ¢ + a = 1. Clearly, no maximal ideal in Max(R, /) contains
q. Thus 1/g € Ry foreach N € Max(R, I), and hence 1/q € I'(I). Therefore
Qr(I) = I'(I) and we have that each maximal ideal of I"(1) is extended from a
maximal ideal in the set Max (R, I'), proving (1).

For (2), we further assume that /I = P is a prime ideal and that P’ is
the largest prime that is common to all maximal ideals that contain P. In this
case, a maximal ideal contains / if and only if it also contains P’ (and P). Thus
'Iy = I'(P) = I'(P') and, by the first statement, the maximal ideals of
I'(P) are precisely the ideals obtained by extending each maximal ideal of the set
Max(R, 1) = Max(R, P) = Max(R, P’). Since Ry, contains P'Ry; = P'Rp/
for each M € Max(R, P’), P'Rp/ is an ideal of I"'(P). Thus I Rp is also an ideal
of I'(P).

From the definition of B, it follows that BRpr = IRps, and for each
M € Max(R, P), we have BRyy = (BRp'(\R)Ry = BRpRy(\Ry =
BRp/ () Ry = BRp:. Therefore BI'(P) = BRpr = IRp. O
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Statements (2) and (3) in the next result generalize [19, Theorem 1.10]. The
characterization of JV in the case that P is sharp (also in (2)) is more or less from the
proof of Proposition 4.1.3 (see [19, Theorem 1.10]), but here is given in a different
form.

Theorem 2.5.2. Let I be a finitely generated nonzero ideal of a Priifer domain R
and let P be a prime minimal over I and J := IRy (| R where M is a maximal
ideal that contains P.

(1) If P is not sharp, then J < J" = P¥ = (R : ©O(P)).

(2) If P is sharp, then there is a finitely generated ideal B with I € B, B = P,
J =BRy(\Rand J" = J(P' : P') = B(P' : P') where P’ is the largest
prime which is contained in all the maximal ideals that contain P. Moreover,
J™V= B7'P"and J < J" whenever more than one maximal ideal contains P.

(3) If P is sharp and M is the only maximal ideal that contains P, then J is
divisorial and invertible.

(4) If P = M, then J is divisorial if and only if P is sharp.

(5) If M is not the only maximal ideal that contains P, then J is not divisorial.

Proof. Since P is minimal over / and [ is finitely generated, Q := I*Rp (R is
a P-primary ideal such that Q = QRy (VR € IRy ()R = J (note that TRp C
PRp = PRy, whence I’Rp < IRy). Hence Max(R, Q) = Max(R,J) =
Max(R, P),and ®(Q) = &(J) = O(P).

For (1), if P is not sharp, then ®(P) = ®(Q) 2 Q' 2 J ' > P7' D
Rp (N O(P) = O(P), the last inclusion following from Theorem 2.3.2. It follows
that Q" = J" = P = (R : ©(P)). Clearly, J* = R if P is maximal. If P
is not maximal, then J & P C JV (otherwise, IRy = JRy = PRy, with [
finitely generated and P ¢ M, which is impossible). Thus, in either case, J is not
divisorial.

The statement in (4) follows from (1) and (3), and the statement in (5) follows
from (1) and (2). Thus, for the remainder of the proof, we assume that P is sharp,
whence by Proposition 2.3.10 there is a finitely generated ideal B with /B =
P. Let P’ be the largest prime which is contained in all the maximal ideals that
contain P. Then P’ is sharp by Lemma 2.3.9 since Max(R, B) = Max(R, P) =
Max(R, P’).

Since P is minimal over /, ﬁRM = PRy = \/ERM and thus there is an
integer m such that IRy 2 B™Ry. Set A := B™. Then J = (I + A)Ry (R
and P = /1 + A. Without loss of generality, we may assume B = I + A and thus
J =BRy (R

The first statement in (2) is easier to prove when M is the only maximal ideal that
contains P. In this case, P’ = M, and M is the only maximal ideal that contains B.
Thus J = B (check locally) which implies J is invertible and therefore divisorial,
establishing (3). Moreover, (M : M) = R since M is a maximal ideal and R is
Priifer. Hence we trivially have J¥ = J = J(P’: P’) = B(P’ : P’) in this case.

To complete the proof, we must show that J' = J(P' : P’) = B(P’ :
P’),J < J' and J7' = B7'P’ when P is sharp and M is not the only
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maximal ideal that contains P. In this case, P’ is properly contained in M.
Thus JRy = BRy & JRpr = BRps as B is finitely generated and Ry is a
valuation domain. Since P’ is sharp, P'~! = (P’ : P’) = Rp: (O(P') £ O(P’)
(Theorem 2.3.2(2)). Moreover, P’ is a divisorial ideal of R and a maximal ideal of
(P’ : P’) (Corollary 2.3.21(2)). Also, B(P’ : P’) = BP'™! is a (proper) divisorial
ideal of R with (B(P’ : P"))™' = B~! P’ since B is invertible and P’ is divisorial.

Let N be a maximal ideal. If N does not contain P, then Ry contains (P’ : P’)
and BRy = Ry = JRy. On the other hand, if N contains P, then it properly
contains P’ and blows up in (P’ : P’) (as P’ is a maximal ideal of (P’ : P’)).
Thus (P’ : P')Ry contains (P’ : P’) and properly contains Ry . Therefore there is
a prime ideal Py € N such that (P’ : P')Ry = Rp,. But we also have Py C P’
and hence Py = P’. It follows that B(P' : P')Ry = BRpr = JRp: = J(P' :
PY)Ry D JRy when N contains P. Thus B(P’' : P') = J(P’ : P’) (since we
have equality locally) is a divisorial ideal of R that contains J and the containment
is proper since JRyy = BRy S BRpr € JRpr = J(P' : P')Ry. We also have
JV € B(P' : P') = BP'"'. Since B is invertible, J*B~! € P’~! which implies
J'BD> PV =P

To finish the proof, it suffices to show that J ~!'B C P’.For this, let N(# M) be
a maximal ideal that contains P, and let Q be the largest prime common to N and
M. Then JRy = (BRy (\R)Ry = BRy, and so foreacha € N\Q,a 'B C
BRp = JRy.Hencea 'BJ™' € JJ7'Ry € Ry and BJ ™' C aRy. Therefore,
using the fact that B € J, we have BJ™! € (N{aRy | a € N\ Q)R =
ORy (YR = Q. Now, let L € M be a prime minimal over J —IB. 1t suffices
to show that L € P’. If not, then there is an N as above with L € N. For the
corresponding Q we have J -1 C Q C M. Since R is Priifer, it must be the case
that L € Q € N, a contradiction. Hence L C P’, as desired. O

Lemma 2.5.3. Let R be a Priifer domain, and let I be a nonzero ideal of R. If
M is a steady maximal ideal that contains I where I < I'M < IV, then M is
idempotent and 1Y Ry is principal.

Proof. Suppose that M is a steady maximal ideal with / € /"M < I”. Then it is
also the case that /"M Ry & IVRy. Since M is steady, it is either idempotent or
invertible (Lemma 2.1.10(1)). If M is invertible, then /"M is a divisorial ideal that
contains / and is properly contained in /. This is impossible, so it must be that M
isidempotent. Let y € IRy \ I"MRy. Then IRy € I"MRy S yRy S IV Ry,
and, since M R, is not divisorial, taking v’s in Ry yields IV Ry = YRy O

Our next result “individualizes” two of the properties that characterize /-local
Priifer domains. Our ultimate goal is to give a characterization of Priifer domains
with weak factorization that is similar to Olberding’s characterizations of i-local
Priifer domains (Proposition 2.1.8(2) and Theorem 2.4.12).

Theorem 2.5.4. Let R be a Priifer domain, and let N be a maximal ideal of R.

(1) I7'Ry = (IRy)™" for each nonzero ideal I if and only if each nonzero prime
contained in N is sharp and contained in no other maximal ideal.
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(2) If NRy is principal and I"'Ry = (IRy)™" for some nonzero ideal I, then
IRy = I"Ry = (IRy)".

(3) If N is idempotent and 1"'Ry = (IRy)™" for each nonzero ideal I, then
IRy = (IRy)" for each nonzero ideal I, and for those I where IRy #
I"Ry, IRy = yYNRy and I"Ry = YRy for some y € I".

Proof. For (1), first assume each nonzero prime contained in N is sharp and
contained in no other maximal ideal. Then ®(N) = ©(P), and both N and P
blow up in ®(N) for each nonzero prime P contained in N. Thus ® (N )Ry is the
quotient field of R.

Let I be a nonzero ideal of R. Then I™!' = (Ry : I)((O(N) : I)
(Lemma 2.3.13). Thus I7'Ry = ((Ry : I)(N(O(N) : I))Ry = (Ry
DRy N (O(N): )Ry = (IRy)™".

For the converse, we first show that if /'Ry = (IR N)_l for each nonzero
ideal I, then each nonzero branched prime contained in N is sharp. To this end,
let P € N be a branched prime and let Q be a proper P-primary ideal. Then
007 'Ry = (ORN)(ORy)™' D PRy since each valuation domain has the
trace property (Proposition 2.4.1). It follows that Q Q~! D P. Moreover, if P is
nonmaximal, then we have Q Q~! = P by Lemma 2.3.15. Hence P is sharp by
Theorem 2.3.12.

Next we show that no other maximal ideal contains P. Since P is both branched
and sharp, there is a finitely generated ideal B & P such that /B = P by Proposi-
tion 2.3.10. Let J := BRy () R. By way of contradiction, assume that N is not the
only maximal ideal that contains P. Then J~!' = B~!P’ where P’ is the largest
prime common to all maximal ideals that contain P (Theorem 2.5.2(2)). Hence
J_IRN = B_IP/RN. But JRy = BRy, so (JRN)_I = (BRN)_I = B_IRN
since B is finitely generated. Thus JJ 'Ry = P’'Ry C Ry = (JRN)(JRN)_1
and we have, upon canceling JRy = BRy, that J~' Ry is properly contained in
(JR N)_l , a contradiction. Hence N is the only maximal ideal that contains P. This,
in turn, implies that each nonzero prime contained in N is sharp and N is the only
maximal ideal that contains it (Lemma 2.3.9).

For (2), assume NRy is principal and I7'Ry = (IRN)_1 for some nonzero
ideal 7. Since each nonzero ideal of Ry is divisorial (in Ry) (Lemma 2.1.1), we
then have IRy € I'Ry € (I"'Ry)™' = (IRy)" = IRy, and so IRy =
I"Ry = (IRy)".

Finally, for (3), assume that / “IRy = (IR N)_1 for each nonzero ideal /. This
extends easily to all fractional ideals of R. Hence, for each nonzero ideal I, we have
I"Ry = (I"")"'Ry = (I"'Ry)™" = (IRy)".

For N idempotent, the existence of the element y € /" such that /Ry = yNRy
and /"Ry = yRy when IRy # I'"Ry(= (IRy)") follows from the fact that all
nondivisorial ideals of Ry have the form zNRy forsomez € R (Lemma?2.1.1). 0O

Recall that for a nonzero ideal / of an integral domain R, ®(I) =
{Rp | P € Min(R,I)}, where Min(R, I) is the set of minimal primes of [
(in R),and ©®(I) = (J{Ry | N € Max(R) \ Max(R, I)}.
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Lemma 2.5.5. Let R be a Priifer domain and let I be a nonzero radical ideal of R
such that 17" is a ring.

(1) If P is both minimal over I and antesharp, then PI~" is a maximal ideal
of 17\,

(2) If P’ is a sharp prime that contains I and P'I1=" # 17\, then P’ is minimal
over 1.

Note that the statement in (2) is not a consequence of that in (1). Simply having /
contained in a sharp prime P’ with P’ not minimal over [ is not enough to guarantee
that the minimal prime P & P’ of I is antesharp.

Proof. (1) Assume that P is minimal over / and antesharp. Since R is Priifer and
I7Visaring, I7! = @) ®(I) € Rp (Theorem 2.3.2(1)). Thus PI~! is
a prime ideal of /~!'. If P is maximal in R, then PI~! is certainly maximal in
I~'. Otherwise, since P is antesharp, each prime P” that properly contains P also
contains an invertible ideal B that (properly) contains P (Proposition 2.3.20). Since
I € P < B, B CI7' As B isinvertible, we have /™! D P”I7' D Bl =
I7'. (Toseethat BI ™' = [7!, write 1 = Y b;u; withh; € Bandu; € B~ C 7!,
whence 1 € BI~!'.) Therefore P”I~' = I~! for each prime P” that properly
contains P, and so PI~! is maximal ideal of 77!,

For (2), assume that P’ is a sharp prime that contains /. We will show that if
P’ is not minimal over I, then P'I~" = I~'. So we further assume P’ is not
minimal over / and let P C P’ be minimal over . If P’ is unbranched, there is an
infinite chain of sharp branched primes between P and P’ (Theorem 2.3.19). Thus,
whether P’ is unbranched or branched, there is a sharp branched prime P” with
I C P C P C P’ Inside P” is a finitely generated ideal A such that /A = P”
(Proposition 2.3.10). Obviously, if N is a maximal ideal that does not contain 7/,
then N does not contain A. Thus @(A) € O(I). Since A~! € 2(A4) € O(A)
(Lemma 2.3.1), then A~! € @(I). Moreover, no prime minimal over I can contain
A, s0 A7 € @(I) as well. It follows that A~ /7! = &(I)(O(I) = 1! and
therefore I ™! = AT~ € P’'I!, as desired. O

Recall from Remark 2.3.6 that Gilmer and Heinzer showed that given a fixed
nonzero prime P and a nonempty set of primes { P, } in a Priifer domain R, R p does
not contain T := (1), Rp, if and only if there is a finitely generated ideal A C P
that is contained in no P,. Also, if the primes in {P,} are pairwise incomparable
and, in our terminology, each P, is sharp, then each P,T is a sharp maximal
ideal of T and no other maximal ideals of 7" (if any) are sharp. We now consider
the related problem of which (minimal) primes are essential in an intersection of
incomparable primes.

Theorem 2.5.6. Let I be a radical ideal of a Priifer domain R that is not prime,
and let { Py} be a set of minimal primes of I suchthat I = ("), Py. If Q is a minimal
prime of I that is sharp, then Q = Pg is in the set { Py}, and ﬂayéﬂ P, properly
contains I, as does P ) (ﬂa#; P,) for each prime P that properly contains Q.
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Proof. Let Q be a minimal prime of / that is sharp. Then there is a finitely generated
ideal A € Q such that the only maximal ideals that contain A are those that contain
QO (Proposition 2.3.5(1)). If M is such a maximal ideal, then IRyy = QRy 2
ARy . Since A is finitely generated, M does not contain the ideal J := (I :x A).
On the other hand, if P, € {P,}\{Q}, then P, must contain J since it contains
I and cannot contain A. Thus I S J € ) PatO Py, and therefore Q = Py for
some f.

Next, assume P is a prime that properly contains Q. Since J € Q, the product
PJ isnotcontained in Q but is contained in P and also in the intersection (,5 Po-
Thus we also have I & P () (25 Po)- ]

A useful corollary to Theorem 2.5.6 is the following.

Corollary 2.5.7. Let R be a Priifer domain with nonzero Jacobson radical J, and
let P be a sharp prime that is minimal over J. Then the following statements are
equivalent.

(i) P is a maximal ideal.
(ii) P is contained in a unique maximal ideal.
(iii) P is contained in only finitely many maximal ideals.

Proof. Let {P,} be the set Min(R, J) \ P, and let B = ("), P,. We start by proving
(ii) implies (i). Let M be the maximal ideal that contains P. If P # M, then
M (B 2 J by Theorem 2.5.6. But since Spec(R) is treed, no P, is contained
in M. Thus B € I := (\{N | N € Max(R, P,) for some a}, and we have
J S MO\ BC<M(\I =J,acontradiction. Hence P = M is maximal.

To see that (iii) implies (i), we revisit the proof of Theorem 2.5.6. Assume P is
not maximal but is contained in only finitely many maximal ideals M, M>, ..., M,
(with n > 1). Since P is sharp, there is a finitely generated ideal A < P
with Max(R, A) = Max(R, P) = {M,, M, ..., M,} (Proposition 2.3.5). No M,
contains the ideal C := (J :gr A) since A is finitely generated and ARy, &
PRy, = JRy; . Hence C is not contained in P and thus neither is CM M, - -+ M,,.
On the other hand, C < B since no P, contains A. Thus CM\M,---M,, is
contained in each maximal ideal, a contradiction. Therefore P is a maximal ideal
of R. O

Theorem 2.5.8. Let R be a Priifer domain and let I be a nonzero radical ideal. If
each minimal prime of I is a maximal ideal of R and I = (\{N | N € #'} for
some subset W of Max(R, I), then I'(I) = ({Ry | N € #'}.

Proof. Assume that each minimal prime of / is a maximal ideal of R and let # be
a subset of Max(R, I) such that I = (\{N | N € #'}. There is nothing to prove
if # = Max(R, 1), so suppose M ¢ # is a maximal ideal that contains /. To
simplify notation, set 7 := (\{Ry | N € #}. By way of contradiction, assume
that Ry, does not contain 7. Then there is an element ¢ € T that is not in Ry. It
follows that M must contain the invertible ideal C := (R : (1, g)). On the other
hand, no N € # contains C.
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Since each maximal ideal in Max (R, ') is minimal over / and [ is a radical ideal,
IRy = MRy O CRyy. Since C is finitely generated, the ideal £ := (I :x C)
is not contained in M. On the other hand, EC € I C N foreach N € # . This
leads to the contradictory statement that E € (\{N | N € #'} = 1 C M since, as
observed above, no N € # contains C. Therefore we must have Ry, O T for each
maximal ideal M € Max(R, I), and it follows that I'(I) = T. O

Let . := {P, | « € </} be a nonempty set of incomparable nonzero prime
ideals of a Priifer domain R. We say that a prime Pg € . is relatively sharp in .5/
if Pg contains a finitely generated ideal that is contained in no other prime in .. If
.7 is a finite set, then each prime in . is relatively sharp (in .¥’), vacuously so if .
has only one member. Since R is Priifer, Py is relatively sharp in .% (assuming .
contains more than one prime) if and only if Rp, does not contain the intersection
(V{Rp, | @ € &, « # B} (Remark 2.3.6). If each P, € .7 is relatively sharp in
.7, then .7 is said to be a relatively sharp set.

As with Theorem 2.5.8, the next two results deal with intersections of maximal
ideals. In the first, R is a Priifer domain and the maximal ideals are not sharp in R
but are all relatively sharp to each other. In the second, the maximal ideals are sharp
in R but there is no Priifer assumption.

Theorem 2.5.9. Let R be a Priifer domain, let I be a nonzero radical ideal of R
such that each minimal prime of I is a maximal ideal of R, and let W = {M, | « €
o/} be a subset of Max(R, I). If I = (\{M, | @ € &} and each M, is unsteady
but relatively sharp in W, then I 7' = R.

Proof. If I = ({M, | @ € </} with each M,, unsteady (and so, locally principal)
but relatively sharp in ', then each M, contains a finitely generated ideal J,, of R
that is contained in no other maximal ideal in #. Since M, is locally principal, we
may further assume that J, Ry, = Mo Ry, .

By Theorem 2.5.8, I'(I) = ({Ry, | @ € <}. To simplify the notation, we
set T :=TI'(I)and Tp := ({Rm, | @ € &/, a # B} foreach B € 7. Clearly,
Tﬂ = ﬂ{TMaT | o€ , o 75 ,3}, T = TﬂﬂTM/jT and JﬂTMﬁT = MﬂTMﬁT for
each B € .

Since Jﬂ_1 C Ry, for each o # B, Jﬂ_1 C Tg. It follows that both Jg and
Mg blow up in Tg. By Lemma 2.3.13, (T : MgT) = (TMﬁT : MﬂTMﬁT) N (Tp -
MﬂTlg) = (TMﬁT . MﬂTMﬁT) ﬂ Tﬂ = (TMﬁT . JﬂTMﬁT) ﬂ Tlg = (T . JﬂT).
Thus MgT = JgT is an invertible maximal ideal of T, which makes it sharp as
well.

Consider the ideal Ig := ([{M, | @ € &/ , a # B}. Since IRy, = MgRy, =
JpRu, and Jg is finitely generated, Mg does not contain the ideal (/ :g Jp), but
all other M,’s do. Clearly, Jglg € I. Thus Ig = (I :g Jg) and since it is not
contained in Mg, then Mg + Ig = R. Therefore there are elements cg € Mg and
dg € Ig suchthat cg + dg = 1. Also I = Mglg = Mg (). Without loss of
generality we may assume cg € Jg. Thus Jg + Ig = R as well.

For each 8, consider the ring I"(Jg). By Lemma 2.5.1, having Jg + Ig = R
implies Ig1'(Jg) = I'(Jg). Thus Mgl'(Jg) = II'(Jg) since I = Mglg.



2.5 Sharp Primes and Intersections 35

On the other hand, since Mg is not sharp in R (Lemma 2.4.19), it must fail to
be sharp in I'(Jg) and therefore its inverse in I"(Jp) is trivial (Remark 2.1.2(1)).
Hence (I"(Jp) : 1I'(Jp)) = I'(Jp). With this we have (R : I) € I'(Jg) € Ry,
and therefore (R : 1) € (\{Rum, | « € &/} = T.That (R : I) = R now
follows from the facts that T (\O(I) = I'({)(\O(I) = Rand (R : I) € O(1)
(Lemma 2.3.1). O

Theorem 2.5.10. Let R be an integral domain and let # = {M,} be a set of sharp
maximal ideals of R. If R = (", Ru,, then the only sharp maximal ideals of R are
those in the set A/, and ﬂa M, is the Jacobson radical of R.

Proof. There is nothing to prove if .# = Max(R), so assume there is a maximal
ideal M that is not one of the M,,’s. Clearly, if R = ﬂa Ry, then M is not sharp.
Moreover, for t € ﬂa M,, if t is not in M, then there are elements p € R and
q € M such that pt + g = 1. It follows that g is a unit in each Rj,. But having
R = (N, Ru, implies ¢ is a unit of R, a contradiction. Thus € M, and (), M, is
the Jacobson radical of R. O

Another useful theorem is the following. In particular, it allows us to give an
alternate proof of Theorem 2.1.6.

Theorem 2.5.11. Let R be a Priifer domain with nonzero Jacobson radical J .

(1) If each maximal ideal of R is invertible and minimal over J, then R has only
finitely many maximal ideals.

(2) If each maximal ideal of R is invertible and each nonzero prime is both sharp
and contained in a unique maximal ideal, then R has only finitely many maximal
ideals.

Proof. Let Max(R) = {Mpg} and assume each Mg is invertible.

For (1), assume each Mg is minimal over J. Also, for each B, let Cg :=
ﬂa;ﬁ B M, . Since each Mg is invertible, each is sharp and therefore My is comax-
imal with Cg. It follows that R = Zﬂ Cg. Hence there are maximal ideals
Mﬂl’MﬂZ""’Mﬂn such that R = Cﬂl + Cﬂz + e+ Cﬂ”. As C/g C M, for
all o # B, Mg,, Mg,, ..., Mg, are the only maximal ideals of R.

For (2), assume each nonzero prime is both sharp and contained in a unique
maximal ideal. Since R is a Priifer domain, each Mg contains a unique prime Pg
that is minimal over J, and, since each prime is contained in a unique maximal
ideal, the Pg are distinct.

For each B, let Jg := ﬂa;ﬁﬁ P, and Ig := ﬂa;ﬁﬁ M,. Since Py is sharp, Jg
properly contains J by Theorem 2.5.6 and Pg does not contain Jg. Since J C
Mg (\Jg € Mg (\Ig = J, Theorem 2.5.6 further implies Pg = Mp. Hence each
maximal is minimal over J. By (1), R has only finitely many maximal ideals. O

Simply having a nonzero Jacobson radical with each maximal ideal invertible
and each nonzero prime ideal sharp is not enough to imply only finitely many
maximal ideals. For example, it is well known that the domain Z + XQ[[X]] is
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a two-dimensional Priifer domain such that each maximal ideal is invertible and the
Jacobson radical is the (unique nonzero) nonmaximal prime X Q[[X]]. Clearly, there
are infinitely many maximal ideals and each nonzero prime is sharp (since the only
such nonmaximal prime is contained in every maximal ideal), but no maximal ideal
is minimal over the Jacobson radical.

A rather unusual characterization of Priifer domains involves a certain nice
“factoring” property of contents of polynomials. For an indeterminate X over
R, the content of a polynomial h € R[X] is the ideal of R generated by the
coefficients of R. We shall use ¢(k) to denote this ideal. It turns out that R is
a Priifer domain if and only if ¢(fg) = ¢(f)c(g) for all nonzero polynomials
f.g € R[X] [34, Theorem 28.6].

Here is an alternate proof of Heinzer’s characterization of integrally closed
divisorial domains (Theorem 2.1.6).

Theorem 2.5.12. (Heinzer [44, Theorem 5.1]) Let R be an integrally closed
integral domain. Then each nonzero ideal of R is divisorial if and only if R is an
h-local Priifer domain such that each maximal ideal is invertible.

Proof. Assume R is an h-local Priifer domain such that each maximal ideal is
invertible. Let M be a maximal ideal and let / be a nonzero ideal contained in M .
Since M is invertible, M R, is principal and I R, is divisorial (Lemma 2.1.1(5)).
Also, each nonzero prime is contained in a unique maximal ideal, and from finite
character, each such prime is sharp. Thus /'Ry, = (IRy)~! by Theorem 2.5.4.
Hence IRy = (IRy)" = I"Ryy. It follows that I = [,

For the converse, assume R is an integrally closed domain such that each nonzero
ideal is divisorial. Since R is integrally closed, ¢(fg)" = (e(f)c(g))" for each
pair of nonzero polynomials f, g € R[X] [34, Proposition 34.8]. Hence we have
c(fg) = c(fg)' = (e(f)e(g))” = c(f)e(g). Thus R is a Priifer domain [34,
Theorem 28.6]. That each maximal ideal is invertible follows from the fact a
maximal ideal of a Priifer domain is divisorial if and only if it is invertible.

Let P be a branched prime, and let M be a maximal ideal that contains P.
Then P is minimal over a finitely generated ideal . Since IRy, () R is divisorial,
Theorem 2.5.2 ensures that P is sharp and that M is the only maximal ideal that
contains P. As each (nonzero) unbranched prime contains a branched prime, each
nonzero prime is sharp and contained in a unique maximal ideal.

Next, let € R be a nonzero nonunit. Then the only maximal ideals of I"(rR) are
those that are extended from maximal ideals of R that contain r (Lemma 2.5.1(1)).
Thus the Jacobson radical of I'(rR) is nonzero, each maximal ideal of I'(rR) is
invertible, and each nonzero prime of I"(rR) is both sharp and contained in a unique
maximal ideal. By Theorem 2.5.11, I"(rR) has only finitely many maximal ideals.
Therefore R has finite character and hence is A-local. O

We end this section with three lemmas which will be used later.
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Lemma 2.5.13. The following are equivalent for a nonzero prime P of a Priifer
domain R.

(i) P is invertible as an ideal of (P : P).
(ii) P is sharp and PRp is principal.
(iii) There is an invertible prime of (P : P) that contains P.

Proof. If P is a maximal ideal, then (P : P) = R. In this case, P invertible is
equivalent to it being sharp and locally principal. For the remainder of the proof we
assume P is not maximal.

If P is invertible as an ideal of (P : P), then it is a maximal ideal of (P : P) and
there is a finitely generated ideal / € P such that P(P : P) = I(P : P). As each
maximal ideal of R that does not contain P extends to a maximal ideal of (P : P),
no such maximal ideal contains /. Hence P is sharp and PRp is principal. Thus (i)
implies (ii).

If P is sharp and PRp is principal, then P is branched and a maximal ideal of
(P : P) (Theorem 2.3.11 and Corollary 2.3.21). Also, P = +/J for some finitely
generated ideal J, which we may further assume has the property that JRp = PRp.
The other maximal ideals of (P : P) are extended from maximal ideals of R that
do not contain P [24, Theorem 3.1.2]. Hence checking locally in (P : P) yields
P(P : P)= J(P : P). Thus (ii) implies both (i) and (iii).

To complete the proof, we show that (iii) implies (i). We prove the contrapositive.
Suppose P is not invertible as an ideal of (P : P) and let Q 2 P be a prime of
R. Since R is a Priifer domain, PQ = P and (R : P) = (P : P). It follows that
(P:P):9)=((R:P):Q)=(R:PQ)=(R:P)= (P :P). Hence each
prime of (P : P) that properly contains P has a trivial inverse in (P : P) and so is

not invertible. O
Recall that an ideal I is said to be SV-stable (stable in the sense of Sally-

Vasconcelos) if I is invertible as ideal of (/ : I). Also recall that if (R : [) =
(I : I) for some ideal 7, then (R : P) = (P : P) for each minimal prime P of 1
[48, Proposition 2.1(2)].

Lemma 2.5.14. Let R be a domain, and let I be an ideal of R. If each minimal
prime of I is an invertible maximal ideal of R, then not only is I invertible but so is
each ideal that contains I .

Proof. 1t suffices to prove the following form of the contrapositive: if some ideal
that contains / is not invertible but each minimal prime of / is maximal, then some
minimal prime of [ is not invertible. Let J be a noninvertible ideal that contains /
andlet B := J(R : J). Then I € B and (R : B) = (B : B), and so by [48,
Proposition 2.1], each minimal prime P of B is such that (R : P) = (P : P).
Hence no such prime is invertible. It follows that some minimal prime of / is not
invertible. O

Lemma 2.5.15. Let I be a radical ideal of a Priifer domain R. If (R : 1) = (I : I)
and each minimal prime of I is SV-stable, then I has only finitely many minimal
primes and I is SV-stable.
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Proof. Assume (R : I) = (I : I) and each minimal prime of / is SV-stable. To
simplify notation, we let 7 := (I : I). Also, let P € Min(R, ). Since (R : I) =
(I:1)=T,T 2(R:P)= (P : P)[48, Proposition 2.1(2)]. As P is invertible
as an ideal of (P : P), it is maximal as an ideal of (P : P). Moreover, Rp 2
T D (P : P),whence PT is an invertible maximal ideal of 7. Thus Max(7T, ) =
{P(I : I) | P € Min(R, I)} with each maximal ideal in Max(7, I) invertible.
It follows from Lemma 2.5.14 that [/ is invertible as an ideal of 7', equivalently,
I is SV-stable. We also have I'r(I) = ®g([) with each maximal ideal of I'r (/)
invertible. By Theorem 2.5.11, I'7 (1) has only finitely many maximal ideals. Hence
I has only finitely many minimal primes. O



Chapter 3
Factoring Ideals in Almost Dedekind Domains
and Generalized Dedekind Domains

Abstract We start with an overview of the rings for which every proper ideal
is a product of radical ideals, rings introduced by Vaughan and Yeagy under the
name of SP-rings. The integral domains with this property are called here domains
with radical factorization. We give several characterizations of this type of integral
domains by revisiting, completing and generalizing the work by Vaughan—Yeagy
(Canad. J. Math. 30:1313-1318, 1978) and Olberding (Arithmetical properties of
commutative rings and monoids, Chapman & Hall/CRC, Boca Raton, 2005). In
Sect. 3.2, we study almost Dedekind domains having the property that each nonzero
finitely generated ideal can be factored as a finite product of powers of ideals of
a factoring family (definition given below). In the subsequent section, we provide
a review of the Priifer domains in which the divisorial ideals can be factored as a
product of an invertible ideal and pairwise comaximal prime ideals, after papers
by Fontana—Popescu (J. Algebra 173:44-66, 1995), Gabelli (Commutative Ring
Theory, Marcel Dekker, New York, 1997) and Gabelli-Popescu (J. Pure Appl.
Algebra 135:237-251, 1999). The final section is devoted to the presentation of
various general constructions due to Loper—-Lucas (Comm. Algebra 31:45-59,2003)
for building examples of almost Dedekind (non Dedekind) domains of various kinds
(e.g., almost Dedekind domains which do not have radical factorization or which
have a factoring family for finitely generated ideals or which have arbitrary sharp or
dull degrees (definitions given below)).

3.1 Factoring with Radical Ideals

In a 1978 paper, Vaughan and Yeagy [75] studied the rings for which every proper
ideal is a product of radical ideals (also called semi-prime idealsor SP-ideals). The
rings with this property were called SP-rings. To emphasize the factorization aspect,
we will say that an integral domain with this property has radical factorization. In
addition, we say that an ideal I has a radical factorization if there are finitely many
radical ideals Jy, J>, ..., J, suchthat I = J1J--- J,.

M. Fontana et al., Factoring Ideals in Integral Domains, Lecture Notes of the Unione 39
Matematica Italiana 14, DOI 10.1007/978-3-642-31712-5_3,
© Springer-Verlag Berlin Heidelberg 2013



40 3 Almost Dedekind and Generalized Dedekind

By one of the main results of Vaughan—Yeagy, an SP-domain is an almost
Dedekind domain [75, Theorem 2.4]. Using a construction given by Heinzer and
J. Ohm [45] of a non-Noetherian almost Dedekind domain, Vaughan and Yeagy
also provide a non-Noetherian example of an SP-domain.

In 1976, Butts and Yeagy [14] introduced the notion of a maximal ideal being
critical as meaning that each finite subset of this particular maximal ideal is
contained in the square of some maximal ideal. In 1979, Yeagy used this concept
to give another class of non trivial examples of SP-domains as an application of the
following.

Theorem 3.1.1. (Yeagy [77, Theorem 3.2]) Let R be an almost Dedekind domain
that is a union of a tower of Dedekind domains. Then R is an SP-domain if and only
if R has no critical maximal ideals.

Clearly, no maximal ideal of a Dedekind domain is critical since a finitely
generated maximal ideal is obviously not critical. Also, an idempotent maximal
ideal is obviously critical.

The classical example of a non-Dedekind almost Dedekind domain constructed
by N. Nakano in 1953 [65], using the ring of integers in the (non finite) number field
obtained by adjoining to QQ the p-th roots of unity, for all primes p, turns out to be
an SP-domain since it has no critical maximal ideals.

An example of an almost Dedekind domain that is a union of a tower of Dedekind
domains having a critical maximal ideal was given by Butts and Yeagy in 1976 [14].
In particular, this example shows that SP-domains are a proper subclass of the class
of almost Dedekind domains.

In 2005, Olberding [69] completed and generalized Vaughan—Yeagy results,
proving several characterizations of SP-domains. We list some of these in the
following.

Theorem 3.1.2. (Olberding [69, Theorem 2.1]) Let R be an integral domain, but
not a field. The following statements are equivalent.

(i) R is a SP-domain; i.e., R has radical factorization.
(ii) R is an almost Dedekind domain having no critical maximal ideals.
(iii) R is an almost Dedekind domain and, for every proper finitely generated ideal
J of R, /7 is finitely generated.
(iv) R is a one-dimensional Priifer domain, and every proper principal ideal of R
is the product of radical ideals.
(v) Every proper nonzero ideal I of R can be uniquely represented as a product
I =0Q105---0, of radical ideals Qy, where Q1 € Q> € --- C Q.

(vi) R is a one-dimensional Priifer domain having no critical maximal ideals.

Note that the equivalences (i) < (ii) <> (iil) < (v) < (vi) are given explicitly in [69,
Theorem 2.1((i) <> (ii) < (iii) < (vii)) and Corollary 2.2]. The equivalence (ii) < (vi)
is a straightforward consequence of the fact that in a one-dimensional Priifer domain
having no critical maximal ideals, M # M? for all M € Max(R), and this implies
that M Ry, is a principal ideal in the one-dimensional valuation domain R}, for all
M € Max(R).
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Vaughan and Yeagy also introduced a function to “measure” a nonzero ideal in
an almost Dedekind domain. Olberding gives an alternate characterization of SP-
domains (= domains with radical factorization) in terms of continuity properties of
this function [69, Theorem 2.1].

We provide an alternate characterization of radical factorization below that more
or less mimics what Olberding did, but without explicit mention of continuity
properties.

Before presenting this result, we revisit a notion considered by Butts and Gilmer
in 1964 [13].

An integral domain R is said to have property (o) if every primary ideal is a
power of its radical [13]. It is clear that if R is a domain with property («), then
both Rp and R/ P have property («) for each prime P of R.

The next three lemmas are based on [13, Theorems 1, 2 and 3]. The first is just a
local version of the second.

Lemma 3.1.3. Let R be a local domain with property (o). If the maximal ideal
M is minimal over an ideal of the form tR + P for some t € M\ P and some
nonmaximal prime P, then (1, M" is a prime ideal that contains P and is properly
contained in M.

Proof. If M is minimal over the ideal /; := tR 4 P, then I; is M -primary. The
same conclusion holds for I; := t*R 4+ P foreach k > 1. If tk = ¢th+lg 4+ q
for some elements s € R, ¢ € P, then t*(1 — ts) = q implies ¢ € M\P, a
contradiction. Hence I; 2 I+ for each k. By property («), for each k there is an
integer my > 1 with I = M™*. Since M™* = I} 2 Iy, = M™+!, each power
of M is distinct. Hence a consequence of property («) is that M" = bR + M™ for
each b € M\ M"*" and all positive integers m > n.

Let J :== (\,M" = (\,M™ > P.Then M 2 J and for x,y € M\J,
there are integers n and m such that x € M"\M"*! and y € M™\M" !, Thus
M" = xR + M"* and M™ = yR + M™ 1 As ML C MM = xyR +
XMy M M2y e MM\ ML Therefore J is a prime
ideal of R that contains P and is properly contained in M. O

Lemma 3.1.4. Let R be a domain with property (&), and let P be a prime of R. If
O is a prime minimal over an ideal tR + P for somet ¢ P, then Q 2 (), Q" 2 P
with (), Q" a prime ideal.

Proof. Since Rp has property («) with QRp minimal over tRgp + PRy,
Lemma 3.1.3 implies that (1), Q" Ry is a prime ideal of R that contains PRy and
is properly contained in QR . For each integer k > 1, set [} := t*R + P. By first
localizing at Q and then contracting to R, we obtain Q-primary ideals which by
property (o) must be powers of Q. Let my be such that Iy Rp (| R = Q™. Then by
Lemma 3.1.3, ("), It R is a prime ideal of Ry that contains PRy and is properly
contained in QR. Thus there is a prime Qg & Q such that (|, I[rRgp = QoRp

s

with P € Qo € Q" for each n. It follows that Qp = (), Q" < Q. O
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Lemma 3.1.5. Let R be a domain with property () and let N be a nonzero prime
ideal of R. Then ("), N" is a prime ideal of R that contains every prime that is
properly contained in N. Moreover, if N # N2, then NRy is principal.

Proof. Suppose P is a prime that is properly contained in N, and let ¢t € N\P.
Then there is a prime ¢ C N that is minimal over R + P. By Lemma 3.1.4,
(), Q" is a prime ideal that contains P and is properly contained in Q. Obviously,
(), N contains (), Q". It follows that (), N contains each prime that is properly
contained in N. If N = N2, we simply have N, N'" = N.IfN # N2, then
by property (a), NRy = bRy + N2?Ry for each b € N\NZ2. By the proof of
Lemma 3.1.3, (), N” is a prime ideal in this case as well.

Continuing with the assumption that N # N2, set Q¢ := (), N" and let r €
N\N?2. Since Q¢ (which is properly contained in N?) contains each prime that is
properly contained in N and it is properly contained in N, NRy is the radical of
rRy. Thus rRy is NRy-primary. By property («), the only possibility is to have
NRy = rRy. O

In the absence of property («), it is possible to obtain the same conclusion as that
in Lemma 3.1.5 under the assumption the “N” is the radical of a finitely generated
ideal and { N"} is the complete set of N -primary ideals. We will find the next lemma
useful in Sect. 5.3.

Lemma 3.1.6. Let R be a local domain with maximal ideal M. If M is the radical
of a finitely generated ideal, then M is principal if and only if {M" | n > 1} is the
complete set of M -primary ideals. Moreover, if M is principal, then (), M" is a
nonmaximal prime ideal that contains each nonmaximal prime of R.

Proof. It is well-known that if M is principal, then the only M -primary ideals are
the powers of M (and each is distinct). For the converse, assume M is the radical
of a finitely generated ideal I and that {M" | n > 1} is the complete set of M-
primary ideals. As I is M -primary, there is an integer n > 1 such that I = M".
Then M?" = [? C I, and therefore M 2 M? 2 M3 2 ---. Moreover, we have
M"~!' = bR + M" foreachh € M"~'"\M". Hence M"~", and recursively, M* is
finitely generated for each k < n. In particular, M is finitely generated.

To see that M is principal, suppose, by way of contradiction, that M is minimally
generated by n > 1 elements, say M = (ay,as,...,a,). Since M # M?, we
may assume that a, ¢ M?2. The ideal (a%, a%, e ,aﬁ_l, an) is M -primary and must
therefore be equal to M . This gives an equation a; = rlaf + r2a§ +---+ rn_laﬁ_l +
ra,. However, we then have a;(1 — rja;) € (az,...,a,), with 1 —rja; a unit,
contradicting that n is minimal. Hence M is indeed principal. Let M = (a). Now
suppose, again by way of contradiction, that for some nonmaximal prime Q and
some k > 1, we have Q € M* but Q & M**! Then Q + M**+!is M-primary,
whence Q + M**+! = M¥, and we have an equation a* = q + ta**!, with ¢ € R,
q € Q. However, this yields a* (1 — ta) € Q, a contradiction. O

We now have enough to prove that a domain with radical factorization is an
almost Dedekind domain.
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Theorem 3.1.7. (Vaughan—Yeagy [75, Theorem 2.4]) If R is a domain with radical
factorization, then R is an almost Dedekind domain.

Proof. Let Q be a proper P-primary ideal for some nonzero prime P and factor
Q into radical ideals as Q = J;J, -+ J,. Since Q is P-primary, if some J; is not
contained in P, we have Q C ]_[Héi J; € Q. On the other hand, if J; € P, we
must, in fact, have J; = P since each prime that contains Q also contains P. Hence
Q = P¥ for some integer k > 1. Therefore R has property ().

If P is a height one prime, then the only way a nonzero principal ideal of Rp
can factor into radical ideals is as a power of PR p. It follows that PR p is principal.
Thus we are done once we show R is one-dimensional.

By way of contradiction, assume dim(R) > 1 andlet P & N be a pair of nonzero
prime ideals. We may further assume N is minimal over an ideal of the form R + P
for some ¢ € N\ P and that P is minimal over a (nonzero) principal ideal sR. Then
NRy # N?Ry by Lemma 3.1.3, and thus by Lemma 3.1.5, NRy is principal and
(), N € N contains each prime that is properly contained in N.

Factor the ideal sRy as sRy = I11,--- 1, Ry with each I; Ry aradical ideal of
Ry . Each I; Ry is invertible and at least one, say /| Ry, is contained in PRy . Then
NRy is not minimal over /| Ry and by Lemma 2.4.3(2), we obtain a contradiction
from having Ry & (Ry : NRy) € (I/iRy : 1 Ry) = Ry. Therefore R is one-
dimensional, as desired. O

Olberding’s continuity characterization for radical factorization is based on the
collection of functions {y, | a € R\{0}} each of which maps Max(R) to Z as
follows: y, (M) := k where aRy; = M* Ry (equivalently y,(M) := vy (a) where
vy is the valuation map corresponding to Rj). By [69, Theorem 2.1], an almost
Dedekind domain R has radical factorization if and only if the function y, is both
bounded and upper semi-continuous (in the Zariski topology on Max(R)) for each
nonzero a € R. Note that y, is upper semi-continuous if and only if y, ' ([n, 00))
is closed in Max(R). It turns out that simply having y, upper semi-continuous for
each nonzero nonunit @ € R is sufficient to imply that R has radical factorization
(and thus that y, is bounded for each a). We take a slightly different approach in the
next theorem.

For each nonzero ideal / and each maximal ideal M of an almost Dedekind
domain R, we set py(I) := h if IRy = M"Ry. Then we set p(I) :=
sup{ppm (1) | M € Max(R)}. Also, for each positive integer k, let %, (1) := {M €
Max(R) | IRy S M*Ry} and I == ({M € % (1)}, with I; := R if %.(I)
is empty. It is clear that I, = /I € I, C ---. We employ this notation in the
statement of our next theorem. In the case / = bR is a principal ideal, we simply
use % (b) in place of % (1). The characterizations in (ii)—(v) are new.

Theorem 3.1.8. (Vaughan—Yeagy [75, Sect. 3] and Olberding [69, Theorem 2.1])
The following statements are equivalent for an almost Dedekind domain R.

(i) R has radical factorization.

(ii) For each nonzero ideal I, p(1) is bounded and, for each positive integer k <
p(I), the only maximal ideals that contain It (= ({{M € % (I)}) are those
in the corresponding set % (I).



44 3 Almost Dedekind and Generalized Dedekind

(iii) For each nonzero finitely generated ideal J and each positive integer k, the
only maximal ideals that contain Jy := ({{N € %/(J)} are those in the
corresponding set % (J).

(iv) For each nonzero principal ideal bR and each positive integer k, the only
maximal ideals that contain B, = (\{N € %.(b)} are those in the
corresponding set % (b).

(v) The function y, is upper semi-continuous for each nonzero nonunita € R.

Proof. It is clear that (ii) implies (iii) and that (iii) implies (iv).

Let b be a fixed nonzero nonunit of R and for each k > 1, let By := [{N €
%.(b)} (equal to R if % (b) is empty). It is clear that y; ' ([k, 00)) = #(b). If the
only maximal ideals of R that contain By, are those in the set % (b), then % (b) is
closed. Conversely, if %4 (D) is closed and M is a maximal ideal that contains By,
then M € % (b). Hence (iv) and (v) are equivalent.

Next we show (iv) implies (ii).

Let I be a nonzero ideal of R. Then for each maximal ideal M € Max(R, I),
there is a positive integer n such that I € M” and I ¢ M”"*!. Thus there is an
elementh € I\M"*1. As above, we let By = ({N € % (b)} and I, = [{N €
.(I)}. We have %, (b) D %.(I) for each k and so By C I;. Since b ¢ M"+*' M
does not contain B, 4 and thus does contain 7, +;. It follows that the only maximal
ideals that contain I, are those in the %;,1(I). Therefore for each k, the only
maximal ideals that contain /; are those in the set % (1).

To see that p(/) is bounded, note that the family of ideals {/;}2, forms an
ascending chain. Hence H := (J72, I is an ideal of R. For a given maximal
ideal N of R, there is an integer k such that /IRy = N*Ry which puts N €
U (I)\%+1(I). Thus N D I but N does not contain /;1 and therefore N does
not contain H. It follows that H = R and thus there is an integer m such that
I, € Iy+1 = R which implies p(1/) = m. Therefore (iv) implies (ii).

To see that (ii) implies (i), suppose that for each nonzero ideal 7, p(/) is bounded
and for each positive integer k < p(I), the only maximal ideals that contain [} are
those in the corresponding set % (7). We will show that I = [[,--- I, where
m = p(I).

Since I; € I forall j (< m—1),if amaximal ideal N contains /;, it also
contains ;. As each I; is a radical ideal, /; Ry = NRy whenever N contains /;
and /; Ry = Ry when N does not contain /;. By our assumptions on the ideals 7,
I; C Nifandonlyif IRy C N/ Ry.Henceif py(I) = h,then N D I;forall j <
hand I; Ry = Ry forall j > h. It follows that /Ry = N"Ry = IiI,--- IRy,
with Ij,41 -+ I,,Ry = Ry wheneverh < m.Hence IRy, = I, I ---I,, Ry for each
maximal ideal M, and thus I = [I;/1,---I,,. Therefore R has radical factorization.

To complete the proof we show that (i) implies (iii). Note that if p([) is
unbounded for some nonzero ideal 7, then there is no hope of factoring 7 as a finite
product of radical ideals (since if J is a radical ideal, we have JRy = MRy 2
M?2R,, for each maximal ideal M D J). Hence if R has radical factorization, then
p(I) < oo for each nonzero ideal 7.

If B is a finitely generated ideal such that p(B) = 1, then B = Bj is a radical
ideal and % (B) is empty for each k > 1. We proceed by induction on p(J).
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Assume (iii) holds for each finitely generated ideal B with p(B) < m and
let J be a finitely generated ideal with p(J) = m. Let J = A;Ay---A, be a
factorization of J into radical ideals. Then each A; is invertible. Obviously, each
maximal ideal that contains J contains at least one A;. Since R is a Priifer domain,
A1 A2+ Ax is both an invertible ideal [34, Proposition 25.4] and a radical
ideal. In fact, A;(A2(---4n = VJ = J; and the ideal J(R : J)) is
invertible.

Let N be a maximal ideal that contains J. Then JRy = N¥ Ry for some integer
1 <k <mand NRy = JiRy. Thus J(R : J))Ry = N*=1Ry. It follows
that %, (J) = %1 (J(R : J1)) and p(J(R : J1)) = m — 1. By the induction
hypothesis, the only maximal ideals that contain ([{N € #;(J(R : J1))} =
(UP € #j41(J)} = Jj41 are those in #;(J(R : J1)) = #;41(J). Therefore
(i) implies (iii). O
Remark 3.1.9. Itis still an open problem to find characterizations of SP-rings with
zero divisors.

3.2 Factoring Families for Almost Dedekind Domains

As is well-known (and recalled above in Proposition 2.1.3), in a Dedekind domain,
each nonzero proper ideal can be factored (uniquely) as a finite product of positive
powers of maximal ideals. More generally, Gilmer proved the following lemma.

Lemma 3.2.1. [34, Proposition 37.5] If I is a proper ideal of an almost Dedekind
domain R that is contained in only finitely many maximal ideals My, M, ..., M,,
then I = M{'M,? --- M", for some positive integers ey, e, . .., €.

In 2003, A. Loper and Lucas [58] observed that a consequence of the previous
lemma is that a finitely generated ideal in an almost Dedekind domain may have a
factorization into prime ideals. More precisely, if Max” (R) denotes the set of sharp
maximal ideals of R, they proved the following.

Proposition 3.2.2. (Loper-Lucas [58, Lemma 2.2]) Let R be an almost Dedekind
domain and let I be a finitely generated proper ideal of R. Then there are maximal
ideals My, M», ..., M, of R such that I = M{'M,*---M¢ for some positive
integers ey, ey, ... e, ifand only if | £ N, for all N € Max(R)\Max*(R).

Proof. First suppose there are maximal ideals M, M>, ..., M, such that I factors
as [ = Mf‘ Mze2 --- M2, for some positive integers ey, e, .. ., e,. Then, obviously,
no other maximal ideals contain I. For each M;, there is an element b; €
M\, 4 M;. The ideal B; := b; R + I is a finitely generated ideal with radical
M, . Hence each M; is sharp (and invertible).

For the converse, assume each maximal ideal that contains 7 is in Max"(R).
Let M be a maximal ideal that contains /. Since MR, is principal and M is
sharp, M is finitely generated and therefore invertible. Also IRy = M¢Ry, for
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some positive integer e. By Lemma 2.5.1, each maximal ideal of I"(/) is extended
from a maximal ideal in the set Max(R, I). It follows that each maximal ideal
of I'(I) is both invertible and minimal over /I'(/). Hence by Theorem 2.5.11,
I’ (1) has only finitely many maximal ideals. Thus Max(R, I) is finite and, for each
M; e Max(R,I),wehave IRy, = M ie" Ry, for some positive integer e;. Checking
locally shows that I = M['M,>--- M. ]

In the same paper [58], Loper and Lucas investigated the following problem:
Given an almost Dedekind domain R with Max(R) = {M, | o« € </}, when is it
possible to find a family of finitely generated ideals {J, | @ € </} of R such that
JoRm, = My Ry, for each o, and every finitely generated nonzero ideal of R can
be factored as a finite product of powers of ideals from the family {Jo | @ € o7}?

In order to state some of the main results obtained in [58] concerning this
problem, we need some preliminary notions.

For an almost Dedekind domain R with Max(R) = {M,, | « € &/}, we say that
a set of finitely generated ideals 7 := {J, | « € &} is a factoring family for R if
JoRm, = My Ry, for each o, and every finitely generated nonzero ideal of R can
be factored as a finite product of powers of ideals from the family ¢. A factoring
set of an almost Dedekind domain is a factoring family such that no member appears
more than once.

Given a one-dimensional Priifer domain R with quotient field K, call a maximal
ideal M dull if M € Max'(R) := Max(R)\Max"(R). We can recursively define a
family of overrings of R as follows:

Ry :=R, R, := ﬂ{(Rn—l)N | N e MaXT(Rn—l)} forn > 1,

where R, = K, forn > 2, if MaxT(R,,_l) = 0.

We say that R has sharp degree n if R, # K but R, = K (and dull degree n
if R—1 € R, = Ry,+1 € K, with Ry = {0}). Note that a domain is a #-domain if
and only if it has sharp degree 1. For an fractional ideal J of R, we say that J has
sharp degree n if JR,, # R,,but JR,+1 = R, 4. Note that a proper (integral) ideal

I of R has sharp degree 1 if and only if each maximal ideal containing / is sharp.

Theorem 3.2.3. (Loper—Lucas [58, Theorem 2.3 and Corollary 2.4]) Let R be an
almost Dedekind domain such that each maximal ideal has finite sharp degree. Then
there exists a factoring set ¢ such that each finitely generated fractional ideal of
R factors uniquely over . In particular, every almost Dedekind domain of finite
sharp degree admits a factoring set.

The factoring set of this theorem can be simply constructed as follows. First note
that the maximal ideals of R which generate sharp maximal ideals of R, are exactly
the maximal ideals of R of sharp degree n. For each maximal ideal M, of R, we
know that M, has finite sharp degree, say n, with n > 1. Then pick J, to be a
finitely generated ideal of R such that J, Ry, = My Ry, and J, is contained in no
other maximal ideal of R,. Finally, set 7 = {J, |« € &/}.
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Theorem 3.2.4. (Loper—Lucas [58, Theorem 2.5]) Let R be a one-dimensional
Priifer domain. Then R is an almost Dedekind domain with at most one nonin-
vertible maximal ideal if and only if there exists a nonzero element d € R such
that, for each finitely generated nonzero ideal I of R, there is a finite set of maximal
ideals {My, M, ..., M,,}, a finite set of integers {e}, ez, ..., ey}, and a nonnegative
integer n such that

[ =(d)"M{'M?--- M.

Moreover, if R is an almost Dedekind domain with exactly one noninvertible
maximal ideal N, then the element d € R must be such that dRy = NRy, and the
set 7 = Max*(R)\J{dRY} is a factoring set for R.

The paper [58] contains a general construction for obtaining almost Dedekind
domains with various sharp degrees and, in particular, an almost Dedekind domain
of sharp degree 2 satisfying the hypothesis of Theorem 3.2.4. It also includes
a general construction for obtaining almost Dedekind domains with various dull
degrees. In the construction, the resulting almost Dedekind domain R is the union
of a countable chain of Dedekind domains {R,} such that for each maximal ideal
M of R, MyRyy = MRy, where M, = M (| R, is a maximal (hence, finitely
generated) ideal of R,,. It follows that R has no critical maximal ideals and therefore
is an SP-domain (Theorems 3.1.1 or 3.1.2); equivalently, R has radical factorization.
We consider this construction in more detail in Sect. 3.4

3.3 Factoring Divisorial Ideals in Generalized Dedekind
Domains

A Priifer domain R is said to be a generalized Dedekind domain if each localizing
system is finitely generated (or, equivalently, Rz = Ry for a pair of localizing
systems .# and ¢ of R implies . = ¥) [73, Sect.2], [72], and [24, Sect.5.2]. In
the local case, the generalized Dedekind domains can be characterized as follows.

Theorem 3.3.1. (Fontana—Popescu [26, Théoreme 2.2]) The following statements
are equivalent for a domain R.

(i) R is alocal generalized Dedekind domain.
(ii) R is a valuation domain such that PR p is principal for each nonzero prime P
of R.
(iii) R is a discrete valuation domain (i.e., no branched prime ideal is idempotent,
[34, page 192]) and each prime ideal of R is the radical of a principal ideal.
(iv) R is a valuation domain such that each ideal can be factored as a principal
ideal times a prime ideal.

A valuation domain V' with no nonzero idempotent prime ideals is said to
be strongly discrete; equivalently, PVp is principal for each nonzero prime ideal
P. Similarly, a Priifer domain R is strongly discrete if it has no nonzero idem-
potent prime ideals; equivalently, PRp is principal for each nonzero prime P.
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From the equivalence of (i) and (ii), a local generalized Dedekind domain is the
same as a strongly discrete valuation domain. The analogous equivalence does not
hold for generalized Dedekind domains. While a generalized Dedekind domain is a
strongly discrete Priifer domain, there are strongly discrete Priifer domains that are
not generalized Dedekind domains.

From a global point of view, we have the following characterizations of
generalized Dedekind domains (see [24, Theorems 5.3.8 and 5.4.9]).

Theorem 3.3.2. (Popescu [73, Theorem 2.5]). Let R be an integral domain. The
following statements are equivalent.

(i) R is a generalized Dedekind domain.
(ii) R is a Priifer domain with no nonzero idempotent prime ideals and each
nonzero prime of R is the radical of a finitely generated ideal.
(iii) R is strongly discrete Priifer domain and Spec(R) is a Noetherian space.

By Proposition 2.3.10 above, a nonzero branched prime of a Priifer domain
is sharp if and only if it is the radical of a finitely generated ideal. Also, by
Theorem 2.4.10, each branched prime of a Priifer domain R is the radical of a
finitely generated ideal if and only R is an RTP-domain. Thus we have the following
alternate characterization of generalized Dedekind domain. The equivalence of
(i) and (ii) is due to Gabelli [28].

Corollary 3.3.3. (Gabelli [28, Theorem 5]) The following statements are equiva-
lent for a Priifer domain R.

(i) R is a generalized Dedekind domain.
(ii) R is an RTP-domain with no nonzero idempotent prime ideals.
(iii) R is a Priifer domain such that each nonzero prime ideal is sharp, and no
nonzero prime is idempotent.

Theorem 3.3.4. (Gabelli-Popescu [31, Theorem 3.3]) Let R a generalized Dede-
kind domain and let I be a nonzero ideal of R . Then 1" = HP P, --- P, for some
invertible ideal H and prime ideals Py, P>, ..., P, of R.

In the above mentioned paper, Gabelli and Popescu gave a more precise
statement, providing a characterization of generalized Dedekind domains among
Priifer domains [31, Theorem 3.3]. For a domain R, we let Div(R) denote the set of
divisorial (integral) ideals of R, F¥(R) denote the set of divisorial fractional ideals
of R, Inv(R) the set of invertible ideals of R (including R itself) and H(R) the set of
invertible fractional ideals of R. What Gabelli and Popescu showed is that a Priifer
domain R is a generalized Dedekind domain if and only if F¥(R) = {BP, P,--- P, |
B € H(R) and Py, P,,..., P, are pairwise comaximal primes}. Their proof can
be easily modified to show that one also has R a generalized Dedekind domain
if and only if (R is Priifer and) Div(R) = {IQ01Q2--- Q. | I € Inv(R) and
01,03, ..., Q, are pairwise comaximal primes}. We will use several of our earlier
results to give a different proof for this equivalence.

The following lemma was observed in [25, page 495].
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Lemma 3.3.5. If I is a divisorial ideal of a domain R, then (I : 1) = (117! :
II7Y = (R:1I7).

Proof. It is always the case that (I : ) € ([I7' : II7") = (R : I17"). Let
te(R:II7"Y,qelandb e (R:1). Since (R:117") C (R : I),bothtg and
t(gb) = (tq)b arein R. Thustq € IV = 1. O

Theorem 3.3.6. The following statements are equivalent for a Priifer domain R.

(i) R is a generalized Dedekind domain.
(ii) ¥'(R) = {HP\P,---P, | H € H(R), and Py, P,,..., P, are pairwise
comaximal prime ideals of R}.
(iii) Div(R) = {IP\P,---P, | I € Inv(R), and Py, P, ..., P, are pairwise
comaximal prime ideals of R}.

We prove that (i) and (iii) are equivalent. For a proof of the equivalence of (i) and
(i), see [31].

Proof. Assume R is a generalized Dedekind domain. By Theorem 3.3.2, there are
no nonzero idempotent primes and each nonzero prime is the radical of a finitely
generated ideal and thus sharp. Hence each maximal ideal of R is invertible. For
a nonzero prime P, PRp is principal and P is sharp. Hence P is an invertible
maximal ideal of (P : P) by Lemma 2.5.13. Therefore by Lemma 2.5.15, if H is a
radical ideal of R with (R : H) = (H : H), then H has only finitely many minimal
primes and H is invertible as an ideal of (H : H).

If A is an invertible proper ideal of R and M is a maximal ideal that contains
A, then AM ™! is an invertible ideal of R (equal to R if A = M) and we have
A= (AM"YM.

Next, let / be a noninvertible ideal of R and let J := I(R:1). Then
(R:J)=(J:J). Since R has RTP, J = +/J. Also, if P is a minimal prime
of J, then (R : P) = (P : P) [48, Proposition 2.1], and, as observed above, P
is an invertible maximal ideal of (P : P). Thus J is invertible as an ideal of
T := (J : J) (Lemma 2.5.14), and, as an ideal of R, it has only finitely many
minimal primes, each extending to an invertible maximal ideal of 7'. It follows that
J = P/ Py--- P, where Py, P,,..., P, are the minimal primes of J.

Further, assume [ is a divisorial ideal of R. Then (/ : /) = T (Lemma 3.3.5),
and T = J(T : J) =I(R: I)(T : J).Hence IT = I is an invertible ideal of T'.
As J is invertible as an ideal of T, there are invertible ideals B and C of R such that
I = BT and J = CT.Since B+C is aninvertible ideal of T with J/ = (B+C)T,
we may assume B C C. From this we have /(R : B) = T = J(R : C) which
yields I = B(R:C)J = AP, P,--- P, with A = B(R : C) an invertible (integral)
ideal R.

To see that (iii) implies (i), assume that Div(R) = {BP,P,--- P, | B € Inv(R)
and Py, P,, ..., P, pairwise comaximal primes of R}. Then each nonzero prime is
divisorial. In particular, as R is a Priifer domain, each maximal ideal is invertible.

Let P be a nonzero nonmaximal prime of R andlet / := r(R : P) where r € P
is nonzero. Since P is divisorial and not maximal (R : P) = (P : P) 2 R.
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Thus [ is a proper divisorial ideal of R that is contained in P. Factor I =
BP, P, --- P, with B invertible and the P; pairwise comaximal primes of R. Since
I is both an ideal of R and an invertible ideal of the proper overring (R : P),
cannot be invertible as an ideal of R. Hence at least one P; is not a maximal ideal of
R, say P;. On the other hand, BP; P, - - - P, is an invertible ideal of (R : P). Hence
each P;(R : P) is invertible as an ideal of (R : P), and thus a maximal ideal of
(R : P). Note that each maximal ideal of R that does not contain P extends to a
maximal ideal of (R : P). Since each prime of (R : P) is extended from a prime of
R, all other maximal ideals of (R : P) are extended from primes of R that contain
P. Tt follows that P, contains P. If P, properly contains P, then P = P, P. But
then we have (R : P) : P;) = (R : PiP) = (R : P) which implies P{(R : P)
is not invertible as an ideal of (R : P). Thus it must be that P = P; is a maximal
invertible ideal of (R : P). Hence there is a finitely generated ideal / € P such
that P(R : P) = J(R : P) with ~/J = P and JRp = PRp. By Theorem 3.3.2,
R is a generalized Dedekind domain. O

For more on generalized Dedekind domains, see Gabelli’s survey article [29].

3.4 Constructing Almost Dedekind Domains

The purpose of this section is to construct almost Dedekind domains of various sharp
and dull degrees. Some of the results in this section are stated for one-dimensional
Priifer domains while others are specific to almost Dedekind domains. Recall from
above that Max*(R) denotes the set of sharp maximal ideals of a Priifer domain
R (see Page 45), and (usually used only when R is one-dimensional) MaxT(R) =
Max(R)\Max"(R) denotes the set of dull maximal ideals of R (see Page 46). In the
one-dimensional case, we recursively defined a chain of overrings of R as follows:

R =R, R, := ﬂ{(Rn_l))N | N € Max'(R(,—1))} forn > 2,

stopping at R, in the event either R,,,+1 = K or R, = Ry+1(# K). If R,, # K,
then R, +; = K if and only if each maximal ideal of R,, is sharp. In this case R
is said to have sharp degree m. Forthecase R = R| S Ry S R3 & - C R, =
R,+1(# K), then R has dull degree m. In particular, R has dull degree one if and
only if each of its maximal ideals is dull. In addition, a fractional ideal / of R has
sharp degree n if IR, # R, but IR,+; = R,+,. Note that we will assume the
notation for R, as (\{(R,—1)m | M € Max"(R,—;)} to be standard throughout this
section.

We start with two examples that make use of a modification of the construction in
[58]. Both are based on the first example in [58] which is Example 3.4.13 below. The
first is an almost Dedekind domain with a single maximal ideal that is not sharp, and
even though p(7) (see Page 3.1) is bounded for each nonzero ideal /, the domain
does not have radical factorization. In the second, R is an almost Dedekind domain
with a nonzero nonunit element b such that p(b) is unbounded.
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Example 3.4.1. Example of an almost Dedekind domain with a single maximal
ideal that is not sharp, and even though p(7) is bounded for each nonzero ideal 7,
the domain does not have radical factorization.

Yy

Let {X;,X5,...,X,, ...} be acountable set of indeterminates over a field F. Set

o0
Yo :=XPX3X3 oo, Y =X3X3X L LY = [ XFL
i=n+1

Dy = F[Yoly,»

Dy = F[X1. Yilx) N FIX1. Yilvy)s

Dy = FI[X1, X2, Yo xy) () FIX1, X2, Ya]x,) () FIX1, X2, Y2l (v,

Dn = F[Xl, Xz, ey Xn, Yn](Y”) m(ﬂ:;l F[Xl, Xz, ey Xn, Y,,](X,.)).

Each D, is a semilocal Dedekind domain with » + 1 maximal ideals: P, :=

D, and N, := Xy D, for1 <k <n.

For P,, we have (Y;D,)p, = (P,D,)p, for0 < j <n.
For N, x, we have

(Y; D)y, = NaixDy)l . for 0<j<k, while
(Nui DN, = Xi Do)y, = Ny Du)w,, » fork <m <n.

Let R :=J D,.

1

@)
3)

“)

Let I be a nonzero ideal of R. Then there is a D, such that / (") D, is a nonzero
ideal of D,,. Clearly, each nonzero ideal of D, contracts to a nonzero ideal of
Dy. In particular, I (") Dy is a nonzero ideal of D.
The quotient field of R is K := F (Yo, X1, X2, X3,...).
R is an almost Dedekind domain (that is not Dedekind).

Let Q be anonzero prime ideal of R. Then Q () D, is a nonzero prime ideal
of D, for each n. It follows that Q (| D, is principal. Let r/s be a nonzero
element of ORp with s € R\ Q. For some 7, both r and s are in D;. Clearly,

reQ; = QﬂD, and s € D,\Q,
Case 1. Some Xy isin Q.

In this case, r = XZd for some positive integer ¢ and some d € Dy\Qy. It
follows that Q = X R is a principal prime ideal of R.

Case 2. No Xy isin Q.

In this case, Q; = Y; D; for each i. It follows that Q contains each Y;. Since
s € D;\Q;, there is a positive integer ¢ and an element d € D;\ Q; such that
r =dY! It follows that Y; Rp = QR and thus QRp = Yx R for each k.
Since X; Dy + Y Dy = Dy fori <k, R is a one-dimensional domain such
that Ry is principal for each maximal ideal Q. Thus R is an almost Dedekind
domain.
For each k > 1, let M} := X R. Also, let M be the ideal of R generated by
the set {Y; | 0 <i < oo}. Then Max(R) = {M, M|, M>, M3, ...}.
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For a monomial g in Un F[Xy,X5,...,X,,Y,], there is a smallest n such that
g =bYX|'Xy - X" € F[X|,Xa,....X,,Y,] with ro > 0. In the case ry >
1, g factors further as Yj;gXﬁ:‘il c XZOXX2 X in X, Xa, . Xons Yo
for all m > n. But these are the only other factorizations of g. It follows that
p(b) is bounded for each nonzero nonunit b of R. For a nonzero ideal /, it is
clear that p(1) < p(b) for each nonzero b € I. Hence p(/) is bounded.
Consider the principal ideal / := YoR. Clearly, this is contained in each
maximal ideal. So /YR is the Jacobson radical of R. Also Yy € M k2 for all
k > 1 while YoR); = MR,,. Hence M? does not contain 7. On the other hand,
since M is the only maximal ideal of R that is not sharp, (), My = +/YoR.
Thus M contains /,. That R does not have radical factorization follows from
Theorem 3.1.8.

ample 3.4.2. Example of an almost Dedekind domain R with a nonzero nonunit

b such that p(b) is unbounded. As in Example 3.4.1, R has a single maximal ideal
that is not sharp. By Theorem 3.1.8, R does not have radical factorization.

Let {Xi,X,...,X,,...} be a countable set of indeterminates over a field F.

Start with Yo := []72, X}, and then for k > 1: Yy := []72,,, X]. Set

for

ey

2)
3)

Dy := F[YO]YO,

D1 = F[leYl](Xl) ﬂ F[Xl, Yz](yl),

Dy = F[X1, X2, Yo xy) ) FIX1, X2, Yalxo) ) FI[X1, X2, Yal(v,)s

Dn = F[Xl, Xz, e ,Xn, Yn](Y,,) ﬂ(ﬂl F[Xl, Xz, e ,Xn, Yn](Xi))-

Each D, is a semilocal Dedekind domain. The maximal ideals are N, ;. := Xx D,
l<k<nand P, :=Y,D,.

For P,, we have (Y; D,)p, = (P,Dy)p,,for0 < j <n.

For N, k., we have

(Yan)Nn.k = (Nkan)N,,_k , for0 < j <k, while

n,

(NuiDp)n,, = XeDp)n,, = NuiDy)w,, . fork <m <n.

Let R :=J D,.

Let I be a nonzero ideal of R. Then there is a D, such that 7 (") D, is a nonzero
ideal of D,. Clearly, each nonzero ideal of D, contracts to a nonzero ideal of
Dy. In particular, I (") Dy is a nonzero ideal of Dy.
The quotient field of R is K := F(Yy, X1, X2, Xj3,...).
R is an almost Dedekind domain (that is not Dedekind).

Let Q be a nonzero prime ideal of R. Then Q () D, is a nonzero prime ideal
of D, for each n. It follows that Q () D, is principal. Let r/s be a nonzero
element of QR with s € R\ Q. For some 7, both r and s are in D;. Clearly,

r e Q,’ = Qle and s € D,\Ql
Case 1. Some X isin Q.

In this case, r = dXZ for some positive integer ¢ and some d € Di\Qk. It
follows that Q0 = Xy R is a principal prime ideal of R.
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Case 2. No Xy isin Q.

In this case, Q; = Y; D; for each i. It follows that Q contains each Y;. Since
s € D;\Q;, there is a positive integer ¢ and an element d € D;\ Q; such that
r =dY!. Itfollows that Y;Ryp = QR and thus QRg = Y, R for each k.

Since X; Dy + Y Dy = Dy fori <k, R is a one-dimensional domain such
that Ry is principal for each maximal ideal Q. Thus R is an almost Dedekind
domain. The maximal ideals of R are the principal ideals M; := X; R and the
unique noninvertible maximal ideal M generated by the set {Y; | 0 <i}.

Finally, the element Y, is such that Yy € M ]f for each k > 1. Hence p(Yy)
is unbounded.

We describe next an alternate approach to building examples of almost Dedekind
domains. It is related to (but not the same as) the construction used in [58, Sect. 3].

Example 3.4.3. Example of an almost Dedekind domain with an explicit descrip-
tion of the complete set of its valuation overrings.

Start with D := F[#] and K := F(%) where % := {Y;}{2 is a countably
infinite set of algebraically independent indeterminates over the field F. Also, let
D, := F[Yy,Y1,...,Y,]and K,, := F(Yy,Yy,...,Y,) for each n.

Set #y := {Ao.1} where Ao := N and set ny := 1. Then, recursively, for each
positive integer m, let 22, := {Ay.1, Am2. ..., Amn,  be a partition of N such that
R > Ny and, foreach 1 <i < n,,, Ap; S Ap—1,j for some 4,1 ; € P_1.
The set & = |J,, @n is a countable subset of the power set of N. Let {B;}?,
be the collection of sets in & ordered in such a way that, if B; € %,\ %1
and B; € & for some k < m, then j < i. In particular, we have j < i if
Bi € Bj. Thus By = N = Ag; and, for 1 < i < ny, Bj = Ay for some
1 < k < n;. For each positive integer k, let ¢, denote the number of sets in ZZ
that are not in &;_,. Since Z is a proper refinement of &2;,_1, gy is positive. We
have a strictly increasing sequence of integers mg := 0 < m; < m, < ---, where
my = q1 + ¢q2 + - - + qi for each positive integer k. Thus my; = my_; + g for
each positive integer k.

Next let 7 := {Ap., )= be a family of sets such that A, +1,,,, S An.,
for each m. We say that o7 is a chain through <. Let . be an index set for the
collection of all chains through &. Note that Ap; = By is in each 7. For each
o € . define a valuation v, on K as follows:

(i) vq(b) = 0, for all nonzero b € F,
(i) vo(Y;) = 0,if Bi ¢ Ay,
(iii) vo(Y;) = 1,if B; € o,
(iv) extend in the necessary way to products of the indeterminates, then to sums
using “min” and finally to quotients.

Let V, denote the corresponding valuation domain of K, for each @ € .#. Each
such valuation domain is discrete of rank one.

Since ny > ng = 1, the sets B; # B, are in &1, so at most one of these is in a
particular .o7,. Thus the element Y; + Y5 is a unit in each V.
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Let R := (),c.s Vo. We will show that R is an almost Dedekind domain and
that {1, }4c.~ is the complete set of valuation overrings of R. Note that since Yy is a
nonunit of each V,, it is contained in each maximal ideal of R (forif YoR+wR = R
for some w € R, then w is a unit of each V,, and thus a unit of R).

For each positive integer k, set g := XK +Y, + Y,. It is clear that g> and g3
are relatively prime in K[X]. To see that R is a Bézout domain, it suffices to show
that both g, and g3 are unit valued in each V,, [57, Corollary 2.7]. It is in fact the
case that each gy is unit valued in each V,.

Fixak >2andana € .. Since Y| + Ya isaunitin Vi, g5 (1) = tF + Y, + Y,
is unit for each nonunit t € V,. Suppose u € V, is a unit. Then there is a pair
of nonzero polynomials r,s € D such that u = r/s, necessarily with v,(r) =
v (s). Let ry and s, denote the corresponding sums of the monomials of r and s,
respectively, with minimum value under v,. Then r¥ is the sum of the monomial
terms of 7* with minimum value under v, and s* is the sum of the monomial terms
of s with minimum value under v,. We have v (r¥) = vo(rX) = kvy(ra) =
kvg(se) = Va(sk) = va(sh). Also both v, (r* — r¥) and v (s* — s%) are strictly
larger than v, (rF) = v, (s). Tt is clear that r* + s¥(Y; + Y,) is not the zero
polynomial, nor is either of r(ff + S§Y1 or r§ + s§Y2. Hence vy (r* + 55 (Y, +Y,)) =
Vo (rk + sK(Y1 4+ Y2)) = vo(sk) = vu(s). Tt follows that v, (gx(x)) = 0 and
therefore gi is unit valued in V.

Next, we show that R is an almost Dedekind domain. For each n > 0 and each
o€ S letR, ;= R(\K,and V,, := V, N K,. Itisclear that R, = (\,c.y V-
Moreover, note that each V,,, is a discrete rank one valuation domain, which is
entirely determined by the values v,(Y;) for 0 < i < n. There are only finitely
many such valuations and thus R, is a semilocal Dedekind domain, where each
valuation overring has the form V,,, for some o € .#.

Let M be a maximal ideal of R and let W := Rj,. Since R is Bézout, W is
a valuation domain which necessarily contains Y as a nonunit. It follows that, for
each positive integer n, W () K, is a proper valuation domain of K, that contains
R,.Hence W (K, = V,, for some a € .#. A consequence is that W is discrete
rank one valuation domain. Therefore R is an almost Dedekind domain.

Finally, we show that W = V,, for some « € .#. For each n, there is an o, € .
such that W, := W (K, = V,, .. We consider the sequence of integers {m; }>
and the corresponding chain of valuation domains W,,, C Wy, & Wy, < ---. From
above, we know Yy € W, is a nonunit. For each k, W}, contains D,, . Hence W,,,
contains all Y;s for 0 < i < my. In the valuation domain W,,,, the element Yy is a
nonunit as is exactly one other Y; for some 1 < i < my; the other Y ;s in D,,, are
units of W,,,. As k increases, there is at most one integer i between m—; + 1 and my
such that the corresponding Y; is a nonunit of W,,, . From this analysis, we obtain a
(possibly finite) descending chain of sets By 2 B;, 2 B;, 2 --- corresponding to
the Y;s that are nonunits in some W,,, . The set B;, is a set in the partition &7,. Thus
B = Ay, forsome 1 < j; < n;. For each integer k, there is a set Ay j, € P
that is one of the sets B;, in the descending chain above. The corresponding family
o := {Ay j,} is a chain through 2. Thus there is 8 € .# such that &/ = 7. We
have W, = Vj, for each n and therefore W = V.
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Next, we apply the techniques introduced in Example 3.4.3 to give an alternate
construction of almost Dedekind domains that do not have radical factorization.
More precisely, start with &2y := {N} and Cy := N and then for m > 1 let &2, :=
{1,2,...,m,C,} where C,, := N\{l1,2,...,m}. We number the B;s as follows:
B; .= C,, wheni = 2m and B; := {m} wheni = 2m — 1. Thus By = N. The
chain & := {C,}5L, is the only one that is not finite. The others have the form
= {Cy, Cy, ..., Cr_1,{k}}. In the next two examples, we modify the definitions
of the valuation domains associated with the chains through &7 to obtain almost
Dedekind domains that do not have radical factorization.

Example 3.4.4. Example of an almost Dedekind domain that does not have radical
factorization and with an explicit description of the complete set of its valuation
overrings.

Asin Example 3.4.3,let D := F[#]and K := F(%) where % := {Y;}72,isa
countably infinite set of algebraically independent indeterminates over the field F.
For each positive integer 7, define a valuation v, : F(Yo, Y1, Y2, Y3,... )\{0} = Z
by first setting v,(Y2,—1) = 1, v,(Y2,) = 2for0 < m < n —1, and v,(b) =
vi(Yg) = O0forall b € F\{O} and all k ¢ {0,2,4,...,2(n — 1),2n — 1}, extend
to products and then to sums using “min”, and finally to quotients. Let V,, be the
corresponding valuation domain. For n = 0, vo(b) = 0 for all b € F\{0} and for
allm, vo(Yo,) = 1 and vo(Y2,—1) = 0, extend as above. Finally, let R := ﬂ;io V.,
and, for each n > 0, let M,, be the contraction of the maximal ideal of V}, to R.

(1) R is an almost Dedekind domain such that Yy is contained in every maximal
ideal.

(2) Theset {V,}52, is the complete set of valuation overrings of R. Foreachn > 1,
M, = Y,,—1 R is amaximal ideal of R and Yy, Y,,...,Y2,—» € Mn2. No other
Y;s are contained in M,,.

(3) M, is not invertible and it is the only maximal ideal of R that is not principal.

(4) Since M, is the only noninvertible maximal ideal and every maximal ideal
contains Y, M, contains ﬂ}:il M. Hence the principal ideal Yo R cannot be
factored as a product of radical ideals, and therefore R does not have radical
factorization.

Proof. For each V,,, atleast one of Y and Y3 is a unit and Yy is a nonunit. As above
(Example 3.4.3), gx := XK + Y, + Y; is unit valued in V, for each k > 2. Hence R
is a Bézout domain [57, Corollary 2.7]. Also, Yy is contained in each maximal ideal
of R.

For each n and m, let R, := R(\K, and V,,, := V,, () K,. Each V,,, is
determined by the values of the v,,(Y;)s for 0 < i < n. The only possible values
are 0 and 1 when 7 is odd, and 0, 1 and 2 when 7 is even. Hence there are only
finitely many distinct V,, ,,. As R, = ﬂm Vi n, it is a semilocal Dedekind domain
such that each valuation overring is the contraction of some V,,.

Let m be a positive integer. If 2m—1 < n, then V,, ,, is the only valuation overring
of R, that contains Y,,,—; as a nonunit. On the other hand, if 2m —1 > n, then V,, ,
contains each Yy, € D, and it follows that V,,, , = V;, for all such m.
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Let M be a maximal ideal of R. Then R, is a valuation domain which contains
Y, as a nonunit. It follows that Ry () K, is a proper valuation overring of R,
for each n. Hence Ry () K, is discrete rank one valuation domain. Thus Ry is a
discrete rank one valuation domain and therefore R is an almost Dedekind domain.
If You—1 € MRy for some m > 1, then Ry (K, = Viyp foralln > 2m — 1. Tt
follows that Ry, = V), in this case. The only other possibility is that Y,,, € MRy
for each m > 0. In this case, Ry = Vj. Therefore {V,,}>_, is the complete set of
valuation overrings of R.

We have Yo € M? for each n > 1, but Yo € Mo\Mg. As M, is the only
maximal ideal that is not principal, it contains (-, M,. Hence R does not have
radical factorization (Theorem 3.1.8). |

Next, we give another example of an almost Dedekind domain of the type
considered in Example 3.4.2.

Example 3.4.5. Example of an almost Dedekind domain with an explicit descrip-
tion of the complete set of its valuation overrings and with a nonzero nonunit
element » such that p(b) is unbounded. In particular, this domain does not have
radical factorization (Theorem 3.1.8).

Asin Example 3.4.3,1let D := F[#]and K := F(%) where % := {Y;}72,isa
countably infinite set of algebraically independent indeterminates over the field F.
For each positive integer 7, define a valuation v, : F(Yo, Y1, Y2, Y3,... )\{0} = Z
by setting v, (Y2,—1) = 1, v, (Y2,) = nfor0 <m <n—1,and v,(b) = v,(Yy) =
O forall b € F\{O} and all k ¢ {0,2,4,...,2n —2,2n — 1}, extend to products
and then to sums using “min”, and finally to quotients. Let V;, be the corresponding
valuation domain. For n = 0, set vo(Y2,,) = 1 and vo(Y2,+1) = 0 = vo(b) for all
nonzero b € F and all m > 0, and again extend to products and then to sums using
“min”, and finally to quotients. We again set R := ﬂ,fio V,, and, for each n > 0, let
M, be the contraction of the maximal ideal of V,, to R.

(1) R is an almost Dedekind domain such that Yy is contained in every maximal
ideal.

(2) Foreachn > 1, M, := Y,,—1R is a maximal ideal of R and Y, € M. So
p(Y) is unbounded. Therefore R does not have radical factorization.

For (1), adapt the proof used in the previous example. The statement in (2) is
clear.

Lemma 3.4.6. (Loper—Lucas [58, Lemma 2.1]) Let R be a one-dimensional Priifer
domain.

(1) If M is a maximal ideal of R, for some n > 2, then there is a maximal ideal P
of R such that PR, = M and PR, —, is a dull prime of R,,—;.
(2) If P € Max(R) survives in R,, then

(a) PR,— is adull prime of R,—, and

(b) PR, € Max*(R,) if and only if there is a finitely generated ideal I of R
such that P is the only maximal ideal of R that both contains I and survives
in R,.
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Proof. (1) Let M be a maximal ideal of R,. Since R is a one-dimensional Priifer
domain, each prime of R, is extended from a prime of R. Thus M = PR, for some
P € Max(R). To show that PR,_; is a dull prime of R,_;, consider what happens
to a sharp prime Q of R,_;. Since R,—; is a one-dimensional Priifer domain
[34, Theorem 26.1], Q is the radical of a finitely generated ideal J. Thus J —1is
contained in each localization of R,—; at a dull prime. Hence J ~! is contained in
R,.Butthen JR, = JJ~'R, = R, and therefore OR, = R,. Hence PR,_; must
be a dull prime of R,—;.

To prove (2), suppose P € Max(R) survives in R,. Then, by the above, PR, _;
must be a dull prime of R,—;. Obviously, if there is a finitely generated ideal / of
R such that PR, is the only maximal ideal of R, that contains I R,, then PR, =
/IR, is a sharp prime of R,. Conversely, if PR, is a sharp prime of R,,, then there
is a finitely generated ideal J,, of R, for which PR, = /T, Since PR, is generated
by the elements of P, there is a finitely generated ideal / of R whose extension to
R, is contained in PR, and contains J,. O

Note that if PR, is a sharp prime of R,, any finitely generated ideal / that
satisfies the conditions in Lemma 3.4.6(2) must be contained in infinitely many
primes which do not survive in R,,, for otherwise P will be a sharp prime of Ry for
some k < n and thus not survive in R,,.

It is known that if a finitely generated ideal of an almost Dedekind domain is
contained in only finitely many maximal ideals, then the ideal is a product of positive
powers of these maximal ideals [34, Theorem 37.5]. The converse is trivial. In our
next lemma, we show that the finitely generated fractional ideals of sharp degree
one in an almost Dedekind domain are those that can be factored into finite products
of nonzero powers of maximal ideals.

Lemma 3.4.7. (cf. also [34, Theorem 37.5]) Let R be an almost Dedekind domain
and let I be a finitely generated fractional ideal of R. Then I is a finite product of
nonzero powers of maximal ideals if and only if I has sharp degree one.

Proof. First, assume I = M['M,”--- M with each r; a nonzero integer and no
M" = R. Since I is finitely generated, it is invertible. Thus each M; is invertible
and therefore a sharp prime. We have M; R, = R, for each i, and the same happens
for Mi_l. Thus IR, = R, and we have that I has sharp degree one.

To complete the proof assume / has sharp degree one. Then / R, = R,. Partition
Max(R) into sets (possibly with some, but not all, empty)

MO(1):={P e Max(R) | IRp
MT(I):={P eMax(R) | IRp
M(I):={P eMax(R) | I"'Rp C PRp}.

Rp}.
PRp}, and

N

Since each dull prime survives in R, and /R, = R, each dull prime must be in
the set .#°(I). Therefore R}F = ﬂPe//ﬁ(]) Rp and R} := ﬂPe//ﬁ(]) Rp are
both Dedekind domains with nonzero Jacobson radicals. Thus each is semilocal
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which means that both .#Z*(I) and .#~(I) are finite sets. Note that .# (1) is
empty if / is an integral ideal of R, but both may be nonempty if / is fractional.
Set. A/t (I)={M\,M,,...,M,}and .#~(I) = {N, Ns, ..., Ny} It follows that
IR = M["M,*---M!"R} and I"'R; = N;'N,*>---Ni» Ry for some positive
integers r; and s;. We also have IR, = N;''N,™---N,*nR;. By checking
locally, we see that I = M{'M,*--- M N, "' N, ... N, *n_This representation
is unique since each M; and N; is a maximal ideal. O

If R is an almost Dedekind domain, then a maximal ideal P is sharp if and only
if it is invertible. Hence P has sharp degree n if and only if PRy is dull for each
k < n and PR, is an invertible maximal ideal of R,. Also, forn > 1, Max(R,) =
{PR, | P € Max"(R,_;)} whenever R, # K.

Theorem 3.4.8. Let R be an almost Dedekind domain. For each positive integer k
and each prime P, of sharp degree k, let Jo be a finitely generated ideal of R such
that Jo Rp, = Py Rp, and J, is contained in no other prime of Ry. If I is a finitely
generated fractional ideal of R of finite sharp degree, then I factors uniquely into
a finite product of nonzero powers of ideals from the family {J,}. In particular, the
members of the family {J,} are distinct.

Proof. First note that, if P, is a sharp prime of R, then by checking locally we
see that the corresponding J,, is simply P, itself. Moreover, by checking locally in
Ry, we see that if P, has sharp degree k, then J, Ry = Py Ri. Let P, and Pg be
distinct maximal ideals of R with P, of finite sharp degree k. Then, in R, we have
JoRi = Py Ry with Py R a maximal ideal of Ry. Thus the only way to have Pg Ry
contain J,, is to have Pg blow up in Ry. In such a case Pg would have sharp degree
m < k. While it might be that J, R Py = PgR Pys Jo R, would be contained in P, R,
so that J, R,, cannot equal PgR,,. Thus J, # Jg. It follows that if both the distinct
maximal ideals P, and Pg have finite sharp degree, then J, # Jg. Moreover, no
nonzero powers can be equal and J, R, = R, foreachn > k.

We will take care of uniqueness first. For this it suffices to show that there is
no nontrivial factorization of R since each of the J,s is invertible. Assume R =
I1 J;’f’i‘i is a finite factorization of R over the set {J,} with each J,,; having sharp
degree m and e, ; an integer, perhaps 0. Let n denote the highest sharp degree of any
“factor” of R. Then, in R,, we have R, = [] J:f’l.‘i since J,,; R, = R, form < n.
As J, iR, = P,;R, is a maximal ideal of R,, it must be that each e, ; = 0. Thus
the factors Jne ”l’ are all superfluous. Continue the process to show all e, ; are 0.

For existence of factorizations we use induction and Lemma 3.4.7.

By Lemma 3.4.7, if I has sharp degree one, then / is a product of nonzero powers
of finitely many sharp maximal ideals, say [ = M{'M,>--- M!".

Now, assume / has sharp degree two. Then / R; is a finitely generated fractional
ideal of R, whose sharp degree as an ideal of R, is one. Thus by Lemma 3.4.7,
there are finitely many maximal ideals PRy, PR, ..., P, R, of R, which locally
contain either IR, or (IR»)™". For each i, we have a finitely generated ideal J;
in the set {J,} such that J; R, = P;R,. Thus in R,, we can factor I R, uniquely
as Pf ! Pze ... P R, for some nonzero integers ey, e . .., e,. This factorization is



3.4 Constructing Almost Dedekind Domains 59

the same as the factorization J;'J,---J& R, since PiR, = J;R, for each i.
Let J := J{'J,2---J¢. Then I(R : J)R, = R,. As both I and (R : J)
are finitely generated fractional ideals of R, I(R : J) is a finitely generated
fractional ideal of R. It has sharp degree one since /(R : J)R, = R;. Thus by
Lemma 3.4.7, there are finitely many maximal ideals M, M>, ..., M,, such that
I(R:J) = M{'"M,*--- M, for some nonzero integers r;. Therefore I = I(R :
IV = MMM J Iy e

Now, assume a factorization exists for each finitely generated fractional ideal
of sharp degree k or less (in every almost Dedekind domain). Let / be a finitely
generated fractional ideal of R which has sharp degree k + 1. Then I R; is a finitely
generated fractional ideal of R, which has sharp degree k. Thus / R, factors into a
finite product, say IR, = J{'J,? -+~ J" R,. To complete the proof simply repeat
the steps used above for the case of an ideal of sharp degree 2. Namely, set J :=
J{M Iy -+ Jém and factor the fractional ideal /(R : J) over the sharp primes of R.
This establishes existence of a factorization. O

One special case we wish to consider is the one of an almost Dedekind domain
with exactly one dull prime.

Theorem 3.4.9. Let R be a one-dimensional Priifer domain. Then R is an almost
Dedekind domain with at most one noninvertible maximal ideal if and only if there
is an element d € R such that, for each finitely generated nonzero ideal 1, there is
a finite set of maximal ideals {M, M, ..., M,,} and integers ey, e, ..., e, and n
withn > 0 such that I = M{'M;*--- M2 (d)". Moreover, if either (hence both)
holds and R is not Dedekind, then the element d € R must be such that dRp =
PRp for the noninvertible maximal ideal P of R and the set {dR}| JMax"(R) is a
Jactoring set for R such that each finitely generated fractional ideal factors uniquely.

Proof. For R Dedekind, we simply set d = 1. Thus we may assume R is not
Dedekind.

Assume R is an almost Dedekind domain with one noninvertible maximal ideal
P.Then R, = Rp and therefore there is an element d € R such PR, = dR since
Rp is a DVR. Thus by Theorem 3.4.8, the set {dR} | JMax"(R) is a factoring set
for R such that each finitely generated fractional ideal factors uniquely as a finite
product of nonzero powers of members of this set.

For the converse, assume there is an element d € R such that each finitely
generated nonzero ideal can be written in the form M['M;* ... M (d)" where
each M; is a maximal ideal, each e; is a nonzero integer and » is a non-negative
integer. Let / be a finitely generated ideal of R and write [ = M[' M, --- M (d)"
with no M* = R. Since R is a Priifer domain, I is invertible. Combining this with
the assumption that M, is not equal to R, we have that each M; is invertible.

As we are not assuming that R is almost Dedekind, we need to show that each
sharp prime is invertible. Let M € Max(R) be a noninvertible maximal ideal of
R, such a maximal ideal exists since we are assuming R is not Dedekind. Then no
(nonzero) power of M can appear as a nontrivial factor (i.e., not R) in a factorization
of a finitely generated ideal. Hence d must be contained in M and each finitely
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generated ideal contained in M must have a positive power of (d) in a factorization.
It follows that MRy, = dRjy and Ry is a DVR. Such a prime M cannot be
sharp, since to be sharp it would have to contain a finitely generated ideal J that
is contained in no other maximal ideal of R. By checking locally, we would then
find that M is the finitely generated (and therefore invertible) ideal dR + J. So all
of the sharp primes are invertible and the dull ones are locally principal. Hence R is
an almost Dedekind domain.

We next show that R has at most one dull maximal ideal. By way of contra-
diction, assume P; and P, are distinct dull maximal ideals of R. Let b be an
element of P; that is not in P, and write (b) = M{'M,?---MS(d)" with no
Mf" = R. As above, each M; must be invertible. Thus neither P; nor P, appears
in the factorization. Therefore n must be positive and d must be an element of P;.
By repeating this argument for an element in P, that is not in P;, we find that d is
also in P,. But then we have (b)Rp, = (d)"Rp, P> Rp, which is a contradiction.
Hence there must be exactly one dull maximal ideal and the rest are both sharp and
invertible. O

Next we give a general construction scheme for producing an almost Dedekind
domain which will have a factoring family for finitely generated ideals. By carefully
selecting the members, we can produce a family such that each nonzero finitely
generated fractional ideal will factor uniquely over the underlying set of allowable
factors.

Theorem 3.4.10. Let Dy & Dy & --- be a chain of Dedekind domains which

=

satisfy all of the following

(a) Fori < j, each maximal ideal of D; survivesin D ;.

(b) Each maximal ideal of D ; contracts to a maximal ideal of D;.

(c) If M' is a maximal ideal of Dj and M := M'(\ D, then M(D;)y» =
M' (D).

Let R := | D,,. Then the following hold.

(1) R is an almost Dedekind domain.

(2) Fori < j, each maximal ideal of D; is contained in only finitely many maximal
ideals of D ;. Moreover, if M; is a maximal ideal of D; and M; \, M5, ..., M;,
are the maximal ideals of D ; that contain M;, then M;D; = I1 M; .

(3) For each finitely generated ideal I of R, there is a finitely generated ideal I; of
some D; such that I = I; R.

(4) A maximal ideal M is a sharp prime of R if and only if M = M, R for some
M, := M (N D,.

(5) There is a family {J} that is a factoring family for R for which each nonzero
finitely generated fractional ideal can be factored uniquely over the underlying
set of the family.

(6) R is a Dedekind domain if and only if each maximal ideal of D, is contained in
only finitely many maximal ideals of R.
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Proof. For each n, we let K,, denote the quotient field of D,,.

ey

(@)

3)
“)

(&)

Let M be a maximal ideal of R and let M; := M () D;. Obviously, some M;
is not zero. But then no M; is zero. Let r/s € MRy, with s € R\ M . For some
i,both r and s are in D;. So r € M;. But then there is an element b € M; and
an element ¢t € D;\M; such that b/t = r/s. It follows that MRy, = M; Ry
for each i. Since each D; is Dedekind, M;(D;)u, is principal. Thus M Ry is
principal and height one. Hence R is an almost Dedekind domain.

The first statement is a simple consequence of the fact that each ideal of a
Dedekind domain is contained in only finitely many maximal ideals. For the
second, let M; be a maximal ideal of D; and let M;,M;,,..., M;, be the
maximal ideals of D; that contain M;. Since the M ;s are maximal ideals of
D, their intersection is the same as their product. Thus M; D; is contained
in [[ M. Equality comes from our assumption (c); i.e., Mi(D;)y;, =
M;x(Dj)mj, -

Since the set {D;} forms a chain, each finitely generated ideal of R can be
generated by some finite subset of some D, .

Since R is an almost Dedekind domain, a maximal ideal is sharp if and only if it
is finitely generated. Hence by (3), M is sharp if and only if some D, contains
a generating set for M. As M (D, = M, is a maximal ideal of D,, then
M = M,R.

For each maximal ideal M of R and each positive integer i, let M; := M ( D;.
It is easy to see that M = | ) M;. Hence the chain {M;} is uniquely determined
by M. Moreover, if Ny € N, C --- is a chain with each N a maximal ideal
of Di, then N := | N; is a maximal ideal of R. We say that {M;} is the chain
determined by M, and that N is the maximal ideal determined by the chain
{N;}. Each member N; of the chain {V;} uniquely determines the members of
the chain below it since we have N; = N;; (\ D; foreachi < j. Thus for each
J» N is determined by the truncated chain {N;}2 ;.

Since each D, is a Dedekind domain, the primes of any ring between D, and
its quotient field, K,,, are all extended from primes of D,. With the restrictions
we have placed on the maximal ideals, the quotient field of D, (for n > 2)
properly contains the quotient field of D,,—; with D,_; = D, () Ky—1.

Let / be a fractional ideal of D,_, for n > 2. We will show that /| =
ID, () Ky—1. We at least have I C ID, () K,—. Since D,_; is a Dedekind
domain, each of its fractional ideals is invertible and therefore divisorial. Thus
it suffices to show that each element of (D,—; : I) multiplies 1D, () K,—;
into D,—;. Since both (D,—; : I) and ID, () K, are contained in K,_i,
the product is there as well. Now, use the fact that both I and ID, () K,—;
will generate /D, together with the fact that each element of (D,—; : I) is in
(D, : ID,) to verify that (D,—, : I)(ID, () K,—1) is contained in D,_,. Thus
ID, N Ky—1=1.

For each n and each maximal ideal M,, of D,, let ¥ (M,) denote the set
of maximal ideals of D, 4+ that contract to M,,. The set € (M,,) is finite since
D, +1 is a Dedekind domain. Now, select a member M, of ¥ (M,) and then
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set Z#(M,) := € (My)\{M,+1}. We will refer to M, 1, as a (or the) discarded
prime sometimes including the phrase “of D, for emphasis. We refer to the
members of €' (M,) as conjugates or conjugate factors of M,. If €(M,) is a
singleton set, then M, D,,4; is a maximal ideal of D, 4 and .% (M,) will be
the empty set. Note that, in this case, we will refer to M,, D,,+ as a discarded
prime (of D, ;) even if M, is not a discarded prime of D,. Forn > 1, let
F(Dy) = JH{FWM,) | M, € Max(D,)}, then set F(R) := |J.F(D,).
Next, let #(R) := {MR | M € Max(D;) | #(R)}. We will show that each
finitely generated ideal of R can be factored uniquely as a finite product of
integer powers of ideals from the set ¢ (R). Then we will show how to build a
factoring family for R using only the members of ¢ (R).

For each positive integer n, let ¢ (D,,) denote the set { PD, | P € Max(D,)
or P € Z(Dy) for some 1 < k < n}. We use induction to show that each
nonzero fractional ideal of D, can be factored uniquely as a finite product of
nonzero integer powers of members of ¢(D,,). Since IR\ K,, = I for each
fractional ideal I of D,,, each finitely generated fractional ideal of R will factor
uniquely over ¢ (R).

Let I,, be a nonzero fractional ideal of D,,. The result is trivial if n = 1 since
¥ (D) = Max(D), so we move on to the case n = 2. Since D, is a Dedekind
domain, each nonzero fractional ideal has sharp degree one. Thus Lemma 3.4.7
guarantees that the fractional ideal I, factors uniquely as a finite product of
nonzero integer powers of maximal ideals of D,, say I, = ]_[54;1 Piri , with
P; € Max(D,). If each P; is in .% (D), then we at least have existence of a
factorization. If not, then some P; must be a discarded prime. In such a case,
there is a maximal ideal M; of D; that has P; as a factor in D,. If P; is the
only maximal ideal of D, that is a factor of M;, then we have M; D, = P;,
and we simply “substitute” M; D, for P; (they are in fact equal). On the other
hand, if M; has more than one prime factor in D,, then the other factors are in
the set ¢ (D) as only one prime factor is discarded from a set of conjugates.
In this case, M; Dy = P; Q10> --- O, where the Qs are the conjugates of P;
each of which is in 4(D,). Thus P; = M;D>[[;—, O;" and therefore P/’
can be replaced by the product M;" D, [[j_, Q,"". By doing this for each of
the discarded primes in the product [ | P/ we obtain a finite factorization of I,
using ideals in the set 4 (D5).

Now assume that for each 1 < k < n, each finitely generated ideal of Dy
can be factored into a finite product of nonzero integer powers of members of
the set 4(Dy). Let I, be a nonzero fractional ideal of D,,. As above, D, is a
Dedekind domain so I, factors uniquely as finite product of nonzero powers
of maximal ideals P;s of D,. If each P; is in .%#(D,_;), then we have a
factorization of I, over 4(D,,). If not, then some P; must be a discarded prime.
Let Q; := P;() Dy and let ]_[Z:l Nj«D,_; be a factorization over the set
4(D,—y) for Q;. If Q;D, = P;, we simply take the factorization of Q; in
D,,_; and extend each factor to D, to get a replacement for P;. If Q; D, #
P;, then O;D, = P; l_[i=l M, where the M.s are the conjugates to P;.
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Thus each is in the set 4(D,,). Asin the case n = 2, P; = Q; D, ]_[‘Z,=1 Mc_l.
Now, replace Q; D, by ]_[Z:l Nj«D, to get P; = ]_[Z:l ND, -T[i_, M.
Do this for each discarded prime in the original factorization of 7,,. This will
yield a finite factorization of I, over the set ¢(D,). Extending both /,, and
each factor to R will yield a finite factorization of I, R over the set 4 (R). As
each finitely generated ideal of R is the extension of some ideal I, in some D,,,
we have that each finitely generated ideal of R has a finite factorization over the
set Z(R).

Since D; is a Dedekind domain, Lemma 3.4.7 implies each fractional ideal
of D can be factored uniquely over the set Max (D). This forms the base for
a proof by induction. Assume that for each integer 1 < k < n, each fractional
ideal of Dy can be factored uniquely over the set ¢ (D). Since each member
of ¢ (Dy) extends to a member of 4 (D,,) for each m > k, our assumption is
equivalent to simply saying that each fractional ideal of D,_; factors uniquely
over 4(D,—).

Let J be a nonzero fractional ideal of D, and let J = [['L, O/ -
[[=,(P.D,)* with the Q;s in .Z(D,—;) and the P,s in 4(D,)\.F(Dy—1).
Suppose ['_, Ni - [1¢Z,(M,D,)" with the N,s in .Z(D,—;) and the
M,s in 4(D,)\.Z(D,—) is a potentially different factorization of J over
%(D,). By multiplying by inverses, we may obtain []/_, Q7 - [['_, N, =

¢ ((M,Dy)" - T1i_,(PyD,) . Since the left hand side of the equation
is a product of integer powers of maximal ideals of D,, its form is unique
once common factors are combined. Moreover, the primes on the left hand
side are all nontrivial factors of primes from D,_; and for each N, and
0, exactly one conjugate factor cannot appear in this product. On the other
hand, each M, and each P, is a prime of some smaller Dy that either
factors nontrivially in D, or generates a maximal ideal of D,. Those that
generate maximal ideals of D, can have no factor on the left hand side of
the equation and those that have a nontrivial factorization must be missing
the corresponding discarded prime on the left hand side. Thus the left hand
side must reduce to D,. This can occur only if the factors in [] Q' are
simply a rearrangement of the factors in [ | N’. As each factor is an invertible
fractional ideal of D,,, we may cancel the products [ [ Q[ and [ N/ and obtain
[1(P,Dy)** = (M, Dy)". Since ID, (| K,—1 = I for each fractional ideal
of D,—i, we have [[(P,D,—1)* = [[(M,D,—1)". Now simply invoke the
induction hypothesis to get uniqueness of factorizations.

It remains to show that we can build a factoring family using only the
members of the set ¢ (R). This is actually relatively easy because given any
ideal J in ¢4(R), there is some unique integer n such that / = P,R for
some maximal ideal P, of D, that is not a discarded prime of D,,. This places
P, in 4(D,). While there may be primes above P, that are not discarded
primes, there is a unique chain of primes P,+; & P,4» & --- with each

= =

Py a discarded prime of Dy and Py () D, = P,. Let P, be the prime of R
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determined by this particular chain through P, and set J, := J = P,R.
Since P, = Py () Du, JuRp, = Py Rp,. Note that this means there is a natural
one-to-one correspondence between the set ¢ (R) and the subset of Max(R)
consisting of those maximal ideals Mg for which there is largest integer n
such that Mg (") D,, is not a discarded prime. There may be a(or even infinitely
many) maximal ideal M, of R for which there is no largest integer n such that
M, () D, is not a discarded prime. For such a prime, simply set J, equal to
any member J := M,R of 4(R) such that M, = M, () D,. With this we
have a factoring family for R such that the underlying set allows for unique
factorization of nonzero finitely generated fractional ideals.

(6) By the proof of (5), we see that if each maximal ideal of D, is contained
in only finitely many maximal ideals of R, then each maximal ideal of R
is finitely generated. Thus R is a Dedekind domain. Conversely, if R is a
Dedekind domain, each maximal ideal of R is finitely generated. Thus for
M € Max(R), there is a maximal ideal M,, of some D, such that M = M,R.
Assume M| € Max(D,) is contained in infinitely many maximal ideals of R.
Then there must be a chain of maximal ideals {M,} with each M, a maximal
ideal of D, such that each M, is contained in infinitely many maximal ideals
of R. Thus none of these ideals can generate a maximal ideal of R. Hence
M = |J M, must be a maximal ideal of R which is not finitely generated, a
contradiction of the Dedekind assumption. Therefore each maximal ideal of D,
is contained in only finitely many maximal ideals of R.

|

The examples that follow make use of ideas in Theorem 3.4.10 and some of the
notation and terminology used in Example 3.4.3.

Notation 3.4.11. Let &2, = {N} and let &, = {Al,laAl,Za---aAl,nl} be a
partition of N into finitely many disjoint nonempty sets with n; > 1. Recursively,
for each positive integer m > 1, let Z,, 1= {An.1, Am2, ..., Amn, } be arefinement
of the partition #,,—; with n,, > n,,—; but allowing some A,,— s to survive intact
in &,,.

Let F be a field and let {X;,X5,...,X,,...} be a set of countable infinite
indeterminates over F. For each set Ay € P, let Yk := ]_[,.E Ak X;. For ease
of notation, we let Yo = [,y Xi =: Y. Let Dy, := (2} Vi Where Vi 1=
FIYni1, Ymo s Ymn, v, ) Set R = U,?f;o D,,. From the construction it is
obvious that D9 C D; C D;--- is an ascending chain of semilocal Dedekind
domains. Moreover, each maximal ideal of D,, contracts to a maximal ideal of
D,,—1. In particular, each contracts to the maximal ideal Y F[Y](y) in Dy = F[Y](y).
We say that a family of sets & := {Aux, e 1S @ chain through the series of
partitions & = { Py} if for each m, Ay x,, 2 Am+1k,,,- Depending on the
choice of refinements &2, there may be chains through &2 which are eventually
constant. As we will see, such a chain corresponds to a sharp prime of R.
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Theorem 3.4.12. Let R be as in Notation 3.4.11.

(1) If P is a nonzero maximal ideal of R, then P (| Dy = Y Dy. Moreover, PRp =
YRp.

(2) R is an almost Dedekind domain with nonzero Jacobson radical.

(3) Each finitely generated ideal of R is principal.

(4) There is a natural one-to-one correspondence between the set of maximal ideals
of R and the set of chains through the family of partitions &?. Moreover, if M
is a maximal ideal of M, then the corresponding chain of sets </ is such that
Yok, Ru = MRy for each A i, in <.

(5) The set {Y 1 | 0 < m, 1 <k < my} contains the base set for a factoring
family for R. Moreover, the set can be selected is such a way that each nonzero
finitely generated fractional ideal will factor uniquely.

(6) A maximal ideal M of R is sharp if and only if the corresponding chain of sets
o in statement (4) stabilizes at some Ay, k.

Proof. Statements (1), (2) and (3) follow from Theorem 3.4.10. In particular, (3) is a
result of Theorem 3.4.10(3) and the fact that each D; is a PID. Statement (4) follows
from the proof of Theorem 3.4.10(4) and the fact that each Y, » generates a maximal
ideal of D,,. The statement in (5) follows from the proof of Theorem 3.4.10(5).
Since each member of the factoring family is principal, each finitely generated ideal
of R must be principal. Statement (6) is simply a combination of statement (4) and
Theorem 3.4.10(4). O

This construction can be used to form almost Dedekind domains with various
sharp degrees. Note that the domain R will have finite sharp degree if and only if
there is an integer n such that R,, is semilocal.

We first show how to construct an almost Dedekind domain of sharp degree 2.
The domain has a single dull maximal ideal.

Example 3.4.13. Let &, := {N} and set &, := {Am.1, Am2, - Amm> Amm+1}
for each m > 1 where A,,; = {i} forl <i < mand 4,,,,4+1 = {k € N |
k > m}. Let R be an almost Dedekind domain determined as in Notation 3.4.11
(and Theorem 3.4.12) by the series of partitions & := {#,,}°°_, of N. Then the
following hold.

(1) R has exactly one maximal ideal M which is not sharp.

(2) R has sharp degree 2.

(3) R is a Bézout domain.

(4) Max*(R) = {X,R | n > 1} and the set {X,R | n > 1} J{YR} is a factoring
set for R such that each finitely generated ideal factors uniquely.

(5) There is a factoring family for R such that no nonzero finitely generated
fractional ideal has a unique factorization over the underlying set of ideals.

Proof. (1)-(4) Let Y, := ]_[,foanXk and hence, Yo = [[ey Xk =: Y. The
maximal ideals of D, consist of the ideal Y, D, and the ideals of the form X; D,
for 1 < k < n. (Note that, for n = 0, Dg = F[Y]c) is a local domain
with maximal ideal (Y).) Thus for each integer n > 1, X, R is a maximal
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ideal of R. Obviously, each of these is a sharp prime of R. The only other maximal
ideal of R corresponds to the chain {Y,D,}. Thus R, = Ry where M is the
maximal ideal of R determined by the chain {Y, D,} (corresponding to the chain
o = {N,{A;; m+1 | m > 0}} through ).

Since M is the only dull prime of R and YRy = MRy we have YR, = MR,.
By Theorem 3.4.9, the set {YR} | J{X,R | n > 1} is a factoring set for R such that
each finitely generated fractional ideal factors uniquely over this set.

(5) Foreachn > 1, let P, := X,R and write n = 4k —i where k > 1 and
0 <i < 3. Build a factoring family for R as follows:

(a) for M againuse Jy := YR,

(b) ifi =0(.e,n=4k),letJ, :=X5_,YR,

() ifi =1(.e,n=4k—1),let J, =X} YR,

(d) ifi =2(.e,n=4k—2),letJ, :=X35_, YR, and
(e) ifi =3 (e ,n =4k —3)let J, := X3 YR.

Note that, obviously, X,, R is the product of (X, YR)(X2%YR)™'. Hence the set
{Jn}o2, is a factoring family for R. But factorizations are not unique. For example,
X R can also be factored as (X2 YR)?(X2YR)™'(YR)™'. There are in fact
infinitely many different ways to factor each nonzero finitely generated fractional
ideal of R. By the construction of the family, it is clear that each factorization of
X,» R must contain nonzero powers of both X2 YR and X3, YR. On the other hand,
YR is redundant, as it can be factored as (X2 YR)?(X2, YR)™!. O

Next, we construct an almost Dedekind domain for which each maximal ideal is
dull and where at least some finitely generated ideals will fail to factor uniquely over
whatever factoring family we might use, but not necessarily fail to factor uniquely
over the underlying set of potential factors.

Example 3.4.14. Let &, ;= {N =: Ay} and let &, = {A,1,An2, -, Apon}
for each n > 1 where A, := {m2" +k | m € Z, m > 0} for each integer
1 < k < 2". Let R be the almost Dedekind domain determined as in Notation 3.4.11
(and Theorem 3.4.12).

(1) R is an almost Dedekind domain which is dull.

(2) There exists a factoring family {J,} such that each nonzero finitely generated
ideal factors uniquely over the underlying set of ideals making up the family.

(3) Given any factoring family {J,} for R, there exists a nonzero finitely generated
ideal / which does not factor uniquely over the family.

Proof. (1) As no chain of sets through & stabilizes, R has no sharp primes. Hence
R is an almost Dedekind dull domain.

(2) By the proof of Theorem 3.4.10(5) (or Theorem 3.4.12(5)), some subset of
{Y,, 1} contains a set such that (i) each nonzero finitely generated fractional
ideal factors uniquely, and (ii) this set is the underlying set for a factoring family
for R.
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(3) The nonuniqueness is simply a consequence of the fact that R has only
countably many nonzero finitely generated fractional ideals, but an uncountable
number of maximal ideals. Thus for each factoring family, at least two members
are the same ideal of R.

O

It is actually rather easy to modify the construction in Example 3.4.14 to obtain
an almost Dedekind domain R of dull degree two. One quite trivial way is to simply
replace each set A, , with r > 1, by the sets {1} and {m2" + 1 | m € N}. This
will yield exactly one sharp prime, with the rest dull, and therefore destined to stay
that way in R;. For a more elaborate example with infinitely many sharp primes, we
modify the Z,s a bit more.

Example 3.4.15. Start with the partitions &, of Example 3.4.14. Then, for each
n and each 0 < r < n, split each set A, - into the singleton set {2"} and the set
Al o = {m2" +2" | m € N}. The new &, consists of the singleton sets {2}
for 0 < r < n, the sets A;er and the previous sets A, when k < 2" is not a
power of 2. Let R be almost Dedekind domain determined as in Notation 3.4.11
(and Theorem 3.4.12) by the chains through the series of partitions & := {2, }°2
of N. Then R is an almost Dedekind domain with infinitely many sharp primes and
dull degree 2.

Proof. Obviously, each singleton set {2} corresponds to a sharp prime M, R =
Xor R. Each of these primes blows up in Ry(= ({Ry | N € Max'(R)}), the effect
is the same as beginning the construction by partitioning the set N\{2" | r > 0} as
in Example 3.4.14. Thus R, is a dull domain. O

To construct almost Dedekind domains of larger sharp and dull degrees, we
essentially take a recursive approach. The basic idea is to shift the partitioning
scheme used to produce a domain with sharp/dull degree n in such a way as to
increase the sharp/dull degree up to n-+. To make this precise we introduce some
useful terminology. Given a set A,, x in a chain of partitions, we consider the family
of sets {A, ; | An.j € Ami. n > m} and call this the branch of the partition from
A k. Such a branch is said to have sharp degree p, if each maximal ideal which
has A, x in its corresponding family of sets has sharp degree less than or equal to
p and at least one such maximal ideal has sharp degree p. On the other hand, a
branch is said to have dull degree p, if there is a maximal ideal which has A,, x
in its corresponding family of sets that is dull in every R,, but there are maximal
ideals of sharp degree p — 1 corresponding to the same A,, x, but none of higher
sharp degree.

To build a branch of sharp degree two we may use a scheme quite similar
to that used in Example 3.4.13. Let {£,,} be a series of refinements. For ease
of notation assume that for each pair of integers m < n, the set A4,, is infinite
and A, contains A, ;. Fix m and order the elements of A,,; as a; < ax <

as; < .... Then, as in Example 3.4.13, for each integer n > m, let A,’L1 =
la1}, A, , == {az}, ..., A4, ,_,, = {ay-m} and let A) . be the rest of 4, .

In each &2, replace the sets which contain A4,,; by the A,’L j sets and leave the
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rest of &7, as it is. Then there is exactly one maximal ideal M of (the new) R, the
almost Dedekind domain determined as in Notation 3.4.11 (and Theorem 3.4.12),
whose corresponding chain contains A,, ; and is not sharp, the one associated with
the sets A;, . ;. All other maximal ideals associated with A, 1 have chains which
stabilize at some singleton set {a, }. We refer to this technique as building a standard
branch of sharp degree two.

In our next example we utilize this basic construction to build an almost
Dedekind domain of sharp degree 3. The construction of the partitions is more
complicated, so we will give the details of the construction in the proof rather than

the statement of what we are going to build.

Example 3.4.16. There is a series of partitions &2 = {7, }>_ such that the
resulting domain R, determined as in Notation 3.4.11 (and Theorem 3.4.12), is an
almost Dedekind domain having a unique maximal ideal M with sharp degree 3, so
R3; = Ry and R has sharp degree 3.

Let Z := {N} and &, := {E, O}, where E denotes the positive even integers
and O denotes the positive odd integers. From O, build the standard branch of
sharp degree two. But for E we proceed a little differently. First split E into the sets
Eso:={4m|m > 1}and E4, := {4m+2 | m > 0}. From E4, build the standard
branch of sharp degree two, but split E4¢ into sets Ego := {8m | m > 1} and
Eg4 := {8m + 4 | m > 0}. Then, as with E,,, build the standard branch of sharp
degree two from Eg 4, and, as with Ey4, split Es g into sets Ejgo := {16m | m > 1}
and Eigg := {16m + 8 | m > 0}. Continue this scheme for each power of 2.
Let R be the resulting almost Dedekind domain and let M be the maximal ideal
corresponding to the chain { Eon o}.

Proof. We will show that there is one prime of sharp degree two associated with O
and that each set Ep 5n—1 is associated to exactly one prime of sharp degree two.
The only sharp primes of R are those associated with some singleton set {a}.
For each positive integer n, there is exactly one prime of sharp degree two that
contains [[°2 Xan,40i-1, the one associated with the chain {B™"}°2_, where
B™" := {2"r 4+ 2"7' | r > m}. On the other hand the chain associated with
M consists of the sets of the form {2"r | n > 0,r > 1},s0N, E, E4, Es, etc. For
each n, there are infinitely many primes of sharp degree two which are associated
with Ey . Hence M cannot have sharp degree two. As it is the only dull prime
which does not have sharp degree two, it must have sharp degree three. Thus R has
sharp degree three and R3; = Ry,. O

Theorem 3.4.17. For each positive integer k > 2, there is a series of refinements
{Pn} of Po = {N} such that the resulting domain R, determined as in
Notation 3.4.11 (and Theorem 3.4.12), is an almost Dedekind domain of sharp
degree k.

Proof. The proof is by induction on k > 2. Assume the result holds for k. The
partitioning scheme is somewhat a combination of those used in Examples 3.4.14
and 3.4.16. As in Example 3.4.14, we let &, := {0, E} and &, := {4y, A2,
Az3, Aa 4} with each A, := {m22 + r | m > 0}. The subsequent partitions will
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be different. Specifically, from A, and A, 3 build branches of sharp degree k. On
the other hand, we split A into A3; and Ass and split A4 into A34 and Asg
as in the third stage of the process in Example 3.4.14. Now continue the pattern
of splitting the sets 4, and A, 1 as in Example 3.4.14, but split the sets A, yu—1
and A, on—14; into branches of sharp degree k. Each branch of the infinitely many
branches of sharp degree k corresponds to maximal ideals of sharp degree k. But,
the prime associated with the chain {A4,, ,»} will not have sharp degree k, since each
of the sets A, »« is in infinitely many chains associated with primes of sharp degree
k. The same is true for the prime associated with the chain {A4,, 1 }. As these are the
only chains which do not lead to primes of sharp degree less than or equal to k,
each has sharp degree k 4 1 and therefore R is an almost Dedekind domain of sharp
degree k + 1. O

We take a slightly different approach in increasing dull degree. Instead of
splitting sets into two nonempty subsets, we split them into three. Also, we allow
infinite sets to stabilize. We start with an example illustrating how to use thirds to
build an almost Dedekind domain of dull degree two with infinitely many sharp
primes. The basic construction parallels the “excluded middle” construction of a
Cantor set. This makes it rather easy to increase the dull degree. Our first task
is to create an almost Dedekind domain of dull degree 2 that has infinitely many
invertible (= sharp) maximal ideals.

Example 3.4.18. We make use of trinary expansions of integers. For each pair of
integers n > land 1 < r < 3" weset A,, := {(m3" +r | m > 0} and
let r =: r,ry—1...r; be the trinary expansion of r. We start with &, := {N}
and then for n > 1 we let &, = {A,, | noriisa2}(J{Aks | 1 < k <
n is the smallest integer such that sy = 2}. The resulting domain R, determined as
in Notation 3.4.11 (and Theorem 3.4.12), has dull degree two with infinitely many
sharp primes.

Proof. We start with an explicit construction for the first few &,s. First &, =
{A11,A12, A13}. Then, for &2,, we leave the set A, as is but split 4, ; into Ay,
Az4 and A, 7, and split A;3 into Ay 3, A2 and Az 9. The set A;, will appear in
each &, from here on, as will the sets A, 4 and A;¢. On the other hand, we split
A2,1 into A3,1, A3,10, and A3,19, A2,3 into A3,3, A3,12 and A3,21, A2,4 into A374, A3,13
and Az, and A g into Az g, Az 13 and Az 7. In P4, we simply keep each “middle
third” as it is and split each pair of outer thirds based on the remainders on division
by 3*. Continue this process to build the partitions 2,. As each middle third set is
stable once it appears in some %7,, each leads to a sharp prime of R. On the other
hand, if the chain of sets corresponding with a maximal ideal M of R contains no
middle third set, then each set in the chain is associated with many infinitely many
maximal ideals, including infinitely many which are not associated with a middle
third set. Thus R has dull degree 2 with infinitely many sharp primes. O

In the proof for the next theorem, we show how the construction in the previous
example can be used to construct an almost Dedekind domain of arbitrary (finite)
dull degree k > 2.
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Theorem 3.4.19. For each integer k > 1, there exists an almost Dedekind domain
of dull degree k.

Proof. Examples 3.4.14 and 3.4.15 provide almost Dedekind domains of dull degree
one and two, respectively. As in Theorem 3.4.17, we modify a previous construction
by taking out sets which have stabilized and replacing them with branches of the
appropriate sharp degree. Our construction is based on that in Example 3.4.15.

Fix k > 3. The outer third sets are left as they are in Example 3.4.15, but each
middle third set is replaced by a branch of sharp degree k — 1. Each of the new
chains will lead to a maximal ideal of sharp degree k — 1 or less, with infinitely
many of sharp degree k — 1. This is the maximal sharp degree of any maximal ideal
of R, determined as in Notation 3.4.11 (and Theorem 3.4.12). Each prime resulting
from a chain of outer third sets remains dull in Rj. Thus R is a dull domain, with
Rj._ a proper subring. Hence R has dull degree k. O

Theorem 3.4.20. There exists an almost Dedekind domain R such that R, is a
proper subring of R,y for each integer positive integer n. Moreover, the ring
Roo := | Ry may be a sharp domain, a dull domain or have some other sharp
or dull degree.

Proof. We start with constructing a domain R such that Ry, has sharp degree one
with R, # R,y for each n. For this purpose, start with the basic Odd/Even
partitioning scheme used to construct branches of sharp degree k, but instead of
changing each branch to one of sharp degree k — 1, allow each new branch to have
larger and larger sharp degree. By doing so, once we hit a set high enough up in the
branch of sharp degree n, we find a single prime of sharp degree n and all others
with smaller sharp degree. But now, the chain corresponding to the powers of 2 sets
will not lead to a prime of finite sharp degree. However, once we take the union of
the R,s, we will obtain a domain of sharp degree one as the only prime which does
not have finite sharp degree is the one corresponding to the chain { £, o1 }.

We use a similar scheme to build a domain R such that Ry is a dull domain with
primes of each finite sharp degree. Start with the basic scheme used in the proof of
Theorem 3.4.17, but now instead of replacing each middle third set with a branch of
the same sharp degree, replace them with branches of larger and larger sharp degree.
We may leave the first middle third set, A, alone. Then replace A, 4 and A6 by
branches of sharp degree two. Continue by replacing each middle third set A, , by a
branch of sharp degree k. The result will be that each branch through a middle third
set leads only to primes of finite sharp degree, but there is no uniform bound on the
degree that holds for all branches through all middle third sets. As in the proof of
Theorem 3.4.17, the primes whose chains involve only outer third sets will remain
dull throughout each R, and remain dull in Ry,. Thus R is a dull domain.

For sharp and dull degree two for R, replace branches of finite sharp degree
with ones which mimic the construction of a R, with sharp degree one. Continue
this fractal like approach to get larger and larger sharp and dull degrees for Ro,. O



Chapter 4
Weak, Strong and Very Strong Factorization

Abstract An integral domain is said to have weak factorization if each nonzero
nondivisorial ideal can be factored as the product of its divisorial closure and a finite
product of (not necessarily distinct) maximal ideals. An integral domain is said to
have strong factorization if it has weak factorization and the maximal ideals of the
factorization are distinct. If, in addition, the maximal ideals in the factorization of
a nonzero nondivisorial ideal / of the domain R can be restricted to those maximal
ideals M such that I Ry, is not divisorial, we say that R has very strong factorization.
In the present section, we study these properties with particular regard to the case of
Priifer domains or almost Dedekind domains. In the Priifer case we provide several
characterizations of domains having weak, strong or very strong factorization. We
discuss the connections with h-local domains and we prove that very strong and
strong factorizations are equivalent for Priifer domains.

4.1 History

In [19], the authors introduced two factorization properties for integral domains. We
start by recalling the first one, called “weak” factorization.

An integral domain R is said to have weak factorization if each nonzero
nondivisorial ideal / can be factored as the product of its divisorial closure /¥ and
a finite product of (not necessarily distinct) maximal ideals; i.e.,

I =1"M\M,---M,, where M; € Max(R) for1 <i <n.

In [19], the second factorization was called “strong” factorization and had
two additional restrictions; first, the maximal ideals {M, M,,..., M,} in the
factorization of a nonzero nondivisorial ideal I were required to be distinct, and,
second, for I = IYM{M,--- M, the M; had to be precisely those maximal ideals
M for which I R, is not a divisorial ideal of R),.
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It turns out that for Priifer domains, there is no need to include this second
requirement (see Theorem 4.4.8) below. Thus we now redefine two types of “strong”
factorization by distinguishing, a priori, two possible situations. It is convenient
to let s# (1) denote the (possibly empty) set of maximal ideals M such that
IRy # (IRy)". (So formally, 77(1) = {M € Max(R) | IRy # I"Rpy}.)

An integral domain R is said to have strong factorization if each nonzero
nondivisorial ideal / of R can be factored as follows:

I =1"M\M,---M,, where M; e Max(R) and M; # M; for1 <i # j <n.

If, in addition, the M; in such a factorization can be restricted to those maximal
ideals M such that IRy is not divisorial, we say that R has very strong
factorization. That is, R has very strong factorization if for each nonzero
nondivisorial ideal I, I can be factored as follows:

I =1"M\M,---M,, where (1) = {M|, M>, ..., M,}(# 9).

Remark 4.1.1. It is rather trivial to show (by checking locally) that in any of these
factorizations, if IRy, = IV Ry, for some M;, then it must be that /"M; = I" and
thus the factor of M; can be eliminated.

One of the main theorems of [19] is the following.

Theorem 4.1.2. [19, Theorem 1.12] The following statements are equivalent for a
Priifer domain R.

(i) R is h-local.
(ii) R has the very strong factorization property.
(iii) For each nonzero ideal I of R, I is divisorial if and only if I Ry is divisorial
in Ry for each maximal ideal M of R.
(iv) For each nonzero ideal I of R, if I Ry is divisorial for each maximal ideal M,
then I is divisorial.

In Sect.4.4, we prove a sharper version of the equivalence (i)<>(ii) of
Theorem 4.1.2. More precisely, in Theorem 4.4.9, we show that if R is an integral
domain that possesses (the new type of) strong factorization, then each nonzero
finitely generated ideal is divisorial. As a corollary, we have that if R is integrally
closed, then it has our redefined form of strong factorization if and only if it is
an h-local Priifer domain (Corollary 4.4.10); i.e., in this situation, very strong
factorization and strong factorization coincide.

One of the key results used in the proof of the Theorem 4.1.2 is the following
Proposition 4.1.3 [19, Theorem 1.10]. Its expanded version, Theorem 2.5.2, plays a
significant role in proving several of the results to come.

Proposition 4.1.3. Let R be a Priifer domain and let P be a nonzero nonmaximal
prime that is the radical of a finitely generated ideal. If I is a finitely generated
ideal whose radical is P and M is a maximal ideal that contains P, then the
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ideal J := IRy (R is divisorial if and only if M is the only maximal ideal that
contains P.

As a consequence of Theorems 2.2.1, 2.4.12 and 4.1.2, we have:

Corollary 4.1.4. An almost Dedekind domain with very strong factorization is
Dedekind.

However, there exist almost Dedekind domains with weak factorization
that do not have (very) strong factorization. More precisely, we proved in
[19, Theorem 1.15] the following.

Theorem 4.1.5. Let R be an almost Dedekind domain, and let I be a nonzero ideal
of R which is contained in only finitely many nondivisorial maximal ideals of R.
Then I = I"M M, --- M, where the M; are maximal ideals but are not necessarily
distinct. Thus if R is an almost Dedekind domain in which each nonzero ideal is
contained in only finitely many nondivisorial maximal ideals, then R has the weak
factorization property.

By using Theorem 4.1.5, [34, Example 42.6] provides an explicit example of an
almost Dedekind domain with weak factorization that does not have very strong
factorization. Other examples can be found in [58].

Below, in Proposition 4.2.14, we will give several ways of characterizing when
an almost Dedekind domain that is not Dedekind has weak factorization, essentially
establishing the converse of Corollary 4.1.4.

4.2 Weak Factorization

In Theorem 4.1.2, Priifer domains which are h-local were characterized via the
very strong factorization property. On the other hand, in the Priifer domain case,
h-local domains can be also characterized using the weak factorization property.
More precisely, [19, Theorem 1.13] provides the following characterization.

Theorem 4.2.1. Let R be a Priifer domain. Then R is h-local if and only if R has
weak factorization and finite character:

In Theorem 4.4.8 below, we will give another proof of this, together with
several other new characterizations of h-local Priifer domains based on weak
factorization-type properties.

By [19, Proposition 1.7], a Priifer domain with weak factorization is a
wTPP-domain (Sect. 2.4) and, more precisely, we have the following.

Proposition 4.2.2. Let R be a Priifer domain with the weak factorization property.
Then the following hold.

(1) each ideal which is primary to a nonmaximal ideal of R is divisorial
(in particular, each nonmaximal prime is divisorial),
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(2) if M is an idempotent maximal ideal of R and I is a nondivisorial M -primary
ideal, then I = ['M,

(3) each branched maximal idempotent ideal of R is sharp,

(4) R is a wTPP-domain, and

(5) each branched nonmaximal prime ideal of R is the radical of a finitely
generated ideal.

The next lemma collects a few useful properties a Priifer domain with weak
factorization property has in common with one having very strong factorization
(for comparison, see [67, Proposition 3.4 and Theorem 3.10] and [19, Proposition
2.10)).

Lemma 4.2.3. Let R be a Priifer domain with the weak factorization property.

(1) Each nonzero prime is contained in a unique maximal ideal.

(2) Each maximal ideal of height greater than one is sharp.

(3) Each locally principal maximal ideal of height greater than one is invertible.
Thus (equivalently) each unsteady maximal ideal has height one.

(4) If I is a nonzero, nondivisorial ideal with factorization I = I"[[ N; [] M;/
where the N; are the steady maximal ideals for which IRy, # I'Ry, and the
M; are the unsteady maximal ideals for which IRy, # IV Ry;, then each N;
is idempotent and 1V Ry; is principal.

Proof. As each unbranched prime contains a nonzero branched prime, it suffices
to prove (1) in the case P # (0) is a nonmaximal branched prime. By
Proposition 2.3.10, there is a finitely generated ideal I such that VI = P.
Let M be a maximal ideal that contains P and let J := IRj (| R. Then by
Theorem 2.5.2(2) (enlarging I if necessary), J' = J(P' : P’) = I(P’ : P')
where P’ is the largest prime that is common to all maximal ideals that contain P.
Clearly, Max(R, P) = Max(R, P’). Thus P’ is sharp by Lemma 2.3.9. Therefore
P’ is a maximal ideal of (P’ : P’) by Corollary 2.3.21(2). Moreover, P’ is the
only maximal ideal of (P’ : P’) that contains P, I and J" (since such a maximal
ideal must be extended from a prime P” of R which must be contained in one of
the maximal ideals containing / and must therefore be comparable to P’). Hence
J'Rpr = IRps = JRpr and J" = JRp/ [ \(P’ : P’). (The latter equality is true
locally since P’ is the only maximal ideal of (P’ : P’) which contains J and J".)
It follows that /¥ = JRp/ [\ R.

Since R has weak factorization and JRpr = JVRpr, there is an ideal H that
is not contained in P’ such that J = JVH (either with H = R or H a finite
product of maximal ideals). By Lemma 2.5.1(2), JRps = J"I'(P) and this yields
IRy = JRy 2 JI'(P) = J'HI'(P) = JHRp = JRpr = IRpr D IRy.
Hence IRy, = IRp:. Since I is finitely generated, we must have M = P’. This
establishes (1).

For (2), (3) and (4), let M be a maximal ideal of height greater than one.
Then M contains at least one nonzero branched prime. For (2), simply apply (1),
Propositions 2.3.10 and 4.2.2(5), and Lemma 2.3.9 to see that M is sharp. For
(3), further assume that M is locally principal, say MRy = aRy witha € M.
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Since M is sharp, there is a finitely generated ideal A of R such that M is the only
maximal ideal that contains A. Then the ideal A + aR generates M locally, whence
M = A + aR is invertible.

Finally, (4) follows from Lemma 2.5.3. O

As noted earlier in Sect. 2.4, a Priifer domain with weak factorization is an
aRTP-domain. Using Lemma 4.2.3 and several of the other results above, we are
now ready to give our first alternate characterizations of Priifer domains with weak
factorization.

Theorem 4.2.4. The following statements are equivalent for a Priifer domain R.

(i) R has weak factorization.
(ii) Each nonzero prime is contained in a unique maximal ideal, and R is an
aRTP-domain such that for each nonzero ideal 1, the set of maximal ideals
N where IRy # IRy is finite.
(iii) (a) Each steady maximal ideal is sharp,
(b) each nonzero nonmaximal prime ideal is sharp and contained in a unique
maximal ideal, and
(c) foreach nonzeroideal I, the set of maximal ideals N where IRy # ["Ry
is finite.

Proof. By Theorem 2.4.18, a Priifer domain is an aRTP-domain if and only if each
nonzero branched nonmaximal prime ideal and each steady branched maximal ideal
are sharp. Under the additional assumption that each nonzero prime is contained in a
unique maximal ideal, Lemma 2.3.9 guarantees that the equivalence holds true with
the word “branched” removed. Hence (ii) and (iii) are equivalent.

To see that (i) implies (ii), assume that R has weak factorization. If / is a nonzero
nondivisorial ideal, then we have I = IV ['_, M, for some finite set of maximal
ideals {M1, M3, ..., M,} and positive integers si, 53, ..., S,. From this it is clear
that there are at most finitely many maximal ideals N such that /Ry # I'Ry. Also,
by Lemma 4.2.3(1), each nonzero prime is contained in a unique maximal ideal.
Finally, each branched idempotent maximal ideal and each nonzero nonmaximal
branched prime ideal are sharp by Proposition 4.2.2(3 and 5), so that R is an aRTP
domain by Theorem 2.4.18.

To complete the proof we show (iii) implies (i). Assume all three conditions
in (iii) hold. By Lemma 2.3.9, statement (iii)(b) implies that each maximal ideal
of height greater than one is sharp. Combined with (iii)(a), we have that the only
maximal ideals that are not sharp are the height one unsteady maximal ideals.

Let I be a nonzero nondivisorial ideal. Then by (iii)(c), there is a nonempty finite
set of maximal ideals {M, M, ..., M, } such that IRy, # I"Ry, forl <i <n
and IRy, = IRy for all maximal ideals M not in the set {M, M>, ..., M,}. If
M; is a height one unsteady maximal ideal, then M; Ry, is principal and therefore
IRy, = M,.ri Ry, € I'Ry, = M' Ry, for some integers r; > #; > 0. In this
case, IRy, = IVM,.S" Ry, where s; = r; — 1;. For those M that are not height
one unsteady maximal ideals, Theorem 2.5.4 (together with statements (iii)(a) and
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(iii)(b)) implies that M; must be idempotent with /Ry, = I"Mj Ry, . By checking
locally, we have I = I" ]_[;1=1 le"" for some positive integers sy, 2, . .., S,. Hence
(iii) implies (i). |
Theorem 4.2.5. Let R be a Priifer domain with the weak factorization property

that is not h-local. If S is an overring of R where no unsteady maximal ideal of R
survives, then S is h-local.

Proof. By Theorems 2.4.18 and 4.2.4, if P is a nonzero branched prime ideal of
R that is not an unsteady maximal ideal, then P is the radical of finitely generated
ideal and it is contained in a unique maximal ideal.

Assume that S is an overring of R. Then each nonzero prime of S is contained
in a unique maximal ideal. If no unsteady maximal ideal of R survives in S and
0 is a (nonzero) branched prime of S, then O must be extended from either a
steady maximal ideal or a branched nonmaximal prime. In either case, Q () R is the
radical of a finitely generated ideal and therefore so is Q. Thus S has the radical
trace property by Theorem 2.4.14. Therefore S is /i-local by Theorem 2.4.12. O

Corollary 4.2.6. Let R be a Priifer domain with the weak factorization property. If
1 is an ideal that is contained in no unsteady maximal ideals, then I is contained in
only finitely many maximal ideals.

Proof. Suppose [ is contained in no unsteady maximal ideals. Then each maximal
ideal that contains / is sharp (Theorem 4.2.4). Hence by Lemmas 2.5.1 and 2.4.19,
the ring I"(/) has no unsteady maximal ideals and each maximal ideal of I'(])
contains /. Since R has the weak factorization property, I"(/) is h-local by
Theorem 4.2.5, and so, in particular, I"(]) has finite character. Thus at most finitely
many maximal ideals of R contain /. O

Theorem 4.2.7. Let R be a Priifer domain with weak factorization. If I is a radical
ideal of R such that I ™" is a ring, then each minimal prime of I extends to a maximal
ideal of 1 ™" as does each maximal ideal of R that does not contain 1.

Proof. Assume that [ is a radical ideal such that /~' is a ring. Since @(I)
contains /! (Theorem 2.3.2(1)), it is always the case that a maximal ideal that
does not contain / extends to a maximal ideal of 7~!. Suppose that P is a prime
minimal over /. If P is nonmaximal, then it is (ante)sharp by Theorem 4.2.4 and
Corollary 2.3.21(2). If P is maximal, then it is trivially antesharp. Hence PI~" is a
maximal ideal of 7 ~! by Lemma 2.5.5(1). O

We are primarily interested in applying Theorem 2.5.6 in the case that R is a
Priifer domain with weak factorization. For this situation, we can make a slight
change in the hypothesis.

Theorem 4.2.8. Let R be a Priifer domain with weak factorization, and let P be
a sharp prime of R. If I is radical ideal with I C P and { Py} is a set of minimal
prime ideals such that I = ("), Py, then P contains some Pg € { Py}. If, in addition,
P is not minimal over I, then P () (ﬂa?éﬂ P,) properly contains I.
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Proof. Simply apply Theorem 2.5.6 to the prime Q € P with Q minimal over /.
Such a prime is sharp since R has weak factorization (Theorem 4.2.4). O

The next corollary collects several useful consequences of Theorems 2.5.6
and 4.2.8.

Corollary 4.2.9. Let R be a Priifer domain with weak factorization.

(1) If W = {My | « € o} is a nonempty set of unsteady maximal ideals such that
I := (N, My is a nonzero ideal, then no sharp prime contains I.

(2) If { Py} is a nonempty set of pairwise incomparable sharp primes such that
J =, P« # (0), then each P, is minimal over J and no other sharp prime
is minimal over J.

(3) No nonzero element of R is contained in infinitely many idempotent maximal
ideals.

Proof. Let I = (1), M, be nonzero, with % = {M, | « € </} a nonempty set
of unsteady maximal ideals. Then each M, € # has height one (Lemma 4.2.3(3))
and is therefore minimal over /. Moreover, the M, are not sharp by Lemma 2.4.19.
Hence no sharp prime contains / by Theorem 4.2.8, proving (1).

For (2), assume that {P,} is a nonempty set of pairwise incomparable sharp
primes such that J = (1), P, # (0). For each «, let Q, C P, be a prime ideal
that is minimal over J. Obviously, / = (), O« and for each Pg, J = (), Qu C
Pg () (Nurep Q) € P (ysp Po) = J. Thus by Theorem 4.2.8, each P, is
minimal over J, and no other sharp prime is minimal over J.

To see that (3) holds, further assume that each P, in the intersection J =
(\y P« of (2) is an idempotent maximal ideal. (Note that each P, is sharp by
Theorem 4.2.4.) Since JRp, = PyRp, and P, is idempotent, it must be that
JI7'Rp, = PyRp, (since JRp, € JJ 'Rp, € PyRp,(PyRp,)' = PyRp, =
JRp,)). Thus JJ~! = J, and we have J=! = (J : J), and so J~! is a ring.
By Theorem 4.2.8, no other sharp prime can be minimal over J, whence by
Lemma 4.2.3, the only other minimal primes of J must be height one (unsteady)
maximal ideals. Thus J~! = I'(J)(\©®(J) = R (Theorem 2.3.2(2)) and so
J # J” = R. It follows that the set { P,} is finite by Theorem 4.2.4. Hence each
nonzero nonunit is contained in at most finitely many idempotent maximal ideals.

O

We say that R has finite idempotent character if each nonzero element is
contained in at most finitely many idempotent maximal ideals and finite unsteady
character if each nonzero element is contained in at most finitely many unsteady
maximal ideals. By Corollary 4.2.9, a Priifer domain that has weak factorization
also has finite idempotent character. In the next theorem, we show that a Priifer
domain with weak factorization also has finite unsteady character. A consequence
of this is that a Priifer domain has weak factorization if and only if each unsteady
maximal ideal has height one, each nonzero nonunit is contained in at most finitely
many noninvertible maximal ideals and (I Ry;)~! = I ~' Ry, for each nonzero ideal
I and each sharp maximal ideal M (see Theorem 4.2.12 below).
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Recall from Sect.2.5 that if P € . is a prime ideal of a Priifer domain R
where .7 is a set of incomparable primes of R, then P is relatively sharp in . if
it contains a finitely generated ideal that is contained in no other prime of the set
& (or equivalently, Rp does not contain (\{Ro | O € #\{P}}). The set .7 is
relatively sharp if each prime in . is relatively sharp in .. We make use of these
notions in the proof of our next theorem.

Theorem 4.2.10. Let R be a Priifer domain. If R has weak factorization, then R
has finite unsteady character.

Proof. By way of contradiction, assume there is an infinite set of unsteady maximal
ideals # := {M, | « € </} with a nonzero intersection / := (1), M,. Each
M, € # has height one by Lemma 4.2.3(3). Also, by Corollary 4.2.9(1), no sharp
prime contains /, so we may assume # is the complete set of minimal primes
of I. Note that if /™' = R, then we cannot have weak factorization, since in this
case IV = R, so it would be impossible to factor I as /" times a finite product of
maximal ideals. Thus we may further assume there is an element t € I '\ R. Since
R is Priifer, the ideal C := (R : (1,t)) is an invertible ideal that contains /. Thus
C is contained in no maximal ideal that does not contain /. Since [ is a radical
ideal and each of its minimal primes is maximal, C is a radical ideal as well with
Max(R,C) € Max(R, ) = # . 1tis easy to see that the set Max(R, C) must be
infinite since no member of 7 is sharp and C is finitely generated (Theorem 2.3.11).
Hence we may further assume that / is invertible.

If either 7 or an infinite subset of % is a relatively sharp set, then we have a
contradiction by way of Corollary 4.2.9 and Theorem 2.5.9. Hence we may further
assume no infinite subset of % is a relatively sharp set. Using this assumption
we will arrive at a contradiction by constructing an infinite subset of % that is a
relatively sharp set.

Let Mg € # andletq € Mg\I.Thentheideal E := gR+1 is an invertible ideal
that properly contains /. Moreover, for each M, € %', ERy, contains /Ry, =
My Ry, Since E is invertible, /[EE™! = [. Thus the ideal G := [E~!is an
invertible ideal of R that is contained in each maximal ideal of % that does not
contain £ and in no maximal ideal of 7/ that contains E.

Suppose M, M, ..., M, € W are relatively sharp in #', n > 1. Then for each
i, there is a finitely generated ideal J; & M; such that no other member of %
contains J;. Moreover, we may assume each J; contains / and J; + J; = R for all
i # k. Then the product J := J;J,---J, contains / and is contained in each M;
but in no other member of % . Since J is invertible, it follows that the ideal IJ ! of
R is contained in each maximal ideal of %" except M|, M, ..., M,. Hence 1J —lig
the intersection of these ideals.

Since we have assumed at most finitely many members of % are relatively sharp
in 7, we may further assume that no member of % is relatively sharp. Under this
assumption, if B is a finitely generated ideal with / & B € Mg for some Mg € ¥/,
then B is contained in infinitely many members of % as is /B~", and no member
of # contains both B and /B!,
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With all of these assumptions, it is now relatively easy to construct a countably
infinite subset of 7 that is relatively sharp and with this arrive at a contradiction.

We construct such a subset as follows.

Let <7 be a well-ordered index set for # and let «; be the smallest member of
o/ . Next set M| := M,,, select an element s; € M\ andset J; := I +s;R. Then
from the above, infinitely many members of % contain J; and infinitely many do
not.

For M, let o be the smallest @ € 2/ such that M, does not contain J, then
set My := M,,. Since infinitely many members of % do not contain J;, there is
an element s, € My\[ Jl_1 such that sy and s, are comaximal but s;s, is not in /.
Set J, := I + s, R. Then, clearly, I € J; (| J2» = J1J>. As above, infinitely many
members of # do not contain C, := J; J5.

Recursively, for n > 3, define ideals M,,, J, and C, as follows. Let «;, be the
smallest ¢ € .o/ such that M, does not contain C,—_, then set M, := M,,. For
Jy, there is an element s, € M, \I Cn__l1 such that s, is comaximal with the ideal
C,—1 buts,C,—; is not contained in /. Set J,, := I +s,R. ThenC,, := C,,_J, =
CiiN\Jn21.

For n # m, the elements s, and s,, are comaximal. Thus each M,, is relatively
sharp in the set {M,}°2,, a contradiction to our assumption that no infinite subset
of W is relatively sharp. Therefore it must be that no nonzero element is contained
in infinitely many unsteady maximal ideals. O

The next result is a straightforward consequence of Corollary 4.2.9(3),
Theorem 4.2.10, and Lemma 2.1.10.

Corollary 4.2.11. Let R be a Priifer domain. If R has weak factorization, then each
nonzero nonunit is contained in at most finitely many noninvertible maximal ideals.

Theorem 4.2.12. The following statements are equivalent for a Priifer domain R.

(i) R has weak factorization.
(ii) (a) R is an aRTP-domain,
(b) each nonzero prime ideal is contained in a unique maximal ideal, and
(c) each nonzero nonunit is contained in at most finitely many noninvertible
maximal ideals.
(iii) (a) Each steady maximal ideal is sharp,
(b) each nonzero nonmaximal prime is both sharp and contained in a unique
maximal ideal, and
(c) each nonzero nonunit is contained in at most finitely many noninvertible
maximal ideals.
(iv) (a) Each unsteady maximal ideal has height one,
(b) each nonzero ideal (or nonunit) is contained in at most finitely many
noninvertible maximal ideals, and
(c) (IRy)™' = I7' Ry for each nonzero ideal I and each steady maximal
ideal M.
(v) For each nonzero nondivisorial ideal I, there is a finite family of primes
{Py, Py,..., Py} suchthat] = I"P\P,--- P,
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(vi) For each nonzero nondivisorial ideal 1, there is a finite set of incomparable
primes {01, Qa, ..., Qp} such that I = 1VQ1' Q5 --- QI for some positive
integers ry, 1z, ..., I'y.

Proof. For (i) implies (ii), simply apply Theorem 4.2.4 and Corollary 4.2.11. Also,
the same argument used in the first part of the proof of Theorem 4.2.4 shows that
(i) and (iii) are equivalent.

To see that (iii) implies (iv), first apply Lemma 2.3.9 to see that each maximal
ideal of height greater than one is sharp. Thus the only unsteady maximal ideals,
if any, have height one. Also, by Theorem 2.5.4, I "'Ry; = (IRy)~" for each
nonzero ideal / and each steady maximal ideal M.

Next we show (iv) implies (i). Let / be a nonzero, nondivisorial ideal. By
Theorem 2.5.4(2), if M is an invertible maximal ideal that contains I, then
IRy, = IRy . Thus there must be at least one noninvertible maximal ideal N
that contains / and is such that /Ry # I"Ry. Let {My, M,,..., M,} be the
set of these maximal ideals. If M; is idempotent, then /Ry, = I"M;Ry, by
Theorem 2.5.4(3). On the other hand, if M; is locally principal (equivalently, not
idempotent), then it has height one and there is a positive integer s; such that
IRy, = I"M;" Ry, (see also the proof of Theorem 4.2.4((iii)=(i))). Checking
locally shows that I = IV ]_[;1=1 M,-S" for some positive integers sy, $2, .. ., S,. Thus
R has weak factorization.

Clearly, weak factorization implies the existence of the factorizations in (v) and
(vi).

Since R is a Priifer domain, if Q < P are distinct prime ideals, then PQ = Q.
Hence in statement (v), if P; & P;, then all occurrences of P; can be removed from
the factorization. It follows that (v) and (vi) are equivalent.

To complete the proof, we show that if each nonzero nondivisorial factors in the
form given in (v), then R has weak factorization. For this, it suffices to show that R
satisfies the criteria of Theorem 4.2.4(iii).

First, let P be a branched nonmaximal prime ideal. Then it is minimal over a
finitely generated ideal I [34, Theorem 23.3(e)]. Let J := IRy (| R where M is
a maximal ideal that contains P. Then, clearly, / € J € P and Max(R,J) =
Max(R, P). Note that J & P; otherwise, PRy = JRy = IRy is a nonmaximal
finitely generated prime in the valuation domain Rjs, which is impossible. If P
is not sharp, then / & P C PY = JV by Theorem 2.5.2(1). Now, consider a
factorization J = JVP; P,--- P, as in statement (v). In the valuation domain R,
JRy = IRy, is principal, and therefore from this factorization of J, so are J" Ry
and each P; Ry,. Hence either P, = M or P; Ry = Rj,. Since P is not maximal,
it cannot contain any of the P;s. It follows that P © JV and hence J" = P.
Thus, as above, PRy is a principal nonmaximal prime ideal of R, a contradiction.
Therefore P is sharp.

If P is sharp but M is not the only maximal ideal that contains P, then J
is not divisorial (Theorem 2.5.2(2)). Also, from the proof of Theorem 2.5.2(2),
J'Ry = JRpr = IRp where P/ € M is the largest prime common to
all maximal ideals that contain P. As above, factor J as J = J"P;Py--- P,.
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We again have J"Rj; and each P; R, principal. However, since /Rpr = J"Ry
is both a proper principal ideal of Rp- and an ideal of R,,, this contradicts the fact
that no proper principal ideal of a valuation domain can be an ideal in a proper
overring. Thus having P sharp and in more than one maximal ideal is impossible.
Therefore J = JV, P is sharp and M is the only maximal ideal that contains P by
Theorem 2.5.2(3).

Consequently, we have that each nonzero nonmaximal prime is sharp as is each
maximal ideal of height greater than one (Lemma 2.3.9).

Thus according to Theorem 4.2.4, the only remaining case we need to consider
(for sharpness) is that of a height one idempotent maximal ideal. Accordingly, let
M = M? be a height one maximal ideal and let Q be a proper M -primary ideal. If
QO 'isaring, then Q7! = M~! = R by Lemma 2.3.15. Hence Q" = R, and we
have the (only possible) factorization Q = Q"M = M, a contradiction. Thus Q!
is not a ring, whence M is sharp by Theorem 2.3.17((i1) <> (iv)).

To complete the proof, we need only show that for each nonzero nondivisorial
ideal B, the set of maximal ideals N for which BRy # BYRy is finite (criterion
(iii)(c) of Theorem 4.2.4). Let B be a nonzero nondivisorial ideal. Then B =
B 0105 --- Q,, for some finite family of prime ideals {Q1, O, ..., On}. Each Q;
is in a unique maximal ideal N; and clearly BRy = BYRy for each maximal ideal
N not in the family {Ny, N, ..., N, }. Therefore R has weak factorization. O

We record the following simple consequence of Theorem 4.2.12 for ease of
reference in Example 4.3.4 below.

Corollary 4.2.13. Let R be a Priifer domain with finite unsteady character. If each
steady maximal ideal is invertible and each nonzero nonmaximal prime is sharp and
contained in a unique maximal ideal, then R has weak factorization.

One of the main concepts studied by Loper and Lucas in 2003 [58] is how far
an almost Dedekind domain is from being Dedekind. For example, from what has
already been observed in Sect. 3.2, an almost Dedekind domain R has sharp degree
2 if it is not Dedekind, but the intersection R, := (| Ry is Dedekind, where
the intersection is taken over all maximal ideals M that are not invertible in R
(in this case, they coincide with the dull maximal ideals of R, considered in
Sect. 3.2). Note that R must have infinitely many invertible maximal ideals for this to
happen. An example in [19] shows that an almost Dedekind domain with infinitely
many noninvertible maximal ideals can have sharp degree 2 [19, Example 3.2].
Higher sharp degrees (including infinite ordinal degrees) can be defined recursively,
as in Sect. 3.2. For example, an almost Dedekind domain R has sharp degree 3, if R,
isnot Dedekindand R & R, & R3 with Rz Dedekind where R3 is the intersection of
the localizations at the (nonempty set of) noninvertible maximal ideals of R;. It turns
out that an almost Dedekind domain that is not Dedekind has weak factorization
if and only if it has sharp degree 2. More precisely, Theorem 4.1.5 essentially
shows that an almost Dedekind domain with sharp degree 2 has weak factorization.
In Proposition 4.2.14 below, we establish the converse, as well other ways to detect
weak factorization in almost Dedekind domains.
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Proposition 4.2.14. Let R be an almost Dedekind domain that is not Dedekind.
The following are equivalent.

(i) R has weak factorization.
(ii) If {My} is a set of noninvertible maximal ideals such that (), M is nonzero,
then the set { M} is finite.
(iii) Each noninvertible maximal ideal contains a finitely generated ideal that is
contained in no other noninvertible maximal ideal.
(iv) If {My} is a nonempty set of noninvertible maximal ideals, then (), Ru, is
Dedekind.
(v) R has sharp degree 2.

Proof. Let {M,} be the (complete) set of noninvertible maximal ideals of R. Then
as observed above, R has sharp degree 2 if and only if R, = ﬂy R, is a Dedekind
domain. Since an overring of a Dedekind domain is Dedekind, statements (iv) and
(v) are equivalent. Moreover, if R, is Dedekind, then it is easy to see that each
nonzero nonunit of R is contained in at most finitely many noninvertible maximal
ideals. Thus (v) implies (i) by Theorem 4.2.12.

By Lemma 3.4.6, if (iii) holds, then each noninvertible maximal ideal becomes
sharp in R, and from this and Theorem 2.2.1, we have that R has sharp degree 2
(so (iii) implies (v)).

Assume that R has weak factorization. Then by Theorem 4.2.12, each finitely
generated nonzero ideal is contained in at most finitely many noninvertible maximal
ideals. Thus an infinite intersection of noninvertible maximal ideals is zero, and we
have that (i) implies (ii).

To see that (ii) implies (iii), let M be a noninvertible maximal ideal of R, and
let a be a nonzero element of M. By (ii), a is contained in only finitely many

noninvertible maximal ideals, say M| = M, M,,...,M,. Foreach 1 < i < n,
pick an element a; € M \ M;. Then the ideal (a, a», ..., a,) is contained in M and
no other noninvertible maximal ideal of R. O

4.3 Overrings and Weak Factorization

Let R be a Priifer domain with weak factorization. Also, let {M,} be the set of
unsteady maximal ideals, and assume that this set is nonempty. By Theorem 4.2.12,
each M, has height one, and each nonzero nonunit of R is contained in at most
finitely many of the M,. Let T := ("), Ry, . By definition, sharp primes of R do
not survive in 7. Hence T is a one-dimensional Priifer domain with finite character
such that each localization is a rank one discrete valuation domain, that is, 7" is a
Dedekind domain. Since an overring of a Dedekind domain is Dedekind, we have
the following result.
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Theorem 4.3.1. Let R be a Priifer domain. If R has weak factorization, then

(o Rum, is a Dedekind domain for each nonempty set of unsteady maximal ideals
{M. .

Corollary 4.3.2. Let R be a Priifer domain with weak factorization. The following
are equivalent for an overring T of R.

(i) T has weak factorization.
(ii) T has finite idempotent character.
(iii) If { Py} is a set of incomparable idempotent primes of R with a nonzero
intersection, then at most finitely many P,’s extend to maximal ideals of T .

Proof. Let T be an overring of R, and let J be a nonzeroideal of 7. Then J = IT
for some ideal I of R [34, Theorem 26.1(3)]. Also, if N is an idempotent maximal
ideal of T, then N = PT for some idempotent prime P of R. Thus statements (ii)
and (iii) are equivalent.

Each unsteady maximal ideal of T is extended from an unsteady maximal ideal,
and each sharp prime of R that survives in 7 is still sharp and contained in a unique
maximal ideal of 7. Note that an unsteady maximal ideal of R may extend to a
steady maximal ideal of 7, but in such a case the extension is an invertible height
one maximal ideal (Lemma 4.2.3). Thus we have J~'Ty = (JTy)~! for each
steady maximal ideal N of T (if N is extended from a steady maximal ideal M
of R, then I"'Ry = (IRy)~" (Theorem 4.2.12), and so J~'Ty = (JTy)™";
on the other hand, if N is extended from an unsteady maximal ideal M of R,
then N is invertible in 7 with height one, in which case J™'Ty = (J Ty)~!
by Theorem 2.5.4). This shows that 7" satisfies condition (iv) of Theorem 4.2.12,
so that 7" has weak factorization. Thus (ii) implies (i). Finally, (i) implies (ii) by
Corollary 4.2.9(3). O

Corollary 4.3.3. If R is Priifer domain with weak factorization and no nonzero
idempotent primes, then each overring has weak factorization.

The next example shows that not all overrings of a Priifer domain with weak
factorization have weak factorization.

Example 4.3.4. Let {W,X,Y,Y>,...,Z1,7Z,,...} be a countably infinite set of
algebraically independent indeterminates over the field K and let D := K[X, {Y, |
n>1},{Z% | n > 1, € R™}]. For each n > 1, define a valuation v, on the
quotient field F := KX, {Y, | n > 1},{Z% | n > 1, a € R*}) of D with
value group R x Z (lexicographically ordered) by first setting v,(a) = (0,0) for
all nonzero elements in K, v,(X) = (1,0), v,(Y,) = (0,1), v,(Z}) = («,0) and
Vu(Yn) = vp(Z%) = (0,0) for all « € R and m # n, and then extending v, to
F using “min.” Let V,, be the corresponding valuation domain with quotient field
F. By standard arguments, it can be shown that Y,V is the maximal ideal of the
two-dimensional valuation domain V. Let R := ﬂn V, (W), where V(W) is the
canonical (trivial) extension of V;, to the field of rational functions F(W).
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(1) R is a Bézout domain.

(2) For each n, the ideal M, := Y, R is an invertible height two maximal ideal.

(3) For each n, P, := /Z,R is a height one idempotent prime that is sharp and
M, is the only maximal ideal of R that contains P,.

(4) Let J be the ideal generated by the set {X/Z, | n > 1}. Then M := /J is an
unsteady height one maximal ideal.

(5) There are no other nonzero prime ideals in R.

(6) R has weak factorization. Moreover, each nonzero nondivisorial ideal I factors
as 1" M¥ for some positive integer k.

(7) Let .7 := {Y’,j | n > 1,k > 0}. The ring R is a one-dimensional Priifer
domain that does not have weak factorization.

(8) If 2 is an infinite proper subset of {P,}°2, then the ideal H = (\{Py |
P, € 2} is a (nonzero) radical ideal such that (H : H) does not have weak
factorization.

Proof. For each n, let v, denote the trivial extension of v, to F(W) (set the value
of W to be 0, and extend to F (W) using “min”) [34, page 218]. The corresponding
valuation domain is V(W) [34, Propositions 18.7 and 33.1]. That R is a Bézout
domain with M,, = Y,R a maximal ideal, that Ry;, = V,(W) and that M, has
height two for each n follow from results on eab-operations and Kronecker function
rings in [34, Chap. 32] (cf. also Halter—Koch [40, Theorem 2.2(2)]).

For eachn, let D, := K[X,{Y,, | 1 <m <n},{Z% |1 <m <n,a € R}
and let 7, := D,[W].

Let z be a nonzero element of the quotient field F(W) of R. Then there is a
pair of integers s and n such that z can be factored as a product X*(g/f) where
g, f € T,\XT,. For each k > n, zis in Vi (W) if and only if s > 0. Also, for
k > n, zis a unit of V3 (W) if and only if s = 0. Hence z € R implies s > 0, and
z€ (), M, implies s > 0.

By Theorem 2.5.10, ﬂn M, is the Jacobson radical of R and no maximal ideal
other than one of the M,,’s is sharp. Also, by Corollary 4.2.9, the only sharp primes
that contain (1), M, are the M,’s. Since X is in each M,, each maximal ideal
contains X.

Lett := a/b € R\M, be a nonunit of R with a,b € D[W] and let k be a
positive integer greater than the largest power of Z, that appears in a term of a.
Then no “cancellation” can occur in the numerator of ¢ + Z¢ = (a + bZ¥)/b. In
V,(W), t + Z, is a unit since ¢t ¢ M,. Form # n, v (a) > v*(b) and v*(ZF) =
vin(ZE) = (0,0). From the definition of (the original) v,,, v¥(a + bZK) = v*(b)
and therefore v (t +Z¥) = (0, 0). Hence ¢ + Z¥ is a unit of R.

Let N be a maximal ideal of R that does not contain some particular X/Z,. Since
X € N, then N must contain Z,, and all positive powers of Z,,. From the argument
in the previous paragraph, we must have N = M,,. This not only shows that M, is
the only maximal ideal that contains Z,, it also shows that P, = VZuR is a sharp
prime and M,, is the only maximal ideal that contains P,,.
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Let J be the ideal of R generated by the set {X/Z, | n > 1}. Since each P,
contains the set {X/Z,, | m # n}, each element of J is in infinitely many P,’s. On
the other hand, P, does not contain X/Z,. Thus no P, contains J, nor does any M,,.

Let £ := KW, {Y, | n > 1},{Z% | n > 1,0 € R"}] and let h € E\{0}.
Then there is an integer n such that & € E, := K[W,{Y,, | 1 <m < n},{Z% |
1 <m<n,acR} Lets, := Y =1 X/Z,, and consider the element /i + s,,.
For k > n, h is a unit of V(W) and s, is a nonunit, and for m < n, (0,0) =
Vin(Sn) = V5 (8y) = v (h + s,). Thus h + s, is a unit of R. This implies that if M
is a maximal ideal that contains J, then Ry, contains L the quotient field of E. It
follows that Ry = L[X]x) is a discrete rank one valuation domain. We also have
that M is the only prime that contains J. Hence M is height one, unsteady and the
only other nonzero prime besides the M,,’s and P,’s. Thus R has weak factorization
by Corollary 4.2.13. By Theorem 2.5.4, if I is a nonzero nondivisorial ideal, then
IRy, = IRy, for each M), and therefore I = I"M k for some positive integer k.

Obviously, each M,, blows up in R, but each P, survives. Hence R is a
one-dimensional Priifer domain. As each element in M is in all but finitely many
P,’s, the extension of M to R » remains unsteady. Thus R » = ﬂn Rp,.Let B :=
ﬂn P,R . Since X isin B, P, R » is minimal over B. As P, R p, is idempotent and
BRp, = P,Rp,, Rp, 2 B(R» : B)Rp, = P,(R» : B)Rp, = P,Rp,. Hence
B(Ry : B) = B.Since R+ = (), Rp,, (R¥ : B) = Ry. Clearly, we cannot
factor B as B (= R.) times a finite product of powers of maximal ideals. Hence
R &~ does not have weak factorization.

Finally, let 2 be an infinite proper subset of {P,}°2 | and let H := ({Py |
P, € 2}. As above X € H. Thus by Corollary 4.2.9(2), 2 is the complete set
of sharp primes that are minimal over H. Also H~! = (H : H) as above since
HRp, = P,Rp, being idempotent implies HH'Rp, = HRp, for each P, €
2. Hence each P, € 2 extends to a (idempotent) maximal ideal of (H : H)
(Theorem 4.2.7). But this means that H is contained in infinitely many idempotent
maximal ideals of (H : H). Then Corollary 4.2.9(3) shows that (H : H) does not
have weak factorization. O

This example also shows that a ring of quotients of a Priifer domain with weak
factorization need not have weak factorization.

Theorem 4.3.5. Let R be a Priifer domain with weak factorization. If M is an
unsteady maximal ideal, then there is a finitely generated ideal I and an infinite
set of steady maximal ideals {M,} each containing I, such that M'T is the only
unsteady maximal ideal of T := (1, Ry, and the only other maximal ideals of T
are those of the form M, T.

Proof. Let M be an unsteady maximal ideal and let J be a nonzero finitely
generated ideal that is contained in M. Since R has finite unsteady character
(Theorem 4.2.10), at most finitely many other unsteady maximal ideals contain
J, say M, M,,...,M,. For each i, there is an element b; € M such that
biR+ M; = R.Letl := J + bR+ bR+ ---+ b,R. Then M is the only
unsteady maximal ideal that contains /.
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Let {M,} be the set of maximal ideals, other than M, that contain /. This
set is infinite since M is not sharp. On the other hand, each M, is steady and
therefore sharp. By Lemma 2.5.1, the maximal ideals of I"(7) are the ideals of the
form M, I"(1) and M I"(I). Since at most finitely many of the M,, are idempotent,
I’ (I) has weak factorization (Proposition 4.2.14). It also has infinitely many sharp
maximal ideals and each maximal ideal contains the nonzero finitely generated
ideal IT°(I). Hence M I"(I) must be the unique unsteady maximal ideal of I"(7).
Moreover, I'(1) = (), Ru,- O

Recall that for a nonzero ideal / of a domain R, Min(R, I) denotes the set of
minimal primes of / (in R) and @(I) = ({Rp, | Py € Min(R, I)}.

Lemma 4.3.6. Let R be a Priifer domain with weak factorization and let I be a
nonzero ideal of R. Then Max(®(1)) = {P®(I) | P € Min(R, I)}.

Proof. Since R has weak factorization, the only nonzero primes that are not sharp
are the unsteady maximal ideals, each of which has height one. If M is a maximal
ideal that is minimal over /, then M@([/) is a maximal ideal of @(/). Let P & Q
be primes with P € Min(R, I). Since P is sharp, there is a finitely generated ideal
J € Qsuchthat P & J C Q (Proposition 2.3.20). Obviously, no other minimal
prime of / contains J. Hence Ry does not contain @([). It follows that P& ([) is
a maximal ideal of @ (7). O

Lemma 4.3.7. Let R be a Priifer domain with weak factorization and let I be a
nonzero ideal that is not contained in the Jacobson radical of R. If N is a maximal
ideal of ©(I), then either N (| R is a maximal ideal of R that does not contain I
or N ( R is an unsteady maximal ideal of R.

Proof. Let P be a nonzero prime of R that is neither comaximal with I nor an
unsteady maximal ideal of R. Since R has weak factorization, P is contained
in a unique maximal ideal M and it is sharp (Theorem 4.2.4). Hence there is a
(nonzero) finitely generated ideal J/ € P such that M is the only maximal ideal
that contains J. It follows that Rp does not contain @(I) (= (\{Ro | O €
Max(R)\Max(R, I)}). Since R is a Priifer domain, P® (1) = & (I). As each prime
of @ (1) is extended from a prime of R, if N is a maximal ideal of ®(7), then either
N (R is a maximal ideal of R that does not contain / or it is an unsteady maximal
ideal. O

Theorem 4.3.8. Let R be a Priifer domain with weak factorization, and let I be a
nonzero ideal of R.

(1) Both I'(I) and ©(1) have weak factorization.
(2) @(I) has weak factorization if and only if at most finitely many minimal primes
of I are idempotent.

Proof. By Lemma 2.5.1, Max(I'({)) = {MI'(I) | M € Max(R,I)}. As
no nonzero ideal is contained in infinitely many idempotent maximal ideals
(Corollary 4.2.9), the same occurs in I'(/). Hence I'(I) has finite idempotent
character. Thus I" (/) has weak factorization by Corollary 4.3.2.
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From Lemma 4.3.7, each maximal ideal of & (/) is extended from a maximal
ideal of R. Hence ® (/) also has finite idempotent character. Another application of
Corollary 4.3.2 yields that ® (/') has weak factorization.

For @(1), Max(®([)) = {P®(I) | P € Min(R, )} by Lemma 4.3.6. Thus
@([I) has finite unsteady character if and only if at most finitely many minimal
primes of I are idempotent. It follows that @ (/) has weak factorization if and only
if at most finitely many minimal primes of / are idempotent. O

Theorem 4.3.9. If R is a Priifer domain with weak factorization, then each
overring has weak factorization if and only if there is no nonzero ideal with infinitely
many idempotent minimal primes.

Proof. From the previous theorem, if / # (0) has infinitely many idempotent min-
imal primes, then @ (/) does not have weak factorization. Conversely, suppose 7" 2
R is an overring that does not have weak factorization. Then by Corollary 4.3.2,
there is a nonzero ideal B of T that is contained in infinitely many idempotent
maximal ideals of 7. It follows that the ring I (B) has infinitely many idempotent
maximal ideals, each of which contains B. Thus we may assume B is contained in
each maximal ideal of T'. Let M be a maximal ideal of 7. Then M = PR for some
prime P of R.If M is idempotent, then P is a sharp prime of R. It follows that M is
a sharp prime of 7. By Corollary 2.5.7, M is minimal over the Jacobson radical of
T. Hence the Jacobson radical has infinitely many idempotent minimal primes. O

4.4 Finite Divisorial Closure

If R is an h-local Priifer domain and I is a nonzero nondivisorial ideal, then there
is a finitely generated ideal J € IV such that [ 4+ J = IV [19, Proposition 2.10].
In the next lemma, we generalize this result by showing that a Priifer domain with
weak factorization has the same property.

Lemma 4.4.1. Let R be a Priifer domain with the weak factorization property.
If I is a nonzero ideal of R, then there is a finitely generated ideal J such that
I+J=1I"

Proof. If I is divisorial, there is nothing to prove. Hence we assume that / is not
divisorial with factorization I = I"[], N; [] ; M;j . We may further assume that
each N; is steady with /"N; # I" and each M is unsteady with r; > 0. At least
one of the (finite) sets {N;} or { M} is nonempty.

Since MRy, is principal and has height one by Lemma 4.2.3, there is an
elementa; € I"suchthata; RMj = IVRM/. . Now, consider an ;. Since it is steady,
if it is locally principal, then it is invertible. But, in that case, IV N; is a divisorial
ideal that contains / and is properly contained in /", which is impossible. Thus it
must be that N; is idempotent with I C I'N; < I". Hence I"Ry; is principal
by Lemma 2.5.3, and we may choose b; € I such that /"Ry, = b; Ry,. Now,
set J := (ai,...,am,b1,...,b,). To see that IV = [ + J simply check locally.
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By construction, we have I + J C IV, I"Ry;, = ajRy; < I + J)RMj for each
M;, I"Ry, =b;Ry, € (I +J)Ry, foreach N;,and I"Ry = IRy € ({ + J)Ry
for all other maximal ideals N (if any). Hence IV =1 + J. O

We say that R has the finite divisorial closure property if, for each nondivisorial
ideal I # (0), there is a finitely generated ideal J such that /¥ = [ 4 J. A Priifer
domain with the finite divisorial closure property need not have weak factorization.
For example, in the ring of entire functions the only divisorial ideals are the principal
ones, so that this Priifer domain has the finite divisorial closure property trivially.
However, the primes reverse roles from what occurs with weak factorization—the
only sharp primes are the height one invertible maximal ideals, all other primes have
infinite height, and none of these is sharp, but each is contained in a unique maximal
ideal. (For the properties of the ring of entire functions mentioned above see, for
example, [47], [34, Pages 146—148 and Exercise 19, page 256] and [24, Sect. 8.1].)

In Theorem 4.4.7, we combine the finite divisorial closure property with another
to obtain yet another characterization for Priifer domains with weak factorization.
In Theorem 4.4.8, we do the same for i-local Priifer domains.

Lemma 4.4.2. Let R be a Priifer domain and let I be a nonzero nondivisorial ideal.
If there is a finitely generated ideal J such that I + J = IV, then for each maximal
ideal M containing I with IRy # 1Y Ry, 1V Ry is principal.

Proof. Assume that [ = I 4 J for some finitely generated ideal J, and let M
be a maximal ideal such that IRy, # I'Ry. Since Ry, is a valuation domain,
IVRy = JRyy is principal. O

Theorem 4.4.3. Let R be a Priifer domain with the finite divisorial closure
property.

(1) If P is a nonzero nondivisorial prime, then P¥ = R.
(2) If P is a nonzero divisorial prime, then P is sharp and contained in a unique
maximal ideal.

Proof. Let P be a nonzero prime ideal of R. We may assume that P is not maximal
since both parts of the theorem hold trivially if P is maximal (Lemma 2.1.1(1) and
Remark 2.1.2(1)).

For (1), we assume that P is not divisorial. In this case, there is a finitely
generated ideal 4 such that P¥ = P + A 2 P. Then P7' = (P : P)
(Theorem 2.3.2(2)), and, since R is integrally closed, P~' = (P")~! = (/P")™!
by Remark 2.3.3. Thus (v P")P~' = (v/P")(¥/P")~' C R, whence (v P") C P,
and we have that PV is a radical ideal. Now, by way of contradiction, suppose
that P¥ # R.If M is a maximal ideal that contains P", then P"Rj, is a prime
ideal of the valuation domain R, that properly contains PRj,. Hence P'Ry =
(P 4+ A)Ry = ARy is a principal prime ideal, and we must have P" Ry, = MRy;.
It follows that each minimal prime of PV is a maximal ideal of R and therefore
I'(PY) = @(P"). But in this case, P~! = (P")™! = I'(P")(O(P") = R
(Theorem 2.3.2(1, b)), whence P¥ = R, the desired contradiction.
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For (2), first assume P is both divisorial and branched. Then there is a proper
P-primary ideal Q. If P is not sharp, then ®(P) = (P : P) C P~' Cc Q97! =
®(P) (Corollary 2.3.18). Hence Q" = P" = P. Thus we have a finitely generated
ideal B suchthat P = Q" = Q + B. As Q # Q", there is a maximal ideal M that
(properly) contains P with OQRy & PRy = QVRy = BRyy, which is impossible
since P is not maximal. Thus it must be that P is sharp.

Continuing with the assumption that P is both divisorial and branched, and now
sharp as well, let A be a finitely generated ideal with radical P (Proposition 2.3.10).
Also, let M be a maximal ideal that contains P and let C := ARy (| R. Then by
Theorem 2.5.2, C¥ = A(P’ : P’), where P’ is the largest prime common to all
maximal ideals that contain P. If M is not the only maximal ideal that contains P,
then C is not divisorial (Theorem 2.5.2 again), and so there is a finitely generated
ideal J € C such that C”" = C + J. We may assume that A C J, which implies
that CRy = ARy C JRy. Hence JRyy = C'Ryy = A(P’ : P))Ry = ARps,
the latter equality following from the fact that P’ is a maximal ideal of (P’ : P’) =
O(P)( Rps (Lemma 2.3.9 and Theorem 2.3.2(2)(b)). But, since P’ is properly
contained in M, ARp/ cannot be an invertible ideal of Rj;. Thus M must be the
only maximal ideal that contains P.

The only case left is when P is a (nonmaximal) prime ideal that is both divisorial
and unbranched. In this case, P contains a nonzero branched prime Py which, from
(1), cannot be nondivisorial. Thus Py is divisorial and branched, and therefore by the
above, it is sharp and contained in a unique maximal ideal. It follows that this same
maximal ideal is the only one that contains P. Hence P is sharp by Lemma 2.3.9.

O

Corollary 4.4.4. Let R be a Priifer domain. If R has the finite divisorial closure
property, then the following statements are equivalent.

(i) Each nonzero nonmaximal prime is sharp and contained in a unique maximal
ideal, and each maximal ideal of height greater than one is sharp.
(ii) Each nonzero nonmaximal branched prime is sharp (i.e., R is a wTPP-domain
by Theorem 2.4.17).
(iii) Each nonzero nonmaximal branched prime is divisorial.

Proof. Obviously, (i) implies (ii). Also, (ii) implies (iii) since a nonmaximal sharp
prime in a Priifer domain must be divisorial (Corollary 2.3.21).

Assume that R has the finite divisorial closure property. If each nonzero
nonmaximal branched prime is divisorial, then each is sharp and contained in a
unique maximal ideal by Theorem 4.4.3(2). A maximal ideal of height greater
than one contains a nonzero nonmaximal branched prime as does an unbranched
(nonzero) prime. But such a branched prime is contained in a unique maximal ideal.
Thus each maximal ideal of height greater than one is sharp as is each unbranched
prime (Lemma 2.3.9). O

From Theorem 2.4.18 and the previous corollary, we immediately deduce the
following.
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Corollary 4.4.5. Let R be a Priifer domain. If R is an aRTP-domain and has the
finite divisorial closure property, then each nonzero prime is contained in a unique
maximal ideal.

We do not know whether the conclusion of Corollary 4.4.5 can be strengthened
to “R has the weak factorization property” or not.

Lemma 4.4.6. Let I be a nonzero nondivisorial ideal in a Priifer domain R.
If there is a finitely generated ideal J C IV and a finite set of maximal
ideals {My, M, ... ,M,} such that I" = I + J and J[[M]" C I for some
positive integers 11,1, ..., Iy, then I = IV M" for some nonnegative integers
S1,82,...,8,; with s; < r; foreachi.

Proof. Assume that there is a finitely generated ideal J/ C IV and a finite set of
maximal ideals {My, M>,...,M,} such that " = [ + J and J[[M < I
for some positive integers ri,72,...,r,. For a maximal ideal M outside the set
{M{,M3,...,M,}, we have JRy < IRy C I'Ry = (I + J)Ryp. Thus
IRy = I"Ry.

We may divide the set {M,, M>, ..., M,} into three disjoint subsets: <7 () :=
{M; | IRy; = I"Rp,}, 95(1) := {M; | IRy, # I'Ry, and M; is idempotent}
and @(1) = {M; | IRy, # I"Ry, and M, is locally principal}. While
/(1) may be empty, at least one of @4 (/) and &73(1 ) must be nonempty since
I is not divisorial. Note that [] M; i RM, = M RM, for each j. Hence we

have JM RM cl RM Also, since each RM is a valuation domain, / RM/ <
I'Ry; = JRM for each. M; € A1) oA(1).

The max1mal ideals in ,Q/I(I ) and @ (I) are quite easy to deal with. For M; €
1(1), we sets; = 0. For M; € @i (1), M} = M; for each positive integer r.
Also, there can be no ideals properly between J MRy, = I"M;Ry; and JRy; =
I"Ry; for M; € a(1). Since 1" M ; Ry, = JM Ry, < IRM S I'Ry;, we
have IRM =1"M; RM andwemay sets; = 1.

Finally, for M; € gf_o,(l), the only ideals between JM,* Ry, = I"M* Ry,
and JRy, = I"Ry, are the ideals of the form JM}P Ry, = I"M} Ry, for each
nonnegative integer s < r¢. As observed above, one such ideal is /Ry . Thus
IRy, = I'M ]‘:" Ry, for some positive integer sy < r. Checking locally at each
maximal ideal now yields I = I"[] Ml-s" for the nonnegative integers s, $2, . .., Sy
(in each case with s; < r;). O

Theorem 4.4.7. Let R be a Priifer domain. Then R has weak factorization if and
only if for each nonzero nondivisorial ideal I, there is an invertible ideal J C I,
a finite set of maximal ideals {M, M>, ..., M, } and positive integers ri,r, ..., Iy
suchthat I =1+ J and J [ M/ C I.

Proof. 1If I is a nondivisorial ideal and R has weak factorization, then there is a
finite set of maximal ideals {M;, M>, ..., M, } and positive integers ry, ra,...,ry,
suchthat I = IV]] Mir". By Lemma 4.4.1, there is an invertible ideal J € I” such
that I” = I + J. Obviously, we also have J || Ml-ri cl.

For the converse, simply apply Lemma 4.4.6. O
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As we recalled in Theorem 4.2.1, the equivalence of (1) and (6) in the following
theorem originally appeared in [19] as part of Theorem 1.13. Using Theorem 4.2.4,
we will give an alternate proof that (6) implies ((5) implies) (1).

Theorem 4.4.8. The following statements are equivalent for a Priifer domain R.

(i) R is h-local.
(ii) For each nonzero nondivisorial ideal I, there is a finite set of distinct maximal
ideals {My, M, ..., My} suchthat I = 1"M M, --- M.
(iii) For each nonzero nondivisorial ideal I, there is a finite set of incomparable
primes {01, Q2,...,0n}suchthat I = 10,105+ Q.
(iv) For each nonzero nondivisorial ideal 1, there is a finite set of distinct prime
ideals { Py, Py, ..., P,} suchthat I = I"P\P,--- P,.
(v) R has the weak factorization property and no unsteady maximal ideals.
(vi) R has both the weak factorization property and finite character:
(vii) R has the weak factorization property, and each maximal ideal of R is sharp.
(viii) R has the weak factorization property, and each nonzero nonunit is contained
in only finitely many invertible maximal ideals.
(ix) R has both finite character and the finite divisorial closure property.
(x) R has both the radical trace property and the finite divisorial closure
property.
(xi) For each nonzero nondivisorial ideal 1 of R, there is a finite nonempty set
of maximal ideals {M,, M, ..., M,} and a finitely generated ideal J C 1"
suchthat 1" =1+ J and J[[M; C I.

Proof. We establish the following sets of implications: (vi)< (viii); (iii)<& (iv);
)= xi)= (i)= ()= (v)= (1); )= (ix)= X)= (1); and ()= (vi)= (vi))=
(v). We note that (i) = (ii) is clear from Theorem 4.1.2.

It is clear that (vi) implies (viii). Also, we have that (viii) implies (vi) since
weak factorization implies that each nonzero nonunit of R is contained in only
finitely many noninvertible maximal ideals (Theorem 4.2.12). Several of the other
implications are also easy to deal with. The equivalence of (iii) and (iv) follows from
the fact that, checking locally, QP = Q if Q € P are primes (in a Priifer domain).
Thus a factorization as in (iv) can simply be reduced to one with incomparable
primes.

Next, we establish the series of implications ()= (xi)= (i))= (iii))= (v)= (1).
It is clear that (ii) implies (iii). For (xi) implies (ii), just apply Lemma 4.4.6. To
see that (iii) implies (v), assume that (iii) holds. Then R has weak factorization by
Theorem 4.2.12 ((vi)= (i)). In order to prove (v), it remains to show that R has
no unsteady maximal ideals. For this, suppose that M is a maximal ideal that is
locally principal. Then M? # M. If M is not invertible, then (R : M?) = ((R :
M): M)=(R: M) = R (Remark 2.1.2(1)), in which case by (iii) we must have
M? = (M*'M = R-M = M, a contradiction. Thus we must have M invertible.
Hence (iii) implies (v).

Next, we show that (v) implies (i). Hence we assume that R has weak factor-
ization and no unsteady maximal ideals. By Theorem 4.2.12, each nonzero prime
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is contained in a unique maximal ideal, and, since there are no unsteady maximal
ideals, each nonzero (branched) prime ideal is sharp. Thus R is an RTP-domain by
Theorem 2.4.10. Therefore R is h-local by Theorem 2.4.12.

To complete the sequence of implications ()= (xi)= (i))= (ii))= (v)= (i), we
show (i)= (xi). Assume that R is h-local, and let / be a nondivisorial ideal of R.
By Lemma 4.4.1 and the implications (i)= (ii))= (iii)= (v) (or, directly, by [19,
Proposition 2.10]), there is a finitely generated ideal J such that /¥ = I 4 J. Since
R also has very strong factorization (Theorem 4.1.2), there is a finite set of maximal
ideals {M, My, ..., M,} with I = I"T[M; = (I + J)[] M;. Of course, this
yields J [] M; € I, and we have that (i) implies (xi), completing the set. This also
gives (i) implies (ix) since an A-local domain has finite character by definition.

To complete the set ()= (ix)= (x)= (i), we need (ix)= (x) and (x)= (). If
R has finite character, then it has the radical trace property by Theorem 2.4.11(2)
and Lemma 2.3.4(2). Hence (ix) implies (x). Since a RTP-domain is clearly an
aRTP-domain, (x) implies (i) by Corollary 4.4.5 and Theorem 2.4.12.

Finally, we consider the set (i)= (vi)=> (vii)= (v). By definition, if R is &-local,
then it has finite character. Also it has very strong, hence weak, factorization by
Theorem 4.1.2. Thus we have (i) implies (vi). An unsteady maximal ideal is not
sharp. Thus (vii) implies (v).

Assume (vi). If M is a maximal ideal of R, then using finite character (and prime
avoidance), it is easy to produce a finitely generated ideal / such that /7 = M.
Hence M is sharp (Proposition 2.3.10). Also, recall that a sharp maximal ideal must
be steady by Lemma 2.4.19. Therefore (vi) implies (vii). O

By Theorem 4.1.2((i)<(ii)), the equivalence of (i) and (ii) in Theorem 4.4.8
means that, for Priifer domains, very strong factorization and strong factorization
are equivalent. Without the Priifer assumption, we still have the following general
result.

Theorem 4.4.9. Let R be an integral domain. If R has strong factorization, then
each nonzero finitely generated ideal of R is divisorial (equivalently, each nonzero
ideal is a t-ideal).

Proof. Suppose that R has strong factorization. We first observe, by checking
locally, that if A is a nonzero ideal of R with factorization A = A"N| N, - - - Ny with,
say, ARy, = ARy, then N; can be omitted from the factorization. Now, by way of
contradiction, assume that / is a nonzero finitely generated ideal of R which is not
divisorial and write I = I" ] M; for distinct maximal ideals My, M>, ..., M, (and
n > 1). We may assume no M; can be omitted. Let Q := [[ M; and consider the
ideal 7 Q. Calculating the divisorial closure, we have (/1Q)" = (I'Q)" = I".If IQ
is divisorial, then /¥ = I Q C I andso [ is also divisorial, a contradiction. Thus 7/ Q
is not divisorial and must therefore have a factorization as /" times a finite product
of distinct maximal ideals. Clearly, IQRy; = IRy = I"Rjy for each maximal
ideal M outside the set {M;, M», ..., M, }. Hence the only possible way to factor
I1Q isas IQ = I"Q, where Q) is a product of a subset of the M;. However,
this yields / € IQ, which contradicts Nakayama’s Lemma. Hence each nonzero
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finitely generated ideal of R is divisorial. The parenthetical statement follows easily
from the definition of the #-operation. O

One of many characterizations of Priifer domains is that an integrally closed
domain is Priifer if and only if each nonzero finitely generated ideal is divisorial
(see, for example, [34, Proposition 34.12]). Also, a celebrated result of Heinzer
states that in an integrally closed domain R, each nonzero ideal is divisorial if
and only if R is Priifer s-local with all maximal ideals invertible (Theorem 2.1.6).
The next result shows that, in the class of integrally closed integral domains, Priifer
domains with strong factorization lie in between the domains in which all nonzero
ideals are divisorial and those in which all nonzero finitely generated ideals are
divisorial.

Corollary 4.4.10. Let R be an integrally closed domain. Then R has strong
factorization if and only if R is an h-local Priifer domain.

Proof. Simply apply [34, Proposition 34.12] and Theorems 4.4.9 and 4.4.8. O

We close this section by showing that, in the integrally closed case, a domain
with weak factorization must also be Priifer. We need a preliminary result.

Lemma 4.4.11. Let R be a domain with weak factorization. Then Ry is a valuation
domain for each nondivisorial maximal ideal M of R.

For a nonzero fractional ideal J of R, there is a nonzero element r € R such that
rJ is an (integral) ideal of R. Moreover, (rJ)" = rJ" so that J is divisorial if and
only if rJ is divisorial. Hence we may easily extend weak (and strong) factorization
to fractional ideals.

Proof. Let M be a nondivisorial maximal ideal, and assume x € K \ Ry where
K is the quotient field of R. We shall show that x™! € Ry,. Consider the fractional
ideal M + Rx. Since M is nondivisorial, we have (M + Rx)" = (M’ + Rx)" =
(R + Rx)". If M + Rx is divisorial, this yields 1 € (R + Rx)" = M + Rx,
and we can write | = m + rx with m € M,r € R. In this case, we have x~!
r(l— m)_1 € Ry, as desired. Hence we assume that M + Rx is not divisorial, in
which case we have a factorization M + Rx = (M +Rx)"Q = (R+ Rx)"Q, where
Q is a product of (not necessarily distinct) maximal ideals. Suppose that R + Rx is
divisorial. Then M + Rx = (R + Rx)Q.1f Q C M,then M + Rx C M + M x,
and we can write x = a + bx witha,b € M, whence x = a(1 —b)™' € Ry, a
contradiction. On the other hand, if Q € M, we have MRy + Ryx = Ry + Ry x,
which yields 1 € MRy, + Ryrx, and we obtain x~! e Ry, as above.

It remains to consider the case where R+ Rx is not divisorial (and M + Rx is also
not divisorial). Recall that we have M + Rx = (R+ Rx)" Q. Since (we are assuming
that) R + Rx is not divisorial, we have a factorization R + Rx = (R + Rx)"Q’,
where Q’ is a product of maximal ideals. Let I := (R + Rx)". Locally, we have
MRy + Ryx = IRy (MRy)' and Ry + Ryx = IRy (MRy)/, for some
nonnegativeintegersi, j.Ifi < j,then MRy + Ry x 2 Ry + Ry x, and we obtain
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x~' € Ry asabove. If i > j, then MRy + Ryx = IRy (MRy ) (MRy)' =/ =
(Ry + MRy x)(MRy)' ™7 C MRy + MRyx, and, as before, we obtain the
contradiction x € Rj,. This completes the proof. O

Theorem 4.4.12. If R is an integrally closed domain with weak factorization, then
R is a Priifer domain.

Proof. As in Theorem 4.4.9, we show that each nonzero finitely generated ideal
is divisorial. Suppose, on the contrary, that / is a nonzero finitely generated ideal
which is not divisorial. Then we may write / = I'Q with Q a product of (not
necessarily distinct) maximal ideals. We still have (/Q)" = (I"Q)” = I"” as in the
proof of Theorem 4.4.9. This yields Q~'1" = Q=Y (QI)" € (Q~'QI)" < I".
Hence Q7' = Q7'I1'Q < I'Q = I. Since I is finitely generated and R
is integrally closed, then R € Q~! € (I : I) = R [34, Proposition 34.7],
thus we must have Q~! = R. It follows that each factor M of Q must be a
nondivisorial maximal ideal. By Lemma 4.4.11, R, is a valuation domain for each
such M. Hence IRy, is a principal ideal of Rys. Thus I'Ry = (I7")7'Ry C
(I7'Ry)™"' = (IRy)" = IRy, and we have IRy, = I"R),. Since this equality
obviously holds for any maximal ideal which is not a factor of Q, we obtain the
contradiction that [ = I". O



Chapter 5
Pseudo-Dedekind and Strong Pseudo-Dedekind
Factorization

Abstract The present chapter is devoted to the study of integral domains having
two other kinds of ideal factorization. An integral domain is said to have strong
pseudo-Dedekind factorization if each proper ideal can be factored as the product
of an invertible ideal (possibly equal to the ring) and a finite product of pairwise
comaximal prime ideals with at least one prime in the product. On the other hand,
an integral domain is said to have pseudo-Dedekind factorization if each nonzero
noninvertible ideal can be factored as the product of an invertible ideal (which might
be equal to the ring) and finitely many pairwise comaximal primes. We observe
that an integral domain with pseudo-Dedekind factorization has strong factorization
(Sect. 4.1) and an integrally closed domain with pseudo-Dedekind factorization is an
h-local Priifer domain. Nonintegrally closed local domains with pseudo-Dedekind
factorization are fully described in terms of pullbacks of valuation domains. Several
characterizations of integral domains with strong pseudo-Dedekind factorization
are also given. In particular, we show that an integral domain has strong pseudo-
Dedekind factorization if and only if it is an h-local generalized Dedekind domain.
Finally, we investigate the ascent and descent of several types of ideal factorizations
from an integral domain R to the Nagata ring R(X) and vice versa.

5.1 Pseudo-Dedekind Factorization

In 2000, Olberding introduced the notion of a ZPUI-ring (or a Zerlegung Prim- und
Umkehrbaridealen ring) as a ring such that each proper ideal can be factored as
the product of an invertible ideal (possibly equal to the ring) and a finite product
of prime ideals with at least one prime in the product [68]. We introduce two
variations on this concept. We say that R has pseudo-Dedekind factorization if for
each nonzero noninvertible ideal /, there is an invertible ideal B (which might
be R) and finitely many pairwise comaximal primes Pj, P,,..., P, such that
I = BP|P,--- P, (the requirement that n > 0 “comes for free”). If, in addition,
each invertible ideal J has a factorization of the form J=CQ0>---Qn

M. Fontana et al., Factoring Ideals in Integral Domains, Lecture Notes of the Unione 95
Matematica Italiana 14, DOI 10.1007/978-3-642-31712-5_5,
© Springer-Verlag Berlin Heidelberg 2013
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with C invertible (possibly with C = R) and pairwise comaximal prime ideals
01,05,...,0, withm > 1, then R has strong pseudo-Dedekind factorization.
Thus a domain that has strong pseudo-Dedekind factorization is a ZPUI-domain.
In 1998, Olberding [67, Theorem 5.2] proved that a Priifer domain R has (in our
terminology) strong pseudo-Dedekind factorization if and only if R is an h-local
generalized Dedekind domain. In subsequent work [68] and [70], he has been able
to eliminate the assumption that R is a Priifer domain and prove further that one
only needs a factorization in terms of a finitely generated ideal and a nonempty finite
product of not necessarily comaximal primes. Hence a ZPUI-domain is the same
as a domain with strong pseudo-Dedekind factorization. Note that [70] corrects
some gaps/errors that appear in [68]. We provide a simple example of a domain
with pseudo-Dedekind factorization that is not integrally closed (and hence does
not have strong pseudo-Dedekind factorization) after the proof of Corollary 5.2.5.

Recall that a valuation domain V' is strongly discrete if no nonzero prime ideal
is idempotent (equivalently if PVp is principal for each nonzero prime ideal P).
In 1987, Anderson [1] proved a result that now can be stated as follows: A strongly
discrete valuation domain is a ZPUI-domain. More precisely,

Theorem 5.1.1. (Anderson [1, Theorem 2]). Let V' be a valuation domain.

(1) If I is a nonzero ideal of V such that I(V : I) = P is a branched prime of V,
then I = xQ for some x € V and some P -primary ideal Q.

(2) If each nonzero prime ideal of V is branched, then each nonzero noninvertible
ideal is the product of a principal ideal and a primary ideal.

(3) If V is a strongly discrete valuation domain, then each nonzero noninvertible
ideal I is the product of a principal ideal and a power of a prime ideal (more
precisely, I = xP", for somen > 1 and some x € V, where P .= I(V : I)).

Both (1) and (2) are directly from [1, Theorem 2]. For (3), first recall that if /
is a nonzero noninvertible ideal of a valuation domain V', then /1" is a prime ideal
of V' (Proposition 2.4.1). If, in addition, P := II" is such that PVp is principal,
then not only is P branched, but { P"} is the complete set of P-primary ideals [34,
Theorem 17.3 (b)]. Statement (3) now follows easily from (1).

Remark 5.1.2. (1) We note the following with respect to statements (1) and (2) of
Theorem 5.1.1.

(a) There exists a valuation domain with an unbranched maximal ideal and
a nonzero noninvertible ideal / such that / is not the product of a principal
ideal and a primary ideal [1, Example].

(b) There exists a valuation domain with an unbranched maximal ideal such
that each noninvertible ideal is the product of a principal ideal and a prime
ideal [15, Theorem 7].

(2) If I is a nonzero noninvertible nondivisorial ideal of a valuation domain
V' with maximal ideal M, then it is known that M is not finitely
generated (otherwise, every nonzero ideal of V' would be divisorial) and
I =xM for some xe€V by Lemma 2.1.1(5) (or, by [44, Lemma 5.2]
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and [6, Lemma 4.2]; see also [34, Exercise 12, page 431]). In this situation,
I(V:I)=xMV :xM) =MV : M) = M, where the last equality holds
because the maximal ideal M is not invertible (Lemma 2.1.1(1)). Therefore
no matter whether M is branched or unbranched, we have a factorization, as
in Theorem 5.1.1(1), for the nonzero noninvertible nondivisorial ideals of a
valuation domain.

Lemma 5.1.3. Let R be an integral domain with pseudo-Dedekind factorization.

(1) Rs has pseudo-Dedekind factorization for each multiplicative set S of R.
(2) For each prime P of R, R/ P has pseudo-Dedekind factorization.

Proof. If J is a noninvertible ideal of Rg, then J = IRg for some noninvertible
ideal I of R. Factoring I = BP;P,--- P, with B invertible and the P; pairwise
comaximal primes (each with empty intersection with S), / = BP|P--- P,Rg
with BRg invertible and P Rs, P>Rs, ..., P, Rs pairwise comaximal primes of
Rs. It follows that R p has pseudo-Dedekind factorization for each prime P.

Let A be a nonzero noninvertible ideal of the domain R/P. Then there is a
necessarily noninvertible ideal C of R such that A = C/P and C 2 P. Factor
C = HQQ>---Q,, with H invertible and the Q; pairwise comaximal primes.
Taking images modulo P produces a corresponding factorization of A = C/P.
Hence R/ P has pseudo-Dedekind factorization. O

Theorem 5.1.4. Let R be an integral domain with pseudo-Dedekind factorization.

(1) Each nonzero finitely generated ideal of R has a nontrivial inverse. Hence each
maximal ideal is a t-ideal.

(2) If M is a branched maximal ideal of R, then M is the radical of an invertible
ideal.

(3) If P < P’ are nonzero primes of R, then there is an invertible ideal C such
that P € C € P’. Moreover, for each g € P'\P, the ideal J :== gR + P is
invertible.

(4) If P is a nonzero nonmaximal prime of R, then P = P(R : P) is antesharp
and divisorial.

(5) R has the radical trace property.

(6) Each nonzero branched prime of R is sharp.

(7) R has strong factorization.

Proof. Let I be a nonzero finitely generated ideal of R. If [ is invertible, it has
a nontrivial inverse. If 1 is not invertible, then I is not invertible and is properly
contained in /. Hence there is an invertible ideal A # R and comaximal primes
Py, P, ..., P, such that I>=AP,Py---P,. Thus (R : I) : I) = (R : I?) D
(R : A) 2 R, and therefore (R : 1) 2 R. This proves (1).

For (2), let M be a branched maximal ideal of R, and let Q & M be an
M -primary ideal. Certainly, there is nothing to prove if Q is invertible, but if it
is not, it factors as Q = BM with B(# R) invertible, necessarily with v B = M.
Since M is maximal, B is M -primary.
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Let P C P’ be a pair of nonzero primes and let J := bh*R + P where
b € P'\P.Let N C P’ be a minimal prime of J and let Q := JRy () R. Then
Q is a proper N-primary ideal that (properly) contains P. If Q is not invertible,
Q = CN|N;---N, for some invertible ideal C and pairwise comaximal primes
Ni,N,,...,N,. If C is not contained in N, then QRy = NRy, a contradiction.
Hence P € Q € C € N C P’. Thus by Proposition 2.3.20, each (prime) ideal
that properly contains P blows upin (P : P) and for g € R\ P, the ideal gR + P is
invertible. It follows easily that P cannot be invertible in R. Hence it cannot be the
case that PP~ blows upin (P : P), and therefore PP~! = P. Also, P is divisorial
by Corollary 2.3.21(1). Thus (3) and (4) hold.

Let I be a nonzero noninvertible ideal and let I = BP; P,--- P, be a factor-
ization with B invertible and the P; pairwise comaximal primes. We may further
assume no P; is invertible, and thus by (4), P; Pi_1 = P;. Since the P; are pairwise
comaximal, Q := PPy P, = Py Py()++() P, with 0Q~! = Q. Since B
is invertible, /="' = B7'Q~! and hence II"' = QQ~' = Q is a radical ideal.
Therefore R has the radical trace property. Statement (6) is a consequence of (5)
and Theorem 2.4.10.

Finally, to see that R has strong factorization we continue with the
ideal I and its factorization as BP;P,---P,. As above, we have Q =
Py P2():+-() Pn = P\ P2--- P,, and therefore, again applying comaximality of
the P; (and the (P;)"), we have Q" = (P1P>--- P,)" = (P Py (.- P)' =
P'\Py(---P) = PPy---P. Each nonmaximal P; is divisorial, and if some
Pj is maximal, then either P; = P/ or P;’ = R. Thus Q" is simply the product of
those P; that are divisorial with Q¥ = R if no P; is divisorial. Since B is invertible,
1"=(BQ)"=BQ". Let{M,, M», ..., M} be the (possibly empty) set of maximal
P; that are not divisorial and let {Q, O, ..., O;} be the (possibly empty) set of
divisorial P;. Then Q¥ = Q0> --- Q; (= R, if there are no divisorial P;). We now
have I = BP1P2---Pn = BQ1Q2---QjM1M2---Mk = BQleMz---Mk =
I"M M, --- M. Hence R has strong factorization. |

Corollary 5.1.5. Let R be a domain with pseudo-Dedekind factorization.

(1) If P is a nonzero nonmaximal prime of R, then (R:P)=(P:P) and
J(P : P)=(P:P)foreachideal J 2 P.
(2) If N is a finitely generated nonzero prime of R, then N is maximal.

Proof. The statement in (1) follows from the fact that P is antesharp. For (2), if N
is a finitely generated nonzero prime of R, then (N : N) is contained in the integral
closure of R. Thus each maximal ideal of R that contains N survivesin (N : N). It
follows that N is a maximal ideal of R. O

Theorem 5.1.6. Let R be a local integral domain with pseudo-Dedekind factori-
zation. If some nonzero finitely generated ideal J of R is not invertible, then R is
not integrally closed, the maximal ideal M of R is two-generated and J = bM for
some b € R.
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Proof. Let M be the maximal ideal of R. If some nonzero finitely generated
ideal of R is not invertible, then there is two-generated ideal that is not
invertible [34, Theorem 22.1]. Assume I := (a, b) is a nonzero finitely generated
ideal that is not invertible. Then / = BP for some invertible ideal B and nonzero
prime P. As R is local, B = tR for some nonzero element 7. It follows that
P =(a/t,b/t) is two-generated (and not invertible). By Corollary 5.1.5(2),
P = M. For an arbitrary finitely generated noninvertible ideal J # (0), we
must have J = ¢gM for some ¢ and therefore J is two-generated as well.
Also, (J : J) = (M : M). Since M is finitely generated and not invertible,
R S (R: M) = (M : M)by Theorem 5.1.4(1). As the integral closure of R
contains (M : M), R is not integrally closed. O

Corollary 5.1.7. Let R be an integrally closed domain. If R has pseudo-Dedekind
factorization, then it is an h-local Priifer domain.

Proof. Assume R has pseudo-Dedekind factorization, and let M be a maximal
ideal of R. Then R, is integrally closed and has pseudo-Dedekind factoriza-
tion. Moreover, each nonzero finitely generated ideal of R, is invertible by
Theorem 5.1.6. Hence R, is a valuation domain. Therefore R is a Priifer domain.
By Theorem 5.1.4(7), R has strong factorization and must therefore be h-local
(Corollary 4.4.10). O

Theorem 5.1.8. Let R be an integrally closed domain. Then R has pseudo-
Dedekind factorization if and only if R is an h-local Priifer domain such that Ry
has pseudo-Dedekind factorization for each maximal ideal M .

Proof. Assume R has pseudo-Dedekind factorization. By Corollary 5.1.7 and
Theorem 5.1.4, R is an h-local Priifer domain such that R, has pseudo-Dedekind
factorization for each maximal ideal M .

For the converse, assume R is an /i-local Priifer domain such that Ry, has pseudo-
Dedekind factorization for each maximal ideal M. Let I be a noninvertible ideal
of R. Since R is h-local, I is contained in only finitely many maximal ideals, say,
M\, M>, ..., M,, and it has the same number of minimal primes Q1, Q2,..., Oy
with Q; € M;. Also, J = II" is a radical ideal of R (Theorem 2.4.12),
necessarily with J = Py P,--- P, (with m < n) where the P; are the (pairwise
comaximal) minimal primes of II~!. Each P; is contained in a unique M ;. Since
R is h-local, IRy, = (IRM)_1 for each maximal ideal M (Proposition 2.1.8).
Also, Theorem 5.1.6 yields that for each M;, I Ry, is either principal or a principal
multiple of a nonprincipal prime since Ry, has pseudo-Dedekind factorization. The
former occurs when 77! is not contained in M;, and the latter when I7~! is contained
in M;. Split the set {My, M, ..., M,} into two sets, the set {M|, M;,..., M } of
those M; that contain /7" (and the corresponding P;) and the (possibly empty) set
{N1,N», ..., N} of those M; that do not contain I '.In Ry, IRy = b; PiRyy
for some b; € R.If b; € M,.’ , then it has a unique (noniero) minimal primé
contained in M/ that is contained in no other maximal ideal. Hence there is a finitely
generated ideal B; € M/ such that B; R M = biR m; Where M, ! is the only maximal
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ideal that contains B;. In the event b; is not in M;, set B; := R. For each N;,
IRy, is principal and, as with the case b; € M/, there is a finitely generated ideal
C; € Nj, where C; Ry, = IRy;, with N; the only maximal ideal containing
C;. The ideal A := []; B; [, C; is invertible, and checking locally shows that
I = AP, P,--- P,. Hence R has pseudo-Dedekind factorization. |

5.2 Local Domains with Pseudo-Dedekind Factorization

In 1976, P. Eakin and A. Sathaye [17] introduced the notion of a prestable ideal as
an ideal I such that for each prime P of a ring R (not necessarily a domain), there
is a positive integer n such that /2" Rp = dI" Rp for some d € I". (Recall that a
stable ideal of a ring R (in the sense of [56]) is an ideal I such that for each prime
ideal P of R, I>?Rp =dIRp for some d € R; therefore a prestable ideal is an ideal
for which locally some power is stable, with the power allowed to vary from prime
to prime.) It is clear that [ is prestable if and only if /R, is prestable for each
maximal ideal M of R. If [ is finitely generated and contains an element that is not
a zero divisor, then it is prestable if and only if for each maximal ideal M, there is a
positive integer n and an element b € 1", suchthat 1" Ry, = b(I" Ry : 1" Ryy) (see
the proof of [17, Corollary 1]). We note that if /"Ry = b(I" Ry : I" Ryy), then
I*" Ry = bI"Ry;. Moreover, if d € I" is such that I?" Ry, = dI" Ry, then d/1
is not a zero divisor of Rys. Hence (1/d)I%*" Ry = 1" Ry, which implies I" Ry, C
d(I"Rpy : I"Ry) € I"Ryy. While [17, Theorem 2] is stated only for semilocal
domains, it holds for all integral domains—the integral closure of a domain R is a
Priifer domain if and only if each nonzero finitely generated ideal of R is prestable.

As we saw in Theorem 5.1.6 above, if R is a local domain with pseudo-Dedekind
factorization that is not integrally closed, then each finitely generated noninvertible
ideal is both two generated and a principal multiple of the (two-generated) maximal
ideal.

Lemma 5.2.1. Let R be an integral domain. If each two-generated ideal I of R
contains an element d such that d1 = 12, then the integral closure of R is a Priifer
domain.

Proof. Recall that if each two-generated ideal of a domain is invertible, then the
domain is Priifer [34, Theorem 22.1]. Denote by R’ the integral closure of R, let
J := fR’ + gR’ be a two-generated ideal of R’, and let I := pfR + pgR, where
p is a nonzero element of R that multiplies both f and g into R. By assumption,
there is an element d € I such that /> = dI = dpfR + dpgR. Then we have
(1/d)I-I = I.Thus (1/d)I < (I : I). Since I is finitely generated, (1 : I) € R’.
It follows that 1/d € (R’ : I) with d € I, and we have that pJ = IR’ = dR’
is an invertible ideal of R’. Hence J is invertible as an ideal of R’. Therefore R’ is
a Priifer domain. O

Recall from Proposition 2.4.1 that if / is a nonzero noninvertible ideal of
a valuation domain V/, then /™! is a prime ideal of V. The next two lemmas provide
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more detailed information about certain types of nonzero noninvertible ideals of
a valuation domain. The first was used in [15] to characterize which valuation
domains have the property that each nonzero noninvertible ideal / can be factored
as a principal multiple of a P-primary ideal Q where P = IT™".

Lemma 5.2.2. (Cahen-Lucas [15, Corollary 5]) Let I be a nonzero noninvertible
ideal of a valuation domain V, and let P := II"'. Then I = bQ for some b € V
and P-primary ideal Q if and only if there is an elementt € 1~" such thatt1 2 P’
for each prime P' < P.

Proof. Obviously, if I = bQ for some b € V and P-primary ideal Q, then b~' ¢
I~" with b~' = Q. Since V is a valuation domain, Q properly contains each
prime P’ that is properly contained in P.

For the converse, assume there is an element ¢ € [~} such that ¢/ 2 P’ for each
prime P’ € P. Since II''=P, I CPand Vil = P. Let ¢,d € V be such that
cd €tl withc € V\P.Thend € P.Ifd isnotin ¢/, then we have dV 2 ¢I and
therefore (1/d) € (V : tI). It follows that ¢ = c¢d/d € tIt])™ = 1" = P,
a contradiction. Hence d € ¢/, and therefore Q := t[ is P-primary. If 1 € V, then
eithertV 2 P or ViV = P; in either case, VI = P, and so the argument just
presented shows that / is P-primary. If ¢ is not in V/, then 1/t € V and we have

1=(1/1)0. O

We can say more when the prime P = II™! is such that P Vp is principal.

Lemma 5.2.3. Let I be a nonzero noninvertible ideal of a valuation domain V,
and let P := II"'. If PVp is principal, then there is an element b € V such that
I =bP.

Proof. Assume PVp = qVp with g € P. Then P = /qV. There is nothing to
proveif I = P, so we may assume / & P. Since the finitely generated ideals of V/
are all principal, there are elements w € I and y € I~ such that gV < wyV . For
each prime P’ € P, we have P’ € qV C yl. From the proof of Lemma 5.2.2, yI
is P-primary,and so yI = P andy ¢ V. Thus I = (1/y) P, necessarily with 1/y
inV. O

Recall from [43] that a local domain (R, M) is a pseudo-valuation domain
(or PVD) if (M : M) is a valuation domain (called the canonical valuation
overring of R) with maximal ideal M. A PVD R and its overring (M : M) have
the same set of prime ideals [43, Theorem 2.7]. Also, if R & (M : M), then
(M:M)=(R:M).

Theorem 5.2.4. Let R be a local domain that is not integrally closed and let M
be its maximal ideal and R’ its integral closure. Then R has pseudo-Dedekind
factorization if and only if R’ is a valuation domain with principal maximal ideal
M, R’ has pseudo-Dedekind factorization, and [R'/M : R/M| = 2.

Proof. Assume R has pseudo-Dedekind factorization. Then by Theorem 5.1.6, M is
two-generated and not invertible as an ideal of R. Moreover, each finitely generated
noninvertible ideal J of R has the form J = bM for some b € R and so J
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is two-generated. It follows that (J : J) = (M : M) for each such J. For an
invertible ideal I, (I : I) = R.Hence R’ = (M : M). Also R’ is Priifer domain
by Lemma 5.2.1.

We next show that R’ is local with maximal ideal M. For each unit u of R’,
uM = M, but for a nonzero nonunit # € R’, tM is properly contained M. Since
M is not invertible as an ideal of R, neither is tM . Hence tM = sM for some
s € M. It follows that (t/s)M = M and we have that t/s = w, a unit of R’.
Thus t = ws € M and we have that M is the maximal ideal of R’. As R’ is a
Priifer domain, it is a valuation domain and R is PVD, and R and R’ have the same
prime ideals. If  is not invertible in R’, then it certainly is not invertible in R, and
therefore / = bP for some b € R and prime P. Clearly, the same factorization is
valid in R’. Hence R’ has pseudo-Dedekind factorization.

Leta,b € R generate M as an ideal of R. Since M2 = pM for some p € M,
we have (1/p)M - M = M. Hence 1/p € (R’ : M) and we have aR + bR =
M = pR' witha/p,b/p € R'. It follows that R" = (a/p)R + (b/p)R. Hence
[R'/M : R/M]=2.

For the converse, assume that R’ is a valuation domain with principal
maximal ideal M = pR’ such that R’ has pseudo-Dedekind factorization and
[R'/M : R/M] = 2.Then thereis aunitq € R’ suchthat R" = R+¢R. Since M is
the common maximal ideal of R and R’, R is aPVD. It follows that M = pR+ pgR
is two-generated in R. Also, there are no R-modules strictly between R and R’.

Each nonzero ideal I of R is of one of the following three types: (i) I = IR’ is
not invertible as an ideal of R’, (ii) I = IR’ is invertible as an ideal of R’, and (iii)
I < IR’ (equivalently, I is not an ideal of R’).

As R and R’ have the same prime ideals, there is nothing to prove if I is a prime
ideal of R. Hence we assume that / is not prime.

Since R’ has pseudo-Dedekind factorization, if I = IR’ is not invertible as an
ideal R, then I = bP for some b € R’ and prime P. Since we have assumed [ is
not prime, b € M, and the factorization I = bP is of the desired type in R as well.

If I = IR’ is invertible as an ideal of R’, then I = bR’ for some b € I. Since
I is not prime, it is properly contained in M = pR’. Hence b/ p € M and we have
I =pb/p)R = (b/p)M withb/p € R.

The remaining case is when [ is properly contained in I R’. Since R’ = R + ¢R,
it must be that ¢/ is not containedin /. Let f, g € I with g/f € M.Thenqg/f €
M, and therefore qg = f(qg/f) € I. Thusif f € I is such that ¢f ¢ I, then
we have IR = fR and fR € I € fR' = fR + fqR since R = R + qR.
Multiplying by 1/ f yields R € (1/f)I < R’. As there are no R-modules properly
between R and R’, we have (1/f)I = R and therefore I = fR is a principal ideal
of R. It follows that R has pseudo-Dedekind factorization. O

Corollary 5.2.5. Let V be a strongly discrete valuation domain with (principal)
maximal ideal M such that [V /M : F]| = 2 for some subfield F S V /M. Then the
pseudo-valuation domain R that results from taking the pullback of F over M has
pseudo-Dedekind factorization.
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Proof. Since V is a strongly discrete valuation domain, if / is a nonzero nonin-
vertible ideal of V, then I(V : I) = P is prime and there is an element b € V
such that / =bP (Proposition 2.4.1 and Lemma 5.2.3). Hence V' has pseudo-
Dedekind factorization. That R has pseudo-Dedekind factorization follows from
Theorem 5.2.4. O

For a simple example, the rings R := Q + XQ[v/2][[X]] € R’ = Q[v2][[X]]
are local with pseudo-Dedekind factorization.

Our next goal is to characterize which valuation domains have pseudo-Dedekind
factorization. We again make use of the fact that a valuation domain V has the
trace property (Proposition 2.4.1). In fact, if P is prime and Q is a noninvertible
P-primary ideal, then it is not difficult to see that Q Q~' = P. It follows that if
J =1tQ forsomet € V,then JJ~! = P also.

Lemma 5.2.6. Let V be a valuation domain with pseudo-Dedekind factorization.
If P is a nonmaximal prime of V', then PVp is principal in Vp.

Proof. Let P be a (nonzero) nonmaximal prime of V, and let I := ¢gVp, where ¢
is a nonzero element of P. Then I(V : I) = qVp(V : qVp) = Vp(V : Vp) =
PVp = P. Thus I is a noninvertible ideal of V. Since V' has pseudo-Dedekind
factorization, we have I = rP forsome r € V.Hence gVp =1 =rP = rPVp,
and P Vp is principal. O

The next theorem characterizes which rank one valuation domains have pseudo-
Dedekind factorization.

Theorem 5.2.7. Let V be a rank one valuation domain with corresponding value
group G. Then V has pseudo-Dedekind factorization if and only if G is isomorphic
to either Z or R.

Proof. Obviously, a discrete rank one valuation domain has pseudo-Dedekind
factorization. Thus we need consider only the case where the maximal ideal M of
V is idempotent. We may then consider the value group G to be a dense subgroup
of R.

First, suppose V' has pseudo-Dedekind factorization, and let « be a positive real
number. Also, let 4 := {a € G* | @ < a}|J{oo}. Since G is dense in R, @ =
inf{a € A}. Now, let v denote the corresponding valuation, and set I := v~!(A).
Then [ is not a principal ideal of V, so by pseudo-Dedekind factorization, I = bM
for some element b € M. For ¢ := bm,m € M, we have v(b) < v(c) = v(b) +
v(m). As m may be chosen with arbitrarily small positive value, it must be that
v(b) = a. Hence G = R.

For the converse, assume G = R and let J be a nonzero noninvertible ideal
of V. Then (continuing to denote the valuation by v) the set C := v(J) contains
no minimum value but does have an infimum f. Since G = R, there is an element
b € V with v(b) = f. It follows that / = bM, and therefore V' has pseudo-
Dedekind factorization. O
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For a prime ideal P of a valuation domain V/, the intersection of the P-primary
ideals is a prime ideal P, that contains every prime that is properly contained in P.
Obviously, Py & P if and only if P is branched. We shall continue to use this
notation for the rest of this chapter.

Corollary 5.2.8. Let V be a valuation domain with pseudo-Dedekind factorization.
If the maximal ideal M is branched but not principal, then V /M, is a rank one
valuation domain whose value group is (isomorphic to) R.

Proof. Since M is branched, My € M and V /M, is a rank one valuation domain.
By Lemma 5.1.3, V/ M, has pseudo-Dedekind factorization, and it is clear that
M /M, is branched but not principal. Thus the value group of V /M, is isomorphic
to R by Theorem 5.2.7. O

Theorem 5.2.9. Let V be a valuation domain whose maximal ideal M is branched.
Then V has pseudo-Dedekind factorization if and only if P Vp is principal for each
nonmaximal prime P and either M is principal or the value group of V/ M, is
(isomorphic to) R.

Proof. If V has pseudo-Dedekind factorization, then P Vp is principal for each
nonmaximal prime P (Lemma 5.2.6). Also, by Corollary 5.2.8, either M is principal
or the value group of V/ M is R.

For the converse, let I be an nonzero noninvertible ideal of V', and set Q := II -1
If QVy is principal, then I = tQ for some ¢t € V by Lemma 5.2.3. So, the only
case we need consider is when Q = M and P Vp is principal for each nonmaximal
prime P but V /M, has value group isomorphic to R. Since M is branched, it is the
radical of a principal ideal sV . Thus there are elements d € I and y € I~! such that
dyV 2 sV 2 M,. It follows that y[ is an M -primary ideal of V. As noted above,
(yI)(yI)™' = II'" = M. Hence we may assume / is an M -primary ideal, in
which case, I 2 M. Moreover, [ ~' /My = (I/My)~". Thus (1/Mo)(I1/My)~" =
II"'/My = M/M,. By Theorem 5.2.7, I /| My = bM /M, for some b € V\ M, and
therefore I/ = bM . Hence V' has pseudo-Dedekind factorization. O

We say that a valuation domain V' is principally complete if whenever there are
two families of nonzero elements {b, }ye oy and {c, }4er and a corresponding family
of primes { P, }4ey With o7 totally ordered such that forall @ < B in &

(i) by € Py,
(i) bV S bgV CcpgV C oV,
(iil) by/cq € V\ Py, and
(iv) Py € Pg with P := | P, an unbranched prime,

then there is an element ¢ € V such that b,V C ¢V C ¢,V foralla € .
Note that when such an element ¢ exists, then (by/cy)V C (by/c)V S V for all «.
Thus by (iii), by /c € V\ P, for all .

Theorem 5.2.10. The following statements are equivalent for a valuation domain
V' with unbranched maximal ideal M .
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(i) 'V has pseudo-Dedekind factorization.

(ii) PVp isprincipal in Vp for each nonmaximal prime P of V and, for each ideal
I with II”" = M, there is an elementt € 17" such tI 2 P for each prime
PCM.

(iii) 'V is principally complete and PVp is principal in Vp for each nonmaximal
prime P of V.

Proof. By Lemma 5.2.6, if V' has pseudo-Dedekind factorization, then PVp is
principal for each nonmaximal prime P. If I is such that II™! = M, then I must
factor as I = pM for some element p € V. It is clear that 1/p is in /~! with
(1/p)I = M 2 P for each nonmaximal prime P. Therefore (i) implies (ii).

We next show that (ii) implies both (i) and (iii). Assume (ii) holds and let / be
an nonzero noninvertible ideal with the prime ideal P := II"! properly contained
in M. Then P is branched and P Vp is principal. Thus / = bP for some b € V by
Lemma 5.2.3. If J is a nonzero noninvertible ideal with JJ ! = M and J M,
we have an element 1 € J~! such that tJ 2 Q for each prime Q & M. Since
M is unbranched, it is the union of the nonmaximal primes. Hence tJ = M, and
therefore J = (1/¢)M with 1/¢ € V. Thus V has pseudo-Dedekind factorization.

To see that V' is principally complete, let B := {by}yecors C := {Cq}aco, and
{Py}qcoy be as in the definition above. Let / be the ideal generated by the set B.
A consequence of condition (ii) of the definition is that b, /¢, € V foralla, y € &
Hence ¢, ' € 17! for each . It follows that /™! properly contains each P, and thus
n'o>p= \J Py Since M is the only unbranched prime of V', we either have
m'=vorll™' =M.

If I™' = V, then I is principal. We then have / = b,V for some b, € B.
Obviously, b,V € b,V C ¢,V for each «, and we may take ¢ := b, to satisfy the
requirements of the definition in this case.

If 11" = M, then I = ¢M for some ¢ € V since V has pseudo-Dedekind
factorization. In this case, 1/c € [ —Land b,V C ¢V for each «. Since [ is not
invertible, (1/c,)I € M, and therefore cM = I C c,M.As M~ =V, we have
¢V C ¢,V for each @. Thus V is principally complete.

All that remains is to show that (iii) implies (ii) (or (i)). For this, all we need
prove is that if / is an ideal such that II™' = M, then I = ¢M forsomec € V.
Let P be the minimal prime of /. Since M is unbranched, if P = M, then we
also have / = M. Thus we may assume P & M. Let {Q,} denote the set of
nonmaximal primes that properly contain P. Then | J Q, = M. Since =M,
1V, is invertible and therefore principal in Vo, .

Each O, has an immediate predecessor, but there may be some with no
immediate successor. So the first step is to reduce the full set {Q,} to the set of
those primes O, that do have an immediate successor. Denote this set/family as
{Py}neer. For each P,, denote its immediate successor as P, . For each P,, the
ideal IV p, is principal in Vp, asis Py Vp,.

Let p, € P, be such that p,Vp, = P,Vp,. Next let b, € I be such that
b, Vp,,, =1Vp,,,.Setby := b} py+1.Since py+yisaunitin Vp, and Vp, | S Vp,,

=
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baVPu :b(;VPH :IVPM but banu_H _'C,_IVPH_,’_I. Also, for o < ,3, bq VPﬁ - bﬁVPﬂ
and bgVp, = IV p, since Vp, 2 Vp,. It follows that b, V' S bgV'.

Next, let ¢, := b}/pa+1. In Vp, ., caVp,,, properly contains b, Vp,
IVp,,, . Hence ¢, is not in I. On the other hand, for @ < B, cgVp, = bgVp, =
boVp, = IVp, S caVp,. Thus b,V S bgV S cgV S ¢,V foralla < B. Also
by/cq = P§+1 € V\P,.

Thus the families B = {by}ycer, C = {co} and {Py}ac.r satisfy conditions
(1)—(@v). Hence there is an element ¢ € V such that b,V < cV < ¢,V and b, /c €
V\ Py for each a. Since M = | J Py, it must be that ¢ ' = M, and therefore
I =cM. O

In the next example we construct a valuation domain which has both an
unbranched maximal ideal and pseudo-Dedekind factorization. For such a valuation
domain V, if R & V is pseudo-valuation domain with the same maximal ideal, then
R does not have pseudo-Dedekind factorization (Theorem 5.2.4).

Example 5.2.11. Let V be a valuation domain with corresponding value group
G := []°2, G, under complete lexicographic order with G, := Z for each n.
By [15, Theorem 7], each nonzero noninvertible ideal I/ factors as a principal
multiple of a primary ideal. We also have that each nonmaximal prime ideal P
of V' is such that P Vp is principal in Vp. It then follows from Lemma 5.2.3 that
has pseudo-Dedekind factorization. However, the maximal ideal M is not principal.
Indeed, M = Un P,, where the P, are the nonzero nonmaximal primes of V.

Lemma 5.2.12. Let P € N be a pair of nonzero primes of a domain R. IfbR 2 P
foreachb € N\P, then P = (\{bR | b € N\P}.

Proof. Clearly, if bR 2 P foreachb € N\P,then P C (\{bR | b € N\P}. To
achieve equality, simply note that if 7 € N\ P, then >R < tR. Thus if s € ({hR |
b e N\P}, thens € P. O

Theorem 5.2.13. Let R be an integral domain with pseudo-Dedekind factorization.
Then the integral closure R’ of R is an h-local Priifer domain with pseudo-Dedekind
factorization. Moreover, each maximal ideal M of R is contained in a unique
maximal ideal M' = MR’ of R', Ry is a PVD with pseudo-Dedekind factorization,
and the canonical valuation overring of the PVD Ry is R),, = R}, with common
maximal ideal MRy = M'R),,,.

Proof. Let M be a maximal ideal of R. Then R); has pseudo-Dedekind factoriza-
tion (Lemma 5.1.3). Hence by Theorem 5.2.4, Ry, is a pseudo-valuation domain
whose integral closure, Rju, is a valuation domain with maximal ideal M Rju. As
each maximal ideal of R’ that lies over M extends to a maximal ideal of Rﬁ,[, each
maximal ideal of R is contained in a unique maximal ideal of R’. In particular, for
M € Max(R), M’ = MR, (\ R’ = MR’ is the unique maximal ideal of R’ that
lies over M . Since each maximal ideal of R’ lies over a maximal ideal of R, R’ is a
Priifer domain.

We next show that each nonzero nonmaximal prime of R is contained in
a unique maximal ideal. By way of contradiction, suppose there is a nonzero
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nonmaximal prime P of R that is contained in distinct maximal ideals M and N.
For S := R\(M |JN), Rs has pseudo-Dedekind factorization and exactly two
maximal ideals MRg and NRg both containing PRs. Hence we may reduce to
the case that R has exactly two maximal ideals. Since both Rjs and Ry are pseudo-
valuation domains, we may further assume that P is maximal with respect to being
contained in both M and N. Thus P compares with each prime of R. Also, for each
be R\P,(1/b)PRy = PRy and (1/b) PRy = PRy.Hence bR 2 P.

Since Rj, is a pseudo-valuation domain, Rp is a valuation domain with PRp
principal. Thus P = +/dR for some element d € P with PRp = dRp. Consider
the ideal I := dRys () R. For each ¢ € N\M, we clearly have d/c € dRy, but
also d/c € P from above. Thus since d/c € I\dR, I 2 dR. Also, for f € M\ P,
while d/f isin P, itisnotin /. Thus dR & I € P. The ideal I is generated by
the set {d/c" | ¢ € N\M} and certainly no element in this set can generate /Ry .
Hence I Ry is not principal, and therefore / is not invertible as an ideal of R.

Potentially, there are four ways I might factor as the product of a principal ideal
hR and pairwise comaximal primes (or a single prime):

() I =hP,

2) I =hQ where P S Q € M,

(3) I = hQ’ where P € Q' € N, and/or

4 I =hQQ' whereP S QCMand P S Q' CN.

In the first, I = P; and in the other three, II™' 2 P.If I = hP with
h ¢ P, then (checking locally) we have I = P, a contradiction. On the other
hand, if / = hP with h € P, then we have IRp & PRp = dRp = IRp, again
a contradiction. To eliminate the other three factorizations consider an element ¢ €
I7'.Thenr :=td € R.Thusforeachc € N\P,wehavetd/c =r/c € R, putting
r € ({cR|c € N\P} = P by Lemma 5.2.12. Hence none of the factorizations
are valid. Therefore it must be that each nonzero prime of R is contained in a unique
maximal ideal (of R).

Let P’ be a nonzero nonmaximal prime of R’ and let P := P’ R. Since P is
contained in a unique maximal ideal of R, which in turn is contained in a unique
maximal ideal of R’, P’ must be contained in a unique maximal ideal of R’.

Let P’ be a nonzero branched prime of R’, and let P := P’'(\R.If P/ is a
maximal ideal of R’, then Rp is a pseudo-valuation domain with maximal ideal
PRp = P'R’,,. Thus P is a branched maximal ideal of R. By Theorem 5.1.4, such
a maximal ideal is the radical of an invertible ideal. Hence P’ is the radical of an
invertible ideal of R'. If, instead, P’ is not maximal, then Rp = R’,,. Hence, again,
P is branched and by Theorem 5.1.4(7), Rp does not contain @(P). As @(P’)
contains @(P) (and Rp = R',/), P’ is a sharp prime of R’. Therefore R’ has the
radical trace property (Theorem 2.4.10). By Theorem 2.4.12, R’ is an h-local Priifer
domain. Also, R’ has pseudo-Dedekind factorization by Theorem 5.1.8. O

A domain R such that Ry is a pseudo-valuation domain for each maximal ideal
M is said to be a locally pseudo-valuation domain [16]. Thus a necessary condition
for R to have pseudo-Dedekind factorization is for it to be a locally pseudo-valuation
domain.
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Corollary 5.2.14. Let R be an integral domain. Then R has pseudo-Dedekind
factorization if and only if it is h-local and Ry has pseudo-Dedekind factorization
for each maximal ideal M .

Proof. By Theorem 5.1.8, there is nothing to prove if R is integrally closed, so we
assume it is not.

Assume R has pseudo-Dedekind factorization. Then Rj; has pseudo-Dedekind
factorization for each maximal ideal. Also, from the proof of Theorem 5.2.13, each
nonzero prime of R is contained in a unique maximal ideal (of both R and R’).
Since each nonzero nonunit of R’ is contained in only finitely many maximal ideals
of R’, the same occurs for each nonzero nonunit of R. Hence R is h-local.

For the converse, assume R is -local and Ry, has pseudo-Dedekind factorization
for each maximal ideal M. Let I be a nonzero noninvertible ideal of R. Then
I is contained in only finitely many maximal ideals, M, M,,..., M,. Also,
Proposition 2.1.8 assures that, for each maximal ideal M, I"'Ry = (IRy)™!
(equal to R, except possibly for M = M; for some 7). It follows that since [ is
not invertible, there is at least one M; such that /Ry, is not invertible. Renumber if
necessary to have {M,, M>, ..., My} be the set of those M; such that /Ry, is not
invertible and {Mj 1, ..., M,} be the (possibly empty) set of M; where IRy, is
invertible. For each M; € {M;, M, ..., My}, there is an invertible ideal A; and
prime P; € M; such that IRy, = A; PiRy, since Ry, has pseudo-Dedekind
factorization. Using finite character, we may further assume that M; is the only
maximal ideal that contains A;. Since R is h-local, M; is the only maximal ideal that
contains P;. For M; € {Mj1,..., M,}, all we need is an invertible ideal B; € M
with /Ry; = Bj;Ry; and with M; the only maximal ideal containing B;. Let
A :=1]; 4; and B := ]_[j Bj (= R, if k = n). Checking locally, we see that
IRy = ABP; P, --- P, Ry for each maximal ideal M, sothat /| = ABP,P,--- P.
Therefore R has pseudo-Dedekind factorization. O

5.3 Strong Pseudo-Dedekind Factorization

For a nonzero ideal / of an integral domain R, a special factorization of I is a
factorization I = BP;P,--- P, with B a finitely generated ideal of R (possibly
with B = R) and Py, P», ..., P, primes with n > 1. We then say that the domain
R has special factorization if each nonzero ideal of R has a special factorization.
Clearly, a ZPUI-domain, e.g., a domain with strong pseudo-Dedekind factorization,
has special factorization.

It is not completely trivial that special factorization is preserved with regard to
quotient ring formation. One must do some work to guarantee there is a factorization
of a nonzero ideal of Rg that contains at least one prime of Ry.

Lemma 5.3.1. Let R have special factorization. Then

(1) R/P has special factorization for each nonmaximal prime P of R, and
(2) Rs has special factorization for each multiplicative set S of R.
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Proof. Let P be a prime and let / 2 P. Then there is a finitely generated ideal
J and prime ideals Py, P5,---, P, such that I = JP, P,--- P,. Moding out by P,
we obtain the factorization I /P = (J/P)(P,/P)(P,/P)---(P,/P)in R/P.

Let S be a multiplicative set in R and 7 an ideal such that 7 (| S = @. There is
no problem if there is a factorization of I as JP| P, --- P, with J finitely generated
and P; (S = @ for at least one i. On the other hand, if each P; has a nonempty
intersection with S, then J (S = @, IRs = JRs and P;Rs = Ry for each
P;.Let H := IRs(\R. Factor H = BQ0,---Q,, with B finitely generated
and Q4, Q2,...,Q, primes. Then IR = HRs = BQ10,--- 0, Rs. If each Q;
blowsup in Rg, then BRs = HRgs whichimplies B = H = BQ 0, Q,,. Since
B is finitely generated, this is impossible (by Nakayama’s Lemma). Hence at least
one Q; survives in Rg and I Ry has a special factorization in Rg. O

The first theorem makes use of Lemma 3.1.6 to show that at least some maximal
ideals in a domain with special factorization have properties similar to those in a
domain with property («) (i.e., those domains where each primary ideal is a power
of its radical, see Sect. 3.1).

Theorem 5.3.2. Let R be a local domain such that the maximal ideal M is the
radical of finitely generated ideal. If R has special factorization, then M is principal
and P := (), M" is a prime that contains each nonmaximal prime and is properly
contained in M.

Proof. By Lemma 3.1.6, it suffices to show that {M*} is the complete set of
M -primary ideals. We first show that M is finitely generated.

Let 7 be a finitely generated ideal with VI = M. Then without loss of generality,
we may assume I # M. Thus I = JM* for some finitely generated ideal J of R
and positive integer k. If M = M?, then IM = JM**! = JM* = I which gives
a contradiction by Nakayama’s Lemma. Thus M # M?2.

Next, let 7 € M\M?. Then Q := rR + M? is M -primary and Q = AM/ for
some finitely generated ideal A and some positive integer j. Clearly, we must have
j=1land A= R Hence M = rR + M?>.

Consider the ideal B := rR + I. Then, clearly, M is the radical of B and M 2
does not contain B. By special factorization, B = C M/ for some finitely generated
ideal C and some positive integer j. Since B is not contained in M2, it must be that
C =Randj = 1;ie., B = M.Thus M is finitely generated.

Next, suppose Q; is a proper M -primary ideal. Then Q; = A, M*' for some
integer k| > 1 and finitely generated ideal A;. Since M is finitely generated, there
is a smallest integer j such that Q; D M/. Thus k; < j.If A, is not R, then it
is M -primary and has a factorization A; = A, M*> with A, finitely generated and
k, > 1 and necessarily with k; + k, < j. Eventually, this process must stop and
yield Q; = M~A+ht=+ki — A Thus {M"} is the complete set of M -primary
ideals. O

In the next theorem, we show that the assumption that M is the radical of finitely
generated is superfluous, but to prove this we will make use of Theorem 5.3.2.
The proof is adapted from the proof of [68, Theorem 2.3].
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Theorem 5.3.3. Let R be a local domain with maximal ideal M. If R has special
factorization, then M is principal.

Proof. Assume R has special factorization, and by way of contradiction, suppose
that M is not principal. For a nonzero element t € M, the ideal fR factors as
the product of a finitely generated ideal J and prime ideals Py, P,, ..., P,. Since
tR = JPP,--- P,isinvertible and R is local, J and each P; is principal. It follows
that M is the union of the principal primes of R.

Now, let P = pR be a nonzero principal prime of R, and let Q be a prime
minimal over ¢R + pR for some g € M\ P. Then QR is the radical of the finitely
generated ideal gRp + pRo. Since Ry has special factorization by Lemma 5.3.1,
ORy is principal (by Theorem 5.3.2), which gives a contradiction as it properly
contains the principal prime PR. Hence it must be that M is principal. O

Corollary 5.3.4. If R is a domain with special factorization, then PRp is principal
for each nonzero prime P.

Proof. This follows from Theorem 5.3.3 in view of Lemma 5.3.1. O
The following result is immediate.

Corollary 5.3.5. Let R be a domain with special factorization. Then for each
maximal ideal M, {M"} is the set of M -primary ideals, M" # M™ forn # m
andrR + M" = M for eachr € M\M?>.

Combining Corollary 5.3.4 with the following general lemma leads to a simple
proof that a domain with special factorization is a Priifer domain.

Lemma 5.3.6. Let P be a nonzero prime of a domain R. If there is a finitely
generated ideal I such that P is minimal over II”", then PRp is not principal.

Proof. By way of contradiction, assume PRp is principal and P is minimal over
ITI! for some finitely generated ideal /. Let p € P be such that pRp = PRp.
Then p"Rp = P"Rp for each n > 1 and these are the only PRp-primary
ideals. Thus there is a positive integer k and a finite subset H C I~' such that
HIRp = p*Rp.Then p*HIRp = Rp. Since HI is a finitely generated ideal
of R, there is an element € R\ P such that zp™®* HI C R is not contained in P.
As tp_kH C I', we have a contradiction. O

Theorem 5.3.7. Let R be an integral domain. If PR p is principal for each nonzero
ideal P of R, then R is a Priifer domain. In particular, if R has special factorization,
then R is a Priifer domain.

Proof. By Lemma 5.3.6, if some nonzero finitely generated ideal is not invertible,
then there is a nonzero prime P such that PR p is not locally principal. O

As noted by Olberding in [68, Lemma 2.1], a factorization of an ideal
I =J0,0,- -0, in a Priifer domain with 9, Q,,..., Q,, prime (and m > 1),
can be transformed into a factorization of the form I =JP/'P)*>--- P/" with
Py, Py, ..., P, pairwise comaximal primes and each r; a positive integer.
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Corollary 5.3.8. Let R an integral domain. Then R has special factorization if and
only if each nonzero ideal I can be factored as I = JP['P,*--- P} for some
invertible ideal J and pairwise comaximal primes Py, P, ..., P,.

Proof. If R has special factorization, it is a Priifer domain by Theorem 5.3.7. Thus
if P and Q are primes with P & Q, then QP = P. Also, a pair of prime ideals is
either comparable or comaximal. Hence any factorization of a nonzero ideal / can
be “reduced” to include only powers of pairwise comaximal primes, and the finitely
generated factor is invertible. O

We next show that if R has special factorization, then each nonzero nonmaximal
prime is both sharp and contained in a unique maximal ideal.

Theorem 5.3.9. If R is a (Priifer) domain with special factorization, then each
nonzero nonmaximal prime is both sharp and contained in a unique maximal ideal,
which is invertible.

Proof. Let P be nonzero nonmaximal prime, and let M be a maximal ideal that con-
tains P. Since R is a Priifer domain, P~ = (P : P)isaring (Theorem 2.3.2(3)). By
Corollary 5.3.4, we may write PRp = aRp forsomea € P.Let J := aRy [\ R.
Since R has special factorization, J = AQ{' Q3 --- Q! for some invertible ideal 4

and pairwise comaximal prime ideals Q1, O, ..., O, by Corollary 5.3.8. Since A
is finitely generated, it properly contains J, and therefore aRy & ARy . It follows

that exactly one of the Q; is contained in M, say Q. Then JRy; = AQ;l Rjs and,
moreover, /] € AQ|' € AQT'Ry (VR = JRy (R = J.Thus J = AQ}". As
both AQIl Ry = JRy = aRy and MRy are invertible, we have O = M and
J = AM" (withr = ry).

For the remainder of the proof, we make free use of Theorem 2.5.2. There are
two possibilities for JV. If M is invertible, then J = JV is invertible, and if M
is not invertible, then (M")" = R and J" = A. Thus no matter what we know
about M, J" is invertible. A consequence of this is that J ! is not a ring. On the
other hand, P~ ! is a ring that is contained in J ~1, so it cannot be the case that
JV = PV. Hence P is sharp by the contrapositive of Theorem 2.5.2(1). Thus there
is a finitely generated ideal B with /B = P and JRy = BR);. For such an ideal
B, J" = B(P’ : P’) where P’ is the largest prime contained in all maximal ideals
that contain P. Since B € P’ and Max(R, P) = Max(R, P’), P’ is sharp. If P’
is properly contained in M, then J~' = B~!P’. Since J" is invertible, we would
thenhave R = J"J~! = J"B~' P/ and then P’ would be an invertible nonmaximal
prime of a Priifer domain, which is impossible. Hence P’ = M and M is both sharp
and the only maximal ideal that contains P. As M Ry is principal, M is invertible.

O

Corollary 5.3.10. If P is a nonzero nonmaximal prime of a (Priifer) domain R with
special factorization, then there is an invertible ideal B & P such that JVB=P ,
BRp = PRp and P" = B""' P for each integer n > 1. Moreover, P" is divisorial
foreachn > 1.
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Proof. Such an invertible ideal B exists since PRp is principal and the radical of
a finitely generated ideal. Simply, let r € P be such thatrRp = PRp andlet I be a
finitely generated ideal with /1 = P.Then B := rR+1I clearly satisfies /B = P
and BRp = PRp. The statement that P" = B"~!' P comes from checking locally.
Finally, P is divisorial by [24, Corollary 4.1.12] and hence P" = B"~!'P is also
divisorial. O

Corollary 5.3.11. If R is a (Priifer) domain with special factorization, then it also
has weak factorization.

Proof. By Theorems 5.3.7 and 5.3.9, R is a Priifer domain, and each nonzero
nonmaximal prime is both sharp and contained in a unique maximal ideal, and this
maximal ideal is invertible. Let / be a nonzero ideal and let / = BP|' P,*--- P"
be a factorization into a product of an invertible ideal B and pairwise comaximal
primes Py, P, ..., P,. If P; is either a nonmaximal prime or an invertible maximal
ideal, then P/’ is divisorial (the first case following from Corollary 5.3.10). The
only other possibility is that P; is an unsteady height one maximal ideal. Split
the set { Py, Py, ..., P,} intodisjointsets {Q1, Q2,..., Ot and {M, M>, ..., M}}
where the Q; are divisorial and the M; are unsteady (height one) maximal ideals.
Rewrite the factorization as I = BQ} Q3 -+ Q% M['M}*--- M]* (perhaps with
R=][[, 0/ orR=1]J; M;j in the event none or all of the P;’s are divisorial). As
B is invertible and the P;’s are pairwise comaximal, /" = B([]; Q;' [] i M;j ) =

B(1,(0)")" = B(N; 2})" = B(N; }") = BI1Q}". Thus I = I'[], M.

Therefore R has weak factorization. O

Lemma 5.3.12. If R is a (Priifer) domain with special factorization, then each
overring has both special factorization and weak factorization.

Proof. Assume that R has special factorization, and let 7" be an overring of R.
By Corollary 5.3.11, it suffices to prove that 7" has special factorization. Let J
be a nonzero ideal of 7. Then J =1IT, where I := J [\ R. Factor I as [ =
AP\ P,--- P, with A invertible and P, P,,..., P, primes of R, not necessarily
distinct but with n > 1. Since A is invertible, it properly contains /. Hence AT
properly contains I T = J. It follows that at least one of the primes P; survives in
T and therefore extends to a prime of 7. Renumber if necessary to have P;T # T
forl1 <i <mand P;T =T form < j (possibly with m = n). The factorization
J = AP\ P,--- P, T has AT invertible and prime ideals P, T, P,T, ..., P, T, with
m>1. O

Theorem 5.3.13. The following statements are equivalent for an integral
domain R.

(i) R has special factorization.
(ii) R is an h-local generalized Dedekind domain.
(iii) R has strong pseudo-Dedekind factorization.
(iv) R has pseudo-Dedekind factorization, and each maximal ideal of R is
invertible.
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Proof. Tt is clear that (iii) implies (i). It is almost as clear that (iv) implies (iii).
The factorization of a nonzero noninvertible ideal is taken care of by pseudo-
Dedekind factorization. For an invertible ideal B, we have B € M for some
maximal ideal M. Then BM ! is invertible (equal to R if B = M) and B =
(BM~")M since M is invertible. Hence (iv) implies (iii).

To see that (i) implies both (ii) and (iv), first recall from Theorem 5.3.13 and
Corollary 5.3.4 that a domain with special factorization has weak factorization and
no nonzero idempotent primes. The main step in this proof is to show that R has
no unsteady maximal ideals. By way of contradiction, assume M is an unsteady
maximal ideal. By finite unsteady character (Theorem 4.2.10), there is a finitely
generated ideal / that is contained in M and no other unsteady maximal ideal.
Since Spec(R) is treed and each nonzero prime is contained in a unique maximal
ideal (Theorem 5.3.9), I must have infinitely many minimal primes other than M.
By Lemma 4.3.6, the maximal ideals of @ (/) are all extended from minimal primes
of I in R. Also, since @(7) has both special factorization and weak factorization
(Lemma 5.3.12), we may assume R = ®(I) with /7 the Jacobson radical of R.
Let {M,} be the other minimal primes of /. Then each M, is an invertible maximal
ideal of R, and there are infinitely many such ideals (otherwise, the original M is
the radical of a finitely generated ideal).

Let J be the Jacobson radical of R and factor it as J = CM M, --- M, with
C invertible and M, M,, ..., M, maximal ideals of R. Since J is a radical ideal
and no maximal ideal is idempotent, the M; are distinct. Note that since M is the
only maximal ideal that is not sharp, J is the intersection of the invertible maximal
ideals (by Theorem 2.5.10). If J is not invertible, then we may assume M| = M and
n = 1, but this puts C in each invertible maximal ideal and we have C = J = CM,
which is impossible as C is invertible. Thus J is invertible and M is not one of
the M;.

As Max(R) is an infinite set, we may partition Max(R)\{M } into two infinite
sets {0, } and {Ng}. Let Q := (), Q) and N := (4 Ng. By Theorem 2.5.6,
no Ng contains Q and no Q, contains N. Thus both properly contain J. On the
other hand, each Q, is invertible and minimal over Q and each Ng is invertible and
minimal over N. Also, by Lemma 2.5.1,no Ng survivesin thering I"(Q) andno Q,
survives in I'(N). Since I'(Q) has infinitely many invertible maximal ideals, each
minimal over the Jacobson radical, it must have at least one noninvertible maximal
ideal (Theorem 2.5.11). The only possibility is M I"(Q). Moreover, MI'(Q) is
the unique noninvertible maximal ideal of I"(Q). Similarly, M I"(N) is the unique
noninvertible maximal ideal of I"(N). Therefore M must contain both Q and N
(Lemma 2.5.1). But, as with J, both Q and N are invertible, otherwise, Q = AM
and/or N = BM for invertible ideals A ﬂy 0, and/or B € s Ng. Obviously,
M is the only prime ideal that contains Q 4+ N, but Q + N is the sum of two
finitely generated ideals which would make M sharp, a contradiction. Hence R has
no unsteady maximal ideals. Thus by Theorem 4.4.8, R is an h-local Priifer domain
such that each maximal ideal is invertible.

To see that R has pseudo-Dedekind factorization, revisit the proof that a domain
with special factorization has weak factorization (Corollary 5.3.11). For the ideal
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I = BPlr 'P">... P with B invertible and the P; pairwise comaximal, each P;
is a sharp prime that is not idempotent. Hence for each P; there is an invertible
ideal E; with /E; = P; and P;Rp, = E;Rp,. It follows that P/" = E/'"'P;.
Substituting into the original factorization, we have I = BEP, P, --- P, with both
Band E :=[], E] i~!invertible. Thus R has pseudo-Dedekind factorization.

There are several ways to conclude that R is also a generalized Dedekind domain.
For example, PRp is principal for each nonzero prime P, but P is sharp (so the
radical of a finitely generated ideal). So, R is a generalized Dedekind domain by
Theorem 3.3.2. For an alternate proof, use pseudo-Dedekind factorization to see
that each divisorial ideal factors as the product of an invertible ideal and a finite
product of pairwise comaximal primes. Each nonzero prime is divisorial, and thus
so is an arbitrary finite product of comaximal primes. Apply Theorem 3.3.6 to see
that R is a generalized Dedekind domain.

To finish the proof, we show that (ii) implies (iv). Suppose R is an &-local gen-
eralized Dedekind domain. From the generalized Dedekind assumption, each PR p
is principal for each nonzero prime P and each such P is sharp (Theorem 3.3.2).
In particular, each maximal ideal is invertible. For each maximal ideal M, Rj; has
pseudo-Dedekind factorization (Theorem 5.2.9) which combines with the i-local
assumption to yield that R has pseudo-Dedekind factorization with each maximal
ideal invertible (Theorem 5.1.8). |

5.4 Factorization and the Ring R (X)

Let R be an integral domain and let X be an indeterminate over R. Recall that, for
each h € R[X], c(h) denotes the content of the polynomial /; i.e., the ideal of R
generated by the coefficient of 4. The Nagata ring of R is the ring R(X) := R[X]y
where 7 = {h € R[X] | c(h) = R}.

We may extend the notion of the content of a single polynomial to ideals of both
R[X] and R(X). For a nonzero ideal I of R[X], the content of I is the ideal of
R generated by the coefficients of the polynomials contained in /. It is quite easy
to show that the content of 7 is the union ¢(/) := |J{c(g) | g € I} . A similar
definition can be used with regard to ideals of R(X). For each nonzero ideal J of
R(X), the ideal I, := J () R[X] is such that J = I; R(X). Using this notation,
we set ¢(J) := ¢(/,), and again refer to ¢(J) as the content of J.

It is well-known that if R is a Priifer domain, then not only is R(X) a Bézout
domain but it coincides with the Kronecker function ring of R [34, Theorems 32.7
and 33.4]. Hence gR(X) = ¢(g)R(X) for each nonzero g € R[X] (for an explicit
proof that gR(X) = ¢(g)R(X) see the proof of [34, Theorem 32.7]). Moreover,
if V is a valuation domain, then V(X) is the trivial extension of V in the field of
rational functions K(X) [34, Propositions 18.7 and 33.1].

The following lemma collects several other useful facts about R(X) when R is
a Priifer domain.
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Lemma 5.4.1. Let R a Priifer domain.

(1) For each nonzero ideal I of R, ["R(X) = (IR(X))".

(2) Each ideal of R(X) is extended from an ideal of R. Specifically, if J is an ideal
of R(X), then J = ¢(J)R(X).

(3) The map I — I R(X) establishes an order-preserving bijection between the set
of the invertible (resp., divisorial, prime, primary, maximal) ideals of R and the
set of the invertible (resp., divisorial, prime, primary, maximal) ideals of R(X).

(4) R has finite character if and only if R(X) has finite character.

(5) Each nonzero prime ideal in contained in a unique maximal ideal in R if and
only if the same is true in R(X).

(6) R is h-local if and only if R(X) is h-local.

Proof. The statement in (1) follows from the equality (R : I)R(X) = (R(X) :
ITR(X)) that holds for each nonzero ideal I of an arbitrary integral domain R
by [20, Lemma 4.2] and its proof. The statement in (2) follows from the fact
that gR(X) =c(g)R(X) for each polynomial g € R[X]. For (3), use (1), (2)
and [34, Proposition 33.1]. Both (4) and (5) follow directly from (3), and (6) follows
from (4) and (5). O

Using this lemma, it is relatively easy to see that R and R(X) have similar
factoring properties when R is a Priifer domain. For example, if / is a nonzero
nondivisorial ideal of R that can be factored as I = IV P, P, --- P, where each P;
is a prime (maximal) ideal of R, then TR(X) = (IR(X))"[[(P; R(X)) with each
P; R(X) a prime (maximal) ideal of R(X). If, in addition, the P;’s are exactly the
nondivisorial maximal ideals M of R for which I R, is not divisorial in R),, then
the P; R(X)’s play the same role in R(X). Also, if no P; can be omitted, then
the same is true about the P; R(X)’s. As a first application of Lemma 5.4.1, we
can avoid dealing specifically with factoring individual ideals by making use of
statement (6) and Theorem 4.1.2.

Corollary 5.4.2. A Priifer domain R has the (very) strong factorization property if
and only if R(X) has the same property.

At this point, it is natural to show explicitly the factorization of a nonzero
nondivisorial ideal J of R(X), when R is Priifer with the weak factorization
property. After that we show how to factor such an ideal J when R is Priifer with
the (very) strong factorization property

Theorem 5.4.3. Let R be a Priifer domain.

(1) If R has the weak factorization property and if J is a nonzero nondivisorial
ideal of R(X), then J = J"[]; N;*, with J* =¢(J)"R(X) and N; = M; R(X),
where the M;’s are exactly the maximal ideals of R appearing in the weak
factorization ¢(J) = ¢(J)"[]; M;" in the domain R.

(2) If R(X) has the weak factorization property and if I is a nonzero nondi-
visorial ideal of R, then IR(X)=1"(X)[];(M;R(X))" for an appropriate
finite family of maximal ideals M;R(X)’s of R(X) and so, by intersect-
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ing with R, we obtain [ =1"]; M;" (note that I"R(X)[];(M; R(X))" =
(" TT; M{)R(X)).

Proof. The factorization of the ideal /R(X) in statement (2) follows from
Lemma 5.4.1 and the discussion above. To establish (1), assume R has the weak
factorization property and let J be a nonzero nondivisorial ideal of R(X). Then by
Lemma 5.4.1, we have both J = ¢(J)R(X) and J¥ = ¢(J)"R(X). Since R has
the weak factorization property, ¢(J) = ¢(J)"M;' M3*--- M» for some maximal
ideals My, M, --- , M, of R. Another application of Lemma 5.4.1, yields a weak
factorization of J as J = J'[] N’ with N; = M; R(X) for eachi. O

4

Corollary 5.4.4. Let R be a Priifer domain. Then R has the weak factorization
property if and only if R(X) has the weak factorization property.

For any domain R, the maximal ideals of R(X) are the ideals of the form
MR(X) where M ranges over the set of maximal ideals of R. Also Ry (X) =
R(X)mr(x) for each M. In the case R is a Priifer domain, if J is an ideal of
R(X) and ¢(J) (£ ¢(J)") factors as ¢(J) = ¢(J)"M M, --- M,, where the M;’s
are the distinct maximal ideals M of R such that ¢(J) R, is not divisorial, then
J = J'N|N;--- N, with each N; = M; R(X) a maximal ideal of R(X) such that
JR(X)y; is not divisorial (and JR(X)y divisorial for all other maximal ideals N
of R(X)).

Since it is easy to verify that an overring of an /-local Priifer domain is again
h-local [27, Chap. IV, Proposition 3.16], then an overring of a Priifer domain with
strong factorization has strong factorization by Theorem 4.4.8. On the other hand,
recall that not all overrings of a Priifer domain with weak factorization have weak
factorization (Example 4.3.4). The previous observations show that, for the problem
of studying the overrings of a Priifer domain with the weak factorization property
(see Corollary 4.3.2), we can assume (without loss of generality) that the domain is
a Bézout domain.

For pseudo-Dedekind factorization, it is relatively easy to show that if R is
an integrally closed domain with pseudo-Dedekind factorization, then R(X) has
pseudo-Dedekind factorization. The converse is also valid. Moreover, while more
complicated to prove, it is also the case that for any domain R, R has pseudo-
Dedekind factorization if and only if R(X) has pseudo-Dedekind factorization.

Lemma 5.4.5. For a domain R, R is an h-local domain such that its integral
closure R’ is a Priifer domain if and only if R(X) is h-local with integral closure
R'(X) a Priifer domain.

Proof. For any domain R, each maximal ideal of R(X) is of the form MR(X) for
some maximal ideal M of R. It follows that if f = g/u is a nonzero nonunit of
R(X) with g,u € R[X] and c¢(u) = R, then the only maximal ideals of R(X)
that contain f are those that contain ¢(g). Hence f is contained in only finitely
many maximal ideals of R(X) if and only if ¢(g) is contained in only finitely
many maximal ideals of R. Thus R has finite character if and only if R(X) has
finite character.
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By [37, Theorem 3], R'(X) is the integral closure of R(X) (no matter whether
R’ is Priifer or not). Combining [34, Theorem 33.4] and [5, Theorem 2.7], we have
that the following are equivalent: (i) each prime ideal of R(X) is extended from
a prime ideal of R, (ii) R’ is a Priifer domain, (iii) R’(X) is a Priifer domain.
Therefore R is h-local with R’ a Priifer domain if and only if R(X) is h-local with
R’(X) a Priifer domain. O

For any domain R, if I is a nonzero ideal of R, then ITR(X)[\R = I [50,
Theorem 14.1(3)]. Thus if there are ideals Ji, J>, ..., J, of R such that IR(X) =
Jl.lz"'JnR(X), thenl = J1Jo---J,.

Theorem 5.4.6. Let R be an integrally closed domain. Then R has pseudo-
Dedekind factorization if and only if R(X) has pseudo-Dedekind factorization.

Proof. An integrally closed domain that has pseudo-Dedekind factorization is an
h-local Priifer domain (Corollary 5.1.7). Also by [34, Theorem 34.2], R is a Priifer
domain if and only if R(X) is a Priifer domain. Hence if either R or R(X) has
pseudo-Dedekind factorization, then each is a Priifer domain. In this case, each ideal
of R(X) is extended from an ideal of R. In particular, each prime ideal of R(X) is
extended from a prime ideal of R and each invertible ideal of R(X) is extended
from an invertible ideal of R. Thus factorizations in R extend to factorizations in
R(X) and factorizations in R(X) contract to factorizations in R. Hence R(X) has
pseudo-Dedekind factorization if and only if R has pseudo-Dedekind factorization.

O

Essentially the same proof is valid for a domain with strong pseudo-Dedekind
factorization (equivalently, special factorization). In this case, we do not need to
assume, a priori, that R is integrally closed as it must be a Priifer domain by
Theorem 5.3.13.

Theorem 5.4.7. For a domain R, R is a has strong pseudo-Dedekind factorization
if and only if R(X) has strong pseudo-Dedekind factorization.

Theorem 5.4.8. For a domain R, R has pseudo-Dedekind factorization if and only
if R(X) has pseudo-Dedekind factorization.

Proof. By Theorem 5.4.6, we may assume R is not integrally closed. It is well-
known that Max(R(X)) = {MR(X) | M € Max(R)}. Moreover, for each maximal
ideal M of R, RM(X) = R(X)MR(X)~

Assume R has pseudo-Dedekind factorization. Then by Corollary 5.2.14, R
is h-local and for each maximal ideal M, Ry, is a PVD with pseudo-Dedekind
factorization. We also have that R’ is a Priifer domain with pseudo-Dedekind
factorization (Theorem 5.2.13) and that R(X) is h-local with integral closure
R'(X) (Lemma 5.4.5). Moreover, MR’ is the unique maximal ideal of R’ that
lies over M, and the integral closure of Rjs is the valuation domain R§u-
If Ryy = Rﬁ,[, then Ry (X) = R(X)mr(x) is a valuation domain with pseudo-
Dedekind factorization by Theorem 5.4.6. By Theorem 5.2.4, the other possibility
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is that [R"/MR’ : R/M] = 2. In this case, we also have [R},(X)/MR),(X) :
Ry (X)/MRy(X)] = 2. Hence we always have that Ry (X) is a PVD with
pseudo-Dedekind factorization. Thus R(X) has pseudo-Dedekind factorization
(Corollary 5.2.14).

For the converse, suppose R(X) has pseudo-Dedekind factorization. Then R(X)
is h-local and Ry (X) is a PVD with pseudo-Dedekind factorization for each
maximal ideal M of R (Corollary 5.2.14). Also R'(X) is a Priifer domain with
pseudo-Dedekind factorization (Theorem 5.2.13). Therefore by [5, Theorem 2.7],
each prime ideal of R(X) is extended from a prime of R. By Lemma 5.4.5, R is
h-local and R’ is a Priifer domain. Thus by Corollary 5.2.14, it suffices to show that
Ry is a PVD with pseudo-Dedekind factorization for each M € Max(R). If Ry, is
a valuation domain, then we simply invoke Theorem 5.4.6. If R, is not a valuation
domain, then neither is Ry (X). Hence in this case, R),(X) is the canonical
valuation overring of Ry (X) and [R),(X)/MR},(X) : Ryy(X)/ MRy (X)] = 2.
It follows that R}, is the canonical valuation overring of Ry with [R},/MR), :
Ry /MRys] = 2. Therefore R has pseudo-Dedekind factorization. O

One might be tempted to try the following approach to establishing the impli-
cation that R has pseudo-Dedekind factorization whenever R(X) does. For a
nonzero noninvertible ideal I of R, factor the extension /R(X) = AP, P>--- P,
for some invertible ideal A of R(X) and prime ideals Pj, P,, ..., P, (each prime
of R(X) is extended since R'(X) is a Priifer domain). Then simply “show” that
A = JR(X) for some invertible ideal J of R. However, while there may be an
invertible ideal J such that /R(X) = JP,P,--- P,R(X), there may be no such
J that extends to the ideal A. For example, let R := Q + YQ[+/2][[Y]] (with
M = YQ[2][[Y]]) and let f(X) := YX + +/2Y. Then R has pseudo-Dedekind
factorization (it is a PVD with integral closure R = Q[+/2][[Y]] a valuation
domain such that [R’/M : R/M] = 2). Since +/2 is not in R, f(X) does not
factor as Y(X + +/2) in R[X]. However, f(X)(YX — +2Y) = Y3(X% —2)
and f(X)(v/2YX —2Y) = +/2Y(X? — 2) are valid factorizations in R[X]. Thus
Y2, /2Y?% € f(X)R(X).Infact, f(X)R(X)( R = M> We know M?> = YM is
a valid factorization in R, and thus M2R(X) = YMR(X). However, we also have
that M2R(X) = f(X)MR(X) is a pseudo-Dedekind factorization of M2R(X) in
R(X), but in this factorization f(X)R(X) is not extended from an (invertible) ideal
of R.



Chapter 6
Factorization and Intersections of Overrings

Abstract In the first section, we introduce the notion of an /A-local maximal
ideal as a maximal ideal M of a domain R such that ®(M)Ry = K (the
quotient field of R). The second section deals with independent pairs of overrings
of a domain R. In the case R can be realized as the intersection of a pair of
independent overrings, we show that R shares various factorization properties with
these overrings. For example, R has weak factorization if and only if both overrings
have weak factorization. The third section introduces Jaffard families and Matlis
partitions. Just as domains of Dedekind type are the same as A-local domains, a
domain R can be realized as an intersection of the domains of a Jaffard family
if and only if its set of maximal ideals can be partitioned into a Matlis partition
(definitions below). As in the second section, if R = ﬂae o S where {S, }aeor is
a Jaffard family, then R satisfies a particular factoring property if and only if each
S satisfies the same factoring property. The last section is devoted to constructing
examples using various Jaffard families.

6.1 A-Local Maximal Ideals

We assume in the present section that R is an integral domain with quotient field
K # R.

Lemma 6.1.1. Let M be a maximal ideal of an integral domain R and let I € M
be a nonzero ideal. Then each minimal prime of A := IRy (| R is contained in M.

Proof. First, we observe that VA =T Ry (R In fact, b" € A implies b"s € I
for some s € R\M. It follows that b"s" € I, so bs € V1. Thus /A <
VT Ry (N R. For the reverse containment, ¢ € /1 Ry ()R implies ct € /T
some t € R\M . Hence ¢"t" € I some m. Therefore ¢ € A.

Thus we may assume / is a radical ideal. By way of contradiction suppose some
minimal prime Q of A is comaximal with M. Then there are elements r € Q and
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m € M suchthatr +m = 1. Since Q is minimal over A,ARp = QRQ. Hence there
is an element € R\Q such that rt € A. Thisputst € M andt = rt/r € ARy
and thus we have t € A. But this implies € Q a contradiction. O

Recall that a Priifer domain R with weak factorization also has aRTP (The-
orem 4.2.4): for each nonzero noninvertible ideal 7, II"' Ry is a radical ideal
whenever M is either a steady maximal ideal or an unsteady maximal ideal that
is not minimal over /1! (as unsteady maximal ideals have height one when R
is Priifer with weak factorization, the second case occurs only when M does not
contain /7).

Lemma 6.1.2. Let R be a Priifer domain with weak factorization and let M be an
invertible maximal ideal of R. Then for each nonzero ideal I € M, A := IRy (R
is divisorial.

Proof. Let I be a nonzero ideal that is contained in M and let A := IRy N R.
Since R has weak factorization, each nonzero prime ideal P that is contained in M
is contained in no other maximal ideal of R (Lemma 4.2.3). Thus by Lemma 6.1.1,
M is the only maximal ideal that contains A. Hence the only possible factorization
for Aisas A = A"M" for some nonnegative integer n. As M is invertible, A*M"
is divisorial, and thus we have A = A". O

Recall that a domain R is h-local if each nonzero prime ideal is contained in a
unique maximal ideal and each nonzero nonunit is contained in only finitely many
maximal ideals. This is equivalent to having ®(M )Ry = K for each maximal
ideal M [60, Theorem 8.5]. With this equivalence in mind, we say that a maximal
ideal M of R is an h-local maximal ideal of R if ©(M )Ry = K. Note that if P
is a prime ideal of R that is contained in M and at least one other maximal ideal
N, then Rp D Ry and Rp 2 Ry 2 ®(M). Hence P = (0). Thus an A-local
maximal ideal M has the property that each nonzero prime ideal 9 € M is such
that Max(R, Q) = {M}.

A family .# = {P,}qecr of nonzero prime ideals is said to be defining family
of Rif R = (| Rp,. In [4], Anderson and Zafrullah generalized the notion of
an h-local domain and in the process introduced the notion of a given prime P
in a defining family .% being % -independent if no nonzero prime ideal that is
contained in P is contained in some other prime Q € .%#; equivalently for each Q €
ZF\{P}, no nonzero prime ideal is contained in P () Q. For example, if we take
ZF := Max(R), then each h-local maximal ideal is .% -independent. The converse
does not hold as a non-invertible maximal ideal of an almost Dedekind domain is
not an A-local maximal ideal, but trivially each maximal ideal is .%-independent.
In Theorems 6.1.3 and 6.1.4 we show that an /-local maximal ideal has many
of the same properties of each maximal ideal of an A-local domain and is itself
characterized as h-local in ways similar to several of the various properties which
provide global characterizations of #-local domains.
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Theorem 6.1.3. Let R be a domain and let M be an h-local maximal ideal of R.

(1) If P is a nonzero prime ideal that is contained in M, then PO(M) = ©(M).
(2) If I is a nonzero ideal such that Max(R, 1) = {M }, then

(a) 1O(M) = O(M),

(b) (R . ])RM = (RM IIRM),

(c) (IRp)" = I"Ry, and

(d) 1 is divisorial if and only if IRy is divisorial.

(3) ©(M) is R-flat.
(4) If I is an ideal that is comaximal with M, then

(a) (R:1OM) = (O(M): 10(M)),
(b) 1" = (IO(M))", and
(c) 1 is divisorial if and only if I ©(M) is divisorial.

(5) If J is a nonzero ideal of R, then JRy (| R and JO(M) ( R are comaximal.

Proof. If R is local, then ®(M) is the quotient field of R. In this case, all of the
conclusions are trivial. So, we may assume R has at least two maximal ideals.

Let P be a nonzero prime ideal that is contained in M . By way of contradiction,
assume PO(M) # O(M). Then there is a prime ideal Q' of @(M) such that
Q' 2 PO(M).Let Q := Q'(\R. Then Q 2 P and we have Rp 2 Ryp. Also
Rp € ©(M)g since R\Q < O(M)\Q’. From the discussion above, we have
Max(R, P) = Max(R, Q) = {M}. But then we have Ryy € Rp € O(M)g <
K = ©(M)Ryy, a contradiction. Therefore PO(M) = @(M).

Let I be a nonzero ideal of R. First we consider the case that M is the only
maximal ideal that contains 1. Let H := (IRy)" (| R. Then HRy; = (IRy)". Since
M is the only maximal ideal that contains /, each prime ideal that contains / blows
up in @ (M ). Hence we also have /& (M) = @ (M ). For duals we have (R : H) =
(Ry : HRy)(O(M) = (Ry - IRy)(\O(M) = (R:I).Hence I C H C I".

Since R = Ry (\O(M), we have (R : I) = (Ry : IRy)((OM) :
IO(M)) = (Ry : IRy) ([ O(M). Multiplying by Ry, yields (R : )Ry =
(Ry : IRy) (YO(M)Ry = (Ry : IRy) (since @(M) Ry is the quotient field of
R). Hence (IRy;)" = (IVRy)Y and therefore H = I with IRy, a divisorial ideal
of RM.

To see that @ (M) is flat it suffices to show (R :gx t)@(M) = ©(M) for each
t € ®(M). This is quite simple. It is trivial for € R and fort € ®(M)\ R, the fact
that € Ry for each maximal ideal N # M, implies M is the only maximal ideal
of R that contains (R : t). Hence (R g 1)O(M) = @(M) by (1).

For (4), we now assume I + M = R and let H := (I6&(M))"() R. Since
O®(M)is R-flat, HO(M) = (I&(M))". Also IRyy = HR); = Ry and therefore
OWM): I)=OM):H)and(R: 1) =Ry (OWM) : 1) =Ry ((OM):
H) = (R : H).So,asin (1), ] € H C [I". Again, taking advantage of having
O(M)Ry = K, we obtain (R : 1)O(M) = (Ry((OM) : 1)OM) =
(M) : I). Similarly, (R : )O(M) = (R : [")O(M) = (O(M) : I"). Thus
H=I1"and (I"O(M))" = (IOM))" =1"O(M).
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For (5),let A := JRy ()R and B := JO(M) () R. There is nothing to prove if
either J is comaximal with M or Max(R, J) = {M}. So we may assume both A
and B are proper ideals. From above, we know Max(R, A) = {M }. So, it suffices
to show B + M = R. By way of contradiction, assume B € M andlet P € M be
a minimal prime of B. Since PO(M) = (M), there is a finitely generated ideal
G C P suchthat GO(M) = @(M). It follows that BRp contains a power of GRp.
Since G is finitely generated, there is an element ¢ € R\ P such that tG" C B. As
G"O(M) = O(M),wehavet € BO(M) () R = B, contradicting the assumption
that P contains B. Hence B + M = R. O

Theorem 6.1.4. Let R be a domain that is not local and let M be a maximal ideal
of R. Then the following are equivalent.

(i) M is an h-local maximal ideal of R.
(ii) PO(M) = @(M) for each nonzero prime ideal P C M.
(iii) Ry Ry = K for each maximal ideal N # M.
(iv) Each nonzero ideal of ©® (M) is extended from an ideal of R that is comaximal
with M.
(v) Each nonzero prime ideal of ©®(M) is extended from a prime ideal of R that
is comaximal with M .
(vi) For each nonzero ideal I of R, A :== IRy (YR and B := I®O(M) (R are
comaximal.
(vii) For each nonzero prime ideal P C M, Max(R, P) = {M} and there is an
invertible ideal J C P such that Max(R,J) = {M}.

Proof. Ttis clear that (iv) implies (v). Note that if P is a nonzero prime ideal that is
contained in a maximal ideal N different from M, then Rp 2 Ry 2 ®(M). Hence
P®(M) is a proper ideal of @ (M ).

To see that (i) implies (ii), let P be a nonzero prime ideal that is contained in M .
By way of contradiction, assume P©@(M) # ©(M). Then there is a prime ideal Q’
of ©®(M) such that 9’ 2 PO(M). Let Q := Q'(\R. Then Q 2 P and we have
Rp D Rgp. Also Rg € O(M) since R\Q € @(M)\Q’. From the discussion
above, we have Max(R, P) = Max(R, Q) = {M }. But then we have Ryy € Rp C
OM)o S K = &@(M)Ry, a contradiction. Therefore PO(M) = ©(M). Note
we also have that Max(R, P) = {M }.

(ii) = (i) We prove the contrapositive. Suppose & (M ) Ry is a proper subring of
K. Then there is a valuation domain V(# K) that contains ®(M )Ry, . Let P :=
N () R where N is the maximal ideal of V. Since V 2 Ry, P € M and certainly
P®(M) is a proper ideal of @ (M ).

For (v) = (i), we prove the contrapositive. As in the proof of (ii) implies (i),
assume ® (M) R,y is a proper subring of K and let V(# K) be a valuation domain
that contains @(M )Ry Alsolet P’ := N (Y@(M) and P := N (| R, where N is
the maximal ideal of V. We have P’ O PO®(M) and P C M. It follows that there
is no prime ideal Q of R that is comaximal with M and extends to P’ in @(M).

(i) = (iv) & (vi) By Theorem 6.1.3, ®(M) is R-flat. Hence each ideal of ® (M)
is extended from an ideal of R. Let I be a nonzero ideal of R and let A := IRy (| R
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and B := I®(M) () R. By Lemma 6.1.1, each minimal prime of A4 is contained in
M . We first show that AO(M) = ©@(M). By way of contradiction, suppose there
is a prime ideal Q' of ®(M) such that Q" O A®(M). Then Q := Q'(\R is
a prime ideal that contains A. Next, let P € Q be a minimal prime of A. Then
P < M which then implies Q" 2 PO(M) = ©O(M), a contradiction. Hence
ABO(M) = ©(M). We also have that each prime ideal that contains A is contained
in M and no other maximal ideal.

To see that A and B are comaximal it suffices to show B + M = R. By way
of contradiction, assume B € M and let P € M be a minimal prime of B. Since
PO(M) = ©(M), there is a finitely generated ideal G € P such that GO(M) =
®(M). Thus there is an element ¢t € R\ P such that tG" C B for some positive
integer n. It follows that tG" @ (M) = tO(M ) € BO(M) and from this we deduce
that t € B, a contradiction. Thus B + M = R and we also have B + A = R.

(vi) = (v) Assume that for each nonzero ideal I of R, IRy ()R and
IO®(M) () R are comaximal. We first show that @ (M) is R-flat. For this it suffices
to show that (R :g t)®(M) = ©(M) foreacht € @(M)\R. Fixt € @(M)\R.
Since t € Ry for each maximal ideal N # M, M is the only maximal ideal that
contains J := (R :g t). The ideal JO(M) (| R contains J and is comaximal
with JRy () R. Hence JO(M) = ©(M) and therefore ©®(M) is an R-flat proper
overring of R. Thus each prime ideal of ® (M) is extended from a prime ideal of R.
Moreover, if Q is a nonzero prime ideal of (M), then P = Q (| R is the (unique)
prime ideal that extends to Q. If P is not comaximal with M, then we also have
PRy () R = P. Hence it must be that P + M = R and therefore (vi) implies (v).

(vii) = (ii) Let P be a nonzero prime ideal that is contained in M. If M is the
only maximal ideal that contains P and P contains an invertible ideal J such that
Max(R,J) = {M},then (R : J) C ®(M) since (R : J) C Ry for each maximal
ideal N that does not contain J. Hence J®(M) = @ (M) and thus we also have
POM) =6O(M).

(1) = (vii) Let P be a nonzero prime ideal that is contained in M . From above,
we know PO(M) = ©(M). Thus M is the only maximal ideal that contains P.
Letr € P\{0} and set A := rRy () R. Then each minimal prime of 4 is contained
in M, and thus M is the only maximal ideal that contains A. By Theorem 6.1.3,
(R:A)Ry = (Ry : ARyy). Since ARy = rRys, ARy is invertible in Ry, and thus
A(R : A)Ry = Ryr. We also have AO(M) = @(M). Hence A C P is invertible
with Max(R, A) = {M }. This completes the proof of the equivalence of (i)—(vii).

O

The following is a slight generalization of a statement in [6, Corollary 4.4].

Lemma 6.1.5. Let V be a valuation domain whose maximal ideal M is principal.
If F is a field contained in V /M such that [V/M : F] = 2, then the ring R formed
by taking the pullback of F over M is a pseudo-valuation domain such that each
nonzero ideal is divisorial.

Proof. Since M is a principal ideal of V', each nonzero ideal of V' is divisorial. Each
ideal of V is also an ideal of R. By [30, Corollary 2.9], each nonzero ideal of V' is
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a divisorial ideal of R. By [30, Remark 2.11], if J is an ideal of R that is not a
principal ideal of R, then J” = JV. So it suffices to show that each nonprincipal
ideal of R is an ideal of V.

By way of contradiction, suppose A is a nonzero nonprincipal ideal of R that
is not an ideal of V. Then there is an element ¢ € A'(= AV)\A and, moreover,
A(R : A) € M. There must be an element p € A suchthatg/p e V.Ifg/p e M,
then we have ¢ = p(q/p) € AM C A, a contradiction. Hence ¢g/p is a unit of
V. Note that if there is an element s € A whose valuation (under the valuation
associated to V') is strictly smaller than the value of ¢, then ¢/s € M again gives
the contradiction that ¢ € A. Hence A" is a principal ideal of V and gV = pV =
AV = AV. Note that if r € A" is such that rV & pV, thenr/p € M and we have
r € A. Consider the ideal gR + pR. Both p and g are in M so this is a proper ideal
of R. We have ¢/p € V\R is a unit of V, so it is also the case that p/g € V\R.
Since [V/M : R/M] = [V/M : F] =2, V/M = F + (q/p)F. If there is an
element f € A such that fV = AV and p does not divide f in R, then f/p is
suchthat V/M = F + (f/p)F.Buttheng/p = a + b(f/p) some a,b € F and
from this we would have ¢ = a’p + b’ f € A for some a’, b’ € R, a contradiction.
Hence A = pR is principal and thus a divisorial ideal of R. O

Theorem 6.1.6. Let T be a Priifer domain with an invertible maximal ideal M
such that [T/M : F] = 2 for some field F < T /M. Also, let R be the pullback of
F over M.

(1) T has weak factorization if and only if R has weak factorization.

(2) T has strong factorization if and only if R has strong factorization.

(3) T has pseudo-Dedekind factorization if and only if R has pseudo-Dedekind
factorization.

Proof. For (1), assume T has weak factorization. Then each nonzero prime that is
contained in M is contained in no other maximal ideal (Lemma 4.2.3). Since T is
Priifer domain, these primes are linearly ordered. Also each such prime contains
an invertible ideal J of T such that M is the only maximal ideal that contains J
(Proposition 4.2.2). For such an ideal J, there are elements f € J andg € (T : J)
such that gfT + M = T.Hence thereisat € T and m € M such thattgf +m =1
which puts tgf € R\M.Let B = fR + J?. SincetqJ € T,tqJ*> € J C R. Hence
tq € (R: B) withtqg € R\M. As M is the only maximal ideal of R that contains
J, B is an invertible ideal of R with Max(R, B) = {M}. Thus M is an h-local
maximal ideal of R. As [T/M : R/M] = 2, each nonzero ideal of R, is divisorial
(Lemma 6.1.5) and therefore by Theorem 6.1.3, IRy () R is a divisorial ideal of R
for each nonzeroideal / € M.

Let I be an arbitrary nonzero ideal of R and let A := IRy (| R. If I is not
contained in M, then A = R. Otherwise, A is a proper divisorial ideal of R and
M is the only maximal ideal of R that contains A. Moreover, AO(M) = O(M).
If M is the only maximal ideal that contains 7, then I = A is divisorial. Thus we
may assume / is contained in at least one maximal ideal other than M . Hence B :=
I®(M) (R is a proper ideal of R. By Theorem 6.1.3, B is comaximal with both
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M and A. Thus AB = A B. In addition, (AB)” = (A(\B)" = A(\ B’ = AB’
since A is divisorial.

We also have (B®(M))' = B'®O(M) with BY = (R : (R : B)) (but the same
equality holds if instead B* = (T : (T : BT))). By Theorem 4.3.8, ®(M) has
weak factorization. Hence BO(M) = B'N{'N,?---N)»®(M) for some nonin-
vertible maximal ideals Ny, N3, ..., N, of R. We have B = BO(M) (R and
clearly B"N{'N,*--- N} is comaximal with M. Hence B = B"N|'N,>---N}».
It follows that / = AB"N"'N,>---N» = I"N|'N,*---NJm. Therefore R has
weak factorization.

For the converse, assume R has weak factorization. Let P be a nonzero
nonmaximal prime ideal of R. Then P = PVA where A is either equal to R or
to a finite product of maximal ideals of R. The latter can occur only if P = P",
so in either case P = P". Similarly, if Q is a proper P-primary ideal, then Q is
divisorial as we have QRp = Q" Rp.

Next we show that M is an h-local maximal ideal of both R and 7. The proof
for T is similar to that used to establish Lemma 4.2.3(1). Let P be a nonzero prime
ideal of T that is properly contained in M. Then P is also a prime ideal of R. We
may further assume that P is branched. Thus P = /B for some invertible ideal B
of T by Theorem 2.3.12. As in the proof of Lemma 4.2.3(1),let J := BTy N T.
Then by Theorem 2.5.2(2), J* = J(P' : P’) = B(P’' : P’) where P’ is the
largest prime ideal that is contained in all of the maximal ideals of 7" that contain
P. In addition J~' = B™!P" and J € J" whenever more than one maximal ideal
contains P. Since Max(T, P) = Max(T, P’), P’ is a sharp prime of T and thus a
maximal ideal of (P’ : P’). In addition, P’ is a prime ideal of R and it is the only
maximal ideal of (P’ : P’) that contains P. It follows that JYTps = BT pr = JT p:
and we have J¥ = BT p N T. By way of contradiction, assume P’ # M. Then P’
is a (nonmaximal) prime ideal of R, (P’ : P’) 2 T and Tp: = Rps. It follows that
JY = BRp: N R. Since J* = J(P' : P') 2 J, J" cannot be an invertible ideal of
T. Moreover, we also have J"Tpr = J"Ty. Hence J¥(T : J') € M and from this
wehave (T : J)=(T :J") =M :J") C(R:J") C(R:J). It follows that
(T :J")=(R:J)=(R:J") and therefore J" is also the divisorial closure of J
in R. Thusin R, J = J"H where H is a finite product of maximal ideals of R.

By Lemma 2.5.1(2), JTpr = J'I'(P). Hence BTy, = JTy 2 JI'(P) =
JYHI'(P) = JHTpr = JTpr = BTpr 2O BTy . Since B is an invertible ideal
of T, we have a contradiction as we assumed P’ # M. Hence P’ = M and
therefore each nonzero prime ideal of 7" that is contained in M is both sharp and
contained in no other maximal ideal. Thus M is an h-local maximal ideal of T
(Theorem 6.1.4). Since Ry, is a pseudo-valuation domain with integral closure 7}y,
each proper overring of Ry, contains 7). Hence it must be that Ry ®(M) = K
and therefore M is an h-local maximal ideal of R as well.

Reset notation and now simply let J be a nonzero ideal of R. By Theorem 6.1.3,
JRy MR and JO(M )N R are comaximal ideals of R. Clearly, their intersection is J .
Moreover, since each nonzero ideal of R, is divisorial, JRy; N R is a divisorial ideal
of R (Theorem 6.1.3). The ideal JO(M) N R is also comaximal with M. Hence
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JO(M) N R is a divisorial ideal of R if and only if J® (M) is a divisorial ideal of
®(M). So as in the Priifer case, @(M ) inherits weak factorization in a natural way
from R.

Finally for a nonzero ideal I of T', we can split / into comaximal factors ITyy N'T
and C :=I®O(M)NT.Aswith JRyy N R, ITy N T is adivisorial ideal of 7. Also
C'OM) = (I&(M))" with C”" = (IO(M))" N T. If C is divisorial, then so
is [ as it is the product of comaximal divisorial ideals. On the other hand, if C
is not divisorial, /&®(M) = CO(M) = C'NO(M) where N is a finite product
of maximal ideals of T (distinct from M ). In this case we have I = ['N (with
I1"=(UTy NT)(C"O(M) N T)). Therefore T has weak factorization.

For the equivalence in (2), the factorizations obtained in the proof of (1) are
inherited from the factorizations in & (M ). Thus the following are equivalent: (i)
T has strong factorization, (ii) @(M) has strong factorization, (iii) R has strong
factorization.

The statement in (3) follows easily from Theorems 5.1.8 and 5.2.4 and Corol-
lary 5.2.14. O

6.2 Independent Pairs of Overrings

Recall that if IV and W are incomparable valuation domains with the same quotient
field K, then K is also the quotient field of V () W and V (| W is a Bézout domain
with exactly two maximal ideals, one is the contraction of the maximal ideal of V'
and the other is the contraction of the maximal ideal of W (see, for example, [34,
Theorem 22.8]). Such a pair of valuation domains is said to be independent if (0) is
the only common prime ideal. Since each overring of V' has the form Vp for some
prime ideal P = PVp of V and each overring of W has the form Wy for some
prime ideal Q = QW , of W, the following are equivalent for V' and W'.

(i) V and W are independent.
(i) VW =K.
(iii) No nonzero prime ideal of V () W survives in both V and W'.

We extend the notion of independent valuation domains as follows. For a pair
of domains S and 7 with the same quotient field K, we say that S and T are
independent if ST = K and no nonzero prime ideal of S ()T survives in both
S and T. In the event S () T also has quotient field K, then all that one needs to
check is that no nonzero prime ideal of S () T survives in both S and 7. In fact, a
slightly weaker condition suffices.

Lemma 6.2.1. Let S and T be overrings of a domain R. If no nonzero prime ideal
of R survives in both S and T, then S and T are independent.

Proof. Let K be the quotient field of R and assume no nonzero prime ideal of R
survives in both S and 7. Next, let V' be a valuation domain with quotient field K
that contains ST and let M be the maximal ideal of V. Then M (") S is a prime ideal
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of S, M (T is a prime ideal of T and M () R is a prime ideal of R. Since both
M (S and M (T contain M () R, it must be that M (| R = (0). It follows that
M = (0) (since R and V have the same quotient field) and therefore V = K. Also
note that if Q is a nonzero prime ideal of S (7, then Q (| R is a nonzero prime
ideal of R. Thus Q survives in at most one of S and T'. Therefore S and 7' are
independent. O

In general, just knowing that no nonzero prime ideal of S () 7' survives in both S
and 7 is not enough to conclude that ST = K. Consider the domains S := F[X] and
T := F[1/X] where F is field (and X an indeterminate over F). Then S (T = F,
so trivially no nonzero prime ideal of S (T survives in both S and 7. However,
ST = F[X, 1/X] is properly contained in its quotient field, F'(X), and thus S and T
are not independent.

Theorem 6.2.2. Let R be a domain with a pair of proper overrings S and T such
that R =S (\T.If S and T are independent, then

(1) both S and T are R-flat, and
(2) (R:1)S=(S:1S)and (R : I)T = (T : IT) for each nonzero ideal I of R.

Proof. To see that both S and T are R-flat, let P be a nonzero prime ideal of R that
survives in S. Since S and T are independent, PT = 7. Moreover, if Q € P is a
nonzero prime ideal of R, then QS # S and so we also have QT = T. Both Rp
and 7" contain R and the only prime ideals of R that survive in Rp are those that
are contained in P. Hence no nonzero prime ideal of R survives in both Rp and T'.
Thus Rp and T are independent by Lemma 6.2.1, and we have Tp = TRp = K.
Then Rp = (S(\T)p = Sp(\Tp = Sp. That S is R-flat follows from [74,
Theorem 1]. A similar proof shows that T is R-flat.

For (2), first note that since S (7 = R, (R : I) = (S : IS)(\(T : IT).
Hence (R : 1)S = [(S : IS)( (T : IT)]S. Since S is R-flat, S distributes over
the intersection and we have (R : I)S = (S : IS)( (T : IT)S = (S : IS) since
ST = K. Similarly, (R : INT = (T : IT). O

In general, for an independent pair S and 7', a nonzero proper ideal 7 of S (T
can be such that IS = S and IT = T. For example, let R := K[X, Y] and let
S = Rxyand T := ({R(y) | f € R\(X) is irreducible}. Clearly, S and T are
independent with S (|7 = R, but the maximal ideal XR + Y R blows up in both §
and T'.

In the next result, we consider what additional conclusions one can draw when
S and T are independent and each nonzero ideal of S () T survives in at least one
of S and T'. It is helpful at this point to introduce the notion of “splitting sets” for
Max(R).

Let ¢ be a nonempty subset of Max(R) and let Ry := ({{Ry | M € #}.
We say that a pair of nonempty subsets %, and % of Max(R) split R if the
corresponding overrings R, and Rg; are independent with R = Ry, (| R, (so
necessarily, %1 and % are disjoint). If, in addition, Max(R) = #; | %5, then we
say that the pair %, and % fully split R.
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Theorem 6.2.3. Let R be a domain with a pair of proper independent overrings S
and T such that R = S (T and each nonzero ideal of R survives in at least one of
SandT.

(1) Each nonzero prime ideal of R survives in exactly one of S and T.

(2) Max(S) = {MS | M € Max(R), MS <€ S} and Max(T) = {NT | N €
Max(R), NT < T}.

(3) The sets Ms = {M < Max(R) | MS # S} and M1 = {N € Max(R) |
NT # T} fully split R. Moreover, S = ({{Ry | MS € Max(S)} and T =
({Rn | NT € Max(T)}.

(4) For each nonzero ideal I of R, the ideals Is := IS\ R and I := IT (\ R are
comaximal with I = IsIt. Moreover, I = IS(\IT, IsT =T and ITS = S.

(5) For each nonzero ideal I of R, I'S = (IS)", (Is)" = (I")s, I'T = (IT)" and
(Ir)" = (I")1 (where (IS)" = (S : (S : 1S)) and (IT)" = (T : (T : IT))).

Proof. By assumption, each nonzero prime ideal of R survives in at least one of S
and 7', and thus in exactly one since S and T are independent. In particular, if M is
a maximal ideal of R, then either MS # S with MT = T or MT # T with MS = S.

By flatness, if P is a nonzero prime ideal of R such that PS # S, then PS is
a prime ideal of S such that PS() R = P. Moreover, each nonzero prime of S is
extended from a nonzero prime ideal of R which blows up in 7. Hence Max(S) =
{MS | M € Max(R) with MS # S} and S = ({Ry | MS € Max(S)}. Similarly
Max(T) = {NT | N € Max(R), NT C T}and T = (\{Ry | NT € Max(T)}.
Since each maximal ideal of R survives in exactly one of S and T, the sets .#s and
A fully split R.

For (4) and (5), let I be a nonzero ideal of R. Since .#s and .#7 fully split R
with S = Ry, and T = R_4,, then Is(\Ir = I. To see that Is and I are
comaximal, suppose P is a minimal prime of /g. If PS = S, then there is a finitely
generated ideal B € P such that PS = BS. Since P is minimal over /g, there is
a positive integer n and an element t € R\ P such that tB” C [. It follows that
tS =tB"S C IS = IS which leads to the contradictory containmentt € Ig C P.
Hence PS & § and PT = T. It follows that /5 and I are comaximal and therefore
I = Iglr. Moreover, no prime ideal of 7 can contain /g7 as the contraction of
such a prime to R would contain a minimal prime of /5. Hence IsT = T. We
also have I7S = S. That I = IS()IT follows from the above and the fact that
R=SNOT.

By Theorem 6.2.2, (S : I'S) = (R : I")S = (R : I)S = (S : IS) and
(T : I'T) = (R : INT = (R : I)T = (T :IT). So (IS)" = (I'S)" and
(IT) = (I'T)". Let Js = (IS)"(\R and Jy = (IT)" [ R. Then Js 2 (I")s and
Jr 2 (I")7. It follows that J := JgJr contains /"”. Since Jg contains /g and Jr
contains /7, Js and Jr are comaximal. Also, JsT = T and J7 S = S. With regard
toduals wehave (R: I) D2 (R:J)=(S:JS)(\(S :JT) = (S:1S)( (T :IT) =
(R : I). Thus J = I" and therefore IS = JS = JsS = (IS)" = (I'S)" and
I'T =JT = Jr = (IT)" = (I"T)". We also have (I")s = Js and (/") = Jr.
Since Is and I are comaximal and I = Igly, IV = (Is)"(I7)". In addition,
(I")s = (Is)"and (I")r = (I7)". o
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6.3 Jaffard Families and Matlis Partitions

Let . := {Sq}qer be a family of domains (that are not fields) with the same
quotient field K such that R := () ., So also has quotient field K. For each
nonzeroideal I of R andeacha € o7, let I, := IS, (| R and let supp o, (]) := {« €
o | Iy # R} (=the support of 1 with respect to .”’). It is clear that & € supp (1)
if and only if IS, # Sy. Alsoif I € J, then supp (/) D supp (J). We say that
such a family is a Jaffard family if for each nonzero ideal I of R,

(a) supp (/) is a finite nonempty subset of .7,
(b) I =1y 1o, -1y, where supp,(I) = {1, a2, ..., a,}, and
(c) Iy +1Ig = Rforall o # Bin 7.

Clearly, it is enough to check (c) for « # B in supp (/). Also, since R =
Nycor Sa» (b) implies I = (), ISe With IS, = S, for all but finitely many «.

Theorem 6.3.1. Let .7 := {Sy}oesr be a Jaffard family with R := (e oy Se- Also
foreacha € o, let T, := (\{S, | y € Z\{a}} (= K, if || = 1).

(1) For each nonzero prime ideal P of R, |supp »,(P)| = 1 and P = Pg when
PSg & Sg. Moreover, if Q is a prime ideal of R such that supp o,(Q) = {B} =
supp.o (P), then PSg S QS if and only if P S Q.

(2) The following are equivalent for each pair of ideals A and B of R.

(i) A=B.
(ii) Ay = By foreacha € <.
(iii) AS, = BS, foreacho € <.
(iv) supp . (A) = supp . (B) and ASg = BSg for each B € supp o (A).

(3) For each nonzero ideal I of R and each pair o # B in <7, 1,Sg = Sg.

(4) Foreacha € <7, S, and Ty, are independent, so both are R-flat.

(5) For each o € o/ and each maximal ideal N of Sy, N N R is a maximal ideal
of Rand N = (N N R)S,,.

(6) For each nonzero ideal I of R, I is invertible as an ideal of R if and only if IS,
is an invertible ideal of S, for each o (equivalently, for each a € supp o (1)).

(7) For each nonzero ideal I of R and each o € o7, (R : I)Sy = (Sy : I1Sy) and
(ISq)" = (IVSy)".

(8) Foreach nonzero ideal I of R and eacha € o7, (1")q = (1y)", 1'Sq = (ISa)".

Proof. First for a nonzero prime P of R, let {1, B2,...,B,} = supp(P). We
have P = Pg Pp,--- Pg, with Pg, + Pg, = R foralli # j. Since P is a prime
ideal and each Pg, contains P, we have n = 1. Thus P = Pg, and PS, = S, for
all « € &/ \supp(P). Let Q be a nonzero prime ideal with supp ,.(Q) = {B:}.
We have Q = Qp, and P = Pg,, soclearly P < Q if and only if PSg, & OSg,.

The statement in (2) is clear from the factorization property for nonzero ideals.

Let / be a nonzero ideal of R and let o # f be indices in .. Then (/4)g =
I,Ss MR D ISg M R = Ig also (Iy)g 2 Iy. As I, and Ig are comaximal, we have
1,Sp = Sg.
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For (4), it is clear that R = STy for each B € &/. Since Sg & K,
there is at least one nonzero prime ideal P such that PSg # Sg, necessarily
with P = Pg. We will show that PTg = Tg for each such prime P. Let
r € P be nonzero. Then rR factors as rR = (rR)g(rR)e,(rR)a, - -+ (rR)qa, with
supp o (rR) = {B, 01,0, ..., a,} (possibly with no «;s). Clearly, the ideal (rR)g
is invertible. We also have (rR)gS, = S, for each @ # B. Thus each such S,
contains (R : (rR)g) and therefore (R : (rR)g) € Tg. Hence (rR)gTp = Tp. As
P = Pg D (rR)g, PTg = Tg. It follows that no nonzero prime ideal of R survives
in both Sg and Tg. Therefore Sg and Tg are independent by Lemma 6.2.1. Hence
each is R-flat by Theorem 6.2.2.

For (5), Sg is flat over R so each prime ideal of Sg is extended from a prime
ideal of R. In particular, if N is a maximal ideal of Sg, then P := N R isa
prime ideal of R. By (1), each maximal ideal M of R that contains P is such that
supp (M) = {B}. Thus we have N = PSg € MSg & Sg. Hence P = M and
N = MSg.

Clearly, if 7 is an invertible ideal of R, then IS, is an invertible ideal of S,
for each o € 7. To establish the converse, first note that IS, = S, except for
those «; € supp(/), a finite set. Thus we start with the assumption that IS,, is an
invertible ideal for each o; € supp . (/) = {@;, a2, ..., 0, }. Hence there is a finitely
generated ideal J C [ such that JS,, = IS,, for each 1 <i < n. While it may be
that JS, # S, for some o € .o/\supp .~(/), there are only finitely many such o.
Thus, in this event, there is a finitely generated ideal B < [ such that BS, = S, for
each a € supp o (J)\supp o~ (/). The finitely generated ideal J + B is contained in
I with supp o,(J +B) = supp (/) and (J + B)S,, = IS,, foreacha; € supp (/)
and (J + B)Spg = Spg = ISg foreach B € o/ \supp (/). Hence I = J + B and
we at least have that / is a finitely generated of R. To complete the proof, it suffices
to show IRy, is invertible (principal) for each maximal ideal M of R. Let M be a
maximal ideal that contains /. Then supp ,,(M) = {o;} for some 1 < i < n since
each maximal ideal survives in exactly one S, and certainly MS, = S, whenever
ISy = S,. By flatness Ry = (S, )m and thus IRy = (ISy, ) s is an invertible ideal
of RM .

For (7) and (8), let I be a nonzero ideal of R and let « € .o7. It is clear that
each nonzero ideal of R survives in at least one S, and 7. Thus we may apply
Theorems 6.2.2 and 6.2.3 to obtain all of the conclusions in (7) and (8): (R : I)S, =
(Se : 1Sq), (ISe)” = (1"Se)"s (IM)a = (Io)" and I"Sy = (ISy)". a

For a domain R, let Spec®(R) := Spec(R)\{(0)}.

Corollary 6.3.2. Let . := {Sy}ueor be a Jaffard family and let R := () S,. Also,
for each a € o, let Zy ;= {M € Max(R) | MS, # Sy} and %, = {P €
Spec*(R) | PSy # Syu}. Then the collection of sets { 2y }acor partitions Max(R),
and for each o, Max(Sy) = {MSy | M € 2y} and Sy = (V{Rm | M € Z4}. Also,
the collection of sets {%y}oeor partitions Spec™ (R), and for each o, Spec™(Sy) =
{PSo | P € %}



6.3 Jaffard Families and Matlis Partitions 131

Proof. By Theorem 6.3.1(1), if P is a nonzero prime ideal of R, then there is
a unique S, such that PS, # S,. So necessarily, if M is a maximal ideal of
R that contains P, then PS, # S, implies MS, # S,. Thus it is clear that
{Z4}weor partitions Max(R) and {%, }4c.s partitions Spec*(R). Each S, is R-flat
by Theorem 6.3.1(4). Thus if Q is a prime ideal of S, then Q = (Q M R)S,. Also,
if P is a prime ideal of R such that PS, # Sy, then PS, (\ R = P with PS,, a prime
ideal of S,. Thus Max(Sy) = {MS, | M € 24} and Spec*(Sy) = {PS, | P € %}
for each «.
Foreach M € 24, Ry = (Sy)ums, by flatness. Thus Sy = (V{Rm | M € Z4}.
O

Next, we take a different approach which generalizes the notion of splitting pairs.
Let & = {X,}ueor be a partition of Max(R) and for each ¢ € &7, let W, :=
(MRm | M € X,}. As above, let supp,(I) = {a € &7 | IWy, & W,}(=the
support of 1 with respect to &. Say that & is a Matlis partition of Max(R) if
[supp 4 (rR)| < oo for each nonzero nonunit » € R and |[supp 5 (P)| = 1 for each
nonzero prime ideal P of R. Note that supp 5 (/) is nonempty (but finite) for each
nonzero ideal / of R. Also, R is h-local if and only if & = {{M,} | M, €

Max(R)} is a Matlis partition of R.

Lemma 6.3.3. Let R be an integral domain and let & = {Xy}yew be a Matlis
partition of Max(R). For each nonzero ideal I of R and each B € supp 5 (1), if P
is a minimal prime ideal of IWg ( R, then supp 5 (P) = {B}.

Proof. Note that for the ideal I, Ig := IWg (M R is such that IgWg = IWg. So
we may assume I = Ig. Let P be a minimal prime ideal of / and by way of
contradiction assume supp(P) # {B}. Since |[supps(P)| = 1, it must be that
PWg = Wpg. Thus there is a finitely generated ideal B C P such that BWg = Wjp.
Since P is minimal over / (and B is finitely generated), some power of BRp is
contained in IR p. Without loss of generality, we may assume BRp < IRp. Thus
there is an element € R\ P such that tB C I. Extending to Wg, we get tWp =
tBWg C IWg and from this we get 1 € IWg M R = I, a contradiction. Hence

supp o (P) = {B}. O
Theorem 6.3.4. Let R be an integral domain with quotient field K 2 R.

(1) If 7 := {Sa e is a Jaffard family such that R = (| Sy, then there is a Matlis
partition & := {Xy }acer of Max(R) such that S, = W, for each o € <.

(2) If &P := {Xo}aecw is a Matlis partition of Max(R), then {Wy}yeo is a Jaffard
Sfamily such that R = (\ W,.

Proof. The statement in (1) follows directly from Corollary 6.3.2.

For the proof of (2), suppose & := {X,}acwr 18 a Matlis partition of Max(R).
By definition each nonzero prime ideal of R survives in exactly one W,. Thus by
Lemma 6.2.1, W, and Wj are independent for each pair o # 8 in 7.

Next let I be a nonzero ideal of R. Then suppg(/) is a finite set,
say suppp(I) = {ay,02,...,0,}. For each o;, let I,, = IW, M R. For
o € d\suppp(l), IWy = W, and so I, := IW,MN R = R. We have
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I € NIy = (1g since I, = R for all @ € o/\supps (). Also, for each
N € X,,, we have W,, € Ry and thus IW,, = I, Wy, € Iy, Ry = IRy. It follows
that I = (1.

By Lemma 6.3.3, supp 5 (P) = {o; } for each minimal prime P of I,. It follows
that supp 5 (M) = {o; } for each maximal ideal that contains /,,. Thus no maximal
ideal can contain more than one /, i which means the /,, s are pairwise comaximal.
Hence I = ]_[?=1 1o, . From this we have that {W,, }ye . is a Jaffard family (for R).

O

Theorem 6.3.5. If .7 := {Sy}uew is a family of overrings of a domain R such that
R = (e Sa» then the following are equivalent.

(i) & is a Jaffard family.
(ii) For each nonzero ideal I of R, 1 < [suppy(I)| < oo and for each B €
supp (1), supp - (1g) = {B}.
(iii) (a) each nonzero nonunit of R is a unit in all but finitely many Sys,
(b) for each nonzero ideal I of R, 1S, # S, for at least one S, € ., and
(c) foreach B € o7, Sg and ﬂa#; Sy are independent.

Proof. By definition, each Jaffard family satisfies (a) and (b) in (iii), and each such
family satisfies (ii) and (c) by Theorem 6.3.1.

To see that (iii) implies (ii), first note that (a) and (b) together imply 1 <
|[supp - (1)| < oo for each nonzero ideal / of R. Also, for each 8 € supp .. (/), the
ideal /(= 1S M R) blows upin (*),.4 S¢ by (c) and Theorem 6.2.3. Tt follows that
ISy = S, foreach o # B. Hence supp - ({g) = {B}. Therefore (iii) implies (ii).

To complete the proof, we show (ii) implies (i). Assume that for each nonzero
ideal / of R, 1 < |supp (/)| < oo and supp .~ (/g) = {B} for each B € supp . (/).
If M is a maximal ideal of R, then Mg = M for each B € supp (M) and thus

|supp o (M)| = 1.
First we show that for each nonzero ideal 7, the ideals Iy, Iy,, ..., 1o, are pair-
wise comaximal and (),c,, ISe = [/, Lo, Where supp (1) = {a1,00,... 0.}

That I = [[/_, Iy, will then follow from showing that S, = ({{Ry | M €
Max(R) such that MS, # S,}.

Let / be a nonzero ideal of R and let supp, (/) = {a;,a2,...,q,}. Since
R = (\yew S« and IS, = Sy for all @ ¢ suppo,(I), I C (Nyew IS¢ =
Io, N1y, M-~ M 1, . If M is a maximal ideal that contains 7, then M survives in
exactly one S, which must be one of the Sy, s. Clearly M contains the corresponding
1, but contains no other Iaj (since Iaj Se; = Sy 2 MS,, forall j # i). Hence
the ideals Iy, I, - . . , Iy, are pairwise comaximal. Thus (e, ISe = [1/'2 1o+
Since I C T[]/, Iy, and supp,(ly,) = {o;} for each i, supp,([1i=, Io;) =
supp o~ (1). Moreover, if {y1, ¥2,..., yx} is a nonempty subset of supp .. (), then
suppy(l'[f;l L) ={ri.v2, o v)

Next we show that there is an invertible ideal B C [ such that supp o~ (B) =
supp~ (/). To start, let b be a nonzero element of /. Then supp, (/) C
supp.»~(PR) := {B1,B2,....PBm}. We may assume f; = «o; for 1 < i < n. We
are done if m = n, so we may further assume m > n. Since R = ﬂaed Sas
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we have bR = (e bSa. Thus bR = ([T'2,(bR)y,) - (]_[';;nH(bR)ﬂj). The
ideals B := [[/_;(bR)y, and C := []/_, , (bR)p, are comaximal invertible
ideals with PR = BC < [. Since supp(C) = {Bu+1,Pn+2.-..Bm} has
empty intersection with supp(/), I and C are comaximal. Thus B C I with
supp . (B) = supp (/).

Let P be a nonzero prime ideal of R. Then from the argument in the previous
paragraph, for each nonzero d € P, dR = (dR)s5,(dR)s, - (dR)s, where
supp~(dR) = {81,82,...,8,} with the invertible ideals (dR)s,, (dR)s,, .. ..
(dR)s,, pairwise comaximal. It follows that P contains exactly one of the (dR)s;s
and from this we deduce that |[supp ., (P)| = 1.

Next we shift the focus to the S,s. For a given Sg, there is an element t € R
such that #Sg is a proper ideal of Sg (since each S, is an overring of R and none
are the quotient field). Thus the ideal Bg := tSg (1 R is an invertible ideal of R
such that supp ,,(P) = {B} for each prime ideal P of R that contains Bg. Also,
by assumption, BgS, = S, for all @ # . It follows that each such S, contains
(R : Bpg) and thus so does T := ﬂa#; Se. Moreover, if Q is a prime ideal of
R such that supp(Q) = {B}, then Q contains an invertible ideal C such that
supp »(C) = {B} and CSg M R = C. As with Bg, (R : C) C Tp and thus QT =
Tg. Therefore SgTp = K, the quotient field of R. It follows that Sg and T3 are
independent with Sg M Tg = R. By Theorem 6.2.3, Sg = [ [{Ry | M € Max(R)
such that MSg # Sg}. O

Corollary 6.3.6. Let . := {Su}acr be a Jaffard family. If S 1= (\, ey S is a
Bézout domain, then for each nonzero ideal I, there is a principal ideal bS < [
such that supp o, (bS) = supp o ({).

Proof. Let I be a nonzero ideal of S. Then from the proof of Theorem 6.3.5, there
is an invertible ideal B C [ such that supp .,(B) = supp (/). In the case § is
Bézout, B is principal. O

Theorem 6.3.7. Let .7 := {S,}ucor and be a Jaffard family with common quotient
field K and let B be a nonempty subset of </ with complement € .= o/ \AB.

(1) If A is a proper subset of <7, then the domains Rz = ﬂﬂe@ Sg and Ry 1=
(\,ex Sy are independent.

(2) The set {Sg}pes is a Jaffard family.

(3) If {Wg}pem is a family of domains such that Sg € W & K for each B € %,
then {Wg}pez is a Jaffard family if and only if each nonzero ideal of W :=
(pez Wp survives in at least one Wp.

Proof. Throughout the proof we let R := ()¢ So-

For (1), suppose Z is a proper subset of <7 and let P be a nonzero prime ideal
of R. Then by Theorem 6.3.1, supp,(P) = {t} for some vt € o/ and PT, = T,
where T, := ﬂa# Sy. It follows that PRz = Rz when 1 € €, and PRy = Ry
when 7 € A. Therefore Ry and Ry are independent by Lemma 6.2.1.

For (2), there is nothing to prove if ## = o/, so we may assume % is a proper
(nonempty) subset of .27 Let J be a nonzero ideal of Rg and let I := J M R. Since



134 6 Factorization and Intersections of Overrings

Rz and R are independent and each nonzero ideal of R survives in at least one of
these two domains, /Ry = Ry and IRz = J by Theorem 6.2.3. It follows that, for
alla € &7, JS, # S, if and only if IS, # S,. In addition, JS, = S, forall y € 7.
Thus supp (1) € % with Sg 2 ISg = JSp for each B € supp (/). Hence (with
abuse of notation) 1 < |supp . (J)| < oo.

For each 8 € supp(J), let Jg := JSg M Rz. Then JgM R =ISg M R = I.
For§ # B, Ss 2 JgSs 2 1gSs = Ss. Therefore {Sg}pe is a Jaffard family by
Theorem 6.3.5.

For (3), assume Sg € Wy C K foreach B € . Then R € Rz C W so each
nonzero ideal of W contracts to a nonzero ideal of R. By definition, if {Ws}ge is
a Jaffard family, then 1 < supp ., (B) < oo for each nonzero ideal B of W.

For the converse, assume each nonzero ideal of W survives in at least one Wg
and let J be anonzero ideal of W. Then I := J [ R is a nonzero ideal of R. Since
& is a Jaffard family, / survives in at most finitely many S,s. Clearly IWg = Wp
whenever ISg = Sg. Thus J survives in at most finitely many Wgs. Also Jg :=
JWg (M W contains /5. Thus for § € B\{B}, S5 = 13Ss < JgW;. It follows that
JgWs = Ws. Therefore {Wg} ge is a Jaffard family by Theorem 6.3.5. |

Theorem 6.3.8. Let .7 := {S,}aecw be a Jaffard family with R := (") Se.

(1) Each S, is integrally closed if and only if R is integrally closed.

(2) Each Sy is h-local if and only if R is h-local.

(3) Each S, is a Priifer domain if and only if R is a Priifer domain.

(4) Each S, has weak (strong) factorization if and only if R has weak (strong)
factorization.

(5) Each S, has (strong) pseudo-Dedekind factorization if and only if R has
(strong) pseudo-Dedekind factorization.

Proof. A flat overring of an integrally closed domain is integrally closed, and
an intersection of integrally closed domains is integrally closed. Also, by Theo-
rem 6.3.1(5), each S, is flat over R. Thus R is integrally closed if and only if each
S is integrally closed.

By definition, each nonzero nonunit of R is a unit in all but finitely many Sgs.
Hence by Corollary 6.3.2 it is easy to see that R is /-local if and only if each Sy, is
h-local.

An overring of a Priifer domain is always a Priifer domain, so if R is a Priifer
domain, then so is each S,. By way of Theorem 6.3.1, there are several ways to
establish the converse. For example by statement (6), a nonzero finitely generated
ideal I of R is invertible if IS, is an invertible ideal of S,, for each «. So clearly, R
is Priifer if each S|, is Priifer.

Suppose each S, has weak (strong) factorization and let / be a nonzero
nondivisorial ideal of R with supp (/) = {&;, a2, ...,a,}. By Theorem 6.3.1 (7)
& (8), at least one of ISy, , ISy, , - . . , ISy, 1s not divisorial. Without loss of generality,
we may assume IS, is not divisorial for each 1 < i < m and IS, ; is divisorial for
eachm < j < n.Then IajSaj =18y, = (IVSa‘/.)V = (Iv)ajSaj foreachm < j <n.
And for 1 < i < m, we have Iy, Sy, = IS, = (ISq,)" M/ M5 - M/" S, =
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(1", M,.':"l‘lM,.':iz‘z- M o' Sq; for some maximal ideals M; 1, M, ..., Mg (s; >

1) which survive in S o, and positive integers r;1,7i2,..., 7. It follows that
= (I")q, form < j <nand I, = (Is)" M”"M”‘z---M”""' forl <i <m.

Slnce (Ie;)" = (I")o;, we have I = IV[[ M, " k’ . Thus R has Weak factorization.

Since each M;; blows up in all S,s other 'than Se;» if each r;x = 1, then the
factorization for I has the form I = YN N, --- N; with the Nys distinct maximal
ideals. Thus R has strong factorization if each S, has strong factorization.

For the converse, suppose R has weak (strong) factorization and let J be a
nonzero nondivisorial ideal of Sg for some f. By flatness, / := J [ R is such
that ISg = J. By Theorem 6.3.1(9), we know I'Sg = (ISg)" = J” (with J"
the divisorial closure of J with respect to Sg). Thus 7 is not a divisorial ideal of
R. Hence we may factor it as I = ["M|'M,?--- M, for some maximal ideals
My, M,,....,M, of R. Since I = Ig, ISy = Sy for each @ # p. As each
M; survives in a unique Sy, it must be that each extends to a maximal ideal of
S (another consequence of flatness). Thus J = IVer‘ Mzr2 -~ M)"Sg is a weak
factorization for J in Sg. Therefore Sg has weak factorization. As above, if each
r; = 1, then we have a “strong” factorization of J in Sg. So Sg has strong
factorization whenever R does.

Pseudo-Dedekind factorization is much easier since we know a domain 7 has
pseudo-Dedekind factorization if and only if it is &-local and Tj; has pseudo-
Dedekind factorization for each maximal ideal M. By (2), R is h-local if and only
if each S, is h-local. Also, each maximal ideal N of S, has the form N = MS,
for some maximal ideal of R and (S,)y = Ry, and for each maximal ideal Q,
supp»(Q) = {B} for some B € o and Rg = (Sp)gs, With OSg € Max(Sp).
Thus Rjs has pseudo-Dedekind factorization for each maximal ideal M if and only
if, for each ¢ € o7, (Sy)y has pseudo-Dedekind factorization for each maximal
ideal N of S,. Thus R has pseudo-Dedekind factorization if and only if each S, has
pseudo-Dedekind factorization.

For strong pseudo-Dedekind factorization, we simply use that a domain 7" has
strong pseudo-Dedekind factorization if and only if it is an /-local Priifer domain
such that PT p is a principal ideal of Tp for each nonzero prime ideal P of 7. As
with maximal ideals, each nonzero prime ideal of R survives in a unique S, where
it generates a prime ideal, and each nonzero prime ideal of each S, is extended from
a prime ideal of R. Moreover, PRp = P(Sy)ps, Whenever PS, # S,. It follows
that R has strong pseudo-Dedekind factorization if and only if each S, has strong
pseudo-Dedekind factorization. O

Theorem 6.3.9. Let .7 := {S,}acor be a Jaffard family with R := (1 Sy. Also, for
eacha € o7, let S), denote the integral closure of So. Then the set ' := {S }oeor
is a Jaffard family and () ,c ., S, is the integral closure of R.

Proof. Let R’ denote the integral closure of R. Then for each maximal ideal M of
R, R), is the integral closure of Ry. Moreover, R" = ({R}, | M € Max(R)}.
For each o, (S¢)ms, = Ry foreach M € 2, := {M € Max(R) | MSy, # S4}
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and Max(Sy) = {MS, | M € Z,} (Corollary 6.3.2). It follows that S, =
(R}, | M € 2} and therefore R' = (),c., So-

Let N be a maximal ideal of R’. Then M := N M R is a maximal ideal of R
and R}, € R),. Since .7 is a Jaffard family, supp ., (M) = {B} for some f € <. It
follows that S/’g C R}, € R),. Thus N survives in S [; That .’ is a Jaffard family
now follows from Theorem 6.3.7. O

6.4 Factorization Examples

First a simple corollary to Theorem 2.5.10.

Corollary 6.4.1. Let R be an integral domain and let M :={M,}ycor be a
nonempty set of maximal ideals of R. If R = (\,c.s Rum,, then each sharp maximal
ideal of R (if any) is in the set M, and (), e, M is the Jacobson radical of R.

Proof. There is nothing to prove if .#Z = Max(R), so assume there is a maximal
ideal M that is not one of the M,’s. Clearly, if R = (),c. Rum,. then M is not
sharp. Moreover, for ¢ € ﬂae o Mg, if t isnotin M, then there are elements p € R
and ¢ € M such that pt + ¢ = 1. It follows that ¢ is a unit in each Rj,. But
having R = ﬂae oz R, implies ¢ is a unit of R, a contradiction. Thus € M, and
(\ycor Mo is the Jacobson radical of R. o

We recall some results of Gilmer and Heinzer [36] concerning irredundant
intersections of valuation domains.

First, a domain R is said to have an S-representation if there is a set of valuation
overrings {Vy }oeor such that R = ﬂa <z Vo and the intersection is irredundant (for
eachfeo/,RC ﬂaem\{ﬁ} Vy). Of course, in the case R is a Priifer domain, each
V, is a localization of R. Moreover, as the intersection is irredundant, in the Priifer
case, each V,, is the localization at a sharp maximal ideal of R [36, Lemma 1.6], and
each nonzero finitely generated ideal of R is contained in at least one such maximal
ideal [36, Theorem 1.10].

Recall that a nonconstant polynomial f(X) € R[X] is said to be unit valued if
f(r) is a unit of R for each r € R. The domain R is said to be a non-D-ring when
such a polynomial exists (see, for example, [57, Page 271] and [39, Proposition 1]).
If R = (e Vo Where each V, is a valuation domain and there is a polynomial
f(X) € R[X], of degree 2 or more, that is unit valued in each V,, then R is a
Priifer domain such that each invertible ideal has a power that is principal (see [57,
Corollary 2.6]). Moreover, if there are two such polynomials where the gcd of their
degrees is 1, then R is a Bézout domain [57, Corollary 2.7]. We make use of the
latter result in several of our examples.

Throughout this section we let G := Zj’; 1 G; under reverse lexicographic order
where each G; := Z. Before presenting the examples, we set some notation that
will be in effect for the first two examples of this section. Later more complicated
examples will be created.
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Start with a field K and let {X,;,Y | n,i € Z%} be a set of algebraically
independent indeterminates over K. Also let 2" := {X,,; | n,i € Z'} and for
eachn, let 2, 1= {X,; | i € ZT}and Z,¢ :== 2°\ Z,. In the first two examples,
we further assume that there is a subfield F of K such that [K : F] = 2. Also, we
let D := K[Y, 2] and D" := K(Y)[Z]. For convenience we let K, := K(Z,°),
K’ := K(Y, Z°), D, := K,[Z,] and D! := K,[Y, Z,].

Example 6.4.2. For each n, let V, be the valuation overring of D" corresponding
to the valuation map v, : K(Y, Z)\{0} — G defined as follows:

(@) vp(Xni) = e; where e; is the element of G all of whose components are 0
except the ith one whichis a1,

(b) v,.;(b) = 0 for all nonzero b € KE,

(c) extendto all of K(Y, Z") using “min” for elements of DZ (and sum for products
and difference for fractions).

For each n, let N,, denote the maximal ideal of V,,. From the order on G, N,, =
XV, Next, let T := ﬂ;’lil V,,. Then the following hold.

(1) T is a h-local Bézout domain with strong pseudo-Dedekind factorization.

(2) Foreachn, M, := N, N T is aprincipal maximal ideal of T generated by X, ;.
These are the only maximal ideals of T'.

(3) Foreachn,T/M, = V/N, = K, = K(Y, Z).

(4) Foreachn, [K(Y, Z) : F(Y, Z\)] = 2.

(5) For each n, the pullback of F(Y, Z) over M, is a domain R, with integral
closure T that has pseudo-Dedekind factorization.

Proof. In this example, T is the Kronecker function ring that corresponds to the
valuation domains W, := V, N K(Z"). Thus T is a Bézout domain. For m # n,
X,.i 1s a unit of V,,, for each i. Thus X~ 1. € ﬂ . Vi for each i. By [36, Lemma
1.6 & Theorem 1.10], each M, is a max1ma1 1dea1 of T and each finitely generated
nonzero ideal of T is contained in at least one M,,.

Next, we show that not only is M, = X, ;T for each n, but M, is the only
maximal ideal that contains X,, ;. After this we show that Max(T) = {M,, | n €
7). For the first part, let 7 € T\M, be a nonunit of 7. Then £ is a unit of V.
Since T is an overring of D”, h = g/ f where g, f € D" have ged 1in D". For each
positive integer k, X¥ ;R is aunit of V,. For sufficiently large k, each monomial
term of X’; ;. has total degree larger than the total degree of each monomial term
of g. For such a k, no term of ij’i f cancels with a term of g. Thus v,, (X’;’i f+g) =
min{vm(X ) vm(g)} = min{v,, (f), vin(g)} = v (f) for all m # n (since
Vi (X,.i) = 0). It follows that X ; + h is a unit in each Vj, and thus it is a unit
of T'. Therefore M,, = X,, 1T is a maxnnal ideal of 7" and for each i, it is the only
maximal ideal that contains X, ;.

Next, we consider an arbitrary nonzero nonunit 4 of 7'. As above, we may write
h as a quotient h = g/f where g, f € D" have ged 1. Then 4 is in the base
field of all but finitely many D,E s. Hence it is contained in at most finitely many
M,s. By [36, Corollary 1.11], these are the only maximal ideals of 7 that contain /.
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Thus Max(T) = {M, | n € Z*} and it follows that each nonzero prime ideal
is contained in a unique maximal ideal and therefore T is h-local. In addition, T
has strong pseudo-Dedekind factorization since each maximal ideal is principal and
PT p is principal for each nonzero nonmaximal prime P.

Next, let F be a subfield of K such that [K : F] = 2 and choose a maximal
ideal M, (any will do). The corresponding residue field is 7/M, = K(Y, Z))
and the subfield F(Y, .Z,°) is such that [K(Y, Z) : F(Y, Z)] = 2. Thus by
Theorem 6.1.6, the pullback of F(Y, Z) over M, is a domain R, with pseudo-
Dedekind factorization that is not integrally closed. O

Remark 6.4.3. With the notation of the previous example, for each nonzero ideal A
of R,, there is a finite (nonempty) set of indeterminates {X,,;, i, s Xuy.iys - - - » Xom, i, |
and a positive integer k such that A contains the product (nglxm Ji /.)k. To
see this first note since R, is h-local, the ideal A has only finitely many min-
imal primes. By the construction of the Vs, each minimal prime of R, is the
radical of some X, ;. Thus there is a finite set {X,, i, Ximy.iys - - - » Xom, i, 5 such

that /A = (]_[;=l Xm;.i;)- Therefore there is a positive integer k such that
(n;=1ij,i,-)k € A

The domains in the next example have weak factorization but not strong. The larger,
denoted T, is formed from the intersection of certain valuation overrings of the
domain D = K[Y, 2] that all contain Y as a nonunit. The smaller ones, denoted
R, are formed by pullbacks, each with integral closure T'.

Example 6.4.4. For each n, let V;, be the valuation overring of D, corresponding
to the valuation map v, : K(Y, Z)\{0} — G defined as follows:

(@) vu(Xni) = e; where e; is the element of G all of whose components are 0
except the ith one whichis a1,

(b) v,.;(b) = 0 for all nonzero b € K,

(c) there is a positive integer j, such that v,(Y) :=e;,,

(d) extendto all of K(Y, Z") using “min” for elements of D,, (and sum for products
and difference for fractions).

For each n, let N,, denote the maximal ideal of V,,. From the order on G, N, =
X1 V. Also by (a) and (c), Y/X,, j, is a unit of V,,. Next, let T := ﬂ;ozl V,. Then
the following hold

(1) T is a Bézout domain.

(2) T is not h-local because Y is contained in infinitely many maximal ideals (in
fact, it is in every maximal ideal).

(3) Foreachn, M,, :== N, N T is a principal maximal ideal of T generated by X,, ;.
Moreover, M := YK(Z)[Y]xy) N T is the only other maximal ideal of T and
it has height one and is unsteady.

(4) T has weak factorization, but not strong factorization since it is not s-local.

(5) Foreachn, T/M, = V/N, = K(Z,,Y/Xn,)-

(6) Foreachn, [K(Z,.Y/Xuj,)  F(Z,,Y /X0 ;)] = 2.
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(7) For each n, the pullback of F(Z,°,Y/X, ) over M, is a domain R, with
integral closure 7" that has weak factorization.

Proof. Consider the polynomials g2(Z) := Z> + X1 + X5 and g3(Z) := Z° +
X1.1 + Xy, in T[Z], where Z is an indeterminate over the ring 7. We will show that
both are unit valued in each V},. First, g2(0) = X;; + X2 = g3(0) is a unit of
V, for each n. Next let i/ f € V,\{0} where h, f € D and consider g,(h/f) and
g3(h/f). Since X; 1 + X, is a unit of V,,, if 4/ f is a nonunit, then both g>(h/ f)
and g3(h/f) are units of V,. So, we only need to consider what happens when
h/f is a unit of V. The reasoning is similar for both g,(h/f) and g3(h/f). First
rewrite each expression as a single fraction: g»(h/f) = (B> +X1.1 f2+X21 £2)/ f?
and g3(h/f) = (B + X1 3 + Xou1 f3)/f3. We have v, (h) = v,(f). From the
definition of v, the value v,(h) = v,(f) is determined by the minimum value of
the monomial terms of each polynomial. We may split each polynomial into sums
h =h,+h, and f = f,+ f,y where h,, is the sum of the monomial terms of & with
minimum value in V,, and f, is the sum of the monomial terms of f* with minimum
value in V,,. Then h? = hﬁ + 2h,h, + hi/, n = hZ + 3h£hn/ + 3hnhi/ + hz,,

T=f242f fr + fnz/ and f3 = f3+3f2fv + 3f,,fn2, + fn3/. For both powers,
the monomial terms with minimum value are those of hﬁ, hz , fn2 and fn3.

Essentially, we have three cases to consider,n = 1,n = 2 and n > 2. No matter
the value of n, at least one of X ; and X5 ; is a unit of V.

We start with the case n > 2. As both X, ; and X, are units of V,,, v, (fnz) =
Vi (fanl,l) =v, (fanzﬁl) =v, (fnZ(Xl,l + X3.1)). Moreover, each monomial term
of fanLl, fanZJ and fnz(XLl + X3.1) has this same value. It is clear that hﬁ +
f2(X1.1 + Xa,1) cannot be the zero polynomial. Hence v, (g2(h/f)) = v,(h* +
LPXin +X21) = Va(f?) = valhy + f2(X11 4 Xo1)) = va(f?) = 0 and thus
g2(Z) is unit valued in V;, when n > 2. A similar proof shows that g3(Z) is also unit
valued in V,.

Next, consider the case n = 1. In Vj, X;; is a nonunit while X5 ; is a unit.
Thus Vl(flzXLl) > Vl(flz) = V](f‘lzxz’]) = Vl(flz(Xl,l + X5.1)). Moreover, each
monomial term of f12X2,1 has this same value, while all of the monomial terms of
f2X1.1 have larger value. It is clear that 42 + f,2X; | cannot be the zero polynomial.
Hence vi(g2(h/f)) = vi(h* + f2(X1.1 + X2.1)) = vi(f?) = vi(h} + fX11) —
vi(f?) = 0 and thus g,(Z) is unit valued in V;. Similar arguments show that g3(Z)
is unit valued in V; and both g,(Z) and g3(Z) are unit valued in V. Therefore T is
a Bézout domain by [57, Corollaries 2.6 & 2.7].

For each pair n # m, the sum X, ; + X, is a unit in each V. Hence each
such sum is a unit of 7. Also, for each n, M,, := N, N T is a prime ideal of T
that contains Y. Thus Y is contained in infinitely many maximal ideals of 7" and
therefore T is not h-local. That Y is contained in the Jacobson radical will follow
after we show that each M,, is a principal maximal ideal of 7.

To see that each M, is a principal maximal ideal of T, suppose h € T\M, is
a nonunit of 7. Then / is a unit of V,,. Since T is an overring of D, h = g/f
where g, f € D have ged 1 in D. For each positive integer k, X,’;l + his a

unit of V. For sufficiently large k, each monomial term of X’; \f has total degree
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larger than the total degree of each monomial term of g. For such a k, no term of
X];lf cancels with a term of g. Thus v,, (Xﬁlf + g) = min{v,, (Xﬁ’lf), vim(g)} =
min{v,, (1), viu(g)} = viu(f) for all m # n (since v,,(X,.1) = 0). It follows that
Xﬁ 1 +h is a unitin each V}, and thus a unit of 7. Therefore M,, is a maximal ideal of
T. This also shows that M, is the only maximal ideal of 7" that contains X,, ;. Since
we know T is a Bézout domain, it must be that Ty, = V,, with M, Ty, = X,,.1 V.
Hence we also have M,, = X, T.

Similar analysis shows that for eachi > 1, X,, ; is comaximal with each element
of T\ M,. Hence M,, is the only maximal that contains X, ;. It follows that M, is
the only maximal ideal of 7" that contains /X, ;7. Thus /X,,;T = /X,,;V, N T.

Let o7 be the set of finite products of distinct X, ;,s and consider the set % :=
{Y/a | a € </}. Each finite subset of this set generates a proper ideal of all but
finitely many V),,s. Hence this set generates a proper ideal B of 7. On the other
hand, no M, contains the corresponding element Y/X,, ;, as this element is a unit
of V,,. Thus no M,, contains B.

Let /1 be a nonzero element of K[2] that is not a unit of 7". We will show that /
is comaximal with B. If the constant term of % is nonzero, then / is a unit of each
V,, and thus it is a unit of 7. Hence the constant term of /4 is 0. For a given n, if
some monomial term of & does not include a positive power of some X,, ;, then 4 is
a unit of V,. Thus /& is a nonunit if and only if there is an integer n such that each
monomial term of & includes a positive power of some X,,;. As & is polynomial,
there are at most finitely many such n, say ny,ns,...,n,. Let g := HX”isjn,- and
consider the sum 7 + Y/g.

For each n;, Y/g is a unit of V},, while 4 is a nonunit. On the other hand, for
m € ZT\{ny,n,,...,n,}, his a unit of V,, while Y/g is a nonunit. It follows that
h + Y/g is a unit in each V, and thus is a unit of 7.

Let P be a maximal ideal of 7' that contains B. Since each nonzero element
of K[Z'] is comaximal with B, Tp contains K(Z")[Y]. It must be that Tp =
K(Z)[Y]ey) since Y € B. Thus P = M is unique and it is a height one maximal
ideal of T'.

Finally, suppose Q is a maximal ideal that is not one of the M,s. Since Y is
in the Jacobson radical of 7, Y € Q. For each n, M, is the only maximal ideal
that contains X,, j,. Thus having X,, ;, Y/X, j, = Y in Q implies Y/X, j, isin Q.
Similarly, we have Y/a € Q foreach a € 7. Therefore Q contains B and we have
O = M. It follows that M is the only other maximal ideal of T'.

That M is not sharp follows from Theorem 2.5.10. On the other hand, from the
previous observations we know that MT s = Y K(.Z")[Y](y) is principal. Thus M is
an unsteady maximal ideal of 7. All other maximal ideals (the M, s) are principal.
Also from the construction, each nonzero nonmaximal prime ideal is contained in
unique maximal ideal and is sharp (in fact the radical of a principal ideal).

That T has weak factorization follows from Theorem 4.2.12.

Next, let F' be a subfield of K such that [K : F] = 2 and choose a maximal ideal
M, (any will do). Since Y/X, ;, is a unit of V,,, T/M, = K(Z,f,Y/X,,j,)- The
subfield F(Z,°,Y/X, ;) is such that [K(Z,5, Y /X, j,) ¢ F(Z,F.Y/X0 ;)] = 2.
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By Theorem 6.1.6, the pullback of F(Z,°,Y/X, j,) over M, is a domain R, with
weak factorization that is not integrally closed. O

Remark 6.4.5. The domains 7 and R, from Example 6.4.4 have several other
properties that we will find useful later.

(1) Since M, is a common maximal ideal of R, and T, P, := M MR, is a
maximal ideal of R, and (R,)p, = Ta. Moreover, for all m # n, M, N1 R, =
Xm.1 Ry 1s a principal maximal ideal of R,,, this follows easily from the fact that
(Rw)m,, O &, = Tu, forallm # n. Also M, is the radical of the principal ideal
XnaRy.

(2) From the structure of the V,,s, each nonzero nonmaximal prime ideal Q of T’
is the radical of a principal ideal of the form X, ; T. Moreover, Q M R, is the
radical of X, ; R,,. Since M, is a common maximal ideal of R, and T, each
prime ideal of R, is the contraction of a prime ideal of 7. Thus except for P,,
each nonzero prime ideal of R, is the radical of a principal ideal of the form
XmiRy.

(3) If I is an ideal of R,, that is not contained in P,, then IT is not contained in M .
Moreover, since T is a Priifer domain with weak factorization where M is the
only unsteady maximal ideal, the ideal IT is contained in only finitely many
maximal ideals of T (Corollary 4.2.6). It follows that /T has only finitely many
minimal primes (Theorem 4.2.4). Thus I has only finitely many minimal primes
in R,,.

(4) For each nonzero ideal A of R,, there is a positive integer A and
finitely many indeterminates X, i, Xyn,.ips - - - » Xm,,i; such that the product
(Y ]_[j,=1 X i; )" is in A. To find such an element, first note that any finite set
of X,,, ;s will do if A contains a positive power of Y. Thus we consider the case
where A does not contain a positive power of Y. Since (R,)p, = K(Z)[Y]w)
is a discrete rank one valuation domain with maximal ideal generated by Y,
A(Ry)p, = YCK(Z)[Y](y) for some nonnegative integer k. It follows that
the ideal (A4 :g, Y¥) is a proper ideal of R, that is not contained in P,. Thus
(A:x, Y¥) has only finitely many minimal prime ideals, each of which is
the radical of some X, ;. Let {X,;, i, X+ - - - » Xim, i, be the set of these
indeterminates. Then (A4 :g, Y¥) has the same radical as the principal ideal
(]_[j,=1 Xon;.i;) Ry Tt follows that there is a positive integer & > k such that

Y (ITj=) Xm;.i,)" € A. Hence (Y [T}=) X, ;)" is in A.

In addition to G = Z;’il G as defined above, welet H := R @ G and J :=
Q @ G, also under reverse lexicographic order.

In the next example, we let K be a field and let 2 := {Z,; | n,i € Z*}
be a set of algebraically independent indeterminates over K such that 2° U {Y} is
also algebraically independent. We also let D := K(Y)[#] and E := K(Y)[Z]
where Z = {Z%, | n € Zt,a € R"}U{Z,; | n,j € ZT,2 < j} and
2 =1{Z | nelZtae QyU{Z,; | n.j € Z'.2 < j}. We will
construct two Bézout domains using D and E as “base rings” much like we did in
Example 6.4.2. The difference is that one of the domains will have pseudo-Dedekind
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factorization but not have strong pseudo-Dedekind factorization and the other will
have strong factorization (equivalently, /-local) but not have pseudo-Dedekind
factorization. Also, each domain has infinitely many idempotent maximal ideals and
no other maximal ideals. As with D, we use different definitions for K,, and D,,. For
each positive integer n, we let K, := K(Y, %5), D, := K,[%,], L, == K(Y,2})
and E, := L,[2,] where %, 1= {Z%, | « € RY}U{Z,; | j € Z*.2 < j},
R = B\Kn, 2y = {22, | @ € QYYU{Z,; | j € ZT.2 < j} and
20 = 9\2,.

Example 6.4.6. Let D = K(Y)[#] and E = K(Y)[2] be as defined in the
paragraph above (as well as K,,, L,,, D,,, E,, etc.). For each positive integer 1, define
a pair of valuation domains V,, and W, of K(Y,Z#) and K(Y, 2), respectively,
corresponding to the valuations v, : K(Y, Z)\{0} - H and w,, : K(Y, 2)\{0} - J
defined as follows.

(@) Va(Z%)) = (@,0,0,...) and w,(Z ) = (8,0,0,...) foralla € Rand 8 € Q.

(b) vi(Zu,;) = (0,e;) = w,(Z, ;) forall j > 2 wheree; € G is the element of G
whose jth coordinate is 1 and all others are O (as in the previous examples).

(c) vo(b) = 0 = wy(c) for all nonzero b € K, = K(Y,Z#;)andc € L, =
K(Y,2y).

(d) Extend to valuations on K(Y, %) and K(Y, 2) using “min” for elements of
D, = K,[%#,] and E,, = L,[2,], respectively.

The domains 7 := (\,2, V, and S := (2, W, satisfy the following.

(1) Max(T) = {N, N T | n € Z*} and Max(S) = {M, N S | n € Z*} where N,
is the maximal ideal of V,, and M,, is the maximal ideal of W,,.

(2) Both T and S are Bézout domains with infinitely many maximal ideals (in
fact, each is a Kronecker function ring). In addition, each maximal ideal is both
branched and idempotent. Thus neither domain has strong pseudo-Dedekind
factorization.

(3) Both T and S are h-local, so both have strong factorization.

(4) Since both T and S are h-local Bézout domains such that each maximal ideal is
both branched and idempotent, if Q is a maximal ideal of either, then the inter-
section of the Q-primaries ideals is a prime ideal Q| that is properly contained
in Q and contains all primes that are properly contained in Q (see Page 104).

(5) For each maximal ideal Q of T', the value group corresponding to 7/Qy =
To/QoTp is R. Also PTp is principal for each nonzero nonmaximal prime
ideal P of T'. Thus T has pseudo-Dedekind factorization.

(6) In contrast, for each maximal ideal Q of S, the value group corresponding
to S/Q0 (= So/0Q0Sp) is Q. Thus S does not have pseudo-Dedekind
factorization. However, PSp is principal for each nonzero nonmaximal prime
ideal P of S.

Proof. 1t is clear that V, is the trivial extension in K(Y, %) of its contraction to
K(Z) and W, is the trivial extension in K(Y, £2) of its contraction to K(2). Thus
both T and S are Kronecker function rings. It follows that each is a Bézout domain.
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For each n, V,, and W, are the only valuation domains in the corresponding family
for which the Z, ;s are nonunits. It follows that each intersection is irredundant.
Moreover, as in Example 6.4.2, each nonzero nonunit of 7 is in the base field for
all but finitely many D, s and the same holds for the nonzero nonunits of S with
regard to the E,s. Hence by [36, Corollary 1.11], each maximal ideal of 7 is the
contraction of the maximal ideal of V,, for some unique 7, and each maximal ideal
of S is the contraction of the maximal ideal of W, for some unique n. Moreover,
we have that each nonzero nonmaximal prime ideal of T is contained in a unique
maximal ideal, as is each nonzero nonmaximal prime ideal of S. Thus both 7" and S
are h-local. If P is a nonzero nonmaximal prime ideal of either 7" or S, it is locally
principal.

Let O be a maximal ideal of 7. Then Q = N, N T for some 1, where N, is the
maximal ideal of V. Thus Tp = V,. Since the value group associated with V, is
R @ G under reverse lexicographic order, the value group associated with V/N, o
is R. It follows that T has pseudo-Dedekind factorization.

In contrast, if O is a maximal ideal of S, then the value group corresponding to
W/M, is Q (where Q = M, N S for some n). Hence S does not have pseudo-
Dedekind factorization. O

The domains in the next three examples are formed by intersections of Jaffard
families. Several of the domains have both infinitely many invertible maximal
ideals and infinitely many idempotent maximal ideals. In each example, there are
domains that are not integrally closed. Each of these has infinitely many divisorial
maximal ideals that are neither invertible nor idempotent. The domains featured
in Example 6.4.7 (the first of the three) have weak factorization but not strong
factorization. In addition, each has infinitely many unsteady maximal ideals. In the
second example (Example 6.4.8), the domains have pseudo-Dedekind factorization.
Three of the domains featured in Example 6.4.9 have strong factorization but not
pseudo-Dedekind factorization. In all of these examples, only the unsteady maximal
ideals in the domains of the first have finite height. The constructions can be easily
altered to produce maximal ideals of arbitrary finite heights.

As above start with a field K, but instead of one subfield F such that [K : F] = 2,
we require that there is a subfield F of K and a countable set of elements 8 := {f,, |
n € Z*}in K\F such that K = F(%) and foreachn, 82 € F and B, ¢ F, :=
F(#\{Bn}). Next we let {X,; ;,Zy ;. Yu | n,i,j € Z*} be a set of algebraically
independent indeterminates over K.

In all three examples, we let 2 := {X,;; | n, i, j € Zt}and Z = {Y, |
n € Z*}. In the first two we make use of the set Z = {ZZ | |« e RT} U {Z, ; | n,
J € Z* with 2 < j} as defined earlier. In the third we use the set 2 = {Z 1 lace
QTYU{Z,; | n,j € Z" with 2 < j}. Note that the conclusions in Example 6.4.7
are equally valid if we use 2 instead of Z.

For each n, we let 2, := {X,;; | i,j € Z}, Z,¢ := 2\ %, and @n" =
Y\{Y,}. Also, for pairs n,i, we let Z,; = {Xp;; | j € Z*} and Z)5; =
X\ Z,.i. In the first two examples, we make use of the sets %, = {Z, ; | 2 <
JYUZy o e Rt} and Z¢ = 2\ 2, as defined earlier, and in the third we use
2y =12, ;122 JYULZy |0 €QT} 20 = 2\ Z,
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In Example 6.4.7, welet D := K(Z)[Z , %] and E := K(Z , % )[#)]. For each
n,let K, := K(Z5, Z,%) and E, := K,[%,]. In addition, for pairs n, i, we let
Kn’,' = K(L@, 52//"6:’-, %C), Dn’,' = Ky [%1’,', Yn] and Ln,i = Fn(%, 32//"6:’-, %L)

As above, we have G = G, H=R®GandJ =Q & G, all under reverse
lexicographic order with each G, := Z.

Example 6.4.7. For each pair n,i, let V,; be the valuation overring of D, ;
corresponding to the valuation v, ; : K(#Z, 2", % )\{0} — G defined as follows.

(a) vpi(X,,,;) = e; where e; is the element of G all of whose components are 0
except the jth one whichisa 1,

(b) v, (b) = 0 for all nonzero b € K, ;,

(c) there is a positive integer j,; such that v, ; (Y,) =e;,,,

(d) extendto all of K(Z, 2", %) using “min” for elements of D, ;.

Also, for each positive integer n, let W, be the valuation overring of E,, correspond-
ing to the valuation w, : K(Z, 2", % )\{0} — H defined as follows.

(@) w,(Zy ;) = (,0,0,...) foralla € R.

(b) Wn(Z,,;j) = (0,¢;) forall j > 2 where e; € G is the element of G whose jth
coordinate is 1 and all others are 0 (as in the previous examples).

(c) wu(b) = Oforall nonzerob € K, = K(Z;, Z.%).

(d) Extend to valuations on K(Z, 2", %) using “min” for elements of E,.

For each n, let T,, = ﬂ?il V,.i. Each principal maximal ideal of 7, has the
form M, ; := X, ;1T, for some pair n,i and for each pair n, i, the residue field
T,/ M, ; is (naturally isomorphic to) K, ; (Y, /X, i j,,)- Also, let R, be the pullback
of Ly 1(Yn/Xn1,j,,) over My 1. Finally, let T := (72, T, S := (oo Wy, R :=
Moz, Ry Then the following hold.

(1) S is an h-local Bézout domain such that each maximal ideal is both branched
and idempotent.

(2) For each n, T, is a Bézout domain with weak factorization that has a unique
unsteady maximal ideal P,.

(3) For each n, R, is a domain with integral closure 7}, that has a unique divisorial
maximal ideal that is neither invertible nor idempotent and a unique unsteady
maximal ideal. All other maximal ideals of R, are invertible, and R, has weak
factorization. Moreover, for each nonzero ideal A of R,,, A R S contains
an element that is a unit in all other R,,;s and in all W;s.

DT, | n € ZT{T, | n € ZFYU{W, | n € Z™},{R, | n € Z*} and
{R, |n € ZTYU{W, | n € ZT} are Jaffard families.

(5) T is a Bézout domain with weak factorization that has infinitely many principal
maximal ideals and infinitely many unsteady maximal ideals, but no idempotent
maximal ideals.

(6) S M T isaBézoutdomain with weak factorization that has infinitely many prin-
cipal maximal ideals, infinitely many unsteady maximal ideals and infinitely
many idempotent maximal ideals.
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(7) R is a domain with integral closure T that has weak factorization, infinitely
many unsteady maximal ideals, infinitely many invertible maximal ideals and
infinitely many maximal ideals that are divisorial but not invertible. It has no
idempotent maximal ideals.

(8) RM S is a domain with integral closure S M T that has weak factorization,
infinitely many unsteady maximal ideals, infinitely many invertible maximal
ideals, infinitely many maximal ideals that are divisorial but not invertible and
infinitely many idempotent maximal ideals.

Proof. For each positive integer n, we let W := ("),,2, Wi, Ry := ()12, Rm and
T = (Nysn Tn- Also, we let %y = Ui %, 2, = U)o, Z) and &) =
{Y1,Y2,....Y,}.

By Example 6.4.6, S is an h-local Bézout domain with infinitely many idempo-
tent maximal ideals, each of which is branched. Moreover, each maximal ideal of §
is the contraction of the maximal ideal of some W,,. Thus the set {W,} is a Jaffard
family and Max(S) = {N, N S | n € Z*, N, the maximal ideal of W,}.

By Example 6.4.4, each T, is a Bézout domain with weak factorization (but
not strong) and Max(7,) is a countably infinite set. In addition, each 7, has a
unique unsteady maximal ideal, P,, and all other maximal ideals are principal.
Since [K,1(Yu/Xn1ju1) o Lua(Yu/Xn1,,,)] = 2, R, has weak factorization
(Theorem 6.1.6). From basic properties of pullbacks, 7, is the integral closure of
R, and M, ; is a divisorial maximal ideal of R, that is not invertible. In addition,
each maximal ideal of R, is contracted from a maximal ideal of T,, and if 7 € R
is a unit of Ty, then it is also a unit of R,. Fori > 1, M, ;M R, is an invertible
maximal ideal of R,, and P, M R is the unique unsteady maximal ideal of R,. Also,
from Remark 6.4.5(4), for each nonzero ideal A of R,, there is a positive integer /
and finitely many indeterminates, X, i, j,» Xu.i, jos - - - » Xn.is.j, Such that A contains
the product (Y, [T;—; Xu.j.)"- The product (Y, [Ti—; Xni )" € ANRN S is
a unit in all other R,,s and in all W},.

For each n, B, is not contained in R,. Thus R does not contain K [Z#Z, 2", #].
However, for each pair of positive integers m # n, B,Y, € Fu[%2, 2 ,%] <
R,,. Also B,Y, € M, , the common maximal ideal of R, and T,,. Since each R,
contains F[%Z, 2", %], R contains F[Z, 2, % ,{BaYn | n € Z*}]. Also B2 € F
and K = F[f]. Therefore K(Z, 2", %) is the quotient field of R.

For each positive integer 1, each nonzero element of K(%°, 2,", Z") N RN S
is a unit of all 7,,s and W,,;s for m > n. Thus each such element is a unit of R, for
all m > n. Since each nonzero element of R M S is the quotient of a pair of nonzero
elements of K[Z, 2, %], {R, | n € Z*)} and {W, | n € ZT} are families with
finite character. Hence |supp(/)| < oo for each nonzero ideal I of R (M S. Also note
thatif f € R is a unit in each valuation domain V}, ;, then it is a unit of each R, and
thus a unit of R.

Next, we show that each proper ideal of R (1 § survives in at least one R, and/or
at least one W,,.

Suppose JW; = W; and JR; = R; for all j < k. Then there is a finitely
generated ideal A C J such that AW; = W; and AR; = R; forall 1 < j < k.
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Thus AV;; = V;; forall 1 < j <k andalli.Let{ag,ai,...,a,} be a generating
set for A. Then there is a positive integer k&’ > k such that each g; is in the field
K(%z_l,, %{b,_l, @kb,_l). Let g := ao + a1 Yy + -+ + a,Y},. Then for each pair
(m, i), Vini(g) = min{v,,; (ao), Vmi(@1) + Vmi(Xrr), .., Vmi(ar) + rvmi (Yer)}.
For m > k, vu;(ap) = 0. Thus v,,;(g) = 0 in this case. For 1 < k < m,
Vm,i(Yrr) = 0 and vy ;(a;) = 0 for some j, so again v,,;(g) = 0. Therefore
g isin R. Since w,,(Yy) = O for all m, w,(g) = {wxu(ao), wp(ai),...,wy(a,)}.
As with the pairs (m, i), if n > k, then w, (ap) = 0 and we have w, (g) = 0. On
the other hand, if 1 < n < k, then having AW, = W, implies w, (a;) = 0 for some
J»so again w(g) = 0 and we have that g is a unit of S. Hence g is a unitof RN S
and therefore J = RN S.

Therefore for each nonzero ideal I of RM S, 1 < |supp(Z)| < n for some
positive integer n. Suppose I survives in W, and let J,, := IW,, RN S. From
the definition of W,,, IW,, contains a positive power of some Z,, ; and thus so does
Jm. Such an element is a unit in all other W;s and all Rys. Hence [supp(J,n)| = 1.

Next, suppose I survives in Ry for some k and let By := IR; (N RN S. Then
By contains an element that is a unit in all other R;s and in all W,,s. Hence
|supp(Bi)| = 1. Thus {R, | n € ZT}U{W, | n € ZT} is a Jaffard family by
Theorem 6.3.5. By Theorem 6.3.7, {R, | n € ZT} is also a Jaffard family. Since
T, is the integral closure of R, for each n, {T,, | n € ZT}U{W, | n € ZT} and
{R, | n € Z"} are Jaffard families with T the integral closure of R and 7 N S the
integral closure of R M S (Theorem 6.3.9).

By Theorem 6.3.8 and Example 6.4.4, both 7" and R have weak factorization, but
neither has strong factorization. For each n, both T, and R, have a unique unsteady
maximal ideal (of height one) and R, has unique divisorial maximal ideal that is
not invertible. All other maximal ideals of 7, and of R, are invertible. Thus by
Theorem 6.3.1, T has infinitely many unsteady maximal ideals and infinitely many
invertible maximal ideals, but no idempotent maximal ideals. Also R has infinitely
many unsteady maximal ideals, infinitely many invertible maximal ideals and
infinitely many divisorial maximal ideals that are not invertible, but no idempotent
maximal ideals.

Since S has pseudo-Dedekind factorization (Example 6.4.6), both T (1 S and
R (M S have weak factorization (Theorem 6.3.8 and Example 6.4.4). The domains
S and T are independent as are S and R. Thus Max(S M T) is the disjoint union
of { MNT | M eMax(S)}and {N NS | N € Max(T)} and Max(R M S) is the
disjoint union of {M MR | M € Max(S)} and {N NS | N € Max(R)}. Each
maximal ideal in one of the intersections retains whatever special properties it had
in the domain it came from. Thus S M 7 has infinitely many branched idempotent
maximal ideals, infinitely many invertible maximal ideals and infinitely many
(height one) unsteady maximal ideals. Each maximal ideal of R (1 S is contracted
from a maximal ideal of S M 7. Those that are contracted from unsteady maximal
ideals retain that property, and those that are contracted from idempotent maximal
ideals are idempotent. With regard to those that are contracted from invertible
maximal ideals, infinitely many are invertible and infinitely many are divisorial but
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not invertible. Specifically, X117 M R S is a noninvertible maximal ideal of R
that is divisorial, while X,,; ;T N RN S = X,,;1(R M S) is an invertible maximal
ideal of RM S foralli > 1.

By Theorem 6.3.8 both S and T are Priifer domains. Using the same reasoning as
that employed in the proof of Example 6.4.4, the polynomials /,(Z) = Z*>+ Y, +Y,
and h3(Z) = Z> + Y| + Y are unit valued in all W,s and all V,, ;s. Hence both T
and S M T are Bézout domains [57, Corollary 2.7]. O

For Example 6.4.8 we make a slight change in the notation, we let D :=
KZ, %) Z) and E = K(Z',%)[Z%]. For each n, let K, := K(Z,, Z.%)
and E, := K,[#,]. In addition, for pairs n,i, we let K,,; := K(Z, f%’nfi, X)),
Dy; = Kyi[Znil and L, := Fy(Z, Z,f;,%). As above, K = F[B1, B, ...]
such that for each n, 8, € ﬂmaén Fu\F,, K = F,[B,] and B2 € F. The valuation
domains W, will be defined as in Example 6.4.7, but for the V), ;s we map all Yis to
0, and thus avoid having unsteady maximal ideals.

Example 6.4.8. For each pair n,i, let V,; be the valuation overring of D, ;
corresponding to the valuation v, ; : K(Z, 2", %)\{0} — G defined as follows.

(a) vpi(X,,,;) = e; where e; is the element of G all of whose components are 0
except the jth one whichisa 1,

(b) v, (b) = 0 for all nonzero b € K, ;,

(c) extend to all of K(Z, 2", %) using “min” for elements of D,, ;.

Also, for each positive integer n, let W, be the valuation overring of E,, correspond-
ing to the valuation w, : K(Z, 2", % )\{0} — H defined as follows.

(@ w,(Z5,) = («,0,0,...) foralla € R.

(b) Wn(Z,,;j) = (0,¢;) forall j > 2 where e; € G is the element of G whose jth
coordinate is 1 and all others are 0 (as in the previous examples).

(c) wu(b) = Oforall nonzerob € K, = K(Z5, Z'.%).

(d) Extend to valuations on K(Z, 2", %) using “min” for elements of E,.

For each n, let T,, := ﬂloil V,.i. Each principal maximal ideal of 7, has the form
M, ; := X,.i1T, for some pair n,i and for each pair n, i, the residue field 7,/ M,, ;
is (naturally isomorphic to) K, ;. Also let R, be the pullback of L, ; over M, ;.
Finally, let 7 := (72, T, S := (hey Wu, R := (2, Ry Then the following
hold.

(1) § is an h-local Bézout domain with pseudo-Dedekind factorization such that
each maximal ideal is both branched and idempotent.

(2) For each n, T, is an h-local Bézout domain such that each maximal ideal is
principal. In addition, 7}, has strong pseudo-Dedekind factorization.

(3) For each n, R, is a domain with integral closure 7;, that has a unique divisorial
maximal ideal that is neither invertible nor idempotent. All other maximal ideals
of R, are invertible, and R,, has pseudo-Dedekind factorization. Moreover, for
each nonzero ideal A4 of R,,, A R M S contains an element that is a unit in all
other R,,s and in all W;s.
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BDAT, | n e ZT{T, | n € ZYYU{W, | n € Z*},{R, | n € ZT} and
{R, |n e Z*}U{W, | n € Z*} are Jaffard families.

(5) T is an h-local Bézout domain with strong pseudo-Dedekind factorization. In
addition, 7" has infinitely many maximal ideals each of which is principal.

(6) S M T is an h-local Bézout domain with strong pseudo-Dedekind factorization
weak factorization that has infinitely many branched idempotent maximal ideals
and infinitely many invertible maximal ideals.

(7) R is an h-local domain with integral closure 7 that has pseudo-Dedekind
factorization. It has infinitely many divisorial maximal ideals that are not
invertible and infinitely many invertible maximal ideals, but no idempotent
maximal ideals.

(8) RM S is an h-local domain with integral closure 7' (1 S that has pseudo-
Dedekind factorization. It has infinitely many divisorial maximal ideals that
are neither invertible nor idempotent, infinitely many invertible maximal ideals
and infinitely many branched idempotent maximal ideals.

Proof. Each V,,; is the trivial extension to K(Z, 2 )(#') of its contraction to
K(Z, %). The same is true for each W,,. Thus T', S and S M T are all Kronecker
function rings, and so each is a Bézout domain. By Example 6.4.6, S is h-local
with pseudo-Dedekind factorization. As in Example 6.4.7, each nonzero nonunit of
S M T is a unit in all but finitely many 7, s and finitely many W,;s. In addition, each
T, is h-local with strong pseudo-Dedekind factorization (Example 6.4.2). It follows
that each nonzero nonunit of S (1 7 is a unit in all but finitely many V,, ;s and W,,s.
Since (R, : T,) is common maximal ideal of R, and T}, if g € R, is a unit of 7},
then it is a unit of R,,.

Let A be a nonzero ideal of R,. By Remark 6.4.3, there is a finite set {Xn,,-j,k/. |
1 < j < r} and a positive integer & such that (]_[;-=1 Xni; ,kj)h € A. The product
(IT;= Xp.i;&;)" is aunitin S and in all other R,s.

From the construction of the R,s, each contains F[#, 2, %] as does S. Thus
RNS D F|Z, Z,%]. In addition, S contains 8,X, 1 for each n. For m # n,
Bn € Fy € Ry and B,X,11 € M,; € R,. Thus 8,X,11 € R for each n.
Therefore the ring R M S contains F[Z, 2, % ,{BnXu.11 | n € ZT}]. Since K =
F[B1,Ba2,...] and F contains B2 for each n, K(%Z, 2", %) is the quotient field of
RNS.

For each nonzero element f € R (1 S, there is a positive integer k and a finite set
of pairs {(my.i1), (M2, i2). ..., (my,ip)} such that f € K(Z%,, U’]’-=1 Ty is D).
Then f is a unit of W, for each integer m > k and f is a unit of V},; for each pair
(n,i) ¢ {(my,i1), (ma, 1), ..., (mp,ip)}. It follows that f is a unit in all but finitely
many R,s.

Next we show that each proper ideal of R (1 S survives in at least one V), ; and/or
at least one W,,.

Let J be a nonzero ideal of R N S and let a¢ be a nonzero element of J. Then
there is a positive integer k and a finite set of pairs {(m, i1), (m2,12), ..., (M, ip)}
such that ay € K(Z}, U’j’-=1 Zm,i;+PY). For each integer m > k, ag is a unit of
Win. Also, ag is a unit of V,,; for each pair (n,i) ¢ {(m1,i1), (m2,12), ..., (Mmpy,ip)}.
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Thus JW,, = W, for each m > k and JV,; = V,; for each (n,i) ¢
{(my,i1), (ma, 0a), ..., (mp, ip)}.

Suppose JW; = W, for all j < k and IRy, i, = ng,,-g for all
pairs (mg, i) belonging to {(mi,i1),(m2,iz),...,(my, iy)}. Then there is a
finitely generated ideal A < J such that Ang,,-g = ng,,-g for all pairs
(mg,ig) € {(my,i1),(ma,iz),....(my,0p)} and AW; = W; for all 1 <
Jj =< k. Let {ao,ai,...,a,} be a generating set for the ideal A. Then there
is a pair of positive integers // > h and k' > k and a finite set of pairs
{0m1i1), (Mo, ia), -, (mye i)} (2 40my, in), (ma,ia), ..., (my,i)}) such that

each a; is in the field K(%’}g_l,ulj;l%m/,i/,%b,_l). As in the proof of

Example 6.4.7, we let ¢ := ao + a1Yy + -+ + a,;Y},. Unlike what happens
in Example 6.4.7, Y/ is a unit in all V,,;s and all W,s. Thus for each pair
of positive integers (m,i), vpi(g) = min{v,;(ao), Vmi(ai),...,vmi(a,)}. For
(m,i) ¢ {(my,i1),(ma,i2),..., (mp,ip)}, Vmi(ag) = 0; and for (m,i) €
(my,11), (ma,iz), ..., (Mp,in)}, Vmi(a;) = 0 for some j. Thus g is a unit of
each V,, ;. Similarly, w,, (g) = min{w,,(ao), wp,(a1), ..., W (a,)} for each positive
integer m, with w,,(ap) = 0 for m > k, and wy(a;) = 0 for some j when
1 < m < k. Thus g is a unit of each W,,. As g € RN S, it is a unit of RN S.
Therefore J = RN S.

For a proper ideal I of RMN S, 1 < |supp(/)| < oo. Moreover, if IR, # R,,
then IR, M R M S contains an element that is a unit in all other R,,s and in all W,,;s.
Similarly, if IW,, # W,, for some m, then IW,, M R M S contains a positive power
of some Z,, ;, an element which is a unit in all other W;:s and all R, s. Therefore the
family {R, | n € ZT}U{W, | n € ZT} is a Jaffard family by Theorem 6.3.5. By
Theorems 6.3.7 and Theorems 6.3.9, {R,, | n € ZT},{T, | n € Z*}U{W, | n €
Z*} and {T, | n € Z*} are Jaffard families with T the integral closure of R and
T N S the integral closure of RN S.

Each maximal ideal of R is contracted from a maximal ideal of some unique R,,.
Each R, has a unique divisorial maximal ideal that is not invertible (the conductor of
T, into R,,) and all others are invertible (in fact, principal). By Theorem 6.3.1, each
invertible maximal ideal of R, contracts to an invertible maximal ideal of R, and
the divisorial maximal ideal that is not invertible contracts to a divisorial maximal
ideal of R that is not invertible. Each of these maximal ideals contracts to a maximal
ideal of RM S of the same type. In addition, each maximal ideal of S contracts to
a branched idempotent maximal ideal of R M S. There are no other maximal ideals
of RM S.

By Theorem 6.3.8, both R and R N S have pseudo-Dedekind factorization. O

For Example 6.4.9 we make yet another change in the notation. Essentially, we
simply use 2, 2, and £ in place of %, %, and Zj. Specifically, we let D :=
K(2.2)[Z] and E = K(Z,%)[2)]. For each n, let K, := K(2,, Z.%)
and E, := K,[<2,]. In addition, for pairs n,i, we let K,,; := K(2,Z,,.%),
D, = K, ;i[Zyi]land Ly, ; = F,(2,Z,,,%). The W,s will be defined in the
same way as in Example 6.4.8 except now the corresponding value group will be
J = Q & G (instead of R & G).
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Example 6.4.9. For each pair n,i, let V,; be the valuation overring of D, ;
corresponding to the valuation v, ; : K(2, 2", %#)\{0} — G defined as follows.

(@) v,,i(X,ij) = e; where e; is the element of G all of whose components are 0
except the jth one whichisa 1,

(b) v,.:(b) = 0 forall nonzerob € K, ;,

(c) extend to all of K(2, 2", %) using “min” for elements of D, ;.

Also for each positive integer n, let W, be the valuation overring of E, correspond-
ing the valuation w,, : K(2, 2", %)\{0} — J defined as follows.

(@) wp(Zy ) = (,0,0,...) foralla € R.

(b) Wy(Zy,j) = (0,e;) forall j > 2 where e; € G is the element of G whose jth
coordinate is 1 and all others are 0 (as in the previous examples).

(c) w,(b) =0forallnonzerob € K, = K(Z;, Z.%).

(d) Extend to valuations on K(2, 2", %) using “min” for elements of E,,.

For each n, let T,, := ﬂloil V,.i. Each principal maximal ideal of 7, has the form
M, ; := X,.i1T, for some pair n,i and for each pair n, i, the residue field 7,/ M,, ;
is (naturally isomorphic to) K, ;. Also, let R, be the pullback of L, over M, ;.
Finally, let 7 := (72, T, S := (ey Wu, R := (2, Ry Then the following
hold.

(1) S is an A-local Bézout domain such that each maximal ideal is both branched
and idempotent. Also S has strong factorization but not pseudo-Dedekind
factorization.

(2) For each n, T, is an h-local Bézout domain such that each maximal ideal is
principal.

(3) For each n, R, is a domain with integral closure 7;, that has a unique divisorial
maximal ideal that is neither invertible nor idempotent. All other maximal ideals
of R, are invertible, and R,, has pseudo-Dedekind factorization. Moreover, for
each nonzero ideal 4 of R,,, A R M S contains an element that is a unit in all
other R,,s and in all Wps.

DAT, | n e ZT{T, | n € ZYYU{W, | n € Z*},{R, | n € ZT} and
{R, |n e ZT}U{W, | n € Z*} are Jaffard families.

(5) T is an h-local Bézout domain with strong pseudo-Dedekind factorization and
infinitely many maximal ideals such that each maximal ideal is invertible.

(6) SN T is an h-local Bézout domain with strong factorization but not pseudo-
Dedekind factorization. In addition, § N 7 has infinitely many branched
idempotent maximal ideals and infinitely many invertible maximal ideals.

(7) R is a domain with integral closure 7" that has pseudo-Dedekind factorization.
It has infinitely many divisorial maximal ideals that are not invertible and
infinitely many invertible maximal ideals, but no idempotent maximal ideals.

(8) RM S is adomain with integral closure 7' (1 S that has strong factorization but
not pseudo-Dedekind factorization. It has infinitely many divisorial maximal
ideals that are neither invertible nor idempotent, infinitely many invertible
maximal ideals and infinitely many branched idempotent maximal ideals.
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Proof. Essentially, one may repeat the proof of Example 6.4.8. The only differences
are with regard to pseudo-Dedekind factorization. For R and T there are no changes,
both still have pseudo-Dedekind factorization and the description of the maximal
ideals stays the same. While the basic description of the maximal ideals of S and
R M S stays the same, here the domain S has strong factorization but not pseudo-
Dedekind factorization (by Example 6.4.6). Hence R (N S has strong factorization
but not pseudo-Dedekind factorization. O



Symbols and Definitions

Max(R, I): The set of maximal ideals of the domain R that contain the ideal /.
(Page 10)

Max"(R): The set of sharp maximal ideals of R. (Page 45)
Max(R): The set of dull maximal ideals of R. (Page 46)
Min(R, I): The set of minimal primes of the ideal / in the domain R. (Page 11)

supp.~(/): Theset { € o/ | 1Sg # Sg} where . = {Sq}uewr is a family of
domains with the same quotient field and / is an ideal of (), S¢. The support of
I with respect to .. (Page 129)

supps(/): The set {f € o/ | IWg # Wpg} where [ is an ideal of a domain R,
P = {Zy}acer is a partition of Max(R) and W, = (\{Ry | M € 2} for each
a € 7. The support of I with respect to 2. (Page 131)

T'g(I): Thering ({Ry | M € Max(R, I)}. (Page 10)

I'(I): Same as I'r(I), used when R is understood to be the relevant domain.
(Page 10)

JC(I): The (possibly empty) set of maximal ideals M of an integral domain R
such that TRy # (IRy)". (Page 72)

®g(I): Thering ({Rp | P € Min(R, I)}. (Page 11)

&(I): Same as Dg([), used when R is understood to be the relevant domain.
(Page 11)

Or(I): Thering (J{Ryx | N € Max(R)\Max(R, I)}, equal to the quotient field
when each maximal ideal contains /. (Page 10)

©(I): Same as @g([), used when R is understood to be the relevant domain.
(Page 10)
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2r(I): The ring (J{Rp | P € Spec(R) , P 1}, equal to the quotient field
when each maximal ideal contains /. (Page 11)

£2(1): Same as 2g([), used when R is understood to be the relevant domain.
(Page 11)

c¢(h): The ideal of R generated by the coefficients of the polynomial &7 € R[X],
referred to as the content /. (Page 36)

c¢(I): The ideal of R generated by the contents of the polynomials in an ideal / of
the polynomial ring R[X ], referred to as the content of /. Also used for an ideal / of
R(X); in this case, I = L;R(X) fortheideal L; = I (\R[X] and ¢(/) = ¢(Lj).
(Page 114)

#-domain: A domain R with the property that for each pair of nonempty subsets A’
and A” of Max(R), A" # A” implies ([ \{Ry’ | M' € A’} # (V{Ru» | M" € A”}.
(Page 9)

##-domain: A domain such that every overring is a #-domain. (Page 9)

Almost Dedekind domain: A domain R such that for each maximal ideal M
Ry is a rank-one discrete valuation domain (or, equivalently, a (local) Dedekind
domain). (Page 9)

Anneau du type de Dedekind: A domain for which each nonzero ideal can be
factored as a finite product of ideals with each factor in a unique and distinct
maximal ideal. The same as an /-local domain. (Page 7)

Antesharp prime: A nonzero prime ideal P of a domain R is antesharp if each
maximal ideal of (P : P) that contains P contracts to P in R. (Page 19)

aRTP-domain: A domain R such that for each nonzero noninvertible 7, II"' Ry, is
aradical ideal whenever M is either a steady maximal ideal or an unsteady maximal
ideal that is not minimal over II~!. Alternately, one may say that R has the almost
radical trace property. (Page 26)

Branched prime: A prime ideal P that has proper P-primary ideals. (Page 13)

Content of h: For a polynomial 2 € R[X], the content of &, ¢(h), is the ideal of R
generated by the coefficients of /. (Page 36)

Content of I: For a nonzero ideal I of R[X], the content of 7, ¢(1), is the ideal of
R generated by the coefficients of the polynomials in /. In the case [ is an ideal of
R(X), then the content of [ is ¢(I) = ¢(L;) where L; = I () R[X]. (Page 114)

Dull degree: For a one-dimensional Priifer domain R with quotient field K,
recursively define a family of overrings of R as follows:

Ri:=R. and R, := {{(Ry,—1)y | N € Max"(R,—1)} forn > 1.

Then R has dull degree n, if R,—1 € R, = R,+1 € K (with Ry = {0}). (Page 46)

-
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Dull maximal ideal: It is a nonsharp maximal ideal of a one-dimensional Priifer
domain. (Page 46)

Factoring family: For an almost Dedekind domain R, a family of finitely gen-
erated ideals {J, | JoRym, = MyRu,, M, € Max(R)} such that each finitely
generated nonzero ideal can be factored as a finite product of powers of ideals from
the family with negative exponents allowed. (Page 46)

Factoring set: For an almost Dedekind domain, it is a factoring family such that
no member appears more than once. (Page 46)

Finite character: A domain for which each nonzero nonunit is contained in only
finitely many maximal ideals. (Page 6)

Finite divisorial closure property: A domain for which each nonzero nondiviso-
rial ideal I has the property that /" = I + J for some finitely generated ideal J.
(Page 88)

Finite idempotent character: A domain for which each nonzero nonunit is
contained in at most finitely many idempotent maximal ideals. (Page 77)

Finite unsteady character: A domain for which each nonzero nonunitis contained
in at most finitely many unsteady maximal ideals. (Page 77)

Generalized Dedekind domain: A Priifer domain such that each nonzero prime
ideal is the radical of a finitely generated ideal and no nonzero prime is idempotent.
(Page 47)

General ZPI-ring: A ring for which each proper ideal factors as a finite product of
prime ideals. Alternately one may say R is a general ‘“Zerlegung Primldeale” ring.
For domains, same as Dedekind domain and ZPI-ring. (Page 6)

h-local domain: A domain such that each nonzero prime ideal is contained in a
unique maximal ideal and each nonzero ideal (equivalently, each nonzero nonunit)
is contained in only finitely many maximal ideals. (Page 6)

h-local maximal ideal: A maximal ideal M of a domain R such that Ry;®Or(M)
is the quotient field of R. (Page 120)

Independent pair of domains: A pair of domains S and 7" with the same quotient
field K such that ST = K and no nonzero prime ideal of S M T survives in both S
and T'. (Page 126)

Jaffard family: A family of domains . = {S,}ycr With the same quotient field
K such that R = ()¢, Se also has quotient field K and for each nonzero ideal 1
of R: supp (1) = {1, a2, ...,a,} some positive integer n, I = [['_, (I N Sy,),
and ISy, M R and IS,; M R are comaximal forall 1 <i < j < n. (Page 129)

Locally pseudo-valuation domain: A domain R such that Rj;is a pseudo-
valuation domain for each maximal ideal M of R. (Page 107)
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Matlis partition: A partition & = {X, }qe of Max(R) such that [supp 4 (P)|= 1
for each nonzero prime ideal P of R and |supp(rR)| < oo for each nonzero
nonunit r € R. (Page 131)

Non-D-ring: A domain R with a polynomial f(x) € R[x]\R such that f(r) is a
unit of R for all » € R (f(x) is a unit valued polynomial). (Page 136)

Prestable ideal: An ideal / of a ring R (not necessarily a domain) such that, for
each prime P, there is a positive integer n such that />’ Rp = dI" Rp for some
d € I". (Page 100)

Principally complete valuation domain: A valuation domain V' with the follow-
ing property: whenever there are two families of nonzero elements {b,}qecor and
{ca}aecer and a corresponding family of primes { Py }yecr With o7 totally ordered
such that for all @ < B in <7

(i) by € Py,
(ii) boV S bgV S sV CcaV,
(iii) by/cq € V\ Py, and
(iv) Py € Pg with | P, an unbranched prime,

then there is an element ¢ € V such that b,V C ¢V C ¢,V forall ¢ € &.
(Page 104)

Property («): An integral domain R is said to have property (@) if every primary
ideal is a power of its radical. (Page 41)

Pseudo-Dedekind factorization: A factorization of a nonzero ideal as the product
of an invertible ideal and a finite product of pairwise comaximal prime ideals with at
least one prime in the second factor. A domain has pseudo-Dedekind factorization
if each nonzero noninvertible ideal has a pseudo-Dedekind factorization. (Page 95)

Pseudo-valuation domain: A local domain (R, M) such that (M : M) is a
valuation domain with maximal ideal M. Same as PVD. (Page 101)

PVD: Same as pseudo-valuation domain. (Page 101)

Radical factorization: A domain for which each nonzero ideal / factors as I =
I 1, --- I, for some radical ideals Iy, I5,--- , I;,. Same as a SP-domain. (Page 39)

Reflexive domain: A domain R such that Homg(—, R) induces a duality on
submodules of finite rank of free R-modules. (Page 8)

Relatively sharp prime: A nonzero prime ideal P of a Priifer domain is relatively
sharp in a nonempty set of incomparable primes .% if P contains a (nonzero) finitely
generated ideal that is contained in no other prime in the set .. (Page 34)

Relatively sharp set: A nonempty set .% consisting of incomparable nonzero
primes of a Priifer domain such that each prime in the set is relatively sharp in
. (Page 34)
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RTP-domain: A domain R with the property that /™! is a radical ideal for each
nonzero noninvertible /. Alternately, one may say that R has the radical trace
property. (Page 20)

Sharp degree: For a one-dimensional Priifer domain R with quotient field K,
recursively define a family of overrings of R as follows:

Ry:=R. and R, := {(Ry—1)y | N € Max"(R, 1)} forn > 1,

where R, = K, forn > 2, if MaxT(Rn_l) = (). Then R has sharp degree n, if
R, # K but R,+; = K. In addition, a fractional ideal J of R has sharp degree n if
JR, 7é R, butJR,+1 = R,+1. (Page 46)

Sharp prime: A nonzero prime P of a domain R such that Rp does not contain
O(P). (Page 10)

SP-domain: A domain with radical factorization. (Page 39)

Special factorization: A special factorization of a nonzero ideal / of a domain
R is a factorization of the form I = BP;P,--- P, for some finitely generated
ideal B and (not necessarily distinct) prime ideals Py, Py, ..., P,. A domain R has
special factorization if each nonzero ideal has a special factorization. For R, this
is equivalent to it having strong pseudo-Dedekind factorization; and to it being a
ZPUlI-ring. (Page 108)

S-representation: A set of valuation overrings {V}yecos Of @ domain R such that
R = (e Ve is an irredundant intersection. (Page 136)

Stable ideal: Anideal / of aring R such that for each prime ideal P of R, I>Rp =
dIRp for some d € R. (Page 100)

Steady/Unsteady maximal ideal: A maximal ideal M of a domain R is unsteady
if MRy is principal but M(R : M) # R, otherwise M is steady. (Page 8)

Strongly discrete Priifer domain: A Priifer domain R such that PRp is principal
for each nonzero prime ideal P. (Page 47)

Strongly discrete valuation domain: A valuation domain V such that PVp is
principal for each nonzero prime ideal P. (Page 47)

Strong pseudo-Dedekind factorization: A domain R for which each nonzero
ideal has a pseudo-Dedekind factorization. Equivalent to special factorization for
R; and to R being a ZPUI-ring. (Page 96)

Strong factorization: A domain for which each nonzero nondivisorial ideal 7/
factorsas I = I"M M, --- M, for some distinct maximal ideals M, M>, ..., M,.
(Page 72)

SV-stable (stable in the sense of Sally-Vasconcelos): an ideal / which is inverti-
ble as ideal of (/ : I'). (Page 37)
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TP-domain: A domain R with the property that /I~! is a prime ideal for each
nonzero noninvertibleideal /. Alternately, one may say that R has the trace property.
(Page 20)

TPP-domain: A domain R with the property that Q Q! is a prime ideal for each
nonzero noninvertible ideal primary ideal Q. Alternately, one may say that R has
the trace property for primary ideals. (Page 23)

Trace ideal: An ideal J of the form J = II"! for some nonzero ideal . Also, the
trace of a nonzero ideal B is the ideal BB~!. (Page 20)

Unbranched prime: A prime ideal P that has no proper P-primary ideals.
(Page 13)

Unit valued polynomial: A polynomial f(x) € R[x]\R such that f(r) is a unit
of R for each r € R. (Page 136)

Very strong factorization: A domain R for which each nonzero nondivisorial
ideal I factorsas I = I"M M, --- M, where the M;s are the distinct nondivisorial
maximal ideals that contain / where I Ry, is not divisorial. (Page 72)

Weak factorization: A domain for which each nonzero nondivisorial ideal 1
factors as 1"M['M,? --- M for some maximal ideals My, M>, ..., M,. (Page 71)

wTPP-domain: A domain R for which Q 9~' = /O for each nonzero primary
ideal Q with nonmaximal radical. Alternately one may say that R has the weak
trace property for primary ideals. (Page 26)

ZPI-ring: A ring for which each nonzero ideal factors as a unique finite product
of prime ideals. Alternately, one may say the ring is a “Zerlegung Primideale” ring.
For domains, same as Dedekind domain and general ZPI-ring. (Page 6)

ZPUl-ring: A ring R for which each nonzero ideal I factors as a product / =
BP, P, --- P, for some invertible ideal B (possibly equal to R) and prime ideals
Py, Py,..., P, with n > 1. Alternately, one may say R is a “Zerlegung Prim- und
Umkehrbaridealen” ring. For domains, the same as a domain with strong pseudo-
Dedekind factorization; and a domain with special factorization. (Page 95)
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