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Università degli Studi Roma Tre
Largo San Leonardo Murialdo 1
00146 Roma
Italy
fontana@mat.uniroma3.it


Salah-Eddine Kabbaj
Department of Mathematics and Statistics
King Fahd University of Petroleum


& Minerals
31261 Dhahran
Saudi Arabia
kabbaj@kfupm.edu.sa


Bruce Olberding
Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003
USA
olberdin@nmsu.edu


Irena Swanson
Department of Mathematics
Reed College
Southeast Woodstock Blvd. 3203
Portland, OR 97202
USA
iswanson@reed.edu


ISBN 978-1-4419-6989-7 e-ISBN 978-1-4419-6990-3
DOI 10.1007/978-1-4419-6990-3
Springer New York Dordrecht Heidelberg London


Library of Congress Control Number: 2010935809


Mathematics Subject Classification (2010): 13-XX, 14-XX


c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.


Printed on acid-free paper


Springer is part of Springer Science+Business Media (www.springer.com)







Preface


This volume contains a collection of invited survey articles by some of the leading
experts in commutative algebra carefully selected for their impact on the field.
Commutative algebra is growing very rapidly in many directions. The intent of
this volume is to feature a wide range of these directions rather than focus on a
narrow research trend. The articles represent various significant developments in
both Noetherian and non-Noetherian commutative algebra, including such topics
as generalizations of cyclic modules, zero divisor graphs, class semigroups, forc-
ing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products
of algebras over fields, v-domains, multiplicative ideal theory, direct-sum decom-
positions, defect, almost perfect domains, defects of field extensions, ultrafilters,
ultraproducts, Rees valuations, overrings of Noetherian domains, weak normality,
and seminormality.


The papers give a cross-section of what is happening and of what is influential
in commutative algebra now. The target audience is the researchers in the area,
with the aim that the papers serve both as a reference and as a source for further
investigations.


We thank the contributors for their wonderful papers. We have learned much from
their expertise, and we hope that these papers are as inspirational for the readers as
they have been for us. We also thank the referees for their constructive criticism,
and the Springer editorial staff, especially Elizabeth Loew and Nathan Brothers, for
their patience and assistance in getting this volume into print.


Roma, Italy Marco Fontana
Dhahran, Saudi Arabia Salah-Eddine Kabbaj
Las Cruces, New Mexico Bruce Olberding
Portland, Oregon Irena Swanson


April 2010
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Principal-like ideals and related polynomial
content conditions∗


D.D. Anderson


Abstract We discuss several classes of ideals (resp., modules) having properties
shared by principal ideals (resp., cyclic modules). These include multiplication ide-
als and modules and cancellation ideals and modules. We also discuss polynomial
content conditions including Gaussian ideals and rings and Armendariz rings.


1 Introduction


Of all ideals in a commutative ring certainly principal ideals are the simplest. Now,
principal ideals have many useful properties. We concentrate on three of these prop-
erties. First, if Ra is a principal ideal of a commutative ring R and A ⊆ Ra is an ideal,
then A = BRa for some ideal B of R, namely B = A : Ra. An ideal I of R sharing
this property that for any ideal A ⊆ I, we have A = BI for some ideal B is called a
multiplication ideal. Second, if further a ∈ R is not a zero divisor, then for ideals A
and B of R, RaA = RaB implies A = B. An ideal I of R with the property that IA = IB
for ideals A and B of R implies A = B is called a cancellation ideal. More generally,
I is a weak cancellation ideal if IA = IB implies A + 0 : I = B + 0 : I. Any principal
ideal is a weak cancellation ideal. Third, if f = a0 + a1X + · · ·+ anXn ∈ R[X ] is a
polynomial with content c( f ) = Ra0 + · · ·+ Ran principal, then c( f g) = c( f )c(g)
for all g ∈ R[X ]. A polynomial f ∈ R[X ] is called Gaussian if c( f g) = c( f )c(g) for
all g ∈ R[X ]. And R is said to be Gaussian (resp., Armendariz) if c( f g) = c( f )c(g)
for all f ,g ∈ R[X ] (resp., with c( f g) = 0).


We view a finitely generated locally principal ideal as the appropriate general-
ization of a principal ideal. It turns out that a finitely generated locally principal


University of Iowa, Iowa City, IA 52242, USA e-mail: dan-anderson@uiowa.edu


∗ Dedicated to the memory of my teacher, Irving Kaplansky, who piqued my interest in these
topics.


M. Fontana et al. (eds.), Commutative Algebra: Noetherian and Non-Noetherian 1
Perspectives, DOI 10.1007/978-1-4419-6990-3 1,
c© Springer Science+Business Media, LLC 2011



dan-anderson@uiowa.edu





2 D.D. Anderson


ideal I is a multiplication ideal and a weak cancellation ideal and if c( f ) = I, then
f is Gaussian. We will be particularly interested in how close the converses of these
results are true.


The purpose of this paper is to survey principal-like ideals, especially multipli-
cation ideals and cancellation ideals, and polynomial content conditions, especially
Gaussian polynomials and rings, and Armendariz rings. We also discuss the natural
extension of these concepts to modules. This paper consists of five sections besides
the introduction. In the second section, we look at principal-like elements in a mul-
tiplicative lattice and lattice module and what these elements are in the case of the
lattice of ideals of a commutative ring or lattice of submodules. The third section
surveys multiplication ideals and modules and multiplication rings (rings in which
every ideal is a multiplication ideal). The fourth section discusses cancellation ide-
als and modules and their various generalizations. In Section 5, we survey the recent
characterizations of Gaussian polynomials and Gaussian rings. In the last (Section 6)
we cover Armendariz rings. Two topics that we do not discuss are invertible ideals
and ∗-invertible ideals. Excellent surveys already exist. See for instance [1.2]. We
also give an extensive (but not exhaustive) bibliography arranged by sections.


Except for several fleeting instances, all rings will be commutative with identity
and all modules unitary. For any undefined terms or notation, the reader is referred
to [1.1].


References


[1.1] Gilmer, R.: Multiplicative ideal theory, Queen’s Papers Pure Applied Mathematics 90,
Queen’s University, Kingston, Ontario, 1992


[1.2] Zafrullah, M.: Putting t-invertibility to use. In: Chapman, S.T., Glaz, S. (eds.) Non-
noetherian commutative ring theory, pp. 429–457. Kluwer, Dordrecht/Boston/London
(2000)


2 Principal elements in multiplicative lattices


In this section, we discuss principal elements in multiplicative lattices. I begin with
this section as it was through multiplicative lattices that I became interested in
principal-like ideals in commutative rings. By a multiplicative lattice L we mean
a complete lattice L with greatest element I and least element O having a commuta-
tive, associative product that distributes over arbitrary joins and has I as a multiplica-
tive identity. We do not assume that L is modular. Of course, here the most important
example is L = L(R), the lattice of ideals of a commutative ring R with identity. We
mention only two other examples. If R is a graded ring, then the set Lh(R) of homo-
geneous ideals of R is a multiplicative sublattice of L(R), and if S is a commutative
monoid with zero, the set L(S) of ideals of S is a quasilocal distributive multiplica-
tive lattice with A∨B = A∪B, A∧B = A∩B, and AB = {ab|a∈ A,b ∈ B}. All three
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of these multiplicative lattices are modular. A multiplicative lattice L has a natural
residuation A : B = ∨{X ∈ L|XB ≤ A}. So (A : B)B ≤ A∧B ≤ A and A : B is the
greatest element C of L with CB ≤ A.


Early work in multiplicative lattices is due to M. Ward and R. P. Dilworth, espe-
cially see [2.13]. For a brief history of this early work see Dilworth’s comments [2.5,
pp. 305–307] and [2.3]. A number of these papers are reprinted in [2.5]. In [2.13]
Ward and Dilworth defined an element M of a multiplicative lattice L to be “prin-
cipal” if for A ≤ M, there exists B ∈ L with A = BM. They showed that a modular
multiplicative lattice satisfying ACC in which every element is a join of “principal”
elements satisfied the usual Noether normal decomposition theory. However, this
notion of “principal” element was too weak to prove deeper results such as the
Krull Intersection Theorem or the Principal Ideal Theorem. Twenty years later Dil-
worth [2.6] returned to multiplicative lattice theory with a strengthened definition
of a “principal” element (see [2.8] and the next paragraph). He defined a Noether
lattice to be a modular multiplicative lattice satisfying ACC in which every ele-
ment is a (finite) join of principal elements. He proved lattice versions of the Krull
Intersection Theorem and the Principal Ideal Theorem.


Let L be a multiplicative lattice and let M ∈ L. Then M is meet (resp., join)
principal if AM ∧B = (A∧ (B : M))M (resp., (A : M)∨B = (A∨BM) : M) for all
A,B ∈ L. And M is weak meet (resp., weak join) principal if these respective
identities hold for A = I (resp., A = 0) and arbitrary B. So M is weak meet (resp.,
weak join) principal if M ∧B = (B : M)M (resp., (0 : M)∨ B = MB : M) for all
B ∈ L. Finally, M is (weak) principal if M is (weak) meet principal and (weak)
join principal. Note that (weak) meet principal and (weak) join principal elements
are dual if we interchange multiplication and residuation and interchange meet and
join. We will discuss this duality later in this section. Dilworth also observed that
the product of two meet (join) principal elements is again meet (join) principal.


It is easily checked that a principal ideal of a commutative ring R is a principal
element of L(R). McCarthy [2.11] has shown that an ideal M of R is a principal
element of L(R) if and only if M is finitely generated and locally principal. In par-
ticular, an invertible ideal is a principal element. Thus, a principal element of L(R)
need not be a principal ideal. In fact, as pointed out by Subramanian [2.12], since
Z and Z[


√−5] have isomorphic ideal lattices, there is no way to define a “principal
element” in the ideal lattice L(R) so that an element of L(R) is a principal element
of L(R) if and only if it is a principal ideal of R. Thus, we view a finitely generated
locally principal ideal as the appropriate generalization of a principal ideal.


The following proposition gives another point of view of principal elements and
weak principal elements.


Proposition 2.1. [2.4, Lemma 1] Let L be a multiplicative lattice.


(1) An element e ∈ L is weak meet principal if and only if a ≤ e implies a = qe
for some q ∈ L.


(2) An element e ∈ L is meet principal if and only if a ≤ re implies a = qe for
some q ≤ r.
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(3) If L is a domain, then a nonzero element e ∈ L is weak join principal if and
only if e is a cancellation element (i.e., ae = be implies a = b).


(4) An element e ∈ L is weak join principal if and only if ae = be implies
a∨ (0 : e) = b∨ (0 : e) (or equivalently, ae ≤ be implies a ≤ b∨ (0 : e)).


(5) An element e ∈ L is join principal if and only if e is weak join principal in
L/a for all a ∈ L.


Let M be an ideal of a commutative ring R. It follows from the previous
proposition that M is a weak meet principal element of L(R) if and only if M is
a multiplication ideal and M is a weak join principal element of L(R) (resp., with
0 : M = 0) if and only if M is a weak cancellation ideal (resp., cancellation ideal).


In a modular multiplicative lattice, it is not hard to show that an element is
principal if and only if it is weak principal. However, in a nonmodular multiplica-
tive lattice, a weak meet principal element need not be meet principal, and a meet
principal element that is weak join principal need not be join principal. And even in
a Noether lattice a weak join principal element need not be join principal. See [2.4]
for details.


The non-Noetherian analog of a Noether lattice is the r-lattice [2.1]. A modular
multiplicative lattice L is an r-lattice if (1) every element of L is a join of princi-
pal elements (i.e., L is principally generated), (2) every element of L is a join of
compact elements (i.e., L is compactly generated) (recall that A ∈ L is compact if
A ≤∨Bα implies A ≤ Bα1 ∨·· ·∨Bαn for some finite subset {Bα1 , . . . ,Bαn} ⊆ {Bα};
an ideal of a ring is compact if and only if it is finitely generated), and (3) I is
compact. If R is a (graded) commutative ring, (Lh(R)) L(R) is an r-lattice. Also,
if S is a cancellation monoid with zero, L(S) is an r-lattice. If L is an r-lattice and
a ∈ L, then L/a = {b ∈ L|b ≥ a} is an r-lattice with product b◦ c = bc∨a. If S is
a multiplicatively closed subset of L, then there is a localization theory for L and
the localization LS is again an r-lattice; see [2.1] for details. If A ∈ L is principal,
then A/a is principal in L/a and AS is principal in LS. We have the following results
concerning principal elements in r-lattices.


Theorem 2.2. Let L be an r-lattice and A ∈ L.


(1) A is a principal element if and only if A is compact and AM is a principal
element of LM for each maximal element M of L (LM = LS where S = {B ∈
L|B ≤ M}).


(2) For a quasilocal r-lattice L, the following are equivalent: (a) A is principal,
(b) A is weak meet principal, and (c) A is completely join irreducible.


(3) A is principal if and only if A is compact and weak meet principal.
(4) A is weak meet principal if and only if A is meet principal.
(5) If L is a domain, a compact join principal element is principal.


Proof. (1), (2), and (3) may be found in [2.1] while (4) and (5) are given in [2.4].
��


Weak join principal and join principal elements are much less understood. See
[2.4,2.7], and [2.9] for some results on (weak) join principal elements. We mention
only the following results.
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Theorem 2.3. (1) Let L be a quasilocal r-lattice and let e be a compact, join princi-
pal element of L. There exist principal elements e1, . . . ,en ∈ L with e = e1 ∨·· ·∨en


and ei(∨ j =iei) = 0, for all i = 1, . . . ,n. (2) Let L be a local Noether lattice satisfying
the weak union condition (if a,b,c ∈ L, a ≤ b and a ≤ c, then there is a principal
element e≤ a with e ≤ b and e ≤ c; L(R), R a commutative ring, satisfies this condi-
tion). If a ∈ L is join principal, then a = e ∨ ((0 : a)∧a) for some principal element
e ∈ L. Thus, a2 = e2 is principal and if 0 : a = 0, a is principal.


Proof. (1) is given in [2.4] and (2) in [2.7]. ��
We end this section with the promised duality of principal elements with respect


to a lattice module. Let L be a multiplicative lattice. An L-module M is a com-
plete lattice M with a scalar product AN ∈ M for A ∈ L and N ∈ M satisfying
(1) (∨α Aα)N = ∨α Aα N, (2) A(∨α Nα) = ∨ANα , (3) (JK)N = J(KN), (4) IN = N,
and (5) 0N = 0M for all elements A,Aα ,J,K ∈L and N,Nα ∈M. For the rather well
developed theory of lattice modules, see [2.10] and other papers by E. W. Johnson
and/or J. A. Johnson.


Let M be an L-module. Now M∗, the lattice dual of M, is a complete lattice with
∨∗Nα = ∧Nα , ∧∗Nα = ∨Nα , 0M∗ = IM, and IM∗ = 0M. Moreover, M∗ is an L-
module with the new scalar product J ∗N = N : J =∨{X ∈M|JX ≤ N}. An element
M ∈L is M-meet (-join) principal if M(A∧(B : M)) = MA∧B ((A∨MB):M = (A :
M)∨B) for all A,B ∈ M. As expected, we define M ∈ L to be M-principal if M is
both M-meet principal and M-join principal. Analogous definitions are given for the
“weak” case. Generalizing the notion of a cyclic submodule of an R-module, there
are also the notions of (weak) meet principal, (weak) join principal, and (weak)
principal elements of a lattice module; see [2.10]. The next theorem exhibits the
promised duality between meet principal and join principal elements.


Theorem 2.4. [2.2] Let L be a multiplicative lattice, M an L-module, and M∗ the
L-module dual of M. An element M ∈ L is M-meet (-join) principal if and only if
M is M∗-join (-meet) principal. An analogous result holds for the “weak” case. In
particular, M is M-principal if and only if M is M∗-principal.


This duality was used in [2.2] to develop a theory of co-primary decomposition
and co-grade for Artinian R-modules.


References


[2.1] Anderson, D.D.: Abstract commutative ideal theory without chain condition. Algebra
Universalis 6, 131–145 (1976)


[2.2] Anderson, D.D.: Fake rings, fake modules, and duality. J. Algebra 47, 425–432 (1977)
[2.3] Anderson, D.D.: Dilworth’s early papers on residuated and multiplicative lattices. In:


Bogart, K., Freese, R., Kung, J. (eds.) The Dilworth theorems, selected papers of Robert P.
Dilworth, pp. 387–390. Birkhauser, Boston/Basel/Berlin (1990)


[2.4] Anderson, D.D., Johnson, E.W.: Dilworth’s principal elements. Algebra Universalis 36,
392–404 (1996)
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3 Multiplication ideals, rings, and modules


Let R be a commutative ring. An ideal I is a multiplication ideal if for each ideal
A ⊆ I, there is an ideal C with A = CI; we can take C = A : I. The ring R is a
multiplication ring if every ideal of R is a multiplication ideal. And an R-module M
is a multiplication module if for each submodule N of M, N = AM for some ideal
A of R; we can take A = N : M. Clearly a principal ideal (resp., cyclic R-module)
is a multiplication ideal (resp., multiplication module). Also, when working with
a multiplication module M we can usually assume that M is faithful by passing
to R/(0 : M).


Early work focused mostly on multiplication rings which will be discussed at the
end of this section. Perhaps the first paper to focus on multiplication ideals in their
own right was [3.18] where it was shown that a finitely generated multiplication
ideal in a quasilocal ring is principal and that if J is a finitely generated multiplica-
tion ideal, then JP is a principal ideal for each prime P. In [3.6] it was shown that
a finitely generated multiplication ideal I with 0 : I contained in only finitely many
maximal ideals is principal. In [3.1], we have the result that a multiplication ideal
in a quasilocal ring is principal. We give the simple proof. The result carries over to
multiplication modules over quasilocal rings, mutatis mutandis [3.5]. Theorem 3.1
easily extends to the result that a multiplication ideal (resp., module) I with 0 : I
contained in only finitely many maximal ideals is principal, (resp., cyclic).


Theorem 3.1. [3.1] In a quasilocal ring every multiplication ideal is principal.


Proof. Let (R,M) be a quasilocal ring and A a multiplication ideal in R. Suppose
that A = Σ(xα). Then, (xα) = Iα A for some ideal Iα since A is a multiplication
ideal. Hence, A = Σ(xα) = Σ Iα A = (Σ Iα)A. If Σ Iα = R, then Iα0 = R for some
index α0 because R is quasilocal. In this case, A = Iα0A = (xα0). If Σ Iα = R, then
A = MA. Suppose that x∈A. Then, there exists an ideal C with (x) =CA =C(MA) =
M(CA) = M(x); so x = 0 by Nakayama’s Lemma. Thus, A = 0 is principal. ��
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It is easily seen that if I is a multiplication ideal and S is a multiplicatively closed
subset of R, then IS is a multiplication ideal of RS (a similar result holds for multi-
plication modules). Hence, a multiplication ideal is locally principal. Moreover, for
I finitely generated, I is a multiplication ideal if and only if I is finitely generated
(since for I finitely generated, the equation I ∩B = (B : I)I holds if and only if it
holds locally). See Theorem 4.4. However, a locally principal ideal need not be a
multiplication ideal (e.g., a nonfinitely generated ideal in an almost Dedekind do-
main). Conditions needed for a locally principal ideal to be a multiplication ideal
are given in Theorem 3.3.


However, the serious study of multiplication ideals was inaugurated in [3.2]. The
principal tool introduced was a variant of the trace ideal. Let I be an ideal of the
commutative ring R. Define θ (I) = Σx∈I(Rx : I). Then, θ (I) is an ideal with I ⊆
θ (I) ⊆ R.


The following theorem is a sample from [3.2].


Theorem 3.2. (1) For an ideal I in a commutative ring, the following three condi-
tions are equivalent: (a) I is meet principal, i.e., AI∩B = (A∩ (B : I))I for ideals A
and B of R, (b) I is a multiplication ideal, and (c) if M ⊇ θ (I) is a maximal ideal,
then IM = 0M.
(2) An ideal I is finitely generated and locally principal if and only if θ (I) = R.
(3) If I is a multiplication ideal with ht I > 0, then I is finitely generated.
(4) For a multiplication ideal I and i ∈ I, iI is finitely generated.
(5) Let M be a maximal ideal of R. Then M is a multiplication ideal if and only


if either (a) M is finitely generated and locally principal or (b) RM is a field.
If M is finitely generated and htM = 0, then M is principal and there exists
a positive integer n such that Mn is generated by an idempotent, and RM ≈
R/Mn is a direct summand of R.


Theorems 3.1 and 3.2 carry over to multiplication modules, mutatis mutandis,
where now for a module M, θ (M) = Σm∈M(Rm : M). Alternatively, one can reduce
the study of multiplication modules to multiplication ideals via idealization.


Let R be a commutative ring and M an R-module. The idealization of R and M
is the commutative ring R(+)M with addition defined as (r1,m1) + (r2,m2) =
(r1 + r2, m1 + m2) and multiplication as (r1,m1)(r2,m2) = (r1r2,r1m2 + r2m1).
Thus, R(+)M = R⊕M as abelian groups, but we use the notation (+) to indicate
we are taking the idealization. Idealization was introduced by Nagata [3.15]; for
a recent survey of idealization see [3.4]. Here, 0⊕M is an ideal of R(+)M with
(0⊕M)2 = 0. For an ideal I of R, (I ⊕M)(0⊕M) = 0⊕ IM. Suppose that N is
a submodule of M. Then, N is a multiplication module if and only if 0⊕N is a
multiplication ideal of R(+)M. See [3.3] for details.


A. A. El-Bast and P. F. Smith [3.8] introduced an alternative, useful method for
studying multiplication modules. While their method does not make explicit use
of θ (M), it is essentially equivalent to the θ (M) approach. Let M be an R-module
and M a maximal ideal of R. They defined TM(M) = {m∈M|(1− p)m = 0 for some
p ∈ M} which is easily seen to be a submodule of M. They called M M-torsion if
TM(M) = M. Since R−M is the saturation of 1 +M, m ∈ TM(M) ⇔ f m = 0 for
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some f ∈ R−M. Hence TM(M) is the kernel of the natural map M → MM and M is
M-torsion ⇔ MM = 0M. They defined M to be M-cyclic if there exists q ∈ M and
m∈M such that (1−q)M ⊆Rm. Again, M is M-cyclic⇔ there exists f ∈R−M and
m ∈ M such that f M ⊆ Rm ⇔ M � θ (M). They showed that M is a multiplication
module if and only if for each maximal ideal M of R, M is either M-torsion or M-
cyclic. Before we discuss the work of P. F. Smith and his co-authors, we list some
equivalent characterizations for multiplication modules taken from [3.3].


Theorem 3.3. Let M be an R-module and A a submodule of M. Then, the following
conditions on A are equivalent.


(1) A is a multiplication module.
(2) If M is a maximal ideal of R with M ⊇ θ (A), then AM = 0M.
(3) If B is a (cyclic) submodule of A, then θ (A)B = B.
(4) For each maximal ideal of M of R, one of the following holds:


(a) For a ∈ A, there exists m ∈ M with (1−m)a = 0, i.e., A is M-torsion, or
(b) There exists a0 ∈ A and m ∈ M with (1−m)A ⊆ Ra0, i.e., A is M-cyclic.


(5) For each maximal ideal M of R with AM = 0M, there exists f ∈ R−M and
a0 ∈ A with f A ⊆ Ra0.


(6) For each maximal ideal M of R with AM = 0M, AM is cyclic and (N : A)M =
(NM : AM) for each submodule N of M (of A).


(7) A is a meet principal submodule of M, i.e., IA∩N = (I ∩ (N : A))A for all
ideals I of R and submodules N of M.


(8) If I is an ideal of R and N is a submodule of M with N ⊆ IA, then N = JA for
some ideal J ⊆ I.


We next discuss the seminal work of P. F. Smith and his co-authors on multi-
plication modules. In [3.8], the useful notions of M-torsion and M-cyclic modules
were introduced. It was shown that an R-module M is a multiplication module if
and only if


⋂
Iλ M = (


⋂
(Iλ + ann(M))M for every collection {Iλ} of ideals of R


and that a direct sum ⊕Mλ of R-modules is a multiplication R-module if and only
if each Mλ is a multiplication module and for each λ , there exists an ideal Aλ with
Aλ Mλ = Mλ but Aλ (Σμ =λ ⊕Mμ) = 0. A proper submodule N of a multiplication
module M is maximal (resp., prime, essential) if and only if N = MM for some max-
imal (resp., prime, essential) ideal M of R. It follows that every proper submodule of
a multiplication module is contained in a proper maximal submodule. Moreover, a
multiplication module with only finitely many maximal submodules is cyclic. Thus
an Artinian multiplication module is cyclic.


Perhaps the neatest result of [3.8] is the following. Let M be a nonzero multi-
plication module with Z(M) = P1 ∪ ·· · ∪Pn and ann(M) ⊆ P1 ∩ ·· · ∩Pn for some
finite set of prime ideals of R (e.g., M is Noetherian). Then, M is isomorphic to B/A
where A ⊂ B are ideals of R with B/A invertible in R/A. Call such a multiplication
module trivial. Since Z(M) = Z(R) for a faithful multiplication R-module, it follows
that if R is Noetherian, then every nonzero multiplication R-module is trivial. In par-
ticular, a faithful multiplication R-module over a Noetherian ring is isomorphic to an
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invertible ideal and hence is finitely generated. The question of which rings R have
the property that each finitely generated multiplication R-module is trivial is con-
sidered in [3.13]. For example, it is shown that every finitely generated R-module is
trivial if and only if for every finitely generated multiplication R-module M we have
0 : M = 0 : m for some m ∈ M. The somewhat surprising result is given that for any
commutative ring S and nonempty set of indeterminates {Xλ} over S, every finitely
generated faithful multiplication module over R = S[{Xλ}] is trivial.


The paper [3.9] considers generalizations of multiplication modules to rings
without identity or modules which need not be unitary. Generalizing the case for
an ideal, an R-module M is called an AM-module if for each proper submodule N
of M, N = IM for some ideal I of R. Whether or not R has an identity, let R′ = R⊕Z


be the Dorroh extension of R, so R′ has an identity and every R-module is naturally
a unitary R′-module. If M is an AM-module, then M is a multiplication R′-module.
Call M is weak AM-module if M is a multiplication R′-module; so an AM-module
is a weak AM-module, but not conversely. Also, an AM-module M is almost unitary
in the sense that for each proper submodule N of M, N ⊆ RM. The relationship be-
tween these three properties is thoroughly investigated. Also, Mott’s Theorem for
multiplication rings (discussed later in this section) is generalized to AM-modules:
Every prime submodule of an R-module M is an AM-module implies every submod-
ule of M is an AM-module.


The literature on multiplication modules is quite extensive; consult Math
Reviews. Space does not permit us to discuss the many interesting results on
finitely generated multiplication modules obtained by A. G. Naoum and M. A.
K. Hasan using matrix methods. Some of their results are generalized in [3.16].
Finally, [3.17] relates multiplication modules to projective modules. Now W.
W. Smith [3.18] showed that a projective ideal is a multiplication ideal and
clearly a free R-module is multiplication if and only if at has rank 1. In [3.17],
it is shown that M being a multiplication R-module is equivalent to M being a
finitely projective R/(0 : M)-module (i.e., for every finitely generated submodule
N of M, there exists n ≥ 1 and mi ∈ M and R-homomorphisms θi : M → R so that
x = θ1(x)m1 + · · ·+ θn(x)mn for all x ∈ N) and any one of the following conditions
holding (1) every submodule of M is fully invariant, (2) End(M) is commutative, or
(3) M is locally cyclic.


We end this section with a brief report on multiplication rings, that is, rings in
which every ideal is a multiplication ideal. For simplicity, we assume that our rings
have an identity. Multiplication rings were introduced by Krull in 1936 and the
early theory is mostly due to Mori. See [3.10] for references. We remark that [3.10]
and [3.11] treat rings satisfying conditions weaker than the existence of an identity.
See [3.12] for a very readable account of multiplication rings. Let R be a multipli-
cation ring. For a maximal ideal M of R, each ideal of RM is the localization of a
multiplication ideal and thus is a multiplication ideal of RM. So every ideal of RM


is principal; thus RM is either a DVR or a SPIR. Call a ring R with property that
each RM is a DVR or SPIR an almost multiplication ring [3.7]. Thus, a multiplica-
tion ring is an almost multiplication, but the converse is false as an almost Dedekind
domain is an almost multiplication ring but need not be a multiplication ring.







10 D.D. Anderson


For an ideal A of a commutative ring R, the kernel of A is kerA =
⋂{AP∩R|P is a


minimal prime of A}=
⋂{Q|Q ⊇ A is P-primary where P is a minimal prime of A}.


In [3.7] it is shown that R is an almost multiplication ring if and only if each ideal
with prime radical is a prime power and that in an almost multiplication ring every
ideal is equal to its kernel. In [3.10] it is shown that every ideal with prime radical is
primary if and only if every ideal is equal to its kernel. The following theorem gives
a number of characterizations of multiplication rings.


Theorem 3.4. For a commutative ring R the following conditions are equivalent.


(1) R is a multiplication ring.
(2) Each prime ideal of R is a multiplication ideal.
(3)


(a) Every ideal is equal to its kernel,
(b) Every primary ideal is a power of its radical,
(c) If P is a minimal prime of an ideal B and n is the least positive integer


such that Pn is an isolated component of B and if Pn = Pn+1, then P does
not contain the intersection of the remaining isolated primary compo-
nents of B (or equivalently, if B ⊆ Pn but B ⊆ Pn+1, then Pn = B : (y) for
some y ∈ R−P).


(4) T (R) is a multiplication ring, every regular ideal of R is invertible, and any
nonmaximal prime ideals of R are idempotent.


(5) For each prime ideal of R, P is invertible, or RP is a field, or P is maximal and
RP is an SPIR and there exists an idempotent contained in all prime ideals of
R except P.


Proof. The equivalence of (1)–(3) for rings with identity is given in [3.14]. This is
generalized to conditions weaker than having an identity in [3.10]. For the equiv-
alence of (1) and (2) also see [3.12]. The equivalence of (1), (4), and (5) is given
in [3.11], again in a context more general than rings with an identity. Finally, we
remark that [3.2] contains a simplified proof of the equivalence of (1), (2), and (5).


��
The paper by Griffin [3.11] contains many more interesting results on multiplica-


tion rings and is a “must read” for anyone contemplating research on multiplication
rings.
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4 Cancellation ideals and modules


Let R be a commutative ring. An ideal I of R is a cancellation ideal if whenever
IA = IB for ideals A and B of R, we have A = B. A principal ideal of R is a cancel-
lation ideal if and only if it is regular, clearly a cancellation ideal is faithful, and an
invertible ideal is a cancellation ideal. Unlike the case for multiplication ideals, it
is not at all clear that the localization of a cancellation ideal is again a cancellation
ideal. However, if IM is a cancellation ideal for each maximal ideal M of R, then
IA = IB gives IMAM = IMBM for every maximal ideal M, so AM = BM, and hence
A = B; so I is a cancellation ideal. Thus, an ideal that is locally a regular princi-
pal ideal is a cancellation ideal and as we shall see, the converse is true. Note that if
a,b∈R, then (a,b)(a,b)2 = (a,b)3 = (a,b)(a2,b2), but in general (a,b)2 = (a2,b2).
For a good introduction to cancellation ideals, see [1.1].


An integral domain R is almost Dedekind if RM is a DVR for each maximal
ideal M of R. Gilmer [4.6] and Jensen [4.10] independently showed that a domain
R has every nonzero ideal a cancellation ideal if and only if R is almost Dedekind.


The first progress in characterizing cancellation ideals was made by Kaplan-
sky [4.11] and is given in [1.1, Exercise 7, page 67].


Proposition 4.1. Let (R,M) be a quasilocal ring, A an ideal of R, x1, . . . ,xn ∈ R and
B = A +(x1, . . . ,xn). If B is a cancellation ideal, then B = A + (xi) for some i. In
particular, if B is a finitely generated cancellation ideal, then B is principal and
generated by a regular element.


Proof. It suffices to do the case n = 2; let B = A + (x,y). Let J = (x2 +
y2,xy,xA, yA,A2). Then, BJ = BB2; so J = B2. So x2 = λ (x2 + y2)+ terms
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from (xy,xA,yA,A2). If λ ∈ M, 1 − λ is a unit and (1 − λ )x2 = y2 + · · · ; so
x2 ∈ (y2,xy,xA,yA,A2). Let K = (y) + A; so B2 = BK, and hence B = K. Next,
suppose that λ ∈ M, so λ is a unit. Then, y2 ∈ (x2,xy,xA,yA,A2) and with a proof
similar to the case λ ∈ M, we get B = (x)+ A. ��
Theorem 4.2. [4.4] Let R be a commutative ring with identity. An ideal I of R is a
cancellation ideal if and only if I is locally a regular principal ideal.


Proof. We have already remarked that ⇐ holds. (⇒) Let M be a maximal ideal of R.
We show that IM is a regular principal ideal. We can assume that I ⊆ M. Choose a
subset {bα}α∈Λ of I so that {b̄α} is an R/M-basis for I/MI. Suppose |Λ |> 1. Then,
for distinct α1,α2 ∈ Λ , we get I = (bα1 ,bα2) + ({bα |α ∈ Λ − {α1,α2}}) + MI.
Now a modification of the proof of Proposition 4.1 by replacing “R is quasilocal”
by “A ⊇ MB” gives that say I = (bα1)+ ({bα |α ∈ Λ −{α1,α2}})+ MI. But then
{b̄α |α ∈Λ −{α2}} is an R/M-basis for I/MI, a contradiction. Hence, I = (a)+MI
for some a ∈ I. Let b ∈ I. Then, (b)I = (b)((a)+ MI) = (a)(b)+ M(b)I ⊆ (a)I +
M(b)I = ((a) + M(b))I. Hence, (b)⊆ (a)+M(b). So (b)M ⊆ (a)M and hence IM =
(a)M . Suppose ca = 0 in RM . Then, (cI)M = (ca)M = 0M so (cI)M = (cMI)M . Since
(cI)N = (cMI)N for the other maximal ideals N, cI = cMI and hence (c) = (c)M.
Thus, c = 0 in RM; so IM is regular. ��


It should be noted that while a cancellation ideal I is locally a regular principal
ideal, I need not be regular, even if I is finitely generated [1.1, Exercise 10, page
456]. We have the following immediate corollary to Theorem 4.2.


Corollary 4.3. (1) Let R be a commutative ring, I a cancellation ideal of R, and S a
multiplicatively closed subset of I. Then, IS is a cancellation ideal of RS. (2) Let R
be a subring of the integral domain T . If I is a cancellation ideal of R, then IT is a
cancellation ideal of T .


In [4.5], nonzero locally principal ideals in an integral domain are investigated
with an emphasis on when they are invertible (or equivalently, finitely generated). It
is shown that for a nonzero-ideal I in an integral domain D, the following conditions
are equivalent: (1) I is locally principal, (2) I is a cancellation ideal, and (3) I is a
faithfully flat D-module. The proof shows that (2)⇔(3) for any commutative ring.
A domain D is called an LPI-domain if each nonzero locally principal ideal is in-
vertible. It is shown that a finite character intersection of LPI-domains is again an
LPI-domain.


An ideal I is called a quasi-cancellation ideal [4.3] if IB = IC for finitely gener-
ated ideals B and C of R implies B =C. While a finitely generated quasi-cancellation
ideal is a cancellation ideal, for any valuation domain (V,M) and 0 = x ∈ M,Mx is
a quasi-cancellation ideal.


The notion of a cancellation ideal can be generalized to modules in several ways.
Let R be a commutative ring and M an R-module. Following [4.11], we say that
M is a (weak) cancellation module if for ideals I and J of R, IM = JM implies
I = J (I + 0 : M = J + 0 : M). And M is a restricted cancellation module [4.2] if
IM = JM = 0 implies I = J. So a weak cancellation module M is a cancellation







Principal-like ideals and related polynomial content conditions 13


module if and only if it is faithful and an R-module M is a weak cancellation R-
module if and only if M is a cancellation R/(0:M)-module. Less obvious is that M
is a restricted cancellation R-module if and only if M is a weak cancellation module
and 0 : M is comparable to each ideal of R. In terms of the lattice of submodules, a
submodule N of an R-module M is a weak cancellation module if and only if N is a
weak join principal element of L(M). If M is a cancellation R-module, then M⊕N
is a cancellation R-module for any R-module N; hence, R⊕N is a cancellation R-
module.


Perhaps the appropriate cyclic-like generalization of a cyclic module is a finitely
generated module that is locally cyclic. Our next theorem gives several characteri-
zations of such modules.


Theorem 4.4. For an R-module M the following conditions are equivalent.


(1) M is a finitely generated multiplication module.
(2) M is finitely generated and locally cyclic.
(3) M is a multiplication module and a weak cancellation module.
(4) M is a (weak) principal element of L(M), the lattice of submodules of M.


Proof. (1)⇒(2) This follows from Theorem 3.1 and the fact that a localization of
a multiplication module is a multiplication module. (2)⇒(3) For a finitely gener-
ated module the properties of being a multiplication module or a weak cancellation
module hold if and only if they hold locally. (3)⇒(4) This follows from the
definitions and the fact that a weak principal element is a principal element in L(M).
(4)⇒(2) This is the previously mentioned result of McCarthy generalized to mod-
ules. (2)⇒(1) This follows from (2)⇒(3). ��


As with multiplication modules, the study of the various types of cancellation
modules can be reduced to the ideal case via idealization. Let M be an R-module
and N a submodule of M. In [4.2] it was shown that (1) N is a weak cancellation
submodule of M if and only if 0⊕N is a weak cancellation ideal of R(+)M, (2) N is
a cancellation submodule if and only if 0⊕N is a weak cancellation ideal of R(+)M
and 0 : (0⊕N) = 0⊕M, and (3) 0⊕N is a restricted cancellation ideal of R(+)M
if and only if N is a restricted cancellation submodule and for r ∈ R, rN = 0 implies
rM = M.


Using the previous results concerning idealization, we can give an example of a
weak cancellation ideal P that is not a join principal ideal, i.e., some homomorphic
image of P is not a weak cancellation ideal.


Example 4.5. Let (R,M) be an n-dimensional local domain that is not a DVR
and let M = R⊕M. Hence M is a cancellation R-module. Then R(+)M is an n-
dimensional local ring with unique minimal prime P = 0⊕M and P2 = 0. Since
M is a cancellation R-module, P is a weak cancellation ideal of R(+)M. Since M


is not a cancellation ideal of R, 0⊕M is not a weak cancellation submodule of
M = R⊕M. So (0⊕M)/(0⊕ (R⊕ 0)) ≈ 0⊕ (0⊕M) is not a weak cancellation
ideal of (R⊕M)/(0⊕ (R⊕0))≈ R(+)(0⊕M). So P is not a join principal ideal of
R(+)M.
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If M is an R-module that is locally a cancellation module (i.e., MM is a cancella-
tion RM-module for each maximal ideal M of R), then M is a cancellation module.
It is shown in [4.2] that the converse is true for a one-dimensional domain. The
general case remains open.


Our next result characterizes cancellation modules over a principal ideal ring R.
Since a PIR is a finite direct product of PIDs and SPIRs, Theorem 4.6(1) reduces
the question to the case where R is a SPIR or PID.


Theorem 4.6. [4.2] (1) Let R = R1 ×·· ·×Rn where each Ri is a commutative ring
with identity. Let M = M1 × ·· ·×Mn where Mi is an Ri-module; so M is naturally
an R-module. Then M is a (weak) cancellation R-module if and only if each Mi is a
(weak) cancellation Ri-module. However, M is a restricted cancellation R-module if
and only if either n = 1 and M = M1 is a restricted cancellation R1-module or n > 1
and either M = 0 or M is a cancellation R-module.


(2) Suppose that R is an SPIR and M an R-module. Then every R-module is a
weak cancellation R-module and a restricted cancellation R-module. But M is
a cancellation R-module if and only if M is faithful.


(3) Let R be a PID and M an R-module.


(a) M is a weak cancellation module if and only if Mis a cancellation module
or M is not faithful.


(b) If R has a unique maximal ideal, M is a restricted cancellation module
if and only if M is a weak cancellation module. If R has more than one
maximal ideal, then M is a restricted cancellation module if and only if
M = 0 or M is a cancellation module.


(c) M is a cancellation R-module if and only if for each maximal ideal M of
R, if MM = A⊕B where A is a divisible RM-module and B is a reduced
RM-module, then B is faithful.


Space does not permit us to discuss the work of M. Ali (see [4.1] for example)
and especially A. G. Naoum (see [4.12] for example). One topic covered is the
notion of a 1/2 (weak) cancellation module: M = IM implies I = R (I +0 : M = R).


We end this section with a brief discussion of an alternative definition of a cancel-
lation R-submodule of K, the quotient field of R, due to Goeters and Olberding [4.7,
4.8, 4.9]. They defined an R-submodule X of K to be a “cancellation module” if
XW = XY for R-submodules W and Y of K implies W = Y . Here XW is the R-
submodule generated by {xw|x ∈ X ,w ∈ W}. To avoid confusion we call such an
R-module X a GO-cancellation module. They showed [4.7] that for a submodule
X of K, the following are equivalent: (1) X is a GO-cancellation module for R,
(2) X is locally a free R-module, (3) X is a faithfully flat R-module. Certainly a
GO-cancellation module is a cancellation module.


Goeters and Olberding [4.8] defined an ideal I of a domain R to have restricted
cancellation if IJ = IK implies J = K for nonzero ideals J and K of R with (I : I) ⊆
(J : J)∩(K : K). They showed that this is equivalent to I being a cancellation ideal of
(I : I). The domain R is said to have restricted cancellation if each nonzero ideal of R
has restricted cancellation. In [4.9] they showed that R has restricted cancellation if
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and only if (a) RM is stable (each nonzero ideal of RM is invertible in (RM : RM))
for each maximal ideal M of R and (b) Spec(R/P) is Noetherian for each nonzero
prime ideal P of R.
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5 Gaussian polynomials and rings


This section is an update of Section 8 Content Formulas and Gaussian Polynomials
of the author’s survey article [5.2].


Let R be a commutative ring with identity. For f = a0 + a1X + · · ·+ anXn, the
content of f is c( f ) = (a0, . . . ,an). For g∈R[X ], it is clear that c( f g)⊆ c( f )c(g), but
we may have strict containment (R = Z+ 2iZ, f = 2i + 2X = g; so c( f g) = (4) �


(4,4i) = c( f )c(g)). The polynomial f ∈ R[X ] is said to be Gaussian if c( f g) =
c( f )c(g) for all g ∈ R[X ] and R is Gaussian if each f ∈ R[X ] is Gaussian; i.e., the
“content formula” c( f g) = c( f )c(g) holds for all f ,g ∈ R[X ]. Since f ∈ R[X ] is
Gaussian if and only if f/1 ∈ RM[X ] is Gaussian for each maximal ideal M of R,
most questions concerning Gaussian polynomials can be reduced to the quasilocal
case. In particular, R is Gaussian if and only if each localization RM is Gaussian.


For any commutative ring R and f ,g ∈ R[X ] we have the Dedekind–Mertens
Lemma: c( f g)c(g)m = c( f )c(g)m+1 where m+1 is the number of elements needed
to generate c( f ) locally. Hence, if c(g) is a cancellation ideal (e.g., invertible), g is
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Gaussian. Thus, a Prüfer domain is Gaussian. For more on the Dedekind–Mertens
Lemma the reader is referred to [5.2].


Gaussian polynomials and rings were first considered by H. Tsang [5.10] (a.k.a.
H. T. Tang) who showed that if c( f ) is locally principal, then f is Gaussian. The
converse is of course false for if (R,M) is a quasilocal ring with M2 = 0, then every
f ∈ R[X ] is Gaussian. This leads to the following question first asked by Kaplansky.
Let R be a (quasilocal) ring and let f ∈ R[X ] be Gaussian. Suppose that c( f ) is a
regular ideal, is c( f ) (principal) invertible?


For more on the Dedekind–Mertens Lemma, its history and generalizations and
for results on the “content formula” for power series, monoid rings and graded rings
and involving star operations, see [5.2]. Concerning material from [5.2] we content
ourselves to a brief review of Kaplansky’s question.


It is not hard to show that if (R,M) is a quasilocal domain and f ∈ R[X ] is Gaus-
sian with c( f ) doubly generated, then c( f ) is principal. The first real progress on
Kaplansky’s question was made by Glaz and Vasconcelos [5.5] via Hilbert polyno-
mials and prestable ideals [5.3]. For example, they showed that if R is a Noetherian
integrally closed domain and f ∈ R[X ] is Gaussian, then c( f ) is invertible. Then
Heinzer and Huneke [5.6] using techniques from approximately Gorenstein rings
showed that for R locally Noetherian and f ∈ R[X ] Gaussian (or more generally,
c( f g) = c( f )c(g) for all g ∈ R[X ] with degg ≤ deg f ) with c( f ) regular, then c( f )
is invertible. We now begin where we left off in [5.2].


Kaplansky’s question for R a quasilocal domain (and hence for R locally a do-
main) was answered in the affirmative by Loper and Roitman [5.7].


Theorem 5.1. Let R be a ring which is locally a domain. Then a nonzero polynomial
over R is Gaussian if and only if its content is locally principal.


We outline their approach which they state is inspired by [5.5] and in particular
its use of prestable ideals [5.3]. We can reduce to the case where R is a quasilocal
domain.


They first show that if f = f (X) ∈ R[X ] is Gaussian, then v(c( f )n) ≤ deg f + 1
for sufficiently large n; here v(c( f )) is the minimal number of generators for
(c( f ))n. It is enough to show that v(c( f )2m


) ≤ deg f + 1 for all m ≥ 0. Let
f (X) = g0(X2)+Xg1(X2) where g0(X),g1(X) ∈ R[X ]. Since c( f (−X)) = c( f (X));
(c( f ))2 = c( f (X)) c( f (−X)) = c( f (X) f (−X)) = c(g0(X2)2 − X2g1(X2)2) =
c(g0(X)2 −Xg1(X)2). Since deg(g0(X)2 −Xg1(X)2) = deg( f ), we get v(c( f )2) ≤
deg f +1. They next observe that �(X) = g0(X)2−Xg1(X)2 is Gaussian. To see this
note that if h(X2) is Gaussian, so is h(X). But g0(X2)2 −X2g1(X2)2 = f (X) f (−X)
being the product of two Gaussian polynomials is Gaussian. Thus, (c( f ))2 =
c(�(X)) where �(X) is Gaussian. Thus we may proceed by induction on m to get
v(c( f )2m


) ≤ deg f + 1 for all m ≥ 0.
Next, let R̄ be the integral closure of R. Now cR̄( f n) = R̄c( f n) = R̄c( f )n; so by


the previous paragraph v(cR̄( f n)) is bounded. So by [5.3] the ideal cR̄( f ) = R̄c( f )
is prestable and hence invertible in R̄.


To descend from R̄ to R, “take conjugates”. Let f (X) = a0 + a1X + · · ·+ anXn.
Now Rc( f ) is invertible, so 1 = Σn


i=0ziai where zi ∈ (Rc( f ))−1. Let g(X) = f (X)







Principal-like ideals and related polynomial content conditions 17


Σn
i=0zn−iX i = (Σn


i=0aiXi)(Σn
i=0ziXn−i). So g(X) = Σ2n


i=0αiX i ∈ R̄[X ] has αn = 1 and
f (X)|g(X) in K(X),K the quotient field of R. For each i = n, there is a monic
hi ∈ R[X ] with hi(αi) = 0. Decompose all the hi(X) into linear factors over some
integral extension D of R containing R̄: hi(X) = Π mi


j=1(X − βi j). Let ϕ(X) be the


product of all possible polynomials Σ2n
i=0βi jiX


i where 0 ≤ ji ≤ mi for i = n, and
jn = 0, βn0 = 1. Now ϕ(X) ∈ R[X ] since the coefficients of ϕ(X) can be expressed
as polynomials in the elements βi j that are symmetric in each sequence of indeter-
minates Xi1, . . . ,Ximi for i = n. Also c(ϕ(X)) = R. Now ϕ = f ψ for some ψ ∈ K[X ].
Since f is Gaussian R = c(ϕ) = c( f )c(ψ); so c( f ) is invertible.


Shortly afterwards, Lucas [5.8] extended Loper and Roitman’s result by replac-
ing the hypothesis that R is a domain by “the Gaussian polynomial f is a nonzero
divisor in R[X ]; that is, ann(c( f )) = 0”. More precisely, he proved the following.


Theorem 5.2. Let R be a commutative ring and let f ∈ R[X ] with ann(c( f )) = 0.
Then the following are equivalent.


(1) f is Gaussian.
(2) c( f )HomR(c( f ),R) = R.
(3) c( f ) is Q0-invertible where Q0 is the ring of finite fractions over R.
(4) For each maximal ideal M, c( f )M is an invertible ideal of RM.
(5) c( f )M is principal for each maximal ideal M of R.


Here, (3)⇒(1) and the equivalence (2)⇔(5) are relatively straightforward. Lucas
proceeds by showing (1)⇒(4). The proofs use ideas from [5.7], but not Theorem 5.1
itself. He first shows that for any commutative ring R, if f ∈ R[X ] is Gaussian, then
(c( f (X)))2m


can be generated by deg f + 1 elements. Thus, there is an integer k
such that c( f )k+1 can be generated by k + 1 element. It is then shown that c( f )kRM


is a stable ideal of RM and hence is a principal ideal of (c( f )k
M : c( f )k


M). Hence
c( f )k


M generates a regular principal ideal of RM; so c( f )RM is invertible. Write f =
f0 + f1X + · · ·+ fnXn and let h0,h1, . . . ,hn ∈ c( f )RM with Σhn−i fi = 1. Then for
h = Σh jX j, f h = u ∈ RM with c( f )RM . Thus, by [5.4], there exist v ∈ RM and w ∈
RM with u = vw where c(w)R̄M = RM. So f (hw) = v as polynomials in the total
quotient ring T (RM). Thus, RM = c(v) = c( f (hw)) = (c( f )RM)c(hw); so c( f )RM is
invertible.


But what happens if ann(c( f )) = 0? In [5.9], Lucas gives the following.


Theorem 5.3. Let f ∈ R[X ] be a nonzero polynomial over a reduced ring R and let
R̄ = R/ann(c( f )). Then the following are equivalent.


(1) f is Gaussian.
(2) f̄ ∈ R̄[X ] is Gaussian.
(3) c( f )R̄ is a Q0-invertible ideal of R.
(4) c( f )R̄ is locally principal.
(5) c( f ) is locally principal.
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As pointed out by Lucas, while there appears to be a relationship between f being
Gaussian and c( f )/(c( f )∩ann(c( f ))) being locally principal, the relationship is not
clear. A similar situation holds for join principal ideals (see Section 2).


Question 1. Let 0 = f ∈ R[X ] where R is a commutative ring. What is the relation-
ship between the following conditions.


(1) f is Gaussian, (2) c( f )/(c( f )∩ ann(c( f ))) is locally principal, (3) c( f ) is
join principal?


We end this section by briefly discussing Gaussian rings.


As previously mentioned, Gilmer and Tsang independently showed that an inte-
gral domain is Gaussian if and only if it is Prüfer. More generally, for R reduced,
R is Gaussian if and only if R is arithmetical [5.9, 5.10], and hence if R is Gaus-
sian R/nil(R) is arithmetical. More generally, Lucas [5.9] has shown that a ring R
with nil(R) = 0, but nil(R)2 = 0, is Gaussian if and only if I2 is locally principal for
each finitely generated ideal I of R. For R quasilocal we have the following result
[5.9, 5.10].


Theorem 5.4. Let R be a quasilocal ring. Then R is Gaussian if and only if (i) for
a,b ∈ R, (a,b)2 is principal and generated by either a2 or b2 and (ii) for all a,b ∈ R
with (a,b)2 = (a2) and ab = 0, we have b2 = 0.


In the case that (R,M) is local (= Noetherian plus quasilocal), Tsang [5.10] has
shown that R is Gaussian if and only if M/(0 : M) is principal. Using this, it was
shown [5.1] that a Noetherian ring R is Gaussian if and only if R is a finite direct
product of indecomposable Gaussian rings of the following two types (i) a zero-
dimensional local ring and (ii) a ring S in which every maximal ideal has height one
and all but a finite number of its maximal ideals are invertible, S has a unique mini-
mal prime P, S/P is a Dedekind domain, and PM1 · · ·Mn = 0 where {M1, . . . ,Mn} is
the set of maximal ideals of S that are not invertible. (Conversely, a ring of type (ii)
is Gaussian.)
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6 Armendariz rings


For this section, a ring with be an associative ring with identity, not necessarily
commutative unless explicitly so stated. M. B. Rege and S. Chhawchharia [6.12]
introduced the notion of an Armendariz ring. They defined a ring R to be an Ar-
mendariz ring if whenever polynomials f (X) = a0 + a1X + · · ·+ anXn, g(X) =
b0 + b1X + · · ·+ bnXn ∈ R[X ] satisfy f (X)g(X) = 0, then aib j = 0 for each i, j.
(So in the commutative case this amounts to saying the c( f g) = c( f )c(g) in the
case where c( f g) = 0.) They chose the name “Armendariz ring” because E. Armen-
dariz [6.2] had noted that a reduced ring satisfies this condition. They showed that a
homomorphic image of a PID is Armendariz and used the method of idealization to
give examples of Armendariz and non-Armendariz rings.


It is easily seen that if R is Armendariz and f1, . . . , fn ∈ R[X ] with f1 · · · fn = 0,
then a1 · · ·an = 0 where ai is a coefficient of fi. Clearly a subring of an Armendariz
ring is again Armendariz. Rege and Chhawchharia raised the question of whether
R Armendariz implies R[X ] is Armendariz. This question was soon answered in the
affirmative by the next paper to consider Armendariz rings.


Theorem 6.1. [6.1]


(1) A ring R is Armendariz if and only if R[X ] is Armendariz.
(2) Let R be an Armendariz ring and let {Xα} be any set of commutating indeter-


minates over R. Then any subring of R[{Xα}] is Armendariz.
(3) For a ring R, the following conditions are equivalent.


(a) R is Armendariz.
(b) Let {Xa} be any nonempty set of commuting indeterminates over R and


let f1, . . . , fn ∈ R[{Xa}] with f1 · · · fn = 0. If ai is any coefficient of fi,
then a1 · · ·an = 0.


We next briefly discuss some examples of Armendariz rings and stability prop-
erties of the Armendariz property given in [6.1]. Certainly, a direct product of rings
ΠRα is Armendariz if and only if each ring Rα is. A von Neumann regular rings
is Armendariz if and only if it is reduced (which of course is the case for R com-
mutative). Thus, the ring of n× n matrices over an Armendariz ring need not be
Armendariz. While a polynomial ring over an Armendariz ring is Armendariz and
a subring of an Armendariz ring is Armendariz, the homomorphic image of an Ar-
mendariz ring need not be Armendariz. In fact, for R commutative, each homomor-
phic image of R is Armendariz if and only if R is Gaussian. Now any arithmetical
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ring is Gaussian and hence Armendariz, so if R is Gaussian, R[X ] is Armendariz.
However, for any ring R, commutative or not, R[X ]/(Xn), n ≥ 2, is Armendariz if
and only if R is reduced. Thus, if R is a nonreduced arithmetical ring (e.g., Z/4Z),
then R[X ] is Armendariz, but R[X ]/(Xn) is not Armendariz for any n ≥ 2. Suppose
that R is commutative and S is an overring of R. Then R is Armendariz if and only
if S is; hence R is Armendariz if and only if its total quotient ring T (R) is. Thus a
commutative ring R is Armendariz if and only if RP is Armendariz for each maximal
prime P of zero divisors.


Rege and Chhawchhari showed that if k is a field and V is a vector space over k,
then the idealization k⊕V is Armendariz. More generally, we have the following
example.


Example 6.2. [6.1] Let R be an integral domain and M an R-module. Then the ide-
alization R⊕M is Armendariz if and only if M is an Armendariz R-module in the
sense that if f ∈ R[X ] and g ∈ M[X ] with f g = 0, then aib j = 0 for each coefficient
ai of f and b j of g. In particular, if R is an integral domain and M is a torsion-free
R-module, then R⊕M is Armendariz.


At this point we remark that it was well known to commutative ring theorists that
a reduced commutative ring satisfies the Armendariz property. For example, this
easily follows from the Dedekind–Mertens Lemma. Moreover, Gilmer, Grams, and
Parker [6.3] (in a paper submitted before [6.2]) had proved the stronger result that
if R is a reduced commutative ring and f ,g ∈ R[[X ]] with f g = 0, then aib j = 0 for
each coefficient ai of f and b j of g.


Since the appearance of [6.12] Math Reviews lists over fifty papers concerning
Armendariz rings; almost all of them with a noncommutative flavor. We cite only
a few of them and give a brief overview of some of the topics considered. The
interested reader should consult Math Reviews.


We have remarked that for R commutative, R is Armendariz if and only if
T (R) is. Several authors investigate the relationship between a noncommutative
ring R and various classical quotient rings of R being Armendariz; particularly see
[6.5] and [6.7]. In [6.7] it is shown that a right and left Goldie ring is Armendariz if
and only if it is reduced. In [6.5] it is shown that a right Ore ring R with right quotient
ring Q is Armendariz if and only if Q is. Also, a semiprime Goldie ring R is Armen-
dariz if and only if it is semicommutative (i.e., for every a ∈ R, {b ∈ R|ab = 0} is
an ideal). However, an example of an Armendariz ring that is not semicommutative
is given. Recall that a ring R is reversible if ab = 0 implies ba = 0. The relationship
between being reversible and Armendariz is investigated in [6.8]. For example, a
semiprime right Goldie ring is Armendariz if and only if it is reversible.


Other topics that have been considered are graded Armendariz rings, rings Ar-
mendariz to a monoid M [6.10] (i.e., if f ,g ∈ R[X ;M] with f g = 0, then ab = 0 for
each coefficient a of f and b of g). A ring R is power series Armendariz [6.6] if for
f = Σ∞


i=0aiXi,g = Σ∞
i=0biXi ∈ R[[X ]], X a commuting indeterminate, with f g = 0,


then each aib j = 0. Thus, by [6.3] a reduced commutative ring is power series Ar-
mendariz. A number of papers discuss “skew Armendariz rings”. Let α be an en-
domorphism on R. Then R is said to be α-Armendariz (resp., α-skew Armendariz)
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if for f = Σn
i=0aiXi,g = Σm


i=0biXi in the skew polynomial ring R[X ;α] with f g = 0,
then aib j = 0 (resp., aiα i(b j) = 0) for each i, j. See, for example [6.4].


Two other generalizations, unfortunately with the same name, are as follows.
In [6.9], a ring R is said to be a weak Armendariz ring if for a0 + a1X , b0 +
b1X ∈ R[X ] with (a0 + a1X)(b0 + b1X) = 0, then aib j = 0 for i, j ∈ {0,1}. As
in the case of Gaussian polynomials, we could define f (X) = Σn


i=0aiXi ∈ R[X ] to
be left Armendariz (resp., right Armendariz) if for each g = Σm


i=0biXi ∈ R[X ] with
f g = 0 (resp., g f = 0) we have each aib j = 0 (resp., b jai = 0). We could of course
restrict g to have degree less than or equal to some natural number m. Finally, in
[6.11] a ring R is said to be weak Armendariz if whenever f g = 0, then aib j is
nilpotent and to be π-Armendariz if f g ∈ nil(R[X ]) implies each aib j ∈ nil(R).
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Zero-divisor graphs in commutative rings


David F. Anderson, Michael C. Axtell, and Joe A. Stickles, Jr.


Abstract This article surveys the recent and active area of zero-divisor graphs of
commutative rings. Notable algebraic and graphical results are given, followed by a
historical overview and an extensive bibliography.


1 Introduction


Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-
divisors. The zero-divisor graph of R, denoted by Γ (R), is the (undirected) graph
with vertices Z(R)∗ = Z(R) \ {0}, the nonzero zero-divisors of R, and for distinct
x,y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0. Thus, Γ (R) is
the empty graph if and only if R is an integral domain. Moreover, Γ (R) is finite and
nonempty if and only if R is finite and not a field.


This article is a survey of recent results on zero-divisor graphs of commutative
rings and the interplay between zero-divisors and graph theory. We are interested in
how ring-theoretic properties of R determine graph-theoretic properties of Γ (R), and
conversely, how graph-theoretic properties of Γ (R) determine ring-theoretic prop-
erties of R. This subject is particularly appealing since techniques can vary from
simple computations to quite sophisticated ring theory, and in many cases, all the
rings or graphs satisfying a certain property can be explicitly listed. Moreover, sig-
nificant results have been obtained by graduate students in their masters or doctoral
theses and by undergraduates in REU programs.
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The concept of a zero-divisor graph was introduced by I. Beck [23] in 1988,
and then further studied by D. D. Anderson and M. Naseer [8]. However, they let
all the elements of R be vertices of the graph, and they were mainly interested in
colorings. Our definition of Γ (R) and the emphasis on the interplay between the
graph-theoretic properties of Γ (R) and the ring-theoretic properties of R are due to
D. F. Anderson and P. S. Livingston [14] in 1999. The origins and early history of
zero-divisor graphs will be discussed in more detail in Section 7.


The second section begins with the paper [14] that demonstrated the surprising
amount of structure present in Γ (R). It was this structure that attracted ring theorists
to the area in the hopes that the graph-theoretic structure could reveal underlying al-
gebraic structure in Z(R). The next several sections focus on some important graph
theory results concerning Γ (R). Planar and toroidal zero-divisor graphs are com-
pletely characterized in Section 6. The final section gives a brief history of Γ (R)
emphasizing the original questions that motivated the area and mentions several
generalizations of Γ (R). Most proofs are omitted in the interest of brevity, and we
do not claim to provide all noteworthy results in this field. The bibliography is our
attempt at providing an extensive list of publications in this area, although many of
the papers are not explicitly cited in this survey.


We next recall some concepts from graph theory. Let G be a (undirected) graph.
We say that G is connected if there is a path between any two distinct vertices. For
distinct vertices x and y in G, the distance between x and y, denoted by d(x,y), is
the length of a shortest path connecting x and y (d(x,x) = 0 and d(x,y) = ∞ if no
such path exits). The diameter of G is diam(G) = sup{d(x,y) | x and y are vertices
of G}. A cycle of length n in G is a path of the form x1 − x2 −·· ·− xn − x1, where
xi �= x j when i �= j. We define the girth of G, denoted by gr(G), as the length of a
shortest cycle in G, provided G contains a cycle; otherwise, gr(G) = ∞. Finally, a
vertex of G is an end if it is adjacent to exactly one other vertex.


A graph G is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph G which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then
we call G a star graph. We denote the complete bipartite graph by Km,n, where
|A| = m and |B| = n (again, we allow m and n to be infinite cardinals); so a star
graph is a K1,n. More generally, G is complete r-partite if G is the disjoint union of
r nonempty vertex sets and two distinct vertices are adjacent if and only if they are
in distinct vertex sets. Finally, let K


m,3
be the graph formed by joining G1 = Km,3


(= A∪B with |A| = m and |B| = 3) to the star graph G2 = K1,m by identifying the
center of G2 and a point of B.


A subgraph G′ of a graph G is an induced subgraph of G if two vertices of G′ are
adjacent in G′ if and only if they are adjacent in G. Clearly, gr(G′) ≥ gr(G) when
G′ is an induced subgraph of G, but there is no relationship between diam(G′) and
diam(G). A complete subgraph of G is called a clique. The clique number of G,
denoted by cl(G), is the greatest integer r ≥ 1 such that Kr ⊆ G (if Kr ⊆ G for
all integers r ≥ 1, then we write cl(G) = ∞). The chromatic number of G, denoted
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by χ(G), is the minimum number of colors needed to color the vertices of G so that
no two adjacent vertices have the same color. Clearly cl(G) ≤ χ(G).


Below we provide some examples of zero-divisor graphs. We will not distinguish
between isomorphic graphs (two graphs G and G′ are isomorphic if there is a bijec-
tion f between the vertices of G and the vertices of G′ such that x and y are adjacent
in G if and only if f (x) and f (y) are adjacent in G′). As usual, Z, Zn, Q, R, C,
and Fq will denote the integers, integers modulo n, rational numbers, real numbers,
complex numbers, and the finite field with q elements, respectively. In Section 5,
loops will sometimes be added to vertices of Γ (R) corresponding to zero-divisors x
with x2 = 0.


Example 1.1. (a) ([12, Example 2.1]) We first give all possible nonempty zero-
divisor graphs Γ (R) with |Γ (R)| ≤ 4. Up to isomorphism, each graph may be real-
ized as Γ (R) by precisely the following rings: (i) Z4, Z2[X ]/(X2); (ii) Z9, Z2 × Z2,
Z3[X ]/(X2); (iii) Z6, Z8, Z2[X ]/(X3), Z4[X ]/(2X ,X2 − 2); (iv) Z4[X ,Y ]/(X ,Y )2,
Z4[X ]/(2,X)2, Z4[X ]/(X2 + X + 1), F4[X ]/(X2); (v) Z2 × F4; (vi) Z3 ×Z3; and
(vii) Z25, Z5[X ]/(X2). These examples show that a zero-divisor graph may be real-
ized by more than one ring and that Γ (R) does not detect nilpotent elements of R.


(i) (ii) (iii) (iv)


(v) (vi) (vii)


(b) Up to isomorphism, the following K
1,3


graph may be realized as Γ (R) by
only Z2 ×Z4 or Z2 ×Z2[X ]/(X2) (Theorem 2.4, [14, p. 439], [36, Lemma 1.5], or
[64, (2.0)]). The second graph may be realized as Γ (R) by only Z12


∼= Z3 ×Z4 or
Z3 ×Z2[X ]/(X2).


(1,2)(0,2)(1,0)


(0,1)


(0,3)
2


10


6


4


39


8


Γ (Z2 ×Z4) Γ (Z12)
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Throughout, R will be a commutative ring with nonzero identity, set of prime
(resp., maximal, minimal prime, associated prime) ideals Spec(R) (resp., Max(R),
Min(R), Ass(R)), ideal of nilpotent elements nil(R), total quotient ring T (R) = RS,
where S = R \ Z(R), and A∗ = A \ {0} for A ⊆ R. Recall that R is reduced if
nil(R) = {0}. We assume that a subring of a ring has the same identity element
as the ring, and an overring of R is a subring of T (R) containing R. The Krull di-
mension of R will be denoted by dim(R), and ⊂ will denote proper inclusion. To
avoid trivialities when Γ (R) is the empty graph, we will implicitly assume when
necessary that R is not an integral domain. By [16, Theorem 8.7], an Artinian (e.g.,
finite) commutative ring is a finite direct product of local Artinian rings. Moreover,
Z(R) = nil(R) is the unique prime ideal in an Artinian local ring. Thus, a finite re-
duced commutative ring is a finite direct product of fields. For undefined notation or
terminology, see [38] for graph theory, and [16] or [45] for ring theory.


2 Diameter and girth


In this section, we study the girth and diameter of Γ (R). However, we begin with the
comforting result from [14] that (nonempty) finite zero-divisor graphs come from
finite rings. This is really a result about zero-divisors and is due to N. Ganesan [43].


Theorem 2.1. ([43, Theorem 1], [14, Theorem 2.2]) Let R be a commutative ring.
Then Γ (R) is finite if and only if either R is finite or R is an integral domain. In
particular, if 1≤ |Γ (R)|< ∞, then R is finite and not a field. Moreover, |R| ≤ |Z(R)|2
if R is not an integral domain.


Proof. It is sufficient to prove the “moreover” statement. Let x ∈ Z(R)∗. Then the
R-module homomorphism f : R −→ R given by f (r) = rx has kernel annR(x) and
image xR. Thus |R| = |annR(x)||xR| ≤ |Z(R)|2.


The first “big” result in [14] showed that Γ (R) is always connected and relatively
“compact.”


Theorem 2.2. ([14, Theorem 2.3]) Let R be a commutative ring. Then Γ (R) is con-
nected with diam(Γ (R)) ≤ 3.


Proof. Let x,y ∈ Z(R)∗ be distinct. We will show that d(x,y) ≤ 3. If xy = 0, then
d(x,y) = 1. So suppose that xy is nonzero. There are z,w ∈ Z(R)∗ such that xz =
wy = 0. If zw �= 0, then x− zw− y is a path of length 2; so d(x,y) = 2. If zw = 0,
then x− z−w−y is a path of length at most 3 (we could have x = z or w = y). Thus,
d(x,y) ≤ 3, and hence Γ (R) is connected and diam(Γ (R)) ≤ 3.


If G contains a cycle, then gr(G) ≤ 2·diam(G) + 1 [38, Proposition 1.3.2].
So, if Γ (R) contains a cycle, then gr(Γ (R)) ≤ 7 by Theorem 2.2. Anderson and
Livingston, however, noticed that all of the examples they considered had girths of
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3,4, or ∞. Based on this, they conjectured that if a zero-divisor graph has a cycle,
then its girth is 3 or 4. They were able to prove this if the ring was Artinian (e.g.,
finite) [14, Theorem 2.4]. The conjecture was proven independently by S. B. Mulay
[64] and F. DeMeyer and K. Schneider [36]. Additionally, short proofs have been
given by M. Axtell, J. Coykendall, and J. Stickles [17] and S. Wright [84].


Theorem 2.3. ([14, Theorem 2.4], [64, (1.4)], [36, Theorem 1.6]) Let R be a com-
mutative ring. If Γ (R) contains a cycle, then gr(Γ (R)) ≤ 4.


Proof. Assume by way of contradiction that n = gr(Γ(R)) is 5,6, or 7. Let x1 −
x2 − ·· · − xn − x1 be a cycle of minimum length. So, x1x3 �= 0. If x1x3 �= xi for
1 ≤ i ≤ n, then x2 − x3 − x4 − x1x3 − x2 is a 4-cycle, a contradiction. Thus, x1x3 = xi


for some 1 ≤ i ≤ n. If x1x3 = x1, then x1−x2−x3−x4−x1 is a 4-cycle. If x1x3 = x2,
then x2 − x3 − x4 − x2 is a 3-cycle. If x1x3 = xn, then x1 − x2 − xn − x1 is a 3-cycle.
Hence, x1x3 �= x1,x2, or xn. However, x1 − x2 − x1x3 − xn − x1 is then a 4-cycle, a
contradiction. Therefore, there must be a shorter cycle in Γ (R), and gr(Γ (R)) ≤ 4.


Thus, diam(Γ (R)) ∈ {0,1,2,3} and gr(Γ (R)) ∈ {3,4,∞}. The examples given
in the Introduction show that all these possible values may occur. The next result
expands on Theorem 2.3.


Theorem 2.4. Let R be a commutative ring which is not an integral domain. Then
exactly one of the following holds:


(a) Γ (R) has a cycle of length 3 or 4 (i.e., gr(Γ (R)) ≤ 4);
(b) Γ (R) is a singleton or a star graph; or


(c) Γ (R) = K
1,3


(i.e., R ∼= Z2 ×Z4 or R ∼= Z2 ×Z2[X ]/(X2)).


Moreover, if Γ (R) contains a cycle, then every vertex of Γ (R) is either an end or
part of a 3-cycle or a 4-cycle.


Proof. The finite case was observed in [14, p. 349], while the general case is inde-
pendently given in [36, Theorem 1.6] and [64, (1.4), (2.0), and (2.1)]. The “more-
over” statement is from [64, (1.4) and (2.1)].


Another characterization of girth was given in [15] using the fact that R and T (R)
have isomorphic zero-divisor graphs (Theorem 4.4). The following two theorems
explicitly characterize when the girth of a zero-divisor graph is 4 or ∞, and thus
implicitly when the girth is 3.


Theorem 2.5. ([15, Theorems 2.2 and 2.4]) Let R be a reduced commutative ring.
(a) The following statements are equivalent.


(1) gr(Γ (R)) = 4.
(2) T (R) = K1 ×K2, where each Ki is a field with |Ki| ≥ 3.
(3) Γ (R) = Km,n with m,n ≥ 2.


(b) The following statements are equivalent.
(1) Γ (R) is nonempty with gr(Γ (R)) = ∞.
(2) T (R) = Z2 ×K, where K is a field.
(3) Γ (R) = K1,n for some n ≥ 1.
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Theorem 2.6. ([15, Theorems 2.3 and 2.5]) Let R be a commutative ring with
nil(R) nonzero.


(a) The following statements are equivalent.
(1) gr(Γ (R)) = 4.
(2) R ∼= D×B, where D is an integral domain with |D| ≥ 3 and B = Z4 or


Z2[X ]/(X2). (Thus T (R) ∼= T (D)×B.)


(3) Γ (R) = K
m,3


with m ≥ 2.
(b) The following statements are equivalent.


(1) gr(Γ (R)) = ∞.
(2) R ∼= B or R ∼= Z2 ×B, where B = Z4 or Z2[X ]/(X2), or Γ (R) is a star


graph.
(3) Γ (R) is a singleton, a K


1,3
, or a K1,n for some n ≥ 1.


Much of the research on zero-divisor graphs has focused on the girth and diam-
eter for certain classes of rings. For example, gr(Γ (R)) is studied in terms of the
number of associated prime ideals of R in [3], and properties of Γ (R) for a reduced
ring R are related to topological properties of Spec(R) in [74]. The girth and diam-
eter of the zero-divisor graph of the direct product of two commutative rings (not
necessarily with identity) are characterized in [21], and for diameter these ideas are
extended to finite direct products in [41]. Also, the girth and diameter of the zero-
divisor graph of an idealization are characterized in [18] and [15], and the girth and
diameter of Γ (R �� I) (the amalgamated duplication of a ring R along an ideal I [33])
are studied in [62]. The girth and diameter of Γ (R) for a commutative ring R which
satisfies certain divisibility conditions on elements or comparability conditions on
ideals or prime ideals are investigated in [10].


We next give a more detailed discussion of the zero-divisor graphs for polynomial
rings and power series rings. First, we consider the easier case for girth.


Theorem 2.7. ([17, Theorem 4.3], [15, Theorem 3.2]) Let R be a commutative
ring.


(a) Suppose that Γ (R) is nonempty with gr(Γ (R)) = ∞.
(1) If R is reduced, then gr(Γ (R[X ])) = gr(Γ (R[[X ]])) = 4.
(2) If R is not reduced, then gr(Γ (R[X ])) = gr(Γ (R[[X ]])) = 3.


(b) If gr(Γ (R)) = 3, then gr(Γ (R[X ])) = gr(Γ (R[[X ]])) = 3.
(c) Suppose that gr(Γ (R)) = 4.


(1) If R is reduced, then gr(Γ (R[X ])) = gr(Γ (R[[X ]])) = 4.
(2) If R is not reduced, then gr(Γ (R[X ])) = gr(Γ (R[[X ]])) = 3.


Proof. From [17, Theorem 4.3], we have gr(Γ (R))≤ gr(Γ (R[X ])) = gr(Γ (R[[X ]])),
and equality holds if R is reduced and Γ (R) contains a cycle. The remaining cases
and the result as stated above are from [15, Theorem 3.2].


The “diameter” case is not so easy. This was first studied in [17], and some cases
for non-Noetherian commutative rings left open in [17] were resolved by T. G. Lucas
in [59]. However, we are content here to just mention the reduced case; the interested
reader should refer to [17, 59], and [15] for related results. In particular, see [59,
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Theorems 3.4 and 3.6] for polynomial rings and [59, Section 5] for power series
rings. Recall that a ring R is a McCoy ring if each finitely generated ideal contained
in Z(R) has a nonzero annihilator.


Theorem 2.8. ([59, Theorem 4.9]) Let R be a reduced commutative ring that is not
an integral domain. Then


1 ≤ diam(Γ (R)) ≤ diam(Γ (R[X ])) ≤ diam(Γ (R[[X ]])) ≤ 3.


Moreover, here are all possible sequences for these dimensions.
(1) diam(Γ (R)) = 1 and diam(Γ (R[X ])) = diam(Γ (R[[X ]])) = 2 if and only if


R ∼= Z2 ×Z2.
(2) diam(Γ (R)) = diam(Γ (R[X ])) = diam(Γ (R[[X ]])) = 2 if and only if either


R has exactly two minimal primes and is not isomorphic to Z2 ×Z2 or for each pair
of countably generated ideals I and J with nonzero annihilators, the sum I + J has
a nonzero annihilator (and R is a McCoy ring with Z(R) an ideal).


(3) diam(Γ (R)) = diam(Γ (R[X ])) = 2 and diam(Γ (R[[X ]])) = 3 if and only if
R is a McCoy ring with Z(R) an ideal but there exists countably generated ideals I
and J with nonzero annihilators such that I +J does not have a nonzero annihilator.


(4) diam(Γ (R)) = 2 and diam(Γ (R[X ])) = diam(Γ (R[[X ]])) = 3 if and only if
Z(R) is an ideal and each two generated ideal contained in Z(R) has a nonzero
annihilator but R is not a McCoy ring.


(5) diam(Γ (R)) = diam(Γ (R[X ])) = diam(Γ (R[[X ]])) = 3 if and only if R has
more than two minimal primes and there is a pair of zero-divisors a and b such that
(a,b) does not have a nonzero annihilator.


Let A ⊆ B be an extension of commutative rings with identity. In this case,
Γ (A) is an induced subgraph of Γ (B). It may happen that Γ (A) = Γ (B) for A ⊂ B
(this happens if and only if A is a pullback of a finite local ring [12, Theorem
4.3]). It is clear that gr(Γ (B)) ≤ gr(Γ (A)). Moreover, for all m,n ∈ {3,4,∞} with
m ≤ n, there is a proper extension A ⊂ B of reduced finite commutative rings
such that gr(Γ (B)) = m and gr(Γ (A)) = n [9, Example 2.1]. Again, the case
for the diameter is not so clear since although Z(A) ⊆ Z(B), it need not be the
case that Z(A) = Z(B) ∩ A. In fact, for m,n ∈ {0,1,2,3}, there is a proper ex-
tension A ⊂ B of commutative rings with diam(Γ (A)) = m and diam(Γ (B)) = n
unless (m,n) ∈ {(0,0),(1,0),(2,0),(2,1),(3,0),(3,1)} [9, Proposition 3.2]. Thus,
diam(Γ (A)) ≤ diam(Γ (B)) unless diam(Γ (A)) = 3 and diam(Γ (B)) = 2; specific
examples with diam(Γ (A)) = 3 and diam(Γ (B)) = 2 are given in [18, Example 3.7]
and [9, Example 3.7]. The next theorem gives conditions when this can happen.


Theorem 2.9. (a) ([9, Theorem 3.8]) Let A be a commutative ring with diam(Γ (A))
= 3. Then there is a commutative extension ring B of A such that diam(Γ (B)) = 2
if and only if Z(A) ⊆ M for some maximal ideal M of A. Moreover, if A is reduced,
then B can also be chosen to be reduced.


(b) ([9, Corollary 3.12]) Let A ⊆ B be an extension of commutative rings with
dim(A) = 0. Then diam(Γ (A)) ≤ diam(Γ (B)). In particular, this holds if A is
Artinian or a finite commutative ring.
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Part (b) essentially follows from part (a) since diam(Γ (R)) ≤ 2 when Z(R) =
nil(R) [9, Lemma 3.11]. Theorem 2.9 illustrates a case where the zero-divisor graph
of an infinite ring may behave rather differently from that of a finite ring. Also note
that if B is an overring of A, then diam(Γ (A)) = diam(Γ (B)) by Corollary 4.5(a).


The above results demonstrate that the zero-divisor graph of a commutative ring
exhibits a remarkable amount of graphical structure that could perhaps provide some
insight into the algebraic structure of Z(R). The next several sections show some of
the results in which Γ (R) provides information about R and Z(R).


3 What the size and shape of Γ (R) implies


Theorem 2.1 can be generalized to only require that every vertex of Γ (R) has finite
degree (i.e., every vertex is adjacent to only finitely many other vertices).


Theorem 3.1. ([4, Theorem 6]) If R is a commutative ring such that R is not an
integral domain and every vertex of Γ (R) has finite degree, then R is a finite ring.


Proof. Suppose R is infinite and x,y ∈ R∗ with xy = 0. Then yR∗ ⊆ ann(x). If yR∗
is infinite, then x has infinite degree in Γ (R), a contradiction. If yR∗ is finite, then
there exists an infinite A ⊆ R∗ such that ya1 = ya2 for all a1,a2 ∈ A. If a0 is a fixed
element of A, then {a0 − a | a ∈ A} is an infinite subset of ann(y), and thus y has
infinite degree in Γ (R), a contradiction. Hence, R is finite.


Thus, if R is not an integral domain, we have |Z(R)| < ∞ ⇔ |R| < ∞ ⇔ every
vertex of Γ (R) has finite degree. When R is Noetherian, an upper bound on |R|
sometimes exists in terms of the degree of each vertex.


Theorem 3.2. ([69, Theorem 6.1]) Let R be a commutative Noetherian ring with
identity that is not an integral domain. Suppose that there exists a positive integer k
such that for all nonzero x ∈ R, |ann(x)| ≤ k. Then |R| ≤ (k2 −2k + 2)2.


Another way to study zero-divisor graphs is to approach the structures from the
opposite direction. In other words, given a graph G, is it possible to know when there
is a commutative ring R such that Γ (R)∼= G? One series of results has provided a list
of all rings (up to isomorphism) whose zero-divisor graphs consist of n elements.
The graphs on n = 1,2,3, or 4 vertices which can be realized as Γ (R), and a com-
plete list of rings (up to isomorphism) producing those graphs, was given in [12,
Example 2.1] (Example 1.1(a)). S. P. Redmond showed in [69, Theorem 6.4] that
for n = 5, there were three non-isomorphic graphs that could be realized as Γ (R),
while there were four non-isomorphic rings creating said graphs. Redmond contin-
ued this work in [72], where he provided all graphs on n = 6,7, . . . ,14 vertices that
can be realized as the zero-divisor graph of a commutative ring with identity, and
lists all rings (up to isomorphism) which produce these graphs. In addition, Red-
mond gave an algorithm to find all commutative reduced rings with identity (up to
isomorphism) which give rise to a zero-divisor graph on n vertices for any n ≥ 1.
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In a similar vein, J. D. LaGrange [47] developed an algorithm for constructing the
zero-divisor graph of a direct product of integral domains, as well as classified which
graphs are realizable as zero-divisor graphs of direct products of integral domains
or zero-divisor graphs of Boolean rings (also see [51]).


One can also ask for which positive integers n is there a commutative ring R with
|Γ (R)| = n, equivalently, when is there a commutative ring R with |Z(R)| = n + 1?
Using a formula for the number of zero-divisors in a direct product of rings by
R. Gilmer [44], S. P. Redmond [73] used computer calculations to show that there
are no reduced commutative rings with 1206, 1210, 1806, 3342, 5466, 6462, 6534,
6546, or 7430 zero-divisors. Additional work showed that there are no commutative
rings with 1210, 3342, or 5466 zero-divisors. Thus, there is no commutative ring R
(with identity) such that Γ (R) has 1209, 3341, or 5465 vertices (for rings without
identity, see the comments after Theorem 3.3).


Two of the most elementary forms that a connected graph can take are being
complete or complete bipartite. Whenever the zero-divisor graph of a ring assumes
one of these two shapes, we gain a remarkable amount of information about the ring.
We first handle the “complete” case. By definition, xy = 0 for distinct x,y ∈ Z(R) if
Γ (R) is complete. Except in the case R ∼= Z2 ×Z2, we must also have x2 = 0 for all
x ∈ Z(R), and thus Z(R) is an (prime) ideal of R. So, except for that case, a finite
ring R has Γ (R) complete if and only if (R,M) is local and M2 = 0.


Theorem 3.3. (a) ([14, Theorem 2.8]) Let R be a commutative ring. Then Γ (R) is
complete if and only if either R ∼= Z2 ×Z2 or xy = 0 for all x,y ∈ Z(R).


(b) ([14, Theorem 2.10]) Let R be a finite commutative ring. If Γ (R) is complete,
then either R ∼= Z2 ×Z2 or (R,M) is local with M2 = 0, charR = p or p2, and
|Γ (R)| = pn −1, where p is prime and n ≥ 1.


Conversely, for each prime p and integer n ≥ 1, the ring R = Fpn [X ]/(X2) has
Γ (R) complete with |Γ (R)| = pn − 1 [14, Example 2.11]. For a partial charac-
terization of which finite rings R have Γ (R) complete, see [58, Section 3]. More
generally, for each infinite cardinal number α , let K be a field with |K| = α and
R = K[X ]/(X2). Then Γ (R) is complete and |Γ (R)|= α . However, for infinite rings,
Γ (R) may be complete when R is not quasilocal. For example, R = Z4[X ] is not
quasilocal, but Γ (R) is complete since Z(R) = 2R. Theorem 3.3(b) not only illus-
trates the difference between finite and infinite rings, but also the necessity of an
identity. Let R be the additive group Zn+1 with multiplication defined by xy = 0 for
all x,y ∈ R; then Γ (R) is a complete graph on n vertices.


When Γ (R) is a complete bipartite graph, we can say even more about R. Note
that for integral domains R1 and R2, Γ (R2 ×R2) = Km,n, where m = |R1| − 1 and
n = |R2| − 1. The converse holds for finite rings except when the graph is a K1,1


or K1,2. Thus, Km,n = Γ (R) for a finite commutative ring R if and only if m = pk1
1 −1


and n = pk2
2 −1 for primes p1, p2 and integers k1,k2 ≥ 1.
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Theorem 3.4. ([14, p. 439], [36, Theorem 1.14, Corollary 1.11]) Let R be a finite
commutative ring.


(a) Γ (R) is complete bipartite if and only if either R ∼= F1 ×F2, where F1 and
F2 are finite fields, or R is isomorphic to Z9, Z3[X ]/(X2), Z8, Z2[X ]/(X3), or
Z4/(2X ,X2 −2).


(b) Γ (R) is a star graph if and only if either R ∼= Z2×F, where F is a finite field,
or R is isomorphic to Z9, Z3[X ]/(X2), Z8, Z2[X ]/(X3), or Z4/(2X ,X2 −2).


For infinite complete bipartite zero-divisor graphs, see Theorems 2.5, 2.6, 3.6,
3.7, and [36, Theorems 1.12 and 1.14].


Complete r-partite graphs have been described by S. Akbari, H. R. Maimani, and
S. Yassemi [3]; some of their results are listed below. Of course, Kn is a complete
n-partite graph (cf. Theorem 3.3).


Theorem 3.5. Let R be a commutative ring such that Γ (R) is a complete r-partite
graph for r ≥ 3 with vertex sets V1, . . . ,Vr.


(a) ([3, Theorem 3.1]) At most one vertex set has more than one element. If
Vi = {x}, then x2 = 0. Further, Z(R) ∈ Max(R)∩Ass(R).


(b) ([3, Theorem 3.2]) If R is finite, then R is local. Moreover, if |Vr| ≥ 2, then
there is a prime p and positive integers t and k such that r = pt and |R| = pk.


(c) ([3, Theorem 3.4]) If r = p for p prime, then |Z(R)| = p2, |R| = p3,
and R is isomorphic to exactly one of the rings Zp3 ,Zp[X ,Y ]/(XY,Y2 − X), or


Zp2 [Y ]/(pY,Y 2 − ps), where 1 ≤ s < p.


We next turn to characterizing the zero-divisor graphs of commutative rings with
von Neumann regular total quotient rings. Recall that a commutative ring R is von
Neumann regular if for each x ∈ R, there is a y ∈ R with x2y = x (equivalently,
R is reduced and dim(R) = 0 [45, Remark, p. 5]). The simplest examples of von
Neumann regular rings are direct products of fields.


Let G be a (undirected) graph. As in [54], for vertices a and b of G, we define
a ≤ b if a and b are not adjacent and each vertex of G adjacent to a is also adjacent
to b; and define a ∼ b if a ≤ b and b ≤ a. Thus, a ∼ b if and only if a and b are
adjacent to exactly the same vertices. Clearly ∼ is an equivalence relation on G. For
distinct vertices a and b of G, we say that a and b are orthogonal, written a ⊥ b, if
a and b are adjacent and there is no vertex c of G which is adjacent to both a and b,
i.e., the edge a−b is not part of any triangle in G. We say that G is complemented if
for each vertex a of G, there is a vertex b of G (called a complement of a) such that
a ⊥ b, and that G is uniquely complemented if G is complemented and whenever
a ⊥ b and a ⊥ c, then b ∼ c. For a,b ∈ Z(R)∗, we have a ∼ b in Γ (R) if and only if
ann(a)\ {a}= ann(b)\ {b}.


We next determine when Γ (R) is complemented or uniquely complemented.
Since Γ (R) and Γ (T (R)) are isomorphic by Theorem 4.4, we can only character-
ize when T (R) is von Neumann regular. Work on the zero-divisor graph of a von
Neumann regular ring was initiated by R. Levy and J. Shapiro [54] and then contin-
ued in [13, 46–48], and [49].
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Theorem 3.6. ([13, Theorem 3.5]) The following statements are equivalent for a
reduced commutative ring R.


(1) T (R) is von Neumann regular.
(2) Γ (R) is uniquely complemented.
(3) Γ (R) is complemented.
Moreover, a nonempty Γ (R) is a star graph if and only if R ∼= D×Z2 for some


integral domain D.


For nonreduced rings, we have the following characterizations.


Theorem 3.7. (a) ([13, Theorem 3.9]) Let R be a commutative ring with nil(R)
nonzero. If Γ (R) is uniquely complemented, then either Γ (R) is a star graph with at
most two edges or Γ (R) is an infinite star graph with center x, where nil(R)= {0,x}.


(b) ([13, Theorem 3.14]) Let R be a commutative ring. Then Γ (R) is comple-
mented, but not uniquely complemented, if and only if R is isomorphic to D×B,
where D is an integral domain and B is either Z4 or Z2[X ]/(X2).


A commutative ring R is a Boolean ring if x2 = x for all x ∈ R. Clearly, a Boolean
ring is von Neumann regular. The simplest example of a Boolean ring is the power
set of a set with symmetric difference as addition and intersection as multiplication
(i.e., a direct product of Z2’s). Note that R is Boolean if and only if T (R) is Boolean,
and in this case T (R) = R. In [46], J. D. LaGrange used these ideas to characterize
Boolean rings in terms of zero-divisor graphs (also see [51]).


Theorem 3.8. ([46, Theorem 2.5]) A commutative ring R is a Boolean ring if and
only if either R ∼= Z2 or Γ (R) is not the empty graph, R �∈ {Z9,Z3[X ]/(X2)}, and
Γ (R) has the property that every vertex has a unique complement. In particular,
if |Γ (R)| ≥ 3, then R is Boolean if and only if every vertex of Γ (R) has a unique
complement.


Theorem 3.9. ([46, Theorem 4.3]) Let R be a commutative ring with the property
that every element of Γ (R) is either an end or is adjacent to an end. Then exactly
one of the following holds:


(1) R ∼= Z2 ×Z4 or R ∼= Z2 ×Z2[X ]/(X2) (i.e., Γ (R) = K
1,3


).
(2) Γ (R) is a star graph.
(3) R ∼= Z2 ×Z2 ×Z2.


4 When does Γ (R) ∼= Γ (S) imply that R ∼= S?


A very natural question when studying zero-divisor graphs is whether they are
unique; i.e., is Γ (R) ∼= Γ (S) if and only if R ∼= S? Clearly, one direction holds, but
Example 1.1(a) shows that non-isomorphic rings may have isomorphic zero-divisor
graphs. Specifically, the zero-divisor graphs of Z2 ×Z2 and Z9 are isomorphic, yet
the two rings are clearly not isomorphic. This question has a positive answer when
the rings are finite products of finite fields.
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Theorem 4.1. ([12, Theorem 4.1]) Let R and S be finite reduced commutative rings
which are not fields. Then Γ (R) ∼= Γ (S) if and only if R ∼= S.


Earlier mentioned examples show that “reduced” is a necessary condition.
“Finite” is also a necessary condition since the rings R = Z2 ×Z and S = Z2 ×Q


are not isomorphic, but Γ (R) and Γ (S) are each a K1,ω . As becomes clear in
Theorem 4.3, Theorem 4.1 is really a cardinality result.


Theorem 4.1 is a remarkable result which says that for certain rings, the behavior
of the zero-divisors uniquely determines the entire ring. In fact, this result has been
generalized as shown in the two results below and Corollary 4.5(b). The special case
of Theorem 4.3 for finite fields is from [54, Corollary 2.4].


Theorem 4.2. ([4, Theorem 5]) Let R be a finite reduced commutative ring and S
not an integral domain. If Γ (R) ∼= Γ (S), then R ∼= S, unless R ∼= Z2 ×Z2 or Z6, and
S is a local ring.


Theorem 4.3. ([13, Theorem 2.1]) Let {Ri}i∈I (|I| ≥ 2) and {S j} j∈J be two families
of integral domains, and let R = ∏i∈I Ri and S = ∏ j∈J S j. Then Γ (R) ∼= Γ (S) if
and only if there is a bijection ϕ : I → J such that |Ri| = |Sϕ(i)| for each i ∈ I. In
particular, if Γ (R) ∼= Γ (S) and each Ri is a finite field, then each S j is also a finite
field and Ri


∼= Sϕ(i) for each i ∈ I, and thus R ∼= S.


The next theorem dashes any hope of completely characterizing many classes
of commutative rings solely in terms of zero-divisor graphs. This “problem” never
arises for finite rings since T (R) = R when R is finite.


Theorem 4.4. ([13, Theorem 2.2]) Let R be a commutative ring with total quotient
ring T (R). Then the graphs Γ (T (R)) and Γ (R) are isomorphic.


Corollary 4.5. (a) ([13, Corollary 2.3]) Let A and B be commutative rings. If
T (A) ∼= T (B), then Γ (A) ∼= Γ (B). In particular, Γ (A) ∼= Γ (B) if B is an overring
of A.


(b) ([13, Corollaries 2.4 and 2.5]) Let A and B be reduced commutative Noethe-
rian rings which are not integral domains. Then Γ (A)∼= Γ (B) if and only if there is a
bijection ϕ : Min(A)−→ Min(B) such that |A/P|= |B/ϕ(P)| for each P ∈ Min(A).
In particular, if Min(A) = {P1, . . . ,Pn}, then Γ (A) ∼= Γ (K1 ×·· ·×Kn), where each
Ki = T (A/Pi) is a field.


J. D. LaGrange has investigated the zero-divisor graph of the complete ring of
quotients Q(R) of R (see [52] for the definition of Q(R)) in [46,48], and [49]. In this
case, we may have Γ (R) �∼= Γ (Q(R)) [46, p. 606].


Note that the two von Neumann regular rings Z2 ×R and Z2 ×C have isomor-
phic zero-divisor graphs by Theorem 4.3, but are not isomorphic. Also see [54]
for several related results and examples. However, a Boolean ring is determined
by its zero-divisor graph (cf. [13, Theorem 4.1], [51], [57, Theorem 2.1], and [58,
Section 4]).


Theorem 4.6. ([46, Theorem 4.1]) Let R be a commutative ring with nonzero
zero-divisors, not isomorphic to Z9 or Z3[X ]/(X2). If S is a Boolean ring such
that Γ (R) ∼= Γ (S), then R ∼= S. In particular, if R and S are Boolean rings, then
Γ (R) ∼= Γ (S) if and only if R ∼= S.
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Several authors have also studied (graph) automorphisms of Γ (R). They were
first investigated in [14], and in more detail in [36, 64], and [66]. There is a natural
homomorphism ϕ : Aut(R) −→ Aut(Γ (R)) which is injective when R is finite [14,
Theorem 3.1]. In general, ker(ϕ) is nonzero, but is abelian and may be identified
with a group of derivations (see [64, Section 3] and [36, Section 2]).


5 Ideals and Z(R)


The zero-divisors of a commutative ring typically exhibit little additive structure,
and it is this lack of closure under addition that prevents them from forming an
ideal. Thus, it is a natural to ask when Z(R) is an ideal of R. In particular, can
we determine conditions on Γ (R) that will ensure Z(R) is an ideal? One approach
has been to create cases based on the diameter of Γ (R). For example, if R is a
commutative ring with diam(Γ (R)) = 0, then either Z(R) = {0} or Z(R) = {0,x}
with x2 = 0. In the latter case, we must have x + x = 0 since x(x + x) = x2 + x2 = 0.
So in both instances Z(R) is an ideal. The case when diam(Γ (R)) = 1 is also quickly
solved. By Theorem 3.3(a), Γ (R) is complete if and only if R ∼= Z2 ×Z2 or xy = 0
for all x,y ∈ Z(R). If R∼= Z2×Z2, then Z(R) is clearly not an ideal. Otherwise, Z(R)
can quickly be shown to be closed under addition and hence an ideal. So, we turn
our attention to the case when diam(Γ (R)) = 2. For this section, it will sometimes
be useful to consider any vertex corresponding to a zero-divisor x with x2 = 0 as
having a loop attached; i.e., an edge connecting the vertex x to itself. We call such
a vertex looped. We denote this extension of Γ (R) by Γ ∗(R). Let R = R1 ×·· ·×Rn


be a product of finite local commutative rings (n ≥ 2). Given Γ ∗(R), M. Taylor [80]
has given an algorithm to determine n, |Ri|, and Γ (Ri) for each 1 ≤ i ≤ n.


Lemma 5.1. ([20, Lemma 3.1]) Let R be a commutative ring with diam(Γ (R)) = 2.
Then Z(R) is an ideal if and only if for all pairs x,y ∈ Z(R) there exists a nonzero
(not necessarily distinct) z such that xz = yz = 0.


Definition 5.2. A graph G is said to be star-shaped reducible if there exists a looped
vertex g ∈ G such that g is connected to all other points in G.


In terms of Γ ∗(R) where diam(Γ ∗(R)) = 2, the condition that for all pairs
x,y ∈ Z(R) there exists a nonzero (not necessarily distinct) z such that xz = yz = 0
has a graph-theoretic description. Namely, if x− y, then either x or y has a loop
(x2 = 0 or y2 = 0), or x− y is part of a cycle of length 3.


Theorem 5.3. ([20, Theorem 2.3], [9, Lemma 3.11]) Let R be a finite commuta-
tive ring with identity. Then Z(R) is an ideal if and only if Γ ∗(R) is star-shaped
reducible. In this case, diam(Γ (R)) ≤ 2.


The case where R is infinite with diam(Γ (R)) = 3 was settled in [59] and [9].
A method for producing a commutative ring R with diam(Γ (R)) = 3 and Z(R) an
ideal was outlined in [59, Example 5.1], and this was actually accomplished in [9,
Example 3.13]. A simpler example is given in [20]
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As an interesting side note to the above results, the information revealed helped to
determine which finite graphs are realizable as zero-divisor graphs of commutative
rings (such rings must be finite by Theorem 2.1).


Theorem 5.4. ([20, Theorem 4.5]) If G is realizable as a zero-divisor graph of
a finite commutative ring with identity, then it is star-shaped reducible, complete
bipartite, or diam(G) = 3.


It is well known that Z(R) is the set-theoretic union of prime ideals [16, Exercise
14, p. 12]. By placing some modest restrictions on Γ (R) and R, the union is over a
surprisingly small number of prime ideals.


Theorem 5.5. ([17, Proposition 3.4]) Let R be a commutative ring with diam(Γ (R))
≤ 2 and let Z(R) =


⋃
i∈Λ Pi for prime ideals Pi of R. If there is an element in Z(R)


that is contained in a unique maximal Pi, then |Λ | ≤ 2. In particular, if Λ is a finite
set (e.g., if R is Noetherian), then |Λ | ≤ 2.


The following theorem is in the spirit of Theorems 2.5 and 2.6.


Theorem 5.6. ([15, Theorem 2.7]) Let R be a commutative ring with diam(Γ (R))
≤ 2. Then exactly one of the following holds.


(1) Z(R) is an (prime) ideal of R.
(2) T (R) = K1 ×K2, where each Ki is a field.


We close this section with three results from [59] that provide further links
between the ideal structure of R and Z(R) and diam(Γ (R)).


Theorem 5.7. ([59, Theorem 2.1]) Let R be a reduced commutative ring. If R has
more than two minimal prime ideals and there are nonzero elements a,b ∈ Z(R)
such that (a,b) has no nonzero annihilator, then diam(Γ (R)) = 3.


It is of interest to note that Theorem 5.7 generalizes to the nonreduced case, and
in this case we do not need the assumption that R has more than two minimal primes
(see [59, Theorem 2.4]). A corollary to this appears below.


Theorem 5.8. ([59, Theorem 2.2]) Let R be a reduced commutative ring with Z(R)
not an ideal. Then diam(Γ (R)) ≤ 2 if and only if R has exactly two minimal prime
ideals.


Corollary 5.9. ([59, Corollary 2.5]) If R is a non-reduced commutative ring such
that Z(R) is not an ideal, then diam(Γ (R)) = 3.


6 Planar and toroidal graphs


A graph G is planar if it can be embedded (i.e., drawn with no crossings) in the
plane and is toroidal if it is not planar, but can be embedded in a torus. More gen-
erally, G has genus g if it can be embedded in a surface of genus g, but not in
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one of genus g−1. Let γ(G) denote the genus of G; so G is planar (resp., toroidal)
when γ(G) = 0 (resp., γ(G) = 1). In this section, we determine all finite commuta-
tive rings with planar or toroidal zero-divisor graphs.


For the planar case, the proof uses the theorem of Kuratowski [38, Theorem
4.4.6] that a graph G is planar if and only if it contains no subdivisions homeomor-
phic to K5 or K3,3 and the fact that a finite commutative ring is the direct product
of a finite number of local rings. The idea is to get a bound on the number of local
ring factors, and then handle the local case. If Γ (R) is planar, then R has at most 3
local ring factors since otherwise it would contain a K3,3. The cases for 2 or 3 local
ring factors are then handled separately. For a finite local ring (R,M), Mn = 0 for
some positive integer n. If n ≥ 5, then Γ (R) would contain a K5, and thus not be
planar. The toroidal case is similar, but uses the facts that Km is toroidal if and only
if m = 5,6,7, while K4,4 is toroidal and K3,n is toroidal if and only if n = 3,4,5,6.


The first work in this direction was given in [12], where they asked which finite
commutative rings R have Γ (R) planar and gave the following partial answer.


Theorem 6.1. ([12, Theorem 5.1]) (a) Let R = Zn, where n ≥ 2 is not prime. Then
Γ (R) is planar if and only if n ∈ {8,12,16,18,25,27}∪{2p,3p | p is prime}.


(b) Let R = Zn1 × ·· · ×Znr , where r ≥ 2 and 2 ≤ n1 ≤ ·· · ≤ nr. Then Γ (R)
is planar if and only if R is one of Z2 ×Z4, Z2 ×Z6, Z2 ×Z8, Z2 ×Z9, Z2 ×Zp,
Z3 ×Z4, Z3 ×Z9, Z3 ×Zq, Z2 ×Z2 ×Z2, Z2 ×Z2 ×Z3, where p ≥ 2 and q ≥ 3 are
primes.


Theorem 6.2. ([12, Theorem 5.2]) Let Rn,m = Zn[X ]/(Xm), where m,n ≥ 2.
(a) Γ (Rn,2) is planar if and only if n ≤ 5.
(b) Γ (Rn,3) is planar if and only if n ≤ 3.
(c) Γ (Rn,4) is planar if and only if n = 5.
(d) Γ (Rn,m) is never planar if m ≥ 5.


S. Akbari, H. R. Maimani, and S. Yassemi [3] gave a partial answer by showing
that if Γ (R) is planar, then R has at most 3 local ring factors, describing those local
ring factors, and giving the following theorem for when R is local.


Theorem 6.3. ([3, Theorems 1.2 and 1.4]) Let (R,M) be a finite local commutative
ring. Then Γ (R) is not planar if one of the following holds.


(1) |R/M| ≥ 4 and |R| ≥ 26.
(2) |R/M| = 3 and |R| ≥ 28.
(3) |R/M| = 2 and |R| ≥ 33.


In [3, Remark 1.5], they also asked the following question: “Is it true that,
for any local ring R of cardinality 32, which is not a field, Γ (R) is not planar?”
N. O. Smith [76] answered their question affirmatively and explicitly gave all the
finite commutative rings with planar zero-divisor graphs (their zero-divisor graphs
are given in [77]). Their question has also been answered independently by H.-J.
Wang [82] and R. Belshoff and J. Chapman [25] ([76] was not reviewed in Math
Reviews). Belshoff and Chapman also give all finite local rings with planar zero-
divisor graphs using somewhat different techniques than [76].
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Theorem 6.4. ([76, Theorem 3.7]) Let R be a finite commutative ring (not
a field), and k a (finite) field. Then Γ (R) is planar if and only if R is iso-
morphic to one of the following 44 types of rings: Z2 × k, Z3 × k, Z2 × Z4,
Z2 × Z2[X ]/(X2), Z3 × Z4, Z3 × Z2[X ]/(X2), Z2 × Z2 × Z2, Z2 × Z2 × Z3,
Z2 ×Z8, Z2 ×Z2[X ]/(X3), Z2 ×Z4[X ]/(2X ,X2 − 2), Z2 ×Z9, Z2 ×Z3[X ]/(X2),
Z3 ×Z9, Z3 ×Z3[X ]/(X2), Z4, Z2[X ]/(X2), Z9, Z3[X ]/(X2), Z8, Z2[X ]/(X3),
Z4[X ]/(2X ,X2 − 2), Z16, Z2[X ]/(X4), Z4[X ]/(2X ,X3 − 2), Z4[X ]/(X2 − 2),
Z4[X ]/(X2 + 2X + 2), F4[X ]/(X2), Z4[X ]/(X2 +X + 1), Z2[X ,Y ]/(X ,Y )2,
Z4[X ]/(2,X)2, Z27, Z3[X ]/(X3), Z3[X ]/(X2 − 3,3X), Z9[X ]/(X2 − 6,3X),
Z2[X ,Y ]/(X2,Y 2 − XY ), Z2[X ,Y ]/(X2, Y 2), Z8[X ]/(2X − 4,X2), Z4[X ]/(X2),
Z4[X ]/(X2 − 2X), Z4[X ,Y ]/(X2,XY −2,Y 2 −XY,2X , 2Y ), Z4[X ,Y ]/(X2, XY −2,
Y 2,2X ,2Y ), Z25, or Z5[X ]/(X2).


Corollary 6.5. ([76, Corollary 3.8], [82, Theorem 3.2], [25, Proposition 5]) Let R
be a finite commutative local ring (not a field) with either |R| ≥ 28 or |Z(R)| ≥ 10.
Then Γ (R) is not planar.


Note that the above corollary is best possible since R = Z27 is a local ring with
|R| = 27, |Z(R)| = 9, and planar zero-divisor graph.


Smith [79] has also characterized the infinite planar zero-divisor graphs. Note
that if Γ (R) is planar, then necessarily |Γ (R)| ≤ c; so a K1,α is planar if and only if
α ≤ c. Moreover, the graphs given in the following theorem can all be realized as
the zero-divisor graphs of commutative rings [79, Remark 2.20].


Theorem 6.6. ([79, Theorem 2.19]) Let R be an infinite commutative ring (not an
integral domain) such that Γ (R) is planar. Then Γ (R) is isomorphic to either a star
graph, a K2,α , where α ≤ c, or the graph obtained by taking such a K2,α and adding
an edge between the two vertices of infinite degree.


We next proceed to zero-divisor graphs of genus one. This research was initi-
ated by H.-J. Wang in [82], where he determined which finite commutative rings of
the type in Theorems 6.1 and 6.2 have genus at most one, answered the question
about planar local rings raised in [3], and gave bounds on the cardinality of local
rings of genus one. The complete genus-one solution was achieved independently
by C. Wickham [83] and H.-J. Chiang-Hsieh, H.-J. Wang, and N. O. Smith [31]. The
planar case is also redone in [31]. All three papers also give partial results for zero-
divisor graphs of higher genus. The next theorem lists all the finite commutative
rings with γ(Γ (R)) = 1.


Theorem 6.7. ([83, Theorems 3.1 and 4.1], [31, Theorems 3.5.2 and 3.6.2]) Let R
be a finite commutative ring which is not a field.


(a) If R is local, then γ(Γ (R)) = 1 if and only if R is isomorphic
to one of the following 17 rings: Z32, Z49, Z2[X ]/(X5), F8[X ]/(X2),
Z2[X ]/(X3,XY,Y 2), Z2[X ,Y,Z]/(X ,Y,Z)2, Z4[X ]/(X3 + X + 1), Z4[X ]/(X3 −
2,X5), Z4[X ]/(X4 − 2,X5), Z4[X ,Y ]/(X3, X2 − 2,XY,Y 2), Z4[X ]/(X3, 2X),
Z4[X ,Y ]/(2X , 2Y, X2, XY, Y 2), Z7[X ]/(X2), Z8[X ]/(X2,2X), Z8[X ]/(X2 − 2,X5),
Z8[X ]/(X2 + 2X −2,X5), or Z8[X ]/(X2 −2x + 2,X5).
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(b) If R is not local, then γ(Γ (R)) = 1 if and only if R is isomorphic to one
of the following 29 rings: F4 ×F4, F4 ×Z5, F4 ×Z7, Z5 ×Z5, Z2 ×F4[X ]/(X2),
Z2 ×Z4[X ]/(X2 + X + 1), Z2 ×Z2[X ,Y ]/(X2,XY,Y 2), Z2 ×Z4[X ]/(2X ,X2), Z3 ×
Z2[X ]/(X3), Z3 ×Z4[X ]/(X2−2,X3), Z3 ×Z8, Z4×F4,F4×Z2[X ]/(X2), Z4 ×Z4,
Z4 ×Z2[X ]/(X2), Z2[X ]/(X2)×Z2[X ]/(X2), Z4 ×Z5, Z5 ×Z2[X ]/(X2), Z4 ×Z7,
Z7 ×Z2[X ]/(X2), Z2 ×Z3 ×Z3, Z3 ×Z3 ×Z3, Z2 ×Z3 ×F4, Z2 ×Z2 ×Z5, Z2 ×
Z2 ×Z7, Z2 ×Z2×F4, Z2 ×Z2 ×Z4, Z2 ×Z2×Z2[X ]/(X2), or Z2 ×Z2×Z2×Z2.


We conclude this section by mentioning that H.-J. Chiang-Hsieh [30] has re-
cently determined all the finite commutative rings R such that Γ (R) is projective
(a nonplanar graph is said to be projective if it can be embedded in the projective
plane). Such a ring has at most 4 prime ideals, and up to isomorphism, there are 36
finite commutative rings with projective zero-divisor graph.


7 Origins and generalizations


In this final section, we first trace the origins and early history of Γ (R), and then
briefly mention several other directions this research has taken. It all started in 1988
when I. Beck [23] presented the idea of associating a “zero-divisor” graph with a
commutative ring. However, Beck used a slightly different definition for Γ (R) and
was mainly interested in colorings. He let all elements of R be vertices; so 0 is
adjacent to every other vertex. We denote Beck’s zero-divisor graph of R by Γ0(R)
(Beck just used R); so Γ (R) is an induced subgraph of Γ0(R).


If either R is an integral domain, R ∼= Z4, or R ∼= Z2[X ]/(X2), then Γ0(R) is the
star graph K1,α , where α = |R∗|; so gr(Γ0(R)) = ∞. Otherwise, gr(Γ0(R)) = 3 since
0 and any two distinct zero-divisors x and y of R with xy = 0 determine a trian-
gle. Clearly, Γ0(R) is always connected. We have diam(Γ0(R)) = 1 for R ∼= Z2, and
diam(Γ0(R)) = 2 for all other rings R since x− 0− y is a path of length two be-
tween any two distinct nonzero elements x and y of R. Also, it is easily verified that
Γ0(R) is complete if and only if R ∼= Z2, and Γ0(R) is complete bipartite if and only
if it is one of the star graphs mentioned above. We can always recover Γ (R) from
Γ0(R) except when Γ0(R) is a K1,3, since in this case R could be either F4, Z4, or
Z2[X ]/(X2), and thus Γ (R) could either be empty or a singleton. Based on the above
comments and what we have seen in the earlier sections, it is clear that Γ (R) has a
much richer and more appealing structure than Γ0(R) and better reflects properties
of Z(R).


Beck’s focus was on rings that could be finitely colored, i.e., χ(Γ0(R)) < ∞. He
called such rings Colorings, and characterized these rings in the following theorem.


Theorem 7.1. ([23, Theorem 3.9]) The following conditions are equivalent for a
commutative ring R.


(1) χ(Γ0(R)) is finite (i.e., R is a Coloring).
(2) cl(Γ0(R)) is finite.
(3) nil(R) is finite and equals a finite intersection of prime ideals.
(4) Γ0(R) does not contain an infinite clique.
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Beck proved many other results about Colorings. For example, he showed that if
R is a Coloring, then Ass(R) is finite [23, Theorem 4.3] and for P∈ Ass(R), either RP


is a field or P is a maximal ideal [23, Theorem 4.4]. He also investigated the stability
of the family of Colorings, and showed that a finite direct product of Colorings
is a Coloring [23, Theorem 5.5], a localization of a Coloring is a Coloring [23,
Theorem 5.8], and certain factor rings of Colorings are Colorings [23, Theorems 5.2,
5.4, and 5.6]. Moreover, Beck determined all the finite commutative rings R with
χ(Γ0(R)) ≤ 3 [23, p. 226](see Theorem 7.4(a)-(b)).


It is easy to see that cl(Γ0(R)) ≤ χ(Γ0(R)) for any commutative ring R. Based on
the evidence given in the next theorem, Beck conjectured that χ(Γ0(R)) = cl(Γ0(R))
for any Coloring R.


Theorem 7.2. Let R be a commutative ring with χ(Γ0(R)) < ∞.
(a) ([23, Theorem 3.8]) χ(Γ0(R)) = cl(Γ0(R)) = |Min(R)|+ 1 if R is reduced.
(b) ([23, Theorem 6.13]) If R is a finite direct product of reduced rings and


principal ideal rings, then χ(Γ0(R)) = cl(Γ0(R)).
(c) ([23, Theorem 7.3]) Let n ≤ 4 be a positive integer. Then χ(Γ0(R)) = n if and


only if cl(Γ0(R)) = n. Moreover, χ(Γ0(R)) = 5 implies cl(Γ0(R)) = 5.


In 1993, five years after Beck’s paper appeared, D. D. Anderson and M.
Naseer [8] provided a counterexample to Beck’s conjecture (also see [27] and
[39]).


Example 7.3. ([8, Theorem 2.1]) Let R be the commutative ring Z4[X ,Y,Z]/(X2−2,
Y 2 − 2, Z2, 2X , 2Y, 2Z, XY, XZ, YZ − 2). In this example, cl(Γ0(R)) = 5, but
χ(Γ0(R)) = 6. This ring is a local ring (R,M) with 32 elements, R/M ∼= Z2,
M2 �= 0, but M3 = 0. This counterexample is minimal in several senses. Firstly,
it has the smallest possible clique or chromatic number for a counterexample
by Theorem 7.2(c). Secondly, it is minimal in the sense that a Coloring S with
nil(S)2 = 0 has χ(Γ0(S)) = cl(Γ0(S)) = |nil(S)|+ 1 by [8, Theorem 3.1]. Finally,
it has the smallest number of elements possible since if S is a finite commutative
ring with |S| ≤ 31, then χ(Γ0(S)) = cl(Γ0(S)).


In addition, their paper contained several positive results. For example, they
showed that a Noetherian ring R is a Coloring if and only if it is a subring of a
finite direct product of fields and a finite ring [8, Theorem 3.6] and that a ring of the
form A/Mm1


1 · · ·Mmn
n , where A is a regular Noetherian ring, M1, . . . ,Mn are maximal


ideals of A with each A/Mi finite, and m1, . . . ,mn are positive integers is a Coloring
and determined its chromatic number [8, Collorary 3.3]. They also determined the
finite commutative rings R with χ(Γ0(R)) = 4 (see Theorem 7.4(c)).


Although recent directions in zero-divisor graph theory have not involved color-
ings, the papers of Beck and Anderson–Naseer did determine the chromatic number
of certain rings. It is easy to see that cl(Γ0(R)) = cl(Γ (R)) + 1 and χ(Γ0(R)) =
χ(Γ (R))+1. Using those two facts and Theorem 7.2(c), the next theorem translates
their results about χ(Γ0(R))) to cl(Γ (R)). The finite nonlocal commutative rings R
with cl(Γ (R)) = 4 have been computed by N. O. Smith [76].
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Theorem 7.4. Let R be a finite commutative ring, and K1, K2, and K3 be finite fields.
(a) ([23, Proposition 2.2]) cl(Γ (R)) = 1 if and only if R is isomorphic to Z4 or


Z2[X ]/(X2).
(b) ([23, p. 226]) cl(Γ (R)) = 2 if and only if R is isomorphic to one of the


following 8 types of rings: K1 ×K2, K1 ×Z4, K1 ×Z2[X ]/(X2), Z8, Z9, Z3[X ]/(X2),
Z2[X ]/(X3), or Z4[X ]/(2X ,X2 −2).


(c) ([8, Theorem 4.4]) cl(Γ (R)) = 3 if and only if R is isomorphic to one of the
following 31 types of rings: Z4 ×Z4, Z4×Z2[X ]/(X2), Z2[X ]/(X2) × Z2[X ]/(X2),
K1 ×K2 ×K3, K1 ×K2 ×Z4, K1 ×K2 ×Z2[X ]/(X2), K1 ×Z8, K1 ×Z9, K1 ×
Z3[X ]/(X2), K1 × Z2[X ]/(X3), K1 × Z4[X ]/(2X ,X2 − 2), Z16, Z2[X ]/(X4),
Z4[X ]/(2X, X3 − 2), Z4[X ]/(X2 − 2), Z4[X ]/(X2 + 2X + 2), F4[X ]/(X2),
Z4[X ]/(X2 +X + 1), Z2[X ,Y ]/(X ,Y )2, Z4[X ]/(2,X)2, Z27, Z3[X ]/(X3),
Z9[X ]/(3X ,X2−3), Z9[X ]/(3X ,X2−6), Z2[X ,Y ]/(X2,Y 2−XY), Z2[X ,Y ]/(X2,Y 2),
Z8[X ]/(2X −4, X2), Z4[X ]/(X2), Z4[X ]/(X2−2X), Z4[X ,Y ]/(X2, XY −2, Y 2,
2X , 2Y ), or Z4[X ,Y ]/(X2,XY −2,X2−XY,2X ,2Y).


Another 6 years passed before the 1999 article by D. F. Anderson and
P. S. Livingston [14], which was based on Livingston’s 1997 Master’s Thesis [55].
This paper introduced our present definition of Γ (R) and emphasized the interplay
between ring-theoretic properties of R and graph-theoretic properties of Γ (R). Be-
sides the basic results on diameter and girth given in Section 2 and characterizations
of complete and complete bipartite zero-divisor graphs given in Section 3, they
also studied graph automorphisms of Γ (R). Then in 2002, the papers by S. B. Mu-
lay [64] and F. DeMeyer and K. Schneider [36] were published. These two papers
built on the work in [14], independently answered the girth conjecture, and gave a
more detailed study of automorphisms of Γ (R) (see Section 4).


Finally, the article by D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston
[12] in 2001 reviewed and consolidated earlier work on diameter and girth, did addi-
tional work on clique numbers, and initiated work on planar zero-divisor graphs (see
Section 6) and isomorphisms of zero-divisor graphs (see Section 4). They also gave
explicit formulas to compute the number of complete subgraphs (cliques) of Γ (R)
of order n for R a finite reduced commutative ring or Zpm with p prime.


The two papers on Colorings ([23] and [8]) and the four papers on Γ (R) [12, 14,
36, 64] discussed in this section contain many more results. The interested reader
should consult them to get a flavor for the formative work on zero-divisor graphs
of commutative rings. These papers either contain or motivate much of the work
discussed in earlier sections and the many generalizations discussed below.


This survey has concentrated on zero-divisor graphs of commutative rings with
identity. This idea has been extended in many different directions, usually to either
zero-divisor graphs for different algebraic structures or to different types of graphs
for commutative rings.


Zero-divisor graphs for noncommutative rings were first studied in [67]. In this
case, there are several possible definitions and the graph may be either directed or
undirected. Besides rings, the same definition makes sense for any algebraic struc-
ture with a zero element. For semigroups, this was first studied in [35]. A second
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direction would be to start with a commutative ring R and use a different set of
vertices or adjacency relation. For example, see [61,75], or [11]. Again, these ideas
can be extended to other algebraic structures.


A survey paper of this nature cannot hope to provide a complete picture of all
the avenues of research being pursued within the study of zero-divisor graphs. The
bibliography is our attempt to provide the reader with as complete as possible listing
of works in this area. Other avenues being explored include ideal-based zero-divisor
graphs, zero-divisor graphs of ideals, homology of zero-divisor graphs, and applying
a graph structure to other algebraic constructs such as factorizations into irreducibles
and to commuting elements in matrix algebras.


References


1. Akbari, S., Bidkhori, H., Mohammadian, A.: Commuting graphs of matrix algebras. Comm.
Algebra 36(11), 4020–4031 (2008)


2. Akbari, S., Ghandehari, M., Hadian, M., Mohammadian, A.: On commuting graphs of
semisimple rings. Linear Algebra Appl. 390, 345–355 (2004)


3. Akbari, S., Maimani, H.R., Yassemi, S.: When a zero-divisor graph is planar or a complete
r-partite graph. J. Algebra 270(1), 169–180 (2003)


4. Akbari, S., Mohammadian, A.: On the zero-divisor graph of a commutative ring. J. Algebra
274(2), 847–855 (2004)


5. Akbari, S., Mohammadian, A.: Zero-divisor graphs of non-commutative rings. J. Algebra
296(2), 462–479 (2006)


6. Akbari, S., Mohammadian, A.: On zero-divisor graphs of finite rings. J. Algebra 314(1),
168–184 (2007)


7. Akhtar, R., Lee, L.: Homology of zero-divisors. Rocky Mt. J. Math. 37(4), 1105–1126 (2007)
8. Anderson, D.D., Naseer, M.: Beck’s coloring of a commutative ring. J. Algebra 159(2),


500–514 (1993)
9. Anderson, D.F.: On the diameter and girth of a zero-divisor graph, II. Houst. J. Math. 34(2),


361–371 (2008)
10. Anderson, D.F., Badawi, A.: On the zero-divisor graph of a ring. Comm. Algebra 36(8),


3073–3092 (2008)
11. Anderson, D.F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320(7),


2706–2719 (2008)
12. Anderson, D.F., Frazier, A., Lauve, A., Livingston, P.S.: The zero-divisor graph of a commu-


tative ring, II. Lect. Notes Pure Appl. Math. 220, 61–72 (2001)
13. Anderson, D.F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings, and


Boolean algebras. J. Pure Appl. Algebra 180(3), 221–241 (2003)
14. Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra


217(2), 434–447 (1999)
15. Anderson, D.F., Mulay, S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl.


Algebra 210(2), 543–550 (2007)
16. Atiyah, M.F., MacDonald, I.G.: “Introduction to Commutative Algebra”. Perseus Book,


Cambridge, Massachusetts (1969)
17. Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomial and power series


over commutative rings. Comm. Algebra 33(6), 2043–2050 (2005)
18. Axtell, M., Stickles, J.: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204(2),


235–243 (2006)
19. Axtell, M., Stickles, J.: Irreducible divisor graphs in commutative rings with zero-divisors.


Comm. Algebra 36(5), 1883–1893 (2008)







Zero-divisor graphs in commutative rings 43


20. Axtell, M., Stickles, J., Trampbachls, W.: Zero-divisor ideals and realizable zero-divisor
graphs. Involve 2(1), 17–27 (2009)


21. Axtell, M., Stickles, J., Warfel, J.: Zero-divisor graphs of direct products of commutative rings.
Houst. J. Math. 32(4), 985–994 (2006)


22. Azarpanah, F., Motamedi, M.: Zero-divisor graph of C(X). Acta. Math. Hung. 108(1–2),
25–36 (2005)


23. Beck, I.: Coloring of commutative rings. J. Algebra 116(1), 208–226 (1988)
24. Behboodi, M.: Zero divisor graphs for modules over commutative rings. J. Commut. Algebra,


to appear
25. Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316(1), 471–480 (2007)
26. Bhat, V.K., Raina, R., Nehra, N., Prakash, O.: A note on zero divisor graph over rings. Int. J.


Contemp. Math. Sci. 2(13–16), 667–671 (2007)
27. Bhatwadekar, S.M., Dumaldar, M.N., Sharma, P.K.: Some non-chromatic rings. Comm. Alge-


bra 26(2), 477–505 (1998)
28. Canon, G., Neuburg, K., Redmond, S.P.: Zero-divisor graphs of nearrings and semigroups,


Nearrings and Nearfields, pp. 189–200. Springer, Dordrecht (2005)
29. Chakrabarty, I., Ghosh, S., Mukherjee, T.K., Sen, M.K.: Intersection graphs of ideals of rings.


Electron. Notes Discrete Math. 23, 23–32 (2005)
30. Chiang-Hsieh, H.-J.: Classification of rings with projective zero-divisor graphs. J. Algebra


319(7), 2789–2802 (2008)
31. Chiang-Hsieh, H.-J., Wang, H.-J., Smith, N.O., Commutative rings with toroidal zero-divisor


graphs. Houst. J. Math. 36(1), 1–31 (2010)
32. Coykendall, J., Maney, J.: Irreducible divisor graphs. Comm. Algebra 35(3), 885–896 (2007)
33. D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal. J. Algebra


Appl. 6(3), 443–459 (2007)
34. DeMeyer, F., DeMeyer, L.: Zero-divisor graphs of semigroups. J. Algebra 283(1), 190–198


(2005)
35. DeMeyer, F., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semi-


group. Semigroup Forum 65(2), 206–214 (2002)
36. DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings.


Int. J. Commut. Rings 1(3), 93–106 (2002)
37. DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings,


Commutative rings, pp. 25–37. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of
[36])


38. Diestel, R.: “Graph theory”. Springer, New York (1997)
39. Dumaldar, M.N., Sharma, P.K.: Comments over “Some non-chromatic rings”. Comm. Algebra


26(11), 3871–3883 (1998)
40. Ebrahimi Atani, S., Ebrahimi Sarvandi, Z.: Zero-divisor graphs of idealizations with respect


to prime modules. Int. J. Contemp. Math. Sci. 2(25–28), 1279–1283 (2007)
41. Ebrahimi Atani, S., Kohan, M.: The diameter of a zero-divisor graph for finite direct product


of commutative rings. Sarajevo J. Math. 3(16), 149–156 (2007)
42. Eslahchi, C., Rahimi, A.: The k-zero-divisor hypergraph of a commutative ring. Int. J. Math.


Math. Sci., Art. ID 50875, 15 (2007)
43. Ganesan, N.: Properties of rings with a finite number of zero-divisors. Math. Ann. 157,


215–218 (1964)
44. Gilmer, R.: Zero divisors in commutative rings. Am. Math. Monthly 93(5), 382–387 (1986)
45. Huckaba, J.A.: “Commutative rings with zero divisors”. Marcel Dekker, New York/Basil


(1988)
46. LaGrange, J.D.: Complemented zero-divisor graphs and Boolean rings. J. Algebra 315(2),


600–611 (2007)
47. LaGrange, J.D.: On realizing zero-divisor graphs. Comm. Algebra 36(12), 4509–4520 (2008)
48. LaGrange, J.D.: The cardinality of an annihilator class in a von Neumann regular ring. Int.


Electron. J. Algebra 4, 63–82 (2008)
49. LaGrange, J.D.: Invariants and isomorphism theorems for zero-divisor graphs of commutative


rings of quotients, preprint







44 David F. Anderson, Michael C. Axtell, and Joe A. Stickles, Jr.


50. LaGrange, J.D.: Weakly central-vertex complete graphs with applications to commutative
rings. J. Pure Appl. Algebra 214(7), 1121–1130 (2010)


51. LaGrange, J.D.: Characterizations of three classes of zero-divisor graphs. Can. Math. Bull. to
appear


52. Lambeck, J.: “Lectures on rings and modules”. Blaisdell Publishing Company, Waltham
(1966)


53. Lauve, A.: Zero-divisor graphs of finite commutative rings. Honors Senior Thesis, The Uni-
versity of Oklahoma, Norman, OK, April, 1999


54. Levy, R., Shapiro, J.: The zero-divisor graph of von Neumann regular rings. Comm. Algebra
30(2), 745–750 (2002)


55. Livingston, P.S.: Structure in zero-divisor graphs of commutative rings. Masters Thesis, The
University of Tennessee, Knoxville, TN, Dec. 1997


56. Long, Y., Huang, Y.: The correspondence between zero-divisor graphs with 6 vertices and
their semigroups. J. Algebra Appl. 6(2), 287–290 (2007)


57. Lu, D., Tong, W.: The zero-divisor graphs of abelian regular rings. Northeast. Math. J. 20(3),
339–348 (2004)


58. Lu, D., Wu, T.: The zero-divisor graphs which are uniquely determined by neighborhoods.
Comm. Algebra 35(12), 3855–3864 (2007)


59. Lucas, T.G.: The diameter of a zero-divisor graph. J. Algebra 301(1), 174–193 (2006)
60. Maimani, H.R., Pournaki, M.R., Yassemi, S.: Zero-divisor graphs with respect to an ideal.


Comm. Algebra 34(3), 923–929 (2006)
61. Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graphs of commutative rings.


J. Algebra 319(4), 1801–1808 (2008)
62. Maimani, H.R., Yassemi, S.: Zero-divisor graphs of amalgamated duplication of a ring along


an ideal. J. Pure Appl. Algebra 212(1), 168–174 (2008)
63. Maney, J.: Irreducible divisor graphs, II. Comm. Algebra 36(9), 3496–3513 (2008)
64. Mulay, S.B.: Cycles and symmetries of zero-divisors. Comm. Algebra 30(7), 3533–3558


(2002)
65. Mulay, S.B.: Rings having zero-divisor graphs of small diameter or large girth. Bull. Aust.


Math. Soc. 72(3), 481–490 (2005)
66. Mulay, S.B., Chance, M.: Symmetries of colored power-set graphs. J. Commut. Algebra, to


appear
67. Redmond, S.P.: The zero-divisor graph of a non-commutative ring. Int. J. Commut. Rings 1(4),


203–211 (2002)
68. Redmond, S.P.: The zero-divisor graph of a non-commutative ring, Commutative Rings,


pp. 39–47. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of [67])
69. Redmond, S.P.: An ideal-based zero-divisor graph of a commutative ring. Comm. Algebra


31(9), 4425–4443 (2003)
70. Redmond, S.P.: Structure in the zero-divisor graph of a non-commutative ring. Houst. J. Math.


30(2), 345–355 (2004)
71. Redmond, S.P.: Central sets and radii of the zero-divisor graphs of commutative rings. Comm.


Algebra 34(7), 2389–2401 (2006)
72. Redmond, S.P.: On zero-divisor graphs of small finite commutative rings. Discrete Math.


307(9), 1155–1166 (2007)
73. Redmond, S.P.: Counting zero-divisors, Commutative Rings: New Research, pp. 7–12. Nova


Science Publishers, Hauppauge, NY (2009)
74. Samei, K.: The zero-divisor graph of a reduced ring. J. Pure Appl. Algebra 209(3), 813–821


(2007)
75. Sharma, P.K., Bharwadekar, S.M.: Zero-divisor graphs with respect to an ideal. J. Algebra


176(1), 124–127 (1995)
76. Smith, N.O.: Planar zero-divisor graphs. Int. J. Commut. Rings 2(4), 177–188 (2003)
77. Smith, N.O.: Graph-theoretic Properties of the Zero-Divisor Graph of a Ring. Dissertation,


The University of Tennessee, Knoxville, TN, May 2004
78. Smith, N.O.: Planar zero-divisor graphs, Focus on commutative rings research, pp. 177–186.


Nova Science Publishers, New York (2006). (Reprint of [76])







Zero-divisor graphs in commutative rings 45


79. Smith, N.O.: Infinite planar zero-divisor graphs. Comm. Algebra 35(1), 171–180 (2007)
80. Taylor, M.: Zero-divisor graphs with looped vertices. preprint
81. Vishne, U.: The graph of zero-divisor ideals. preprint
82. Wang, H.-J.: Zero-divisor graphs of genus one. J. Algebra 304(2), 666–678 (2006)
83. Wickham, C.: Classification of rings with genus one zero-divisor graphs. Comm. Algebra


36(2), 325–345 (2008)
84. Wright, S.: Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups.


Comm. Algebra 35(6), 1987–1991 (2007)
85. Wu, T.: On directed zero-divisor graphs of finite rings. Discrete Math. 296(1), 73–86 (2005)
86. Wu, T., Lu, D.: Zero-divisor semigroups and some simple graphs. Comm. Algebra 34(8),


3043–3052 (2006)
87. Wu, T., Lu, D.: Sub-semigroups determined by the zero-divisor graph. Discrete Math. 308(22),


5122–5135 (2008)
88. Zuo, M., Wu, T.: A new graph structure of commutative semigroups. Semigroup Forum 70(1),


71–80 (2005)











Class semigroups and t-class semigroups
of integral domains


Silvana Bazzoni and Salah-Eddine Kabbaj


Abstract The class (resp., t-class) semigroup of an integral domain is the semigroup
of the isomorphy classes of the nonzero fractional ideals (resp., t-ideals) with the
operation induced by ideal (t-) multiplication. This paper surveys recent litera-
ture which studies ring-theoretic conditions that reflect reciprocally in the Clifford
property of the class (resp., t-class) semigroup. Precisely, it examines integral do-
mains with Clifford class (resp., t-class) semigroup and describes their idempotent
elements and the structure of their associated constituent groups.


1 Introduction


All rings considered in this paper are integral domains. The notion of ideal class
group of a domain is classical in commutative algebra and is also one of major
objects of investigation in algebraic number theory. Let R be a domain. The ideal
class group C(R) (also called Picard group) of R consists of the isomorphy classes
of the invertible ideals of R, that is, the factor group I(R)/P(R), where I(R) is the
group of invertible fractional ideals and P(R) is the subgroup of nonzero principal
fractional ideals of R. A famous result by Claiborne states that every Abelian group
can be regarded as the ideal class group of a Dedekind domain.


If R is Dedekind, then I(R) coincides with the semigroup F(R) of nonzero
fractional ideals of R. Thus, a natural generalization of the ideal class group is
the semigroup F(R)/P(R) of the isomorphy classes of nonzero fractional ideals
of R. The factor semigroup F(R)/P(R) is denoted by S(R) and called the class
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semigroup of R. The class semigroup of an order in an algebraic number field was
first investigated by Dade, Taussky and Zassenhaus [18] and later by Zanardo and
Zannier [59]. Halter-Koch [34] considered the case of the class semigroup of lattices
over Dedekind domains.


The investigation of the structure of a semigroup is not as attractive as the study
of a group. This is the reason why it is convenient to restrict attention to the case
of a particular type of semigroups, namely, the Clifford semigroups. A commu-
tative semigroup S (with 1) is said to be Clifford if every element x of S is (von
Neumann) regular, i.e., there exists a ∈ S such that x2a = x. The importance of a
Clifford semigroup S resides in its ability to stand as a disjoint union of groups Ge,
each one associated to an idempotent element e of the semigroup and connected by
bonding homomorphisms induced by multiplications by idempotent elements [16].
The semigroup S is said to be Boolean if for each x ∈ S, x = x2.


Let R be a domain with quotient field K. For a nonzero fractional ideal I of R, let
I−1 := (R : I) = {x∈ K | xI ⊆ R}. The v- and t-closures of I are defined, respectively,
by Iv := (I−1)−1 and It :=


⋃
Jv where J ranges over the set of finitely generated


subideals of I. The ideal I is said to be divisorial or a v-ideal if Iv = I, and I is said
to be a t-ideal if It = I. Under the ideal t-multiplication (I,J) �→ (IJ)t , the set Ft(R)
of fractional t-ideals of R is a semigroup with unit R. An invertible element for this
operation is called a t-invertible t-ideal of R.


The t-operation in integral domains is considered as one of the keystones of
multiplicative ideal theory. It originated in Jaffard’s 1960 book “Les Systèmes
d’Idéaux” [37] and was investigated by many authors in the 1980s. From the
t-operation stemmed the notion of (t-)class group of an arbitrary domain, extend-
ing both notions of divisor class group (in Krull domains) and ideal class group
(in Prüfer domains). Class groups were introduced and developed by Bouvier
and Zafrullah [12, 13], and have been extensively studied in the literature. The
(t-)class group of R, denoted Cl(R), is the group under t-multiplication of fractional
t-invertible t-ideals modulo its subgroup of nonzero principal fractional ideals. The
t-class semigroup of R, denoted St(R), is the semigroup under t-multiplication of
fractional t-ideals modulo its subsemigroup of nonzero principal fractional ideals.
One may view St(R) as the t-analogue of S(R), similarly as the (t-)class group Cl(R)
is the t-analogue of the ideal class group C(R). We have the set-theoretic inclusions


C(R) ⊆ Cl(R) ⊆ St(R) ⊆ S(R).


The properties of the class group or class semigroup of a domain can be trans-
lated into ideal-theoretic information on the domain and conversely. If R is a Prüfer
domain, C(R) = Cl(R) and St(R) = S(R); and then R is a Bézout domain if and only
if Cl(R) = 0. If R is a Krull domain, Cl(R) = St(R) equals its usual divisor class
group, and then R is a UFD if and only if Cl(R) = 0 (so that R is a UFD if and only
if every t-ideal of R is principal). Trivially, Dedekind domains (resp., PIDs) have
Clifford (resp., Boolean) class semigroup. In 1994, Zanardo and Zannier proved
that all orders in quadratic fields have Clifford class semigroup, whereas the ring
of all entire functions in the complex plane (which is Bézout) fails to have this
property [59].
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Thus, the natural question arising is to characterize the domains with Clifford
class (resp., t-class) semigroup and, moreover, to describe their idempotent elements
and the structure of their associated constituent groups.


2 Class semigroups of integral domains


A domain is said to be Clifford regular if its class semigroup is a Clifford semigroup.
The first significant example of a Clifford regular domain is a valuation domain. In
fact, in [9], Salce and the first named author proved that the class semigroup of
any valuation domain is a Clifford semigroup whose constituent groups are either
trivial or groups associated to the idempotent prime ideals of R. Next, the investi-
gation was carried over for the class of Prüfer domains of finite character, that is,
the Prüfer domains such that every nonzero ideal is contained in only finitely many
maximal ideals. In [5], the first named author proved that if R is a Prüfer domain of
finite character, then R is a Clifford regular domain and moreover, in [6] and [7] a
description of the idempotent elements of S(R) and of their associated groups was
given.


A complete characterization of the class of integrally closed Clifford regular do-
mains was achieved in [8] where it is proved that it coincides with the class of
the Prüfer domains of finite character. Moreover, [8] explores the relation between
Clifford regularity, stability and finite stability. Recall that an ideal of a commuta-
tive ring is said to be stable if it is projective over its endomorphism ring and a ring
R is said to be stable if every ideal of R is stable. The notion of stability was first
introduced in the Noetherian case with various different definitions which turned
out to be equivalent in the case of a local Noetherian ring (cf. [51]). Olberding has
described the structural properties of an arbitrary stable domain. In [51] and [50]
he proves that a domain is stable if and only if it is of finite character and locally
stable. Rush, in [52] considered the class of finitely stable rings, that is, rings with
the property that every finitely generated ideal is stable and proved that the integral
closure of such rings is a Prüfer ring.


In [8], it is shown that the class of Clifford regular domains is properly interme-
diate between the class of finitely stable domains and the class of stable domains.
In particular, the integral closure of a Clifford regular domain is a Prüfer domain.
Moreover, this implies that a Noetherian domain is Clifford regular if and only if it
is a stable domain. Thus, [8] provides for a characterization of the class of Clifford
regular domains in the classical cases of Noetherian and of integrally closed do-
mains. In the general case, the question of determining whether Clifford regularity
always implies finite character is still open.


In [8], was also outlined a relation between Clifford regularity and the local in-
vertibility property. A domain is said to have the local invertibility property if every
locally invertible ideal is invertible. In [5] and again in [8] the question of decid-
ing if a Prüfer domain with the local invertibility property is necessarily of finite
character was proposed as a conjecture. The question was of a interest on its own
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independently of Clifford regularity and it attracted the interest of many authors.
Recently the validity of the conjecture has been proved by Holland, Martinez,
McGovern and Tesemma [36]. They translated the problem into a statement on the
lattice ordered group of the invertible fractional ideals of a Prüfer domain and then
used classical results by Conrad [17] on lattice ordered groups.


2.1 Preliminaries and notations


Let S be a commutative multiplicative semigroup. The subsemigroup E of the idem-
potent elements of S has a natural partial order defined by e≤ f if and only if e f = e,
for every e, f ∈ E. Clearly, e∧ f = e f and thus E is a ∧-semilattice under this order.
An element a of a semigroup S is von Neumann regular if a = a2x for some x ∈ S.


Definition 2.1. A commutative semigroup S is a Clifford semigroup if every element
of S is regular.


By [16] a Clifford semigroup S is the disjoint union of the family of groups {Ge |
e ∈ E}, where Ge is the largest subgroup of S containing the idempotent element e,
that is:


Ge = {ae | abe = e for some b ∈ S}.
In fact, if a∈ S and a = a2x, x∈ S, then e = ax is the unique idempotent element such
that a ∈ Ge. We say that e = ax is the idempotent associated to a. The groups Ge are
called the constituent groups of S. If e ≤ f are idempotent elements, that is f e = e,
the multiplication by e induces a group homomorphism φ f


e : G f → Ge called the
bonding homomorphism between G f and Ge. Moreover, the set S∗ of the regular
elements of a commutative semigroup S is a Clifford subsemigroup of S. In fact,
if a2x = a and e = ax, then also a2xe = a and xe is a regular element of S, since
(xe)2a = xe.


Throughout this section R will denote a domain and Q its field of quotients. For
R-submodules A and B of Q, (A : B) is defined as follows:


(A : B) = {q ∈ Q | qB ⊆ A}.


A fractional ideal F of R is an R-submodule of Q such that (R : F) 	= 0. By an
overring of R is meant any ring between R and Q. We say that a domain R is of finite
character if every nonzero ideal of R is contained only in a finite number of maximal
ideals. If (P) is any property, we say that a fractional ideal F of R satisfies (P) locally
if each localization FRm of F at a maximal ideal m of R satisfies (P).


Let F(R) be the semigroup of the nonzero fractional ideals of R and let P(R) be
the subsemigroup of the nonzero principal fractional ideals of the domain R. The
factor semigroup F(R)/P(R) is denoted by S(R) and called the class semigroup
of R. For every nonzero ideal I of R, [I] will denote the isomorphism class of I.


Definition 2.2. A domain R is said to be Clifford regular if the class semigroup S(R)
of R is a Clifford semigroup.
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2.2 Basic properties of regular elements of S(R) and of Clifford
regular domains


If R is a domain and I is a nonzero ideal of R, [I] is a regular element of S(R)
if and only if I = I2X for some fractional ideal X of R. Let E(I) = (I : I) be the
endomorphism ring of the ideal I of R. The homomorphisms from I to E(I) are
multiplication by elements of (E(I) : I) = (I : I2). The trace ideal of I in E(I) is the
sum of the images of the homomorphisms of I into E(I), namely I(I : I2). Thus, we
have the following basic properties of regular elements of S(R).


Proposition 2.3 ([8, Lemma 1.1, Proposition 1.2]). Let I be a nonzero ideal of a
domain R with endomorphism ring E = (I : I) and let T = I(E : I) be the trace ideal
of I in E. Assume that [I] is a regular element of S(R), that is, I = I2X for some
fractional ideal X of R. The following hold:


(1) I = I2(I : I2).
(2) IX = T and [T ] is an idempotent of S(R) associated to [I].
(3) T is an idempotent ideal of E and IT = I.
(4) E = (T : T ) = (E : T )


Proof. (1) By assumption X ⊆ (I : I2) and so I = I2X ⊆ I2(I : I2) ⊆ I implies I =
I2(I : I2).


(2) and (3). Since (I : I2) = (E : I), part (1) implies IX = I2(E : I)X = I(E : I),
hence T = IX is an idempotent ideal of E and IT = I .


(4) We have E ⊆ (E : T ) = (I : IT ) = E and E ⊆ (T : T ) ⊆ (E : T ).


Recall that a nonzero ideal of a domain is said to be stable if it is projective,
or equivalently invertible, as an ideal of its endomorphism ring and R is said to be
(finitely) stable if every nonzero (finitely generated) ideal of R is stable.


An ideal I of a domain R is said to be L-stable (here L stands for Lipman) if RI :=
⋃


n≥1(In : In) = (I : I), and R is called L-stable if every nonzero ideal is L-stable.
Lipman introduced the notion of stability in the specific setting of one-dimensional
commutative semi-local Noetherian rings in order to give a characterization of Arf
rings; in this context, L-stability coincides with Boole regularity [46].


The next proposition illustrates the relation between the notions of (finite) sta-
bility, L-stability and Clifford regularity. A preliminary key observation is furnished
by the following lemma.


Lemma 2.4 ([8, Lemma 2.1]). Let I be a nonzero finitely generated ideal of a
domain R. Then [I] is a regular element of S(R) if and only if I is a stable ideal.


Proposition 2.5 ([8, Propositions 2.2 and 2.3, Lemma 2.6]).


(1) A stable domain is Clifford regular.
(2) A Clifford regular domain is finitely stable.
(3) A Clifford regular domain is L-stable.
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In order to better understand the situation, it is convenient to recall some properties
of finitely stable and stable domains.


Theorem 2.6 ([52, Proposition 2.1] and [51, Theorem 3.3]).


(1) The integral closure of a finitely stable domain is a Prüfer domain.
(2) A domain is stable if and only if it has finite character and every localization


at a maximal ideal is a stable domain.


It is also useful to state properties of Clifford regular domains relative to localization
and overrings. To this end we can state:


Lemma 2.7 ([8, Lemmas 2.14 and 2.5]).


(1) A fractional overring of a Clifford regular domain is Clifford regular.
(2) If R is a Clifford regular domain and S is a multiplicatively closed subset of R,


then RS is a Clifford regular domain.


Recall that an overring T of a domain R is fractional if T is a fractional ideal of R.
The next result is useful in reducing the problem of the characterization of a Clifford
regular domain to the local case: it states that a domain is Clifford regular if and only
if it is locally Clifford regular and the trace of any ideal in its endomorphism ring
localizes. In this vein, recall that [58] contributes to the classification of Clifford
regular local domains.


Proposition 2.8 ([8, Proposition 2.8]). Let R be a domain. The following are equiv-
alent:


(1) R is a Clifford regular domain;
(2) For every maximal ideal m of R, Rm is a Clifford regular domain and for every


ideal I of R, (I(I : I2))m = Im(Im : I2
m), i.e., the trace of the localization Im in


its endomorphism ring coincides with the localization at m of the trace of I in
its endomorphism ring.


In case the Clifford regular domain R is stable or integrally closed, a better result
can be proved.


Lemma 2.9. Let R be a stable or an integrally closed Clifford regular domain. If I
is any ideal of R and m is any maximal ideal of R, then the following hold:


(1) (I : I)m = (Im : Im).
(2) (I : I2)m = (Im : I2


m).


The connection between Clifford regularity and stability stated by Proposition 2.5
is better illustrated by the concepts of local stability and local invertibility in the
way that we are going to indicate.


Definition 2.10. A domain R is said to have the local invertibility property (resp.,
local stability property) if every locally invertible (resp., locally stable) ideal is
invertible (resp., stable).
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The next result is a consequence of Proposition 2.8 and the fact that a locally
invertible ideal of a domain is cancellative.


Proposition 2.11 ([8, Lemmas 4.2 and 5.7]). A Clifford regular domain has the
local invertibility property and the local stability property.


The preceding result together with the observation that stable domains are of finite
character, prompts one to ask if a Clifford regular domain is necessarily of finite
type. The question has a positive answer if the Clifford regular domain is Noetherian
or integrally closed as we are going to show in the next two sections.


2.3 The Noetherian case


From Proposition 2.5, the characterization of the Clifford regular Noetherian do-
mains is immediate.


Theorem 2.12 ([8, Theorem 3.1]). A Noetherian domain is Clifford regular if and
only if it is stable.


The Noetherian stable rings have been extensively studied by Sally and Vascon-
celos in the two papers [53] and [54]. We list some of their results.


(a) A stable Noetherian ring has Krull dimension at most 1.


(b) If every ideal of a domain R is two-generated (i.e., generated by at most two
elements), then R is stable.


(c) If R is a Noetherian domain and the integral closure R̄ of R is a finitely generated
R-module, then R is stable if and only if every ideal of R is two-generated.


(d) Ferrand and Raynaud [24, Proposition 3.1] constructed an example of a local
Noetherian stable domain admitting non two-generated ideals. This domain is not
Gorenstein.


(e) A local Noetherian Gorenstein domain is Clifford regular if and only if every
ideal is two-generated. ([8, Theorem 3.2])


It is not difficult to describe the idempotent elements of the class semigroup of a
Noetherian domain and the groups associated to them.


Proposition 2.13 ([8, Proposition 3.4 and Corollary 3.5]). Let R be a Noetherian
domain. The following hold:


(1) The idempotent elements of S(R) are the isomorphy classes of the fractional
overrings of R and the groups associated to them are the ideal class groups of
the fractional overrings of R.


(2) If R is also a Clifford regular domain, then the class semigroup S(R) of R is the
disjoint union of the ideal class groups of the fractional overrings of R and the
bonding homomorphisms between the groups are induced by extending ideals
to overrings.
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2.4 The integrally closed case


The starting point for the study of integrally closed Clifford regular domains is the
following fact.


Proposition 2.14 ([59, Proposition 3]). An integrally closed Clifford regular do-
main is a Prüfer domain.


In [9], it was proved that any valuation domain is Clifford regular and in [5] the
result was extended by proving that a Prüfer domain of finite character is a Clifford
regular domain. Finally, in [8] it was proved that an integrally closed Clifford regular
domain is of finite character.


While trying to prove the finite character property for a Clifford regular Prüfer
domain, a more general problem arose and in the papers [7] and [8] the follow-
ing conjecture was posed. Its interest goes beyond the Clifford regularity of Prüfer
domains.


Conjecture. If R is a Prüfer domain with the local invertibility property, then R is of
finite character.


In [8], the conjecture was established in the affirmative for the class of Prüfer
domains satisfying a particular condition. To state the condition we need to recall
a notion on prime ideals: a prime ideal P of a Prüfer domain is branched if there
exists a prime ideal Q properly contained in P and such that there are no other prime
ideals properly between Q and P.


Theorem 2.15 ([8, Theorem 4.4]). Let R be a Prüfer domain with the local in-
vertibility property. If the endomorphism ring of every branched prime ideal of R
satisfies the local invertibility property, then R is of finite character.


Theorem 2.15 together with Proposition 2.11 and the fact that every fractional
overring of a Clifford regular domain is again Clifford regular, imply the character-
ization of integrally closed Clifford regular domains.


Theorem 2.16 ([8, Theorem 4.5]). An integrally closed domain is Clifford regular
if and only if it is a Prüfer domain of finite character.


We wish to talk a little about the conjecture mentioned above. It attracted the
interest of many authors and its validity has been proved recently. In [36], Holland,
Martinez, McGovern, and Tesemma proved that the conjecture is true by translating
the problem into a statement on lattice ordered groups. In fact, as shown by Brewer
and Klingler in [14], the group G of invertible fractional ideals of a Prüfer domain
endowed with the reverse inclusion, is a latticed ordered group and the four authors
noticed that both the property of finite character and the local invertibility property
of a Prüfer domain can be translated into statements on prime subgroups of the
group G and filters on the positive cone of G.


Then, they used a crucial result by Conrad [17] on lattice ordered groups with
finite basis to prove that the two statements translating the finite character and
the local invertibility property are equivalent, so that the validity of the conjecture
follows.
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Subsequently, McGovern [47] has provided a ring theoretic proof of the
conjecture by translating from the language of lattice ordered groups to the lan-
guage of ring theory the techniques used in [36]. At one point it was necessary to
introduce a suitable localization of the domain in order to translate the notion of the
kernel of a lattice homomorphism on the lattice ordered group.


Independently, almost at the same time, Halter-Koch [35] proved the validity of
the conjecture by using the language of ideal systems on cancellative commutative
monoids and he proved that an r-Prüfer monoid with the local invertibility property
is a monoid of Krull type (see [33, Theorem 22.4]).


2.5 The structure of the class semigroup of an integrally closed
Clifford regular domain


In order to understand the structure of the class semigroup S(R) of a Clifford reg-
ular domain it is necessary to describe the idempotent elements, the constituent
groups associated to them and the bonding homomorphisms between those groups.
Complete information is available for the case of integrally closed Clifford regular
domains, that is, the class of Prüfer domains of finite character.


In [9], Salce and the first named author proved that the class semigroup of a
valuation domain R is a Clifford semigroup with idempotent elements of two types:
they are represented either by fractional overrings of R, that is, localizations RP at
prime ideals P, or by nonzero idempotent prime ideals. The groups corresponding
to localizations are trivial and the group associated to a nonzero idempotent prime
ideal P is described as a quotient of the form Γ /Γ , where Γ is the value group of
the localization RP and Γ is the completion of Γ in the order topology. This group is
also called the archimedean group of the localizations RP and denoted by ArchRP.


If I is a nonzero ideal of R, [I] belongs to ArchRP if and only if RP is the endo-
morphism ring of I and I is not principal as an RP-ideal. Note that the endomorphism
ring of an ideal I of a valuation domain R is the localization of R at the prime ideal P
associated to I defined by P = {r ∈ R | rI � I} (cf. [29, II p. 69]).


The idempotent elements, the constituent groups and the bonding homomor-
phisms of the class semigroup of a Prüfer domain of finite character have been
characterized by the first named author in [6] and [7].


If S(R) is a Clifford semigroup and I is a nonzero ideal of R, then by
Proposition 2.3, the unique idempotent of S(R) associated to [I] is the trace ideal T
of I in its endomorphism ring, that is, T = I(I : I2). Moreover, every idempotent of
S(R) is of this form. The next two propositions describe the subsemigroup E(R) of
the idempotent elements of S(R)


Proposition 2.17 ([6, Theorem 3.1 and Proposition 3.2]). Assume that R is a
Prüfer domain of finite character. Let I be a nonzero ideal of R such that [I] is
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an idempotent element of S(R). Then there exists a unique nonzero idempotent
fractional ideal L isomorphic to I such that


L = P1 ·P2 · · · · ·PnD n ≥ 0


with uniquely determined factors satisfying the following conditions:


(1) D = (L : L) is a fractional overring of R;
(2) The Pi are pairwise incomparable idempotent prime ideals of R;
(3) Each PiD is a maximal ideal of D;
(4) D ⊇ End(Pi).


The preceding result shows that the semigroup E(R) of the idempotent elements
of S(R) is generated by the classes [P] and [D] where P vary among the nonzero
idempotent prime ideals of R and D are arbitrary overrings of R. Moreover, every
element of E(R) has a unique representation as a finite product of these classes
provided they satisfy the conditions of Proposition 2.17.


For each nonzero idempotent fractional ideal L, denote by GL the constituent
group of S(R) associated to the idempotent element [L] of E(R), as defined in
Section 2.1. The properties and the structure of the groups GL have been investi-
gated in [7].


We recall some useful information on ideals of a Prüfer domain of finite
character.


Lemma 2.18 ([7, Lemma 3.1]). Let I and J be locally isomorphic ideals of a Prüfer
domain of finite character R. Then there exists a finitely generated fractional ideal
B of D = End(I) such that I = BJ. In particular, if R is also a Bézout domain, then
I ∼= J.


A key observation in order to describe the constituent groups of the class semi-
group of a Prüfer domain of finite character R is to note that, for each nonzero
idempotent prime ideal P of R, there is a relation between GP and the archimedean
group ArchRP of the valuation domain RP (cf. [7, Proposition 3.3]). In fact, the
correspondence


[I] �→ [IRP], [I] ∈ GP


induces an epimorphism of Abelian groups


ψ : GP → ArchRP


such that Kerψ = {[CP] |C is a finitely generated ideal of End(P)}. In particular,
Kerψ ∼= C(End(P)) and ψ is injective if and only if End(P) is a Bézout domain.


The preceding remark can be extended to each group GL in the class semi-
group S(R).


Theorem 2.19 ([7, Theorem 3.5]). Assume that R is a Prüfer domain of finite char-
acter. Let L = P1 ·P2 · · · · ·PnD be a nonzero idempotent fractional ideal of R satisfying
the conditions of Proposition 2.17. For every nonzero ideal I of R such that [I] ∈ GL,
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consider the diagonal map π([I]) = ([IRP1 ], . . . , [IRPn ]). Then the group GL fits in the
short exact sequence:


1 → C(D) → GL
π→ ArchRP1 ×·· ·×ArchRPn → 1.


If R is a Bézout domain, then so is every overring D of R, hence the ideal class
groups C(D) are all trivial. The constituent groups are then built up by means of the
groups associated to the idempotent prime ideals of R and the structure of the class
semigroup S(R) is simpler, precisely we can state the following:


Proposition 2.20 ([7, Proposition 4.4]). If R is a Bézout domain of finite character,
then the constituent groups associated to every idempotent element of S(R) are iso-
morphic to a finite direct product of archimedean groups ArchRP of the valuation
domain RP, where P is a nonzero idempotent prime ideal of R.


It remains to describe the partial order on the semigroup E(R) of the idempotent
elements and the bonding homomorphisms between the constituent groups of S(R).


Recalling that if P and Q are two idempotent prime ideals of a domain R, P ⊆ Q
if and only if PQ = P and if D and S are overrings of R, then S ⊆ D if and only if
SD = D, then the partial order on E(R) is induced by the inclusion between prime
ideals and the reverse inclusion between fractional overrings. Moreover, we have:


Proposition 2.21 ([7, Proposition 4.1]). Assume that R is a Prüfer domain of finite
character. Let L = P1 ·P2 · · · · ·PnD, H = Q1 ·Q2 · · · · ·QkS be nonzero idempotent
fractional ideals of R satisfying the conditions of Proposition 2.17. Then [L] ≤ [H]
if and only if


(1) S ⊆ D,
(2) For every 1≤ j ≤ k either QjD = D or there exists 1≤ i ≤ n such that Qj = Pi.


To describe the bonding homomorphisms between the constituent groups of the
class semigroup S(R) it is convenient to consider the properties of two special types
of such homomorphisms, that is, those induced by multiplication by a fractional
overring of R or by an idempotent prime ideal of R.


Lemma 2.22 ([7, Lemma 4.2]). Let P, Q be nonzero idempotent prime ideals of the
Prüfer domain of finite character R and let D and S be overrings of R such that
S ⊆ D. Then:


(1) The maps
φS


D : GS → GD and φP
PD : GP → GPD


are surjective homomorphisms induced by multiplication by D.
(2) Assume that D ⊇ End(QP) and that P, Q are non-comparable, then:


φD
PD : GD → GPD and φQD


QPD : GQD → GQPD


are injective homomorphisms induced by multiplication by P.
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The bonding homomorphisms are then described by the following proposition.


Proposition 2.23 ([7, Proposition 4.3]). Assume that R is a Prüfer domain of fi-
nite character. Let L = P1 ·P2 · · · · ·PnD, H = Q1 ·Q2 · · · · ·QkS be nonzero idem-
potent fractional ideals of R satisfying the conditions of Proposition 2.17 and
such that [L] ≤ [H]. Let K = Q1 ·Q2 · · · · ·QkD, then the bonding homomorphism
φH


L : GH → GL is the composition of the bonding epimorphism φH
K and the bonding


monomorphism φK
L , namely φH


L = φK
L ◦φH


K .


The results on the structure of the Clifford semigroup of a Prüfer domain of
finite character have been generalized by Fuchs [28] by considering an arbitrary
Prüfer domain R and restricting considerations to the subsemigroup S′(R) of S(R)
consisting of the isomorphy classes of ideals containing at least one element of finite
character.


2.6 Boole regular domains


Recall that a semigroup S (with 1) is said to be Boolean if for each x ∈ S, x = x2.
This subsection seeks ring-theoretic conditions of a domain R that reflects in the
Boolean property of its class semigroup S(R). Precisely, it characterizes integrally
closed domains with Boolean class semigroup; in this case, S(R) happens to iden-
tify with the Boolean semigroup formed of all fractional overrings of R. It also treats
Noetherian-like settings where the Clifford and Boolean properties of S(R) coincide
with stability conditions; a main feature is that the Clifford property forces t-locally
Noetherian domains to be one-dimensional Noetherian domains. It closes with a
study of the transfer of the Clifford and Boolean properties to various pullback con-
structions. These results lead to new families of domains with Clifford or Boolean
class semigroup, moving therefore beyond the contexts of integrally closed domains
or Noetherian domains.


By analogy with Clifford regularity, we define Boole regularity as follows:


Definition 2.24 ([38]). A domain R is Boole regular if S(R) is a Boolean semigroup.


Clearly, a PID is Boole regular and a Boole regular domain is Clifford regular.
The integral closure of a Clifford regular domain is Prüfer [8,59]. The next result is
an analogue for Boole regularity.


Proposition 2.25 ([38, Proposition 2.3]). The integral closure of a Boole regular
domain is Bézout.


A first application characterizes almost Krull domains subject to Clifford or
Boole regularity as shown below:


Corollary 2.26 ([38, Corollary 2.4]). A domain R is almost Krull and Boole (resp.,
Clifford) regular if and only if R is a PID (resp., Dedekind).
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A second application handles the transfer to polynomial rings:


Corollary 2.27 ([38, Corollary 2.5]). Let R be a domain and X an indeterminate
over R. Then:


R is a field ⇐⇒ R[X ] is Boole regular ⇐⇒ R[X ] is Clifford regular


One of the aims is to establish sufficient conditions for Boole regularity in
integrally closed domains. One needs first to examine the valuation case. For this
purpose, recall first a stability condition that best suits Boole regularity:


Definition 2.28. A domain R is strongly stable if each nonzero ideal I of R is prin-
cipal in its endomorphism ring (I : I).


Note that for a domain R, the set FOV (R) of fractional overrings of R is a Boolean
semigroup with identity equal to R. Recall that a domain R is said to be strongly
discrete if P2


� P for every nonzero prime ideal P of R [26].


Theorem 2.29 ([38,39, Theorem 3.2]). Let R be an integrally closed domain. Then
R is a strongly discrete Bézout domain of finite character if and only if R is strongly
stable. Moreover, when any one condition holds, R is Boole regular with S(R) ∼=
FOV (R).


The proof lies partially on the following lemmas.


Lemma 2.30. Let R be a domain. Then:


R is stable Boole regular ⇐⇒ R is strongly stable.


Lemma 2.31. Let R be an integrally closed domain. Then:


R is strongly discrete Clifford regular ⇐⇒ R is stable.


Lemma 2.32. Let V be a valuation domain. The following are equivalent:


(1) VP is a divisorial domain, for each nonzero prime ideal P of R;
(2) V is a stable domain;
(3) V is a strongly discrete valuation domain.


Moreover, when any one condition holds, V is Boole regular.


This lemma gives rise to a large class of Boole regular domains that are not PIDs.
For example, any strongly discrete valuation domain of dimension ≥ 2 (cf. [27]) is
a Boole regular domain which is not Noetherian. The rest of this subsection stud-
ies the class semigroups for two large classes of Noetherian-like domains, that is,
t-locally Noetherian domains and Mori domains. Precisely, it examines conditions
under which stability and strong stability characterize Clifford regularity and Boole
regularity, respectively.


Next, we review some terminology related to the w-operation. For a nonzero frac-
tional ideal I of R, Iw :=


⋃
(I : J) where the union is taken over all finitely generated


ideals J of R with J−1 = R. We say that I is a w-ideal if Iw = I. The domain R is
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said to be Mori if it satisfies the ascending chain condition on divisorial ideals [3]
and strong Mori if it satisfies the ascending chain condition on w-ideals [23, 48].
Trivially, a Noetherian domain is strong Mori and a strong Mori domain is Mori.
Finally, we say that R is t-locally Noetherian if RM is Noetherian for each t-maximal
ideal M of R [43]. Recall that strong Mori domains are t-locally Noetherian [23,
Theorem 1.9].


The next result handles the t-locally Noetherian setting.


Theorem 2.33 ([38, Theorem 4.2]). Let R be a t-locally Noetherian domain. Then
R is Clifford (resp., Boole) regular if and only if R is stable (resp., strongly stable).
Moreover, when any one condition holds, R is either a field or a one-dimensional
Noetherian domain.


The proof relies partially on the next lemma.


Lemma 2.34. Let R be a Clifford regular domain. Then It � R for each nonzero
proper ideal I of R. In particular, every maximal ideal of R is a t-ideal.


The above theorem asserts that a strong Mori Clifford regular domain is nec-
essarily Noetherian. Here, Clifford regularity forces the w-operation to be trivial
(see also [48, Proposition 1.3]). Also noteworthy is that while a t-locally Noethe-
rian stable domain is necessarily a one-dimensional L-stable domain, the converse
does not hold in general. For instance, consider an almost Dedekind domain which
is not Dedekind and appeal to Corollary 2.26. However, the equivalence holds for
Noetherian domains [8, Theorem 2.1] and [1, Proposition 2.4].


Corollary 2.35 ([38, Corollary 4.4]). Let R be a local Noetherian domain such
that the extension R ⊆ R is maximal, where R denotes the integral closure of R. The
following are equivalent:


(1) R is Boole regular;
(2) R is strongly stable;
(3) R is stable and R is a PID.


This result generates new families of Boole regular domains beyond the class of
integrally closed domains.


Example 2.36. Let R := k[X2,X3](X2,X3) where k is a field and X an indeterminate


over k. Clearly, R = k[X ]R\(X2,X3) is a PID and the extension R ⊆ R is maximal.
Further, R is a Noetherian Warfield domain, hence stable (cf. [10]). Consequently,
R is a one-dimensional non-integrally closed local Noetherian domain that is Boole
regular.


The next results handle the Mori setting. In what follows, we shall use R and R∗
to denote the integral closure and complete integral closure, respectively, of a
domain R.
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Theorem 2.37 ([38, Theorem 4.7]). Let R be a Mori domain. Then the following
are equivalent:


(1) R is one-dimensional Clifford (resp., Boole) regular and R∗ is Mori;
(2) R is stable (resp., strongly stable).


It is worth recalling that for a Noetherian domain R we have dim(R) = 1 ⇔
dim(R∗) = 1 ⇔ R∗ is Dedekind since here R∗ = R. The same result holds if R is
a Mori domain such that (R : R∗) 	= 0 [4, Corollary 3.4(1) and Corollary 3.5(1)].
Also, it was stated that the “only if” assertion holds for seminormal Mori domains
[4, Corollary 3.4(2)]. However, beyond these contexts, the problem remains open.
This explains the cohabitation of “dim(R) = 1” and “R∗ is Mori” assumptions in the
above theorem. In this vein, we set the following open question:
“Let R be a local Mori Clifford regular domain is it true that:


dim(R) = 1 ⇐⇒ R∗ is Dedekind?”


The next result partly draws on the above theorem and treats two well-studied
large classes of Mori domains [3]. Recall that a domain R is seminormal if x ∈ R
whenever x ∈ K and x2,x3 ∈ R.


Theorem 2.38 ([38, Theorem 4.9]). Let R be a Mori domain. Consider the follow-
ing statements:


(1) The conductor (R : R∗) 	= 0,
(2) R is seminormal,
(3) The extension R ⊆ R∗ has at most one proper intermediate ring.


Assume that either (1), (2), or (3) holds. Then R is Clifford (resp., Boole) regular if
and only if R is stable (resp., strongly stable).


2.7 Pullbacks


The purpose here is to examine Clifford regularity and Boole regularity in pullback
constructions. This allows for the construction of new families of domains with
Clifford or Boolean class semigroup, beyond the contexts of integrally closed or
Noetherian domains.


Let us fix the notation for the rest of this subsection. Let T be a domain, M a
maximal ideal of T , K its residue field, φ : T −→ K the canonical surjection, D a
proper subring of K with quotient field k. Let R := φ−1(D) be the pullback issued
from the following diagram of canonical homomorphisms:


R −→ D
↓ ↓
T


φ−→ K = T/M


Next, we announce the first theorem which provides a necessary and sufficient
condition for a pseudo-valuation domain (i.e., PVD) to inherit Clifford or Boole
regularity.
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Theorem 2.39 ([38, Theorem 5.1]).


(1) If R is Clifford (resp., Boole) regular, then so are T and D, and [K : k] ≤ 2.
(2) Assume D = k and T is a valuation (resp., strongly discrete valuation) domain.


Then R is Clifford (resp., Boole) regular if and only if [K : k] = 2.


The following example shows that this theorem does not hold in general, and
hence nor does the converse of (1).


Example 2.40. Let Z and Q denote the ring of integers and field of rational numbers,
respectively, and let X and Y be indeterminates over Q. Set V := Q(


√
2,
√


3)[[X ]],
M := XQ(


√
2,
√


3)[[X ]], T := Q(
√


2)+M, and R := Q+M. Both T and R are one-
dimensional local Noetherian domains arising from the DVR V , with T = V and
R = T . By the above theorem, T is Clifford (actually, Boole) regular, whereas
R is not. More specifically, the isomorphy class of the ideal I := X(Q +


√
2Q +√


3Q+ M) is not regular in S(R).


Now, one can build original example using the above theorem as follows:


Example 2.41. Let n be an integer ≥ 1. Let R be a PVD associated with a non-
Noetherian n-dimensional valuation (resp., strongly discrete valuation) domain
(V,M) with [V/M : R/M] = 2. Then R is an n-dimensional local Clifford (resp.,
Boole) regular domain that is neither integrally closed nor Noetherian.


Recall that a domain A is said to be conducive if the conductor (A : B) is nonzero
for each overring B of A other than its quotient field. Examples of conducive do-
mains include arbitrary pullbacks of the form R := D+ M arising from a valuation
domain V := K +M [19, Propositions 2.1 and 2.2]. We are now able to announce the
last theorem of this subsection. It treats Clifford regularity, for the remaining case
“k = K”, for pullbacks R := φ−1(D) where D is a conducive domain.


Theorem 2.42 ([38, Theorem 5.6]). Under the same notation as above, consider
the following statements:


(1) T is a valuation domain and R := φ−1(D),
(2) T := K[X ] and R := D+ XK[X ], where X is an indeterminate over K.


Assume that D is a semilocal conducive domain with quotient field k = K and either
(1) or (2) holds. Then R is Clifford regular if and only if so is D.


Now a combination of Theorems 2.39 and 2.42 generates new families of
examples of Clifford regular domains, as shown by the following construction [38,
Example 5.8]:


Example 2.43. For every positive integer n ≥ 2, there exists an example of a do-
main R satisfying the following conditions:


(1) dim(R) = n,
(2) R is neither integrally closed nor Noetherian,
(3) R is Clifford regular,
(4) Each overring of R is Clifford regular,
(5) R has infinitely many maximal ideals.
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2.8 Open problems


By Proposition 2.5 the class of Clifford regular domains contains the class of stable
domains and is contained in the class of finitely stable domains. Both inclusions are
proper. In fact, every Prüfer domain is finitely stable, but only the Prüfer domains of
finite character are Clifford regular. Moreover, a Prüfer domain is stable if and only
if it is of finite character and strongly discrete, that is, every nonzero prime ideal is
not idempotent (cf. [49, Theorem 4.6]), hence there exists a large class of nonsta-
ble integrally closed Clifford regular domains. The classification of stable domains
obtained by B. Olberding in [50], shows that there are stable domains which are
neither Noetherian nor integrally closed. Furthermore, there is an example of a non-
coherent stable domain ([50, Section 5]), hence there exist non-coherent Clifford
regular domains.


There are also examples of Clifford regular domains which are neither stable nor
integrally closed, as illustrated by [8, Example 6.1].


Example 2.44. Let k0 be a field and let K be an extension field of k0 such that
[K : k0] = 2. Consider a valuation domain V of the form K + M where M is the
maximal ideal of V and assume M2 = M. Let R be the domain k0 + M. The ideals
of R can be easily described: they are either ideals of V or principal ideals of R.
Thus, R is Clifford regular, but it is not stable, since M is an idempotent ideal of R;
moreover the integral closure of R is V .


There are still many questions related to the problem of characterizing the class
of Clifford regular domains in general. Note that if a domain R is stable, then R is of
finite character and every overring of R is again stable ([51, Theorems 3.3 and 5.1]).
If R is an integrally closed Clifford regular domain, then R is a Prüfer domain of
finite character (Theorem 2.16) and thus the same holds for every overring of R.
Hence, the two subclasses of Clifford regular domains consisting of the stable do-
mains and of the integrally closed domains are closed for overrings and their mem-
bers are domains of finite character. We may ask the following major questions
concerning Clifford regular domains:


Question 2.45 Is every Clifford regular domain of finite character?


Question 2.46 (a) Is every overring of a Clifford regular domain again Clifford
regular?


(b) In particular, is the integral closure of a Clifford regular domain a Clifford
regular domain?


In [56], Sega gives partial answers to part (a) of this question. In particular, he
proves that if R is a Clifford regular domain such that the integral closure of R is
a fractional overring, then every overring of R is Clifford regular. An affirmative
answer to part (b) would imply that a Clifford regular domain is necessarily of finite
character, since the integral closure of a Clifford regular domain is a Prüfer domain.


In view of the validity of the conjecture about the finite character of Prüfer
domains with the local invertibility property proved in [36], Question 2.46 (b) may
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be weakened by asking if the integral closure of a Clifford regular domain satisfies
the local invertibility property. More generally we may ask:


Question 2.47 If a finitely stable domain satisfies the local invertibility property, is
it true that its integral closure satisfies the same property?


A positive answer to the above question would imply that a finitely stable domain
satisfying the local invertibility property has finite character.


Another interesting problem is to characterize the local Clifford regular domains.
The next example shows that not every finitely stable local domain is Clifford
regular.


Example 2.48. Let A be a DVR with quotient field Q and let B be the ring
Q[[X2,X3]]. Denote by P the maximal ideal of B and let R = A + P. By [50,
Proposition 3.6], R is finitely stable but it is not L-stable. In fact, J = Q+AX +P is
a fractional ideal of R, since JP ⊆ P ⊆ R and (J : J) = R, but J2 = Q[[X ]]. Thus, by
Proposition 2.5, R is not Clifford regular.


However, the following result holds.


Proposition 2.49 ([8, Corollary 5.6]). Let R be a local Clifford regular domain with
principal maximal ideal. Then R is a valuation domain.


In the case of a Clifford regular domain R of finite character a description of the
idempotent elements of S(R) is available. It generalizes the situation illustrated in
Proposition 2.17 for Clifford regular Prüfer domains.


Lemma 2.50. Let R be a Clifford regular domain of finite character and let T be a
nonzero idempotent fractional ideal of R. If E = End(T ), then either T = E or T is
a product of idempotent maximal ideals of E.


We end this subsection by recalling a partial result regarding the finite character
of Clifford regular domains. We denote by T(R) the set of maximal ideals m of R
for which there exists a finitely generated ideal with the property that m is the only
maximal ideal containing it.


Proposition 2.51. Let R be a finitely stable domain satisfying the local stability
property. Then every nonzero element of R is contained in at most a finite number
of maximal ideals of T(R). In particular the result holds for every Clifford regular
domain.


3 t-Class semigroups of integral domains


A domain R is called a PVMD (for Prüfer v-multiplication domain) if the v-finite
v-ideals form a group under the t-multiplication; equivalently, if RM is a valuation
domain for each t-maximal ideal M of R. Ideal t-multiplication converts ring notions
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such as PID, Dedekind, Bézout, Prüfer, and integrality to UFD, Krull, GCD, PVMD,
and pseudo-integrality, respectively. The pseudo-integrality (i.e., t-integrality) was
introduced and studied in 1991 by D. F. Anderson, Houston, and Zafrullah [2].


The t-class semigroup of R is defined by


St(R) := Ft(R)/P(R)


where P(R) is the subsemigroup of Ft(R) consisting of nonzero principal frac-
tional ideals of R. Thus, St(R) stands as the t-analogue of S(R), the class semigroup
of R. For the reader’s convenience we recall from the introduction the set-theoretic
inclusions:


C(R) ⊆ Cl(R) ⊆ St(R) ⊆ S(R).


By analogy with Clifford regularity and Boole regularity (Section 2), we define
t-regularity as follows:


Definition 3.1 ([40]). A domain R is Clifford (resp., Boole) t-regular if St(R) is a
Clifford (resp., Boolean) semigroup.


This section reviews recent works that examine ring-theoretic conditions of a
domain R that reflect reciprocally in semigroup-theoretic properties of its t-class
semigroup St(R). Contexts that suit best t-regularity are studied in [40–42] in an
attempt to parallel analogous developments and generalize the results on class semi-
groups (reviewed in Section 2).


Namely, [40] treats the case of PVMDs extending Bazzoni’s results on Prüfer
domains [5, 8]; [41] describes the idempotents of St(R) and the structure of their
associated groups recovering well-known results on class semigroups of valuation
domains [9] and Prüfer domains [6, 7]; and [42] studies the t-class semigroup of a
Noetherian domain. All results are illustrated by original examples distinguishing
between the two concepts of class semigroup and t-class semigroup. Notice that in
Prüfer domains, the t- and trivial operations (and hence the t-class and class semi-
groups) coincide.


3.1 Basic results on t-regularity


Here, we discuss t-analogues of basic results on t-regularity. First we notice that
Krull domains and UFDs are Clifford and Boole t-regular, respectively. These two
classes of domains serve as a starting ground for t-regularity as Dedekind domains
and PIDs do for regularity. Also, we will see that t-regularity stands as a default
measure for some classes of Krull-like domains, e.g., “UFD = Krull + Boole
t-regular.” Moreover, while an integrally closed Clifford regular domain is Prüfer
(Proposition 2.14), an integrally closed Clifford t-regular domain need not be a
PVMD. An example is built to this end, as an application of the main theorem
of this subsection, which examines the transfer of t-regularity to pseudo-valuation
domains.
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The first result displays necessary and/or sufficient ideal-theoretic conditions for
the isomorphy class of an ideal to be regular in the t-class semigroup.


Lemma 3.2 ([40, Lemma 2.1]). Let I be a t-ideal of a domain R. Then


(1) [I] is regular in St(R) if and only if I = (I2(I : I2))t .
(2) If I is t-invertible, then [I] is regular in St(R).


A domain R is Krull if every t-ideal of R is t-invertible. From the lemma one
can obviously see that a Krull domain is Clifford t-regular. Recall that a domain R
is t-almost Dedekind if RM is a rank-one DVR for each t-maximal ideal M of R;
t-almost Dedekind domains lie strictly between Krull domains and general PVMDs
[43]. A domain R is said to be strongly t-discrete if it has no t-idempotent t-prime
ideals (i.e., for every t-prime ideal P, (P2)t � P) [22]. The next results (cf. [40,
Proposition 2.3]) show that t-regularity measures how far some Krull-like domains
are from being Krull or UFDs.


Proposition 3.3. Let R be a domain. The following are equivalent:


(1) R is Krull;
(2) R is t-almost Dedekind and Clifford t-regular;
(3) R is strongly t-discrete, completely integrally closed, and Clifford t-regular.


Proposition 3.4. Let R be a domain. The following are equivalent:


(1) R is a UFD;
(2) R is Krull and Boole t-regular;
(3) R is t-almost Dedekind and Boole t-regular;
(4) R is strongly t-discrete, completely integrally closed, and Boole t-regular.


Note that the assumptions in the previous results are not superfluous. For, the
(Bézout) ring of all entire functions in the complex plane is strongly (t-)discrete [26,
Corollary 8.1.6] and completely integrally closed, but it is not (t-)almost Dedekind
(since it has an infinite Krull dimension). Also, a non-discrete rank-one valuation
domain is completely integrally closed and Clifford (t-)regular [9], but it is not Krull.


The t-regularity transfers to polynomial rings and factor rings providing more
examples of Clifford or Boole t-regular domains, as shown in the next result. Recall
that Clifford regularity of R[X ] forces R to be a field (Corollary 2.27).


Proposition 3.5 ([40, Propositions 2.4 and 2.5]). Let R be a domain, X an indeter-
minate over R, and S a multiplicative subset of R.


(1) Assume R is integrally closed. Then R is Clifford (resp., Boole) t-regular if and
only if so is R[X ].


(2) If R is Clifford (resp., Boole) t-regular, then so is RS.


Now, one needs to examine the integrally closed setting. At this point, recall
that an integrally closed Clifford (resp., Boole) regular domain is necessarily Prüfer
(resp., Bézout) [38,59]. This fact does not hold for t-regularity; namely, an integrally
closed Clifford (or Boole) t-regular domain need not be a PVMD (i.e., t-Prüfer).
Examples stem from the following theorem on the inheritance of t-regularity by
PVDs (for pseudo-valuation domains).
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Theorem 3.6 ([40, Theorem 2.7]). Let R be a PVD issued from a valuation domain
V . Then:


(1) R is Clifford t-regular.
(2) R is Boole t-regular if and only if V is Boole regular.


Contrast this result with Theorem 2.39 about regularity; which asserts that if R
is a PVD issued from a valuation (resp., strongly discrete valuation) domain (V,M),
then R is a Clifford (resp., Boole) regular domain if and only if [V/M : R/M] = 2.


Now, using Theorem 3.6, one can build integrally closed Boole (hence Clifford)
t-regular domains which are not PVMDs. For instance, let k be a field and X ,Y two
indeterminates over k. Let R := k + M be the PVD associated to the rank-one DVR
V := k(X)[[Y ]] = k(X)+M, where M = YV . Clearly, R is an integrally closed Boole
t-regular domain but not a PVMD [25, Theorem 4.1].


3.2 The PVMD case


A domain R is of finite t-character if each proper t-ideal is contained in only
finitely many t-maximal ideals. It is worthwhile recalling that the PVMDs of finite
t-character are exactly the Krull-type domains introduced and studied by Griffin in
1967–1968 [31, 32]. This subsection discusses the t-analogue for Bazzoni’s result
that “an integrally closed domain is Clifford regular if and only if it is a Prüfer
domain of finite character” (Theorem 2.16).


Recall from [2] that the pseudo-integral closure of a domain R is defined as R̃ =
⋃


(It : It), where I ranges over the set of finitely generated ideals of R; and R is
said to be pseudo-integrally closed if R = R̃. This is equivalent to saying that R is
a v-domain, i.e. a domain such that (Iv : Iv) = R for each nonzero finitely generated
ideal I of R. A domain with this property is called in Bourbaki’s language regularly
integrally closed [11, Chap. VII, Exercise 30]. Clearly R ⊆ R̃ ⊆ R�, where R and R�


are respectively the integral closure and the complete integral closure of R. In view
of the example provided in the previous subsection, one has to elevate the “integrally
closed” assumption in Bazzoni’s result to “pseudo-integrally closed.” Accordingly,
in [40, Conjecture 3.1], the authors sustained the following:


Conjecture 3.7. A pseudo-integrally closed domain (i.e., v-domain) is Clifford
t-regular if and only if it is a PVMD of finite t-character.


The next result presented a crucial step towards a satisfactory t-analogue.


Theorem 3.8 ([40, Theorem 3.2]). A PVMD is Clifford t-regular if and only if it is
a Krull-type domain.


Since in Prüfer domains the t- and trivial operations coincide, this theorem re-
covers Bazzoni’s result (mentioned above) and also uncovers the fact that in the
class of PVMDs, Clifford t-regularity coincides with the finite t-character condition.
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The proof involves several preliminary lemmas, some of which are of independent
interest and their proofs differ in form from their respective analogues – if any – for
the trivial operation. These lemmas are listed below.


Lemma 3.9. Let R be a PVMD and I a nonzero fractional ideal of R. Then for every
t-prime ideal P of R, ItRP = IRP.


Lemma 3.10. Let R be a PVMD which is Clifford t-regular and I a nonzero frac-
tional ideal of R. Then I is t-invertible if and only if I is t-locally principal.


Lemma 3.11. Let R be a PVMD which is Clifford t-regular and let P � Q be two
t-prime ideals of R. Then there exists a finitely generated ideal I of R such that
P � It ⊆ Q.


Lemma 3.12. Let R be a PVMD which is Clifford t-regular and P a t-prime ideal of
R. Then (P : P) is a PVMD which is Clifford t-regular and P is a t-maximal ideal of
(P : P).


Lemma 3.13. Let R be a PVMD which is Clifford t-regular and Q a t-prime ideal of
R. Suppose there is a nonzero prime ideal P of R such that P � Q and ht(Q/P) = 1.
Then there exists a finitely generated subideal I of Q such that Maxt(R, I) =
Maxt(R,Q), where Maxt(R, I) consists of t-maximal ideals containing I.


As a consequence of Theorem 3.8, the next result handles the context of strongly
t-discrete domains.


Corollary 3.14 ([40, Corollary 3.12]). Assume R is a strongly t-discrete domain.
Then R is a pseudo-integrally closed Clifford t-regular domain if and only if R is a
PVMD of finite t-character.


Recently, Halter-Koch solved Conjecture 3.7 by using the language of
ideal systems on cancellative commutative monoids. Precisely, he proved that
“every t-Clifford regular v-domain is a Krull-type domain” [35, Propositions 6.11
and 6.12]. This result combined with the “if” statement of Theorem 3.8 provides a
t-analogue for Bazzoni’s result (mentioned above):


Theorem 3.15. A v-domain is Clifford t-regular if and only if it is a Krull-type
domain.


The rest of this subsection is devoted to generating examples. For this purpose,
two results will handle the possible transfer of the PVMD notion endowed with
the finite t-character condition to pullbacks and polynomial rings, respectively. This
will allow for the construction of original families of Clifford t-regular domains via
PVMDs.


Proposition 3.16 ([40, Proposition 4.1]). Let T be a domain, M a maximal ideal
of T , K its residue field, φ : T −→ K the canonical surjection, and D a proper
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subring of K. Let R = φ−1(D) be the pullback issued from the following diagram of
canonical homomorphisms:


R −→ D
↓ ↓
T


φ−→ K = T/M


Then R is a PVMD of finite t-character if and only if D is a semilocal Bézout domain
with quotient field K and T is a Krull-type domain such that TM is a valuation
domain.


Proposition 3.17 ([40, Proposition 4.2]). Let R be an integrally closed domain and
X an indeterminate over R. Then R has finite t-character if and only if so does R[X ].


Note that the “integrally closed” condition is unnecessary in the above result, as
pointed out recently in [30]. Now one can build new families of Clifford t-regular
domains originating from the class of PVMDs via a combination of the two previous
results and Theorem 3.8 (cf. [40, Example 4.3]).


Example 3.18. For each integer n ≥ 2, there exists a PVMD Rn subject to the fol-
lowing conditions:


(1) dim(Rn) = n.
(2) Rn is Clifford t-regular.
(3) Rn is not Clifford regular.
(4) Rn is not Krull.


Here are two ways to realize this. Let V0 be a rank-one valuation domain with quo-
tient field K. Let V = K + N be a rank-one non-strongly discrete valuation domain
(cf. [21, Remark 6(b)]). Take Rn = V [X1, . . . ,Xn−1].


For n ≥ 4, the classical D + M construction provides more examples. Indeed,
consider an increasing sequence of valuation domains V = V1 ⊂ V2 ⊂, . . . ,⊂ Vn−2


such that, for each i ∈ {2, . . . ,n−2}, dim(Vi) = i and Vi/Mi = V/N = K, where Mi


denotes the maximal ideal of Vi. Set T = Vn−2[X ] and M = (Mn−2,X). Therefore
Rn = V0 + M is the desired example.


3.3 The structure of the t-class semigroup of a Krull-type domain


This subsection extends Bazzoni and Salce’s study of groups in the class semi-
group of a valuation domain [9] and recovers Bazzoni’s results on the constituents
groups of the class semigroup of a Prüfer domain of finite character [6,7] to a larger
class of domains. Precisely, it describes the idempotents of St(R) and the struc-
ture of their associated groups when R is a Krull-type domain (i.e., PVMD of finite
t-character). Indeed, it states that there are two types of idempotents in St(R): those
represented by fractional overrings of R and those represented by finite intersections
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of t-maximal ideals of fractional overrings of R. Further, it shows that the group
associated with an idempotent of the first type equals the class group of the fractional
overring, and characterizes the elements of the group associated with an idempotent
of the second type in terms of their localizations at t-prime ideals.


In any attempt to extend classical results on Prüfer domains to PVMDs (via
t-closure), the t-linked notion plays a crucial role in order to make the t-move pos-
sible. An overring T of a domain R is t-linked over R if, for each finitely generated
ideal I of R, I−1 = R⇒ (T : IT ) = T [2,45]. In Prüfer domains, the t-linked property
coincides with the notion of overring (since every finitely generated proper ideal is
invertible and then its inverse is a fortiori different from R). Recall also that an over-
ring T of R is fractional if T is a fractional ideal of R. Of significant importance
too for the study of t-class semigroups is the notion of t-idempotence; namely, a
t-ideal I is t-idempotent if (I2)t = I.


Let R be a PVMD. Note that T is a t-linked overring of R if and only if T is a
subintersection of R, that is, T =


⋂
RP, where P ranges over some set of t-prime


ideals of R [44, Theorem 3.8] or [15, p. 206]. Further, every t-linked overring of R
is a PVMD [44, Corollary 3.9]; in fact, this condition characterizes the notion of
PVMD [20, Theorem 2.10 ]. Finally, let I be a t-ideal of R. Then (I : I) is a fractional
t-linked overring of R and hence a PVMD.


Theorem 3.8 asserts that if R is a Krull-type domain, then St(R) is Clifford and
hence a disjoint union of subgroups G[J], where [J] ranges over the set of idempo-
tents of St(R) and G[J] is the largest subgroup of St(R) with unit [J]. At this point, it
is worthwhile recalling Bazzoni-Salce’s result that valuation domains have Clifford
class semigroup [9]. To the main result of this subsection:


Theorem 3.19 ([41, Theorem 2.1]). Let R be a Krull-type domain and I a t-ideal
of R. Set T := (I : I) and Γ (I) := {finite intersections of t-idempotent t-maximal
ideals of T}. Then [I] is an idempotent of St(R) if and only if there exists a unique
J ∈ {T}∪Γ (I) such that [I] = [J]. Moreover,
(1) If J = T , then G[J]


∼= Cl(T );
(2) If J =


⋂
1≤i≤r Qi ∈ Γ (I), then the sequence


0 −→ Cl(T )
φ−→ G[J]


ψ−→ ∏
1≤i≤r


G[QiTQi
] −→ 0


of natural group homomorphisms is exact, where G[QiTQi ]
denotes the constituent


group of the Clifford semigroup S(TQi) associated with [QiTQi ].


The proof of the theorem draws partially on the following lemmas, which are of
independent interest.


Lemma 3.20. Let R be a PVMD. Let T be a t-linked overring of R and Q a t-prime
ideal of T . Then P := Q∩R is a t-prime ideal of R with RP = TQ. If, in addition, Q
is t-idempotent in T , then so is P in R.


Lemma 3.21. Let R be a PVMD and T a t-linked overring of R. Let J be a common
(fractional) ideal of R and T . Then:
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(1) Jt1 = Jt , where t1 denotes the t-operation with respect to T .
(2) J is a t-idempotent t-ideal of R ⇐⇒ J is a t-idempotent t-ideal of T .


Lemma 3.22. Let R be a PVMD, I a t-ideal of R, and T := (I : I). Let J :=
⋂


1≤i≤r Qi,
where each Qi is a t-idempotent t-maximal ideal of T . Then J is a fractional
t-idempotent t-ideal of R.


Lemma 3.23. Let R be a PVMD, I a t-idempotent t-ideal of R, and M ⊇ I a
t-maximal ideal of R. Then IRM is an idempotent (prime) ideal of RM.


Lemma 3.24. Let R be a Krull-type domain, L a t-ideal of R, and J a t-idempotent
t-ideal of R. Then:


[L] ∈ G[J] ⇐⇒ (L : L) = (J : J) and (JL(L : L2))t = (L(L : L2))t = J.


Lemma 3.25. Let R be a PVMD and I a t-ideal of R. Then:


(1) I is a t-ideal of (I : I).
(2) If R is Clifford t-regular, then so is (I : I).


Since in a Prüfer domain the t-operation collapses to the trivial operation,
Theorem 3.19 recovers Bazzoni’s results on Prüfer domains of finite character
(Proposition 2.17 and Theorem 2.19). Moreover, there is the following consequence:


Corollary 3.26 ([41, Corollary 2.9]). Let R be a Krull-type domain which is
strongly t-discrete. Then St(R) is a disjoint union of subgroups Cl(T ), where T
ranges over the set of fractional t-linked overrings of R.


Now one can develop numerous illustrative examples via Theorem 3.19 and
Corollary 3.26. Two families of such examples can be provided by means of poly-
nomial rings over valuation domains. First, the following lemma investigates this
setting:


Lemma 3.27 ([41, Lemma 3.1]). Let V be a nontrivial valuation domain and X an
indeterminate over V . Then:


(1) R := V [X ] is a Krull-type domain which is not Prüfer.
(2) Every fractional t-linked overring of R has the form Vp[X ] for some nonzero


prime ideal p of V .
(3) Every t-idempotent t-prime ideal of R has the form p[X ] for some idempotent


prime ideal p of V .


Example 3.28. Let n be an integer ≥ 1. Let V be an n-dimensional strongly discrete
valuation domain and let (0) ⊂ p1 ⊂ p2 ⊂ ... ⊂ pn denote the chain of its prime
ideals. Let R := V [X ], a Krull-type domain. A combination of Lemma 3.27 and
Corollary 3.26 yields


St(R) = {Vp1[X ],Vp2 [X ], ...,Vpn [X ]}







72 Silvana Bazzoni and Salah-Eddine Kabbaj


where, for each i, the class [Vpi [X ]] in St(R) is identified with Vpi[X ] (due to the
uniqueness stated by the main theorem).


Example 3.29. Let V be a one-dimensional valuation domain with idempotent
maximal ideal M and R := V [X ], a Krull-type domain. By Theorem 3.19 and
Lemma 3.27, we have:


St(R) = {[R]}∪{[I] | I t-ideal of R with (II−1)t = M[X ]}.


3.4 The Noetherian case


A domain R is called strong Mori if R satisfies the ascending chain condition on
w-ideals (cf. Section 2.6). Recall that the t-dimension of R, abbreviated t-dim(R), is
by definition equal to the length of the longest chain of t-prime ideals of R.


This subsection discusses t-regularity in Noetherian and Noetherian-like do-
mains. Precisely, it studies conditions under which t-stability (see definition below)
characterizes t-regularity. Unlike regularity, t-regularity over Noetherian domains
does not force the t-dimension to be one. However, Noetherian strong t-stable do-
mains happen to have t-dimension 1.


Recall that an ideal I of a domain R is said to be L-stable if RI :=
⋃


n≥1(In : In)
= (I : I).


The next result compares Clifford t-regularity to two forms of stability.


Theorem 3.30 ([42, Theorem 2.2]). Let R be a Noetherian domain and consider
the following:


(1) R is Clifford t-regular,
(2) Each t-ideal I of R is t-invertible in (I : I),
(3) Each t-ideal is L-stable.


Then (1) ⇒ (2) ⇒ (3). If t-dim(R) = 1, then the 3 conditions are equivalent.


Recall that an ideal I of a domain R is said to be stable (resp., strongly stable)
if I is invertible (resp., principal) in (I : I), and R is called a stable (resp., strongly
stable) domain provided each nonzero ideal of R is stable (resp., strongly stable).
A stable domain is L-stable [1, Lemma 2.1]. By analogy, t-stability is defined in
[42] as follows:


Definition 3.31. A domain R is t-stable if each t-ideal of R is stable, and R is
strongly t-stable if each t-ideal of R is strongly stable.


Recall that a Noetherian domain R is Clifford regular if and only if R is stable if
and only if R is L-stable and dim(R) = 1 [8, Theorem 2.1] and [38, Corollary 4.3].
Unlike Clifford regularity, Clifford (or even Boole) t-regularity does not force a
Noetherian domain R to be of t-dimension one. In order to illustrate this fact with
an example, a result first establishes the transfer of Boole t-regularity to pullbacks
issued from local Noetherian domains.
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Proposition 3.32 ([42, Proposition 2.3]). Let (T,M) be a local Noetherian domain
with residue field K and φ : T −→ K the canonical surjection. Let k be a proper
subfield of K and R := φ−1(k) the pullback issued from the following diagram of
canonical homomorphisms:


R −→ k
↓ ↓
T


φ−→ K = T/M


Then R is Boole t-regular if and only if T is Boole t-regular.


Now the next example provides a Boole t-regular Noetherian domain with
t-dimension � 1.


Example 3.33. Let K be a field, X and Y two indeterminates over K, and k a proper
subfield of K. Let T := K[[X ,Y ]] = K + M and R := k + M where M := (X ,Y ).
Since T is a UFD, then T is Boole t-regular (Proposition 3.4). Further, R is a Boole
t-regular Noetherian domain by the above proposition. Further M is a v-ideal of R,
so that t-dim(R) = dim(R) = 2, as desired.


Next, the main result of this subsection presents a t-analogue for Boole regularity
as stated in Theorem 2.33.


Theorem 3.34 ([42, Theorem 2.6]). Let R be a Noetherian domain. Then:


R is strongly t-stable ⇐⇒ R is Boole t-regular and t-dim(R) = 1.


An analogue of this result does not hold for Clifford t-regularity. For, there ex-
ists a Noetherian Clifford t-regular domain with t-dim(R) = 1 such that R is not
t-stable. Indeed, recall first that a domain R is said to be pseudo-Dedekind [43] (or
generalized Dedekind [57]) if every v-ideal is invertible. In [55], P. Samuel gave an
example of a Noetherian UFD R for which R[[X ]] is not a UFD. In [43], Kang noted
that R[[X ]] is a Noetherian Krull domain which is not pseudo-Dedekind (otherwise,
Cl(R[[X ]]) = Cl(R) = 0 forces R[[X ]] to be a UFD, absurd). Moreover, R[[X ]] is a
Clifford t-regular domain with t-dimension 1 (since Krull). But R[[X ]] not being
a UFD translates into the existence of a v-ideal of R[[X ]] that is not invertible, as
desired.


The next result extends the above theorem to the larger class of strong Mori
domains.


Theorem 3.35 ([42, Theorem 2.10]). Let R be a strong Mori domain. Then:


R is strongly t-stable ⇐⇒ R is Boole t-regular and t-dim(R) = 1.


Unlike Clifford regularity, Clifford (or even Boole) t-regularity does not force a
strong Mori domain to be Noetherian. Indeed, it suffices to consider a UFD which is
not Noetherian. We close with the following discussion about the limits and possible
extensions of the above results.
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Remark 3.36. (1) It is not known whether the assumption “t-dim(R) = 1” in
Theorem 3.30 can be omitted.


(2) Following Proposition 2.25, the integral closure R of a Noetherian Boole regular
domain R is a PID. By analogy, it is not known if R is a UFD in the case of Boole
t-regularity. (It is the case if the conductor (R : R) 	= 0.)


(3) It is not known if the assumption “R strongly t-discrete, i.e., R has no
t-idempotent t-prime ideals” forces a Clifford t-regular Noetherian domain to
be of t-dimension one.


Acknowledgment. We thank the reviewers for their comments that helped im-
prove the quality of this paper.
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Norm. Sup. 3, 295–311 (1970)
25. Fontana, M., Gabelli, S.: On the class group and local class group of a pullback. J. Algebra


181, 803–835 (1996)
26. Fontana, M., Huckaba, J.A., Papick, I.J.: Prüfer Domains, Monographs and Textbooks in Pure
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Forcing algebras, syzygy bundles,
and tight closure


Holger Brenner


Abstract We give a survey about some recent work on tight closure and
Hilbert-Kunz theory from the viewpoint of vector bundles. This work is based
in understanding tight closure in terms of forcing algebras and the cohomolog-
ical dimension of torsors of syzygy bundles. These geometric methods allowed
to answer some fundamental questions of tight closure, in particular the equality
between tight closure and plus closure in graded dimension two over a finite field
and the rationality of the Hilbert-Kunz multiplicity in graded dimension two. More-
over, this approach showed that tight closure may behave weirdly under arithmetic
and geometric deformations, and provided a negative answer to the localization
problem.


1 Introduction


In this survey article, we describe some developments which led to a detailed
geometric understanding of tight closure in dimension two in terms of vector bun-
dles and torsors. Tight closure is a technique in positive characteristic introduced by
M. Hochster and C. Huneke 20 years ago [21–23, 40]. We recall its definition. Let
R be a commutative ring of positive characteristic p with eth Frobenius homomor-
phism Fe : R → R, f �→ f q, q = pe. For an ideal I let I[q] := Fe(I) be the extended
ideal under the eth Frobenius. Then the tight closure of I is given by


I∗ = { f ∈ R : there exists t,not in any minimal prime,


such that t f q ∈ I[q] for q � 0}
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(in the domain case this means just t �= 0, and for all q). In this paper, we will
not deal with the applications of tight closure in commutative algebra, homological
algebra and algebraic geometry, but with some of its intrinsic problems. One of
them is whether tight closure commutes with localization, that is, whether for a
multiplicative system S ⊆ R the equality


(I∗)RS = (IRS)∗


holds (the inclusion ⊆ is always true). A directly related question is whether tight
closure is the same as plus closure. The plus closure of an ideal I in a domain R is
defined to be


I+ ={ f ∈ R : there exists R ⊆ S finite domain extension such that f ∈ IS}.


This question is known as the tantalizing question of tight closure theory. The in-
clusion I+ ⊆ I∗ always holds. Since the plus closure commutes with localization, a
positive answer to the tantalizing question for a ring and all its localizations implies
a positive answer for the localization problem for this ring. The tantalizing ques-
tion is a problem already in dimension two, the localization problem starts to get
interesting in dimension three.


What makes these problems difficult is that there are no exact criteria for tight
closure. There exist many important inclusion criteria for tight closure, and in all
these cases the criteria also hold for plus closure (in general, with much more dif-
ficult proofs). The situation is that the heartlands of “tight closure country” and of
“non tight closure country” have been well exploited, but not much is known about
the thin line which separates them. This paper is about approaching this thin line
geometrically.


The original definition of tight closure, where one has to check infinitely many
conditions, is difficult to apply. The starting point of the work we are going
to present here is another description of tight closure due to Hochster as solid
closure based on the concept of forcing algebras. Forcing algebras were intro-
duced by Hochster in [19] in an attempt to build up a characteristic-free clo-
sure operation with similar properties as tight closure. This approach rests on
the fact that f ∈ ( f1, . . . , fn)∗ holds in R if and only if HdimR


m (A) �= 0, where
A = R[T1, . . . ,Tn]/( f1T1 + · · ·+ fnTn − f ) is the forcing algebra for these data (see
Theorem 5.1 for the exact statement). This gives a new interpretation for tight clo-
sure, where, at least at first glance, not infinitely many conditions are involved. This
cohomological interpretation can be refined geometrically, and the goal of this paper
is to describe how this is done and where it leads to. We give an overview.


We will describe the basic properties of forcing algebras in Section 2. A special
feature of the cohomological condition for tight closure is that it depends only on the
open subset D(mA)⊆ SpecA. This open subset is a “torsor” over D(m)⊆ SpecR, on
which the syzygy bundle Syz( f1, . . . , fn) acts. This allows a more geometric view of
the situation (Section 3) . In general, closure operations for ideals can be expressed
with suitable properties of forcing algebras. We mention some examples of this
correspondence in Section 4 and come back to tight closure and solid closure in
Section 5.
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To obtain a detailed understanding, we restrict in Section 6 to the situation of
a two-dimensional standard-graded normal domain R over an algebraically closed
field and homogeneous R+-primary ideals. In this setting, the question about the co-
homological dimension is the question whether a torsor coming from forcing data
is an affine scheme. Moreover, to answer this question we can look at the corre-
sponding torsor over the smooth projective curve ProjR. This translates the question
into a projective situation. In particular, we can then use concepts from algebraic
geometry like semistable bundles and the strong Harder–Narasimhan filtration to
prove results. We obtain an exact numerical criterion for tight closure in this setting
(Theorems 6.2 and 6.3). The containment in the plus closure translates to a geomet-
ric condition for the torsors on the curve, and in the case where the base field is
the algebraic closure of a finite field we obtain the same criterion. This implies that
under all these assumptions, tight closure and plus closure coincide (Theorem 6.4).


With this geometric approach also some problems in Hilbert–Kunz theory could
be solved, in particular it was shown that the Hilbert–Kunz multiplicity is a rational
number in graded dimension two (Theorem 7.3). In fact, there is a formula for it in
terms of the strong Harder–Narasimhan filtration of the syzygy bundle. In Section 8,
we change the setting and look at families of two-dimensional rings parametrized by
a one-dimensional base. Typical bases are SpecZ (arithmetic deformations) or A


1
K


(geometric deformations). Natural questions are how tight closure, Hilbert–Kunz
multiplicity and strong semistability of bundles vary in such a family. Examples
of P. Monsky already showed that the Hilbert–Kunz multiplicity behaves “weirdly”
in the sense that it is not almost constant. It follows from the geometric interpretation
that also strong semistability behaves wildly. Further extra work is needed to show
that tight closure also behaves wildly under such a deformation. We present the
example of Brenner–Katzman in the arithmetic case and of Brenner–Monsky in the
geometric case (Examples 8.4 and 8.7). The latter example shows also that tight
closure does not commute with localization and that even in the two-dimensional
situation, the tantalizing question has a negative answer, if the base field contains a
transcendental element. We close the paper with some open problems (Section 9).


As this is a survey article, we usually omit the proofs and refer to the original
research papers and to [9]. I thank Helena Fischbacher-Weitz, Almar Kaid, Axel
Stäbler, and the referees for useful comments.


2 Forcing algebras


Let R be a commutative ring, let M be a finitely generated R-module and N ⊆ M a
finitely generated R-submodule. Let s ∈ M be an element. The forcing algebra for
these data is constructed as follows: choose generators y1, . . . ,ym for M and gener-
ators x1, . . . ,xn for N. This gives rise to a surjective homomorphism ϕ : Rm → M, a
submodule N′ = ϕ−1(N) and a morphism Rn → Rm which sends ei to a preimage x′i
of xi. Altogether we get the commutative diagram with exact rows
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Rn α−→ Rm −→ M/N −→ 0 (∗)


↓ ↓ ϕ ↓=


0 −→ N −→ M −→ M/N −→ 0


(α is a matrix). The element s is represented by (s1, . . . ,sm) ∈ Rm, and s belongs to
N if and only if the linear equation


α


⎛


⎜
⎜
⎜
⎜
⎝


t1
.
.
.
tn


⎞


⎟
⎟
⎟
⎟
⎠


=


⎛


⎜
⎜
⎜
⎜
⎝


s1


.


.


.
sm


⎞


⎟
⎟
⎟
⎟
⎠


has a solution. An important insight due to Hochster is that this equation can be
formulated with new variables T1, . . . ,Tn, and then the “distance of s to N” – in
particular, whether s belongs to a certain closure of N – is reflected by properties of
the resulting (generic) forcing algebra. Explicitly, if α is the matrix describing the
submodule N as above and if (s1, . . . ,sm) represents s, then the forcing algebra is
defined by


A = R[T1, . . . ,Tn]/(αT − s) ,


where αT − s stands for


α


⎛


⎜
⎜
⎜
⎜
⎝


T1


.


.


.
Tn


⎞


⎟
⎟
⎟
⎟
⎠


=


⎛


⎜
⎜
⎜
⎜
⎝


s1


.


.


.
sm


⎞


⎟
⎟
⎟
⎟
⎠


or, in other words, for the system of inhomogeneous linear equations


a11T1 + · · · + a1nTn = s1


a21T1 + · · · + a2nTn = s2


am1T1 + · · · + amnTn = sm


.


In the case of an ideal I = ( f1, . . . , fn) and f ∈ R the forcing algebra is just
A = R[T1, . . . ,Tn]/( f1T1 + · · ·+ fnTn − f ). Forcing algebras are given by the easi-
est algebraic equations at all, namely linear equations. Yet we will see that forcing
algebras already have a rich geometry. Of course, starting from the data (M,N,s)
we had to make some choices in order to write down a forcing algebra, hence only
properties which are independent of these choices are interesting.
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The following lemma expresses the universal property of a forcing algebra.


Lemma 2.1. Let the situation be as above, and let R→ R′ be a ring homomorphism.
Then there exists an R-algebra homomorphism A → R′ if and only if s⊗ 1 lies in
im(N ⊗R′ → M⊗R′).


Proof. This follows from the right exactness of tensor products applied to the se-
quence (∗) above.


The lemma implies in particular that for two forcing algebras A and A′ we have
(not uniquely determined) R-algebra homomorphisms A → A′ and A′ → A. It also
implies that s ∈ N if and only if there exists an R-algebra homomorphism A → R
(equivalently, SpecA → SpecR has a section).


We continue with some easy geometric properties of the mapping SpecA →
SpecR. The formation of forcing algebras commutes with arbitrary base change
R → R′. Therefore, for every point p∈ SpecR the fiber ring A⊗R κ(p) is the forcing
algebra given by


α(p)T = s(p) ,


which is an inhomogeneous linear equation over the field κ(p). Hence, the fiber
of SpecA → SpecR over p is the solution set to a system of linear inhomogenous
equations.


We know from linear algebra that the solution set to such a system might be
empty, or it is an affine space (in the sense of linear algebra) of dimension at least
n− m. Hence, one should think of SpecA → SpecR as a family of affine-linear
spaces varying with the base. Also, from linear algebra we know that such a solution
set is given by adding to one particular solution a solution of the corresponding
system of homogeneous of linear equations. The solution set to α(p)T = 0 is a
vector space over κ(p), and this solution set is the fiber over p of the forcing algebra
of the zero element, namely


B = R[T1, . . . ,Tn]/(αT ) = R[T1, . . . ,Tn]/


(
n


∑
i=1


ai jTi, j = 1, . . . ,m


)


.


As just remarked, the fibers of V = SpecB over a point p are vector spaces of pos-
sibly varying dimensions. Therefore, V is in general not a vector bundle. It is, how-
ever, a commutative group scheme over SpecR, where the addition is given by


V ×V V, (s1, . . . ,sn),(s′1, . . . ,s
′
n) �−→ (s1 + s′1, . . . ,sn + s′n)


(written on the level of sections) and the coaddition by


R[T1, . . . ,Tn]/(αT ) → R[T1, . . . ,Tn]/(αT )⊗R[T̃1, . . . , T̃n]/(αT̃ ), Ti �→ Ti + T̃i.


This group scheme is the kernel group scheme of the group scheme homomorphism


α : A
n
R −→ A


m
R


between the trivial additive group schemes of rank n and m. We call it the syzygy
group scheme for the given generators of N.
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The syzygy group scheme acts on the spectrum of a forcing algebra SpecA,
A = R[T ]/(αT − s) for every s ∈ M. The action is exactly as in linear algebra, by
adding a solution of the system of homogeneous equations to a solution of the sys-
tem of inhomogeneous equations. An understanding of the syzygy group scheme is
necessary before we can understand the forcing algebras.


Although V is not a vector bundle in general, it is not too far away. Let U ⊆
SpecR be the open subset of points p where the mapping α(p) is surjective. Then
the restricted group scheme V |U is a vector bundle of rank n−m. If M/N has its
support in a maximal ideal m, then the syzygy group scheme induces a vector bundle
on the punctured spectrum SpecR−{m}, which we call the syzygy bundle. Hence
on U we have a short exact sequence


0 −→ Syz −→ On
U −→ Om


U −→ 0


of vector bundles on U .
We will mostly be interested in the situation where the submodule is an ideal


I ⊆ R in the ring. We usually fix ideal generators I = ( f1, . . . , fn) and (∗) becomes


Rn f1,..., fn−→ R −→ R/I −→ 0 .


The ideal generators and an element f ∈ R defines then the forcing equation f1T1 +
· · ·+ fnTn − f = 0. Moreover, if the ideal is primary to a maximal ideal m, then we
have a syzygy bundle Syz = Syz( f1, . . . , fn) defined on D(m).


3 Forcing algebras and torsors


Let Z ⊂ SpecR be the support of M/N and let U = SpecR−Z be the open comple-
ment where α is surjective. Let s ∈ M with forcing algebra A. We set T = SpecA|U
and we assume that the fibers are non-empty (in the ideal case this means that f is
not a unit). Then the action of the group scheme V on SpecA restricts to an action of
the syzygy bundle Syz = V |U on T , and this action is simply transitive. This means
that locally the actions looks like the action of Syz on itself by addition.


In general, if a vector bundle S on a separated scheme U acts simply transitively
on a scheme T → U – such a scheme is called a geometric S-torsor or an affine-
linear bundle –, then this corresponds to a cohomology class c ∈ H1(U,S) (where S


is now also the sheaf of sections in the vector bundle S). This follows from the Čech
cohomology by taking an open covering where the action can be trivialized. Hence,
forcing data define, by restricting the forcing algebra, a torsor T over U .


On the other hand, the forcing data define the short exact sequence 0 → Syz →
On


U → Om
U → 0 and s is represented by an element s′ ∈ Rm → Γ (U,Om


U). By the
connecting homomorphism s′ defines a cohomology class


c = δ (s′) ∈ H1(U,Syz) .


An explicit computation of Čech cohomology shows that this class corresponds to
the torsor given by the forcing algebra.
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Starting from a cohomology class c ∈ H1(U,S), one may construct a geometric
model for the torsor classified by c in the following way: because of H1(U,S) ∼=
Ext1(OU ,S) we have an extension


0 −→ S −→ S′ −→ OU −→ 0 .


This sequence induces projective bundles P(S∨) ↪→ P(S′∨) and T (c) ∼= P(S′∨)−
P(S∨). If S = Syz( f1, . . . , fn) is the syzygy bundle for ideal generators, then the
extension given by the cohomology class δ ( f ) coming from another element f is
easy to describe: it is just


0 −→ Syz( f1, . . . , fn) −→ Syz( f1, . . . , fn, f ) −→ OU −→ 0


with the natural embedding (extending a syzygy by zero in the last component).
This follows again from an explicit computation in Čech cohomology.


If the base U is projective, a situation in which we will work starting with
Section 6, then P(S′∨) is also a projective variety and P(S∨) is a subvariety of codi-
mension one, a divisor. Then properties of the torsor are reflected by properties of
the divisor and vice versa.


4 Forcing algebras and closure operations


A closure operation for ideals or for submodules is an assignment


N �−→ Nc


for submodules N ⊆ M of R-modules M such that N ⊆ Nc = (Nc)c holds. One often
requires further nice properties of a closure operation, like monotony or the indepen-
dence of representation (meaning that s ∈ Nc if and only if s̄ ∈ 0c in M/N). Forcing
algebras are very natural objects to study such closure operations. The underlying
philosophy is that s ∈ Nc holds if and only if the forcing morphism SpecA → SpecR
fulfills a certain property (depending on and characterizing the closure operation).
The property is in general not uniquely determined; for the identical closure opera-
tion one can take the properties to be faithfully flat, to be (cyclic) pure, or to have a
(module- or ring-) section.


Let us consider some easy closure operations to get a feeling for this philoso-
phy. In Section 5 we will see how tight closure can be characterized with forcing
algebras.


Example 4.1. For the radical rad(I) the corresponding property is that SpecA →
SpecR is surjective. It is not surprising that a rough closure operation corresponds
to a rough property of a morphism. An immediate consequence of this viewpoint
is that we get at once a hint of what the radical of a submodule should be: namely
s ∈√


N if and only if the forcing algebra is Spec-surjective. This is equivalent to the
property that s⊗1 ∈ im(N ⊗R K → M⊗R K) for all homomorphism R → K to fields
(or just for all κ(p), p ∈ SpecR).
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Example 4.2. We now look at the integral closure of an ideal, which is defined by


Ī = { f ∈ R : there exists f k + a1 f k−1 + · · ·+ ak−1 f + ak = 0, ai ∈ Ii} .


The integral closure was first used by Zariski as it describes the normalization of
blow-ups. What is the corresponding property of a morphism?


We look at an example. For R = K[X ,Y ] we have X2Y ∈ (X3,Y 3) and
XY �∈ (X3,Y 3). The inclusion follows from (X2Y )3 = X6Y 3 ∈ (X3,Y 3)3. The
non-inclusion follows from the valuation criterion for integral closure: This says
for a noetherian domain R that f ∈ Ī if and only if for all mappings to discrete
valuation rings ϕ : R → V we have ϕ( f ) ∈ IV . In the example, the mapping
K[X ,Y ] → K[X ], Y �→ X , yields X2 �∈ (X3), so it can not belong to the integral
closure. In both cases the mapping SpecA → SpecR is surjective. In the sec-
ond case, the forcing algebra over the line V (Y − X) is given by the equation
T1X3 + T2X3 + X2 = X2((T1 + T2)X + 1). The fiber over the zero point is a plane
and is an affine line over a hyperbola for every other point of the line. The topolo-
gies above and below are not much related: The inverse image of the non-closed
punctured line is closed, hence the topology downstairs does not carry the image
topology from upstairs. In fact, the relationship in general is


f ∈ Ī if and only if SpecA → SpecR is universally a submersion


(a submersion in the topological sense). This relies on the fact that both properties
can be checked with (in the noetherian case discrete) valuations (for this criterion
for submersions, see [15] and [1]).


Let us consider the forcing algebras for (X ,Y ) and 1 and for (X2,Y 2) and XY
in K[X ,Y ]. The restricted spectra of the forcing algebras over the punctured plane
for these two forcing data are isomorphic, because both represent the torsor given
by the cohomology class 1


XY = XY
X2Y 2 ∈ H1(D(X ,Y ),O). However, XY ∈ (X2,Y 2),


but 1 �∈ (X ,Y ) (not even in the radical). Hence, integral closure can be characterized
by the forcing algebra, but not by the induced torsor. An interesting feature of tight
closure is that it only depends on the cohomology class in the syzygy bundle and
the torsor induced by the forcing algebra, respectively.


Example 4.3. In the case of finitely generated algebras over the complex num-
bers, there is another interesting closure operation, called continuous closure.
An element s belongs to the continuous closure of N if the forcing algebra A is
such that the morphism C− SpecA → C− SpecR has a continuous section in the
complex topology. For an ideal I = ( f1, . . . , fn) this is equivalent to the existence of
complex-continuous functions g1, . . . ,gn : C−SpecR → C such that ∑n


i=1 gi fi = f
(as an identity on C−SpecR).


Remark 4.4. One can go one step further with the understanding of closure oper-
ations in terms of forcing algebras. For this we take the forcing algebras which
are allowed by the closure operation (i.e., forcing algebras for s,N,M, s ∈ Nc)
and declare them to be the defining covers of a (non-flat) Grothendieck topology.
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This works basically for all closure operations fulfilling certain natural conditions.
This embeds closure operations into the much broader context of Grothendieck
topologies, see [6].


5 Tight closure as solid closure


We come back to tight closure, and its interpretation in terms of forcing algebras
and solid closure.


Theorem 5.1. Let (R,m) be a local excellent normal domain of positive character-
istic and let I denote an m-primary ideal. Then f ∈ I∗ if and only if HdimR


m (A) �= 0,
where A denotes the forcing algebra.


Proof. We indicate the proof of the direction that the cohomological property im-
plies the tight closure inclusion. By the assumptions we may assume that R is
complete. Because of HdimR


m (A) �= 0 there exists by Matlis-duality a non-trivial R-
module homomorphism ψ : A→ R and we may assume ψ(1) =: c �= 0. In A we have
the equality f = ∑n


i=1 fiTi and hence


f q =
n


∑
i=1


f q
i T q


i for all q = pe .


Applying the R-homomorphism ψ to these equations gives


c f q =
n


∑
i=1


f q
i ψ(T q


i ) ,


which is exactly the tight closure condition (the ψ(T q
i ) are the coefficients in R).


For the other direction see [19].


This theorem provides the bridge between tight closure and cohomological prop-
erties of forcing algebras. The first observation is that the property about local coho-
mology on the right hand side does not refer to positive characteristic. The closure
operation defined by this property is called solid closure, and the theorem says that
in positive characteristic and under the given further assumptions solid closure and
tight closure coincide. The hope was that this would provide a closure operation in
all (even mixed) characteristics with similar properties as tight closure. This hope
was however destroyed by the following example of Paul Roberts (see [36])


Example 5.2. (Roberts) Let K be a field of characteristic zero and consider


A = K[X ,Y,Z]/(X3T1 +Y3T2 + Z3T3 −X2Y 2Z2) .


Then H3
(X ,Y,Z)(A) �= 0. Therefore X2Y 2Z2 ∈ (X3,Y 3,Z3)sc in the regular ring


K[X ,Y, Z]. This means that in a three-dimensional regular ring an ideal needs
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not be solidly-closed. It is, however, an important property of tight closure that ev-
ery regular ring is F-regular, namely that every ideal is tightly closed. Hence, solid
closure is not a good replacement for tight closure (for a variant called parasolid
closure with all good properties in equal characteristic zero, see [2]).


Despite this drawback, solid closure provides an important interpretation of tight
closure. First of all we have for d = dim(R)≥ 2 (the one-dimensional case is trivial)
the identities


Hd
m(A) ∼= Hd


mA(A) ∼= Hd−1(D(mA),O) .


This easy observation is quite important. The open subset D(mA) ⊆ SpecA is
exactly the torsor induced by the forcing algebra over the punctured spectrum
D(m)⊂ SpecR. Hence, we derive at an important particularity of tight closure: tight
closure of primary ideals in a normal excellent local domain depends only on the
torsor (or, what is the same, only on the cohomology class of the syzygy bundle).
We recall from the last section that this property does not hold for integral closure.


By Theorem 5.1, tight closure can be understood by studying the global sheaf
cohomology of the torsor given by a first cohomology class of the syzygy bundle.
The forcing algebra provides a geometric model for this torsor. An element f be-
longs to the tight closure if and only if the cohomological dimension of the torsor T
is d −1 (which is the cohomological dimension of D(m)), and f �∈ I∗ if and only if
the cohomological dimension drops. Recall that the cohomological dimension of a
scheme U is the largest number i such that Hi(U,F) �= 0 for some (quasi-)coherent
sheaf F on U . In the quasiaffine case, where U ⊆ SpecB (as in the case of torsors
inside the spectrum of the forcing algebra), one only has to look at the structure
sheaf F = O.


In dimension two, this means that f ∈ I∗ if and only if the cohomological di-
mension of the torsor is one, and f �∈ I∗ if and only if this is zero. By a theorem
of Serre ([18, Theorem III.3.7]) cohomological dimension zero means that U is an
affine scheme, i.e., isomorphic as a scheme to the spectrum of a ring (do not confuse
the “affine” in affine scheme with the “affine” in affine-linear bundle).


It is, in general, a difficult question to decide whether a quasiaffine scheme is an
affine scheme. Even in the special case of torsors there is no general machinery to
answer it. A necessary condition is that the complement has pure codimension one
(which is fulfilled in the case of torsors). So far we have not gained any criterion
from our geometric interpretation.


6 Tight closure in graded dimension two


From now on we deal with the following situation: R is a two-dimensional normal
standard-graded domain over an algebraically closed field of any characteristic, I =
( f1, . . . , fn) is a homogeneous R+-primary ideal with homogeneous generators of
degree di = deg( fi). Let C = ProjR be the corresponding smooth projective curve.
The ideal generators define the homogeneous resolution
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0 −→ Syz( f1, . . . , fn) −→⊕n
i=1R(−di)


f1,..., fn−→ R −→ R/I −→ 0 ,


and the short exact sequence of vector bundles on C


0 −→ Syz( f1, . . . , fn) −→⊕n
i=1OC(−di)


f1,..., fn−→ OC −→ 0 .


We also need the m-twists of this sequence for every m ∈ Z,


0 −→ Syz( f1, . . . , fn)(m) −→⊕n
i=1OC(m−di)


f1,..., fn−→ OC(m) −→ 0 .


It follows from this presenting sequence by the additivity of rank and degree that
the vector bundle Syz( f1, . . . , fn)(m) has rank n−1 and degree


(m(n−1)−
n


∑
i=1


di)degC


(where degC = degOC(1) is the degree of the curve).
A homogeneous element f ∈ Rm = Γ (C,OC(m)) defines again a cohomology


class c ∈ H1(C,OC(m)) as well as a torsor T (c) →C. This torsor is a homogeneous
version of the torsor induced by the forcing algebra on D(m) ⊂ SpecR. This can be
made more precise by endowing the forcing algebra A = R[T1, . . . ,Tn]/( f1T1 + · · ·+
fnTn − f ) with a (not necessarily positive) Z-grading and taking T = D+(R+) ⊆
ProjA. From this it follows that the affineness of this torsor on C is decisive for tight
closure. The translation of the tight closure problem via forcing algebras into torsors
over projective curves has the following advantages:


(1) We can work over a smooth projective curve, i.e., we have reduced the dimen-
sion of the base and we have removed the singularity.


(2) We can work in a projective setting and use intersection theory.
(3) We can use the theory of vector bundles, in particular the notion of semistable


bundles and their moduli spaces.


We will give a criterion when such a torsor is affine and hence when a homoge-
neous element belongs to the tight closure of a graded R+-primary ideal. For this
we need the following definition (for background on semistable bundles we refer
to [25]).


Definition 6.1. Let S be a locally free sheaf on a smooth projective curve C. Then
S is called semistable, if deg(T)/rk(T) ≤ deg(S)/rk(S) holds for all subbundles
T �= 0. In positive characteristic, S is called strongly semistable, if all Frobenius pull-
backs Fe∗(S), e ≥ 0, are semistable (here F : C →C denotes the absolute Frobenius
morphism).


Note that for the syzygy bundle we have the natural isomorphism (by pulling
back the presenting sequence)


Fe∗(Syz( f1, . . . , fn)) ∼= Syz( f q
1 , . . . , f q


n ) .
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Therefore, the Frobenius pull-back of the cohomology class δ ( f ) ∈
H1(C,Syz( f1, . . . , fn)(m)) is


Fe∗(δ ( f )) = δ ( f q) ∈ H1(C,Syz( f q
1 , . . . , f q


n )(qm)) .


The following two results establish an exact numerical degree bound for tight
closure under the condition that the syzygy bundle is strongly semistable.


Theorem 6.2. Suppose that Syz( f1, . . . , fn) is strongly semistable. Then we have
Rm ⊆ I∗ for m ≥ (∑n


i=1 di)/(n−1).


Proof. Note that the degree condition implies that S := Syz( f1, . . . , fn)(m) has non-
negative degree. Let c ∈ H1(C,S) be any cohomology class (it might be δ ( f ) for
some f of degree m). The pull-back Fe∗(c) lives in H1(C,Fe∗(S)). Let now k be such
that OC(−k)⊗ωC has negative degree, where ωC is the canonical sheaf on the curve.
Let z ∈Γ (C,OC(k)) = Rk, z �= 0. Then zFe∗(c) ∈ H1(C,Fe∗(S)⊗OC(k)). However,
by degree considerations, these cohomology groups are zero: by Serre duality they
are dual to H0(C,Fe∗(S∨)⊗OC(−k)⊗ωC), and this bundle is semistable of negative
degree, hence it can not have global sections. Because of zFe∗(c) = 0 it follows that
z f q is in the image of the mapping given by f q


1 , . . . , f q
n , so z f q ∈ I[q] and f ∈ I∗.


Theorem 6.3. Suppose that Syz( f1, . . . , fn) is strongly semistable. Let m <
(∑n


i=1 di)/ (n − 1) and let f be a homogeneous element of degree m. Suppose
that f pa �∈ I[pa] for a such that pa > gn(n− 1) (where g is the genus of C). Then
f �∈ I∗.


Proof. Here, the proof works with the torsor T defined by c = δ ( f ). The syzygy
bundle S = Syz( f1, . . . , fn)(m) has now negative degree, hence its dual bundle F =
S∨ is an ample vector bundle (as it is strongly semistable of positive degree). The
class defines a non-trivial dual extension 0 →OC →F′ →F → 0. By the assumption
also a certain Frobenius pull-back of this extension is still non-trivial. Hence, F′ is
also ample and therefore P(F) ⊂ P(F′) is an ample divisor and its complement
T = P(F′)−P(F) is affine. Hence, f �∈ I∗.


It is in general not easy to establish whether a bundle is strongly semistable or not.
However, even if we do not know whether the syzygy bundle is strongly semistable,
we can work with its strong Harder–Narasimhan filtration. The Harder–Narasimhan
filtration of a vector bundle S on a smooth projective curve is a filtration


0 = S0 ⊂ S1 ⊂ S2 ⊂ ·· · ⊂ St−1 ⊂ St = S


with Si/Si−1 semistable and descending slopes


μ(S1) > μ(S2/S1) > · · · > μ(S/St−1) .


Since the Frobenius pull-back of a semistable bundle need not be semistable
anymore, the Harder–Narasimhan filtration of F∗(S) is quite unrelated to the
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Harder–Narasimhan filtration of S. However, by a result of A. Langer [29, Theorem
2.7], there exists a certain number e such that the quotients in the Harder–
Narasimhan filtration of Fe∗(S) are strongly semistable. Such a filtration is called
strong. With a strong Harder–Narasimhan filtration one can now formulate an
exact numerical criterion for tight closure inclusion building on Theorems 6.2
and 6.3.


The criterion basically says that a torsor is affine (equivalently, f �∈ I∗), if and
only if the cohomology class is non-zero in some strongly semistable quotient of
negative degree of the strong Harder–Narasimhan filtration. One should remark here
that even if we start with a syzygy bundle, the bundles in the filtration are no syzygy
bundles, hence it is important to develop the theory of torsors of vector bundles
in full generality. From this numerical criterion one can deduce an answer to the
tantalizing question.


Theorem 6.4. Let K = Fp be the algebraic closure of a finite field and let R be a
normal standard-graded K-algebra of dimension two. Then I∗ = I+ for every R+-
primary homogeneous ideal.


Proof. This follows from the numerical criterion for the affineness of torsors men-
tioned above. The point is that the same criterion holds for the non-existence of pro-
jective curves inside the torsor. One reduces to the situation of a strongly semistable
bundle S of degree 0. Every cohomology class of such a bundle defines a non-affine
torsor and hence we have to show that there exists a projective curve inside, or equiv-
alently, that the cohomology class can be annihilated by a finite cover of the curve.
Here, is where the finiteness assumption about the field enters. S is defined over a
finite subfield Fq ⊆ K, and it is represented (or rather, its S-equivalence class) by a
point in the moduli space of semistable bundles of that rank and degree 0. The Frobe-
nius pull-backs Fe∗(S) are again semistable (by strong semistability) and they are
defined over the same finite field. Because semistable bundles form a bounded fam-
ily (itself the reason for the existence of the moduli space), there exist only finitely
many semistable bundles defined over Fq of degree zero. Hence there exists a repeti-
tion, i.e., there exists e′ > e such that we have an isomorphism Fe′∗(S)∼= Fe∗(S). By


a result of H. Lange and U. Stuhler [28] there exists a finite mapping C′ ϕ→ C
Fe→ C


(with ϕ étale) such that the pull-back of the bundle is trivial. Then one is left with
the problem of annihilating a cohomology class c ∈ H1(C,OC), which is possible
using Artin–Schreier theory (or the graded version of K. Smith’s parameter theorem,
[38, 39]).


Remark 6.5. This theorem was extended by G. Dietz for R+-primary ideals which
are not necessarily homogeneous [14]. The above proof shows how important the
assumption is that the base field is finite or the algebraic closure of a finite field.
Indeed, we will see in the last section that the statement is not true when the base
field contains transcendental elements. Also some results on Hilbert–Kunz functions
depend on the property that the base field is finite.
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7 Applications to Hilbert-Kunz theory


The geometric approach to tight closure was also successful in Hilbert–Kunz theory.
This theory originates in the work of E. Kunz [26, 27] and was largely extended by
P. Monsky [17, 32].


Let R be a commutative ring of positive characteristic and let I be an ideal which
is primary to a maximal ideal. Then all R/I[q], q = pe, have finite length, and the
Hilbert–Kunz function of the ideal is defined to be


e �−→ ϕ(e) = lg(R/I[pe]) .


Monsky proved the following fundamental theorem of Hilbert–Kunz theory
([32], [22, Theorem 6.7]).


Theorem 7.1. The limit


lim
e�→∞


ϕ(e)
pedim(R)


exists (as a positive real number) and is called the Hilbert–Kunz multiplicity of I,
denoted by eHK(I).


The Hilbert–Kunz multiplicity of the maximal ideal in a local ring is usually
denoted by eHK(R) and is called the Hilbert–Kunz multiplicity of R. It is an open
question whether this number is always rational. Strong numerical evidence sug-
gests that this is probably not true in dimension ≥ 4, see [35]. We will deal with
the two-dimensional situation in a minute, but first we relate Hilbert–Kunz theory
to tight closure (see [22, Theorem 5.4]).


Theorem 7.2. Let R be an analytically unramified and formally equidimensional
local ring of positive characteristic and let I be an m-primary ideal. Let f ∈ R.
Then f ∈ I∗ if and only if


eHK(I) = eHK((I, f )) .


This theorem means that the Hilbert–Kunz multiplicity is related to tight closure
in the same way as the Hilbert–Samuel multiplicity is related to integral closure.


We restrict now again to the case of an R+-primary homogeneous ideal in a
standard-graded normal domain R of dimension two over an algebraically closed
field K of positive characteristic p. In this situation, Hilbert–Kunz theory is directly
related to global sections of the Frobenius pull-backs of the syzygy bundle on ProjR
(see Section 6). We shall see that it is possible to express the Hilbert–Kunz multi-
plicity in terms of the strong Harder–Narasimhan filtration of this bundle.


For homogeneous ideal generators f1, . . . , fn of degrees d1, . . . ,dn we write down
again the presenting sequence on C = ProjR,


0 −→ Syz( f1, . . . , fn) −→
n⊕


i=1


OC(−di)
f1,..., fn−→ OC −→ 0 .


The m-twists of the Frobenius pull-backs of this sequence are


0 −→ Syz( f q
1 , . . . , f q


n )(m) −→
n⊕


i=1


OC(m−qdi)
f q
1 ,..., f q


n−→ OC(m) −→ 0 .
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The global evaluation of the last short exact sequence is


0 −→ Γ (C,Syz( f q
1 , . . . , f q


n )(m)) −→
n⊕


i=1


Rm−qdi


f q
1 ,..., f q


n−→ Rm ,


and the cokernel of the map on the right is


Rm/( f q
1 , . . . , f q


n ) = (R/I[q])m .


Because of R/I[q] =
⊕


m(R/I[q])m, the length of R/I[q] is the sum over the degrees m
of the K-dimensions of these cokernels. The sum is in fact finite because the ide-
als I[q] are primary (or because H1(C,Syz( f q


1 , . . . , f q
n )(m)) = 0 for m � 0), but the


bound for the summation grows with q. Anyway, we have


dim(R/I[q])m = dim(Γ (C,OC(m)))−
n


∑
i=1


dim(Γ (C,OC(m−qdi)))


+dim(Γ (C,Syz( f q
1 , . . . , f q


n )(m))) .


The computation of the dimensions dim(Γ (C,OC(�))) is easy, hence the prob-
lem is to control the global sections of Syz( f q


1 , . . . , f q
n )(m), more precisely, its be-


havior for large q, and its sum over a suitable range of m. This behavior is en-
coded in the strong Harder–Narasimhan filtration of the syzygy bundle. Let e be
fixed and large enough such that the Harder–Narasimhan filtration of the pull-back
H = Fe∗(Syz( f1, . . . , fn)) = Syz( f q


1 , . . . , f q
n ) is strong. Let H j ⊆ H, j = 1, . . . ,t, be


the subsheaves occurring in the Harder–Narasimhan filtration and set


ν j :=
−μ(H j/H j−1)


pe deg(C)
and r j = rk(H j/H j−1) .


Because the Harder–Narasimhan filtration of H and of all its pull-backs is strong,
these numbers are independent of e. The following theorem was shown by Brenner
and Trivedi independently [7, 41].


Theorem 7.3. Let R be a normal two-dimensional standard-graded domain over an
algebraically closed field and let I = ( f1, . . . , fn) be a homogeneous R+-primary
ideal, di = deg( fi). Then the Hilbert–Kunz multiplicity of I is given by the formula


eHK(I) =
deg(C)


2


(
t


∑
j=1


r jν2
j −


n


∑
i=1


d2
i


)


.


In particular, it is a rational number.


We can also say something about the behavior of the Hilbert–Kunz function un-
der the additional condition that the base field is the algebraic closure of a finite field
(see [8]).
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Theorem 7.4. Let R and I be as before and suppose that the base field is the alge-
braic closure of a finite field. Then the Hilbert–Kunz function has the form


ϕ(e) = eHK(I)p2e + γ(e) ,


where γ is eventually periodic.


This theorem also shows that here the “linear term” in the Hilbert–Kunz function
exists and that it is zero. It was proved in [24] that for normal excellent R the Hilbert–
Kunz function looks like


eHKqdim(R) + β qdim(R)−1 + smaller terms .


For possible behavior of the second term in the non-normal case in dimension two
see [34]. See also Remark 8.2.


8 Arithmetic and geometric deformations of tight closure


The geometric interpretation of tight closure theory led to a fairly detailed under-
standing of tight closure in graded dimension two. The next easiest case is to study
how tight closure behaves in families of two-dimensional rings, parametrized by
a one dimensional ring. Depending on whether the base has mixed characteristic
(like SpecZ) or equal positive characteristic p (like SpecK[T ] = A


1
K) we talk about


arithmetic or geometric deformations.
More precisely, let D be a one-dimensional domain and let S be a D-standard-


graded domain of dimension three, such that for every point p ∈ SpecD the fiber
rings Sκ(p) = S⊗D κ(p) are normal standard-graded domains over κ(p) of dimen-
sion two. The data I = ( f1, . . . , fn) in S and f ∈ S determine corresponding data in
these fiber rings, and the syzygy bundle Syz( f1, . . . , fn) on ProjS → SpecD deter-
mines syzygy bundles on the curves Cκ(p) = ProjSκ(p). The natural questions here
are: how does the property f ∈ I∗ (in Sκ(p)) depend on p, how does eHK(I) depend
on p, how does strong semistability depend on p, how does the affineness of torsors
depend on p?


Semistability itself is an open property and behaves nicely in a family in the sense
that if the syzygy bundle is semistable on the curve over the generic point, then it
is semistable over almost all closed points. D. Gieseker gave in [16] an example
of a collection of bundles such that, depending on the parameter, the eth pull-back
is semistable, but the (e + 1)th is not semistable anymore (for every e). The prob-
lem how strong semistability behaves under arithmetic deformations was explicitly
formulated by Y. Miyaoka and by N. Shepherd-Barron [31, 37].


In the context of Hilbert–Kunz theory, this question has been studied by
P. Monsky [17, 33], both in the arithmetic and in the geometric case. Monsky
(and Han) gave examples that the Hilbert–Kunz multiplicity may vary in a family.
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Example 8.1. Let Rp = Z/(p)[X ,Y,Z]/(X4 + Y 4 + Z4). Then the Hilbert–Kunz
multiplicity of the maximal ideal is


eHK(Rp) =


{
3 for p = ±1 mod 8


3 + 1/p2 for p = ±3 mod 8
.


Note that by the theorem on prime numbers in arithmetic progressions there exist
infinitely many prime numbers of all these congruence types.


Remark 8.2. In the previous example, there occur infinitely many different values
for eHK(Rp) depending on the characteristic, the limit as p �→ ∞ is, however, well
defined. Trivedi showed [42] that in the graded two-dimensional situation this limit
always exists, and that this limit can be computed by the Harder–Narasimhan filtra-
tion of the syzygy bundle in characteristic zero. Brenner showed that one can de-
fine, using this Harder–Narasimhan filtration, a Hilbert–Kunz multiplicity directly
in characteristic zero, and that this Hilbert–Kunz multiplicity characterizes solid
closure [3] in the same way as Hilbert–Kunz multiplicity characterizes tight closure
in positive characteristic (Theorem 7.2 above). Combining these results one can say
that “solid closure is the limit of tight closure” in graded dimension two, in the
sense that f ∈ Isc in characteristic zero if and only if the Hilbert–Kunz difference
eHK((I, f ))− eHK(I) tends to 0 for p �→ ∞.


It is an open question whether in all dimensions the Hilbert–Kunz multiplicity
has always a limit as p goes to infinity, whether this limit, if it exists, has an inter-
pretation in characteristic zero alone (independent of reduction to positive charac-
teristic) and what closure operation it would correspond to. See also [12].


In the geometric case, Monsky gave the following example [33].


Example 8.3. Let K = Z/(2) and let


S = Z/(2)[T ][X ,Y,Z]/(Z4 + Z2XY + Z(X3 +Y 3)+ (T + T2)X2Y 2) .


We consider S as an algebra over Z/(2)[T ] (T has degree 0). Then the Hilbert–Kunz
multiplicity of the maximal ideal is


eHK(Sκ(p))=


{
3 if κ(p) = K(T ) (generic case)


3 + 1/4m if κ(p) = Z/(2)(t) is finite over Z/(2) of degree m.


By the work of Brenner and Trivedi (see Section 7) these examples can be trans-
lated immediately into examples where strong semistability behaves weirdly. From
the first example we get an example of a vector bundle of rank two over a pro-
jective relative curve over SpecZ such that the bundle is semistable on the generic
curve (in characteristic zero), and is strongly semistable for infinitely many prime
reductions, but also not strongly semistable for infinitely many prime reductions.


From the second example we get an example of a vector bundle of rank two over
a projective relative curve over the affine line A


1
Z/(2), such that the bundle is strongly
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semistable on the generic curve (over the function field Z/(2)(T )), but not strongly
semistable for the curve over any finite field (and the degree of the field extension
determines which Frobenius pull-back destabilizes).


To get examples where tight closure varies with the base one has to go one step
further (in short, weird behavior of Hilbert–Kunz multiplicity is a necessary condi-
tion for weird behavior of tight closure). Interesting behavior can only happen for
elements of degree (∑di)/(n−1) (the degree bound, see Theorems 6.2 and 6.3).


In [11], Brenner and M. Katzman showed that tight closure does not behave
uniformly under an arithmetic deformation, thus answering negatively a question
in [19].


Example 8.4. Let
R = Z/(p)[X ,Y,Z]/(X7 +Y7 + Z7)


and I = (X4,Y 4,Z4), f = X3Y 3. Then f ∈ I∗ for p = 3 mod 7 and f �∈ I∗ for p = 2
mod 7 (see [11, Propositions 2.4 and 3.1]). Hence, we have infinitely many prime
reductions where the element belongs to the tight closure and infinitely many prime
reductions where it does not.


Remark 8.5. Arithmetic deformations are closely related to the question “what is
tight closure over a field of characteristic zero”. The general philosophy is that char-
acteristic zero behavior of tight closure should reflect the behavior of tight closure
for almost all primes, after expressing the relevant data over an arithmetic base. By
declaring f ∈ I∗, if this holds for almost all primes, one obtains a satisfactory theory
of tight closure in characteristic zero with the same impact as in positive charac-
teristic. This is a systematic way to do reduction to positive characteristic (see [22,
Appendix 1] and [20]). However, the example above shows that there is not always a
uniform behavior in positive characteristic. A consequence is also that solid closure
in characteristic zero is not the same as tight closure (but see Remark 8.2). From the
example we can deduce that f ∈ Isc, but f �∈ I∗ in Q[X ,Y,Z]/(X7 +Y 7 +Z7). Hence,
the search for a good tight closure operation in characteristic zero remains.


We now look at geometric deformations. They are directly related to the local-
ization problem and to the tantalizing problem which we have mentioned in the
introduction.


Lemma 8.6. Let D be a one-dimensional domain of finite type over Z/(p) and let S
be a D-domain of finite type. Let f ∈ S and I ⊆ S be an ideal. Suppose that local-
ization holds for S. If then f ∈ I∗ in the generic fiber ring SQ(D), then also f ∈ I∗ in
Sκ(p) = S⊗D κ(p) for almost all closed points p ∈ SpecD.


Proof. The generic fiber ring is the localization of S at the multiplicative system
M = D−{0} (considered in S). So if f ∈ I∗ holds in SQ(D) = SM , and if localization
holds, then there exists h ∈ M such that h f ∈ I∗ in S (the global ring of the deforma-
tion). By the persistence of tight closure ([22, Theorem 2.3] applied to S → Sκ(p))
it follows that h f ∈ I∗ in Sκ(p) for all closed points p ∈ SpecD. But h is a unit in
almost all residue class fields κ(p), so the result follows.
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Example 8.7. Let


S = Z/(2)[T ][X ,Y,Z]/(Z4 + Z2XY + Z(X3 +Y 3)+ (T + T2)X2Y 2)


as in Example 8.3 and let I = (X4,Y 4,Z4), f = Y 3Z3 (X3Y 3 would not work).
Then f ∈ I∗, as is shown in [13], in the generic fiber ring SZ/(2)(T), but f �∈ I∗ in
Sκ(p) for all closed points p ∈ SpecD. Hence, tight closure does not commute with
localization.


Example 8.8. Let K = Z/(2)(T ) and R = K[X ,Y,Z]/(Z4 + Z2XY + Z(X3 +Y 3)+
(T +T 2)X2Y 2). This is the generic fiber ring of the previous example. It is a normal,
standard-graded domain of dimension two and it is defined over the function field.
In this ring we have Y 3Z3 ∈ (X4,Y 4,Z4)∗, but Y 3Z3 �∈ (X4,Y 4,Z4)+. Hence, tight
closure is not the same as plus closure, not even in dimension two.


9 Some open problems


We collect some open questions and problems, together with some comments of
what is known and some guesses. We first list problems which are weaker variants
of the localization problem.


Question 9.1. Is F-regular the same as weakly F-regular?


Recall that a ring is called weakly F-regular if every ideal is tightly closed, and
F-regular if this is true for all localizations. A positive answer would have followed
from a positive answer to the localization problem. This path is not possible any-
more, but there are many positive results on this: it is true in the Gorenstein case, in
the graded case [30], it is true over an uncountable field (proved by Murthy, see [22,
Theorem 12.2]). All this shows that a positive result is likely, at least under some
additional assumptions.


Question 9.2. Does tight closure commute with the localization at one element?


There is no evidence why this should be true. It would be nice to see a counterex-
ample, and it would also be nice to have examples of bad behavior of tight closure
under geometric deformations in all characteristics.


Question 9.3. Suppose R is of finite type over a finite field. Is tight closure the same
as plus closure?


This is known in graded dimension two for R+-primary ideals by Theorem 6.4
and the extension for non-homogeneous ideals (but still graded ring) by Dietz
(see [14]). To attack this problem one probably needs first to establish new exact
criteria of what tight closure is. Even in dimension two, but not graded, the best way
to establish results is probably to develop a theory of strongly semistable modules
on a local ring.
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Can one characterize the rings where tight closure is plus closure? Are rings,
where every ideal coincides with its plus closure, F-regular? This is true for
Gorenstein rings.


For a two-dimensional standard-graded domain and the corresponding projective
curve, the following problems remain.


Question 9.4. Let C be a smooth projective curve over a field of positive character-
istic, and let L be an invertible sheaf of degree zero. Let c ∈ H1(C,L) be a coho-
mology class. Does there exist a finite mapping C′ →C, C′ another projective curve,
such that the pull-back annihilates c.


This is known for the structure sheaf OC and holds in general over (the algebraic
closure of) a finite field. It is probably not true over a field with transcendental ele-
ments, the heuristic being that otherwise there would be a uniform way to annihilate
the class over every finite field (an analogue is that every invertible sheaf of degree
zero over a finite field has finite order in Pic0(C), but the orders do not have much
in common as the field varies, and the order over larger fields might be infinite).


Question 9.5. Let R be a two-dimensional normal standard-graded domain and let I
be an R+-primary homogeneous ideal. Write ϕ(e) = eHK p2 + γ(e). Is γ(e) eventu-
ally periodic?


By Theorem 7.4 this is true if the base field is finite, but this question is open if
the base field contains transcendental elements. How does (the lowest term of) the
Hilbert–Kunz function behave under a geometric deformation?


Question 9.6. Let C → SpecD be a relative projective curve over an arithmetic base
like SpecZ, and let S be a vector bundle over C. Suppose that the generic bundle
S0 over the generic curve of characteristic zero is semistable. Is then Sp over Cp


strongly semistable for infinitely many prime numbers p?


This question was first asked by Y. Miyaoka [31]. Corresponding questions for
an arithmetic family of two-dimensional rings are: Does there exist always infinitely
many prime numbers where the Hilbert–Kunz multiplicity coincides with the char-
acteristic zero limit? If an element belongs to the solid closure in characteristic zero,
does it belong to the tight closure for infinitely many prime reductions? In [5], there
is a series of examples where the number of primes with not strongly semistable
reduction has an arbitrary small density under the assumption that there exist in-
finitely many Sophie Germain prime numbers (a prime number p such that also
2p + 1 is prime).


We come back to arbitrary dimension.


Question 9.7. Understand tight closure geometrically, say for standard-graded
normal domains with an isolated singularity. The same for Hilbert–Kunz theory.







Forcing algebras, syzygy bundles, and tight closure 97


Some progress in this direction has been made in [4] and in [10], but much
more has to be done. What is apparent from this work is that positivity proper-
ties of the top-dimensional syzygy bundle coming from a resolution are important.
A problem is that strong semistability controls global sections and by Serre duality
also top-dimensional cohomology, but one problem is to control the intermediate
cohomology.


Question 9.8. Find a good closure operation in equal characteristic zero, with tight
closure like properties, with no reduction to positive characteristic.


The notion of parasolid closure gives a first answer to this [2]. However, not
much is known about it beside that it fulfills the basic properties one expects from
tight closure, and many proofs depend on positive characteristic (though the notion
itself does not). Is there a more workable notion?


One should definitely try to understand here several candidates with the help
of forcing algebras and the corresponding Grothendieck topologies. A promis-
ing approach is to allow the forcing algebras as coverings which do not annihi-
late (top-dimensional) local cohomology unless it is annihilated by a resolution of
singularities.


Is there a closure operation which commutes with localization (this is also not
known for characteristic zero tight closure, but probably false)?


Question 9.9. Find a good closure operation in mixed characteristic and prove the
remaining homological conjectures.


In Hilbert–Kunz theory, the following questions are still open.


Question 9.10. Is the Hilbert–Kunz multiplicity always a rational number? Is it at
least an algebraic number?


The answer to the first question is probably no, as the numerical material in [35]
suggests. However, this still has to be established.


Question 9.11. Prove or disprove that the Hilbert–Kunz multiplicity has always a
limit as the characteristic tends to ∞.


If it has, or in the cases where it has, one should also find a direct interpretation
in characteristic zero and study the corresponding closure operation.
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Beyond totally reflexive modules and back
A survey on gorenstein dimensions


Lars Winther Christensen, Hans-Bjørn Foxby, and Henrik Holm


Abstract Starting from the notion of totally reflexive modules, we survey the theory
of Gorenstein homological dimensions for modules over commutative rings. The
account includes the theory’s connections with relative homological algebra and
with studies of local ring homomorphisms. It ends close to the starting point: with a
characterization of Gorenstein rings in terms of total acyclicity of complexes.


Introduction


An important motivation for the study of homological dimensions dates back to
1956, when Auslander and Buchsbaum [7] and Serre [98] proved:


Theorem A. Let R be a commutative Noetherian local ring with residue field k. Then
the following conditions are equivalent.


(i) R is regular.
(ii) k has finite projective dimension.
(iii) Every R-module has finite projective dimension.


This result opened to the solution of two long-standing conjectures of Krull. More-
over, it introduced the theme that finiteness of a homological dimension for all
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modules characterizes rings with special properties. Later work has shown that
modules of finite projective dimension over a general ring share many properties
with modules over a regular ring. This is an incitement to study homological dimen-
sions of individual modules.


In line with these ideas, Auslander and Bridger [6] introduced in 1969 the
G-dimension. It is a homological dimension for finitely generated modules over
a Noetherian ring, and it gives a characterization of Gorenstein local rings
(Theorem 1.27), which is similar to Theorem A. Indeed, R is Gorenstein if k
has finite G-dimension, and only if every finitely generated R-module has finite
G-dimension.


In the early 1990s, the G-dimension was extended beyond the realm of finitely
generated modules over a Noetherian ring. This was done by Enochs and Jenda who
introduced the notion of Gorenstein projective modules [41]. With the Gorenstein
projective dimension at hand, a perfect parallel to Theorem A becomes available
(Theorem 2.19). Subsequent work has shown that modules of finite Gorenstein pro-
jective dimension over a general ring share many properties with modules over a
Gorenstein ring.


Classical homological algebra as precedent


The notions of injective dimension and flat dimension for modules also have
Gorenstein counterparts. It was Enochs and Jenda who introduced Gorenstein
injective modules [41] and, in collaboration with Torrecillas, Gorenstein flat mod-
ules [47]. The study of Gorenstein dimensions is often called Gorenstein homologi-
cal algebra; it has taken directions from the following:


Meta Question. Given a result in classical homological algebra, does it have a coun-
terpart in Gorenstein homological algebra?


To make this concrete, we review some classical results on homological dimensions
and point to their Gorenstein counterparts within the main text. In the balance of this
introduction, R is assumed to be a commutative Noetherian local ring with maximal
ideal m and residue field k = R/m.


DEPTH AND FINITELY GENERATED MODULES


The projective dimension of a finitely generated R-module is closely related to its
depth. This is captured by the Auslander–Buchsbaum Formula [8]:


Theorem B. For every finitely generated R-module M of finite projective dimension
there is an equality pdR M = depthR−depthR M.


The Gorenstein counterpart (Theorem 1.25) actually strengthens the classical result;
this is a recurring theme in Gorenstein homological algebra.
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The injective dimension of a non-zero finitely generated R-module is either
infinite or it takes a fixed value:


Theorem C. For every non-zero finitely generated R-module M of finite injective
dimension there is an equality idR M = depthR.


This result of Bass [20] has its Gorenstein counterpart in Theorem 3.24.


CHARACTERIZATIONS OF COHEN–MACAULAY RINGS


Existence of special modules of finite homological dimension characterizes Cohen–
Macaulay rings. The equivalence of (i) and (iii) in the theorem below is still re-
ferred to as Bass’ conjecture, even though it was settled more than 20 years ago.
Indeed, Peskine and Szpiro proved in [86] that it follows from the New Intersection
Theorem, which they proved ibid. for equicharacteristic rings. In 1987, Roberts [87]
settled the New Intersection Theorem completely.


Theorem D. The following conditions on R are equivalent.


(i) R is Cohen–Macaulay.
(ii) There is a non-zero R-module of finite length and finite projective dimension.
(iii) There is a non-zero finitely generated R-module of finite injective dimension.


A Gorenstein counterpart to this characterization is yet to be established; see
Questions 1.31 and 3.26.


Gorenstein rings are also characterized by existence of special modules of finite
homological dimension. The equivalence of (i) and (ii) below is due to Peskine and
Szpiro [86]. The equivalence of (i) and (iii) was conjectured by Vasconcelos [108]
and proved by Foxby [56]. The Gorenstein counterparts are given in Theorems 3.22
and 4.28; see also Question 4.29.


Theorem E. The following conditions on R are equivalent.


(i) R is Gorenstein.
(ii) There is a non-zero cyclic R-module of finite injective dimension.
(iii) There is a non-zero finitely generated R-module of finite projective dimension


and finite injective dimension.


LOCAL RING HOMOMORPHISMS


The Frobenius endomorphism detects regularity of a local ring of positive
prime characteristic. The next theorem collects results of Avramov, Iyengar and
Miller [17], Kunz [82], and Rodicio [89]. The counterparts in Gorenstein homolo-
gical algebra to these results are given in Theorems 6.4 and 6.5.


Theorem F. Let R be of positive prime characteristic, and let φ denote its Frobenius
endomorphism. Then the following conditions are equivalent.
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(i) R is regular.
(ii) R has finite flat dimension as an R-module via φn for some n � 1.
(iii) R is flat as an R-module via φn for every n � 1.
(iv) R has finite injective dimension as an R-module via φn for some n � 1.
(v) R has injective dimension equal to dimR as an R-module via φn for


every n � 1.


Let (S,n) be yet a commutative Noetherian local ring. A ring homomorphism
ϕ : R → S is called local if there is an inclusion ϕ(m) ⊆ n. A classical chapter of
local algebra, initiated by Grothendieck, studies transfer of ring theoretic proper-
ties along such homomorphisms. If ϕ is flat, then it is called Cohen–Macaulay or
Gorenstein if its closed fiber S/mS is, respectively, a Cohen–Macaulay ring or a
Gorenstein ring. These definitions have been extended to homomorphisms of finite
flat dimension. The theorem below collects results of Avramov and Foxby from [12]
and [14]; the Gorenstein counterparts are given in Theorems 7.8 and 7.11.


Theorem G. Let ϕ : R → S be a local homomorphism and assume that S has finite
flat dimension as an R-module via ϕ . Then the following hold:


(a) S is Cohen–Macaulay if and only if R and ϕ are Cohen–Macaulay.
(b) S is Gorenstein if and only if R and ϕ are Gorenstein.


VANISHING OF COHOMOLOGY


The projective dimension of a module M is at most n if and only if the abso-
lute cohomology functor Extn+1(M,−) vanishes. Similarly (Theorem 5.25), M has
Gorenstein projective dimension at most n if and only if the relative cohomol-
ogy functor Extn+1


GP (M,−) vanishes. Unfortunately, the similarity between the two
situations does not run too deep. We give a couple of examples:


The absolute Ext is balanced, that is, it can be computed from a projective
resolution of M or from an injective resolution of the second argument. In gen-
eral, however, the only known way to compute the relative Ext is from a (so-called)
proper Gorenstein projective resolution of M.


Secondly, if M is finitely generated, then the absolute Ext commutes with local-
ization, but the relative Ext is not known to do so, unless M has finite Gorenstein
projective dimension.


Such considerations motivate the search for an alternative characterization of
modules of finite Gorenstein projective dimension, and this has been a driving force
behind much research on Gorenstein dimensions within the past 15 years. What
follows is a brief review.


EQUIVALENCE OF MODULE CATEGORIES


For a finitely generated R-module, Foxby [57] gave a “resolution-free” criterion
for finiteness of the Gorenstein projective dimension; that is, one that does not
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involve construction of a Gorenstein projective resolution. This result from 1994
is Theorem 8.2. In 1996, Enochs, Jenda, and Xu [49] extended Foxby’s criterion to
non-finitely generated R-modules, provided that R is Cohen–Macaulay with a dua-
lizing module D. Their work is related to a 1972 generalization by Foxby [54] of a
theorem of Sharp [100]. Foxby’s version reads:


Theorem H. Let R be Cohen–Macaulay with a dualizing module D. Then the
horizontal arrows below are equivalences of categories of R-modules.


AD(R)
D⊗R−


��
BD(R)


HomR(D,−)
��


{A | pdR A is finite}
D⊗R−


����


��


{B | idR B is finite}
HomR(D,−)


��


��


��


Here, AD(R) is the Auslander class (Definition 9.1) with respect to D and BD(R)
is the Bass class (Definition 9.4). What Enochs, Jenda, and Xu prove in [49] is that
the R-modules of finite Gorenstein projective dimension are exactly those in AD(R),
and the modules in BD(R) are exactly those of finite Gorenstein injective dimension.
Thus, the upper level equivalence in Theorem H is the Gorenstein counterpart of the
lower level equivalence.


A commutative Noetherian ring has a dualizing complex D if and only if
it is a homomorphic image of a Gorenstein ring of finite Krull dimension; see
Kawasaki [79]. For such rings, a result similar to Theorem H was proved by
Avramov and Foxby [13] in 1997. An interpretation in terms of Gorenstein dimen-
sions (Theorems 9.2 and 9.5) of the objects in AD(R) and BD(R) was established
by Christensen, Frankild, and Holm [31] in 2006. Testimony to the utility of these
results is the frequent occurrence—e.g., in Theorems 3.16, 4.13, 4.25, 4.30, 6.5,
6.8, 7.3, and 7.7—of the assumption that the ground ring is a homomorphic image
of a Gorenstein ring of finite Krull dimension. Recall that every complete local ring
satisfies this assumption.


Recent results, Theorems 2.20 and 4.27, by Esmkhani and Tousi [52]
and Theorem 9.11 by Christensen and Sather-Wagstaff [35] combine with
Theorems 9.2 and 9.5 to provide resolution-free criteria for finiteness of Gorenstein
dimensions over general local rings; see Remarks 9.3 and 9.12.


Scope and organization


A survey of this modest length is a portrait painted with broad pen strokes.
Inevitably, many details are omitted, and some generality has been traded in for
simplicity. We have chosen to focus on modules over commutative, and often
Noetherian, rings. Much of Gorenstein homological algebra, though, works flaw-
lessly over non-commutative rings, and there are statements in this survey about
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Noetherian rings that remain valid for coherent rings. Furthermore, most statements
about modules remain valid for complexes of modules. The reader will have to
consult the references to qualify these claims.


In most sections, the opening paragraph introduces the main references on the
topic. We strive to cite the strongest results available and, outside of this introduc-
tion, we do not attempt to trace the history of individual results. In notes, placed
at the end of sections, we give pointers to the literature on directions of research—
often new ones—that are not included in the survey. Even within the scope of this
paper, there are open ends, and more than a dozen questions and problems are found
throughout the text.


From this point on, R denotes a commutative ring. Any extra assumptions on R
are explicitly stated. We say that R is local if it is Noetherian and has a unique max-
imal ideal. We use the shorthand (R,m,k) for a local ring R with maximal ideal m
and residue field k = R/m.
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1 G-dimension of finitely generated modules


The topic of this section is Auslander and Bridger’s notion of G-dimension for
finitely generated modules over a Noetherian ring. The notes [5] from a seminar by
Auslander outline the theory of G-dimension over commutative Noetherian rings.
In [6] Auslander and Bridger treat the G-dimension within a more abstract frame-
work. Later expositions are given by Christensen [28] and by Maşek [84].


A complex M of modules is (in homological notation) an infinite sequence of
homomorphisms of R-modules


M = · · · ∂i+1−−−→ Mi
∂i−→ Mi−1


∂i−1−−−→ ·· ·
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such that ∂i∂i+1 = 0 for every i in Z. The i th homology module of M is Hi(M) =
Ker∂i/Im∂i+1. We call M acyclic if Hi(M) = 0 for all i ∈ Z.


Lemma 1.1. Let L be an acyclic complex of finitely generated projective R-modules.
The following conditions on L are equivalent.


(i) The complex HomR(L,R) is acyclic.
(ii) The complex HomR(L,F) is acyclic for every flat R-module F.
(iii) The complex E ⊗R L is acyclic for every injective R-module E.


Proof. The Lemma is proved in [28], but here is a cleaner argument: Let F be a flat module
and E be an injective module. As L consists of finitely generated projective modules, there is an
isomorphism of complexes


HomR(HomR(L,F),E) ∼= HomR(F,E)⊗R L .


It follows from this isomorphism, applied to F = R, that (i) implies (iii). Applied to a faithfully
injective module E, it shows that (iii) implies (ii), as HomR(F,E) is an injective module. It is
evident that (ii) implies (i). ��


The following nomenclature is due to Avramov and Martsinkovsky [19];
Lemma 1.6 clarifies the rationale behind it.


Definition 1.2. A complex L that satisfies the conditions in Lemma 1.1 is called
totally acyclic. An R-module M is called totally reflexive if there exists a totally
acyclic complex L such that M is isomorphic to Coker(L1 → L0).


Note that every finitely generated projective module L is totally reflexive; indeed,
the complex 0 → L


=−→ L → 0, with L in homological degrees 0 and −1, is totally
acyclic.


Example 1.3. If there exist elements x and y in R such that AnnR(x) = (y) and
AnnR(y) = (x), then the complex


· · · x−→ R
y−→ R


x−→ R
y−→ ·· ·


is totally acyclic. Thus, (x) and (y) are totally reflexive R-modules. For instance, if
X and Y are non-zero non-units in an integral domain D, then their residue classes x
and y in R = D/(XY) generate totally reflexive R-modules.


An elementary construction of rings of this kind—Example 1.4 below—shows that
non-projective totally reflexive modules may exist over a variety of rings; see also
Problem 1.30.


Example 1.4. Let S be a commutative ring, and let m > 1 be an integer. Set R =
S[X ]/(Xm), and denote by x the residue class of X in R. Then for every integer n
between 1 and m−1, the module (xn) is totally reflexive.


From Lemma 1.1 it is straightforward to deduce:


Proposition 1.5. Let S be an R-algebra of finite flat dimension. For every totally
reflexive R-module G, the module S⊗R G is totally reflexive over S.


Proposition 1.5 applies to S = R/(x), where x is an R-regular sequence. If (R,m) is
local, then it also applies to the m-adic completion S = R̂.
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Noetherian rings


Recall that a finitely generated R-module M is called reflexive if the canonical map
from M to HomR(HomR(M,R),R) is an isomorphism. The following characteriza-
tion of totally reflexive modules goes back to [6, 4.11].


Lemma 1.6. Let R be Noetherian. A finitely generated R-module G is totally
reflexive if and only if it is reflexive and for every i � 1 one has


ExtiR(G,R) = 0 = ExtiR(HomR(G,R),R).


Definition 1.7. An (augmented) G-resolution of a finitely generated module M is an
exact sequence · · · → Gi → Gi−1 → ··· → G0 → M → 0, where each module Gi is
totally reflexive.


Note that if R is Noetherian, then every finitely generated R-module has a
G-resolution, indeed it has a resolution by finitely generated free modules.


Definition 1.8. Let R be Noetherian. For a finitely generated R-module M 	= 0 the
G-dimension, denoted by G-dimR M, is the least integer n � 0 such that there exists
a G-resolution of M with Gi = 0 for all i > n. If no such n exists, then G-dimR M is
infinite. By convention, set G-dimR 0 = −∞.


The ‘G’ in the definition above is short for Gorenstein.
In [6, Chap. 3] one finds the next theorem and its corollary; see also [28, 1.2.7].


Theorem 1.9. Let R be Noetherian and M be a finitely generated R-module of finite
G-dimension. For every n � 0 the next conditions are equivalent.


(i) G-dimR M � n.
(ii) ExtiR(M,R) = 0 for all i > n.
(iii) ExtiR(M,N) = 0 for all i > n and all R-modules N with fdR N finite.
(iv) In every augmented G-resolution


· · · → Gi → Gi−1 → ··· → G0 → M → 0


the module Coker(Gn+1 → Gn) is totally reflexive.


Corollary 1.10. Let R be Noetherian. For every finitely generated R-module M of
finite G-dimension there is an equality


G-dimR M = sup{ i ∈ Z | ExtiR(M,R) 	= 0}.


Remark 1.11. Examples due to Jorgensen and Şega [77] show that in Corollary 1.10
one cannot avoid the a priori condition that G-dimR M is finite.


Remark 1.12. For a module M as in Corollary 1.10, the small finitistic projective
dimension of R is an upper bound for G-dimR M; cf. Christensen and Iyengar
[33, 3.1(a)].
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A standard argument, see [6, 3.16] or [19, 3.4], yields:


Proposition 1.13. Let R be Noetherian. If any two of the modules in an exact
sequence 0 → M′ → M → M′′ → 0 of finitely generated R-modules have finite
G-dimension, then so has the third.


The following quantitative comparison establishes the G-dimension as a refine-
ment of the projective dimension for finitely generated modules. It is easily deduced
from Corollary 1.10; see [28, 1.2.10].


Proposition 1.14. Let R be Noetherian. For every finitely generated R-module M
one has G-dimR M � pdR M, and equality holds if pdR M is finite.


By [6, 4.15] the G-dimension of a module can be measured locally:


Proposition 1.15. Let R be Noetherian. For every finitely generated R-module M
there is an equality G-dimR M = sup{G-dimRp Mp | p ∈ SpecR}.


For the projective dimension even more is known: Bass and Murthy [21, 4.5] prove
that if a finitely generated module over a Noetherian ring has finite projective di-
mension locally, then it has finite projective dimension globally—even if the ring
has infinite Krull dimension. A Gorenstein counterpart has recently been established
by Avramov, Iyengar, and Lipman [18, 6.3.4].


Theorem 1.16. Let R be Noetherian and let M be a finitely generated R-module. If
G-dimRm Mm is finite for every maximal ideal m in R, then G-dimR M is finite.


Recall that a local ring is called Gorenstein if it has finite self-injective dimen-
sion. A Noetherian ring is Gorenstein if its localization at each prime ideal is a
Gorenstein local ring, that is, idRp Rp is finite for every prime ideal p in R. Conse-
quently, the self-injective dimension of a Gorenstein ring equals its Krull dimen-
sion; that is idR R = dimR. The next result follows from [6, 4.20] in combination
with Proposition 1.15.


Theorem 1.17. Let R be Noetherian and n � 0 be an integer. Then R is Gorenstein
with dimR � n if and only if one has G-dimR M � n for every finitely generated
R-module M.


A corollary to Theorem 1.16 was established by Goto [63] already in 1982; it asserts
that also Gorenstein rings of infinite Krull dimension are characterized by finiteness
of G-dimension.


Theorem 1.18. Let R be Noetherian. Then R is Gorenstein if and only if every
finitely generated R-module has finite G-dimension.


Recall that the grade of a finitely generated module M over a Noetherian ring R
can be defined as follows:


gradeR M = inf{ i ∈ Z | ExtiR(M,R) 	= 0}.
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Foxby [55] makes the following:


Definition 1.19. Let R be Noetherian. A finitely generated R-module M is called
quasi-perfect if it has finite G-dimension equal to gradeR M.


The next theorem applies to S = R/(x), where x is an R-regular sequence. Special
(local) cases of the theorem are due to Golod [62] and to Avramov and Foxby [13,
7.11]. Christensen’s proof [29, 6.5] establishes the general case.


Theorem 1.20. Let R be Noetherian and S be a commutative Noetherian module-
finite R-algebra. If S is a quasi-perfect R-module of grade g such that ExtgR(S,R)∼= S,
then the next equality holds for every finitely generated S-module N,


G-dimR N = G-dimS N + G-dimR S.


Note that an S-module has finite G-dimension over R if and only if it has finite
G-dimension over S; see also Theorem 7.7. The next question is raised in [13]; it
asks if the assumption of quasi-perfectness in Theorem 1.20 is necessary.


Question 1.21. Let R be Noetherian, let S be a commutative Noetherian module-
finite R-algebra, and let N be a finitely generated S-module. If G-dimS N and
G-dimR S are finite, is then G-dimR N finite?


This is known as the Transitivity Question. By [13, 4.7] and [29, 3.15 and 6.5] it has
an affirmative answer if pdS N is finite; see also Theorem 7.4.


Local rings


Before we proceed with results on G-dimension of modules over local rings, we
make a qualitative comparison to the projective dimension. Theorem 1.20 reveals a
remarkable property of the G-dimension, one that has almost no counterpart for the
projective dimension. Here is an example:


Example 1.22. Let (R,m,k) be local of positive depth. Pick a regular element x in
m and set S = R/(x). Then one has gradeR S = 1 = pdR S and Ext1R(S,R) ∼= S, but
pdS N is infinite for every S-module N such that x is in mAnnR N; see Shamash [99,
Section 3]. In particular, if R is regular and x is in m2, then S is not regular, so pdS k
is infinite while pdR k is finite; see Theorem A.


If G is a totally reflexive R-module, then every R-regular element is G-regular.
A strong converse holds for modules of finite projective dimension; it is (still) re-
ferred to as Auslander’s zero-divisor conjecture: let R be local and M 	= 0 be a
finitely generated R-module with pdR M finite. Then every M-regular element is R-
regular; for a proof see Roberts [88, 6.2.3]. An instance of Example 1.3 shows that
one can not relax the condition on M to finite G-dimension:


Example 1.23. Let k be a field and consider the local ring R = k[[X ,Y ]]/(XY ). Then
the residue class x of X generates a totally reflexive module. The element x is
(x)-regular but nevertheless a zero-divisor in R.
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While a tensor product of projective modules is projective, the next example
shows that totally reflexive modules do not have an analogous property.


Example 1.24. Let R be as in Example 1.23. The R-modules (x) and (y) are totally
reflexive, but (x)⊗R (y) ∼= k is not. Indeed, k is not a submodule of a free R-module.


The next result [6, 4.13] is parallel to Theorem B in the Introduction; it is known
as the Auslander–Bridger Formula.


Theorem 1.25. Let R be local. For every finitely generated R-module M of finite
G-dimension there is an equality


G-dimR M = depthR−depthR M.


In [84] Maşek corrects the proof of [6, 4.13]. Proofs can also be found in [5] and [28].


By Lemma 1.6 the G-dimension is preserved under completion:


Proposition 1.26. Let R be local. For every finitely generated R-module M there is
an equality


G-dimR M = G-dimR̂(R̂⊗R M).


The following main result from [5, Section 3.2] is akin to Theorem A, but it
differs in that it only deals with finitely generated modules.


Theorem 1.27. For a local ring (R,m,k) the next conditions are equivalent.


(i) R is Gorenstein.
(ii) G-dimR k is finite.
(iii) G-dimR M is finite for every finitely generated R-module M.


It follows that non-projective totally reflexive modules exist over any non-regular
Gorenstein local ring. On the other hand, Example 1.4 shows that existence of
such modules does not identify the ground ring as a member of one of the stan-
dard classes, say, Cohen–Macaulay rings.


A theorem of Christensen, Piepmeyer, Striuli, and Takahashi [34, 4.3] shows that
fewness of totally reflexive modules comes in two distinct flavors:


Theorem 1.28. Let R be local. If there are only finitely many indecomposable to-
tally reflexive R-modules, up to isomorphism, then R is Gorenstein or every totally
reflexive R-module is free.


This dichotomy brings two problems to light:


Problem 1.29. Let R be a local ring that is not Gorenstein and assume that there
exists a non-free totally reflexive R-module. Find constructions that produce infinite
families of non-isomorphic indecomposable totally reflexive modules.


Problem 1.30. Describe the local rings over which every totally reflexive module is
free.
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While the first problem is posed in [34], the second one was already raised by
Avramov and Martsinkovsky [19], and it is proved ibid. that over a Golod local ring
that is not Gorenstein, every totally reflexive module is free. Another partial answer
to Problem 1.30 is obtained by Yoshino [116], and by Christensen and Veliche [36].
The problem is also studied by Takahashi in [105].


Finally, Theorem D in the Introduction motivates:


Question 1.31. Let R be a local ring. If there exists a non-zero R-module of finite
length and finite G-dimension, is then R Cohen–Macaulay?


A partial answer to this question is obtained by Takahashi [101, 2.3].


Notes


A topic that was only treated briefly above is constructions of totally reflexive modules. Such
constructions are found in [16] by Avramov, Gasharov and Peeva, in work of Takahashi and
Watanabe [106], and in Yoshino’s [116].


Hummel and Marley [73] extend the notion of G-dimension to finitely presented modules over
coherent rings and use it to define and study coherent Gorenstein rings.


Gerko [61, Section 2] studies a dimension—the PCI-dimension or CI∗-dimension—based on a
subclass of the totally reflexive modules. Golod [62] studies a generalized notion of G-dimension:
the GC-dimension, based on total reflexivity with respect to a semidualizing module C. These
studies are continued by, among others, Gerko [61, Section 1] and Salarian, Sather-Wagstaff, and
Yassemi [91]; see also the notes in Section 8.


An approach to homological dimensions that is not treated in this survey is based on so-
called quasi-deformations. Several authors—among them Avramov, Gasharov, and Peeva [16] and
Veliche [109]—take this approach to define homological dimensions that are intermediate between
the projective dimension and the G-dimension for finitely generated modules. Gerko [61, Section 3]
defines a Cohen–Macaulay dimension, which is a refinement of the G-dimension. Avramov [10,
Section 8] surveys these dimensions.


2 Gorenstein projective dimension


To extend the G-dimension beyond the realm of finitely generated modules over
Noetherian rings, Enochs and Jenda [41] introduced the notion of Gorenstein pro-
jective modules. The same authors, and their collaborators, studied these modules
in several subsequent papers. The associated dimension, which is the focus of this
section, was studied by Christensen [28] and Holm [66].


In organization, this section is parallel to Section 1.


Definition 2.1. An R-module A is called Gorenstein projective if there exists an
acyclic complex P of projective R-modules such that Coker(P1 → P0) ∼= A and such
that HomR(P,Q) is acyclic for every projective R-module Q.


It is evident that every projective module is Gorenstein projective.


Example 2.2. Every totally reflexive module is Gorenstein projective; this follows
from Definition 1.2 and Lemma 1.1.
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Basic categorical properties are recorded in [66, Section 2]:


Proposition 2.3. The class of Gorenstein projective R-modules is closed under
direct sums and summands.


Every projective module is a direct summand of a free one. A parallel result
for Gorenstein projective modules, Theorem 2.5 below, is due to Bennis and
Mahdou [24, Section 2]; as substitute for free modules they define:


Definition 2.4. An R-module A is called strongly Gorenstein projective if there
exists an acyclic complex P of projective R-modules, in which all the differentials
are identical, such that Coker(P1 → P0) ∼= A, and such that HomR(P,Q) is acyclic
for every projective R-module Q.


Theorem 2.5. An R-module is Gorenstein projective if and only if it is a direct
summand of a strongly Gorenstein projective R-module.


Definition 2.6. An (augmented) Gorenstein projective resolution of a module M is
an exact sequence · · · → Ai → Ai−1 → ··· → A0 → M → 0, where each module Ai


is Gorenstein projective.


Note that every module has a Gorenstein projective resolution, as a free resolution
is trivially a Gorenstein projective one.


Definition 2.7. The Gorenstein projective dimension of a module M 	= 0, denoted
by GpdR M, is the least integer n � 0 such that there exists a Gorenstein projective
resolution of M with Ai = 0 for all i > n. If no such n exists, then GpdR M is infinite.
By convention, set GpdR 0 = −∞.


In [66, Section 2] one finds the next standard theorem and corollary.


Theorem 2.8. Let M be an R-module of finite Gorenstein projective dimension. For
every integer n � 0 the following conditions are equivalent.


(i) GpdR M � n.
(ii) ExtiR(M,Q) = 0 for all i > n and all projective R-modules Q.
(iii) ExtiR(M,N) = 0 for all i > n and all R-modules N with pdR N finite.
(iv) In every augmented Gorenstein projective resolution


· · · → Ai → Ai−1 → ··· → A0 → M → 0


the module Coker(An+1 → An) is Gorenstein projective.


Corollary 2.9. For every R-module M of finite Gorenstein projective dimension
there is an equality


GpdR M = sup{ i ∈ Z | ExtiR(M,Q) 	= 0 for some projective R-module Q}.


Remark 2.10. For every R-module M as in the corollary, the finitistic projective
dimension of R is an upper bound for GpdR M; see [66, 2.28].
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The next result [66, 2.24] extends Proposition 1.13.


Proposition 2.11. Let 0 → M′ → M → M′′ → 0 be an exact sequence of R-modules.
If any two of the modules have finite Gorenstein projective dimension, then so has
the third.


The Gorenstein projective dimension is a refinement of the projective dimension;
this follows from Corollary 2.9:


Proposition 2.12. For every R-module M one has GpdR M � pdR M, and equality
holds if M has finite projective dimension.


Supplementary information comes from Holm [67, 2.2]:


Proposition 2.13. If M is an R-module of finite injective dimension, then there is an
equality GpdR M = pdR M.


The next result of Foxby is published in [32, Ascent table II(b)].


Proposition 2.14. Let S be an R-algebra of finite projective dimension. For ev-
ery Gorenstein projective R-module A, the module S⊗R A is Gorenstein projective
over S.


Noetherian rings


Finiteness of the Gorenstein projective dimension characterizes Gorenstein rings.
The next result of Enochs and Jenda [43, 12.3.1] extends Theorem 1.17.


Theorem 2.15. Let R be Noetherian and n � 0 be an integer. Then R is Gorenstein
with dimR � n if and only if GpdR M � n for every R-module M.


The next result [28, 4.2.6] compares the Gorenstein projective dimension to the
G-dimension.


Proposition 2.16. Let R be Noetherian. For every finitely generated R-module M
there is an equality GpdR M = G-dimR M.


The Gorenstein projective dimension of a module can not be measured locally;
that is, Proposition 1.15 does not extend to non-finitely generated modules. As a
consequence of Proposition 2.14, though, one has the following:


Proposition 2.17. Let R be Noetherian of finite Krull dimension. For every
R-module M and every prime ideal p in R one has GpdRp


Mp � GpdR M.


Theorem E and Proposition 2.13 yield:


Theorem 2.18. Let R be Noetherian and M a finitely generated R-module. If
GpdR M and idR M are finite, then Rp is Gorenstein for all p ∈ SuppR M.
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Local rings


The next characterization of Gorenstein local rings—akin to Theorem A in the
Introduction—follows from Theorems 1.27 and 2.15 via Proposition 2.16.


Theorem 2.19. For a local ring (R,m,k) the next conditions are equivalent.


(i) R is Gorenstein.
(ii) GpdR k is finite.
(iii) GpdR M is finite for every R-module M.


The inequality in the next theorem is a consequence of Proposition 2.14. The
second assertion is due to Esmkhani and Tousi [52, 3.5], cf. [31, 4.1]. The result
should be compared to Proposition 1.26.


Theorem 2.20. Let R be local and M be an R-module. Then one has


GpdR̂(R̂⊗R M) � GpdR M,


and if GpdR̂(R̂⊗R M) is finite, then so is GpdR M.


Notes


Holm and Jørgensen [69] extend Golod’s [62] notion of GC-dimension to non-finitely generated
modules in the form of a C-Gorenstein projective dimension. Further studies of this dimension are
made by White [112].


3 Gorenstein injective dimension


The notion of Gorenstein injective modules is (categorically) dual to that of
Gorenstein projective modules. The two were introduced in the same paper by
Enochs and Jenda [41] and investigated in subsequent works by the same authors,
by Christensen and Sather-Wagstaff [35], and by Holm [66].


This section is structured parallelly to the previous ones.


Definition 3.1. An R-module B is called Gorenstein injective if there exists an
acyclic complex I of injective R-modules such that Ker(I0 → I1) ∼= B, and such
that HomR(E,I) is acyclic for every injective R-module E .


It is clear that every injective module is Gorenstein injective.


Example 3.2. Let L be a totally acyclic complex of finitely generated projective
R-modules, see Definition 1.2, and let I be an injective R-module. Then the acyclic
complex I = HomR(L, I) consists of injective modules, and from Lemma 1.1 it fol-
lows that the complex HomR(E,I) ∼= HomR(E ⊗R L, I) is acyclic for every injective
module E . Thus, if G is a totally reflexive R-module and I is injective, then the
module HomR(G, I) is Gorenstein injective.
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Basic categorical properties are established in [66, 2.6]:


Proposition 3.3. The class of Gorenstein injective R-modules is closed under direct
products and summands.


Under extra assumptions on the ring, Theorem 3.16 gives more information.


Definition 3.4. An (augmented) Gorenstein injective resolution of a module M is
an exact sequence 0 → M → B0 → ··· → Bi−1 → Bi → ··· , where each module Bi


is Gorenstein injective.


Note that every module has a Gorenstein injective resolution, as an injective
resolution is trivially a Gorenstein injective one.


Definition 3.5. The Gorenstein injective dimension of an R-module M 	= 0, denoted
by GidR M, is the least integer n � 0 such that there exists a Gorenstein injective
resolution of M with Bi = 0 for all i > n. If no such n exists, then GidR M is infinite.
By convention, set GidR 0 = −∞.


The next standard theorem is [66, 2.22].


Theorem 3.6. Let M be an R-module of finite Gorenstein injective dimension. For
every integer n � 0 the following conditions are equivalent.


(i) GidR M � n.
(ii) ExtiR(E,M) = 0 for all i > n and all injective R-modules E.
(iii) ExtiR(N,M) = 0 for all i > n and all R-modules N with idR N finite.
(iv) In every augmented Gorenstein injective resolution


0 → M → B0 → ··· → Bi−1 → Bi → ···


the module Ker(Bn → Bn+1) is Gorenstein injective.


Corollary 3.7. For every R-module M of finite Gorenstein injective dimension there
is an equality


GidR M = sup{ i ∈ Z | ExtiR(E,M) 	= 0 for some injective R-module E }.


Remark 3.8. For every R-module M as in the corollary, the finitistic injective
dimension of R is an upper bound for GidR M; see [66, 2.29].


The next result [66, 2.25] is similar to Proposition 2.11.


Proposition 3.9. Let 0 → M′ → M → M′′ → 0 be an exact sequence of R-modules.
If any two of the modules have finite Gorenstein injective dimension, then so has
the third.


The Gorenstein injective dimension is a refinement of the injective dimension;
this follows from Corollary 3.7:
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Proposition 3.10. For every R-module M one has GidR M � idR M, and equality
holds if M has finite injective dimension.


Supplementary information comes from Holm [67, 2.1]:


Proposition 3.11. If M is an R-module of finite projective dimension, then there is
an equality GidR M = idR M. In particular, one has GidR R = idR R.


In [32] Christensen and Holm study (co)base change of modules of finite
Gorenstein homological dimension. The following is elementary to verify:


Proposition 3.12. Let S be an R-algebra of finite projective dimension. For every
Gorenstein injective R-module B, the module HomR(S,B) is Gorenstein injective
over S.


For a conditional converse see Theorems 3.27 and 9.11.
The next result of Bennis, Mahdou, and Ouarghi [25, 2.2] should be compared


to characterizations of Gorenstein rings like Theorems 2.15 and 3.14, and also to
Theorems 2.18 and 3.21. It is a perfect Gorenstein counterpart to a classical result
due to Faith and Walker among others; see e.g. [111, 4.2.4].


Theorem 3.13. The following conditions on R are equivalent.


(i) R is quasi-Frobenius.
(ii) Every R-module is Gorenstein projective.
(iii) Every R-module is Gorenstein injective.
(iv) Every Gorenstein projective R-module is Gorenstein injective.
(v) Every Gorenstein injective R-module is Gorenstein projective.


Noetherian rings


Finiteness of the Gorenstein injective dimension characterizes Gorenstein rings; this
result is due to Enochs and Jenda [42, 3.1]:


Theorem 3.14. Let R be Noetherian and n � 0 be an integer. Then R is Gorenstein
with dimR � n if and only if GidR M � n for every R-module M.


A ring is Noetherian if every countable direct sum of injective modules is injec-
tive (and only if every direct limit of injective modules is injective). The “if” part
has a perfect Gorenstein counterpart:


Proposition 3.15. If every countable direct sum of Gorenstein injective R-modules
is Gorenstein injective, then R is Noetherian.


Proof. It is sufficient to see that every countable direct sum of injective R-modules is injective. Let
{En}n∈N be a family of injective modules. By assumption, the module


⊕
En is Gorenstein injective;


in particular, there is an epimorphism ϕ : I � ⊕
En such that I is injective and HomR(E,ϕ) is


surjective for every injective R-module E. Applying this to E = En it is elementary to verify that ϕ
is a split epimorphism. ��
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Christensen, Frankild, and Holm [31, 6.9] provide a partial converse:


Theorem 3.16. Assume that R is a homomorphic image of a Gorenstein ring of finite
Krull dimension. Then the class of Gorenstein injective modules is closed under
direct limits; in particular, it is closed under direct sums.


As explained in the Introduction, the hypothesis on R in this theorem ensures the ex-
istence of a dualizing R-complex and an associated Bass class, cf. Section 9. These
tools are essential to the known proof of Theorem 3.16.


Question 3.17. Let R be Noetherian. Is then every direct limit of Gorenstein injective
R-modules Gorenstein injective?


Next follows a Gorenstein version of Chouinard’s formula [27, 3.1]; it is proved
in [35, 2.2]. Recall that the width of a module M over a local ring (R,m,k) is
defined as


widthR M = inf{ i ∈ Z | TorR
i (k,M) 	= 0}.


Theorem 3.18. Let R be Noetherian. For every R-module M of finite Gorenstein
injective dimension there is an equality


GidR M = {depth Rp−widthRp Mp | p ∈ SpecR}.


Let M be an R-module, and let p be a prime ideal in R. Provided that GidRp Mp


is finite, the inequality GidRp Mp � GidR M follows immediately from the theorem.
However, the next question remains open.


Question 3.19. Let R be Noetherian and B be a Gorenstein injective R-module. Is
then Bp Gorenstein injective over Rp for every prime ideal p in R?


A partial answer is known from [31, 5.5]:


Proposition 3.20. Assume that R is a homomorphic image of a Gorenstein ring of
finite Krull dimension. For every R-module M and every prime ideal p there is an
inequality GidRp Mp � GidR M.


Theorem E and Proposition 3.11 yield:


Theorem 3.21. Let R be Noetherian and M a finitely generated R-module. If GidR M
and pdR M are finite, then Rp is Gorenstein for all p ∈ SuppR M.


Local rings


The following theorem of Foxby and Frankild [58, 4.5] generalizes work of Peskine
and Szpiro [86], cf. Theorem E.


Theorem 3.22. A local ring R is Gorenstein if and only if there exists a non-zero
cyclic R-module of finite Gorenstein injective dimension.
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Theorems 3.14 and 3.22 yield a parallel to Theorem1.27, akin to Theorem A.


Corollary 3.23. For a local ring (R,m,k) the next conditions are equivalent.


(i) R is Gorenstein.
(ii) GidR k is finite.
(iii) GidR M is finite for every R-module M.


The first part of the next theorem is due to Christensen, Frankild, and Iyen-
gar, and published in [58, 3.6]. The equality in Theorem 3.24—the Gorenstein
analogue of Theorem C in the Introduction—is proved by Khatami, Tousi, and
Yassemi [80, 2.5]; see also [35, 2.3].


Theorem 3.24. Let R be local and M 	= 0 be a finitely generated R-module. Then
GidR M and GidR̂(R̂⊗R M) are simultaneously finite, and when they are finite, there
is an equality


GidR M = depthR.


Remark 3.25. Let R be local and M 	= 0 be an R-module. If M has finite length and
finite G-dimension, then its Matlis dual has finite Gorenstein injective dimension,
cf. Example 3.2. See also Takahashi [103].


This remark and Theorem D from the Introduction motivate:


Question 3.26. Let R be local. If there exists a non-zero finitely generated R-module
of finite Gorenstein injective dimension, is then R Cohen–Macaulay?


A partial answer to this question is given by Yassemi [115, 1.3].
Esmkhani and Tousi [53, 2.5] prove the following conditional converse


to Proposition 3.12. Recall that an R-module M is said to be cotorsion if
Ext1R(F,M) = 0 for every flat R-module F .


Theorem 3.27. Let R be local. An R-module M is Gorenstein injective if and only if
it is cotorsion and HomR(R̂,M) is Gorenstein injective over R̂.


The example below demonstrates the necessity of the cotorsion hypothesis. Working
in the derived category one obtains a stronger result; see Theorem 9.11.


Example 3.28. Let (R,m) be a local domain which is not m-adically complete.
Aldrich, Enochs, and López-Ramos [1, 3.3] show that the module HomR(R̂,R) is
zero and hence Gorenstein injective over R̂. However, GidR R is infinite if R is not
Gorenstein, cf. Proposition 3.11.


Notes


Dual to the notion of strongly Gorenstein projective modules, see Definition 2.4, Bennis and
Mahdou [24] also study strongly Gorenstein injective modules.


Several authors—Asadollahi, Sahandi, Salarian, Sazeedeh, Sharif, and Yassemi—have studied
the relationship between Gorenstein injectivity and local cohomology; see [3], [90], [96], [97],
and [115].
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4 Gorenstein flat dimension


Another extension of the G-dimension is based on Gorenstein flat modules—a
notion due to Enochs, Jenda, and Torrecillas [47]. Christensen [28] and Holm [66]
are other main references for this section.


The organization of this section follows the pattern from Sections 1–3.


Definition 4.1. An R-module A is called Gorenstein flat if there exists an acyclic
complex F of flat R-modules such that Coker(F1 → F0) ∼= A, and such that E ⊗R F
is acyclic for every injective R-module E .


It is evident that every flat module is Gorenstein flat.


Example 4.2. Every totally reflexive module is Gorenstein flat; this follows from
Definition 1.2 and Lemma 1.1.


Here is a direct consequence of Definition 4.1:


Proposition 4.3. The class of Gorenstein flat R-modules is closed under direct sums.


See Theorems 4.13 and 4.14 for further categorical properties of Gorenstein flat
modules.


Definition 4.4. An (augmented) Gorenstein flat resolution of a module M is an
exact sequence · · · → Ai → Ai−1 → ··· → A0 → M → 0, where each module Ai is
Gorenstein flat.


Note that every module has a Gorenstein flat resolution, as a free resolution is
trivially a Gorenstein flat one.


Definition 4.5. The Gorenstein flat dimension of an R-module M 	= 0, denoted by
GfdR M, is the least integer n � 0 such that there exists a Gorenstein flat resolu-
tion of M with Ai = 0 for all i > n. If no such n exists, then GfdR M is infinite. By
convention, set GfdR 0 = −∞.


The next duality result is an immediate consequence of the definitions.


Proposition 4.6. Let M be an R-module. For every injective R-module E there is an
inequality GidR HomR(M,E) � GfdR M.


Recall that an R-module E is called faithfully injective if it is injective and
HomR(M,E) = 0 only if M = 0. The next question is inspired by the classical
situation. It has an affirmative answer for Noetherian rings; see Theorem 4.16.


Question 4.7. Let M and E be R-modules. If E is faithfully injective and the module
HomR(M,E) is Gorenstein injective, is then M Gorenstein flat?


A straightforward application of Proposition 4.6 shows that the Gorenstein flat
dimension is a refinement of the flat dimension; cf. Bennis [23, 2.2]:
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Proposition 4.8. For every R-module M one has GfdR M � fdR M, and equality
holds if M has finite flat dimension.


The following result is an immediate consequence of Definition 4.1. Over a local
ring a stronger result is available; see Theorem 4.27.


Proposition 4.9. Let S be a flat R-algebra. For every R-module M there is an
inequality GfdS(S⊗R M) � GfdR M.


Corollary 4.10. Let M be an R-module. For every prime ideal p in R there is an
inequality GfdRp Mp � GfdR M.


Noetherian rings


Finiteness of the Gorenstein flat dimension characterizes Gorenstein rings; this is a
result of Enochs and Jenda [42, 3.1]:


Theorem 4.11. Let R be Noetherian and n � 0 be an integer. Then R is Gorenstein
with dimR � n if and only if GfdR M � n for every R-module M.


A ring is coherent if and only if every direct product of flat modules is flat. We
suggest the following problem:


Problem 4.12. Describe the rings over which every direct product of Gorenstein flat
modules is Gorenstein flat.


Partial answers are due to Christensen, Frankild, and Holm [31, 5.7] and to Murfet
and Salarian [85, 6.21].


Theorem 4.13. Let R be Noetherian. The class of Gorenstein flat R-modules is
closed under direct products under either of the following conditions:


(a) R is homomorphic image of a Gorenstein ring of finite Krull dimension.
(b) Rp is Gorenstein for every non-maximal prime ideal p in R.


The next result follows from work of Enochs, Jenda, and López-Ramos [46, 2.1]
and [40, 3.3].


Theorem 4.14. Let R be Noetherian. Then the class of Gorenstein flat R-modules is
closed under direct summands and direct limits.


A result of Govorov [64] and Lazard [83, 1.2] asserts that a module is flat if and
only if it is a direct limit of finitely generated projective modules. For Gorenstein
flat modules, the situation is more complicated:


Remark 4.15. Let R be Noetherian. It follows from Example 4.2 and Theorem 4.14
that a direct limit of totally reflexive modules is Gorenstein flat. If R is Gorenstein
of finite Krull dimension, then every Gorenstein flat R-module can be written as
a direct limit of totally reflexive modules; see Enochs and Jenda [43, 10.3.8]. If
R is not Gorenstein, this conclusion may fail; see Beligiannis and Krause [22, 4.2
and 4.3] and Theorem 4.30.
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The next result [28, 6.4.2] gives a partial answer to Question 4.7.


Theorem 4.16. Let R be Noetherian, and let M and E be R-modules. If E is faithfully
injective, then there is an equality


GidR HomR(M,E) = GfdR M.


Theorem 4.17 is found in [66, 3.14]. It can be obtained by application of
Theorem 4.16 to Theorem 3.6.


Theorem 4.17. Let R be Noetherian and M be an R-module of finite Gorenstein flat
dimension. For every integer n � 0 the following are equivalent.


(i) GfdR M � n.
(ii) TorR


i (E,M) = 0 for all i > n and all injective R-modules E.
(iii) TorR


i (N,M) = 0 for all i > n and all R-modules N with idR N finite.
(iv) In every augmented Gorenstein flat resolution


· · · → Ai → Ai−1 → ··· → A0 → M → 0


the module Coker(An+1 → An) is Gorenstein flat.


Corollary 4.18. Let R be Noetherian. For every R-module M of finite Gorenstein
flat dimension there is an equality


GfdR M = sup{ i ∈ Z | TorR
i (E,M) 	= 0 for some injective R-module E }.


Remark 4.19. For every R-module M as in the corollary, the finitistic flat dimension
of R is an upper bound for GfdR M; see [66, 3.24].


The next result [66, 3.15] follows by Theorem 4.16 and Proposition 3.9.


Proposition 4.20. Let R be Noetherian. If any two of the modules in an exact
sequence 0 → M′ → M → M′′ → 0 have finite Gorenstein flat dimension, then so
has the third.


A result of Holm [67, 2.6] supplements Proposition 4.8:


Proposition 4.21. Let R be Noetherian of finite Krull dimension. For every
R-module M of finite injective dimension one has GfdR M = fdR M.


Recall that the depth of a module M over a local ring (R,m,k) is given as


depthR M = inf{ i ∈ Z | ExtiR(k,M) 	= 0}.


Theorem 4.22 is a Gorenstein version of Chouinard’s [27, 1.2]. It follows from
[66, 3.19] and [30, 2.4(b)]; see also Iyengar and Sather-Wagstaff [76, 8.8].







Beyond totally reflexive modules and back 123


Theorem 4.22. Let R be Noetherian. For every R-module M of finite Gorenstein flat
dimension there is an equality


GfdR M = {depth Rp −depthRp
Mp | p ∈ SpecR}.


The next two results compare the Gorenstein flat dimension to the Gorenstein
projective dimension. The inequality in Theorem 4.23 is [66, 3.4], and the second
assertion in this theorem is due to Esmkhani and Tousi [52, 3.4].


Theorem 4.23. Let R be Noetherian of finite Krull dimension, and let M be an
R-module. Then there is an inequality


GfdR M � GpdR M,


and if GfdR M is finite, then so is GpdR M.


It is not known whether the inequality in Theorem 4.23 holds over every commuta-
tive ring. For finitely generated modules one has [28, 4.2.6 and 5.1.11]:


Proposition 4.24. Let R be Noetherian. For every finitely generated R-module M
there is an equality GfdR M = GpdR M = G-dimR M.


The next result [31, 5.1] is related to Theorem 4.16; the question that follows is
prompted by the classical situation.


Theorem 4.25. Assume that R is a homomorphic image of a Gorenstein ring of finite
Krull dimension. For every R-module M and every injective R-module E there is an
inequality


GfdR HomR(M,E) � GidR M,


and equality holds if E is faithfully injective.


Question 4.26. Let R be Noetherian and M and E be R-modules. If M is Gorenstein
injective and E is injective, is then HomR(M,E) Gorenstein flat?


Local rings


Over a local ring there is a stronger version [52, 3.5] of Proposition 4.9:


Theorem 4.27. Let R be local. For every R-module M there is an equality


GfdR̂(R̂⊗R M) = GfdR M.


Combination of [67, 2.1 and 2.2] with Theorem E yields the next result. Recall
that a non-zero finitely generated module has finite depth.
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Theorem 4.28. For a local ring R the following conditions are equivalent.


(i) R is Gorenstein.
(ii) There is an R-module M with depthR M, fdR M, and GidR M finite.
(iii) There is an R-module M with depthR M, idR M, and GfdR M finite.


We have for a while been interested in:


Question 4.29. Let R be local. If there exists an R-module M with depthR M, GfdR M,
and GidR M finite, is then R Gorenstein?


A theorem of Jørgensen and Holm [71] brings perspective to Remark 4.15.


Theorem 4.30. Assume that R is Henselian local and a homomorphic image of a
Gorenstein ring. If every Gorenstein flat R-module is a direct limit of totally reflexive
modules, then R is Gorenstein or every totally reflexive R-module is free.


Notes


Parallel to the notion of strongly Gorenstein projective modules, see Definition 2.4, Bennis and
Mahdou [24] also study strongly Gorenstein flat modules. A different notion of strongly Gorenstein
flat modules is studied by Ding, Li, and Mao in [38].


5 Relative homological algebra


Over a Gorenstein local ring, the totally reflexive modules are exactly the maximal
Cohen–Macaulay modules, and their representation theory is a classical topic. Over
rings that are not Gorenstein, the representation theory of totally reflexive modules
was taken up by Takahashi [102] and Yoshino [116]. Conclusive results have re-
cently been obtained by Christensen, Piepmeyer, Striuli, and Takahashi [34] and by
Holm and Jørgensen [71]. These results are cast in the language of precovers and
preenvelopes; see Theorem 5.4.


Relative homological algebra studies dimensions and (co)homology functors
based on resolutions that are constructed via precovers or preenvelopes. Enochs and
Jenda and their collaborators have made extensive studies of the precovering and
preenveloping properties of the classes of Gorenstein flat and Gorenstein injective
modules. Many of their results are collected in [43].


Terminology


Let H be a class of R-modules. Recall that an H-precover (also called a right
H-approximation) of an R-module M is a homomorphism ϕ : H → M with H in
H such that


HomR(H ′,ϕ) : HomR(H ′,H) −→ HomR(H ′,M)
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is surjective for every H ′ in H. That is, every homomorphism from a module
in H to M factors through ϕ . Dually one defines H-preenvelopes (also called left
H-approximations).


Remark 5.1. If H contains all projective modules, then every H-precover is an
epimorphism. Thus, Gorenstein projective/flat precovers are epimorphisms.


If H contains all injective modules, then every H-preenvelope is a mono-
morphism. Thus, every Gorenstein injective preenvelope is a monomorphism.


Fix an H-precover ϕ . It is called special if one has Ext1R(H ′,Kerϕ) = 0 for every
module H ′ in H. It is called a cover (or a minimal right approximation) if in ev-
ery factorization ϕ = ϕψ , the map ψ : H → H is an automorphism. If H is closed
under extensions, then every H-cover is a special precover. This is known as Waka-
matsu’s lemma; see Xu [113, 2.1.1]. Dually one defines special H-preenvelopes and
H-envelopes.


Remark 5.2. Let I be a complex of injective modules as in Definition 3.1. Then
every differential in I is a special injective precover of its image; this fact is used
in the proof of Proposition 3.15. Similarly, in a complex P of projective modules
as in Definition 2.1, every differential ∂i is a special projective preenvelope of the
cokernel of the previous differential ∂i+1.


Totally reflexive covers and envelopes


The next result of Avramov and Martsinkovsky [19, 3.1] corresponds over a
Gorenstein local ring to the existence of maximal Cohen–Macaulay approxima-
tions in the sense of Auslander and Buchweitz [9].


Proposition 5.3. Let R be Noetherian. For every finitely generated R-module M of
finite G-dimension there is an exact sequence 0 → K → G → M → 0 of finitely
generated modules, where G is totally reflexive and pdR K = max{0,G-dimR M−1}.
In particular, every finitely generated R-module of finite G-dimension has a special
totally reflexive precover.


An unpublished result of Auslander states that every finitely generated module
over a Gorenstein local ring has a totally reflexive cover; see Enochs, Jenda, and
Xu [50] for a generalization. A strong converse is contained in the next theorem,
which combines Auslander’s result with recent work of several authors; see [34]
and [71].


Theorem 5.4. For a local ring (R,m,k) the next conditions are equivalent.


(i) Every finitely generated R-module has a totally reflexive cover.
(ii) The residue field k has a special totally reflexive precover.
(iii) Every finitely generated R-module has a totally reflexive envelope.
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(iv) Every finitely generated R-module has a special totally reflexive preenvelope.
(v) R is Gorenstein or every totally reflexive R-module is free.


If R is local and Henselian (e.g. complete), then existence of a totally reflexive
precover implies existence of a totally reflexive cover; see [102, 2.5]. In that case
one can drop “special” in part (ii) above. In general, though, the next question from
[34] remains open.


Question 5.5. Let (R,m,k) be local. If k has a totally reflexive precover, is then
R Gorenstein or every totally reflexive R-module free?


Gorenstein projective precovers


The following result is proved by Holm in [66, 2.10].


Proposition 5.6. For every R-module M of finite Gorenstein projective dimension
there is an exact sequence 0 → K → A → M → 0, where A is Gorenstein projective
and pdR K = max{0,GpdR M−1}. In particular, every R-module of finite Gorenstein
projective dimension has a special Gorenstein projective precover.


For an important class of rings, Jørgensen [78] and Murfet and Salarian [85]
prove existence of Gorenstein projective precovers for all modules:


Theorem 5.7. If R is Noetherian of finite Krull dimension, then every R-module has
a Gorenstein projective precover.


Remark 5.8. Actually, the argument in Krause’s proof of [81, 7.12(1)] applies to the
setup in [78] and yields existence of a special Gorenstein projective precover for
every module over a ring as in Theorem 5.7.


Over any ring, every module has a special projective precover; hence:


Problem 5.9. Describe the rings over which every module has a (special) Gorenstein
projective precover.


Gorenstein injective preenvelopes


In [66, 2.15] one finds:


Proposition 5.10. For every R-module M of finite Gorenstein injective dimension
there is an exact sequence 0 → M → B → C → 0, where B is Gorenstein injective
and idR C = max{0,GidR M−1}. In particular, every R-module of finite Gorenstein
injective dimension has a special Gorenstein injective preenvelope.
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Over Noetherian rings, existence of Gorenstein injective preenvelopes for all
modules is proved by Enochs and López-Ramos in [51]. Krause [81, 7.12] proves a
stronger result:


Theorem 5.11. If R is Noetherian, then every R-module has a special Gorenstein
injective preenvelope.


Over Gorenstein rings, Enochs, Jenda, and Xu [48, 6.1] prove even more:


Proposition 5.12. If R is Gorenstein of finite Krull dimension, then every R-module
has a Gorenstein injective envelope.


Over any ring, every module has an injective envelope; this suggests:


Problem 5.13. Describe the rings over which every module has a Gorenstein
injective (pre)envelope.


Over a Noetherian ring, every module has an injective cover; see Enochs
[39, 2.1]. A Gorenstein version of this result is recently established by Holm
and Jørgensen [72, 3.3(b)]:


Proposition 5.14. If R is a homomorphic image of a Gorenstein ring of finite Krull
dimension, then every R-module has a Gorenstein injective cover.


Gorenstein flat covers


The following existence result is due to Enochs and López-Ramos [51, 2.11].


Theorem 5.15. If R is Noetherian, then every R-module has a Gorenstein flat cover.


Remark 5.16. Let R be Noetherian and M be a finitely generated R-module. If M has
finite G-dimension, then by Proposition 5.3 it has a finitely generated Gorenstein
projective/flat precover, cf. Proposition 4.24. If M has infinite G-dimension, it
still has a Gorenstein projective/flat precover by Theorems 5.7 and 5.15, but by
Theorem 5.4 this need not be finitely generated.


Over any ring, every module has a flat cover, as proved by Bican, El Bashir, and
Enochs [26]. This motivates:


Problem 5.17. Describe the rings over which every module has a Gorenstein flat
(pre)cover.


Over a Noetherian ring, every module has a flat preenvelope; cf. Enochs [39, 5.1].
A Gorenstein version of this result follows from Theorem 4.13 and [51, 2.5]:


Proposition 5.18. If R is a homomorphic image of a Gorenstein ring of finite Krull
dimension, then every R-module has a Gorenstein flat preenvelope.
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Relative cohomology via Gorenstein projective modules


The notion of a proper resolution is central in relative homological algebra. Here is
an instance:


Definition 5.19. An augmented Gorenstein projective resolution,


A+ = · · · ϕi+1−−−→ Ai
ϕi−−→ Ai−1


ϕi−1−−−→ ·· · ϕ1−−→ A0
ϕ0−−→ M −→ 0


of an R-module M is said to be proper if the complex HomR(A′,A+) is acyclic for
every Gorenstein projective R-module A′.


Remark 5.20. Assume that every R-module has a Gorenstein projective precover.
Then every R-module has a proper Gorenstein projective resolution constructed by
taking as ϕ0 a Gorenstein projective precover of M and as ϕi a Gorenstein projective
precover of Kerϕi−1 for i > 0.


Definition 5.21. The relative Gorenstein projective dimension of an R-module
M 	= 0, denoted by rel-GpdR M, is the least integer n � 0 such that there exists a
proper Gorenstein projective resolution of M with Ai = 0 for all i > n. If no such
n (or no such resolution) exists, then rel-GpdR M is infinite. By convention, set
rel-GpdR 0 = −∞.


The following result is a consequence of Proposition 5.6.


Proposition 5.22. For every R-module M one has rel-GpdR M = GpdR M.


It is shown in [43, Section 8.2] that the next definition makes sense.


Definition 5.23. Let M and N be R-modules and assume that M has a proper
Gorenstein projective resolution A. The i th relative cohomology module
ExtiGP(M,N) is Hi(HomR(A,N)).


Remark 5.24. Let R be Noetherian, and let M and N be finitely generated R-modules.
Unless M has finite G-dimension, it is not clear whether the cohomology modules
ExtiGP(M,N) are finitely generated, cf. Remark 5.16.


Vanishing of relative cohomology ExtiGP characterizes modules of finite
Gorenstein projective dimension. The proof is standard; see [68, 3.9].


Theorem 5.25. Let M be an R-module that has a proper Gorenstein projective
resolution. For every integer n � 0 the next conditions are equivalent.


(i) GpdR M � n.
(ii) ExtiGP(M,−) = 0 for all i > n.
(iii) Extn+1


GP (M,−) = 0.


Remark 5.26. Relative cohomology based on totally reflexive modules is studied
in [19]. The results that correspond to Proposition 5.22 and Theorem 5.25 in that
setting are contained in [19, 4.8 and 4.2].
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Notes


Based on a notion of coproper Gorenstein injective resolutions, one can define a relative Gorenstein
injective dimension and cohomology functors ExtiGI with properties analogous to those of ExtiGP
described above. There is, similarly, a relative Gorenstein flat dimension and a relative homology
theory based on proper Gorenstein projective/flat resolutions. The relative Gorenstein injective
dimension and the relative Gorenstein flat dimension were first studied by Enochs and Jenda [42]
for modules over Gorenstein rings. The question of balancedness for relative (co)homology is
treated by Enochs and Jenda [43], Holm [65], and Iacob [74].


In [19] Avramov and Martsinkovsky also study the connection between relative and Tate coho-
mology for finitely generated modules. This study is continued by Veliche [110] for arbitrary mod-
ules, and a dual theory is developed by Asadollahi and Salarian [4]. Jørgensen [78], Krause [81],
and Takahashi [104] study connections between Gorenstein relative cohomology and generalized
notions of Tate cohomology.


Sather-Wagstaff and White [95] use relative cohomology to define an Euler characteristic for
modules of finite G-dimension. In collaboration with Sharif, they study cohomology theories
related to generalized Gorenstein dimensions [93].


6 Modules over local homomorphisms


In this section, ϕ : (R,m) → (S,n) is a local homomorphism, that is, there is a
containment ϕ(m) ⊆ n. The topic is Gorenstein dimensions over R of finitely
generated S-modules. The utility of this point of view is illustrated by a gen-
eralization, due to Christensen and Iyengar [33, 4.1], of the Auslander–Bridger
Formula (Theorem 1.25):


Theorem 6.1. Let N be a finitely generated S-module. If N has finite Gorenstein flat
dimension as an R-module via ϕ , then there is an equality


GfdR N = depthR−depthR N.


For a finitely generated S-module N of finite flat dimension over R, this equality
follows from work of André [2, II.57]. For a finitely generated S-module of finite
injective dimension over R, an affirmative answer to the next question is already in
[107, 5.2] by Takahashi and Yoshino.


Question 6.2. Let N be a non-zero finitely generated S-module. If N has finite
Gorenstein injective dimension as an R-module via ϕ , does then the equality
GidR N = depthR hold? (For ϕ = IdR this is Theorem 3.24.)


The next result of Christensen and Iyengar [33, 4.8] should be compared to
Theorem 4.27.


Theorem 6.3. Let N be a finitely generated S-module. If N has finite Gorenstein flat
dimension as an R-module via ϕ , there is an equality


GfdR N = GfdR̂(Ŝ⊗S N).
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The Frobenius endomorphism


If R has positive prime characteristic, we denote by φ the Frobenius endomorphism
on R and by φn its n-fold composition. The next two theorems are special cases of
[76, 8.14 and 8.15] by Iyengar and Sather-Wagstaff and of [58, 5.5] by Foxby and
Frankild.; together, they constitute the Gorenstein counterpart of Theorem F.


Theorem 6.4. Let R be local of positive prime characteristic. The following condi-
tions are equivalent.


(i) R is Gorenstein.
(ii) R has finite Gorenstein flat dimension as an R-module via φn for some n � 1.
(iii) R is Gorenstein flat as an R-module via φn for every n � 1.


Theorem 6.5. Let R be local of positive prime characteristic, and assume that it is a
homomorphic image of a Gorenstein ring. The following conditions are equivalent.


(i) R is Gorenstein.
(ii) R has finite Gorenstein injective dimension as R-module via φn for some n�1.
(iii) R has Gorenstein injective dimension equal to dimR as an R-module via φn


for every n � 1.


Part (iii) in Theorem 6.5 is actually not included in [58, 5.5]. Part (iii) follows, though, from part
(i) by Corollary 3.23 and Theorem 3.18.


G-dimension over a local homomorphism


The homomorphism ϕ : (R,m) → (S,n) fits in a commutative diagram of local ho-
momorphisms:


R′
ϕ ′


�� ��
��


��
�


R


ϕ̇ �������
ϕ


�� S
� �


ι
�� Ŝ


where ϕ̇ is flat with regular closed fiber R′/mR′, the ring R′ is complete, and ϕ ′ is
surjective. Set ϕ̀ = ιϕ ; a diagram as above is called a Cohen factorization of ϕ̀ .
This is a construction due to Avramov, Foxby, and Herzog [15, 1.1].


The next definition is due to Iyengar and Sather-Wagstaff [76, Section 3]; it is
proved ibid. that it is independent of the choice of Cohen factorization.


Definition 6.6. Choose a Cohen factorization of ϕ̀ as above. For a finitely generated
S-module N, the G-dimension of N over ϕ is given as


G-dimϕ N = G-dimR′(Ŝ⊗S N)− edim(R′/mR′).


Example 6.7. Let k be a field and let ϕ be the extension from k to the power series
ring k[[x]]. Then one has G-dimϕ k[[x]] = −1.
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Iyengar and Sather-Wagstaff [76, 8.2] prove:


Theorem 6.8. Assume that R is a homomorphic image of a Gorenstein ring. A
finitely generated S-module N has finite G-dimension over ϕ if and only if it has
finite Gorenstein flat dimension as an R-module via ϕ .


It is clear from Example 6.7 that GfdR N and G-dimϕ N need not be equal.


7 Local homomorphisms of finite G-dimension


This section treats transfer of ring theoretic properties along a local homomorphism
of finite G-dimension. Our focus is on the Gorenstein property, which was studied by
Avramov and Foxby in [13], and the Cohen–Macaulay property, studied by Frankild
in [59].


As in Section 6, ϕ : (R,m) → (S,n) is a local homomorphism. In view
of Definition 6.6, a notion from [13, 4.3] can be defined as follows:


Definition 7.1. Set G-dim ϕ = G-dimϕ S; the homomorphism ϕ is said to be of finite
G-dimension if this number is finite.


Remark 7.2. The homomorphism ϕ has finite G-dimension if S has finite Gorenstein
flat dimension as an R-module via ϕ , and the converse holds if R is a homomorphic
image of a Gorenstein ring. This follows from Theorems 6.3 and 6.8, in view of
[76, 3.4.1],


The next descent result is [13, 4.6].


Theorem 7.3. Let ϕ be of finite G-dimension, and assume that R is a homomorphic
image of a Gorenstein ring. For every S-module N one has:


(a) If fdS N is finite then GfdR N is finite.
(b) If idS N is finite then GidR N is finite.


It is not known if the composition of two local homomorphisms of finite
G-dimension has finite G-dimension, but it would follow from an affirmative
answer to Question 1.21, cf. [13, 4.8]. Some insight is provided by Theorem 7.9
and the next result, which is due to Iyengar and Sather-Wagstaff [76, 5.2].


Theorem 7.4. Let ψ : S → T be a local homomorphism such that fdS T is finite.
Then G-dim ψϕ is finite if and only if G-dim ϕ is finite.


Quasi-Gorenstein homomorphisms


Let M be a finitely generated module over a local ring (R,m,k). For every integer
i � 0 the i th Bass number μ i


R(M) is the dimension of the k-vector space ExtiR(k,M).
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Definition 7.5. The homomorphism ϕ is called quasi-Gorenstein if it has finite
G-dimension and for every i � 0 there is an equality of Bass numbers


μ i+depthR
R (R) = μ i+depth S


S (S).


Example 7.6. If R is Gorenstein, then the natural surjection R � k is quasi-
Gorenstein. More generally, if ϕ is surjective and S is quasi-perfect as an R-
module via ϕ , then ϕ is quasi-Gorenstein if and only if there is an isomorphism
ExtgR(S,R) ∼= S where g = G-dimR S with; see [13, 6.5, 7.1, 7.4].


Several characterizations of the quasi-Gorenstein property are given in [13, 7.4
and 7.5]. For example, it is sufficient that G-dim ϕ is finite and the equality of Bass
numbers holds for some i > 0.


The next ascent–descent result is [13, 7.9].


Theorem 7.7. Let ϕ be quasi-Gorenstein and assume that R is a homomorphic im-
age of a Gorenstein ring. For every S-module N one has:


(a) GfdS N is finite if and only if GfdR N is finite.
(b) GidS N is finite if and only if GidR N is finite.


Ascent and descent of the Gorenstein property is described by [13, 7.7.2]. It
should be compared to part (b) in Theorem G.


Theorem 7.8. The following conditions on ϕ are equivalent.


(i) R and S are Gorenstein.
(ii) R is Gorenstein and ϕ is quasi-Gorenstein.
(iii) S is Gorenstein and ϕ is of finite G-dimension.


The following (de)composition result is [13, 7.10, 8.9, and 8.10]. It should be
compared to Theorem 1.20.


Theorem 7.9. Assume that ϕ is quasi-Gorenstein, and let ψ : S → T be a local ho-
momorphism. The following assertions hold.


(a) G-dim ψϕ is finite if and only if G-dim ψ is finite.
(b) ψϕ is quasi-Gorenstein if and only if ψ is quasi-Gorenstein.


Quasi-Cohen–Macaulay homomorphisms


The next definition from [59, 5.8 and 6.2] uses terminology from Definition 1.19
and the remarks before Definition 6.6.


Definition 7.10. The homomorphism ϕ is quasi-Cohen–Macaulay, for short quasi-
CM, if ϕ̀ has a Cohen factorization where Ŝ is quasi-perfect over R′.







Beyond totally reflexive modules and back 133


If ϕ is quasi-CM, then Ŝ is a quasi-perfect R′-module in every Cohen factorization
of ϕ̀ ; see [59, 5.8]. The following theorem is part of [59, 6.7]; it should be compared
to part (a) in Theorem G.


Theorem 7.11. The following assertions hold.


(a) If R is Cohen–Macaulay and ϕ is quasi-CM, then S is Cohen–Macaulay.
(b) If S is Cohen–Macaulay and G-dim ϕ is finite, then ϕ is quasi-CM.


In view of Theorem 7.9, Frankild’s work [59, 6.4 and 6.5] yields:


Theorem 7.12. Assume that ϕ is quasi-Gorenstein, and let ψ : S → T be a local
homomorphism. Then ψϕ is quasi-CM if and only if ψ is quasi-CM.


Notes


The composition question addressed in the remarks before Theorem 7.4 is investigated further by
Sather-Wagstaff [92].


8 Reflexivity and finite G-dimension


In this section, R is Noetherian. Let M be a finitely generated R-module. If M is
totally reflexive, then the cohomology modules ExtiR(M,R) vanish for all i > 0.
The converse is true if M is known a priori to have finite G-dimension, cf. Corol-
lary 1.10. In general, though, one can not infer from such vanishing that M is to-
tally reflexive—explicit examples to this effect are constructed by Jorgensen and
Şega in [77]—and this has motivated a search for alternative criteria for finiteness
of G-dimension.


Reflexive complexes


One such criterion was given by Foxby and published in [114]. Its habitat is the
derived category D(R) of the category of R-modules. The objects in D(R) are
R-complexes, and there is a canonical functor F from the category of R-complexes
to D(R). This functor is the identity on objects and it maps homology isomorphisms
to isomorphisms in D(R). The restriction of F to modules is a full embedding of the
module category into D(R).


The homology H(M) of an R-complex M is a (graded) R-module, and M is said
to have finitely generated homology if this module is finitely generated. That is, if
every homology module Hi(M) is finitely generated and only finitely many of them
are non-zero.


For R-modules M and N, the (co)homology of the derived Hom and tensor
product complexes gives the classical Ext and Tor modules:


ExtiR(M,N) = Hi(RHomR(M,N)) and TorR
i (M,N) = Hi(M⊗L


R N).
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Definition 8.1. An R-complex M is reflexive if M and RHomR(M,R) have finitely
generated homology and the canonical morphism


M −→ RHomR(RHomR(M,R),R)


is an isomorphism in the derived category D(R). The full subcategory of D(R)
whose objects are the reflexive R-complexes is denoted by R(R).
The requirement in the definition that the complex RHomR(M,R) has finitely generated homology
is redundant but retained for historical reasons; see [18, 3.3].


Theorem 8.2 below is Foxby’s criterion for finiteness of G-dimension of a finitely
generated module [114, 2.7]. It differs significantly from Definition 1.8 as it does
not involve construction of a G-resolution of the module.


Theorem 8.2. Let R be Noetherian. A finitely generated R-module has finite
G-dimension if and only if it belongs to R(R).


If R is local, then the next result is [28, 2.3.14]. In the generality stated below it
follows from Theorems 1.18 and 8.2: the implication (ii)⇒ (iii) is the least obvious,
it uses [28, 2.1.12].


Corollary 8.3. Let R be Noetherian. The following conditions are equivalent.


(i) R is Gorenstein.
(ii) Every R-module is in R(R).
(iii) Every R-complex with finitely generated homology is in R(R).


G-dimension of complexes


Having made the passage to the derived category, it is natural to consider
G-dimension for complexes. For every R-complex M with finitely generated ho-
mology there exists a complex G of finitely generated free R-modules, which is
isomorphic to M in D(R); see [11, 1.7(1)]. In Christensen’s [28, Chap. 2] one finds
the next definition and the two theorems that follow.


Definition 8.4. Let M be an R-complex with finitely generated homology. If H(M)
is not zero, then the G-dimension of M is the least integer n such that there exists
a complex G of totally reflexive R-modules which is isomorphic to M in D(R) and
has Gi = 0 for all i > n. If no such integer n exists, then G-dimR M is infinite. If
H(M) = 0, then G-dimR M = −∞ by convention.


Note that this extends Definition 1.8. As a common generalization of Theorem 8.2
and Corollary 1.10 one has [28, 2.3.8]:


Theorem 8.5. Let R be Noetherian. An R-complex M with finitely generated ho-
mology has finite G-dimension if an only if it is reflexive. Furthermore, for every
reflexive R-complex M there is an equality


G-dimR M = sup{ i ∈ Z | Hi(RHomR(M,R)) 	= 0}.
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In broad terms, the theory of G-dimension for finitely generated modules extends
to complexes with finitely generated homology. One example is the next extension
[28, 2.3.13] of the Auslander–Bridger Formula (Theorem 1.25).


Theorem 8.6. Let R be local. For every complex M in R(R) one has


G-dimR M = depthR−depthR M.


Here, the depth of a complex M over a local ring (R,m,k) is defined by extension
of the definition for modules, that is,


depthR M = inf{ i ∈ Z | Hi(RHomR(k,M)) 	= 0}.


Notes


In [28, Chap. 2] the theory of G-dimension for complexes is developed in detail.
Generalized notions of G-dimension—based on reflexivity with respect to semidualizing mod-


ules and complexes—are studied by Avramov, Iyengar, and Lipman [18], Christensen [29],
Frankild and Sather-Wagstaff [60], Gerko [61], Golod [62], Holm and Jørgensen [70], by Salarian,
Sather-Wagstaff, and Yassemi [91], and White [112]. See also the notes in Section 1.


9 Detecting finiteness of Gorenstein dimensions


In the previous section, we discussed a resolution-free characterization of modules
of finite G-dimension (Theorem 8.2). The topic of this section is similar characteri-
zations of modules of finite Gorenstein projective/injective/flat dimension. By work
of Christensen, Frankild, and Holm [31], appropriate criteria are available for mod-
ules over a Noetherian ring that has a dualizing complex (Theorems 9.2 and 9.5).
As mentioned in the Introduction, a Noetherian ring has a dualizing complex if and
only if it is a homomorphic image of a Gorenstein ring of finite Krull dimension. For
example, every complete local ring has a dualizing complex by Cohen’s structure
theorem.


Auslander categories


The next definition is due to Foxby; see [13, 3.1] and [54, Section 2].


Definition 9.1. Let R be Noetherian and assume that it has a dualizing complex D.
The Auslander class A(R) is the full subcategory of the derived category D(R)
whose objects M satisfy the following conditions.


(1) Hi(M) = 0 for |i|  0.
(2) Hi(D⊗L


R M) = 0 for i  0.
(3) The natural map M → RHomR(D,D⊗L


R M) is invertible in D(R).
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The relation to Gorenstein dimensions is given by [31, 4.1]:


Theorem 9.2. Let R be Noetherian and assume that it has a dualizing complex. For
every R-module M, the following conditions are equivalent.


(i) M has finite Gorenstein projective dimension.
(ii) M has finite Gorenstein flat dimension.
(iii) M belongs to A(R).


Remark 9.3. The equivalence of (i)/(ii) and (iii) in Theorem 9.2 provides a
resolution-free characterization of modules of finite Gorenstein projective/flat di-
mension over a ring that has a dualizing complex. Every complete local ring has
a dualizing complex, so in view of Theorem 2.20/4.27 there is a resolution-free
characterization of modules of finite Gorenstein projective/flat dimension over any
local ring.


The next definition is in [13, 3.1]; the theorem that follows is [31, 4.4].


Definition 9.4. Let R be Noetherian and assume that it has a dualizing complex D.
The Bass class B(R) is the full subcategory of the derived category D(R) whose
objects M satisfy the following conditions.


(1) Hi(M) = 0 for |i|  0.
(2) Hi(RHomR(D,M)) = 0 for i  0.
(3) The natural map D⊗L


R RHomR(D,M) → M is invertible in D(R).


Theorem 9.5. Let R be Noetherian and assume that it has a dualizing complex. For
every R-module M, the following conditions are equivalent.


(i) M has finite Gorenstein injective dimension.
(ii) M belongs to B(R).


From the two theorems above and from Theorems 3.14 and 4.11 one gets:


Corollary 9.6. Let R be Noetherian and assume that it has a dualizing complex. The
following conditions are equivalent.


(i) R is Gorenstein.
(ii) Every R-complex M with Hi(M) = 0 for |i|  0 belongs to A(R).
(iii) Every R-complex M with Hi(M) = 0 for |i|  0 belongs to B(R).


Gorenstein dimensions of complexes


It turns out to be convenient to extend the Gorenstein dimensions to complexes; this
is illustrated by Theorem 9.11 below.


In the following we use the notion of a semi-projective resolution. Every complex
has such a resolution, by [11, 1.6], and a projective resolution of a module is semi-
projective. In view of this and Theorem 2.8, the next definition, which is due to
Veliche [110, 3.1 and 3.4], extends Definition 2.7.
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Definition 9.7. Let M be an R-complex. If H(M) 	= 0, then the Gorenstein projective
dimension of M is the least integer n such that Hi(M) = 0 for all i > n and there
exists a semi-projective resolution P of M for which the module Coker(Pn+1 → Pn)
is Gorenstein projective. If no such n exists, then GpdR M is infinite. If H(M) = 0,
then GpdR M = −∞ by convention.


In the next theorem, which is due to Iyengar and Krause [75, 8.1], the un-
bounded Auslander class Â(R) is the full subcategory of D(R) whose objects satisfy
conditions (2) and (3) in Definition 9.1.


Theorem 9.8. Let R be Noetherian and assume that it has a dualizing complex. For
every R-complex M, the following conditions are equivalent.


(i) M has finite Gorenstein projective dimension.
(ii) M belongs to Â(R).


One finds the next definition in [4, 2.2 and 2.3] by Asadollahi and Salarian. It
uses the notion of a semi-injective resolution. Every complex has such a resolution,
by [11, 1.6], and an injective resolution of a module is semi-injective. In view of
Theorem 3.6, the following extends Definition 3.5.


Definition 9.9. Let M be an R-complex. If H(M) 	= 0, then the Gorenstein injective
dimension of M is the least integer n such that Hi(M) = 0 for all i > n and there
exists a semi-injective resolution I of M for which the module Ker(In → In+1) is
Gorenstein injective. If no such integer n exists, then GidR M is infinite. If H(M)= 0,
then GidR M = −∞ by convention.


In the next result, which is [75, 8.2], the unbounded Bass class B̂(R) is the full
subcategory of D(R) whose objects satisfy (2) and (3) in Definition 9.4.


Theorem 9.10. Let R be Noetherian and assume that it has a dualizing complex.
For every R-complex M, the following conditions are equivalent.


(i) M has finite Gorenstein injective dimension.
(ii) M belongs to B̂(R).


The next result is [35, 1.7]; it should be compared to Theorem 3.27.


Theorem 9.11. Let R be local. For every R-module M there is an equality


GidR M = GidR̂ RHomR(R̂,M).


Remark 9.12. Via this result, Theorem 9.10 gives a resolution-free characterization
of modules of finite Gorenstein injective dimension over any local ring.
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Acyclicity versus total acyclicity


The next results characterize Gorenstein rings in terms of the complexes that define
Gorenstein projective/injective/flat modules. The first one is [75, 5.5].


Theorem 9.13. Let R be Noetherian and assume that it has a dualizing complex.
Then the following conditions are equivalent.


(i) R is Gorenstein.
(ii) For every acyclic complex P of projective R-modules and every projective


R-module Q, the complex HomR(P,Q) is acyclic.
(iii) For every acyclic complex I of injective R-modules and every injective


R-module E, the complex HomR(E,I) is acyclic.


In the terminology of [75], part (ii)/(iii) above says that every acyclic complex of
projective/injective modules is totally acyclic.


The final result is due to Christensen and Veliche [37]:


Theorem 9.14. Let R be Noetherian and assume that it has a dualizing complex.
Then there exist acyclic complexes F and I of flat R-modules and injective R-
modules, respectively, such that the following conditions are equivalent.


(i) R is Gorenstein.
(ii) For every injective R-module E, the complex E ⊗R F is acyclic.
(iii) For every injective R-module E, the complex HomR(E,I) is acyclic.


The complexes F and I in the theorem have explicit constructions. It is not known,
in general, if there is an explicit construction of an acyclic complex P of projective
R-modules such that R is Gorenstein if HomR(P,Q) is acyclic for every projective
R-module Q.


Notes


In broad terms, the theory of Gorenstein dimensions for modules extends to complexes. It is
developed in detail by Asadollahi and Salarian [4], Christensen, Frankild, and Holm [31] and [32],
Christensen and Sather-Wagstaff [35], and by Veliche [110].


Objects in Auslander and Bass classes with respect to semi-dualizing complexes have interpre-
tations in terms of generalized Gorenstein dimensions; see [44] and [45] by Enochs and Jenda, [69]
by Holm and Jørgensen, and [92] by Sather-Wagstaff.


Sharif, Sather-Wagstaff, and White [94] study totally acyclic complexes of Gorenstein projec-
tive modules. They show that the cokernels of the differentials in such complexes are Gorenstein
projective. That is, a “Gorenstein projective” module is Gorenstein projective.
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On v-domains: a survey


Marco Fontana and Muhammad Zafrullah


Abstract An integral domain D is a v-domain if, for every finitely generated nonzero
(fractional) ideal F of D, we have (FF−1)−1 = D. The v-domains generalize Prüfer
and Krull domains and have appeared in the literature with different names. This
paper is the result of an effort to put together information on this useful class of
integral domains. In this survey, we present old, recent and new characterizations
of v-domains along with some historical remarks. We also discuss the relationship
of v-domains with their various specializations and generalizations, giving suitable
examples.


1 Preliminaries and introduction


Let D be an integral domain with quotient field K. Let F(D) be the set of all nonzero
D-submodules of K and let F(D) be the set of all nonzero fractional ideals of D, i.e.,
A ∈ F(D) if A ∈ F(D) and there exists an element 0 �= d ∈ D with dA ⊆ D. Let f (D)
be the set of all nonzero finitely generated D-submodules of K. Then, obviously
f (D) ⊆ F(D) ⊆ F(D).


Recall that a star operation on D is a map ∗ : F(D) → F(D), A �→ A∗, such that
the following properties hold for all 0 �= x ∈ K and all A,B ∈ F(D):


(∗1) D = D∗, (xA)∗ = xA∗;
(∗2) A ⊆ B implies A∗ ⊆ B∗;
(∗3) A ⊆ A∗ and A∗∗ := (A∗)∗ = A∗.


(the reader may consult [53, Sections 32 and 34] for a quick review of star
operations).
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In [107], the authors introduced a useful generalization of the notion of a star
operation: a semistar operation on D is a map � : F(D)→ F(D), E �→ E�, such that
the following properties hold for all 0 �= x ∈ K and all E,F ∈ F(D):


(�1) (xE)� = xE�;
(�2) E ⊆ F implies E� ⊆ F�;
(�3) E ⊆ E� and E�� := (E�)� = E�.


Clearly, a semistar operation � on D, restricted to F(D), determines a star
operation if and only if D = D�.


If ∗ is a star operation on D, then we can consider the map ∗f : F(D) → F(D)
defined as follows:


A∗f :=
⋃
{F∗ | F ∈ f (D) and F ⊆ A} for all A ∈ F(D).


It is easy to see that ∗f is a star operation on D, called the star operation of finite type


associated to ∗. Note that F∗ = F∗f for all F ∈ f (D). A star operation ∗ is called a
star operation of finite type (or a star operation of finite character) if ∗ = ∗f . It is
easy to see that (∗f)f = ∗f (i.e., ∗f is of finite type).


If ∗1 and ∗2 are two star operations on D, we say that ∗1 ≤ ∗2 if A∗1 ⊆ A∗2


for all A ∈ F(D). This is equivalent to saying that (A∗1)∗2 = A∗2 = (A∗2)∗1 for all
A ∈ F(D). Obviously, for any star operation ∗ on D, we have ∗f ≤ ∗, and if ∗1 ≤ ∗2,
then (∗1)f ≤ (∗2)f .


Let I ⊆D be a nonzero ideal of D. We say that I is a ∗-ideal of D if I∗ = I. We call
a ∗-ideal of D a ∗-prime ideal of D if it is also a prime ideal and we call a maximal
element in the set of all proper ∗-ideals of D a ∗-maximal ideal of D.


It is not hard to prove that a ∗-maximal ideal is a prime ideal and that each proper
∗f -ideal is contained in a ∗f -maximal ideal.


Let Δ be a set of prime ideals of an integral domain D and set


E�Δ :=
⋂


{EDQ | Q ∈ Δ} for all E ∈ F(D).


The operation �Δ is a semistar operation on D called the spectral semistar operation
associated to Δ . Clearly, it gives rise to a star operation on D if (and only if)
⋂{DQ | Q ∈ Δ} = D.


Given a star operation ∗ on D, when Δ coincides with Max∗f (D), the (nonempty)
set of all ∗f -maximal ideals of D, the operation ∗̃ defined as follows:


A∗̃ :=
⋂{


ADQ | Q ∈ Max∗f (D)
}


for all A ∈ F(D)


determines a star operation on D, called the stable star operation of finite type
associated to ∗. It is not difficult to show that ∗̃ ≤ ∗f ≤ ∗.


It is easy to see that, mutatis mutandis, all the previous notions can be extended
to the case of a semistar operation.


Let A,B ∈ F(D), set (A : B) := {z ∈ K | zB ⊆ A}, (A :D B) := (A : B) ∩ D,
A−1 := (D : A). As usual, we let vD (or just v) denote the v-operation defined by
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Av := (D : (D : A)) =
(
A−1


)−1
for all A ∈ F(D). Moreover, we denote (vD)f by tD


(or just by t), the t-operation on D; and we denote the stable semistar operation
of finite type associated to vD (or, equivalently, to tD) by wD (or, just by w), i.e.,
wD := ṽD = t̃D.


Clearly, wD ≤ tD ≤ vD. Moreover, from [53, Theorem 34.1(4)], we immediately
deduce that ∗ ≤ vD, and thus ∗̃ ≤ wD and ∗f ≤ tD, for each star operation ∗ on D.


Integral ideals that are maximal with respect to being ∗-ideals, when ∗ = v or t
or w are relevant in many situations. However, maximal v-ideals are not a common
sight. There are integral domains, such as a nondiscrete rank one valuation domain,
that do not have any maximal v-ideal [53, Exercise 12, p. 431]. Unlike maximal
v-ideals, the maximal t-ideals are everywhere, in that every t-ideal is contained in
at least one maximal t-ideal, which is always a prime ideal [80, Corollaries 1 and 2,
pp. 30–31] (or, [93, Proposition 3.1.2], in the integral domains setting). Note also
that the set of maximal t-ideals coincides with the set of maximal w-ideals [10,
Theorem 2.16].


We will denote simply by dD (or just d) the identity star operation on D and
clearly dD ≤ ∗, for each star operation ∗ on D. Another important star operation on
an integrally closed domain D is the bD-operation (or just b-operation) defined as
follows:


AbD :=
⋂


{AV |V is a valuation overring of D} for all A ∈ F(D).


Given a star operation on D, for A ∈ F(D), we say that A is ∗-finite if there
exists a F ∈ f (D) such that F∗ = A∗. (Note that in the above definition, we do not
require that F ⊆ A.) It is immediate to see that if ∗1 ≤ ∗2 are star operations and A
is ∗1-finite, then A is ∗2-finite. In particular, if A is ∗f -finite, then it is ∗-finite. The
converse is not true in general, and one can prove that A is ∗f -finite if and only if
there exists F ∈ f (D), F ⊆ A, such that F∗ = A∗ [126, Theorem 1.1].


Given a star operation on D, for A ∈ F(D), we say that A is ∗-invertible if
(AA−1)∗ = D. From the fact that the set of maximal ∗̃-ideals, Max∗̃(D), coincides
with the set of maximal ∗f -ideals, Max∗f (D), [10, Theorem 2.16], it easily follows
that a nonzero fractional ideal A is ∗̃-invertible if and only if A is ∗f -invertible (note
that if ∗ is a star operation of finite type, then (AA−1)∗ = D if and only if AA−1 �⊆ Q
for all Q ∈ Max∗(D)).


An invertible ideal is a ∗-invertible ∗-ideal for any star operation ∗ and, in fact, it
is easy to establish that, if ∗1 and ∗2 are two star operations on an integral domain D
with ∗1 ≤ ∗2, then any ∗1-invertible ideal is also ∗2-invertible.


A classical result due to Krull [80, Théorème 8, Chap. I, § 4] shows that for a
star operation ∗ of finite type, ∗-invertibility implies ∗-finiteness. More precisely,
for A ∈ F(D), we have that A is ∗f -invertible if and only if A and A−1 are ∗f -finite
(hence, in particular, ∗-finite) and A is ∗-invertible (see [46, Proposition 2.6] for the
semistar operation case).


We recall now some notions and properties of monoid theory needed later.
A nonempty set with a binary associative and commutative law of composition
“ · ” is called a semigroup. A monoid H is a semigroup that contains an identity
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element 1 (i.e., an element such that, for all x ∈ H, 1 · x = x · 1 = x). If there is
an element 0 in H such that, for all x ∈ H, 0 · x = x · 0 = 0, we say that H has a
zero element. Finally if, for all a,x,y in a monoid H with a �= 0, a · x = a · y implies
that x = y we say that H is a cancellative monoid. In what follows we shall be work-
ing with commutative and cancellative monoids with or without zero. Note that, if
D is an integral domain then D can be considered as a monoid under multiplication
and, more precisely, D is a cancellative monoid with zero element 0.


Given a monoid H, we can consider the set of invertible elements in H, denoted
by U(H) (or, by H×) and the set H• := H \ {0}. Clearly, U(H) is a subgroup
of (the monoid) H• and the monoid H is called a groupoid if U(H) = H•.
A monoid with a unique invertible element is called reduced. The monoid H/U(H)
is reduced. A monoid shall mean a reduced monoid unless specifically stated.


Given a monoid H, we can easily develop a divisibility theory and we can in-
troduce a GCD. A GCD–monoid is a monoid having a uniquely determined GCD
for each finite set of elements. In a monoid H an element, distinct from the unit
element 1 and the zero element 0, is called irreducible (or, atomic) if it is divisible
only by itself and 1. A monoid H is called atomic if every nonzero noninvertible
element of H is a product of finitely many atoms of H. A nonzero noninvertible
element p ∈ H with the property that p | a · b, with a,b ∈ H implies p | a or p | b
is called a prime element. It is easy to see that in a GCD–monoid, irreducible and
prime elements coincide.


Given a monoid H, we can also form the monoids of fractions of H and, when H


is cancellative, the groupoid of fractions q(H) of H in the same manner, avoiding
the zero element 0 in the denominator, as in the constructions of the rings of fractions
and the field of fractions of an integral domain D.



 
 

This survey paper is the result of an effort to put together information on the


important class of integral domains called v-domains, i.e., integral domains in which
every finitely generated nonzero (fractional) ideal is v-invertible. In the present
work, we will use a ring theoretic approach. However, because in multiplicative
ideal theory we are mainly interested in the multiplicative structure of the integral
domains, the study of monoids came into multiplicative ideal theory at an early
stage. For instance, as we shall indicate in the sequel, v-domains came out of a
study of monoids. During the second half of the 20th century, essentially due to the
work of Griffin [57], and due to Gilmer’s books [53] and [54], multiplicative ideal
theory from a ring theoretic point of view became a hot topic for the ring theorists.
However, things appear to be changing. Halter-Koch has put together in [59], in the
language of monoids, essentially all that was available at that time and essentially
all that could be translated to the language of monoids. On the other hand, more
recently, Matsuda, under the influence of [54], is keen on converting into the lan-
guage of additive monoids and semistar operations all that is available and permits
conversion [95].


Since translation of results often depends upon the interest, motivation and imag-
ination of the “translator”, it is a difficult task to indicate what (and in which way)
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can be translated into the language of monoids, multiplicative or additive, or to the
language of semistar operations. But, one thing is certain, as we generalize, we gain
a larger playground but, at the same time, we lose the clarity and simplicity that we
had become so accustomed to.


With these remarks in mind, we indicate below some of the results that may or
may not carry over to the monoid treatment, and we outline some general problems
that can arise when looking for generalizations, without presuming to be exhaustive.
The first and foremost is any result to do with polynomial ring extensions may not
carry over to the language of monoids even though some of the concepts translated
to monoids do get used in the study of semigroup rings. The other trouble-spot is the
results on integral domains that use the identity (d-)operation. As soon as one con-
siders the multiplicative monoid of an integral domain, with or without zero, some
things get lost. For instance, the multiplicative monoid R\{0} of a PID R, with more
than one maximal ideal, is no longer a principal ideal monoid, because a monoid
has only one maximal ideal, which in this case is not principal. All you can recover
is that R\{0} is a unique factorization monoid; similarly, from a Bézout domain
you can recover a GCD-monoid. Similar comments can be made for Dedekind and
Prüfer domains. On the other hand, if the v-operation is involved then nearly every
result, other than the ones involving polynomial ring extensions, can be translated to
the language of monoids. So, a majority of old ring theoretic results on v-domains
and their specializations can be found in [59] and some in [95], in one form or
another. We will mention or we will provide precise references only for those re-
sults on monoids that caught our fancy for one reason or another, as indicated in the
sequel.


The case of semistar operations and the possibility of generalizing results on
v-domains, and their specializations, in this setting is somewhat difficult in that the
area of research has only recently opened up [107]. Moreover, a number of results
involving semistar invertibility are now available, showing a more complex situation
for the invertibility in the semistar operation setting see for instance [46, 109, 110].
However, in studying semistar operations, in connection with v-domains, we often
gain deeper insight, as recent work indicates, see [6, 14].


2 When and in what context did the v-domains show up?


2.1 The genesis


The v-domains are precisely the integral domains D for which the v-operation is
an “endlich arithmetisch brauchbar” operation, cf. [52, p. 391]. Recall that a star
operation ∗ on an integral domain D is endlich arithmetisch brauchbar (for short,
e.a.b.) (respectively, arithmetisch brauchbar (for short, a.b.)) if for all F,G,H ∈
f (D) (respectively, F ∈ f (D) and G,H ∈ F(D)) (FG)∗ ⊆ (FH)∗ implies that
G∗ ⊆ H∗.
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In [90], the author only considered the concept of “a.b. ∗-operation” (actually,
Krull’s original notation was “ ′-Operation”, instead of “∗-operation”). He did not
consider the (weaker) concept of “e.a.b. ∗-operation”.


The e.a.b. concept stems from the original version of Gilmer’s book [52]. The
results of Section 26 in [52] show that this (presumably) weaker concept is all
that one needs to develop a complete theory of Kronecker function rings. Robert
Gilmer explained to us saying that � I believe I was influenced to recognize this
because during the 1966 calendar year in our graduate algebra seminar (Bill Heinzer,
Jimmy Arnold, and Jim Brewer, among others, were in that seminar) we had cov-
ered Bourbaki’s Chaps. 5 and 7 of Algèbre Commutative, and the development in
Chap. 7 on the v-operation indicated that e.a.b. would be sufficient. 


Apparently there are no examples in the literature of star operations which are
e.a.b. but not a.b.. A forthcoming paper [45] (see also [44]) will contain an explicit
example to show that Krull’s a.b. condition is really stronger than the Gilmer’s e.a.b.
condition.


We asked Robert Gilmer and Joe Mott about the origins of v-domains. They had
the following to say: � We believe that Prüfer’s paper [111] is the first to discuss
the concept in complete generality, though we still do not know who came up with
the name of “v-domain”. 


However, the basic notion of v-ideal appeared around 1929. More precisely, the
notion of quasi-equality of ideals (where, for A,B ∈ F(D), A is quasi-equal to B, if
A−1 = B−1), special cases of v-ideals and the observation that the classes of quasi-
equal ideals of a Noetherian integrally closed domain form a group first appeared
in [119] (cf. also [89, p. 121]), but this material was put into a more polished form
by E. Artin and in this form was published for the first time by Bartel Leendert van
der Waerden in “Modern Algebra” [120]. This book originated from notes taken by
the author from E. Artin’s lectures and it includes research of E. Noether and her
students. Note that the “v” of a v-ideal (or a v-operation) comes from the German
“Vielfachenideale” or “V -Ideale” (“ideal of multiples”), terminology used in [111,
Section 7]. It is important to recall also the papers [16] and [91] that introduce the
study of v-ideals and t-ideals in semigroups.


The paper [31] provides a clue to where v-domains came out as a separate class of
rings, though they were not called v-domains there. Note that [31] has been cited in
[80, p. 23] and, later, in [59, p. 216], where it is mentioned that J. Dieudonné gives
an example of a v-domain that is not a Prüfer v-multiplication domain (for short,
PvMD, i.e., an integral domain D in which every F ∈ f (D) is t-invertible).


2.2 Prüfer domains and v-domains


The v-domains generalize the Prüfer domains (i.e., the integral domains D such
that DM is a valuation domain for all M ∈ Max(D)), since an integral domain D
is a Prüfer domain if and only if every F ∈ f (D) is invertible [53, Theorem 22.1].
Clearly, an invertible ideal is ∗-invertible for all star operations ∗. In particular, a
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Prüfer domain is a Prüfer ∗-multiplication domain (for short, P∗MD, i.e., an integral
domain D such that, for each F ∈ f (D), F is ∗f -invertible [75, p. 48]). It is clear from
the definitions that a P∗MD is a PvMD (since ∗ ≤ v for all star operations ∗, cf. [53,
Theorem 34.1]) and a PvMD is a v-domain.


The picture can be refined. M. Griffin, a student of Ribenboim’s, showed that D
is a PvMD if and only if DM is a valuation domain for each maximal t-ideal M of D
[57, Theorem 5]. A generalization of this result is given in [75, Theorem 1.1] by
showing that D is a P∗MD if and only if DQ is a valuation domain for each maximal
∗f -ideal Q of D.


Call a valuation overring V of D essential if V = DP for some prime ideal P of
D (which is invariably the center of V over D) and call D an essential domain if D
is expressible as an intersection of its essential valuation overrings. Clearly, a Prüfer
domain is essential and so it is a P∗MD and, in particular, a PvMD (because, in the
first case, D =


⋂
DQ where Q varies over maximal ∗f -ideals of D and DQ is a valua-


tion domain; in the second case, D =
⋂


DM where M varies over maximal t-ideals of
D and DM is a valuation domain; see [57, Proposition 4] and [84, Proposition 2.9]).


From a local point of view, it is easy to see from the definitions that every integral
domain D that is locally essential is essential. The converse is not true and the first
example of an essential domain having a prime ideal P such that DP is not essential
was given in [67].


Now add to this information the following well known result [85, Lemma 3.1]
that shows that the essential domains sit in between PvMD’s and v-domains.


Proposition 2.1. An essential domain is a v-domain.


Proof. Let Δ be a subset of Spec(D) such that D =
⋂{DP | P ∈ Δ}, where each


DP is a valuation domain with center P ∈ Δ , let F be a nonzero finitely generated
ideal of D, and let ∗Δ be the star operation induced by the family of (flat) overrings
{DP | P ∈ Δ} on D. Then


(FF−1)∗Δ =
⋂{(FF−1)DP | P ∈ Δ} =


⋂{FDPF−1DP | P ∈ Δ}
=
⋂{FDP(FDP)−1 | P ∈ Δ} (because F is f.g.)


=
⋂{DP | P ∈ Δ} (because DP is a valuation domain).


Therefore, (FF−1)∗Δ = D and so (FF−1)v = D (since ∗Δ ≤ v [53, Theorem 34.1]).


For an alternate implicit proof of Proposition 2.1, and much more, the reader may
consult [124, Theorem 3.1 and Corollary 3.2].


Remark 2.2. (a) Note that Proposition 2.1 follows also from a general result for
essential monoids [59, Exercise 21.6 (i), p. 244], but the result as stated above
(for essential domains) was already known for instance as an application of
[125, Lemma 4.5].


If we closely look at [59, Exercise 21.6, p. 244], we note that part (ii) was al-
ready known for the special case of integral domains (i.e., an essential domain is
a PvMD if and only if the intersection of two principal ideals is a v-finite v-ideal,
[122, Lemma 8]) and part (iii) is related to the following fact concerning integral
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domains: for F ∈ f (D), F is t-invertible if and only if (F−1 : F−1) = D and F−1 is
v-finite. The previous property follows immediately from the following statements:


(a.1) Let F ∈ f (D), then F is t-invertible if and only if F is v-invertible and F−1


is v-finite;
(a.2) Let A ∈ F(D), then A is v-invertible if and only if (A−1 : A−1) = D.


The statement (a.1) can be found in [127] and (a.2) is posted in [128]. For reader’s
convenience, we next give their proofs.


For the “only if part” of (a.1), if F ∈ f (D) is t-invertible, then F is clearly
v-invertible and F−1 is also t-invertible. Hence, F−1 is t-finite and thus v-finite.


For a “semistar version” of (a.1), see for instance [46, Lemma 2.5].
For the “if part” of (a.2), note that AA−1 ⊆ D and so (AA−1)−1 ⊇ D. Let x ∈


(AA−1)−1, hence xAA−1 ⊆ D and so xA−1 ⊆ A−1, i.e., x ∈ (A−1 : A−1) = D. For the
“only if part”, note that in general D ⊆ (A−1 : A−1). For the reverse inclusion, let
x ∈ (A−1 : A−1), hence xA−1 ⊆ A−1. Multiplying both sides by A and applying the
v-operation, we have xD = x(AA−1)v ⊆ (AA−1)v = D, i.e., x ∈ D and so D ⊇ (A−1 :
A−1). A simple proof of (a.2) can also be deduced from [59, Theorem 13.4].


It is indeed remarkable that all those results known for integral domains can be
interpreted and extended to monoids.


(b) We have observed in (a) that a PvMD is an essential domain such that the
intersection of two principal ideals is a v-finite v-ideal. It can be also shown that D
is a PvMD if and only if (a)∩ (b) is t-invertible in D, for all nonzero a,b ∈ D [94,
Corollary 1.8].


For v-domains we have the following “v-version” of the previous characterization
for PvMD’s:


D is a v-domain ⇔ (a)∩ (b) is v-invertible in D, for all nonzero a,b ∈ D.


The idea of proof is simple and goes along the same lines as those of PvMD’s.
Recall that every F ∈ f (D) is invertible (respectively, v-invertible; t-invertible) if
and only if every nonzero two generated ideal of D is invertible (respectively,
v-invertible; t-invertible) [111, p. 7] or [53, Theorem 22.1] (respectively, for the
“v-invertibility case”, [99, Lemma 2.6]; for the “t-invertibility case”, [94, Lemma
1.7]); for the general case of star operations, see the following Remark 2.5 (c).
Moreover, for all nonzero a,b ∈ D, we have:


(a,b)−1 = 1
a D∩ 1


b D = 1
ab(aD∩bD) ,


(a,b)(a,b)−1 = 1
ab (a,b)(aD∩bD) .


Therefore, in particular, the fractional ideal (a,b)−1 (or, equivalently, (a,b)) is
v-invertible if and only if the ideal aD∩bD is v-invertible.


(c) Note that, by the observations contained in the previous point (b), if D is a
Prüfer domain then (a)∩ (b) is invertible in D, for all nonzero a,b ∈ D. However,
the converse is not true, as we will see in Sections 2.3 and 2.5 (Irreversibility of
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⇒7). The reason for this is that aD∩bD invertible allows only that the ideal (a,b)v


ab
(or, equivalently, (a,b)v) is invertible and not necessarily the ideal (a,b).


Call a P-domain an integral domain such that every ring of fractions is essential
(or, equivalently, a locally essential domain, i.e., an integral domain D such that DP


is essential, for each prime ideal P of D) [100, Proposition 1.1]. Note that every ring
of fractions of a PvMD is still a PvMD (see Section 3 for more details), in particular,
since a PvMD is essential, a locally PvMD is a P-domain. Examples of P-domains
include Krull domains. As a matter of fact, by using Griffin’s characterization of
PvMD’s [57, Theorem 5], a Krull domain is a PvMD, since in a Krull domain D the
maximal t-ideals (= maximal v-ideals) coincide with the height 1 prime ideals [53,
Corollary 44.3 and 44.8] and D =


⋂{DP | P is an height 1 prime ideal of D}, where
DP is a discrete valuation domain for all height 1 prime ideals P of D [53, (43.1)].
Furthermore, it is well known that every ring of fractions of a Krull domain is still a
Krull domain [24, BAC, Chap. 7, § 1, N. 4, Proposition 6].


With these observations at hand, we have the following picture:


Krull domain ⇒0 PvMD;
Prüfer domain ⇒1 PvMD ⇒2 locally PvMD


⇒3 P-domain ⇒4 essential domain
⇒5 v-domain .


Remark 2.3. Note that P-domains were originally defined as the integral domains D
such that DQ is a valuation domain for every associated prime ideal Q of a principal
ideal of D (i.e., for every prime ideal which is minimal over an ideal of the type (aD :
bD) for some a ∈ D and b ∈ D\ aD) [100, p. 2]. The P-domains were characterized
in a somewhat special way in [108, Corollary 2.3]: D is a P-domain if and only if D
is integrally closed and, for each u ∈ K, D ⊆ D[u] satisfies INC at every associated
prime ideal Q of a principal ideal of D.


2.3 Bézout-type domains and v-domains


Recall that an integral domain D is a Bézout domain if every finitely generated ideal
of D is principal and D is a GCD domain if, for all nonzero a,b ∈ D, a greatest
common divisor of a and b, GCD(a,b), exists and is in D. Among the characteri-
zations of the GCD domains we have that D is a GCD domain if and only if, for
every F ∈ f (D), Fv is principal or, equivalently, if and only if the intersection of
two (integral) principal ideals of D is still principal (see, for instance, [2, Theorem
4.1] and also Remark 2.2 (b)). From Remark 2.2 (b), we deduce immediately that a
GCD domain is a v-domain.


However, in between GCD domains and v-domains lie several other distin-
guished classes of integral domains. An important generalization of the notion of
GCD domain was introduced in [3] where an integral domain D is called a General-
ized GCD (for short, GGCD) domain if the intersection of two (integral) invertible
ideals of D is invertible D. It is well known that D is a GGCD domain if and only if,
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for each F ∈ f (D), Fv is invertible [3, Theorem 1]. In particular, a Prüfer domain
is a GGCD domain. From the fact that an invertible ideal in a local domain is prin-
cipal [86, Theorem 59], we easily deduce that a GGCD domain is locally a GCD
domain. On the other hand, from the definition of PvMD, we easily deduce that a
GCD domain is a PvMD (see also [2, Section 3]). Therefore, we have the following
addition to the existing picture:


Bézout domain ⇒6 GCD domain ⇒7 GGCD domain
⇒8 locally GCD domain ⇒9 locally PvMD
⇒3 ..... ⇒4 ..... ⇒5 v-domain .


2.4 Integral closures and v-domains


Recall that an integral domain D with quotient field K is called a completely
integrally closed (for short, CIC) domain if D = {z ∈ K | for all n ≥ 0, azn ∈
D for some nonzero a ∈ D}. It is well known that the following statements are
equivalent.


(i) D is CIC;
(ii) for all A ∈ F(D), (Av : Av) = D;
(ii′) for all A ∈ F(D), (A : A) = D;
(ii′′) for all A ∈ F(D), (A−1 : A−1) = D;
(iii) for all A ∈ F(D), (AA−1)v = D;


(see [53, Theorem 34.3] and Remark 2.2 (a.2); for a general monoid version of this
characterization, see [59, p. 156]).


In Bourbaki [24, BAC, Chap. 7, § 1, Exercice 30], an integral domain D is called
regularly integrally closed if, for all F ∈ f (D), Fv is regular with respect to the
v-multiplication (i.e., if (FG)v = (FH)v for G,H ∈ f (D) then Gv = Hv).


Theorem 2.4. ([53, Theorem 34.6] and [24, BAC, Chap. 7, § 1, Exercice 30 (b)])
Let D be an integral domain, then the following are equivalent.


(i) D is a regularly integrally closed domain.
(ii f ) For all F ∈ f (D), (Fv : Fv) = D.
(iii f ) For all F ∈ f (D) (FF−1)−1 = D (or, equivalently, (FF−1)v = D).
(iv) D is a v-domain.


The original version of Theorem 2.4 appeared in [91, p. 538] (see also [31, p. 139]
and [79, Theorem 13]). A general monoid version of the previous characterization
is given in [59, Theorem 19.2].


Remark 2.5. (a) Note that the condition
(ii′f ) for all F ∈ f (D), (F : F) = D
is equivalent to say that D is integrally closed [53, Proposition 34.7] and so it is
weaker than condition (ii f ) of the previous Theorem 2.4, since (Fv : Fv) = (Fv :
F) ⊇ (F : F).
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On the other hand, by Remark 2.2 (a.2), the condition
(ii′′f ) for all F ∈ f (D), (F−1 : F−1) = D
is equivalent to the other statements of Theorem 2.4.


(b) By [99, Lemma 2.6], condition (iii f ) of the previous theorem is equivalent to
(iii2) Every nonzero fractional ideal with two generators is v-invertible.


This characterization is a variation of Prüfer’s classical result that an integral
domain is Prüfer if and only if each nonzero ideal with two generators is invertible
(Remark 2.2 (b)) and of the characterization of PvMD’s also recalled in that remark.


(c) Note that several classes of Prüfer-like domains can be studied in a unified
frame by using star and semistar operations. For instance Prüfer star-multiplication
domains were introduced in [75]. Later, in [39], the authors studied Prüfer semistar-
multiplication domains and gave several characterizations of these domains, that are
new also for the classical case of PvMD’s. Other important contributions, in general
settings, were given recently in [110] and [63].


In [6, Section 2], given a star operation ∗ on an integral domain D, the authors call
D a ∗-Prüfer domain if every nonzero finitely generated ideal of D is ∗-invertible
(i.e., (FF−1)∗ = D for all F ∈ f (D)). (Note that ∗-Prüfer domains were previously
introduced in the case of semistar operations � under the name of �-domains [47,
Section 2].) Since a ∗-invertible ideal is always v-invertible, a ∗-Prüfer domain is
always a v-domain. More precisely, d-Prüfer (respectively, t-Prüfer; v-Prüfer) do-
mains coincide with Prüfer (respectively, Prüfer v-multiplication; v-) domains.


Note that, in [6, Theorem 2.2], the authors show that a star operation ver-
sion of (iii2) considered in point (b) characterizes ∗-Prüfer domains, i.e., D is
a ∗-Prüfer domain if and only if every nonzero two generated ideal of D is ∗-
invertible. An analogous result, in the general setting of monoids, can be found in
[59, Lemma 17.2].


(d) Let f v(D) := {Fv | F ∈ f (D)} be the set of all divisorial ideals of finite type
of an integral domain D (in [31], this set is denoted by M f ). By Theorem 2.4, we
have that a v-domain is an integral domain D such that each element Fv ∈ f v(D)
is v-invertible, but F−1 (= (Fv)−1) does not necessarily belong to f v(D). When
(and only when), in a v-domain D, F−1 ∈ f v(D) for each F ∈ f v(D), D is a PvMD
(Remark 2.2 (a.1)).


The “regular” teminology for the elements of f v(D) used by [31, p. 139] (see the
above definition of Fv regular with respect to the v-multiplication) is totally different
from the notion of “von Neumann regular”, usually considered for elements of a
ring or of a semigroup. However, it may be instructive to record some observations
showing that, in the present situation, the two notions are somehow related.


Recall that, by a Clifford semigroup, we mean a multiplicative commutative semi-
group H, containing a unit element, such that each element a of H is von Neumann
regular (this means that there is b ∈ H such that a2b = a).


(α) Let H be a commutative and cancellative monoid. If H is a Clifford semi-
group, then a is invertible in H (and conversely); in other words, H is a group.


(β ) Let D be a v-domain. If A ∈ f v(D) is von Neumann regular in the monoid
f v(D) under v-multiplication, then A is t-invertible (or, equivalently, A−1 ∈
f v(D)). Consequently, an integral domain D is a PvMD if and only if D is a
v-domain and the monoid f v(D) (under v-multiplication) is Clifford regular.
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The proofs of (α) and (β ) are straightforward, after recalling that f v(D) under
v-multiplication is a commutative monoid and, by definition, it is cancellative if D
is a v-domain.


Note that, in the “if part” of (β ), the assumption that D is a v-domain is essential.
As a matter of fact, it is not true that an integral domain D, such that every member
of the monoid f v(D) under the v-operation is von Neumann regular, is a v-domain.
For instance, in [129, Theorem 11] (see also [30]), the authors show that for every
quadratic order D, each nonzero ideal I of D satisfies I2J = cI, i.e., I2J(1/c) = I,
for some (nonzero) ideal J of D and some nonzero c ∈ D. So, in particular, in this
situation f (D) = F(D) and every element of the monoid f v(D) is von Neumann
regular (we do not even need to apply the v-operation in this case), however not
all quadratic orders are integrally closed (e.g., D := Z[


√
5]) and so, in general, not


all elements of f v(D) are regular with respect to the v-operation (i.e., D is not a
v-domain).


Clifford regularity for class and t-class semigroups of ideals in various types
of integral domains was investigated, for instance, in [20 and 21, Bazzoni (1996),
(2001)] [49], [71, 72 and 73, Kabbaj-Mimouni, (2003), (2007), (2008)], [116], and
[54 and 55, Halter-Koch (2007), (2008)]. In particular, in the last paper, Halter-
Koch proves a stronger and much deeper version of (β ), that is, a v-domain having
its t-class semigroups of ideals Clifford regular is a domain of Krull-type (i.e., a
PvMD with finite t-character). This result generalizes [82, Theorem 3.2] on Prüfer
v-multiplication domains.


(e) In the situation of point (d, β ), the condition that every v-finite v-ideal is
regular, in the sense of von Neumann, in the larger monoid Fv(D) := {Av | A ∈
F(D)} of all v-ideals of D (under v-multiplication) is too weak to imply that D is a
PvMD.


As a matter of fact, if we assume that D is a v-domain, then every A ∈ f v(D) is
v-invertible in the (larger) monoid Fv(D). Therefore, A is von Neumann regular in
Fv(D), since (AB)v = D for some B ∈ Fv(D) and thus, multiplying both sides by A
and applying the v-operation, we get (A2B)v = A.


Remark 2.6. Regularly integrally closed integral domains make their appearance
with a different terminology in the study of a weaker form of integrality, intro-
duced in the paper [15]. Recall that, given an integral domain D with quotient field
K, an element z ∈ K is called pseudo-integral over D if z ∈ (Fv : Fv) for some
F ∈ f (D). The terms pseudo-integral closure (i.e., D̃ :=


⋃{(Fv : Fv)) | F ∈ f (D)}
and pseudo-integrally closed domain (i.e., D = D̃) are coined in the obvious fash-
ion and it is clear from the definition that pseudo-integrally closed coincides with
regularly integrally closed.


From the previous observations, we have the following addition to the existing
picture:


CIC domain ⇒10 v-domain ⇒11 integrally closed domain.


Note that in the Noetherian case, the previous three classes of domains coincide
(see the following Proposition 2.8 (2) or [53, Theorem 34.3 and Proposition 34.7]).
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Recall also that Krull domains can be characterized by the property that, for all
A ∈ F(D), A is t-invertible [85, Theorem 3.6]. This property is clearly stronger
than the condition (iii f ) of previous Theorem 2.4 and, more precisely, it is strictly
stronger than (iii f ), since a Krull domain is CIC (by condition (iii) of the above char-
acterizations of CIC domains, see also [24, BAC, Chap. 7, § 1, N. 3, Théorème 2])
and a CIC domain is a v-domain, but the converse does not hold, as we will see in
the following Section 2.5.


Remark 2.7. Note that Okabe and Matsuda [106] generalized pseudo-integral
closure to the star operation setting. Given a star operation ∗ on an integral domain
D, they call the ∗-integral closure of D its overring


⋃{(F∗ : F∗) |F ∈ f (D)} denoted
by cl∗(D) in [58]. Note that, in view of this notation, D̃ =clv(D) (Remark 2.6) and
the integral closure D of D coincides with cld(D) [53, Proposition 34.7]. Clearly,
if ∗1 and ∗2 are two star operations on D and ∗1 ≤ ∗2, then cl∗1(D) ⊆ cl∗2(D). In
particular, for each star operation ∗ on D, we have D ⊆ cl∗(D) ⊆ D̃.


It is not hard to see that cl∗(D) is integrally closed [106, Theorem 2.8] and is
contained in the complete integral closure of D, which coincides with


⋃{(A : A) |
A ∈ F(D)} [53, Theorem 34.3].


Recall also that, in [59, Section 3], the author introduces a star operation of fi-
nite type on the integral domain cl∗(D), that we denote here by cl(∗), defined as
follows, for all G ∈ f (cl∗(D)):


Gcl(∗) :=
⋃
{((F∗ : F∗)G)∗ | F ∈ f (cl∗(D))} .


Clearly, Dcl(∗) = cl∗(D). Call an integral domain D ∗-integrally closed when D =
cl∗(D). Then, from the fact that cl(∗) is a star operation on cl∗(D), it follows that
cl∗(D) is cl(∗)-integrally closed. In general, if D is not necessarily ∗-integrally
closed, then cl(∗), defined on f (D), gives rise naturally to a semistar operation (of
finite type) on D [41, Definition 4.2].


Note that the domain D̃ (= clv(D)), even if it is cl(v)-integrally closed, in
general is not vD̃-integrally closed; a counterexample is given in [15, Example 2.1]
by using a construction due to [55]. On the other hand, since an integral domain D is
a v-domain if and only if D = clv(D) (Theorem 2.4), from the previous observation
we deduce that, in general, D̃ is not a v-domain. On the other hand, using a particular
“D+M construction”, in [106, Example 3.4], the authors construct an example of a
non–v-domain D such that D̃ is a v-domain, i.e., D � D̃ = clvD̃(D̃).


2.5 Irreversibility of the implications “⇒n”


We start by observing that, under standard finiteness assumptions, several classes of
domains considered above coincide. Recall that an integral domain D is called
v-coherent if a finite intersection of v-finite v-ideals is a v-finite v-ideal or,
equivalently, if F−1 is v-finite for all F ∈ f (D) [35, Proposition 3.6], and it is
called a v-finite conductor domain if the intersection of two principal ideals is
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v-finite [33]. From the definitions, it follows that a v-coherent domain is a v-finite
conductor domain. From Remark 2.2 (a.1), we deduce immediately that


D is a PvMD ⇔ D is a v-coherent v-domain.


In case of a v-domain, the notions of v-finite conductor domain and v-coherent do-
main coincide. As a matter of fact, as we have observed in Remark 2.5 (c), a PvMD
is exactly a t-Prüfer domain and an integral domain D is t-Prüfer if and only if every
nonzero two generated ideal is t-invertible. This translates to D is a PvMD if and
only if (a,b) is v-invertible and (a)∩(b) is v-finite, for all a,b ∈ D (see also Remark
2.5 (b)). In other words,


D is a PvMD ⇔ D is a v-finite conductor v-domain.


Recall that an integral domain D is a GGCD domain if and only if D is a PvMD
that is a locally GCD domain [3, Corollary 1 and p. 218] or [124, Corollary 3.4].
On the other hand, we have already observed that a locally GCD domain is essential
and it is known that an essential v-finite conductor domain is a PvMD [122, Lemma
8]. The situation is summarized in the following:


Proposition 2.8. Let D be an integral domain.


(1) Assume that D is a v-finite conductor (e.g., Noetherian) domain. Then, the fol-
lowing classes of domains coincide:


(a) PvMD’s;
(b) locally PvMD’s;
(c) P–domains;
(d) essential domains.
(e) locally v-domains;
(f) v-domains.


(2) Assume that D is a Noetherian domain. Then, the previous classes of domains
(a)–(f) coincide also with the following:


(g) Krull domains;
(h) CIC domains;
(i) integrally closed domains.


(3) Assume that D is a v-finite conductor (e.g., Noetherian) domain. Then, the fol-
lowing classes of domains coincide:


(j) GGCD domains;
(k) locally GCD domains.


Since the notion of Noetherian Bézout (respectively, Noetherian GCD) domain
coincides with the notion of PID or principal ideal domain (respectively, of
Noetherian UFD (= unique factorization domain) [53, Proposition 16.4]), in the
Noetherian case the picture of all classes considered above reduces to the following:


Dedekind domain ⇒1,2,3,4,5 v-domain
PID ⇒6 UFD ⇒7,8 locally UFD ⇒9,3,4,5 v-domain.
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In general, of the implications ⇒n (with 0 ≤ n ≤ 11) discussed above all, except
⇒3, are known to be irreversible. We leave the case of irreversibility of ⇒3 as an
open question and proceed to give examples to show that all the other implications
are irreversible.


• Irreversibility of ⇒0. Take any nondiscrete valuation domain or, more gener-
ally, a Prüfer non-Dedekind domain.


• Irreversibility of ⇒1 (even in the Noetherian case). Let D be a Prüfer domain
that is not a field and let X be an indeterminate over D. Then, as D[X ] is a PvMD
if and only if D is [93, Theorem 4.1.6] (see also [4, Proposition 6.5], [84, Theorem
3.7], [12, Corollary 3.3], and the following Section 4), we conclude that D[X ] is
a PvMD that is not Prüfer. An explicit example is Z[X ], where Z is the ring of
integers.


• Irreversibility of ⇒2. It is well known that every ring of fractions of a PvMD
is again a PvMD [69, Proposition 1.8] (see also the following Section 3). The fact
that ⇒2 is not reversible has been shown by producing examples of locally PvMD’s
that are not PvMD’s. In [100, Example 2.1] an example of a non PvMD essential
domain due to Heinzer and Ohm [69] was shown to have the property that it was
locally PvMD and hence a P-domain.


• Irreversibility of ⇒3: Open. However, as mentioned above, [100, Example 2.1]
shows the existence of a P-domain which is not a PvMD. Note that [125, Section 2]
gives a general method of constructing P-domains that are not PvMD’s.


• Irreversibility of ⇒4. An example of an essential domain which is not a
P-domain was constructed in [67]. Recently, in [40, Example 2.3], the authors show
the existence of n-dimensional essential domains which are not P-domains, for all
n ≥ 2.


• Irreversibility of ⇒5. Note that, by ⇒10, a CIC domain is a v-domain and
Nagata solving with a counterexample a famous conjecture stated by Krull in 1936,
has produced an example of a one dimensional quasilocal CIC domain that is not a
valuation ring (cf. [101,102,114]). This proves that a v-domain may not be essential.
It would be desirable to have an example of a nonessential v-domain that is simpler
than Nagata’s example.


• Irreversibility of ⇒6 (even in the Noetherian case). This case can be handled
in the same manner as that of ⇒1, since a polynomial domain over a GCD domain
is still a GCD domain (cf. [86, Exercise 9, p. 42]).


• Irreversibility of ⇒7 (even in the Noetherian case). Note that a Prüfer domain
is a GGCD domain, since a GGCD domain is characterized by the fact that Fv is
invertible for all F ∈ f (D) [3, Theorem 1]. Moreover, a Prüfer domain D is a Bézout
domain if and only if D is GCD. In fact, according to [28] a Prüfer domain D
is Bézout if and only if D is a generalization of GCD domains called a Schreier
domain (i.e., an integrally closed integral domain whose group of divisibility is a
Riesz group, that is a partially ordered directed group G having the following inter-
polation property: given a1,a2, . . . ,am,b1,b2, . . . ,bn ∈ G with ai ≤ b j, there exists
c ∈ G with ai ≤ c ≤ b j see [28] and also [2, Section 3]). Therefore, a Prüfer non-
Bézout domain (e.g., a Dedekind non principal ideal domain, like Z[i


√
5]) shows


the irreversibility of ⇒7.
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• Irreversibility of ⇒8. From the characterization of GGCD domains recalled
in the irreversibility of ⇒7 [3, Theorem 1], it follows that a GGCD domain is a
PvMD. More precisely, as we have already observed just before Proposition 2.8, an
integral domain D is a GGCD domain if and only if D is a PvMD that is a locally
GCD domain. Finally, as noted above, there are examples in [125] of locally GCD
domains that are not PvMD’s. More explicitly, let E be the ring of entire functions
(i.e., complex functions that are analytic in the whole plane). It is well known that E
is a Bézout domain and every nonzero non unit x ∈ E is uniquely expressible as an
associate of a “countable” product x = ∏ pei


i , where ei ≥ 0 and pi is an irreducible
function (i.e., a function having a unique root) [70, Theorems 6 and 9]. Let S be
the multiplicative set of E generated by the irreducible functions and let X be an
indeterminate over E , then E +XES[X ] is a locally GCD domain that is not a PvMD
[125, Example 2.6 and Proposition 4.1].


• Irreversibility of ⇒9 (even in the Noetherian case). This follows easily from the
fact that there do exist examples of Krull domains (which we have already observed
are locally PvMD’s) that are not locally factorial (e.g., a non-UFD local Noetherian
integrally closed domain, like the power series domain D[[X ]] constructed in [115],
where D is a two dimensional local Noetherian UFD). As a matter of fact, a Krull
domain which is a GCD domain is a UFD, since in a GCD domain, for all F ∈ f (D),
Fv is principal and so the class group Cl(D) = 0 [25, Section 2]; on the other hand,
a Krull domain is factorial if and only if Cl(D) = 0 [48, Proposition 6.1].


• Irreversibility of ⇒10. Let R be an integral domain with quotient field L and
let X be an indeterminate over L. By [29, Theorem 4.42] T := R + XL[X ] is a
v-domain if and only if R is a v-domain. Therefore, if R is not equal to L, then
obviously T is an example of a v-domain that is not completely integrally closed
(the complete integral closure of T is L[X ] [53, Lemma 26.5]). This establishes that
⇒10 is not reversible.
Note that, in [35, Section 4] the transfer in pullback diagrams of the PvMD property
and related properties is studied. A characterization of v-domains in pullbacks is
proved in [50, Theorem 4.15]. We summarize these results in the following:


Theorem 2.9. Let R be an integral domain with quotient field k and let T be an
integral domain with a maximal ideal M such that L := T/M is a field extension
of k. Let ϕ : T → L be the canonical projection and consider the following pullback
diagram:


D := ϕ−1(R) −−−−→ R
⏐
⏐



⏐
⏐



T1 := ϕ−1(k) −−−−→ k
⏐
⏐



⏐
⏐



T
ϕ−−−−→ L


Then, D is a v-domain (respectively, a PvMD) if and only if k = L, TM is a valuation
domain and R and T are v-domains (respectively, PvMD’s).
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Remark 2.10. Recently, bringing to a sort of close a lot of efforts to restate results
of [29] in terms of very general pullbacks, in the paper [76], the authors use some
remarkable techniques to prove a generalization of the previous theorem. Although
that paper is not about v-domains in particular, it does have a few good results on v-
domains. One of these results will be recalled in Proposition 3.6. Another one, with
a pullback flavor, can be stated as follows: Let I be a nonzero ideal of an integral
domain D and set T := (I : I). If D is a v-domain (respectively, a PvMD) then T is
a v-domain (respectively, a PvMD) [76, Proposition 2.5].


• Irreversibility of ⇒11. Recall that an integral domain D is called a Mori do-
main if D satisfies ACC on its integral divisorial ideals. According to [103, Lemma
1] or [112], D is a Mori domain if and only if for every nonzero integral ideal I of
D there is a finitely generated ideal J ⊆ I such that Jv = Iv (see also [20] for an
updated survey on Mori domains). Thus, if D is a Mori domain then D is CIC (i.e.,
every nonzero ideal is v-invertible) if and only if D is a v-domain (i.e., every nonzero
finitely generated ideal is v-invertible). On the other hand, a completely integrally
closed Mori domain is a Krull domain (see for example [48, Theorem 3.6]). More
precisely, Mori v-domains coincide with Krull domains [104, Theorem]. Therefore,
an integrally closed Mori non Krull domain provides an example of the irreversibil-
ity of ⇒11. An explicit example is given next.


It can be shown that, if k ⊆ L is an extension of fields and if X is an indeterminate
over L, then k + XL[X ] is always a Mori domain (see, for example, [50, Theorem
4.18] and references there to previous papers by V. Barucci and M. Roitman). It is
easy to see that the complete integral closure of k + XL[X ] is precisely L[X ] [53,
Lemma 26.5]. Thus if k � L then k +XL[X ] is not completely integrally closed and,
as an easy consequence of the definition of integrality, it is integrally closed if and
only if k is algebraically closed in L. This shows that there do exist integrally closed
Mori domains that are not Krull. A very explicit example is given by Q + XR[X ],
where R is the field of real numbers and Q is the algebraic closure of Q in R.


3 v-domains and rings of fractions


We have already mentioned that, if S is a multiplicative set of a PvMD D, then DS is
still a PvMD [69, Proposition 1.8]. The easiest proof of this fact can be given noting
that, given F ∈ f (D), if F is t-invertible in D then FDS is t-invertible in DS, where S
is a multiplicative set of D [25, Lemma 2.6]. It is natural to ask if DS is a v-domain
when D is a v-domain.


The answer is no. As a matter of fact an example of an essential domain D with a
prime ideal P such that DP is not essential was given in [67]. What is interesting is
that an essential domain is a v-domain by Proposition 2.1 and that, in this example,
DP is a (non essential) overring of the type k +XL[X ](X) = (k +XL[X ])XL[X ], where
L is a field and k its subfield that is algebraically closed in L. Now, a domain of type
k + XL[X ](X) is an integrally closed local Mori domain, see [50, Theorem 4.18].
In the irreversibility of ⇒11, we have also observed that if a Mori domain is a
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v-domain then it must be CIC, i.e., a Krull domain, and hence, in particular, an
essential domain. Therefore, Heinzer’s construction provides an example of an es-
sential (v-)domain D with a prime ideal P such that DP is not a v-domain.


Note that a similar situation holds for CIC domains. If D is CIC then it may be
that for some multiplicative set S of D the ring of fractions DS is not a completely
integrally closed domain. A well known example in this connection is the ring E of
entire functions. For E is a completely integrally closed Bézout domain that is infi-
nite dimensional (see [61 and 62, Henriksen (1952), (1953)], [53, Examples 16–21,
pp. 146–148] and [38, Section 8.1]). Localizing E at one of its prime ideals of
height greater than one would give a valuation domain of dimension greater than
one, which is obviously not completely integrally closed [53, Theorem 17.5]. For
another example of a CIC domain that has non–CIC rings of fractions, look at the
integral domain of integer-valued polynomials Int(Z) [7, Example 7.7 and the fol-
lowing paragraph at p. 127]. (This is a non-Bézout Prüfer domain, being atomic and
two-dimensional.)


Note that these examples, like other well known examples of CIC domains with
some overring of fractions not CIC, are all such that their overrings of fractions
are at least v-domains (hence, they do not provide further counterexamples to the
transfer of the v-domain property to the overrings of fractions). As a matter of fact,
the examples that we have in mind are CIC Bézout domains with Krull dimension
≥2 (and polynomial domains over them), constructed using the Krull-Jaffard-Ohm-
Heinzer Theorem (for the statement, a brief history and applications of this theorem
see [53, Theorem 18.6, p. 214, p. 136, Example 19.12]). Therefore, it would be
instructive to find an example of a CIC domain whose overrings of fractions are not
all v-domains. Slightly more generally, we have the following.


It is well known that if {Dλ | λ ∈ Λ} is a family of overrings of D with
D =


⋂
λ∈Λ Dλ and if each Dλ is a completely integrally closed (respectively, in-


tegrally closed) domain then so is D (for the completely integrally closed case see
for instance [53, Exercise 11, p. 145]; the integrally closed case is a straightfor-
ward consequence of the definition). It is natural to ask if in the above statement
“completely integrally closed/integrally closed domain” is replaced by “v-domain”
the statement is still true.


The answer in general is no, because by Krull’s theorem every integrally closed
integral domain is expressible as an intersection of a family of its valuation overrings
(see e.g. [53, Theorem 19.8]) and of course a valuation domain is a v-domain. But,
an integrally closed domain is not necessarily a v-domain (see the irreversibility of
⇒11). If however each of Dλ is a ring of fractions of D, then the answer is yes.
A slightly more general statement is given next.


Proposition 3.1. Let {Dλ | λ ∈ Λ} be a family of flat overrings of D such that
D =


⋂
λ∈Λ Dλ . If each of Dλ is a v-domain then so is D.


Proof. Let vλ be the v-operation on Dλ and let ∗ := ∧vλ , be the star operation on D
defined by A �→ A∗ :=


⋂
λ (ADλ )vλ , for all A ∈ F(D) [1, Theorem 2]. To show that


D is a v-domain it is sufficient to show that every nonzero finitely generated ideal
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is ∗-invertible (for ∗ ≤ v and so, if F ∈ f (D) and (FF−1)∗ = D, then applying the
v-operation to both sides we get (FF−1)v = D).


Now, we have


(FF−1)∗ =
⋂


λ ((FF−1)Dλ )vλ =
⋂


λ ((FDλ )(F−1Dλ ))vλ


=
⋂


λ ((FDλ )(FDλ )−1)vλ (since Dλ is D-flat and F is f.g.)
=
⋂


λ Dλ (since Dλ is a vλ -domain)
= D .


Corollary 3.2. Let Δ be a nonempty family of prime ideals of D such that D =
⋂{DP | P ∈ Δ}. If DP is a v-domain for each P ∈ Δ , then D is a v-domain. In
particular, if DM is a v-domain for all M ∈ Max(D) (for example, if D is locally a
v-domain, i.e., DP is a v-domain for all P ∈ Spec(D)), then D is a v-domain.


Note that the previous Proposition 3.1 and Corollary 3.2 generalize Proposition 2.1,
which ensures that an essential domain is a v-domain. Corollary 3.2 in turn leads to
an interesting conclusion concerning the overrings of fractions of a v-domain.


Corollary 3.3. Let S be a multiplicative set in D. If DP is a v-domain for all prime
ideals P of D such that P is maximal with respect to being disjoint from S, then DS


is a v-domain.


In Corollary 3.2 we have shown that, if DM is a v-domain for all M ∈ Max(D),
then D is a v-domain. However, if DP is a v-domain for all P ∈ Spec(D), we get
much more in return. To indicate this, we note that, if S is a multiplicative set of D,
then DS =


⋂{DQ | Q ranges over associated primes of principal ideals of D with
Q∩S = /0} [26, Proposition 4] (the definition of associated primes of principal ideals
was recalled in Remark 2.3). Indeed, if we let S = {1}, then we have D =


⋂
DQ | Q


ranges over all associated primes of principal ideals of D} (see also [86, Theorem
53] for a “maximal-type” version of this property). Using this terminology and the
information at hand, it is easy to prove the following result.


Proposition 3.4. Let D be an integral domain. Then, the following are equivalent.


(i) D is a v-domain such that, for every multiplicative set S of D, DS is a v-domain.
(ii) For every nonzero prime ideal P of D, DP is a v-domain.
(iii) For every associated prime of principal ideals of D, Q, DQ is a v-domain.


From the previous considerations, we have the following addition to the existing
picture:


locally PvMD ⇒12 locally v-domain ⇒13 v-domain.


The example discussed at the beginning of this section shows the irreversibility of
⇒13. Nagata’s example (given for the irreversibility of ⇒5) of a one dimensional
quasilocal CIC domain that is not a valuation ring shows also the irreversibility
of ⇒12.
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Remark 3.5. In the spirit of Proposition 3.4, we can make the following statement
for CIC domains: Let D be an integral domain. Then, the following are equivalent:


(i) D is a CIC domain such that, for every multiplicative set S of D, DS is CIC.
(ii) For every nonzero prime ideal P of D, DP is CIC.
(iii) For every associated prime of a principal ideal of D, Q, DQ is CIC.


At the beginning of this section, we have mentioned the existence of examples
of v-domains (respectively, CIC domains) having some localization at prime ide-
als which is not a v-domain (respectively, a CIC domain). Therefore, the previous
equivalent properties (like the equivalent properties of Proposition 3.4) are strictly
stronger than the property of being a CIC domain (respectively, v-domain).


On the other hand, for the case of integrally closed domains, the fact that, for
every nonzero prime ideal P of D, DP is integrally closed (or, for every maximal
ideal M of D, DM is integrally closed) returns exactly the property that D is integrally
closed (i.e., the “integrally closed property” is a local property; see, for example,
[17, Proposition 5.13]). Note that, more generally, the semistar integral closure is a
local property (see for instance [60, Theorem 4.11]).


We have just observed that a ring of fractions of a v-domain may not be a
v-domain, however there are distinguished classes of overrings for which the ascent
of the v-domain property is possible.


Given an extension of integral domains D ⊆ T with the same field of quo-
tients, T is called v-linked (respectively, t-linked) over D if whenever I is a nonzero
(respectively, finitely generated) ideal of D with I−1 = D we have (IT )−1 = T .
It is clear that v-linked implies t-linked and it is not hard to prove that flat over-
ring implies t-linked [32, Proposition 2.2]. Moreover, the complete integral closure
and the pseudo-integral closure of an integral domain D are t-linked over D (see
[32, Proposition 2.2 and Corollary 2.3] or [58, Corollary 2]). Examples of v-linked
extensions can be constructed as follows: take any nonzero ideal I of an integral
domain then the overring T := (Iv : Iv) is a v-linked overring of D [76, Lemma 3.3].


The t-linked extensions were used in [32] to deepen the study of PvMD’s. It is
known that an integral domain D is a PvMD if and only if each t-linked overring of D
is a PvMD (see [73, Proposition 1.6], [84, Theorem 3.8 and Corollary 3.9]). More
generally, in [32, Theorem 2.10], the authors prove that an integral domain D is a
PvMD if and only if each t-linked overring is integrally closed. On the other hand,
a ring of fractions of a v-domain may not be a v-domain, so a t-linked overring of
a v-domain may not be a v-domain. However, when it comes to a v-linked overring
we get a different story. The following result is proven in [76, Lemma 2.4].


Proposition 3.6. If D is a v-domain and T is a v-linked overring of D, then T is a
v-domain.


Proof. Let J := y1T +y2T + · · ·+ynT be a nonzero finitely generated ideal of T and
set F := y1D+ y2D+ · · ·+ ynD ∈ f (D). Since D is a v-domain, (FF−1)v = D and,
since T is v-linked, we have (JF−1T )v = (FF−1T )v = T . We conclude easily that
(J(T : J))v = T .
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4 v-domains and polynomial extensions


4.1 The polynomial ring over a v-domain


As for the case of integrally closed domains and of completely integrally closed
domains [53, Corollary 10.8 and Theorem 13.9], we have observed in the proof
of irreversibility of ⇒1 that, given an integral domain D and an indeterminate X
over D,


D[X ] is a PvMD ⇔ D is a PvMD.


A similar statement holds for v-domains. As a matter of fact, the following
statements are equivalent (see part (4) of [12, Corollary 3.3]).


(i) For every F ∈ f (D), Fv is v-invertible in D.
(ii) For every G ∈ f (D[X ]), Gv is v-invertible in D[X ].


This equivalence is essentially based on a polynomial characterization of inte-
grally closed domains given in [113], for which we need some introduction. Given
an integral domain D with quotient field K, an indeterminate X over K and a
polynomial f ∈ K[X ], we denote by cD( f ) the content of f , i.e., the (fractional)
ideal of D generated by the coefficients of f . For every fractional ideal B of D[X ],
set cD(B) := (cD( f ) | f ∈ B). The integrally closed domains are characterized by
the following property: for each integral ideal J of D[X ] such that J ∩ D �= (0),
Jv = (cD(J)[X ])v = cD(J)v[X ] (see [113, Section 3] and [12, Theorem 3.1]). More-
over, an integrally closed domain is an agreeable domain (i.e., for each fractional
ideal B of D[X ], with B⊆K[X ], there exists 0 �= s∈D -depending on B- with sB⊆D)
[12, Theorem 2.2]. (Note that agreeable domains were also studied in [65] under the
name of almost principal ideal domains.)


The previous considerations show that, for an integrally closed domain D, there is
a close relation between the divisorial ideals of D[X ] and those of D [113, Theorem
1 and Remark 1]. The equivalence (i)⇔(ii) will now follow easily from the fact that,
given an agreeable domain, for every integral ideal J of D[X ], there exist an integral
ideal J1 of D[X ] with J1 ∩ D �= (0), a nonzero element d ∈ D and a polynomial
f ∈ D[X ] in such a way that J = d−1 f J1 [12, Theorem 2.1].


On the other hand, using the definitions of v-invertibility and v-multiplicati-
on, one can easily show that for A ∈ F(D), A is v-invertible if and only if Av is
v-invertible. By the previous equivalence (i)⇔(ii), we conclude that every F ∈ f (D)
is v-invertible if and only if every G ∈ f (D[X ]) is v-invertible and this proves the
following:


Theorem 4.1. Given an integral domain D and an indeterminate X over D, D is a
v-domain if and only if D[X ] is a v-domain.


Note that a much more interesting and general result was proved in terms of
pseudo-integral closures in [15, Theorem 1.5 and Corollary 1.6].
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4.2 v-domains and rational functions


Characterizations of v-domains can be also given in terms of rational functions,
using properties of the content of polynomials.


Recall that Gauss’ Lemma for the content of polynomials holds for Dedekind
domains (or, more generally, for Prüfer domains). A more precise and general
statement is given next.


Lemma 4.2. Let D be an integral domain with quotient field K and let X be an
indeterminate over D. The following are equivalent.


(i) D is an integrally closed domain (respectively, a PvMD; a Prüfer domain).
(ii) For all nonzero f ,g ∈ K[X ], cD( f g)v = (cD( f )cD(g))v (respectively, cD( f g)w


= (cD( f )cD(g))w; cD( f g) = cD( f )cD(g)).


For the “Prüfer domain part” of the previous lemma, see [53, Corollary 28.5],
[118], and [51]; for the “integrally closed domains part”, see [90, p. 557] and [113,
Lemme 1]; for the “PvMD’s part”, see [14, Corollary 1.6] and [27, Corollary 3.8].
For more on the history of Gauss’ Lemma, the reader may consult [68, p. 1306] and
[2, Section 8].


For general integral domains, we always have the inclusion of ideals cD( f g) ⊆
cD( f )cD(g), and, more precisely, we have the following famous lemma due to
Dedekind and Mertens (for the proof, see [105] or [53, Theorem 28.1] and, for
some complementary information, see [2, Section 8]):


Lemma 4.3. In the situation of Lemma 4.2, let 0 �= f ,g ∈ K[X ] and let m := deg(g).
Then


cD( f )mcD( f g) = cD( f )m+1cD(g) .


A straightforward consequence of the previous lemma is the following:


Corollary 4.4. In the situation of Lemma 4.2, assume that, for a nonzero polynomial
f ∈ K[X ], cD( f ) is v-invertible (e.g., t-invertible). Then cD( f g)v = (cD( f )cD(g))v


(or, equivalently, cD( f g)t = (cD( f )cD(g))t ), for all nonzero g ∈ K[X ].


From Corollary 4.4 and from the “integrally closed domain part” of Lemma 4.2,
we have the following result (see [99, Theorem 2.4 and Section 3]):


Corollary 4.5. In the situation of Lemma 4.2, set VD := {g ∈ D[X ] | cD(g) is
v-invertible} and TD := {g ∈ D[X ] | cD(g) is t-invertible}. Then, TD and VD are
multiplicative sets of D[X ] with TD ⊆ VD. Furthermore, VD (or, equivalently, TD) is
saturated if and only if D is integrally closed.


It can be useful to observe that, from Remark 2.2 (a.1), we have


TD = {g ∈ VD | cD(g)−1 is t-finite}.


We are now in a position to give a characterization of v-domains (and PvMD’s) in
terms of rational functions (see [99, Theorems 2.5 and 3.1]).
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Theorem 4.6. Suppose that D is an integrally closed domain, then the following are
equivalent:


(i) D is a v-domain (respectively, a PvMD).
(ii) VD = D[X ]\{0} (respectively, TD = D[X ]\{0}).
(iii) D[X ]VD (respectively, D[X ]TD ) is a field (or, equivalently, D[X ]VD = K(X)


(respectively, D[X ]TD = K(X))).
(iv) Each nonzero element z ∈ K satisfies a polynomial f ∈ D[X ] such that cD( f )


is v-invertible (respectively, t-invertible).


Remark 4.7. Note that quasi Prüfer domains (i.e., integral domains having inte-
gral closure Prüfer [19]) can also be characterized by using properties of the
field of rational functions. In the situation of Lemma 4.2, set SD := {g ∈ D[X ] |
cD(g) is invertible}. Then, by Lemma 4.4, the multiplicative set SD of D[X ] is sat-
urated if and only if D is integrally closed. Moreover, D is quasi Prüfer if and only
if D[X ]SD is a field (or, equivalently, D[X ]SD = K(X)) if and only if each nonzero
element z ∈ K satisfies a polynomial f ∈ D[X ] such that cD( f ) is invertible [99,
Theorem 1.7].


Looking more carefully at the content of polynomials, it is obvious that the set


ND := {g ∈ D[X ] | cD(g)v = D}


is a subset of TD and it is well known that ND is a saturated multiplicative set of D[X ]
[84, Proposition 2.1]. We call the Nagata ring of D with respect to the v-operation
the ring:


Na(D,v) := D[X ]ND .


We can also consider


Kr(D,v) := { f/g | f ,g ∈ D[X ], g �= 0, cD( f )v ⊆ cD(g)v} .


When v is an e.a.b. operation on D (i.e., when D is a v-domain) Kr(D,v) is
a ring called the Kronecker function ring of D with respect to the v-operation
[53, Theorem 32.7]. Clearly, in general, Na(D,v) ⊆ Kr(D,v). It is proven in [39,
Theorem 3.1 and Remark 3.1] that Na(D,v) = Kr(D,v) if and only if D is a PvMD.


Remark 4.8. (a) Concerning Nagata and Kronecker function rings, note that a uni-
fied general treatment and semistar analogs of several results were obtained in the
recent years, see for instance [41–43].


(b) A general version of Lemma 4.2, in case of semistar operations, was recently
proved in [14, Corollary 1.2].


4.3 v-domains and uppers to zero


Recall that if X is an indeterminate over an integral domain D and if Q is a nonzero
prime ideal of D[X ] such that Q∩D = (0) then Q is called an upper to zero. The
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“upper” terminology in polynomial rings is due to S. McAdam and was introduced
in the early 1970s. In a recent paper, Houston and Zafrullah introduce the UMv-
domains as the integral domains such that the uppers to zero are maximal v-ideals
and they prove the following result [78, Theorem 3.3].


Theorem 4.9. Let D be an integral domain with quotient field K and let X be an
indeterminate over K. The following are equivalent.


(i) D is a v-domain.
(ii) D is an integrally closed UMv-domain.
(iii) D is integrally closed and every upper to zero in D[X ] is v-invertible.
(iii�) D is integrally closed and every upper to zero of the type Q� := �K[X ]∩D[X ]


with � ∈ D[X ] a linear polynomial is v-invertible.


It would be unfair to end the section with this characterization of v-domains
without giving a hint about where the idea came from.


Gilmer and Hoffmann in 1975 gave a characterization of Prüfer domains using
uppers to zero. This result is based on the following characterization of essential
valuation overrings of an integrally closed domain D: let P be a prime ideal of D,
then DP is a valuation domain if and only if, for each upper to zero Q of D[X ],
Q �⊆ P[X ], [53, Theorem 19.15].


A globalization of the previous statement leads to the following result that can
be easily deduced from [56, Theorem 2].


Proposition 4.10. In the situation of Theorem 4.9, the following are equivalent:


(i) D is a Prüfer domain.
(ii) D is integrally closed and if Q is an upper to zero of D[X ], then Q �⊆ M[X ], for


all M ∈ Max(D) (i.e., cD(Q) = D).


In [123, Proposition 4], the author proves a “t-version” of the previous result.


Proposition 4.11. In the situation of Theorem 4.9, the following are equivalent:


(i) D is a PvMD.
(ii) D is integrally closed and if Q upper to zero of D[X ], then Q �⊆ M[X ], for all


maximal t-ideal M of D (i.e., cD(Q)t = D).


The proof of the previous proposition relies on very basic properties of
polynomial rings.


Note that in [123, Lemma 7] it is also shown that, if D is a PvMD, then every
upper to zero in D[X ] is a maximal t-ideal. As we observed in Section 1, unlike
maximal v-ideals, the maximal t-ideals are ubiquitous.


Around the same time, in [75, Proposition 2.6], the authors came up with a much
better result, using the ∗-operations much more efficiently. Briefly, this result said
that the converse holds, i.e., D is a PvMD if and only if D is an integrally closed
integral domain and every upper to zero in D[X ] is a maximal t-ideal.
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It turns out that integral domains D such that their uppers to zero in D[X ] are
maximal t-ideals (called UMt-domains in [77, Section 3]; see also [36] and, for a
survey on the subject, [74]) and domains such that, for each upper to zero Q of D[X ],
cD(Q)t = D had an independent life. In [77, Theorem 1.4], studying t-invertibility,
the authors prove the following result.


Proposition 4.12. In the situation of Theorem 4.9, let Q be an upper to zero in D[X ].
The following statements are equivalent.


(i) Q is a maximal t-ideal of D[X ].
(ii) Q is a t-invertible ideal of D[X ].
(iii) cD(Q)t = D.


Based on this result, one can see that the following statement is a precursor to
Theorem 4.9.


Proposition 4.13. Let D be an integral domain with quotient field K and let X be an
indeterminate over K. The following are equivalent.


(i) D is a PvMD.
(ii) D is an integrally closed UMt-domain.
(iii) D is integrally closed and every upper to zero in D[X ] is t-invertible.
(iii�) D is integrally closed and every upper to zero of the type Q� := �K[X ]∩D[X ],


with � ∈ D[X ] a linear polynomial, is t-invertible.


Note that the equivalence (i)⇔(ii) is in [77, Proposition 3.2]. (ii)⇔(iii) is
a consequence of previous Proposition 4.12. Obviously, (iii)⇒(iii�). (iii�)⇒(i)
is a consequence of the characterization already cited that an integral domain D
is a PvMD if and only if each nonzero two generated ideal is t-invertible [94,
Lemma 1.7]. As a matter of fact, consider a nonzero two generated ideal I := (a,b)
in D, set � := a + bX and Q� := �K[X ]∩D[X ]. Since D is integrally closed, then
Q� = �cD(�)−1D[X ] by [113, Lemme 1, p. 282]. If Q� is t-invertible (in (D[X ]), then
it is easy to conclude that cD(�) = I is t-invertible (in D).


Remark 4.14. Note that Prüfer domains may not be characterized by straight modi-
fications of conditions (ii) and (iii) of Proposition 4.13. As a matter of fact, if there
exists in D[X ] an upper to zero which is also a maximal ideal, then the domain D
is a G(oldman)-domain (i.e., its quotient field is finitely generated over D), and
conversely [86, Theorems 18 and 24]. Moreover, every upper to zero in D[X ] is
invertible if and only if D is a GGCD domain [11, Theorem 15].


On the other hand, a variation of condition (iii�) of Proposition 4.13 does charac-
terize Prüfer domains: D is a Prüfer domain if and only if D is integrally closed and
every upper to zero of the type Q� := �K[X ]∩D[X ] with �∈D[X ] a linear polynomial
is such that cD(Q�) = D [75, Theorem 1.1].
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5 v-domains and GCD–theories


In [23, p. 170], a factorial monoid D is a commutative semigroup with a unit ele-
ment 1 (and without zero element) such that every element a ∈ D can be uniquely
represented as a finite product of atomic (= irreducible) elements qi of D, i.e.,
a = q1q2 · · ·qr, with r ≥ 0 and this factorization is unique up to the order of fac-
tors; for r = 0 this product is set equal to 1. As a consequence, it is easy to see that
this kind of uniqueness of factorization implies that 1 is the only invertible element
in D, i.e., U(D) = {1}. Moreover, it is not hard to see that, in a factorial monoid,
any two elements have GCD and every atom is a prime element [59, Theorem 10.7].


Let D be an integral domain and set D• := D \ {0}. In [23, p. 171] an integral
domain D is said to have a divisor theory if there is a factorial monoid D and a
semigroup homomorphism, denoted by (–): D• → D, given by a �→ (a), such that:


(D1) (a) | (b) in D if and only if a | b in D for a,b ∈ D•.
(D2) If g | (a) and g | (b) then g | (a±b) for a,b ∈ D• with a±b �= 0 and g ∈ D.
(D3) Let g ∈ D and set


g := {x ∈ D• such that g | (x)}∪{0}.


Then a = b if and only if a = b for all a,b ∈ D.


Given a divisor theory, the elements of the factorial monoid D are called divi-
sors of the integral domain D and the divisors of the type (a), for a ∈ D are called
principal divisors of D.


Note that, in [117, p. 119], the author shows that the axiom (D2), which
guarantees that g is an ideal of D, for each divisor g ∈ D, is unnecessary. Fur-
thermore, note that divisor theories were also considered in [98, Chap. 10], written
in the spirit of Jaffard’s volume [80].


Borevich and Shafarevich introduced domains with a divisor theory in order to
generalize Dedekind domains and unique factorization domains, along the lines of
Kronecker’s classical theory of “algebraic divisors” (cf. [88] and also [121] and
[34]). As a matter of fact, they proved that


(a) If an integral domain D has a divisor theory (–): D• → D then it has only one
(i.e., if ((–)): D• → D′ is another divisor theory then there is an isomorphism
D ∼= D′ under which the principal divisors in D and D′, which correspond to a
given nonzero element a ∈ D, are identified) [23, Theorem 1, p. 172];


(b) An integral domain D is a unique factorization domain if and only if D has a
divisor theory (–): D• →D in which every divisor of D is principal [23, Theorem
2, p. 174];


(c) An integral domain D is a Dedekind domain if and only if D has a divisor theory
(–): D• → D such that, for every prime element p of D, D/p is a field [23,
Chap. 3, Section 6.2].


Note that Borevich and Shafarevich do not enter into the details of the determi-
nation of those integral domains for which a theory of divisors can be constructed
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[23, p. 178], but it is known that they coincide with the Krull domains (see [120,
Section 105], [18, Theorem 5], [92, Section 5], and [87] for the monoid case). In
particular, note that, for a Krull domain, the group of non-zero fractional divisorial
ideals provides a divisor theory.


Taking the above definition as a starting point and recalling that (D2) is unnec-
essary, in [92], the author introduces a more general class of domains, called the
domain with a GCD–theory.


An integral domain D is said to have a GCD–theory if there is a GCD–monoid G


and a semigroup homomorphism, denoted by (–): D• → G, given by a �→ (a), such
that:


(G1) (a) | (b) in G if and only if a | b in D for a,b ∈ D•.
(G2) Let g ∈ G and set g := {x ∈ D• such that g | (x)}∪{0}. Then a = b if and


only if a = b for all a,b ∈ G.


Let Q := q(G) be the group of quotients of the GCD–monoid G. It is not hard to
prove that the natural extension a GCD–theory (–): D• → G to a group homomor-
phism (–)′ : K• → Q has the following properties:


(qG1) (α)′ | (β )′ with respect to G if and only if α | β with respect to D for α,
β ∈ K•.


(qG2) Let h ∈ Q and set h := {γ ∈ K• such that h | (γ)′}∪{0} (the division in Q


is with respect to G). Then a = b if and only if a = b for all a,b ∈Q.


In [92, Theorem 2.5], the author proves the following key result, that clarifies the
role of the ideal a. (Call, as before, divisors of D the elements of the GCD–monoid
G and principal divisors of D the divisors of the type (a), for a ∈ D•.)


Proposition 5.1. Let D be an integral domain with GCD–theory (–): D• → G,
let a be any divisor of G and {(ai)}i∈I a family of principal divisors with a =
GCD({(ai)}i∈I). Then a = ({ai}i∈I)v = av.


Partly as a consequence of Proposition 5.1, we have a characterization of a
v-domain as a domain with GCD-theory [92, Theorem and Definition 2.9].


Theorem 5.2. Given an integral domain D, D is a ring with GCD–theory if and only
if D is a v-domain.


The “only if part” is a consequence of Proposition 5.1 (for details see
[92, Corollary 2.8]).


The proof of the “if part” is constructive and provides explicitly the GCD–theory.
The GCD–monoid is constructed via Kronecker function rings. Recall that, when v
is an e.a.b. operation (i.e., when D is a v-domain (Theorem 2.4)), the Kronecker
function ring with respect to v, Kr(D,v), is well defined and is a Bézout domain
[53, Lemma 32.6 and Theorem 32.7]. Let K be the monoid Kr(D,v)•, let U :=
U(Kr(D,v)) be the group of invertible elements in Kr(D,v) and set G := K/U. The
canonical map:
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[–] : D• → G =
Kr(D,v)•


U
, a �→ [a] (= the equivalence class of a in G)


defines a GCD–theory for D, called the Kroneckerian GCD–theory for the
v-domain D. In particular, the GCD of elements in D is realized by the equivalence
class of a polynomial; more precisely, under this GCD–theory, given a0,a1, . . . ,an


in D•, GCD(a0,a1, . . . ,an) := GCD([a0], [a1], . . . , [an]) = [a0 + a1X + · · ·+ anXn].
It is classically known [23, Chap. 3, Section 5] that the integral closure of a do-


main with divisor theory in a finite extension of fields is again a domain with divisor
theory. For integral domains with GCD–theory a stronger result holds.


Theorem 5.3. Let D be an integrally closed domain with field of fractions K and let
K ⊆ L be an algebraic field extension and let T be the integral closure of D in L.
Then T is a v-domain (i.e., domain with GCD–theory) if and only if D is a v-domain
(i.e., a domain with GCD–theory).


The proof of the previous result is given in [92, Theorem 3.1] and it is based on
the following facts:


In the situation of Theorem 5.3,


(a) For each ideal I of D, IvD = (IT )vT ∩K [90, Satz 9, p. 675];
(b) If D is a v-domain, then the integral closure of Kr(D,vD) in the algebraic field


extension K(X) ⊆ L(X) coincides with Kr(T,vT ) [92, Theorem 3.3].


Remark 5.4. (a) The notions of GCD–theory and divisor theory, being more in the
setting of monoid theory, have been given a monoid treatment [59, Exercises 18.10,
19.6 and Chap. 20].


(b) Note that a part of previous Theorem 5.3 appears also as a corollary to [61,
Theorem 3.6]. More precisely, let clv(D) (:=


⋃{Fv : Fv) | F ∈ f (D)}) be the
v-(integral) closure of D. We have already observed (Theorem 2.4 and Remark 2.6)
that an integral domain D is a v-domain if and only if D = clv(D). There-
fore Theorem 5.3 is an easy consequence of the fact that, in the situation of
Theorem 5.3, it can be shown that clv(T ) is the integral closure of clv(D) in L
[61, Theorem 3.6].


(c) In [92, Section 4], the author develops a “stronger GCD–theory” in or-
der to characterize PvMD’s. A GCD-theory of finite type is a GCD–theory, (–),
with the property that each divisor a in the GCD–monoid G is such that a =
GCD((a1),(a2), . . . ,(an)) for a finite number of nonzero elements a1,a2, . . . ,an ∈D.
For a PvMD, the group of non-zero fractional t-finite t-ideals provides a GCD–
theory of finite type. (Note that the notion of a GCD–theory of finite type was intro-
duced in [18] under the name of “quasi divisor theory”. A thorough presentation of
this concept, including several characterizations of P∗MD’s, is in [59, Chap. 20].)


The analogue of Theorem 5.2 can be stated as follows: Given an integral
domain D, D is a ring with GCD–theory of finite type if and only if D is a PvMD.
Also in this case, the GCD–theory of finite type and the GCD–monoid are con-
structed explicitly, via the Kronecker function ring Kr(D,v) (which coincides in
this situation with the Nagata ring Na(D,v)), for the details see [92, Theorem 4.4].
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Moreover, in [92, Theorem 4.6] there is given another proof of Prüfer’s theorem
[111, Section 11], analogous to Theorem 5.3: Let D be an integrally closed do-
main with field of fractions K and let K ⊆ L be an algebraic field extension and let
T be the integral closure of D in L. Then T is a PvMD (i.e., domain with GCD–
theory of finite type) if and only if D is PvMD (i.e., domain with GCD–theory of
finite type). Recall that a similar result holds for the special case of Prüfer domains
[53, Theorem 22.3].


6 Ideal-theoretic characterizations of v-domains


Important progress in the knowledge of the ideal theory for v-domains was made in
1989, after a series of talks given by the second named author while visiting seve-
ral US universities. The results of various discussions of that period are contained
in the “A to Z” paper [5], which contains in particular some new characterizations
of v-domains and of completely integrally closed domains. These characterizations
were then expanded into a very long list of equivalent statements, providing further
characterizations of (several classes of) v-domains [13].


Proposition 6.1. Let D be an integral domain. Then, D is a v-domain if and only
if D is integrally closed and (F1 ∩ F2 ∩ ·· · ∩ Fn)v = Fv


1 ∩ Fv
2 ∩ ·· · ∩ Fv


n for all
F1,F2, . . . ,Fn ∈ f (D) (i.e., the v-operation distributes over finite intersections of
finitely generated fractional ideals).


The “if part” is contained in the “A to Z” paper (Theorem 7 of that paper, where
the converse was left open). The converse of this result was proved a few years later
in [96, Theorem 2].


Note that, even for a Noetherian 1-dimensional domain, the v-operation may
not distribute over finite intersections of (finitely generated) fractional ideals. For
instance, here is an example due to W. Heinzer cited in [9, Example 1.2], let k be
a field, X an indeterminate over k and set D := k[[X3,X4,X5]], F := (X3,X4) and
G := (X3,X5). Clearly, D is a non-integrally closed 1-dimensional local Noethe-
rian domain with maximal ideal M := (X3,X4,X5) = F + G. It is easy to see that
Fv = Gv = M, and so F ∩G = (X3) = (F ∩G)v


� Fv ∩Gv = M.
Recently, D.D. Anderson and Clarke have investigated the star operations that


distribute over finite intersections. In particular, in [8, Theorem 2.8], they proved
a star operation version of the “only if part” of Proposition 6.1 and, moreover, in
[8, Proposition 2.7] and [9, Lemma 3.1 and Theorem 3.2] they established several
other general equivalences that, particularized in the v-operation case, are summa-
rized in the following:


Proposition 6.2. Let D be an integral domain.


(a) (F1 ∩F2 ∩ ·· · ∩Fn)v = Fv
1 ∩Fv


2 ∩ ·· · ∩Fv
n for all F1,F2, . . . ,Fn ∈ f (D) if and


only if (F :D G)v = (Fv :D Gv) for all F,G ∈ f (D).
(b) The following are equivalent.
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(i) D is a v-domain.
(ii) D is integrally closed and (F :D G)v = (Fv :D Gv) for all F,G ∈ f (D)
(iii) D is integrally closed and ((a,b)∩(c,d))v = (a,b)v∩(c,d)v for all nonzero


a,b,c,d ∈ D.
(iv) D is integrally closed and ((a,b)∩ (c))v = (a,b)v ∩ (c) for all nonzero


a,b,c ∈ D.
(v) D is integrally closed and ((a,b) :D (c))v = ((a,b)v :D (c)) for all nonzero


a,b,c ∈ D.


Note that PvMD’s can be characterized by “t-versions” of the statements of
Proposition 6.2 (b) [9, Theorem 3.3]. Moreover, in [9], the authors also asked several
questions related to distribution of the v-operation over intersections. One of these
questions [8, Question 3.2(2)] can be stated as: Is it true that, if D is a v-domain,
then (A∩B)v = Av ∩Bv for all A,B ∈ F(D)?


In [97, Example 3.4], the author has recently answered in the negative, construct-
ing a Prüfer domain with two ideals A,B ∈ F(D) such that (A∩B)v �= Av ∩Bv.


In a very recent paper [6], the authors classify the integral domains that come
under the umbrella of v-domains, called there ∗-Prüfer domains for a given star
operation ∗ (i.e., integral domains such that every nonzero finitely generated frac-
tional ideal is ∗-invertible). Since v-Prüfer domains coincide with v-domains, this
paper provides also direct and general proofs of several relevant quotient-based char-
acterizations of v-domains given in [13, Theorem 4.1]. We collect in the following
theorem several of these ideal-theoretic characterizations in case of v-domains. For
the general statements in the star setting and for the proof the reader can consult [6,
Theorems 2.2 and 2.8].


Theorem 6.3. Given an integral domain D, the following properties are equivalent.


(i) D is a v-domain.
(ii) For all A ∈ F(D) and F ∈ f (D), A ⊆ Fv implies Av = (BF)v for some B


∈ F(D).
(iii) (A : F)v = (Av : F) = (AF−1)v for all A ∈ F(D) and F ∈ f (D).
(iv) (A : F−1)v = (Av : F−1) = (AF)v for all A ∈ F(D) and F ∈ f (D).
(v) (F : A)v = (Fv : A) = (FA−1)v for all A ∈ F(D) and F ∈ f (D).
(vi) (Fv : A−1) = (FAv)v for all A ∈ F(D) and F ∈ f (D).
(vii) ((A + B) : F)v = ((A : F)+ (B : F))v for all A,B ∈ F(D) and F ∈ f (D).
(viii) (A : (F ∩G))v = ((A : F) + (A : G))v for all A ∈ F(D) and F,G ∈ f v(D)


(:= {H ∈ f (D) | H = Hv}).
(ix) (((a) :D (b))+ ((b) :D (a)))v = D for all nonzero a,b ∈ D.
(x f ) ((F ∩G)(F + G))v = (FG)v for all F,G ∈ f (D).
(xF) ((A∩B)(A + B))v = (AB)v for all A,B ∈ F(D).
(xi f ) (F(Gv ∩Hv))v = (FG)v ∩ (FH)v for all F,G,H ∈ f (D).
(xifF) (F(Av ∩Bv))v = (FA)v ∩ (FB)v for all F ∈ f (D) and A,B ∈ F(D).
(xii) If A,B ∈ F(D) are v-invertible, then A∩B and A + B are v-invertible.
(xiii) If A,B ∈ F(D) are v-invertible, then A + B is v-invertible.
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Note that some of the previous characterizations are remarkable for various rea-
sons. For instance, (xiii) is interesting in that while an invertible ideal (respectively,
t-invertible t-ideal) is finitely generated (respectively, t-finite) a v-invertible v-ideal
may not be v-finite. Condition (xF) in the star setting gives ((A∩B)(A + B))∗ =
(AB)∗ for all A,B ∈ F(D) and for ∗ = d (respectively, ∗ = t), it is a (known) char-
acterization of Prüfer domains (respectively, PvMD’s), but for ∗ = v is a brand-new
characterization of v-domains. More generally, note that, replacing in each of the
statements of the previous theorem v with the identity star operation d (respec-
tively, with t), we (re)obtain several characterizations of Prüfer domains (respec-
tively, PvMD’s).


Franz Halter-Koch has recently shown a great deal of interest in the paper [6] and,
at the Fez Conference in June 2008, he has presented further systematic work in the
language of monoids, containing in particular the above characterizations [64].
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Tensor product of algebras over a field


Hassan Haghighi, Massoud Tousi, and Siamak Yassemi


Abstract This review paper deals with tensor products of algebras over a field. Let k
be a field and A, B be commutative k-algebras. We consider the following question:
“Which properties of A and B are conveyed to the k-algebra A⊗k B?”. This field is
still developing and many contexts are yet to be explored. We will restrict the scope
of the present survey, mainly, to special rings.


1 Introduction


In this paper, we consider the following question: “Which properties of A and B are
conveyed to the k-algebra A⊗k B?” This field is still developing and many contexts
are yet to be explored. We will restrict the scope of the present survey, mainly, to
special rings.


Throughout this note all rings and algebras considered are commutative with
identity elements, and all ring homomorphisms are unital. As well, k stands for
a field and A and B are commutative k-algebras. We use Spec(A), Max(A), and
Min(A) to denote the sets of prime ideals, maximal ideals, and minimal prime ideals,
respectively, of a ring A.
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1.1 Integral domain


Suppose that A and B are integral domains containing a field k. If the quotient
field k(A) of A is separable over k and k is algebraically closed in k(A), then A⊗k B
is an integral domain, c.f. [16, p. 562, Ex. A1.2]. For example, if k is algebraically
closed, and A and B are arbitrary domains containing k, then A⊗k B is an integral
domain.


1.2 Unit elements


In [51], the following theorem is given: Suppose k is an algebraically closed field,
A and B are commutative algebras over k, and k is algebraically closed in A and B.
Then every invertible element of A⊗k B is of the form a⊗b, where a is an invertible
element of A and b is an invertible element of B.


1.3 Local rings


In [52], Sweedler showed that for commutative algebras A and B over a common
field k, A⊗k B is local if and only if the following hold


(i) A and B are local,
(ii) A/J(A)⊗k B/J(B) is local (J(−) = Jacobson radical),
(iii) either A or B is algebraic over k.


In [33], it is shown that for A and B not necessarily commutative, A⊗k B local
implies (i), (ii), and (iii), and a converse can be obtained by replacing (iii) by the
condition that A or B is locally finite by k. (An algebra is called locally finite if
every finite subset generates a finite dimensional subalgebra.)


In [42], it is shown that if A ⊗k B is semilocal, then A and B are semilocal.
In addition, in [32, Theorem 6] it is shown that if A⊗k B is semilocal, then either A
or B is algebraic over k.


1.4 Noetherian rings


Several authors have been interested in studying when a tensor products of two
k-algebras is Noetherian. In [59] Vámos showed that the tensor products of two
k-algebras is not necessarily Noetherian. More precisely, let K be an extension field
of k and let K ⊗k K be the tensor product of K with itself over k. In [59, Theorem
11] Vámos proved that the following statements are equivalent:


(i) K ⊗k K is Noetherian,
(ii) the ascending chain condition is satisfied by the intermediary fields between k


and K,
(iii) K is a finitely generated extension of k.
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In [2], Baetica gives a different proof of the equivalence of (i) and (iii). While
the proof is longer than Vámos’ proof, it is more “natural” because it considers the
three cases which appear in the usual structure theory of fields:


(1) K is a separable algebraic extension of k,
(2) K is purely inseparable over k,
(3) K is purely transcendental over k.


Moreover, in [2], some other results on when a tensor product is Noetherian are
also obtained. For example, let k be a field with characteristic p �= 0, K a purely
inseparable field extension of k, and A a k-algebra. If A is a Noetherian local ring,
then A⊗k K is a coherent local ring with Noetherian spectrum. Furthermore, A⊗k K
is a Noetherian ring if and only if its maximal ideal is finitely generated; moreover
if the maximal ideal of A⊗k K is nilpotent, then A⊗k K is Noetherian.


2 Krull dimension


For a commutative ring R, let dim(R) be the classical Krull dimension of R, i.e.,
the supremum of length of chains of prime ideals of R, if this supremum exists,
and ∞ if it does not. For an extension field K of the field k, denote by tr.degK/k
the transcendence degree of the extension or ∞ if K does not have finite degree of
transcendence over k. In [46], Sharp proved the following result (actually, this result
appeared 10 years earlier in Grothendieck’s EGA [23, Remarque 4.2.1.4, p. 349]).


Theorem 2.1. For two extension fields K and L of the field k, dim(K ⊗k L) =
min(trdegK/k, trdegL/k).


Sharp and P. Vámos [47] generalized this result to the case of fields K1, · · · ,Kn,
where n ≥ 2. The authors showed the following.


Theorem 2.2. Let K1,K2, · · · ,Kn (n � 2) be extension fields of k and for i = 1, · · · ,n,
let ti = tr.deg(Ki/k). Then


dim(K1 ⊗·· ·⊗Kn) = t1 + t2 + · · ·+ tn −max{ti|1 ≤ i ≤ n}.


In [62], Wadsworth generalized the above results to the case where the al-
gebras are what he calls AF-domain over k (AF stands for “altitude formula”),
which is defined as follows: a commutative algebra D over k is an AF-ring if
ht(p)+ tr.degk(D/p) = tr.degk(Dp) for each prime ideal p of D. (If A is a domain
tr.degk(A) is the transcendence degree over k of its quotient field. For a non-domain
A, tr.degkA = sup{tr.degk(A/p)|p ∈ Spec(A)}.) It is worth noting that the class of
AF-domains contains the most basic rings of algebraic geometry, including finitely
generated k-algebras that are domains. Wadsworth showed the following result, see
also [38, Theorem 4 and Remark].
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Theorem 2.3 ([62, Theorem 3.8]). Assume that {Di}n
i=1 is a finite family of AF-


domains that are algebras over k. Let ti = tr.degk(Di) < ∞, and let di = dim(Di).
Then


dim(D1 ⊗·· ·⊗Dn) = t1 + t2 + · · ·+ tn −max{ti −di|1 ≤ i ≤ n}.


To show the necessity of the hypothesis that the domains Di should be AF-
domains, he gave an example of rank-one discrete valuation rings V1,V2, each of
transcendence degree 2 over a field k, such that dim(V1 ⊗k V1) = dim(V2 ⊗k V2) = 3
while dim(V1 ⊗k V2) = 2. He also stated a formula for dim(A⊗k B) which holds for
an AF-domain A, with no restriction on B.


Let us first recall some notation. We use A[n] to denote the polynomial ring
A[x1, · · · ,xn] and p[n] to denote the prime ideal p[x1, · · · ,xn] of A[x1, · · · ,xn]. Let
d,s be two integers with 0 � d � s. Set


D(s,d,A) = max{htp[x1, · · · ,xs]+ Min(s,d + tr.degk(A/p))|p ∈ Spec(A)}.


Theorem 2.4 ([62, Theorem 3.7]). Let A be an AF-domain. Then


dim(A⊗k B) = D(tr.degk(A),dim(A),B).


In [9], Bouchiba, Girolami, and Kabbaj showed that many (but not all) of
Wadsworth’s results can be extended from domains to rings with zero-divisors. In
particular, they provided a formula for the dimension of the tensor product A⊗k B
where A is an AF-ring.


Theorem 2.5 ([9, Theorem 1.4]). Let A be an AF-ring and B any ring. Then


dim(A⊗k B) = max{D(tr.degk(Ap),ht(p),B)|p ∈ Spec(A)}.


In addition, they gave a formula for dim(A1 ⊗k · · ·⊗k An), where Ai is AF-ring for
any i.


Lemma 2.6 ([9, Lemma 1.6]). Assume that A1, · · · ,An are AF-rings that are alge-
bras over k, with n � 2. For i = 1, · · · ,n, we denote tr.degk((Ai)pi) by tpi for any
pi ∈ Spec(Ai). Then dim(A1 ⊗k · · ·⊗k An) is equal to


max{Min(ht(p1)+ tp2 + · · ·+ tpn , tp1 + ht(p2)+ tp3 + · · ·+ tpn , · · · ,


tp1 + · · ·+ tpn−1 + ht(pn))},
where pi runs over Spec(Ai) and i = 1, · · · ,n.


Then they determined a necessary and sufficient condition under which the
dimension of the tensor product of the AF-rings A1, · · · ,An satisfies the formula
of Wadsworth’s Theorem 2.3. In this way, they presented a number of applications
of this result.
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Theorem 2.7 ([9, Theorem 1.8]). Assume that A1, · · · ,An are AF-rings that are
algebras over k, with ti = tr.degk(Ai) and di = dim(Ai). Then


dim(A1 ⊗k · · ·⊗k An) = t1 + · · ·+ tn −max{ti −di|1 � i � n}


if and only if for any i = 1, · · · ,n there is mi ∈ Max(Ai) and r ∈ {1, · · · ,n}
such that ht(mr) = dr and for any j ∈ {1, · · · ,n}− {r}, tr.degk((Aj)mj) = tj and
tr.degk(Aj/mj) � tr.degk(Ar/mr).


Corollary 2.8 ([9, Corollaries 1.13 and 1.14]). Assume that A1, · · · ,An are AF-
rings that are algebras over k, with ti = tr.degk(Ai) and di = dim(Ai). Consider the
following statements:


(i) tr.deg(Ai/pi) = ti, for any i = 1, · · · ,n and for any pi ∈ Min(Ai).
(ii) A1, · · · ,An are equidimensional.


If one of (i) or (ii) holds, then


dim(A1 ⊗k · · ·⊗k An) = t1 + · · ·+ tn −max{ti −di|1 � i � n}.


In [20], dimension formulas for the tensor product of two particular pullbacks are
established and a conjecture on the dimension formulas for more general pullbacks
is raised. In [10] such a conjecture is resolved. Consider the two pullbacks of k-
algebras for i = 1,2:


Ri −→ Di


↓ ↓
Ti −→ Ki


where, for i = 1,2, Ti is an integral domain with maximal ideal Mi, Ki = Ti/Mi,
ϕi is the canonical surjection from Ti onto Ki, Di is a proper subring of Ki and
Ri = ϕ−1


i (Di).


Theorem 2.9 ([10, Theorem 1.9]). Assume that T1, T2, D1 and D2 are AF-domains
with dim(T1) = ht(M1) and dim(T2) = ht(M2). Then


dim(R1 ⊗k R2) = max{ ht(M1[tr.degk(R2)])+ D(tr.degk(D1),dim(D1),R2),
ht(M2[tr.degk(R1)])+ D(tr.degk(D2),dim(D2),R1)}.


Notice that when the extension fields Ki are transcendental over the domains Di,
the pullbacks Ri are not AF-domains. In view of this, the above theorem allows us
to compute Krull dimension of tensor products of two k-algebras for a large class of
(not necessarily AF-domains) k-algebras.


Question 2.10. Let T1,T2 be integral domains with only one of them is an
AF-domain. Find dim(R1 ⊗k R2).
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However, if none of the Ti’s is an AF-domain, then the formula of Theorem 2.9
does not hold in general, see [62, Example 4.3]. In addition, [10, Example 3.4]
illustrates the fact that in Theorem 2.9 the hypothesis “dim(Ti) = ht(Mi), i = 1,2”
cannot be deleted.


The polynomial rings R1[tr.degk(K1) − tr.degk(D1)] and R2[tr.degk(K2)−
tr.degk(D2)] turned out to be AF-domains [10, Proposition 2.2]. The purpose
of [5] and [7] is to investigate dim(A⊗k B) in the general case where A[n] is an
AF-domain for some positive integer n. It is worth reminding the reader that if A is
an AF-domain, then so is the polynomial ring A[n]. The converse fails in general.


Indeed, in [5], it is shown that if A is a one dimensional domain such that A[n]
is an AF-domain for some positive integer n and B is any k-algebra, then one can
express dim(A⊗k B) entirely in terms of numerical invariants of A and B. As an ap-
plication, the Krull dimension of A⊗k B for a new family of k-algebras is computed.


In [7], Bouchiba provides a formula for dim(A⊗k B) in the case in which B is a
locally Jaffard domain and n ≤ tr.degk(B) is a positive integer such that A[n] is an
AF-domain. We recall that an AF-ring is a locally Jaffard ring [19].


One of the main results proved in [6] demonstrates:


Theorem 2.11 ([6, Theorem 1.1]). If B is an integral domain, then


dim(A[tr.degk(B)])− (tr.degk(B)−dim(B)) � dim(A⊗k B)
� dim(A[tr.degk(B)]).


As a consequence, with the same assumptions, the author showed the following
result.


Corollary 2.12 ([6, Corollary 2]). If B is an integral domain, then


dim(A)+ dim(B) � dim(A⊗k B)
� tr.degk(B)+ (tr.degk(B)+ 1)dim(A).


Note that, for B := k[n], the previous formula gives back the classical result for
polynomials proved by Seidenberg in 1954 [48, Theorem 3] and extended by Jaffard
in 1960 [29, Corollary 2], that is,


dim(A)+ n � dim(A[n]) � n +(n + 1)dim(A).


Corollary 2.11 states the analogues of the above mentioned inequalities of poly-
nomial rings for tensor products of k-algebras.


Theorem 2.10 yields the following consequences, which allow us to compute the
Krull dimension of tensor products for a new family of k-algebras outside the scope
of Wadsworth’s theorem 2.4.


Corollary 2.13 ([6, Corollary 1.5]). Let A be an integral domain and dim(A) =
tr.degk(A). Then


dim(A⊗k B) = dim(B[tr.degk(A)]).
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Corollary 2.14 ([6, Corollary 1.6]). Let A be a domain and m a maximal ideal of A
such that tr.degk(A/m) = Min{tr.deg(A/M) : M ∈ Max(A)}. Assume that ht(m)+
tr.degk(A/m) = tr.degk(A). Then


dim(A⊗k B) = D(tr.degk(A),dim(A),B).


Corollary 2.15 ([6, Corollary 1.7]). Let A be a domain. Let n be a maximal ideal
of B such that


ht(n[tr.degk(A)]) = max{ht(M[tr.degk(A)])|M ∈ Max(B)}.


If tr.degk(A) � tr.degk(B/n), then


dim(A⊗k B) = dim(B[tr.degk(A)]).


Example 2.2, Remark 2.3 and Example 2.5 of [6] showed that we are able to build
k-algebras that are domains and satisfy the conditions of Corollary 2.12, 2.13, and
2.14, while they are not AF-domains. In particular, Example 2.2 of [6] illustrates
the fact that the assumptions of Corollary 2.13 are actually weaker than those of
Theorem 2.4.


3 Special rings


3.1 Classical rings


Among Noetherian local rings there is a well-known chain:
Regular ⇒ Complete intersection ⇒ Gorenstein ⇒ Cohen–Macaulay.
These concepts are extended to non-local rings: for example a ring R is regular if


for all prime ideals p of R, Rp is a regular local ring.
A Noetherian local ring R is a complete intersection (ring) if its completion R̂ is


a residue class ring of a regular local ring S with respect to an ideal generated by an
S-sequence.


We investigate the cases where these properties are preserved under tensor prod-
uct operations. It is well-known that the tensor product A⊗k B of regular rings is
not regular in general. In [63], Watanabe, Ishikawa, Tachibana, and Otsuka showed
that under a suitable condition, the tensor product of regular rings is a complete in-
tersection. It is proved in [23], that the tensor product S⊗R T of Cohen–Macaulay
rings is again Cohen–Macaulay if we assume that T and S are commutative algebras
over ring R such that S is a flat R-module and T is a finitely generated R-module.
In [63], it is shown that the same is true for Gorenstein rings. Also, Watanabe et al.
showed that if A and B are two Gorenstein (resp., Cohen–Macaulay) rings, A⊗k B is
Noetherian and A/m is finitely generated over k for each maximal ideal m of A, then
A⊗k B is Gorenstein (resp., Cohen–Macaulay) ring. Recently, in [11], Bouchiba and
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Kabbaj showed that if A⊗k B is Noetherian, then A⊗k B is a Cohen–Macaulay ring
if and only if A and B are Cohen–Macaulay rings.


Recall that a Noetherian ring R satisfies Serre’s condition (Sn) provided
depthRp � Min{n,dim(Rp)} for all prime ideals p of R; and R satisfies condi-
tion (Rn) if Rp is a regular local ring for all prime ideals p with dim(Rp) � n.


In [53] we showed the following.


Theorem 3.1. Let A and B be non-zero k-algebras such that A⊗k B is Noetherian.
Then the following hold:


(a) A⊗k B is locally a complete intersection (resp., Gorenstein, Cohen–Macaulay)
if and only if A and B are locally a complete intersection (resp., Gorenstein,
Cohen–Macaulay).


(b) A⊗k B satisfies (Sn) if and only if A and B satisfy (Sn).
(c) If A⊗k B is regular then A and B are regular.
(d) If A⊗k B satisfies (Rn) then A and B satisfy (Rn).
(e) The converse of parts (c) and (d) hold if char(k) = 0 or char(k) = p such that


k = {ap|a ∈ k}.


In view of the above result, one may ask the following:


Question 3.2. Let A and B be two non-zero k-algebras such that A⊗k B is Noethe-
rian. Let A be a Cohen–Macaulay ring but not Gorenstein and B be a Gorenstein
ring. By part (a) of Theorem 3.1, the k-algebra A⊗k B is Cohen–Macaulay but not
Gorenstein. What can be said about the structure of A⊗k B? More generally we may
ask similar questions with regular, complete intersection, Gorenstein, or Cohen–
Macaulay rings.


3.2 Locally finite-dimensional rings, (stably) strong S-property,
(universal) catenarity


In order to treat Noetherian domains and Prüfer domains in a unified manner,
Kaplansky [30] introduced the concepts of S(eidenberg)-domain and strong S-ring.
A domain R is called an S-domain if, for each height one prime ideal p of R,
the extension pR[x] to the polynomial ring in one variable also has height one.
A commutative ring R is said to be a strong S-ring if R/p is an S-domain for each
p ∈ Spec(R). It is noteworthy that while R[x] is always an S-domain for any domain
R (see [17]), R[x] need not be a strong S-ring even when R is a strong S-ring. Thus,
R is said to be a stably strong S-ring (also called a universally strong S-ring) if the
polynomial ring R[x1, · · · ,xn] is a strong S-ring for each positive integer n.


Consider the following property that a ring R may satisfy.
(Q1) For any prime ideals p, p′ of R with p ⊂ p′, there exists a saturated chain


of prime ideals starting from p and ending at p′, and all such chains have the same
finite length.
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A ring R is called catenarian if it satisfies (Q1). A ring R is called universally
catenarian if R[x1, · · · ,xn] is catenarian for each positive integer n.


In [8], Bouchiba, Dobbs, and Kabbaj studied the prime ideal structure of A⊗k B.
They sought necessary and sufficient conditions for such a tensor product to have
the S-property, (stably) strong S-property and (universal) catenarity. First they in-
vestigated the minimal prime ideal structure in tensor products of k-algebras. In this
direction, the following three results were given. Recall that a ring R satisfies MPC
(for Minimal Primes Comaximality) if the minimal prime ideals in R are pairwise
comaximal.


Proposition 3.3 ([8, Proposition 3.1]). If A and B are k-algebras such that A⊗k B
satisfies MPC, then A and B satisfy MPC.


Theorem 3.4 ([8, Theorem 3.3]). Let k be an algebraically closed field. Then
A⊗k B satisfies MPC if and only if A and B each satisfies MPC.


Vamós [59, Corollary 4] proved that if K and L are field extensions of k, then K⊗k


L satisfies MPC. The third result generalizes this result in the context of integrally
closed domains as follows:


Theorem 3.5 ([8, Theorem 3.4]). If A and B are integrally closed domains, then
A⊗k B satisfies MPC.


Note that the above result can not be extended to arbitrary k-algebras. There
exist a separable algebraic field extension K of finite degree over k and a k-algebra
A satisfying MPC such that K ⊗k A fails to satisfy MPC (see [8, Example 3.2]).


Bouchiba et al. extended the domain-theoretic definitions of the S-property and
catenarity to the MPC context. In [8], a ring R is called an S-ring if it is satisfies MPC
and for each height one ideal p of R, the extension pR[x] has height one. Consider
the following property that a ring R may satisfy:


(Q2) R is locally finite dimensional and ht(p′) = ht(p)+ 1 for each containment
p ⊂ p′ of adjacent prime ideals of R.
In [8], a ring R is said to be catenarian if R satisfies MPC and (Q2). Note that R
satisfies MPC and (Q1) if and only if R satisfies MPC and (Q2).
As an application, the authors established necessary and sufficient conditions for
A⊗k B to be an S-ring:


Theorem 3.6 ([8, Theorem 3.9]). Let A ⊗k B satisfies MPC. Then A ⊗k B is an
S-ring if and only if at least one of the following statements is satisfied:


(1) A and B are S-rings,
(2) A is an S-ring and tr.degk(A/p) � 1 for each p ∈ Min(A),
(3) B is an S-ring and tr.degk(B/q) � 1 for each q ∈ Min(B),
(4) tr.degk(A/p) and tr.degk(B/q) � 1 for each p ∈ Min(A) and q ∈ Min(B).


To determine when a tensor product of k-algebras is catenarian, we first need to
know when it is locally finite dimensional (LFD for short).
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Theorem 3.7 ([8, Proposition 4.1]). Let A and B be k-algebras. Then the follow-
ing hold:


(a) If A⊗k B is LFD, then so are A and B, and either tr.degk(A/p) < ∞ for each
prime ideal p ∈ Spec(A) or tr.degk(B/q) < ∞ for each prime ideal q of B.


(b) If both A and B are LFD and either tr.degk(A) < ∞ or tr.degk(B) < ∞, then
A⊗k B is LFD.
The converse holds provided A and B are domains.


Proposition 3.8 ([8, Proposition 4.4]). Let K be an algebraic field extension of k.
If K ⊗k A is a strong S-ring (resp., catenarian), then A is a strong S-ring (resp.,
catenarian).


In [8], by giving an example, it is shown that there exists a k-algebra R which is
not an S-domain (resp., catenarian domain) and a field extension K of k such that
1 � tr.degk(K) < ∞ and K⊗k R is a strong S-ring (resp., catenarian). This shows that
Proposition 3.7 fails in general when the extension field K is no longer algebraic
over k.


Next, the authors investigated sufficient conditions on a k-algebra A and a field
extension K of k, for K ⊗k A to inherit the (stably) strong S-property and (universal)
catenarity.


In this direction, we can recall the following theorem and corollary from [8]:


Theorem 3.9 ([8, Theorem 4.9]). Let A be a Noetherian domain that is a k-algebra
and K a field extension of k such that tr.degk(K) < ∞. Then K⊗k A is a stably strong
S-ring. If, in addition, K ⊗k A satisfies MPC and A[x] is a catenarian, then K ⊗k A is
universally catenarian.


Corollary 3.10 ([8, Corollary 4.10]). Let K and L be field extensions of k such
that tr.degk(K) < ∞. Then K ⊗k L is universally catenarian.


The main theorem of [8] asserts that:


Theorem 3.11 ([8, Theorem 4.13]). Let A be an LFD k-algebra and K a field
extension of k such that either tr.degk(A) < ∞ or tr.degk(K) < ∞. Let B be a tran-
scendence basis of K over k, and let L be the separable algebraic closure of k(B)
in K. Assume that [L : k(B)] < ∞. If A is a stably strong S-ring (resp., universally
catenarian and K ⊗k A satisfies MPC), then K ⊗k A is a stably strong S-ring (resp.,
universally catenarian).


This result leads to new families of stably strong S-rings and universally catenar-
ian rings. Also noteworthy is [8, Corollary 4.10], stating that the tensor product of
two field extensions of k, at least one of which is of finite transcendence degree, is
universally catenarian.


In [8], an example is given of a discrete rank one valuation domain V (hence uni-
versally catenarian) such that tr.degk(V) < ∞ and V ⊗k V not catenarian, illustrating
the importance of assuming K is a field in Theorem 3.10.
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Question 3.12. Let K be an algebraic field extension of k and A a strong S-ring
(resp., catenarian such that K ⊗k A satisfies MPC). Is K ⊗k A a strong S-ring (resp.,
catenarian)?


However, for the case where K is a transcendental field extension of k, the an-
swer is negative, as illustrated by [8, Examples 5.1 and 5.2], as follows: there exists
a strong S-domain (resp., catenarian domain) A which is a k-algebra such that L⊗k A
is a strong S-ring (resp., catenarian) for any algebraic field extension L of k, while
K ⊗k A is not a strong S-ring (resp., catenarian) for some transcendental field ex-
tension K of k.


In [54], we give positive answer to this problem in some special cases. For
example, it is shown that K ⊗k A is universally catenarian if one of the following
holds:


(a) A is universally catenarian and K a finitely generated extension field of k.
(b) A is Noetherian universally catenarian and tr.degk(K) < ∞.
(c) A is universally catenarian and K ⊗k A is Noetherian.


Also, another result along these lines is as follows.


Theorem 3.13 ([54, Theorem 2.7]). Let A be a Noetherian, catenarian and locally
equidimensional ring which is a k-algebra, with K an algebraic field extension of k.
If q1,q2 ∈ Spec(K ⊗k A) are such that q1 ⊂ q2, then ht(q2/q1) = 1 or ht(q2/q1) =
htq2 −htq1.


3.3 Approximately Cohen–Macaulay rings


Let (R,m) be a Noetherian local ring with dim(R) = d. Recall that R is a Gorenstein
ring if and only if there is an element a of m such that R/anR is a Gorenstein
ring of dimension d − 1 for every integer n > 0 (cf. [28]). Clearly, this is not true
for arbitrary Cohen–Macaulay rings. The local ring R is called an approximately
Cohen–Macaulay ring if either dim(R) = 0 or there exists an element a of m such
that R/anR is a Cohen–Macaulay ring of dimension d − 1 for every integer n > 0
(cf. [22]). In [40], it is shown that if R is an approximately Cohen–Macaulay ring,
then so is the ring Rp for any prime ideal p. Therefore, the concept of approximately
Cohen–Macaulay can be extended to non-local rings as follows.


A non-local ring R is an approximately Cohen–Macaulay ring if for all prime
ideals p of R, the ring Rp is an approximately Cohen–Macaulay ring.


In [40], we proved the following result.


Theorem 3.14 ([40, Theorem 10]). Let T := A ⊗k B be a non-zero Noetherian
ring. Assume that A is not a Cohen–Macaulay ring. Then the following hold:


(i) If A is an approximately Cohen–Macaulay ring and B is a Cohen–Macaulay
ring, then T is an approximately Cohen–Macaulay ring.
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(ii) If T is an approximately Cohen–Macaulay ring, then B is a Cohen–Macaulay
ring.


(iii) If A is a homomorphic image of a Cohen–Macaulay ring or k is algebraically
closed, then the following conditions are equivalent:


(a) T is an approximately Cohen–Macaulay ring.
(b) A is an approximately Cohen–Macaulay ring and B is a Cohen–Macaulay


ring.


3.4 Clean rings


An element in a ring R is called clean if it is the sum of a unit and an idempotent.
Following Nicholson, cf. [37], we call the ring R clean if every element in R is clean.
Examples of clean rings include all zero-dimensional rings (i.e., every prime ideal
is maximal) and local rings. Clean rings have been studied by several authors, for
example [1, 24, 37]. It is an open question whether the tensor product of two clean
algebras over a field is clean, cf. [24, Question 3]. In [55] we showed that:


Theorem 3.15. Let k be an algebraically closed field. Let A and B be algebras
over k. If A and B have a finite number of minimal prime ideals (e.g. A and B
Noetherian) then the following statements are equivalent:


(i) A⊗k B is clean.
(ii) The following hold


(a) A and B are clean.
(b) A or B is algebraic over k.


Using this result, we gave an example of two clean algebras A and B over a field
k where the tensor product A⊗k B is not clean.


Example 3.16. Assume that k = C and A = B = C[|x|]. Then by [1, Proposition 12]
A and B are clean. We claim that A ⊗k B is not clean. Otherwise, since C is an
algebraically closed field and A(=B) is Noetherian, by Theorem 3.15 we have that A
or B is algebraic over C and hence A (=B) is equal to C. This is a contradiction.


3.5 Sequentially Cohen–Macaulay rings


The concept of sequentially Cohen–Macaulay module was introduced by Stanley
[49, p. 87] for graded modules and studied further by Herzog and Sbarra [27]. In [13]
Cuong and Nhan defined this notion for the local case as follows:


Definition 3.17. Let R be a Noetherian local ring. An R-module M is called a
sequentially Cohen–Macaulay module if there exists a filtration 0 = N0 ⊂ N1 ⊂
·· · ⊂ Nt = M of submodules of M such that
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(i) Each quotient Ni/Ni−1 is Cohen–Macaulay.
(ii) dim(N1/N0) < dim(N2/N1) < · · · < dim(Nt/Nt−1).


In [56], we showed the following result:


Theorem 3.18 ([56, Corollary 12]). Let A and B be two k-algebras such that
T := A⊗k B is Noetherian. Then the following holds:


(i) If A is a Cohen–Macaulay ring and B is a locally sequentially Cohen–
Macaulay ring then A⊗k B is a locally sequentially Cohen–Macaulay ring.


(ii) If B is a homomorphic image of a Cohen–Macaulay ring and if A ⊗k B is
a locally sequentially Cohen–Macaulay ring then B is a locally sequentially
Cohen–Macaulay ring.


(iii) If k is algebraically closed and A is a Cohen–Macaulay ring and if A⊗k B is
a locally sequentially Cohen–Macaulay ring then B is a locally sequentially
Cohen–Macaulay ring.


4 Combinatorial aspects


Let [n] := {1, · · · ,n} be the vertex set and Δ a simplicial complex on [n]. Thus Δ
is a collection of subsets of [n] such that if F ∈ Δ and F ′ ⊂ F , then F ′ ∈ Δ . Each
element F ∈ Δ is called a face of Δ . The dimension of a face F is |F| − 1. Let
d = max{|F| : F ∈ Δ} and define the dimension of Δ to be dim(Δ) = d−1. A facet
is a maximal face of Δ (with respect to inclusion). A simplicial complex is called
pure if all facets have the same cardinality.


Let Δ be an abstract simplicial complex on the vertex set [n]. The Stanley–
Reisner ring k[Δ ] of Δ over k is by definition the quotient ring R/IΔ where
R = k[x1, . . . ,xn] is the polynomial ring over k, and IΔ is a squarefree monomial
ideal generated by all monomials xi1 · · ·xir such that {i1, . . . , ir} �∈ Δ . When we talk
about algebraic properties of Δ we refer to those of its Stanley–Reisner ring. Let
Δ ′ be a second simplicial complex whose vertex set differs from Δ . The simplicial
join Δ ∗Δ ′ is defined to be the simplicial complex whose simplicies are of the form
σ ∪σ ′ where σ ∈ Δ and σ ′ ∈ Δ ′.


The algebraic and combinatorial properties of the simplicial join Δ ∗Δ ′ through
the properties of Δ and Δ ′ have been studied by a number of authors (cf. [3, 18,
41], and [64]). For instance, in [18], Fröberg used the (graded) k-algebra isomor-
phism k[Δ ∗Δ ′] � k[Δ ]⊗k k[Δ ′], and proved that the tensor product of two graded
k-algebras is Cohen–Macaulay (resp., Gorenstein) if and only if both of them are
Cohen–Macaulay (resp., Gorenstein).


The approach of [43] is in the same spirit as [18], that is, via tensor product, but in
a more general setting. Assume that A and B are two standard graded k-algebras, i.e.,
finitely generated non-negatively graded k-algebras generated over k by elements of
degree 1, and M and N are two finitely generated graded modules over A and B,
respectively. In [43], various sorts of Cohen–Macaulayness, cleanness, and pretty
cleanness of A⊗k B-module M⊗k N through the corresponding properties of M and
N are studied.
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Definition 4.1. Let M be a finitely generated graded module over a standard graded
k-algebra (A,m) with dimA(M) = d. The A-module M is called generalized Cohen–
Macaulay if the length of the local cohomology A-module Hi


m(M) is finite for i =
0,1, . . . ,d −1.


Theorem 4.2 ([43, Theorem 2.6]). Let M and N be two finitely generated graded
modules over standard graded k-algebras (A,m) and (B,n), respectively. Assume
that both dimA(M) and dimB(N) are positive. Then the following conditions are
equivalent:


(a) M⊗k N is generalized Cohen–Macaulay.
(b) M⊗k N is Buchsbaum.
(c) M⊗k N is Cohen–Macaulay.
(d) Both M and N are Cohen–Macaulay.


Corollary 4.3. Let Δ and Δ ′ be two simplicial complexes over disjoint vertex sets.
Then Δ ∗Δ ′ is Buchsbaum (over k) if and only if Δ and Δ ′ are Cohen–Macaulay
(over k).


Remark 4.4. The notion of generalized Cohen–Macaulay module was introduced
in [45]. For a simplicial complex Δ this notion coincides with the so-called
Buchsbaum property. Buchsbaum simplicial complexes have several algebraic and
combinatorial characterizations (cf. [35, 50]). For instance, a simplicial complex Δ
is Buchsbaum over a field k if and only if it is pure and locally Cohen–Macaulay
(i.e., the link of each vertex is Cohen–Macaulay). Recall that the link of a face
σ ∈ Δ is defined as linkΔ (σ) := {τ ∈ Δ | σ ∩ τ = /0, σ ∪ τ ∈ Δ}.


For the next result we need to recall the definition of a graded sequentially
Cohen–Macaulay module over a graded ring.


Definition 4.5 (Stanley [49]). Let A be a standard graded k-algebra. Let M be a
finitely generated A-module. We say M is sequentially Cohen–Macaulay if there
exists a finite filtration(called a Cohen–Macaulay filtration) of graded submodules
of M


0 = M0 ⊂ M1 ⊂ ·· · ⊂ Mr = M


satisfying the following two conditions:


(1) Each quotient module Mi/Mi−1 is Cohen–Macaulay,
(2) dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1), where dim denotes the


Krull dimension.


Theorem 4.6 ([43, Theorem 2.11]). Let A and B be two standard graded
k-algebras. Let M and N be two finitely generated graded modules over A and
B, respectively. Then M ⊗k N is a sequentially Cohen–Macaulay A⊗k B-module if
and only if M and N are sequentially Cohen–Macaulay over A and B, respectively.


Corollary 4.7. Let Δ and Δ ′ be two simplicial complexes over disjoint vertex sets.
Then Δ ∗Δ ′ is sequentially Cohen–Macaulay (over k) if and only if Δ and Δ ′ are
sequentially Cohen–Macaulay (over k).
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Remark 4.8. (i) In [3] the authors presented a purely combinatorial argument to
show that sequential Cohen–Macaulayness is preserved under simplicial join.


(ii) We refer the reader to [15, Theorem 3.3], [49, Proposition II.2.10], and [60,
Proposition 1.4] for three different combinatorial characterizations of sequentially
Cohen–Macaulay simplicial complexes.


Let Δ be a simplicial complex on [n] of dimension d−1. For each 1 � i � d−1,
we define the pure i-th skeleton of Δ to be the pure subcomplex Δ(i) of Δ whose
facets are those faces F of Δ with |F | = i + 1. We say that a simplicial complex Δ
is sequentially Cohen–Macaulay if Δ(i) is Cohen–Macaulay for all i.


Definition 4.9. Let M be a finitely generated graded module over a standard graded
k-algebra A with dimA(M) = d.


• The A-module M is called almost Cohen–Macaulay if depthM ≥ d −1.
• Let {N1, . . . ,Nn} denote a reduced primary decomposition of the A-module M


where each Nj is a p j-primary submodule of M. Let


UM(0) :=
⋂


dim(A/p j)=d


Nj.


The A-module M is called approximately Cohen–Macaulay whenever it is almost
Cohen–Macaulay and M/UM(0) is Cohen–Macaulay.


The original definition of the approximately Cohen–Macaulay property was
given by Goto for rings (see Section 3.3). The definition here was taken from [44,
Definition 4.4].


Theorem 4.10 ([43, Theorem 2.17]). Let M and N be two finitely generated graded
modules over standard graded k-algebras A and B, respectively. Assume that M is
not Cohen–Macaulay. Then


(1) M⊗k N is almost Cohen–Macaulay if and only if M is almost Cohen–Macaulay
and N is Cohen–Macaulay.


(2) M ⊗k N is approximately Cohen–Macaulay if and only if M is approximately
Cohen–Macaulay and N is Cohen–Macaulay.


Remark 4.11. For simplicial complexes, the notions of almost and approximately
Cohen–Macaulay have combinatorial characterizations. A simplicial complex Δ is
almost Cohen–Macaulay over a field k if and only if the codimension one skele-
ton of Δ is Cohen–Macaulay over k (cf. [4, Exercise 5.1.22]). Recall that the r-
skeleton of the simplicial complex Δ is defined as Δ r := {σ ∈ Δ | dimσ ≤ r}.
By [44, Proposition 4.5], an approximately simplicial complex Δ can be described
combinatorially through the several combinatorial characterizations of sequential
Cohen–Macaulayness (cf. Remark 4.8(ii)).


Corollary 4.12. Let Δ and Δ ′ be two simplicial complexes over disjoint vertex sets.
Then


(1) Δ ∗ Δ ′ is almost Cohen–Macaulay (over k) if and only if one of Δ or Δ ′ is
Cohen–Macaulay (over k) and the other is almost Cohen–Macaulay (over k).
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(2) Δ ∗Δ ′ is approximately Cohen–Macaulay (over k) if and only if one of Δ or Δ ′
is Cohen–Macaulay (over k) and the other is approximately Cohen–Macaulay
(over k).


Let Δ be a simplicial complex on [n] of dimension d − 1. We say that Δ is
shellable if Δ is pure and its facets can be ordered as F1,F2, · · · ,Fm such that, for
all 2 � m, the subcomplex < F1, · · · ,Fj−1 > ∩ < Fj > is pure of dimension d − 2.
We know by a result of Dress [14] that cleanness is an algebraic counterpart of
shellability. In [14, Corollary 2.9], Dress proved combinatorially that the join of
two shellable simplicial complexes is shellable. The aim of [43, Section 3] is to
present an algebraic way to show that shellability is preserved under tensor product.


For a nonzero finitely generated module M over a Noetherian ring A, it is well-
known (cf. [34, Theorem 6.4]) that there exists a finite prime filtration


F : 0 = M0 ⊂ M1 ⊂ ·· · ⊂ Mr−1 ⊂ Mr = M


with the cyclic quotients Mi/Mi−1 � A/pi where pi ∈ SuppA(M). The support of F


is the set of prime ideals SuppA(F) := {p1, . . . ,pr}. By [34, Theorem 6.3], we have


MinA(M) ⊆ AssA(M) ⊆ SuppA(F) ⊆ SuppA(M).


Here, SuppA(M), MinA(M), and AssA(M) denote the usual support of M, the set of
minimal primes of SuppA(M), and the set of associated primes of M, respectively.


Definition 4.13 (Dress [14]). A prime filtration F of a nonzero finitely generated
module M over a Noetherian ring A is called clean if SuppA(F) ⊆ MinA(M). The
A-module M is called clean if it admits a clean filtration.


Remark 4.14. This notion of “clean module” when applied to a ring is completely
different with the other notion of “clean ring” which we used in 3.4.


The following result is shown in [43].


Theorem 4.15 ([43, Theorem 3.3]). Let A and B be two Noetherian k-algebras
such that A⊗k B is Noetherian. Let M and N be two finitely generated modules
over A and B, respectively. Assume that A/p⊗k B/q is an integral domain for all
p ∈ AssA(M) and q ∈ AssB(N). If M and N are clean, then M⊗k N is clean.


Corollary 4.16 ([43, Corollary 3.8]). Let I and J be two arbitrary monomial ideals
in the polynomial rings R = k[x1, . . . ,xn] and S = k[y1, . . . ,ym], respectively. Then
R/I⊗k S/J is clean if and only if R/I and S/J are clean.


The aim of [43, Section 4] is to present an algebraic way to show that the
notion of shellability for the simplicial multicomplexes introduced by Herzog and
Popescu [26] is preserved under simplicial join of multicomplexes. Here, we recall
some basic definitions and results related to multicomplexes, and we refer the reader
to [26, Section 9] for more details.







Tensor product of algebras over a field 197


For a subset Γ ⊆ N
n
∞ where N∞ := N∪{∞} with a < ∞ for all a ∈ N, the set


of all maximal elements of Γ with respect to the componentwise partial order ≤ is
denoted by M(Γ ). The subset Γ is called a multicomplex if it is closed under going
down, and for each element a ∈ Γ , there exists m ∈ M(Γ ) with a ≤ m.


For each multicomplex Γ ⊆ N
n
∞, the k-subspace in R = k[x1, . . . ,xn] spanned by


all monomials xa1
1 · · ·xan


n with (a1, . . . ,an) �∈ Γ is a monomial ideal denoted by IΓ .
The correspondence Γ � k[Γ ] := R/IΓ constitutes a bijection from simplicial mul-
ticomplexes Γ in N


n
∞ to monomial ideals inside R.


Let Γ ′ ⊆ N
m
∞ be a second simplicial multicomplex. The simplicial join Γ with Γ ′


is the simplicial multicomplex


Γ ∗Γ ′ := {ā+ b̄ | a ∈ Γ and b ∈ Γ′} ⊆ N
n+m
∞


where − : N
n
∞ → N


n+m
∞ and − : N


m
∞ → N


n+m
∞ are canonical embeddings defined by


ā := (a1, . . . ,an,0, . . . ,0) and b̄ := (0, . . . ,0,b1, . . . ,bm) where a := (a1, . . . ,an) and
b := (b1, . . . ,bm). As in the case of simplicial complexes, we have the (graded)
k-algebra isomorphism k[Γ ∗Γ ′] � k[Γ ]⊗k k[Γ ′].


A multicomplex Γ is shellable in the sense of [26, Definition 10.2] if and only if
the k-algebra k[Γ ] is pretty clean in the following sense.


Definition 4.17 (Herzog-Popescu [26]). A prime filtration


F : 0 = M0 ⊂ M1 ⊂ ·· · ⊂ Mr−1 ⊂ Mr = M


of a nonzero finitely generated module M over a Noetherian ring A with the cyclic
quotients Mi/Mi−1 � A/pi is called pretty clean if for all i < j for which pi ⊆ p j it
follows that pi = p j. The module M is called pretty clean if it admits a pretty clean
filtration.


Theorem 4.18 ([43, Theorem 4.7]). Let M and N be two finitely generated graded
modules over standard graded Cohen–Macaulay k-algebras (A,m) and (B,n) with
canonical modules ωA and ωB, respectively. Assume that A/p⊗k B/q is an integral
domain for all p ∈ AssA(M) and q ∈ AssB(N). If M and N are pretty clean modules
with pretty clean filtrations FM and FN such that A/p and B/q are Cohen–Macaulay
for all p ∈ Supp(FM) and q ∈ Supp(FN), then M⊗k N is pretty clean.


As a consequence of Theorem 4.18 we have the following result.


Corollary 4.19 ([43, Corollary 4.8]). Let I and J be two arbitrary monomial ide-
als in the polynomial rings R = k[x1, . . . ,xn] and S = k[y1, . . . ,ym], respectively. Then
R/I⊗k S/J is pretty clean if and only if R/I and S/J are pretty clean.


Theorem 4.18 is not quite satisfactory because it needs a lot of hypotheses. How-
ever, in some special cases like the following, we can reduce these assumptions.


Theorem 4.20 ([43, Theorem 4.9]). Let A and B be two Noetherian k-algebras
such that A⊗k B is Noetherian. Assume that A/p⊗k B/q is an integral domain for
all p ∈ Ass(A) and q ∈ Ass(B). If A is pretty clean and B is clean, then A⊗k B is
pretty clean.
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Following these facts about pretty clean (clean) property an interesting
question is:


Question 4.21. Let A and B be two Noetherian k-algebras such that A ⊗k B is
Noetherian. Let A/p⊗k B/q be an integral domain for all p∈Ass(A) and q∈Ass(B).
If A⊗k B is pretty clean (resp., clean), are A and B pretty clean (resp., clean)?


5 Hilbert rings


In the literature, the following definitions are used interchangeably to define Hilbert
(also called Jacobson) rings.


(i) A ring R is called a Hilbert ring if each non-maximal prime ideal of R can be
represented as the intersection of maximal ideals.


(ii) A ring R is called a Hilbert ring if for each prime ideal P of R, the Jacobson
radical of R/P is zero.


(ii)’ A ring R is called a Hilbert ring if for each ideal I of R, the Jacobson radical of
R/I is nil.


(iii) A ring R is called a Hilbert ring if for each maximal ideal m of the polynomial
ring R[x], m∩R is a maximal ideal of R.


(iv) A ring R is called a Hilbert ring if for a prime ideal P such that the quotient
field of R/P is finitely generated over R/P, then P is maximal.


These rings were independently studied by O. Goldman [21] and W. Krull [31],
who named them Hilbert rings and Jacobson rings, respectively, in order to gener-
alize the Hilbert’s Nullstellensatz, which is stated for algebraically closed fields, to
the general case. In [21], the algebraic version of Nullstellensatz is proved:


Theorem 5.1. Let R be a Hilbert ring. Any finitely generated R-algebra is a Hilbert
ring. Moreover, if S is a finitely generated R-algebra and n ⊂ S is a maximal ideal
of S then m = n∩R is a maximal ideal of R and S/n is a finite algebraic extension
of R/m.


The definition of Hilbert ring immediately implies that every quotient of a Hilbert
ring is also a Hilbert ring. Moreover, it can be shown that if R is a Hilbert ring, then
every integral extension of R is a Hilbert ring.


Rings of Krull dimension zero, ring of integers, PIDs and more generally
Dedekind domains are Hilbert rings.


Even though every finitely generated algebra over a Hilbert ring is a Hilbert ring,
it is not true that any subalgebra of a Hilbert ring is a Hilbert ring. In [61], it is
proved if k is a countable field, then any k-algebra of transcendence degree more
than two contains a k-subalgebra which is not a Hilbert ring. On the other hand, this
author shows that if the k-algebra A is of transcendence degree at most two, then a
k-subalgebra of A is again a Hilbert ring.
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In [31], it is shown that the ring k[{xi}i∈N] is a Hilbert ring if and only if k has
uncountable cardinality. If the field k is replaced with a ring, the claim may not be
true. Regarding this claim, in [25], an example of a Hilbert ring R is constructed
which is uncountable but the polynomial ring R[{xi}i∈N] is not a Hilbert ring. Fur-
thermore, for the polynomial ring R[{xi}i∈I] in an infinite number of indeterminates
to be a Hilbert ring, equivalent conditions are given.


Since the tensor product of k-algebras is a special kind of base change, a question
similar to the one in previous sections is: under what conditions is the tensor product
of two Hilbert k-algebras a Hilbert ring?


This question is settled in special cases. In [58, Theorem 5] it is proved that:


Theorem 5.2. Let K and L be extension fields of k and T = K ⊗k L. Assume that
tr.degk(K) � tr.degk(L) = n < ∞. Then T is a Hilbert ring in which every maximal
ideal has height n.


This result is generalized in [39], and O’Carroll and Qureshi raised the following
conjecture:


Let K1, · · · ,Kn be fields of finite transcendence degree t1, · · · ,tn over a common
field k, respectively, and n � 2. Assume t1 ≥ ti for every i = 2, · · · ,n. Then K1 ⊗k


· · ·⊗k Kn is a Hilbert ring such that every maximal ideal is of height t2 + · · ·+ tn.
They proved this conjecture in two particular cases: where (1) t1 � t2 + · · ·+ tn


and (2) ti = 1 for all i � 2. On the other hand, the case where n = 2 is treated in
Theorem 5.2.


This conjecture is proved independently in [36] and [57] with different methods.
This result leads one to ask:


Question 5.3. Let A and B be two Hilbert k-algebras such that A⊗k B is Noetherian.
Is A⊗k B a Hilbert ring? Is it equidimensional?


Since A⊗k B is a faithfully flat extension of A and B, the Noetherian assumption
on A⊗k B implies both A and B are Noetherian too. If A and B are finitely generated
k-algebras, or if A is a finite field extension of k, or if A is a field extension of k and
B is a finitely generated k algebra, it can be shown that A⊗k B is a Hilbert ring.


In connection with 5.3, the paper [12] and references therein might be of interest.
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vol. 41. Birkhäuser Boston, Inc., Boston, MA (1996)
50. Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. An Interaction between Algebra,


Geometry, and Topology. Mathematical Monographs, Berlin (1986)
51. Sweedler, M.E., Eisenberg, A.: A units theorem applied to Hopf algebras and Amitsur coho-


mology. Am. J. Math. 92, 259–271 (1970)
52. Sweedler, M.E.: When is the tensor product of algebras local? Proc. Am. Math. Soc. 48, 8–10


(1975)
53. Tousi, M., Yassemi, S.: Tensor products of some special rings. J. Algebra 268, 672–676 (2003)
54. Tousi, M., Yassemi, S.: Catenary, locally equidimensional, and tensor products of algebras.


Comm. Algebra 33, 1023–1029 (2005)
55. Tousi, M., Yassemi, S.: Tensor products of clean rings. Glasg. Math. J. 47, 501–503 (2005)
56. Tousi, M., Yassemi, S.: Sequentially Cohen–Macaulay modules under base change. Comm.


Algebra 33, 3977–3987 (2005)
57. Viet Trung, N.: On the tensor product of extensions of a field. Quart. J. Math. Oxford 35(2),


337–339 (1984)
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Multiplicative ideal theory in the context
of commutative monoids


Franz Halter-Koch∗


Abstract It is well known that large parts of multiplicative ideal theory can be
derived in the language of commutative monoids. Classical parts of the theory
were treated in this context in my monograph “Ideal Systems” (Marcel Dekker,
1998). The main purpose of this article is to outline some recent developments
of multiplicative ideal theory (especially the concepts of spectral star operations
and semistar operations together with their applications) in a purely multiplicative
setting.


1 Introduction


General ideal theory of commutative rings has its origin in R. Dedekind’s multi-
plicative theory of algebraic numbers from the nineteenth century. It became an
autonomous theory by the work of W. Krull and E. Noether about 1930, and it
proved to be a most powerful tool in algebraic and arithmetic geometry and complex
analysis. Besides this mainstream movement towards algebraic geometry, there is a
modern development of multiplicative ideal theory based on the works of W. Krull
and H. Prüfer.


The main objective of multiplicative ideal theory is the investigation of the multi-
plicative structure of integral domains by means of ideals or certain systems of ideals
of that domain. In doing so, Krull’s concept of ideal systems proved to be funda-
mental. Its presentation in R. Gilmer’s book [23], using the notion of star operations,
influenced most of the research done in this area during the last 40 years, yielding
a highly developed theory of integral domains characterized by ideal-theoretic or
valuation-theoretic properties.
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Fresh impetuses to the theory were given in the nineties by the concepts of
spectral star operations and semistar operations Spectral star operations were in-
troduced by Fanggui Wang and R.L. McCasland [11, 12] and shed new light on the
connection between local and global behavior of integral domains Semistar opera-
tions were introduce by A. Okabe and R. Matsuda [39] as a generalization of the
concept of star operations This new concept proved to be more flexible and made it
possible to extend the theory obtained by star operations to a larger class of integral
domains.


Already in the early history of the theory, it was observed that a great deal of
multiplicative ideal theory can be developed for commutative monoids disregarding
the additive structure of integral domains. In an axiomatic way, this was first done
by P. Lorenzen [34], and, in a more general setting, by K.E. Aubert [7]. A system-
atic presentation of this purely multiplicative theory was given in the volumes by
P. Jaffard [32], J. Močkoř [37] and recently by the author [25].


The present article is based on the monograph [25]. Its main purpose is to outline
the development of multiplicative ideal theory during the last 20 years (especially
the concepts of spectral star operations and semistar operations) in the context of
commutative monoids. In doing so, instead of being encyclopedic, we focus on the
main results to outline the method, and we often only sketch proofs instead of giving
them in full detail.


2 Notations and preliminaries


By a monoid we always mean (deviating from the usual terminology) a commutative
multiplicative semigroup K containing a unit element 1 ∈ K and a zero element
0 ∈ K (satisfying 0x = 0 for all x ∈ K) such that every non-zero element a ∈ K is
cancellative (that is, ab = ac implies b = c for all b, c ∈ K).


For any set X , we denote by X• the set of non-zero elements of X , by Pf(X) the
set of all finite subsets of X , and we set P


•
f (X) = {E ∈ Pf(X) | E• �= /0}. A family


(Xλ )λ∈Λ of subsets of X is called directed if, for any α, β ∈ Λ there exists some
λ ∈ Λ such that Xα ∪Xβ ⊂ Xλ .


For a monoid K, we denote by K× the group of invertible elements of K. For
subsets X , Y ⊂ K, we define XY = {xy | x ∈ X , y ∈ Y} and (X :Y ) = (X :K Y ) =
{z ∈ K | zY ⊂ X}, and for c ∈ K we set Xc = X{c} and (X :c) = (X :{c}).


A submonoid D ⊂ K is always assumed to contain 1 and 0, and a monoid homo-
morphism is assumed to respect 0 and 1.


In the sequel, let K be a monoid and D ⊂ K a submonoid.


A subset M ⊂ K is called a D-module if DM = M, and it is called an ideal of D if
it is a D-submodule of D. A subset T ⊂ K is called multiplicatively closed if 1 ∈ T ,
0 /∈ T and T T = T . For a multiplicatively closed subset T ⊂ K× and X ⊂ K, we
define


T−1X = {t−1x | t ∈ T, x ∈ X } =
⋃


t∈T


t−1X .
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If T X = X , then the family (t−1X)t∈T is directed. If T ⊂ D is multiplicatively closed
and X is a D-module, then T−1D ⊂ K is a submonoid, and T−1X = (T−1D)X is a
T−1D-module. We call T−1D the quotient monoid of D with respect to D. We call K
a quotient of D and write K = q(D) if D• ⊂ K× and K = D•−1D (then K• = K× is
a quotient group of D•). Every monoid possesses a quotient which is unique up to
canonical isomorphisms. If K = q(D), then a subset X ⊂ K is called D-fractional if
cX ⊂ D for some c ∈ D•.


An ideal P ⊂ D is called a prime ideal of D if D \P is multiplicatively closed.
If D\P ⊂ K× and X ⊂ K, then we set XP = (D\P)−1X .


In the following Lemma 2.1 we collect the elementary properties of quotient
monoids. Proofs are easy and left to the reader.


Lemma 2.1. Let T ⊂ D∩K× a multiplicatively closed subset.


1. If J ⊂ D is an ideal of D, then T−1J = (T−1D)J ⊂ T−1D is an ideal of T−1D,
J ⊂ T−1J∩D, and T−1J = T−1D if and only if J∩T �= /0.


2. If J ⊂ T−1D is an ideal of T−1D, then J = T−1(J∩D).
3. The assignment P �→ T−1P defines a bijective map form the set of all prime


ideals P ⊂ D with P∩T = /0 onto the set of all prime ideals of T−1P.
4. If P ⊂ D is a prime ideal and T ∩P = /0, then P = T−1P∩D, and if T = D\P,


then T−1P = PDP = DP \D×
P is the greatest ideal of DP.


5. If X , Y ⊂ K, then T−1(X :Y )⊂ (T−1X :T−1Y ) = (T−1X :Y ), and equality holds,
if Y is finite.


3 Definition and first properties of weak module systems


Let K be a monoid and D ⊂ K a submonoid.


Definition 3.1. A weak module system on K is a map


r :


{
P(K) → P(K)


X �→ Xr


such that for all c ∈ K and X , Y ∈ P(K) the following conditions are fulfilled :


M1. X ∪{0} ⊂ Xr.
M2. If X ⊂ Yr, then Xr ⊂ Yr.
M3. cXr ⊂ (cX)r.


A module system on K is a weak module system r on K such that, for all X ⊂ K and
c ∈ K,


M3′. cXr = (cX)r.


Let r be a weak module system on K. A subset A⊂K is called an r-module if Ar = A,
and D is called an r-monoid if it is an r-module. We denote by Mr(K) the set of all
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r-modules in K. An r-module A⊂K is called r-finite or r-finitely generated if A = Er


for some E ∈ Pf(K). We denote by Mr,f(K) the set of all r-finite r-modules.
A (weak) module system r on K is called a (weak) D-module system if every


r-module is a D-module, and it is called a (weak) ideal system on K if it is a (weak)
K-module system. If r is a (weak) ideal system on K, then the r-modules are called
r-ideals, and in his case we shall often write Ir(K) = Mr(K) (to be concordant
with [25]).


The concept of a weak module system is a final step in a series of generaliza-
tions of the concepts of star and semistar operations on integral domains and that
of Lorenzen’s r-systems and Aubert’s x-systems on commutative monoids. This
concept also applies for not necessarily cancellative monoids, and in this setting
it was presented in [27] (where a purely multiplicative analog of the Marot property
for commutative rings was established). In this paper, however, we shall restrict to
cancellative monoids.


Examples will be discussed and presented later on in 5.6. In the meantime, the
interested reader is invited to consult [25, Sections 2.2 and 11.4] to see examples of
(weak) ideal systems and [30] to see examples of module systems.


In the following Proposition 3.2, we gather the elementary properties of weak
module systems. We shall use them freely throughout this article. Their proofs are
literally identical with those for weak ideal systems as presented in [25, Proposi-
tions 2.1, 2.3 and 2.4], and thus they will be omitted.


Proposition 3.2. Let r be a weak module system on K and X , Y ⊂ K.


1. /0r = {0}r and if r is a module system, then {0}r = {0}.


2. (Xr)r = Xr, and if X ⊂Y , then Xr ⊂Yr. In particular, Xr is the smallest r-module
containing X.


3. The intersection of any family of r-modules is again an r-module.


4. For every family (Xλ )λ∈Λ in P(K) we have


⋃


λ∈Λ
(Xλ )r ⊂


( ⋃


λ∈Λ
Xλ


)


r
=


( ⋃


λ∈Λ
(Xλ )r


)


r
.


5. (XY )r = (XrY )r = (XYr)r = (XrYr)r, and for every family (Xλ )λ∈Λ in P(K) we
have ( ⋃


λ∈Λ
XλY


)


r
=


( ⋃


λ∈Λ
(Xλ )rY


)


r
=


( ⋃


λ∈Λ
(XλY )r


)


r
.


Equipped with the r-multiplication, defined by (X ,Y ) �→ (XY )r, Mr(K) is
a commutative semigroup with unit element {1}r and zero element /0r, and
Mr,f(K) ⊂ Mr(K) is a subsemigroup.


6. (X : Y )r ⊂ (Xr :Y ) = (Xr :Yr) = (Xr :Y )r, and equality holds, if Y is finite. In
particular, if X is an r-module, then (X :Y ) is also an r-module.
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Proposition 3.3. Let r be a weak module system on K.


1. Dr is an r-monoid, and if A ⊂ K is a D-module, then Ar is a Dr-module.
In particular, {1}r is the smallest r-monoid contained in K, r is a weak {1}r-
module system, and if D ⊂ {1}r, then {1}r = Dr.


2. Let r be a weak D-module system. Then {1}r = Dr, and if X ⊂ K, then Xr =
DrXr = (DX)r.


3. r is a weak D-module system if and only if cD ⊂ {c}r for all c ∈ K, and if r is a
D-module system, then {c}r = cDr for all c ∈ K.


Proof. 1. We have DrDr ⊂ (DD)r = Dr ⊂ DrDr, and thus Dr = DrDr ⊂ K is a
submonoid. If A ⊂ K is a D-module, then DrAr ⊂ (DA)r = Ar ⊂ DrAr. Hence Ar =
DrAr is a Dr-module.


2. {1}r is a D-module containing 1, hence D ⊂ {1}r ⊂ Dr, and thus {1}r = Dr.
If X ⊂ K, then Xr ⊂ DrXr ⊂ (DX)r = (DXr)r = (Xr)r = Xr, and thus equality holds.


3. If r is a weak D-module system and c ∈ K, then {c}r is a D-module contain-
ing c, which implies cD⊂{c}r. If r is a D-module system, then {c}r = c{1}r = cDr.
Assume now that cD ⊂ {c}r for all c ∈ K, and let A ∈ Mr(K). Then A ⊂ DA, and
if c ∈ A, then Dc ⊂ {c}r ⊂ Ar = A, hence DA = A, and thus r is a weak D-module
system. ��
Definition 3.4. A weak module system r on K is called finitary or of finite type if
finitaryof finite type


Xr =
⋃


E∈Pf(X)


Er for all X ⊂ K .


Theorem 3.5. Let r be a weak module system on K. Then the following assertions
are equivalent :


(a) r is finitary.


(b) For all X ⊂ K and a ∈ Xr there exists a finite subset E ⊂ X such that a ∈ Er.


(c) For every directed family (Xλ )λ∈Λ in P(K) we have


( ⋃


λ∈Λ
Xλ


)


r
=


⋃


λ∈Λ
(Xλ )r .


(d) The union of every directed family of r-modules is again an r-module.


(e) If X ⊂ K, A ∈Mr,f(K) and A⊂ Xr, then there is a finite subset E ⊂ X satisfying
A ⊂ Er.


In particular, if r is finitary, X ⊂K and Xr ∈Mr,f(K), then there exists a finite subset
E ⊂ X such that Er = Xr.


Proof. The equivalence of (a) and (b) is obvious, and the equivalence of (a), (c)
and (d) is proved as the corresponding statements for weak ideal systems in [25,
Proposition 3.1].
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(b) ⇒ (e) Suppose that X ⊂ K and A = Fr ⊂ Xr, where F ∈ Pf(K). For every
c ∈ F , there is some E(c) ∈ Pf(X) such that c ∈ E(c)r. Then


E =
⋃


c∈E


E(c) ∈ Pf(X) , F ⊂
⋃


c∈E


E(c)r ⊂ Er and thus A = Fr ⊂ Er .


(e) ⇒ (b) If X ⊂ K and a ∈ Xr, then {a}r ∈ Mr,f(K) and {a}r ⊂ Xr. Hence
there exists a finite subset E ⊂ X such that a ∈ {a}r ⊂ Er.


The final statement follows from (e) with A = Xr. ��
Theorem 3.6.


1. Let r : Pf(K) → P(K) be a map satisfying the conditions M1, M2 and M3 in
Definition 3.1 for all X , Y ∈ Pf(K) and c ∈ K. Then


r : P(K) → P(K) , defined by Xr =
⋃


E∈Pf (X)


Er for all X ⊂ K ,


is the unique finitary weak module system on K satisfying r|Pf(K)= r. Moreover,
if r has also the property M3 ′ for all X ∈ Pf(K) and c ∈ K, then r is a module
system, and if cD ⊂ {c}r for all c ∈ K, then r is a weak D-module system.


2. Let r be a (weak) module system on K. Then there exists a unique finitary (weak)
module system rf on K such that Er = Erf for all finite subsets of K. It is
given by


Xrf =
⋃


E∈Pf(X)


Er for all X ⊂ K ,


it satisfies (rf)f = rf , Xrf ⊂ Xr for all X ∈ P(K), Mrf ,f(K) = Mr,f(K), and if r
is a (weak) D-module system, then so is rf .


Proof. 1. It is easily checked that r satisfies the conditions M1, M2 and M3
resp. M3 ′ of Definition 3.1. Hence, r is a weak module system resp. a module sys-
tem, and obviously Er = Er for all finite subsets E ⊂ K. Hence, Xr =


⋃
E∈Pf(X) Er


for all X ⊂ K, and therefore r is finitary. If r̃ is any finitary weak module system on
K with r̃ |Pf(K) = r, then


Xr̃ =
⋃


E∈Pf (X)


Er̃ =
⋃


E∈Pf(X)


Er = Xr , which implies r̃ = r .


If cD ⊂ {c}r = {c}r for all c ∈ K, then r is a weak D-module system by
Proposition 3.3.3.


2. By 1., applied for r |Pf (X), there exists a unique (weak) module system rf on
K such that Erf = Er for all E ∈ Pf(X). If X ⊂ K, then Xrf is given as asserted, and
if r is a (weak) D-module system, then so is rf . By definition, we have Mrf ,f(K) =
Mr,f(K), and by the uniqueness of rf it follows that rf = r if and only if r is finitary,
and, in particular, (rf)f = rf . ��
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Definition 3.7. 1. Let r : Pf(K) → P(K) be a map having the properties M1, M2
and M3 in Definition 3.1 for all X , Y ∈ Pf(K) and c ∈ K. Then the unique
weak module system on K which coincides with r on Pf(K) (see Theorem 3.5.1)
is called the total system associated with r an is again denoted by r (instead
of r ).


2. Let r be a (weak) module system on K. Then the unique finitary (weak) module
system rf on K defined in Theorem 3.5.2 is called the finitary (weak) module
system associated with r .


4 Comparison and mappings of weak module systems


Let K be a monoid.


Definition 4.1. Let r and q be weak module systems on K. We call q finer than r
and r coarser than q and write r � q if Xr ⊂ Xq for all subsets X ⊂ K.


Proposition 4.2. Let r and q be weak module systems on K. Then rf � r, and the
following assertions are equivalent :


(a) r � q.


(b) Xq = (Xr)q for all subsets X ⊂ K.


(c) Mq(K) ⊂ Mr(K).


If r is finitary, then there are also equivalent :


(d) Eq ⊂ Er for all finite subsets E ⊂ K.


(e) Mqf (K) ⊂ Mr(K).
(f) Mq,f(K) ⊂ Mr(K).
(g) r � qf .


In particular, if r and q are both finitary, then r = q if and only if Er = Eq for all
finite subsets E ⊂ K.


Proof. Straightforward (see also [25, Proposition 5.1]). ��
Definition 4.3. Let ϕ : K → L a monoid homomorphism, r a weak module system
on K and q a weak module system on L.


ϕ is called an (r,q)-homomorphism if ϕ(Xr) ⊂ ϕ(X)q for all subsets X ⊂ K.
We denote by Hom(r,q)(K,L) the set of all (r,q)-homomorphisms ϕ : K → L.


Proposition 4.4. Let ϕ : K → L a monoid homomorphism, r a weak module system
on K and q a weak module system on L.


1. ϕ is an (r,q)-homomorphism if and only if ϕ−1(A)∈Mr(K) for all A∈Mq(L).
2. Let r be finitary and ϕ(Er) ⊂ ϕ(E)q for all E ∈ Pf(K). Then ϕ is an


(r,q)-homomorphism.
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Proof. 1. If ϕ is an (r,q)-homomorphism and A ∈ Mq(L), then it follows that
ϕ


(
ϕ−1(A)r


)⊂ϕ
(
ϕ−1(A)


)
q = ϕ


(
ϕ−1(A)


)⊂A. Hence ϕ−1(A)r ⊂ϕ−1(A), and thus
ϕ−1(A) = ϕ−1(A)r ∈ Mr(K).


Thus assume that ϕ−1(A) ∈ Mr(K) for all A ∈ Mq(L), and let X ⊂ K. Then
ϕ−1


(
ϕ(X)q


)∈Mr(K), and as X ⊂ ϕ−1
(
ϕ(X)


)⊂ ϕ−1
(
ϕ(X)q


)
, it follows that Xr ⊂


ϕ−1
(
ϕ(X)q


)
and therefore ϕ(Xr) ⊂ ϕ(X)q.


2. If X ⊂ K and a ∈ Xr, then there is some E ∈ Pf(X) such that a ∈ Er, and thus
we obtain ϕ(a) ∈ ϕ(Er) ⊂ ϕ(E)q ⊂ ϕ(X)q. ��


5 Extension and restriction of weak module systems


Let K be a monoid and D ⊂ K a submonoid.


Definition 5.1. Let r be a weak module system on K. Then we define


r[D] : P(K) → P(K) by Xr[D] = (XD)r for all X ⊂ K, and


rD : P(D) → P(D) by XrD = Xr[D] ∩D = (XD)r ∩D for all X ⊂ D .


We call r[D] the extension of r by D and rD the weak ideal system induced by r
on D (see Proposition 5.2.4).


Proposition 5.2. Let r be a (weak) module system on K.


1. r[D] is a (weak) D-module system on K, Mr[D](K) consists of all r-modules
which are equally D-modules, r � r[D], and r = r[D] if and only if r is a (weak)
D-module system.


2. rf [D] is finitary, rf [D] � r[D]f , and if r is finitary, then r[D] is also finitary.


3. rD = r[D]D is a weak ideal system on D, and if r is finitary, then rD is also
finitary.


4. Suppose that r ist a weak D-module system and D is an r-monoid. Then rD = r |
P(D), and if r is a module system, then rD is an ideal system on D.


5. If A ∈ Mr(K) is a D-module, then A∩D is an rD-ideal of D.


6. If q is another weak module system on K and r � q, then r[D] � q[D] and
rD � qD.


7. If T ⊂ K is another submonoid, then r[D][T ] = r[T D].


Proof. 1. It is easily checked that r[D] satisfies the conditions of Definition 3.1, and
thus it is a (weak) module system on K. If A∈Mr[D](K), then A = Ar[D] = (AD)r is a
Dr-module (hence a D-module) by Proposition 3.3.1. Conversely, if A ∈Mr(K) is a
D-module, then Ar[D] = (AD)r = Ar = A and thus A ∈ Mr[D](K). Hence Mr[D](K)⊂
Mr(K) and thus r � r[D]. Moreover, r = r[D] holds if and only if every r-module is
a D-module, that is, if and only if r is a weak D-module system.







Multiplicative ideal theory in the context of commutative monoids 211


2. If X ⊂ K and E ∈ Pf(XD), then there exists some F ∈ Pf(X) such that
E ⊂ FD. Hence


Xrf [D] = (XD)rf =
⋃


E∈Pf (XD)


Er ⊂
⋃


F∈Pf(X)


(FD)r =
⋃


F∈Pf(X)


Fr[D] = Xr[D]f ,


and thus rf [D] � r[D]f . Applying this reasoning for rf instead of r, we obtain rf [D] =
(rf)f [D] � rf [D]f � rf [D], and therefore rf [D] = rf [D]f is finitary.


3. It is easily checked that rD = r[D]D satisfies the conditions of Definition 3.1,
and thus it is a (weak) module system on D.


If c ∈ D, then cD ⊂ {c}rD∩D = {c}rD , and thus rD is a weak ideal system on D
by Proposition 3.3.3. If r is finitary, X ⊂ D and a ∈ XrD = (XD)r ∩D, then there
exists a finite subset E ⊂ XD such that a ∈ Er ∩D. In particular, there exists a finite
subset E ⊂ X such that a ∈ (ED)r ∩D = ErD , and thus rD is finitary.


4. If X ⊂D, then Xr ⊂D, and XrD = (XD)r∩D = Xr∩D = Xr by Proposition 3.3.2.
If r is a module system, then rD = r |P(D) is an ideal system on D.


5. If A ∈ Mr(K) is a D-module, then A = Ar = AD ∈ Mr(K), and therefore
A ∩ D ⊂ (A∩D)rD = [(A∩D)D]r ∩D ⊂ (AD)r ∩D = A∩D.


6. and 7. are obvious by the definitions. ��
Proposition 5.3. Let T ⊂ D∩K× be multiplicatively closed, r a finitary D-module
system on K and X ⊂ K. Then T−1Xr = (T−1X)r = Xr[T−1D], and if X ⊂ T−1D,


then XrT−1D
= T−1XrD.


Proof. Since TDX = DX and r is finitary, it follows that


(T−1DX)r =
(⋃


t∈T


t−1DX
)


r
=


⋃


t∈T


(t−1DX)r =
⋃


t∈T


t−1(DX)r = T−1(DX)r ,


hence T−1Xr = T−1(DX)r = (T−1DX)r = (T−1X)r (by Proposition 3.3.2), and by
definition we have (T−1DX)r = Xr[T−1D]. If X ⊂ T−1D, then XrT−1D


= (XT−1D)r ∩
T−1D = T−1Xr ∩T−1D = T−1XrD . ��
Proposition 5.4. Assume that K = q(D), and let r : P(D) → P(D) be a module
system on D.


1. There exists a unique module system r∞ on K such that Xr∞ = K if X ⊂ K is not
D-fractional, and Xr∞ = c−1(cX)r if X ⊂ K and c ∈ D• are such that cX ⊂ D.
In particular, r∞ |P(D) = r and Dr∞ = D. Moreover, r∞ is a D-module system if
and only if r is an ideal system on D, and then (r∞)D = r.


2. The module system (r∞)f is the unique finitary module system on K satisfying
(r∞)f |P(D) = rf . Moreover, (r∞)f is a D-module system on K if and only if rf is
an ideal system on D, and then ((r∞)f)D = rf .


Proof. 1. Uniqueness is obvious. To prove existence, we define r∞ as in the
assertion, making sure that for D-fractional subsets X ⊂ K the definition of Xr∞
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does not depend on the element c ∈ D• with cX ⊂ D. Then it is easily checked that
r∞ has the properties of Definition 3.1.


We obviously have r∞ |P(D) = r. Hence, if r∞ is a D-module system on K, then
r is an ideal system on D. Conversely, let r be an ideal system on D. If X ⊂ K is not
D-fractional, then Xr∞ = K is a D-module. If X ⊂ K is D-fractional and c ∈ D• is
such that cX ⊂D, then (cX)rD = (cX)r, and Xr∞D = c−1(cX)rD = c−1(cX)r = Xr∞ .
Hence, r∞ is a D-module system, and (r∞)D = r by definition.


2. (r∞)f is a finitary module system on K. If X ⊂ D, then


X(r∞)f =
⋃


E∈Pf (X)


Er∞ =
⋃


E∈Pf(X)


Er = Xrf , hence (r∞)f |P(D) = rf .


Consequently, if (r∞)f is a D-module system on K, then rf is an ideal system on D.
Conversely, let rf be an ideal system on D and X ⊂ K. If E ∈ Pf(X) and c ∈ D• is
such that cE ⊂ D, then


Er∞ D = c−1(cE)rD = c−1(cE)rf D = c−1(cE)rf = c−1(cE)r = Er∞ .


Hence, X(r∞)f D =
⋃


E∈Pf(X) Er∞ D =
⋃


E∈Pf (X) Er∞ = X(r∞)f , thus (r∞)f is a D-module
system, and ((r∞)f)D = rf by definition.


It remains to prove uniqueness. Let x be any finitary module system on K
satisfying x | P(D) = rf . If E ∈ Pf(K) and c ∈ D• is such that cE ⊂ D, then
Ex = [c−1(cX)]x = c−1(cE)x = c−1(cE)rf = Er∞ = E(r∞)f , and thus x = (r∞)f by
Proposition 4.2. ��
Definition 5.5. Assume that K = q(D), and let r be a module system on D. Then the
module system r∞ on K constructed in Proposition 5.4 is called the trivial extension
of r to a module system on K.


If r is a finitary module system on D, then (r∞)f is called the natural extension
of r to a module system on K. In this case, we say that (r∞)f is induced by r, and (as
there will be no risk of confusion) we write again r instead of (r∞)f .


With this identification, every finitary module system r on D is a finitary module
system on K, and r is even a finitary ideal system on D if and only if r is a finitary
D-module system on K satisfying Dr = {1}r = D.


Examples 5.6 (Examples of ideal systems and module systems)
1. The semigroup system s(D) : P(D) → P(D) is defined by Xs(D) = DX for


all X ⊂ D. It is a finitary ideal system on D, and Ms(D)(D) is the set of ordinary
semigroup ideals of D. For every ideal system r on D, we have s(D) � r.


The identical system s : P(K)→P(K) is defined by Xs = X∪{0} for all X ⊂K.
It is a finitary module system on K, for every subset X ⊂ K we have Xs[D] = DX
(the D-module generated by X ), and sD = s(D).


2. Assume that K = q(D). Then s(D) = s[D] is the finitary module system on K
induced by the semigroup system s(D) (according to Definition 5.5 ).


The module system v(D) on K is defined by Xv(D) = (D : (D :X)) for all subsets
X ⊂ K. If X ⊂ K is not D-fractional, then Xv(D) = K, and thus v(D) is the trivial
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extension of the classical “Vielfachensystem” vD on D (compare [25, Section 11.4]
and [23, Section 34]). Note that vD (and thus also v(D) ) is usually not finitary. If
X ⊂ K is D-fractional, then


Xv(D) =
⋂


b∈K
X⊂bD


Db ,


and for every ideal system r on D we have r � vD.
The associated finitary ideal system on D (which is identified with its natural


extension to a finitary module system on K) is the classical “t-system” denoted by
t(D) = v(D)f . If r is any finitary ideal system on D, then r � t(D). But note that for
an overmonoid T ⊃ D in general t(D)[T ] �= t(T ).


3. Let D be a ring. The Dedekind system d(D) : P(D) → P(D) is defined by
Xd(R) = R〈X〉 (the usual ring ideal generated by X ).


4. Let D be an integral domain and K = q(D). The additive system d : P(K) →
P(K) is given by Xd = Z〈X〉 (the additive group generated by X ) for all X ⊂ K.
It is a finitary module system on K, and d[D] = d(D) (Xd[D] is the D-submodule of
K generated by X for every subset X ⊂ K).


Recall that a semistar operation ∗ on D is a map


Md[D](K)• → Md[D](K) , X �→ X∗


having the following properties for all X , Y ⊂ K and c ∈ K:


(∗1) (cX)∗ = cX∗ ; (∗2) X ⊂ X∗ = X∗∗ (∗3) X ⊂ Y =⇒ X∗ ⊂ Y ∗ .


A (semi)star operation on D is a semistar operation satisfying D∗ = D (then
∗|F(D)∩Md[D](K) is a star operation in the classical sense, see [23, Section 32]).


If ∗ is a semistar operation on D, then the map r∗ : P(K) → P(K), defined by
Xr∗ = (Xd[D])∗, is a D-module system on K such that d[D] � r∗ and r∗ |Md[D](K)•
coincides with ∗. Moreover, ∗ is a (semi)star operation if and only if D is an r∗-
monoid (then ∗ |Md[D](K)• is a star operation and r∗ |P(D) is an ideal system
on D). r∗ is called the module system induced by ∗.


Conversely, let r be a module system on K such that d[D] � r. Then
∗r = r |Md[D](K)• is a semistar operation on D, and r = r∗r is the module system
induced by ∗r.


6 Prime and maximal ideals, spectral module systems


Let K be a monoid and D ⊂ K a submonoid.


Proposition 6.1. Let (rλ )λ∈Λ be a family of (weak) D-module systems on K, and
let r : P(K) → P(K) be defined by


Xr =
⋂


λ∈Λ
Xrλ for all X ⊂ K


(if Λ = /0, then r is the trivial weak module system on K, defined by Xr = K for all
X ⊂ K ).
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Then r is a (weak) D-module system on K, and r = inf{rλ | λ ∈ Λ} is the
infimum of the family (rλ )λ∈Λ in the partially ordered set of all weak D-module
systems on K [ that is, for every weak module system x on K we have x � r if and
only if x � rλ for all λ ∈ Λ ].


Proof. Obvious. ��
Definition 6.2. Let r be a weak ideal system on D. We denote by r-spec(D) the
set of all prime r-ideals of D and by r-max(D) the set of all maximal elements in
Ir(D) \ {D} (called r-maximal r-ideals). We say that r has enough primes if for
every J ∈ Ir(D)\ {D} there is some P ∈ r-spec(D) such that J ⊂ P.


Proposition 6.3. Let r be a finitary weak ideal system on D. Then r has enough
primes. More precisely, the following assertions hold :


1. If J ∈ Ir(D) and T ⊂ D• is a multiplicatively closed subset such that J∩T = /0,
then the set Ω = {P ∈ Ir(D) | J ⊂ P and P∩T = /0} has maximal elements, and
every maximal element in Ω is prime.


2. Every r-ideal J ∈ Ir(D) \ {D} is contained in an r-maximal r-ideal of D, and
r-max(D) ⊂ r-spec(D)


Proof. [25, Theorems 6.3 and 6.4]. ��
Proposition 6.4. Assume that K = q(D), let r be a finitary module system on K and
A ∈ Mr(K) a D-module. Then


A =
⋂


P∈rD-max(D)


AP . If D is an r-monoid, then D =
⋂


P∈rD-max(D)


DP .


Proof. Obviously, A ⊂ AP for all P ∈ rD-max(D). Thus assume that z ∈ A•
P for all


P ∈ rD-max(D). Then I = z−1A∩D is an rD-ideal of D. For each P ∈ rD-max(D),
there exists some s ∈ D\P such that sz ∈ A, hence s ∈ I and I �⊂ P. Therefore we
obtain 1 ∈ I and z ∈ A by Proposition 6.3. ��


In the sequel, we investigate two closely connected special classes of module
systems, spectral and stable ones (see Definition 6.10 for a formal definition). In the
case of semistar operations, they were introduced in [13] where its deep connection
with localizing systems was established. For the connection with localizing systems
in a purely multiplicative context we refer to [30]. In the case of integral domains,
spectral module systems describe the ideal theory of generalized Nagata rings (see
[19, 20]).


Theorem 6.5. Assume that K = q(D), let q be a finitary D-module system on K,
Δ ⊂ qD-spec(D) and qΔ = inf{q[DP] | P ∈ Δ} (see Proposition 6.1).
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1. qΔ is a D-module system on K satisfying q � qΔ . If X ⊂ K, then


DPXq = DPXqΔ for all P ∈ Δ , and XqΔ =
⋂


P∈Δ
DPXq .


2. For all A, B ∈ Mq(K) we have (A∩B)qΔ = AqΔ ∩BqΔ .


3. For all P ∈ Δ we have PqΔ ∩D = P (and thus Δ ⊂ (qΔ )D-spec(D)).
4. If J ⊂ D is an ideal such that 1 /∈ JqΔ , then there exists some P ∈ Δ such that


J ⊂ P. In particular, (qΔ )D has enough primes.


Proof. 1. By Proposition 6.1, qΔ = inf{q[DP] | P ∈ Δ} is a D-module system on K.
Since q � q[DP] for all P ∈ Δ , it follows that q � qΔ . If X ⊂ K, then Xq[DP] = DPXq


by Proposition 5.3, and thus


XqΔ =
⋂


P∈Δ
Xq[DP] =


⋂


P∈Δ
DPXq .


Now Xq ⊂ XqΔ ⊂ DPXq implies DPXq ⊂ DPXqΔ ⊂ DPDPXq = DPXq and thus
DPXq = DPXqΔ .


2. If A, B ∈ Mq(K), then A∩B ∈ Mq(K), and


(A∩B)qΔ =
⋂


P∈Δ
DP(A∩B) =


⋂


P∈Δ
DPA∩


⋂


P∈Δ
DPB = AqΔ ∩BqΔ .


3. Let P, Q ∈ Δ . If P �⊂ Q, then D ⊂ DQ = PDQ ⊂ PqDQ, and if P ⊂ Q, then
PqDQ ⊃ PqDP. Hence we obtain


PqΔ ∩D =
⋂


Q∈Δ
PqDQ ∩D = PqDP ∩D ⊃ P ,


and it remains to prove that PqDP ∩ D ⊂ P. If z ∈ PqDP ∩ D, then there is some
s ∈ D\P such that sz ∈ Pq ∩D = P and therefore z ∈ P.


4. If J ⊂ D is an ideal and 1 /∈ JqΔ , then 1 /∈ JqDP and thus 1 /∈ JqDP ∩DP for
some P ∈ Δ . Since JqDP ∩DP ⊂ DP is an ideal and PDP = DP \D×


P , we obtain
JqDP ∩DP ⊂ PDP and J ⊂ JqDP ∩D ⊂ PDP ∩D = P. ��
Theorem 6.6. Let q be a finitary (weak) D-module system on K, r a weak module
system on K, and define r[q] : P(K) → P(K) by


Xr[q] =
⋃


B⊂D
1∈Br


(Xq :B) for all X ⊂ K .


1. r[q] is a finitary (weak) D-module system on K satisfying q � r[q], and


Xr[q] = {x ∈ K | 1 ∈ [(Xq :x)∩D]r } for all X ⊂ K.


2. For all X , Y ∈ Mq(K) we have (X ∩Y )r[q] = Xr[q]∩Yr[q].







216 Franz Halter-Koch


3. If B ⊂ D and 1 ∈ Br, then 1 ∈ Br[q].


4. If q � r, then r[q] � r and (r[q])[q] = r[q]. In particular, q[q] = q.


5. If q � r, then rD-max(D)⊂ r[q]D-max(D), and equality holds if rD has enough
primes.


Proof. 1. Let X ⊂ K. Then (Xq :B) is a D-module for every B ⊂ D, and thus Xr[q] is
a D-module. If B′, B′′ ⊂ D are such that 1 ∈ B′


r and 1 ∈ B′′
r , then 1 ∈ B′


rB
′′
r ⊂ (B′B′′)r


and (Xq : B′)∪ (Xq : B′′) ⊂ (Xq : B′B′′) (since Xq is a D-module). Hence {(Xq : B) |
B ⊂ D, 1 ∈ Br} is directed, and since q is finitary, it follows that


(Xr[q])q =
⋃


B⊂D
1∈Br


(Xq :B)q =
⋃


B⊂D
1∈Br


(Xq :B) = Xr[q] , and


Xr[q] =
⋃


B⊂D
1∈Br


([ ⋃


E∈Pf(X)


Eq
]


:B
)


=
⋃


B⊂D
1∈Br


⋃


E∈Pf(X)


(Eq :B) =
⋃


E∈Pf (X)


Er[q] .


We show now that r[q] satisfies the conditions of Definition 3.1. Once this is done,
then by the above considerations r[q] is a finitary D-module system satisfying q �
r[q]. Thus let, X , Y ⊂ K and c ∈ K.


M1. If B ⊂ D, then XB ⊂ XD ⊂ Xq and thus X ⊂ (Xq :B) ⊂ Xr[q].
M2. If X ⊂ Yr[q] and z ∈ Xr[q], then there is some B ⊂ D such that zB ⊂ Xq ⊂


(Yr[q])q = Yr[q] and thus z ∈ (Yr[q] :B) ⊂ Yr[q], since Yr[q] is a D-module.
M3. and M3 ′. If B ⊂ D, then ((cX)q : B) ⊇ (cXq : B) = c(Xq : B), and thus we


obtain (cX)r[q] ⊇ cXr[q].
It remains to prove that Xr[q] = {x ∈ K | 1 ∈ [(Xq :x)∩D]r }.
If x ∈ Xr[q], then there is some B ⊂ D such that 1 ∈ Br and xB ⊂ Xq, whence B ⊂


(Xq :x)∩D and 1 ∈ Br ⊂ [(Xq :x)∩D]r. Conversely, if x ∈ K and 1 ∈ [(Xq :x)∩D]r,
then B = (Xq :x)∩D ⊂ D, 1 ∈ Br and x ∈ (Xq :B) ⊂ Xr[q].


2. If X , Y ∈Mq(K), then obviously (X∩Y )r[q] ⊂Xr[q]∩Yr[q]. To prove the reverse
inclusion, let z ∈ Xr[q]∩Yr[q] and B′, B′′ ⊂ D such that 1 ∈ B′


r, 1 ∈ B′′
r , zB′ ⊂ Xq = X


and zB′′ ⊂ Yq = Y . Then 1 ∈ B′
rB


′′
r ⊂ (B′B′′)r, and since X and Y are D-modules, it


follows that zB′B′′ ⊂ X ∩Y , whence z ∈ (X ∩Y :B′B′′) ⊂ (X ∩Y )r[q].


3. If B ⊂ D and 1 ∈ Br, then 1 ∈ (Bq :B) ⊂ Br[q].


4. Assume that q � r, and let X ⊂ K. If x ∈ Xr[q], then it follows that 1 ∈ [(Xq :
x)∩D]r ⊂ (Xr :x)r = (Xr :x), which implies x ∈ Xr. Hence we obtain Xr[q] ⊂ Xq and
thus r[q] � r. Applied with r[q] instead of r, this argument shows that (r[q])[q] � r[q].
To prove r[q] � (r[q])[q], let X ⊂ K and x ∈ Xr[q]. Then 1 ∈ [(Xq :x)∩D]r ⊂ [(Xr[q] :
x)∩D]r, hence 1 ∈ [(Xr[q] :x)∩D]r[q] by 3. and thus x ∈ X(r[q])[q].


5. Assume that q � r, and let P ∈ rD-max(D). Then r[q] � r by 4., hence r[q]D �
rD and thus P ∈ Ir[q]D(D). Since r[q] (and thus also r[q]D) is finitary, there exists
some P′ ∈ r[q]D-max(D) such that P ⊂ P′. If P � P′, then 1 ∈ P′


rD
⊂ P′


r , and thus
1 ∈ P′


r[q]∩D = P′
r[q]D


, a contradiction. Hence it follows that P = P′ ∈ r[q]D-max(D).
Assume now that rD has enough primes, and let P ∈ r[q]D-max(D). Then 1 /∈ P =


Pr[q]∩D and thus 1 /∈ Pr ∩D = PrD . Therefore there exists some P′ ∈ rD-spec(D) ⊂
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Ir[q]D(D) such that PrD ⊂ P′. Hence P ⊂ P′ and thus P = P′ ∈ rD-spec(D). If P′ ∈
rD-max(D), we are done. Otherwise, there exists some P′′ ∈ IrD(D)⊂ Ir[q]D(D) such
that P′


� P′′, and then P � P′′ yields a contradiction. ��
Definition 6.7. Let q be a finitary (weak) D-module system and r a weak module
system on K. The finitary (weak) D-module system r[q] defined in Theorem 6.6 is
called the q-stabilizer of r on D or the spectral extension of q by r on D.


Theorem 6.8. Assume that K = q(D), let q be a finitary D-module system and r a
module system on K.


1. r[q][DP] = q[DP] for all P ∈ rD-spec(D), and if q � r, this holds for all P ∈
r[q]D-spec(D).


2. r[q] � inf{q[DP] | P ∈ rD-spec(D)} (see Proposition 6.1). Equality holds if rD


has enough primes, and r[q] = inf{q[DP] | P ∈ rD-max(D)} if r is finitary.


3. If q � r, then r[q] = inf{q[DP] | P ∈ qD-spec(D) , 1 /∈ Pr}.


Proof. 1. Let P ∈ rD-spec(D). Then q � r[q] implies q[DP] � r[q][DP]. To prove the
reverse inequality, we must show that Xr[q][DP] ⊂ Xq[DP] for all X ⊂ K. If X ⊂ K and
z ∈ Xr[q][DP] = Xr[q]DP, let s ∈ D\P be such that sz ∈ Xr[q]. Then there is some B ⊂ D
such that 1 ∈ Br and szB ⊂ Xq. Since 1 ∈ Br, it follows that B �⊂ P = Pr ∩D, and if
t ∈ B\P, then stz ∈ Xq and z ∈ XqDP = Xq[DP].


Assume now that q � r. Then (r[q])[q] = r[q], and we apply what we have just
proved for r[q] instead of r and obtain r[q][DP] = (r[q])[q][DP] = q[DP] for all
P ∈ r[q]D-spec(D).


2. We must prove that Xr[q] ⊂ Xq[DP] = XqDP for all P ∈ rD-spec(D) and X ⊂ K.
Thus let P ∈ rD-spec(D), X ⊂ K, x ∈ Xr[q] and B ⊂ D such that 1 ∈ Br and xB ⊂ Xq.
Then it follows that B �⊂ P = Pr ∩D, and if s ∈ B \P, then xs ∈ Xq, which implies
x ∈ XqDP.


Assume now that rD has enough primes and x ∈ Xq[DP] = XqDP for all P ∈
rD-spec(D). For each P ∈ rD-spec(D), let sP ∈ D \P be such that sPz ∈ Xq. Then
B = {sP | P ∈ rD-spec(D)} ⊂ D and B �⊂ P for all P ∈ rD-spec(D). Hence BrD =
Br ∩D = D, whence 1 ∈ Br and z ∈ (Xq :B) ⊂ Xr[q].


If r is finitary, then so is rD. In particular, rD has enough primes, and for every
P∈ rD-spec(D) there exists some M ∈ rD-max(D) such that P⊂M, hence DM ⊂DP,
and it follows that


⋂


P∈rD-spec(D)


Xq[DP] =
⋂


P∈rD-max(D)


Xq[DP] for all X ⊂ K


and consequently r[q] = inf{q[DP] | P ∈ rD-max(D)}.


3. If q � r, then qD � rD, rD-spec(D) ⊂ {P ∈ qD-spec(D) | 1 /∈ Pr} and thus
inf{q[DP] | P ∈ qD-spec(D) , 1 /∈ Pr} � r[q]. To prove the reverse inequality, it suf-
fices to show that r[q] � q[DP] for all P ∈ qD-spec(D) such that 1 /∈ Pr. Thus, let
P ∈ qD-spec(D), 1 /∈ Pr, X ⊂ K, x ∈ Xr[q] and B ⊂ D such that 1 ∈ Br and xB ⊂ Xq.
Then we have B �⊂ P, and if x ∈ B\P, then xs ∈ Xq, whence x ∈ XqDP = Xq[DP]. ��
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Remark 6.9. Let D be an integral domain with quotient field K, ∗ a semistar
operation on D and r = r∗ the D-module system on K induced by ∗ (see Example
5.6.4). If ∗̃ is the spectral semistar operation associated with ∗ (see [13]), then
Theorem 6.6 implies r[d] = r∗̃, and in the case of star operations we also obtain
r[d] = r∗w (where ∗w is the star operation introduced in [3]) and t[d] = rw = rṽ


(where w = ṽ is the star operation introduced in [11]).


Definition 6.10. Let q be a finitary D-module system and r a module system on K
such that q � r. Then r is called


• q-stable if Xr ∩Yr = (X ∩Y )r for all X , Y ∈ Mq(K).
• q-spectral if r = qΔ for some subset Δ ⊂ qD-spec(D) (see Theorem 6.5).


Theorem 6.11. Assume that K = q(D), let q be a finitary D-module system on K
such that D = Dq and r a module system on K such that q � r.


1. The following assertions are equivalent :


(a) r = r[q].
(b) r is q-stable.


(c) [(X :E)∩D]r = (Xr :E)∩Dr for all E ∈ Pf(K) and X ∈ Mq(K).


2. r is q-spectral if and only if r is q-stable and rD has enough primes.


Proof. 1. (a) ⇒ (b) By Theorem 6.6.2.


(b) ⇒ (c) Let E ∈ Pf(K) and X ∈ Mq(K). Then, as D = Dq,


[(X :E)∩D]r =
( ⋂


x∈E•
x−1X ∩D


)


r
=


⋂


x∈E•
x−1Xr ∩Dr = (Xr :E)∩Dr .


(c) ⇒ (a) By Theorem 6.6 we have q � r[q] � r, and thus it suffices to prove
that Xr ⊂ Xr[q] for all X ∈ Mq(K). Thus let X ∈ Mq(K) and x ∈ Xr. Then 1 ∈ (Xr :
x)∩Dr = [(X :x)∩D]r and therefore x ∈ Xr[q].


2. If r is q-spectral, then r is q-stable and rD has enough primes by Theorem 6.5.
If r is q-stable, then r = r[q] by 1., and if rD has enough primes, then r[q] is q-stable
by Theorem 6.8.3. ��


7 A survey on valuation monoids and GCD-monoids


Let K be a monoid and D ⊂ K a submonoid such that K = q(D).


In this section, we gather several facts concerning GCD-monoids, valuation
monoids and their homomorphisms. For a more concise presentation of this topic
we refer to [25, Chaps. 10, 15 and 18].
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Definition 7.1.


1. Let X ⊂ D. An element d ∈ D is called a greatest common divisor of X if dD is
the smallest principal ideal containing X [ equivalently, d |x for all x ∈ E , and if
e∈ D and e |x for all x ∈ X , then e |d (where the notion of divisibility in D is used
in the common way) ]. If GCD(X) = GCDD(X) denotes the set of all greatest
common divisors of X , then GCD(X) = dD× for every d ∈ X . If D is reduced,
then X has at most one greatest common divisor, and we write d = gcd(X) instead
of GCD(X) = {d}. If X = {a1, . . . ,an}, we set GCD(a1, . . . ,an) = GCD(X)
resp. gcd(a1, . . . ,an) = gcd(X).


2. D is called a GCD-monoid if GCD(E) �= /0 for all E ∈ Pf(D) [ equivalently,
GCD(a,b) �= /0 for all a, b ∈ D• ].


3. D is called a valuation monoid if, for all a, b ∈ D, either a | b or b | a. If r is a
module system on K, then D is called an r-valuation monoid (of K ) if D is a
valuation monoid satisfying Dr = D.


4. A homomorphism ϕ : G1 → G2 of GCD-monoids is called a GCD-
homomorphism if ϕ(GCD(E)) ⊂ GCD(ϕ(E)) for every E ∈ Pf(G1). We denote
by HomGCD(G1,G2) the set of all GCD-homomorphisms ϕ : G1 → G2.


By definition, D is a valuation monoid if and only if for every z ∈ K× either z ∈ D
or z−1 ∈ D. If D is a valuation monoid, then every monoid T such that D ⊂ T ⊂ K
is also a valuation monoid. Obviously, every valuation monoid is a GCD-monoid.


If D is a valuation monoid and E ∈ P
•
f (K), then (after a suitable numbering)


E = {a1, . . . ,an} with a1D ⊂ a2D ⊂ . . . ⊂ anD, hence ED = anD, and if E ⊂ D,
then GCD(E) = anD×. In particular, the s-system is the only finitary ideal system
on D. We identify it with its natural extension to a D-module system on K, whence
s(D) = t(D) and D = {1}t(D) (see Example 5.6.2).


Lemma 7.2. Let D be a GCD-monoid.


1. If E, F ∈Pf(D) and b∈D, then GCD(EF) = GCD(E)GCD(F) and GCD(bE)
= bGCD(E).


2. If a, b, c ∈ D, GCD(a,b) = D× and a |bc, then a |c.


3. Every z ∈ K has a representation in the form z = a−1b with a ∈ D• and b ∈ D
such that GCD(a,b) = D×. In this representation aD× and bD× are uniquely
determined by z.


4. If v = v(D), X ⊂ D and d ∈ D, then


Xv =
⋂


a∈D
X⊂aD


aD , and Xv = dD if and only if d ∈ GCD(X) .


In particular, if E ∈ Pf(D) and d ∈ GCD(E), then Et(D) = dD.


5. Mt(D),f(K) = {aD | a ∈ K}, and Mt(D),f(K)• ∼= K×/D× is cancellative.
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Proof. 1., 2. and 3. are easy exercises in elementary number theory (see [25,
Chap. 10]).


4. If a ∈ D and X ⊂ aD, then Xv ⊂ aD, which implies ⊂ . To prove the reverse
inclusion, let z ∈ D be such that z ∈ aD for all a ∈ D satisfying X ⊂ aD. We must
prove that z ∈ Xv = (D :(D :X)), that is, zx ∈ D for all x ∈ (D :X). Thus, let x ∈ (D :
X) ⊂ K, say x = c−1b, where c, b ∈ D and GCD(b,c) = D×. Then c−1bX ⊂ D,
hence X ⊂ cb−1D∩D, and we assert that cb−1D∩D ⊂ cD. Indeed, if v ∈ D and
cb−1v ∈ D, then b |cv, hence b |v and thus cb−1v ∈ cD. Now X ⊂ cD implies z ∈ cX
and zx ∈ bD ⊂ D.


Hence, it follows that Xv = dD if and only if dD is the smallest principal ideal
containing X , which by definition is equivalent to d ∈ GCD(X).


5. If E ∈ Pf(K), let c ∈ D• be such that cE ⊂ D and d ∈ GCD(cE). Then cED =
dD = (cE)t(D) and thus Et(D) = c−1dD. Hence the map ∂ : K× → Mt(D),f(K), de-
fined by ∂ (a) = aD, is a group epimorphism with kernel D× and induces an isomor-
phism Mt(D),f(K)• ∼→ K×/D×. ��
Lemma 7.3. For i ∈ {1,2}, let Gi be a GCD-monoid, Ki = q(Gi) and ti = t(Gi).
A monoid homomorphism ϕ : K1 → K2 is a (t1,t2)-homomorphism if and only if
ϕ(G1) ⊂ G2 and ϕ |G1 : G1 → G2 is a GCD-homomorphism. In particular, there
is a bijective map


Hom(t1,t2)(K1,K2) → HomGCD(G1,G2) , defined by ϕ �→ ϕ |G1 .


Proof. Let first ϕ be a (t1,t2)-homomorphism. Then


ϕ(G1) = ϕ({1}t1) ⊂ {ϕ(1)}t2 = {1}t2 = G2 .


Let E ⊂ G1 be finite, d1 ∈ GCD(E) and d2 ∈ GCD(ϕ(E)). Then Et1 = d1G1, and
ϕ(D)t2 = d2G2. Since d1 |x for all x ∈ E , it follows that ϕ(d1) |y for all y ∈ ϕ(E),
and thus ϕ(d1) | d2. But ϕ(d1) ∈ ϕ(Et1) ⊂ ϕ(E)t2 = d2G2 implies d2 |ϕ(d1) and
therefore ϕ(d1) ∈ d2G×


2 = GCD(ϕ(E)).
Assume now that ϕ(G1) ⊂ G2, and let ϕ |G1 : G1 → G2 be a GCD-homomor-


phism. It is obviously sufficient to prove ϕ(Et1) ⊂ ϕ(E)t2 for all E ∈ Pf(G1). If
E ∈ Pf(G1) and d ∈ GCD(E), then ϕ(d) ∈ GCD(ϕ(E)), and therefore ϕ(Et1) =
ϕ(dG1) ⊂ ϕ(d)G2 = ϕ(E)t2 . ��
Lemma 7.4. Let r be a finitary module system on K and V ⊂ K a valuation monoid.
Then V = Vr if and only if idK is an (r,t(V ))-homomorphism.


Proof. If idK is an (r,t(V ))-homomorphism, the V ⊂Vr ⊂Vt(V ) = V , and thus V =
Vr. Conversely, assume that V = Vr. If E ∈ Pf(K), then Lemma 7.2.5 implies that
Et(V ) = EV = aV for some a∈ E , and therefore we obtain Er ⊂ (aV )r = aV = Et(V ).
Hence idK is an (r,t(V ))-homomorphism by Proposition 4.4. ��
Proposition 7.5. Let G be a GCD-monoid, K = q(G), V ⊂ K a submonoid and
t = t(G).
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1. Let V be a valuation monoid. Then V = Vt if and only if G ⊂V and G ↪→V is a
GCD-homomorphism.


2. V is a t-valuation monoid if and only if V = GP for some P ∈ t-spec(G). In
particular, G is the intersection of all t-valuation monoids of K.


Proof. 1. By Lemma 7.4 we have V = Vt if and only if idK is a (t,t(V ))-homomor-
phism, and by Lemma 7.3 this holds if and only if G ⊂ V and G ↪→V is a GCD-
homomorphism.


2. Let first V be a t-valuation monoid. By Lemma 7.4, j = (G ↪→V ) is a (t,t(V ))-
homomorphism, and since t(V ) = s(V ), it follows by Proposition 4.4 that P =
G\V× = j−1(V \V×) ∈ t-spec(G). Since G\P ⊂V×, we obtain GP ⊂V . To prove
the reverse inclusion, let z = a−1b ∈V , where a, b ∈ G and GCDG(a,b) = G×. By
1., G ↪→ V is a GCD-homomorphism, hence GCDV (a,b) = V×, and thus either
a ∈ V× or b ∈ V×. If a ∈ V×, then a /∈ P and thus z ∈ GP. If b ∈ V×, then z ∈ V
implies b ∈ aV , and hence a ∈V and again z ∈ GP.


Assume now that P ∈ t-spec(G) and z = a−1b ∈ K, where a, b ∈ D and
GCD(a,b) = D×. Then {a,b}t = D, hence {a,b}t �⊂ P = Pt and thus either
a /∈ P or b /∈ P. If a /∈ P, then z ∈ GP, and if b /∈ P, then z−1 ∈ GP. Therefore GP is
a valuation monoid, and (GP)t = (Gt)P = GP.


By Proposition 6.4, this implies that G is the intersection of all t-valuation
monoids of K. ��


8 Integral closures and cancellation properties


Let K be a monoid and D ⊂ K a submonoid.


Proposition 8.1. Let r be a weak module system on K and A ∈ Mr,f(K).


1. The following assertions are equivalent :


(a) A is cancellative in Mr,f(K) (that is, for all finite subsets X , Y ⊂ K, if
(AX)r = (AY )r, then Xr = Yr ).


(b) For all finite subsets X , Y ⊂ K, if (AX)r ⊂ (AY )r, then Xr ⊂ Yr.


(c) For all finite subsets X ⊂ K and c ∈ K, if cA ⊂ (AX)r, then c ∈ Xr.


(d) For all finite subsets X ⊂ K we have ((AX)r :A) ⊂ Xr


In each of the above assertions, the statement “for all finite subsets” can be
replaced by the statement “for all r-finite r-modules”.


2. Mr,f(K)• is cancellative if and only if ((EF)r : E) ⊂ Fr for all E ∈ P
•
f (K) and


F ∈ Pf(K).


Proof. 1. (a) ⇒ (b) If (AX)r ⊂ (AY )r, then


(AY )r = [(AX)r ∪ (AY )r]r = (AX ∪AY )r = [A(X ∪Y )]r ,


and therefore Xr ⊂ (X ∪Y )r = Yr.
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(b) ⇒ (c) If cA⊂ (AX)r, then (A{c})r = (cA)r ⊂ (AX)r, and thus c ∈ {c}r ⊂ Xr.


(c) ⇒ (d) If z ∈ ((AX)r :A), then zA ∈ (AX)r and therefore z ∈ Xr.


(d) ⇒ (a) If (AX)r = (AY )r, then AXr ⊂ (AY )r and AYr ⊂ (AX)r, hence Xr ⊂
((AY )r :A) ⊂ Yr and Yr ⊂ ((AX)r :A) ⊂ Xr, whence Xr = Yr.


If X ⊂ K, then (AX)r = (AXr)r, and thus the statement “for all finite subsets” can
always be replaced by the statement “for all r-finite r-modules”.


2. By 1.(d), since Mr,f(K)• is cancellative if and only if Er is cancellative for all
E ∈ P


•
f (K). ��


Theorem 8.2. Let r be a finitary weak module system on K, and let


ra : P(K) → P(K) be defined by Xra =
⋃


B∈P
•
f (K)


((XB)r :B) .


1. ra is a finitary weak module system on K, r � ra, and if r is a module system,
then so is ra.


2. Mra,f(K)• is cancellative, and if q is any finitary weak module system on K such
that r � q and Mq,f(K)• is cancellative, then ra � q. In particular, (ra)a = ra,
and Mr,f(K)• is cancellative if and only if r = ra.


3. r[D]a = ra[D], and if r is a weak D-module system, then so is ra.


4. If G is a reduced GCD-monoid and L = q(G), then


Hom(r,t(G))(K,L) = Hom(ra,t(G))(K,L) .


In particular, every r-valuation monoid of K is an ra-valuation monoid of K.


Proof. 1. If X ⊂ K and B ∈ P
•
f (K), then XrB ⊂ (XB)r. Therefore we obtain Xr ⊂


((XB)r :B) ⊂ Xra and, since r is finitary,


Xra =
⋃


B∈P
•
f (K)


(( ⋃


E∈Pf(X)


EB
)


r :B
)


=
⋃


B∈P
•
f (K)


⋃


E∈Pf(X)


((EB)r :B) =
⋃


E∈Pf(X)


Era .


Therefore, it remains to prove that ra is a (weak) module system, and by Theorem
3.6 we have to check the conditions of Definition 3.1 for all finite subsets X , Y ⊂ K
and c ∈ K. Thus, let X , Y ∈ Pf(K) and c ∈ K. The verification of M1., M3. and
M3 ′. is straightforward.


M2. Let X ⊂ Yra and z ∈ Xra . Then there exists some F ∈ P
•
f (K) such that z ∈


((XF)r : F), and since {((Y B)r : B) | B ∈ P
•
f (K)} is directed, there exists some B ∈


P
•
f (K) such that X ⊂ ((Y B)r :B). Then


zFB ⊂ (XF)rB ⊂ (XBF)r ⊂ [(Y B)rF ]r = (YFB)r


and thus z ∈ ((Y FB)r :FB) ⊂ Yra , since FB ∈ P
•
f (K).
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2. By Proposition 8.1 we must prove that ((EF)ra : E) ⊂ Fra holds for all E ∈
P
•
f (K) and F ∈ Pf(K). Thus, let E ∈ P


•
f (K), F ∈ Pf(K) and z ∈ ((EF)ra :E). Then


zE ⊂ (EF)ra implies zE ⊂ ((EFB)r :B) for some B∈ P
•
f (K) (since {((EFB)r :B) |


B ∈ P
•
f (K)} is directed). Hence, it follows that zEB ⊂ (EFB)r and z ∈ ((EFB)r :


EB) ⊂ Fra , since EB ∈ P
•
f (K).


Let now q be any finitary weak module system on K such that r � q and Mq,f(K)•
is cancellative. For any X ∈ Pf(K) and B ∈ P


•
f (K), Proposition 8.1 implies ((XB)r :


B) ⊂ ((XB)q :B) ⊂ Xq, and thus ra � q by Proposition 4.4.2.


3. For X ⊂ K, it is easily checked that Xra[D] = Xr[D]a .


4. Since r � ra, every (ra,t)-homomorphism is an (r,t)-homomorphism. If
ϕ : K → L is an (r,t)-homomorphism, then by Proposition 4.4.2 we must prove
that ϕ(Xra) ⊂ ϕ(X)t(G) for all X ∈ Pf(K). If X ∈ Pf(K), z ∈ Xra and B ∈ P


•
f (K) are


such that zB ⊂ (XB)r, then


ϕ(z)ϕ(B) ⊂ ϕ((XB)r) ⊂ ϕ(XB)t = [ϕ(X)ϕ(B)]t


and therefore ϕ(z) ∈ (
[ϕ(X)ϕ(B)]t : ϕ(B)


) ⊂ ϕ(X)t by Proposition 8.1 and
Lemma 7.2.4.


If V ⊂ K is a valuation monoid, then it follows by Lemma 7.4 that V is an
r- (resp. ra-)valuation monoid if and only if idK is an (r,t(V ))- (resp. (ra,t(V ))-
homomorphism. Hence, every r-valuation monoid is an ra-valuation monoid. ��
Definition 8.3. Let r be a finitary weak module system on K. The finitary weak
module system ra is called the cancellative extension of r. An element a ∈ K is
called r-integral over D if a ∈ Dra . A subset X ⊂ K is called r-integral over D if
X ⊂ Dra . The monoid Dra is called the r-closure of D, and D is called r-closed if
D = Dra .


Remark 8.4. The notion of r-integrality generalizes the concept of integral elements
in commutative ring theory. If D is an integral domain and d = d(D) is the module
system induced by the Dedekind system on K, then Dda is the integral closure of D.
Most results of the classical theory of integral elements (transitivity and localization
properties) continue to hold for r-integrality (see [25, Chap. 14] for details, [27] for
a version for not necessarily cancellative monoids and [15, Example 2.1] for the his-
tory of the concept). In Krull’s ancient terminology (which is still used in the theory
of semistar operations, see [23, Section 32]) ideal systems x for which Mx,f(K)•
is cancellative, are called “e.a.b.” (endlich arithmetisch brauchbar). In the case of
ideal systems on monoids, the construction of ra goes back to P. Lorenzen [34] who
constructed a multiplicative substitute for the Kronecker function ring. A readable
overview of the development of the concepts and results related to Kronecker func-
tion rings and semistar operations was given by M. Fontana and K.A. Loper [20].


Definition 8.5. Let r be a finitary module system on K. We denote by Λr(K) =
q(Mra,f(K)) the quotient of the monoid Mra(K) (Mra(K)• is cancellative, see
Theorem 8.2.2). The group Λr(K)× is a quotient group of Mra,f(K)• and is called
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the Lorenzen r-group. For X ∈ Λr(K)•, we denote by X [−1] its inverse in the group
Λr(K)×. Then we obtain, by the very definition,


Λr(K) = {C[−1]A | A ∈ Mra,f(K) , C ∈ Mra,f(K)• ,} .


If A,A′ ∈ Mra,f(K) and C,C′ ∈ Mra,f(K)•, then C[−1]A = C′[−1]A′ if and only if
(AC′)ra = (A′C)ra , and multiplication in Λr(K) is given by the formula (C[−1]A) ·
(C′[−1]A′) = (CC′)r


[−1](AA′)r. In particular, Dra = {1}ra is the unit element of
Λr(K). The submonoid


Λ+
r (K) = {C[−1]A | A ∈ Mra,f(K) , C ∈ Mra,f(K)• , A ⊂C} ⊂ Λr(K)


is called the Lorenzen r-monoid. It is easily checked that Λ+
r (K)⊂Λr(K) is really a


submonoid, and Mra,f(K) ⊂ Λr(K). The Lorenzen homomorphism τr :K → Λr(K)
is defined by τr(a) = {a}ra = aDra ∈ Mra,f(K) ⊂ Λr(K) for all a ∈ K.


Theorem 8.6. Let r be a finitary module system on K, D ⊂ {1}ra and K = q(D).
Let t = t(Λ+


r (K)) be the t-system on Λr(K) induced from Λ+
r (K).


1. If A ∈Mra,f(K) and C ∈ Mra,f(K)•, then C[−1]A ∈ Λ+
r (K) if and only if A ⊂C.


2. Λ+
r (K) is a reduced GCD-monoid, and Λr(K) is a quotient of Λ+


r (K). If X , Y ∈
Λ+


r (K), then there exist A, B ∈Mra,f(K) and C ∈Mra,f(K)• such that A∪B ⊂C,
X = C[−1]A and Y = C[−1]B. In this case, we have X |Y if and only if B ⊂ A,
and gcd(X ,Y ) = C[−1](A∪B)ra .


3. For every X ∈ Λ+
r (K), there exist E ∈ Pf(D) and E ′ ∈ P


•
f (D) such that Era ⊂ E ′


ra


and X = E ′
ra


[−1]Era = gcd(τr(E ′))[−1] gcd(τr(E).
4. The Lorenzen homomorphism τr : K → Λr(K) is an (ra,t)-homomorphism and


τr |K× : K× →Λr(K)× is a group homomorphism satisfying Ker(τr |K×) = D×
ra .


5. For every Z ⊂ K we have Zra = τ−1
r [τr(Z)t ] = {c ∈ K | {c}ra ∈ τr(Z)t}, and in


particular τ−1
r (Λ+


r (K)) = Dra .


Proof. The assertions 1. to 4. follow immediately from the definitions.


5. Let now first Z ⊂ K be finite, say Z = a−1A, where a ∈ D• and A =
{a1, . . . ,an} ⊂ D ⊂ {1}ra . Then


Ara = ({a1}ra ∪ . . .∪{an}ra)ra = gcd({a1}ra , . . . ,{an}ra)
= gcd(τr(a1), . . . ,τr(an)) = gcd(τr(A))


and therefore τr(A)t = AraΛ+
r (K) by Lemma 7.2.4. For c ∈ K, we have c ∈


τ−1
r [τr(Z)t ] if and only if


τr(ac) = τr(a)τr(c) ∈ τr(a)τr(Z)t = τr(aZ)t = τr(A)t = AraΛ+
r (K) ,


and therefore we obtain


c ∈ τ−1
r [τr(Z)t ] ⇐⇒ τr(ac) ∈ AraΛ+


r (K) ⇐⇒ A[−1]
ra {ac}ra ∈ Λ+


r (K)
⇐⇒ {ac}ra ⊂ Ara ⇐⇒ ac ∈ Ara = aZra ⇐⇒ c ∈ Zra .
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Hence, Zra = τ−1
r (τr(Z)t ) and Dra = τ−1


r (τr({1}t) = τ−1
r (Λ+


r (K)). If finally Z ⊂ K
is arbitrary, then


Zra =
⋃


E∈Pf(Z)


Era =
⋃


E∈Pf(Z)


τ−1
r [τr(E)t ] = τ−1


r


( ⋃


F∈Pf(τr(Z))


Ft


)
= τ−1


r (τr(Z)t) .


In particular, it follows that τr(Zra) ⊂ τr(Z)t , and thus τr is an (ra,t)-homomor-
phism. ��
Remark 8.7. Let D be an integral domain with quotient field K, ∗ a semistar oper-
ation on D and r = r∗ the module system on K induced by ∗. Then the Lorenzen
r-monoid Λ+


r (K) is isomorphic to the monoid (Kr(D,∗)) of principal ideals of the
semistar Kronecker function ring Kr(D,∗) (see [19]). We recall the definition :
Kr(D,∗) consists of all rational functions f/g with f , g ∈ D[X ] such that g �= 0 and
there exists some h ∈ D[X ]• satisfying [c( f )c(h)]∗ ⊂ [c(g)c(h)]∗. An isomorphism


(Kr(∗,D)) → Λ+
r (K) is given by the assignment ( f/g) �→ c(g)[−1]


ra c( f )ra .


Theorem 8.8 (Universal property of the Lorenzen monoid). Let r be a finitary
module system on K, D ⊂ {1}ra , K = q(D) and t = t(Λ+


r (K)) the t-system on
Λr(K) induced from Λ+


r (K). If G is a reduced GCD-monoid and L = q(G), then
there is a bijective map


Hom(t,t(G))(Λr(K),L) → Hom(r,t(G))(K,L) , defined by φ �→ φ ◦ τr .


Proof. If Φ : Λr(K) → L is a (t,t(G))-homomorphism, then Φ ◦ τr : K → L
is an (r,t(G))-homomorphism, since τr is an (ra,t)-homomorphism and thus
also an (r,t)-homomorphism. We prove that for every ϕ ∈ Hom(r,t(G))(K,L)
there is a unique Φ ∈ Hom(t,t(G))(Λr(K),L) such that Φ ◦ τr = ϕ . Thus let
ϕ ∈ Hom(r,t(G))(K,L).


By Lemma 7.3, the map Hom(t,t(G))(Λr(K),L) → HomGCD(Λ+
r (K),G), defined


by Φ �→Φ |Λ+
r (K), is bijective, and for Φ ∈Hom(t,t(G))(Λr(K),L) we have Φ ◦τr =


ϕ if and only if [Φ |Λ+
r (K)]◦ (τr |D) = ϕ |D (since K = q(D) ). Hence it suffices to


prove that there exists a unique ψ ∈ HomGCD(Λ+
r (K),G) such that ψ ◦τr(a) = ϕ(a)


for all a ∈ D•.
Uniqueness: If ψ ∈HomGCD(Λ+


r (K),G) be such that ψ ◦τr(a) = ϕ(a) for all a∈D•
and X = gcd(τr(E ′))[−1] gcd(τr(E)) ∈ Λ+


r (K) (where E ∈ Pf(D), E ′ ∈ P
•
f (D) and


Era ⊂ E ′
ra), then


ψ(X) = gcd[ψ(τr(E ′))]−1 gcd[ψ(τr(E))] = gcd[ϕ(E ′)]−1 gcd[ϕ(E)] ,


and thus ψ is uniquely determined by ϕ .
Existence : Define ψ provisionally by ψ(X) = gcd(ϕ(E ′))−1 gcd(ϕ(E)) if X =
gcd(τr(E ′))[−1] gcd(τr(E)) with E ∈ Pf(D), E ′ ∈ P


•
f (D) and Era ⊂ E ′


ra . We must
prove the following assertions : 1) ψ(X) ⊂ G ; 2) the definition is independent of
the choice of E and E ′ ; 3) ψ is a GCD-homomorphism. The proofs are lengthy
but straightforward and are left to the reader. ��
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Theorem 8.9. Let r be a finitary module system on K, D ⊂ {1}ra and K = q(D).
Let t = t(Λ+


r (K)) the t-system on Λr(K) induced from Λ+
r (K). Let V be the set


of all r-valuation monoids in K and W the set of all t-valuation monoids in Λr(K).
Then V = {τ−1


r (W ) |W ∈ W}.


Proof. If W ∈ W and x ∈ K \ τ−1
r (W ), then τr(x)−1 = τr(x−1) ∈ W and therefore


x−1 ∈ τ−1
r (W ). Hence τ−1


r (W ) is a valuation monoid, and since τr is an (r,t)-
homomorphism, it is even an r-valuation monoid and lies in V.


Let now V ∈ V and π : K → K/V× the canonical epimorphism. Then V/V× is
a reduced valuation monoid, q(V/V×) = K/V×, and we denote by t∗ = t(V/V×) =
s(V/V×) the module system on K/V× which is induced by the t-system on V/V×.
Since r � rV = s(V ), it follows that π is an (r,t∗)-homomorphism. By Theorem 8.8,
the assignment Φ �→ Φ ◦ τr defines a bijective map Hom(t,t∗)(Λr(K),K/V×) →
Hom(r,t∗)(K,K/V×). Hence there is a unique (t,t∗)-homomorphism Φ : Λr(K) →
K/V× such that Φ ◦ τr = π , and Φ is surjective, since π is surjective. Now W =
Φ−1(V/V×) ⊂ Λr(K) is a valuation monoid, and τ−1


r (W ) = (Φ ◦ τr)−1(V/V×) =
π−1(V/V×) = V . Thus, it remains to prove that Wt = W . Since Φ is a (t,t∗)-
homomorphism, it follows that Φ(Wt) ⊂ Φ(W )t∗ = (V/V×)t∗ = V/V× and Wt ⊂
Φ−1(V/V×) = W , whence Wt = W . ��
Theorem 8.10. Let r be a finitary module system on K, D⊂{1}ra and K = q(D). If
Vr(D) denotes the set of all r-valuation monoids of K containing D, then Vr(D) =
Vra(Dra) and


Dra = {1}ra =
⋂


V∈Vr(D)


V .


Proof. By Theorem 8.2.4, a monoid V ⊂ K is an r-valuation monoid if and only if
it is an ra-valuation monoid. Hence Vr(D) = Vra(D)⊃ Vra(Dra), and if V ∈ Vr(D),
then {1}ra = Dra ⊂Vra = V and thus V ∈ Vra(Dra).


Let τr : K →Λr(K) be the Lorenzen homomorphism, t = t(Λ+
r (K)) and W the set


of all t-valuation monoids in Λr(K). By Theorem 8.9 we have Vr(D) = {τ−1
r (W ) |


W ∈ W} and, applying Proposition 7.5.2 and Theorem 8.6.3, we obtain


Dra = τ−1
r (Λ+


r (K)) = τ−1
r


( ⋂


W∈W


W
)


=
⋂


W∈W


τ−1
r (W ) =


⋂


V∈Vr(D)


V . ��


Corollary 8.11. Let K = q(D) and r a finitary ideal system on D. Then Dra is the
intersection of all r-valuation monoids in K.


Remark 8.12. In the case of integral domains, Theorem 8.10 generalizes the con-
nection between semistar Kronecker function rings and valuation overrings as de-
veloped in [18]. In particular, Corollary 8.11 contains the classical fact that the
integral closure of an integral domain is the intersection of its valuation overrings
(see [23, (19.8)]).







Multiplicative ideal theory in the context of commutative monoids 227


9 Invertible modules and Prüfer-like conditions


Let K be a monoid and D ⊂ K a submonoid such that K = q(D).


This final section contains the basics of a purely multiplicative theory of semistar
invertibility and semistar Prüfer domains as it was developed only recently by
M. Fontana with several co-authors (see [6,9,15–18,21,22]). In particular, we refer
to the examples presented in these papers which show the semistar approach covers
really new classes of integral domains.


Definition 9.1. Let r be a module system on K. A D-module A ⊂ K is called
(r-finitely) r-invertible (relative D) if there exists a (finite) subset B ⊂ (D : A)
such that (AB)r = Dr [ equivalently, 1 ∈ (AB)r ].


By definition, A is r-invertible if and only if A is r[D]-invertible. If A is
r-invertible, then A is q-invertible for every module system q on K satisfying
r � q, and every D-module A′ with A ⊂ A′ ⊂ Ar is also r-invertible.


Lemma 9.2. Let A ⊂ K be a D-module and B ⊂ K such that D = AB. Then A = aD
for some a ∈ K.


Proof. Let P = D\D×. Then PA ⊂ A, and we assert that PA �= A. Indeed, if PA = A,
then P = PD = PAB = AB = D, a contradiction. If a ∈ A\AP, then aD ⊂ A, hence
aBD ⊂ AB = D. If aBD �= D, then aBD ⊂ P, since aBD is an ideal of D, and then
a ∈ aD = aABD ⊂ AP, a contradiction. Hence, aBD = D, and consequently A =
aABD = aD. ��
Proposition 9.3. Let r be a module system on K, c ∈ K×, and let A ⊂ K be a
D-module.


1. A is r-invertible if and only if [A(D : A)]r = Dr, and then (D : A) and Av(D) are
also r-invertible.


2. If A is r-invertible, then cA is also r-invertible, and Ar is cancellative in Mr(K).
3. A is r-invertible (relative D) if and only if Ar is r-invertible (relative Dr ) and


(Dr :A) = (D :A)r.


4. If A1, A2 ⊂ K are D-modules, then A1A2 is r-invertible if and only if A1 and A2


are both r-invertible.


Proof. 1. If [A(D :A)]r = Dr, then A is r-invertible. If A is r-invertible, then there is
some B ⊂ (D : A) such that (AB)r = Dr, and since [A(D : A)]r ⊂ Dr, it follows that
[A(D :A)]r = Dr. Hence, (D :A) is r-invertible, and (by an iteration of the argument)
Av = (D :(D :A)) is also r-invertible.


2. Let A be r-invertible and B ⊂ (D : A) such that (AB)r = Dr. Since c−1B ⊂
(D : cA) and ((cA)(c−1B))r = Dr, it follows that cA is also r-invertible. If X , Y ∈
Mr(D) and (ArX)r = (ArY )r, then it follows that X = [(BA)rX ]r = [B(ArX)r]r =
[B(ArY )r]r = [(BA)rY ]r = Y , and thus Ar is cancellative.
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3. By Proposition 3.3.3, Ar is a Dr-module. If A is r-invertible, then Dr = [A(D :
A)]r ⊂ [Ar(D : A)r ]r ⊂ [Ar(Dr : A)]r = [Ar(Dr : Ar)]r ⊂ Dr; hence equality holds, Ar


is r-invertible (relative Dr), and since Ar is cancellative in Mr(D), it follows that
(D : A)r = (Dr : A). To prove the converse, let Ar be r-invertible (relative Dr) and
(D :A)r = (Dr :A). Then it follows that [A(D :A)]r = [Ar(D :A)r]r = [Ar(Dr :A)r]r =
[Ar(Dr :Ar)]r = Dr, and thus A is r-invertible relative D.


4. If A1A2 is r-invertible, then there is some B ⊂ (D :A1A2) such that (A1A2B)r =
Dr. Since A1B ⊂ (D : A2) and A2B ⊂ (D : A1), it follows that A1 and A2 are both r-
invertible. If A1 and A2 are r-invertible, then there exist B1 ⊂ (D :A1) and B2 ⊂ (D :
A2) such that (A1B1)r = (A2B2)r = Dr. Now (A1A2B1B2)r = [(A1B1)r(A2B2)r]r =
Dr and B1B2 ⊂ (D :A1A2) implies that A1A2 is r-invertible. ��
Proposition 9.4. Let r be a finitary module system on K and A ⊂ K a D-module.


1. The following assertions are equivalent :


(a) A is r-invertible (relative D).
(b) There exists a finite subset F ⊂ (D :A) such that 1 ∈ (AF)r.


(c) For all P ∈ rD-max(D) we have A(D :A) �⊂ P.


2. If A is r-invertible, then Ar is r[D]-finite and A is r-finitely r-invertible.
3. If T ⊂D is multiplicatively closed and A is r-invertible, then T−1A is r-invertible


(relative T−1D).


Proof. 1. (a) ⇒ (b) If B ⊂ (D :A) is such that 1 ∈ (AB)r, then (since r is finitary)
there exists a finite subset F ⊂ B such that 1 ∈ (AF)r.


(b) ⇒ (c) Assume that A(D : A) ⊂ P for some P ∈ rD-max(D), and let F ⊂
(D : A) be finite such that 1 ∈ (AF)r. Then it follows that 1 ∈ (AF)r ∩D ⊂ [A(D :
A)]r ∩D ⊂ Pr ∩D = P, a contradiction.


(c) ⇒ (a) Since A(D : A) ⊂ [A(D : A)]r ∩D, it follows that the rD-ideal [A(D :
A)]r ∩D is contained in no P ∈ rD-max(D). Hence it follows that [A(D :A)]r ∩D =
D ⊂ [A(D :A)]r and therefore [A(D :A)]r = Dr.


2. Let B ⊂ (D : A) be such that 1 ∈ (AB)r, and let E ⊂ A and F ⊂ B be finite
subsets satisfying 1 ∈ (EF)r. Then Dr ⊂ (DEF)r ⊂ (AF)r ⊂ Dr, which implies
Dr = (AF)r, and thus A is r-finitely r-invertible relative D. Moreover, it follows that
Ar = DrAr = (DEFA)r = (DE)r = Er[D], and therefore Ar is r[D]-finite.


3. If B ⊂ (D : A) is such that (AB)r = Dr, then B ⊂ (T−1D : T−1A) and
(T−1AB)r = (T−1D)r. Hence T−1A is r-invertible (relative T−1D). ��
Theorem 9.5. Let r be a finitary module system on K and A ⊂ K a D-module.


1. If A is r-invertible and P ∈ rD-spec(D), then AP = aDP for some a ∈ K×.


2. Suppose that for every P ∈ rD-max(D) there is some aP ∈ K× such that AP =
aPDP. If y is a finitary module system on K such that Dy = D and A is y-finite,
then A is r-invertible.
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Proof. 1. Let A be r-invertible, B⊂ (D:A) such that (AB)r = Dr and P∈ rD-spec(D).
Then AB �⊂ P, and since AB ⊂ D is an ideal, we obtain DP = (AB)P = APBP. Now
the assertion follows by Lemma 9.2.


2. Suppose that A = Ey for some E ∈ Pf(K) and that A is not r-invertible. By
Proposition 9.4, there is some P ∈ rD-spec(D) such that A(D:A)⊂ P and thus aP(D:
A)P ⊂ PDP. Since D = Dy, it follows that


(D :A)P = (D :E)P = (DP :E) = (DP :AP) = a−1
P DP


and thus PDP ⊃ aP(D :A)P = DP, a contradiction. ��
Definition 9.6. Let r and y be finitary module systems on K such that y � r and Dy =
D. Then D is called a y-basic r-Prüfer monoid if every A ∈My,f(K) is r-invertible.


Remark 9.7. Let D be an integral domain, ∗ a semistar operation on D and r = r∗
the D-module system on K induced by ∗. Then D is a P∗MD (as defined in [15]) if
and only if D is a basic d(D)-Prüfer monoid.


Theorem 9.8. Let r, q and y be finitary module systems on K such that q is a
D-module system, y � q � r and Dy = D.


1. If D is an y-basic r-Prüfer monoid, then DP is a valuation monoid for every
P ∈ rD-spec(D).


2. The the following assertions are equivalent :


(a) D is a y-basic r-Prüfer monoid.


(b) D is a y-basic r[q]-Prüfer monoid.


(c) DP is a valuation monoid for every P ∈ rD-max(D).


Proof. 1. Let P∈ rD-spec(D). Since DP = D×
P D, it suffices to prove that for all a, b∈


D• we have either a ∈ bDP or b ∈ aDP. If a, b ∈ D•, then {a,b}y is r-invertible by
the assumption: Let B ⊂ (D :{a,b}y) = (D :{a,b}) be such that 1 ∈ ({a,b}yB)r. We
assert that even 1∈ {a,b}BDP. Indeed, if not, then {a,b}BDP ⊂PDP, which implies
{a,b}B ⊂ PDP ∩D = P and 1 ∈ ({a,b}yB)r ∩D = ({a,b}B)r ∩D ⊂ Pr ∩D = P, a
contradiction.


Now it follows that DP = ({a,b}DP)B and thus {a,b}DP = cDP for some c ∈
DP by Lemma 9.2. Hence, there exist u, v ∈ DP such that a = cu, b = cv, and
{u,v}DP = DP. Therefore we have either u ∈ D×


P or v ∈ D×
P and thus either b ∈ aDP


or a ∈ bDP.


2. (a) ⇒ (c) By 1.


(c) ⇒ (a) Let A = Ey ∈ My,f(K), where E ∈ Pf(K), and assume that A is not
r-invertible. By Proposition 9.4 there exists some P ∈ rD-max(D) such that A(D :
A)⊂ P. Since DP is a valuation monoid, we obtain EDP = aDP for some a ∈ E , and
thus also AP = EyDP = (EDP)y = aDP. Since [A(D : A)]P = AP(D : E)P = AP(DP :
EDP) = aDP(DP :aDP) = DP, we obtain PDP ⊃ [A(D :A)]P = DP, a contradiction.
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(a) ⇔ (b) By Theorem 6.6.5 we have rD-max(D) = r[q]D-max(D). We apply
the equivalence of (a) and (c) with r[q] instead of r and obtain the equivalence of
(a) and (b). ��
Corollary 9.9. Let r and y be finitary module systems on K such that y � r and
Dy = D. If D is an y-basic r-Prüfer monoid, then every y-monoid T satisfying
D ⊂ T ⊂ K is also an y-basic r-Prüfer monoid.


Proof. By Theorem 9.8 it suffices to prove that TP is a valuation monoid if P ∈
rT -max(T ). If P ∈ rT -max(T ), then P∩D = Pr ∩T ∩D = Pr ∩D. Hence, P∩D ∈
rD-spec(D), DP∩D is a valuation monoid, and since DP∩D ⊂ TP, it follows that TP is
also a valuation monoid.
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domains. Comm. Algebra 32, 1101–1126 (2008)
10. El Baghdadi, S., Fontana, M., Picozza, G.: Semistar Dedekind domains. J. Pure Appl. Algebra


193, 27–60 (2004)
11. Fanggui, W., McCasland, R.L.: On w-modules over strong Mori domains. Comm. Algebra 25,


1285–1306 (1997)
12. Fanggui, W., McCasland, R.L.: On strong Mori domains. J. Pure Appl. Algebra 135, 155–165


(1999)
13. Fontana, M., Huckaba, J.A.: Localizing systems and semistar opertions. In: Chapman, S.T.,


Glaz, S. (eds.) Non-Noetherian commutative ring theory, pp. 169–198. Kluwer (2000)
14. Fontana, M., Huckaba, J.A., Papick, I.J.: Prüfer domains. Marcel Dekker (1997)
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Projectively full ideals and compositions
of consistent systems of rank one discrete
valuation rings: a survey


William Heinzer, Louis J. Ratliff, Jr., and David E. Rush


Abstract Let I be a nonzero ideal in a Noetherian domain R. We survey recent
progress on conditions under which there exists a finite integral extension domain A
of R and an ideal J of A such that J is projectively full and projectively equivalent to
IA. We also survey recent work on compositions of consistent systems or rank one
discrete valuation rings.


1 Introduction


All rings in this paper are commutative with a unit 1 �= 0. For an ideal K of a ring R,
we let Ka denote the integral closure of K; that is Ka = {x∈R | x satisfies an equation
of the form xh + k1xh−1 + · · ·+ kh = 0, where k j ∈ K j for j = 1, . . . ,h}. Let I be a
regular proper ideal of the Noetherian ring R, that is, I contains a regular element
of R and I �= R. An ideal J of R is projectively equivalent to I if there exist positive
integers m and n such that (Im)a = (Jn)a. The concept of projective equivalence of
ideals and the study of ideals projectively equivalent to I was introduced by Samuel
in [S] and further developed by Nagata in [N1] and Rees in [RE]. See [CHRR4] for a
recent survey. Let P(I) denote the set of integrally closed ideals that are projectively
equivalent to I. The ideal I is said to be projectively full if P(I) = {(In)a | n ≥ 1}
and P(I) is said to be projectively full if P(I) = P(J) for some projectively full ideal
J of R.
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The set Rees I of Rees valuation rings of I is a finite set of rank one discrete
valuation rings (DVRs) that determine the integral closure (In)a of In for every
positive integer n and is the unique minimal set of DVRs having this property. Con-
sider the minimal primes z of R such that IR/z is a proper nonzero ideal. The set
Rees I is the union of the sets Rees IR/z. Thus, one is reduced to describing the set
Rees I in the case where I is a nonzero proper ideal of a Noetherian integral domain
R. Consider the Rees ring R = R[t−1, It]. The integral closure R′ of R is a Krull
domain, so W = R′


p is a DVR for each minimal prime p of t−1R′, and V = W ∩F ,
where F is the field of fractions of R, is also a DVR. The set Rees I of Rees valuation
rings of I is the set of DVRs V obtained in this way, cf. [SH, Section 10.1]. More
information on Rees valuations is in the article by Swanson [Sw], in this volume.


If (V1,N1), . . . ,(Vn,Nn) are the Rees valuation rings of I, then the integers
(e1, . . . ,en), where IVi = Nei


i , are the Rees integers of I. Necessary and sufficient
conditions for two regular proper ideals I and J to be projectively equivalent are that
(a) Rees I = Rees J and (b) the Rees integers of I and J are proportional [CHRR,
Theorem 3.4]. If I is integrally closed and each Rees integer of I is one, then I is a
projectively full radical ideal.1


A main goal in the papers [CHRR,CHRR2,CHRR3,CHRR4,HRR] and [HRR2],
is to answer the following question:


Question 1.1. Let I be a nonzero proper ideal in a Noetherian domain R. Under
what conditions does there exist a finite integral extension domain A of R such that
P(IA) contains an ideal J whose Rees integers are all equal to one?


Progress is made on Question 1.1 in [CHRR3, HRR, HRR2]. To describe this
progress, let I be a regular proper ideal of the Noetherian ring R, let b1, . . . ,bg be
regular elements in R that generate I, let X1, . . . ,Xg be indeterminates, and for each
positive integer m > 1 let Am = R[x1, . . . ,xg] = R[X1, . . . ,Xg]/(X1


m −b1, . . . ,Xg
m −


bg) and let Jm = (x1, . . . ,xg)Am. Let (V1,N1), . . . ,(Vn,Nn) be the Rees valuation rings
of I. Consider the following hypothesis on I = (b1, . . . ,bg)R:


(a) biVj = IVj (= Nj
ej , say) for i = 1, . . . ,g and j = 1, . . . ,n.


(b) the greatest common divisor c of e1, . . . ,en is a unit in R.


(b′) the least common multiple d of e1, . . . ,en is a unit in R.


Then the main result in [CHRR3] establishes the following:


Theorem 1.2. If (a) and (b) hold, then Ac = R[x1, . . . ,xg] is a finite free integral
extension ring of R and the ideal Jc = (x1, . . . ,xg)Ac is projectively full and projec-
tively equivalent to IAc. Also, if R is an integral domain and if z is a minimal prime
ideal in Ac, then ((Jc + z)/z)a is a projectively full ideal in Ac/z that is projectively
equivalent to (IAc + z)/z.


1 Example 5.1 of [CHRR2] demonstrates that there exist integrally closed local domains (R,M) for
which M is not projectively full. Remark 4.10 and Example 4.14 of [CHRR] show that a sufficient,
but not necessary, condition for I to be projectively full is that the gcd of the Rees integers of I is
equal to one.
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We prove in [HRR, (3.19) and (3.20)] that if either (i) R contains an infinite field,
or (ii) R is a local ring with an infinite residue field, then it is possible to choose
generators b1, . . . ,bg of I that satisfy assumption (a) of Theorem 1.2. In [HRR, (3.7)]
the following is established:


Theorem 1.3. If (a) and (b′) hold, then for each positive multiple m of d that is a unit
in R the ideal (Jm)a is projectively full and (Jm)a is a radical ideal that is projectively
equivalent to IAm. Also, the Rees integers of Jm are all equal to one and xiU is
the maximal ideal of U for each Rees valuation ring U of Jm and for i = 1, . . . ,g.
Moreover, if R is an integral domain and if z is a minimal prime ideal in Am, then
((Jm + z)/z)a is a projectively full radical ideal that is projectively equivalent to
(IAm + z)/z.


Examples (3.22) and (3.23) of [HRR] show that even if R is the ring Z of ratio-
nal integers, condition (b′) of Theorem 1.3 is needed for the proof given in [HRR].
However, the following result, which is the main result in [HRR2], shows that con-
ditions (a), (b) and (b′) in Theorems 1.2 and 1.3 are not needed if R is a Noetherian
domain of altitude (or in other terminology Krull dimension) one.


Theorem 1.4. Let I be a nonzero proper ideal in a Noetherian integral domain R.


1. There exists a finite separable integral extension domain A of R and a positive
integer m such that all the Rees integers of IA are equal to m.


2. If R has altitude one, then there exists a finite separable integral extension do-
main A of R such that P(IA) contains an ideal H whose Rees integers are all
equal to one. Therefore H = Rad (IA) is a projectively full radical ideal that is
projectively equivalent to IA.


A classical theorem of Krull, stated as Theorem 2.1 below, is an important tool
in [HRR2]. We use the following terminology from [G] and [HRR2].


Definition 1.5. Let (V1,N1), . . . ,(Vn,Nn) be distinct DVRs of a field F and for
i = 1, . . . ,n let Ki = Vi/Ni denote the residue field of Vi. Let m be a positive in-
teger. By an m-consistent system for {V1, . . . ,Vn}, we mean a collection of sets
S = {S(V1), . . . ,S(Vn)} satisfying the following conditions:


(1) S(Vi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si}, where Ki, j is a simple algebraic field
extension of Ki, fi, j = [Ki, j : Ki], and si,ei, j ∈ N+ (the set of positive integers).


(2) For each i, the sum ∑si
j=1 ei, j fi, j = m.


Definition 1.6. The m-consistent system S for {V1, . . . ,Vn} as in Definition 1.5 is
said to be realizable for {V1, . . . ,Vn} if there exists a separable algebraic extension
field L of F such that:


(a) [L : F] = m.
(b) For 1 ≤ i ≤ n, Vi has exactly si extensions (Vi,1,Ni,1), . . . ,(Vi,si ,Ni,si) to L.
(c) The residue field Vi, j/Ni, j of Vi, j is Ki-isomorphic to Ki, j , so [Ki, j : Ki] = fi, j ,


and the ramification index of Vi, j over Vi is ei, j, so NiVi, j = Ni, j
ei, j .


If S and L are as above, we say the field L realizes S for {V1, . . . ,Vn} or that L is a
realization of S for {V1, . . . ,Vn}.
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In Sections 2–4, we summarize the main results in [HRR3] concerning the
realizability of a consistent system S for a finite set V = {V1, . . . ,Vn}, n > 1, of
distinct DVRs on a field F . These results are obtained by constructing and compos-
ing two realizable consistent systems that are related to S.


In Sections 5 and 6, we return to projectively full ideals. In Section 5, we sum-
marize results in [HRR4] concerning a Rees-good basis of a regular ideal I in a
Noetherian ring R. This is a basis that satisfies condition (a) above. The main result
in [HRR4] shows that there always exists a finite free integral extension ring A of R
such that IA has a Rees-good basis and the same Rees-integers as I (with, perhaps,
greater cardinality). In Section 6 we observe that [RR] implies that the homoge-
neous prime spectra of the Rees rings of two filtrations related to I are isomorphic
if and only if I is projectively full.


Our terminology is mainly as in Nagata [N2], so, for example, the term altitude
refers to what is often also called dimension or Krull dimension, and a basis of an
ideal is a set of generators of the ideal.


2 The realizability of m-consistent systems


The following theorem of Krull is an important tool in [HRR2] and [HRR3].


Theorem 2.1. (Krull [K]): Let (V1,N1), . . . ,(Vn,Nn) be distinct DVRs with quotient
field F, let m be a positive integer, and let S = {S(V1), . . . ,S(Vn)} be an m-consistent
system for {V1, . . . ,Vn}, where S(Vi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si} for i = 1, . . . ,n.
Then S is realizable for {V1, . . . ,Vn} if one of the following conditions is satisfied:


(i) si = 1 for at least one i.
(ii) F admits at least one DVR V distinct from V1, . . . ,Vn.
(iii) For each monic polynomial Xt +a1Xt−1 + · · ·+at with ai ∈ ∩n


i=1Vi = D, and
for each h∈N, there exists an irreducible separable polynomial Xt +b1Xt−1 + · · ·+
bt ∈ D[X ] with bl −al ∈ Ni


h for each l = 1, . . . ,t and i = 1, . . . ,n.


Observe that condition (i) of Theorem 2.1 is a property of the m-consistent
system S = {S(V1), . . . ,S(Vn)}, whereas condition (ii) is a property of the fam-
ily of DVRs with quotient field F , and condition (iii) is a property of the family
(V1,N1), . . . ,(Vn,Nn).


The result of Krull stated in Theorem 2.1 is a generalization of a classical result
of Hasse [H] that shows that all m-consistent systems for a given finite set of distinct
DVRs of an algebraic number field F are realizable. This has been extended further
by P. Ribenboim, O. Endler and L. C. Hill, among others. For a good sampling of
these results on when an m-consistent system is realizable, see [E, Sections 25–27]
and [E2]. These references give several sufficient conditions on the realizability of
an m-consistent system for a given finite set V = {V1, . . . ,Vn} of distinct DVRs Vi


with quotient field F .
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Remarks 2.2. (2.2.1) There is an obvious necessary condition for an m-consistent
system to be realizable. If n = 1 and V1 is a Henselian DVR, then no m-consistent
system S = {S(V1)}, where S(V1) = {(K1, f1,e1), . . . ,(Ks, fs,es)} with s > 1 is re-
alizable for {V1}, since V1 is Henselian if and only if V1 has a unique extension
to each finite algebraic extension field of its quotient field F , cf. [N2, (43.12)]. It
follows from Theorem 2.1(ii) that if V is a Henselian DVR, then V is the unique
DVR with quotient field F . It is not true, however, that V being the unique DVR on
its quotient field implies that V is Henselian. For example, using that the field Q of
rational numbers admits only countably many DVRs, it is possible to repeatedly use
Theorem 2.1 to construct an infinite algebraic extension field F of Q such that F
admits a unique DVR V having quotient field F and yet V is not Henselian.


(2.2.2) Related to (2.2.1), it is shown in [R, Theorem 1] that, for each positive
integer n, there exist fields Fn that admit exactly n DVRs (V1,N1), . . . ,(Vn,Nn) hav-
ing quotient field Fn. Moreover, the proof of [R, Theorem 1] shows that such Fn


can be chosen so that there are no realizable m-consistent systems S for {V1, . . . ,Vn}
having the property that m > 1, and, for each i = 1, . . . ,n, S(Vi) = {(Ki, j, fi, j,ei, j) |
j = 1, . . . ,si} has at least one j with (Ki, j, fi, j,ei, j) = (Vi/Ni,1,1).


The following result given in [HRR3, Theorem 2.3] is a sufficient condition for
realizability; by Remark 2.2.1, the hypothesis n > 1 in Theorem 2.3 is essential.
The proof illustrates the method of “composing” realizable systems used in [HRR2],
[HRR3].


Theorem 2.3. Let (V1,N1), . . . ,(Vn,Nn), n > 1, be distinct DVRs with quotient field
F, let m > 1 be a positive integer, and let


S = {S(V1), . . . ,S(Vn)}


be an arbitrary m-consistent system for {V1, . . . ,Vn}, where


S(Vi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si},


for each i = 1, . . . ,n. Then S∗ = {S∗(V1), . . . ,S∗(Vn)} is a realizable m2-consistent
system for {V1, . . . ,Vn}, where


S∗(Vi) = {(Ki, j, fi, j,mei, j) | j = 1, . . . ,si},


for each i = 1, . . . ,n.


Proof. If si = 1 for some i = 1, . . . ,n, then Theorem 2.1(i) implies that S is
a realizable m-consistent system and S∗ is a realizable m2-consistent system for
{V1, . . . ,Vn}, so it may be assumed that si > 1 for each i = 1, . . . ,n.


Define S1(Vi) = S(Vi) for i = 1, . . . ,n− 1 and S1(Vn) = {((Vn/Nn),1,m)}, and
recall that n > 1. Theorem 2.1(i) implies that S1 = {S1(V1), . . . ,S1(Vn)} is a realizable
m-consistent system for {V1, . . . ,Vn}. Let L1 be a realization of S1 for {V1, . . . ,Vn}.
Thus, L1 is a separable algebraic extension field of F of degree m. For i = 1, . . . ,n
let (Wi, j,Ni, j) be the valuation rings of L1 that lie over Vi. It follows from the
prescription of S1 that there are exactly si such rings for i = 1, . . . ,n−1 and exactly
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one such ring for i = n. Also, Wi, j/Ni, j is (Vi/Ni)-isomorphic to Ki, j and NiWi, j =
Ni, j


ei, j for i = 1, . . . ,n−1 and j = 1, . . . ,si, while Wn,1/Nn,1 is (Vn/Nn)-isomorphic
to Vn/Nn and NnWn,1 = Nn,1


m.
Let S2 = {S2(W1,1), . . . ,S2(Wn−1,sn−1),S2(Wn,1)}, where S2(Wi, j) = {(Ki, j,1,m)}


for i = 1, . . . ,n− 1 and j = 1, . . . ,si, and where S2(Wn,1) = {(Kn, j, fn, j,en, j) | j =
1, . . . ,sn}. Thus, S2(Wn,1) is essentially equal to S(Vn). It is readily checked that S2 is
an m-consistent system for W := {W1,1, . . . ,Wn−1,sn−1 ,Wn,1}, and by Theorem 2.1(i)
it is realizable for W. Let L be a realization of S2 for W. Thus, L is a separable
algebraic extension field of L1 of degree m, and hence a separable algebraic ex-
tension field of F of degree m2. Moreover, for i = 1, . . . ,n− 1 and j = 1, . . . ,si


there exists a unique valuation ring (Ui, j,Pi, j) of L that lies over Wi, j, and Ui, j/Pi, j


is (Wi, j/Ni, j)-isomorphic to Wi, j/Ni, j; also, Wi, j/Ni, j is (Vi/Ni)-isomorphic to Ki, j,
so Ui, j/Pi, j is (Vi/Ni)-isomorphic to Ki, j, and Ni, jUi, j = Pi, j


m, so NiUi, j = Ni, j
mei, j .


On the other hand, for i = n there are exactly sn valuation rings (Un, j,Pn, j) that lie
over (Wn,1,Nn,1), and for j = 1, . . . ,sn, Un, j/Pn, j is (Wn,1/Nn,1)-isomorphic to Kn, j,
and Wn,1/Nn,1 is (Vn/Nn)-isomorphic to Vn/Nn, so Un, j/Pn, j is (Vn/Nn)-isomorphic
to Kn, j, and Nn,1Un, j = Pn, j


en, j , so NnUn, j = Pn, j
men, j . It therefore follows that L is


a realization of the m2-consistent system S∗ = {S∗(V1), . . . ,S∗(Vn)} for {V1, . . . ,Vn},
where S∗(Vi) = {(Ki, j, fi, j,mei, j) | j = 1, . . . ,si} for i = 1, . . . ,n. Thus S∗ is a realiz-
able m2-consistent system for {V1, . . . ,Vn}. 	

Corollary 2.4. Let R be a Noetherian domain, let I be a nonzero proper ideal in
R, let (V1,N1), . . . ,(Vn,Nn), n > 1, be the Rees valuation rings of I, let m,s1, . . . ,sn


be positive integers, and let S = {S(V1), . . . ,S(Vn)} be an arbitrary m-consistent
system for {V1, . . . ,Vn}, say S(Vi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si} for i = 1, . . . ,n.
Then there exists a separable algebraic extension field L of degree m2 of the quotient
field of R such that, for each finite integral extension domain A of R with quotient
field L and for i = 1, . . . ,n, IA has exactly si Rees valuation rings (Wi, j,Ni, j) that
extend (Vi,Ni), and then, for j = 1, . . . ,si, the Rees integer of IA with respect to Wi, j


is mei, jei and [(Wi, j/Ni, j) : (Vi/Ni)] = fi, j .


Proof. By [HRR2, Remark 2.7], the extensions of the Rees valuation rings of I to
the field L are the Rees valuation rings of IA, so Corollary 2.4 follows immediately
from Theorem 2.3. 	



Theorem 2.6, given in [HRR3, Theorem 2.7], is a sufficient condition for realiz-
ability under the hypothesis that each of the valuation rings (Vi,Ni),1 � i � n, has
a finite residue field. For this and other results using the hypothesis that the residue
fields are finite, we use the following remark.


Remarks 2.5. (2.5.1) Let F be a finite field. It is well known, see for example [ZS1,
pp. 82–84], that the following hold: (i) Each finite extension field H of F is separable
and thus a simple extension of F . (ii) If k is a positive integer and F is a fixed
algebraic closure of F , then there exists a unique extension field H ⊆ F with [H : F ]
= k. (iii) If H, K ⊆ F are finite extension fields of F , then H ⊆ K if and only if
[H : F] divides [K : F].
(2.5.2) There are fields other than finite fields that satisfy the three conditions given
in (2.5.1). If E is an algebraically closed field of characteristic zero and F is the field
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of fractions of the formal power series ring E[[x]], then a theorem that goes back to
Newton implies that F satisfies the conditions of (2.5.1) cf. [W, Theorem 3.1, p. 98].


Theorem 2.6. Let (V1,N1), . . . ,(Vn,Nn), n > 1, be distinct DVRs with quotient field
F, where each Vi/Ni is finite. For each i let Vi/Ni denote a fixed algebraic closure
of Vi/Ni. Let m be a positive integer, and let S = {S(V1), . . . ,S(Vn)} be an arbitrary
m-consistent system for {V1, . . . ,Vn}, where, for i = 1, . . . ,n, S(Vi) = {(Ki, j, fi, j,ei, j) |
Ki, j ⊆ Vi/Ni and j = 1, . . . ,si}. For i = 1, . . . ,n let T ∗(Vi) = {(Ki, j


∗,m fi, j,ei, j) |
j = 1, . . . ,si}, where Ki, j


∗ ⊆ Vi/Ni is the unique field extension of Ki, j with [Ki, j
∗ :


Ki, j] = m. Then T ∗ = {T ∗(V1), . . . ,T ∗(Vn)} is a realizable m2-consistent system for
{V1, . . . ,Vn}.


Remark 2.7. The hypothesis in Theorem 2.6 that each Ki = Vi/Ni is finite is often
not essential. Specifically, if the set of extension fields of the Ki have the following
properties (a)–(c), then it follows from the proof of Theorem 2.6 that the conclusion
holds, even though the Ki are not finite:


(a) For i = 1, . . . ,n and j = 1, . . . si there exists a field Ki, j
∗ such that


[Ki, j
∗ : Ki, j] = m.


(b) Each Ki, j
∗ is a simple extension of Ki.


(c) There exists i ∈ {1, . . . ,n} (say i = n) such that there exists a simple extension
field Hn of Kn of degree m such that Hn ⊆ Kn, j


∗ for j = 1, . . . ,sn (so [Kn, j
∗ : Hn]


= fn, j for j = 1, . . . ,sn).


Corollary 2.8. Let R be a Noetherian domain, let I be a nonzero proper ideal in R,
let (V1,N1), . . . ,(Vn,Nn), n > 1, be the Rees valuation rings of I, let m,s1, . . . ,sn be
positive integers, and let S = {S(V1), . . . ,S(Vn)} be an arbitrary m-consistent system
for V1, . . . ,Vn, say S(Vi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si} for i = 1, . . . ,n. Assume that
each Vi/Ni is finite. Then there exists a separable algebraic extension field L of R(0)


of degree m2 such that, for each finite integral extension domain A of R with quotient
field L and for i = 1, . . . ,n, IA has exactly si Rees valuation rings (Wi, j,Ni, j) lying
over Vi, and then, for j = 1, . . . ,si, the Rees integer of IA with respect to Wi, j is ei, jei


and [(Wi, j/Ni, j) : (Vi/Ni)] = m fi, j .


Proof. As in the proof of Corollary 2.4, this follows immediately from
Theorem 2.6. 	



3 Radical-power ideals


We use the following notation and terminology.


Notation 3.1. Let D be a Dedekind domain with quotient field F �= D, let M1, . . . ,Mn


be distinct maximal ideals of D, and let I = M1
e1 · · ·Mn


en be an ideal in D, where
e1, . . . ,en are positive integers. Then:
(3.1.1) For each finite integral extension domain A of D (including D) let MI(A) =
{N | N is a maximal ideal in A and N ∩D ∈ {M1, . . . ,Mn}}.
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(3.1.2) Let E be a finite integral extension Dedekind domain of D and let V = {EN |
N ∈ MI(E)}. If S is an m-consistent system for V, then by abuse of terminology we
sometimes say that S is an m-consistent system for MI(E), and when N ∈ MI(E)
we sometimes use S(N) in place of S(EN).


Remarks 3.2. With the notation of (3.1), let S = {S(M1), . . . ,S(Mn)} be a realizable
m-consistent system for MI(D), where S(Mi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si} for
i = 1, . . . ,n. Let L be a field that realizes S for MI(D) and let E be the integral
closure of D in L. Then:


(3.2.1) [L : F ] = m, and L has distinct DVRs (Vi,1,Ni,1), . . . ,(Vi,si ,Ni,si) such that for
each i, j: Vi, j∩F = DMi ; Vi, j/Ni, j is D/Mi-isomorphic to Ki, j; [Ki, j : Ki] = fi, j , where
Ki = D/Mi; and, MiVi, j = Ni, j


ei, j . Also, for i = 1, . . . ,n, Vi,1, . . . ,Vi,si are all of the
extensions of DMi to L, so MI(E) = {Ni, j ∩E | i = 1, . . . ,n and j = 1, . . . ,si}.


(3.2.2) E is a Dedekind domain that is a finite separable integral extension domain
of D, and IE = M1


e1 · · ·Mn
enE = P1,1


e1e1,1 · · ·Pn,sn
enen,sn , where Pi, j = Ni, j ∩E for i =


1, . . . ,n and j = 1, . . . ,si.


Theorem 3.3 is proved in [HRR2, (2.11.1)], by composing n related consistent
systems. In [HRR3] a different proof is given which suggests the proof of the anal-
ogous “finite-residue-field degree” result, Theorem 4.1. Notice that Theorem 3.3
shows that every ideal I as in Notation 3.1 extends to a radical-power ideal in some
finite integral extension Dedekind domain.


Theorem 3.3. With the notation of (3.1) and (3.2), assume that n > 1. Then the
system S = {S(M1), . . . ,S(Mn)} is a realizable e1 · · ·en-consistent system for MI(D),
where, for i = 1, . . . ,n, S(Mi) = {(Ki, j,1, e1···en


ei
) | j = 1, . . . ,ei}. Therefore, there


exists a Dedekind domain E that is a finite separable integral extension domain of
D such that [L : F ] = e1 · · ·en, where L (resp., F) is the quotient field of E (resp., D),
and, for i = 1, . . . ,n, there exist exactly ei maximal ideals Ni,1, . . . ,Ni,ei in E that lie


over Mi and, for j = 1, . . . ,ei, [(E/Ni, j) : (D/Mi)] = 1 and MiENi, j = Ni, j


e1 ···en
ei ENi, j ,


so IE = (Rad (IE))e1···en .


Corollary 3.4. Let I be a nonzero proper ideal in a Dedekind domain D. Then there
exists a finite separable integral extension Dedekind domain E of D such that IE =
(Rad (IE))m for some positive integer m.


Proof. Let I = M1
e1 ∩ ·· · ∩Mn


en be an irredundant primary decomposition of I. If
n = 1, then I = M1


e1 = (Rad (I))e1 , so the conclusion holds with E = D and m =
e1. If n > 1, then the conclusion follows immediately from Theorem 3.3, since I =
M1


e1 ∩·· ·∩Mn
en = M1


e1 · · ·Mn
en . 	



Corollary 3.5. Let k = π1
e1 · · ·πn


en be the factorization of the positive integer k > 1
as a product of distinct prime integers πi. Then there exists an extension field L of Q


of degree e1 · · ·en such that kE = [Π n
i=1(Π


ei
j=1 pi, j)]e1···en , where E is the integral


closure of Z in L and MkZ(E) = {p1,1, . . . , pn,en}.
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Remark 3.6 shows that I sometimes extends to a radical power ideal in a simpler
realizable consistent system.


Remark 3.6. With the notation of (3.1) and (3.2), assume2 that, for i = 1, . . . ,n,
there exists a simple algebraic extension field Ki


(1) of D/Mi such that [Ki
(1) :


(D/Mi)] = ei. Then the system S(1) = {S(1)(M1), . . . ,S(1)(Mn)}, where S(1)(Mi) =
{(Ki


(1),ei,
e1···en


ei
)} for i = 1, . . .n, is an e1 · · ·en-consistent system for MI(D). By


Theorem 2.1(i), it is realizable for MI(D). Also, if E is the integral closure of
D in a realization L of S(1) for MI(D), then IE = Je1···en , where J = Rad (IE).
More specifically, since E is the integral closure of D in a realization L of S(1) for
MI(D), for i = 1, . . . ,n, there exists a unique maximal ideal Ni in E that lies over


Mi, and then E/Ni
∼= Ki


(1) and MiENi = Ni


e1 ···en
ei ENi , so MiE = Ni


e1···en
ei , so IE =


(Π n
i=1Mi


ei)E = Π n
i=1(N


e1···en
ei


i )ei = Je1···en , where J = N1 · · ·Nn.


Remark 3.7. Let Vi = DMi and S = {S(V1), . . . ,S(Vn)} be an arbitrary m-consistent
system for MI(D) = {M1, . . . ,Mn}, where, for i = 1, . . . ,n, S(Vi) = {(Ki, j, fi, j,ei, j) |
j = 1, . . . ,si}. If we consider the si, Ki, j , and fi, j as fixed in the m-consistent system
for MI(D) and the ei, j as variables subject to the constraint ∑si


j=1 ei, j fi, j = m for
each i, then S gives a map N+


n → N+
t (where t = ∑n


i=1 si) defined by


(e1, . . . ,en) �→ (e1e1,1, . . . ,e1e1,s1 , . . . ,enen,1, . . . ,enen,sn).


If we are interested only in the projective equivalence class of IE , it seems appro-
priate to consider the induced map given by S : N+


n → Pt(N+) = N+
t/∼, where


(a1, . . . ,at)∼ (b1, . . . ,bt) if (a1, . . . ,at) = (cb1, . . . ,cbt) for some c ∈ Q. In this case,
Theorem 2.3 shows that the equations ∑si


j=1 ei, j fi, j = m are the only restrictions on
the image of this map into Pt(N+). From this point of view, if we want an equation
IE = (Rad (IE))k for some finite separable integral extension Dedekind domain E
of D and for some positive integer k, then it is not necessary to compose two re-
alizable consistent systems, as in the proof of Theorem 3.3. Indeed, it suffices to
observe that we have an m-consistent system S = {S(M1), . . . ,S(Mn)}, where m =
e1 · · ·en and S(Mi) = {(Ki, j,1, e1···en


ei
) | j = 1, . . . ,ei} for i = 1, . . . ,n (realizable or


not), and then apply Theorem 2.3.


Theorem 3.3 extends to ideals in Noetherian domains of altitude one by using
the following result from [HRR2].


Proposition 3.8. [HRR2, 2.6] Let R be a Noetherian domain of altitude one with
quotient field F, let I be a nonzero proper ideal in R, let L be a finite algebraic
extension field of F, let E be the integral closure of R in L, and assume there ex-
ist distinct maximal ideals N1, . . . ,Nn of E and positive integers k1, . . . ,kn,h such


2 D may have a residue field D/Mi that has no extension field Ki
(1) such that [Ki


(1) : (D/Mi)] = ei;
for example, D/Mi may be algebraically closed, see also Example 3 in [R].
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that IE = (N1
k1 · · ·Nn


kn)h. Then there exists a finite integral extension domain A of
R with quotient field L and distinct maximal ideals P1, . . . ,Pn of A such that, for
i = 1, . . . ,n:


(i) PiE = Ni.
(ii) E/Ni


∼= A/Pi.
(iii) (IA)a = ((P1


k1 · · ·Pn
kn)h)a.


Corollary 3.9. Let R be a Noetherian domain of altitude one, let I be a nonzero
proper ideal in R, let R′ be the integral closure of R in its quotient field, and let
IR′ = M1


e1 · · ·Mn
en be a normal primary decomposition of IR′. Then there ex-


ists a finite separable integral extension domain A of R such that (IA)a =
((Rad (IA))e1···en)a, and if A′ denotes the integral closure of A in its quo-
tient field, then for each P ∈ MI(A) we have: (i) PA′ is a maximal ideal, and
(ii) A′/PA′ ∼= A/P.


Proof. If n = 1, then IR′ = (Rad (IR′))e1 and R′ is a Dedekind domain, so the
conclusion follows from Proposition 3.8.


If n > 1, then by hypothesis there are exactly n distinct maximal ideals
M1, . . . ,Mn in R′ that contain IR′ and IR′ = M1


e1 · · ·Mn
en . Also, R′ is a Dedekind do-


main, so by Theorem 3.3 there exists a finite separable integral extension Dedekind
domain E of R′ such that IE = (Rad (IE))e1···en . Then E is the integral closure
of R in the quotient field of E; the conclusions follow from this, together with
Proposition 3.8. 	



When the exponents e1, . . . ,en have no common integer prime divisors,
Proposition 3.10 gives an additional way to compose realizable consistent sys-
tems to obtain a Dedekind domain E as in Theorem 3.3, but with the exponent
and degree e1 · · ·en of Theorem 3.3 replaced with a smaller exponent and degree
d. This result is discussed in [HRR2, (2.11.2)], and [HRR3, (3.11)], and it yields
corresponding different versions of Corollaries 3.5 and 3.9. (When the exponents
e1, . . . ,en do have common integer prime divisors, see Remark 3.11.)


Proposition 3.10. With the notation of (3.1) and (3.2), assume that n > 1 and that
no prime integer divides each ei. Let d = p1


m1 · · · pk
mk be the least common multiple


of e1, . . . ,en, where p1, . . . , pk are distinct prime integers and m1, . . . ,mk are posi-
tive integers. Then the system S = {S(M1), . . . ,S(Mn)} for MI(D), where, for i =
1, . . . ,n, S(Mi) = {(Ki, j,1, d


ei
) | j = 1, . . . ,ei}, is a realizable d-consistent system for


MI(D). Also, if E is the integral closure of D in a realization L of S for MI(D), then
IE = (Rad (IE))d .


Remark 3.11. Concerning the hypothesis in Proposition 3.10 that no prime integer
divides all ei, if, on the contrary, π is a prime integer that divides each ei, then let c
be the greatest common divisor of e1, . . . ,en. For i = 1, . . . ,n define ki by ei = cki,
and let I0 = M1


k1 · · ·Mn
kn , so I0


c = (∏n
i=1 Mki


i )c = ∏n
i=1 Mei


i = I and no prime integer
divides all ki. Therefore, if the ring E of Theorem 3.3 is constructed for I0 in place
of I, then I0E = (Rad (I0E))d , where d is the least common multiple of k1, . . . ,kn,
so IE = (Rad (IE))dc.
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The following result, which is [HRR3, Proposition 3.13], characterizes the
conditions a realizable m-consistent system S′ for MI(D) must satisfy in order that
IE = Jt for some radical ideal J in E and for some positive integer t.


Proposition 3.12. Let D be a Dedekind domain with quotient field F �= D, let
M1, . . . ,Mn (n > 1) be distinct maximal ideals of D, let I = M1


e1 · · ·Mn
en be an


ideal in D, where e1, . . . ,en are positive integers, and let m be a positive integer. Let
S′ = {S′(M1), . . . ,S′(Mn)} be a realizable m-consistent system for {DM1 , . . . ,DMn},
where S′(Mi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si} for i = 1, . . . ,n, and let E be the in-
tegral closure of D in a finite separable field extension L of F which realizes S′ for
{DM1 , . . . ,DMn}, so [L : F ] = m. Then the following hold:
(3.12.1) IE = Jt for some radical ideal J in E and for some positive integer t if and
only if the products eiei, j are equal for all i, j, and then J = Rad (IE) and eiei, j = t.
(3.12.2) If IE = Jm (as in Theorem 3.3 and Proposition 3.10), then ∑si


j=1 fi, j = ei


for i = 1, . . . ,n.
(3.12.3) If IE = Jt , as in (3.12.1), and if no prime integer divides each ei, then m is
a positive multiple of t and t (and hence m) is a positive multiple of each ei.


4 Finite-residue-field degree analogues


Under the assumption that each of the residue fields D/Mi is finite, “finite-residue-
field degree” analogues of results in Section 3 are given in [HRR3]. For example,
Theorem 4.1, which is [HRR3, Theorem 4.1], is a finite-residue-field degree ana-
logue of Theorem 3.3.


Theorem 4.1. With the notation of (3.1) and (3.2), assume that n > 1 and that each
Ki = D/Mi is finite. For i = 1, . . . ,n let fi be a positive integer such that [Ki : Fi] =
fi for some subfield Fi of Ki, and let Ki


′ ⊆ Ki be the unique extension field of
Ki of degree f1··· fn


fi
, where Ki is a fixed algebraic closure of Ki. Then the system


T = {T (M1), . . . ,T (Mn)} is a realizable m-consistent system for MI(D), where m =
f1 · · · fn and T (Mi) = {(Ki, j,


f1··· fn
fi


,1) | j = 1, . . . , fi} for i = 1, . . . ,n (with Ki, j = Ki
′


for j = 1, . . . , fi). Therefore there exists a Dedekind domain E that is a finite sep-
arable integral extension domain of D such that [L : F ] = m (where L (resp., F) is
the quotient field of E (resp., D)) and, for i = 1, . . . ,n, there exist exactly fi maximal
ideals Ni,1, . . . ,Ni, fi in E that lie over Mi and, for j = 1, . . . , fi, MiENi, j = Ni, jENi, j


and [(E/Ni, j) : Ki] = f1··· fn
fi


, so [(E/Ni, j) : Fi] = m.


Remark 4.2. The hypothesis in Theorem 4.1 that each Ki = Di/Mi is finite is often
not essential. Specifically, if the set of extension fields of the Ki have the following
properties (a)–(c), then it follows from the proof of Theorem 4.1 that the conclusion
holds, even though the Ki are not finite:


(a) For i = 1, . . . ,n, Ki has a subfield Fi such that [Ki : Fi] = fi.
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(b) With m = f1 · · · fn, for i = 1, . . . ,n Ki has (not necessarily distinct) simple
extension fields Ki,1, . . . ,Ki, fi such that [Ki, j : Ki] = m


fi
.


(c) For i = 1, . . . ,n−1, Ki has simple extension fields Hi, j such that [Hi, j : Ki] =
f1··· fn−1


fi
and such that Hi, j ⊆ Ki, j (so [Ki, j : Hi, j] = fn).


Corollary 4.3 is a special case of Theorem 4.1; it is a finite-residue-field degree
analogue of Corollary 3.5.


Corollary 4.3. Let D be the ring of integers of an algebraic number field F and let
M1, . . . ,Mn (n > 1) be distinct maximal ideals in D. For i = 1, . . . ,n let Z/πiZ be
the prime subfield of D/Mi (possibly πi = π j for some i �= j ∈ {1, . . . ,n}) and let
fi = [(D/Mi) : (Z/πiZ)]. Then there exists a Dedekind domain E that is a finite
(separable) integral extension domain of D such that, for i = 1, . . . ,n, there exist
exactly fi maximal ideals pi, j in E that lie over Mi, and then, for j = 1, . . . , fi,
MiEpi, j = pi, jEpi, j and [(E/pi, j) : (Z/πiZ)] = f1 · · · fn.


Proof. This follows immediately from Theorem 4.1.


Corollary 4.4 is a finite-residue-field degree analogue of Corollary 3.9. Since hy-
potheses on infinite residue fields can sometimes be replaced by the hypotheses that
the residue fields have cardinality greater than or equal to a given positive integer,
Corollary 4.4 may be useful in this regard.


Corollary 4.4. Let R be a Noetherian domain of altitude one, let I be a nonzero
proper ideal in R, let R′ be the integral closure of R in its quotient field, let IR′ =
M1


e1 · · ·Mn
en (n > 1) be a normal primary decomposition of IR′, and for i = 1, . . . ,n


let [(R′/Mi) : (R/(Mi ∩R))] = gi. For i = 1, . . . ,n, assume that R′/Mi is finite, let fi


be a positive integer, and assume that [(R/(Mi ∩R)) : Fi] = fi, where Fi is a subfield
of R/(Mi ∩R). Then there exists a finite separable integral extension domain A of
R such that, for all P ∈ MI(A), [(A/P) : Fi] = Π n


i=1 figi = [A(0) : R(0)]. Also, A may
be chosen so that, with A′ the integral closure of A in A(0), there exist exactly figi


maximal ideals Pi, j in A such that Pi, jA′ ∩R′ = Mi and, for all P ∈ MI(A) it holds
that PA′ ∈ MI(A′) and A/P ∼= A′/(PA′).


Proof. Since R′ is a Dedekind domain and [(R′/Mi) : Fi] = figi for i = 1, . . . ,n,
it follows from Theorem 4.1 that there exists a Dedekind domain E that is a fi-
nite separable integral extension domain of R′ such that [A(0) : R(0)] = Π n


i=1 figi


and, for i = 1, . . . ,n, there exist exactly figi maximal ideals Ni,1, . . . ,Ni, figi in E that
lie over Mi and, for j = 1, . . . , figi, MiENi, j = Ni, jENi, j and [(E/Ni, j) : (R′/Mi)] =
f1g1··· fngn


figi
, so [(E/Ni, j) : Fi] = Π n


i=1 figi. The conclusions follow from this, together
with Proposition 3.8. 	



Theorem 4.1 shows that if each residue field D/Mi is finite and Fi is a subfield
of D/Mi such that [(D/Mi) : Fi] = fi, then there exists a finite separable integral
extension domain E of D such that [E(0) : D(0)] = [(E/Ni, j) : Fi] = f1 · · · fn for all i, j
(= m, say). Proposition 4.5 characterizes the conditions a realizable m-consistent
system T ′ for MI(D) must satisfy in order that [(E/Ni, j) : Fi] = f1 · · · fn for all i, j.
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Proposition 4.5. Let D be a Dedekind domain with quotient field F �= D, let
M1, . . . , Mn (n > 1) be distinct maximal ideals of D, and assume that Ki = D/Mi


is finite for i = 1, . . . ,n. For i = 1, . . . ,n let fi be a positive integer such that
[Ki : Fi] = fi for some subfield Fi of Ki. Let m be a positive integer and let T ′ =
{T ′(M1), . . . ,T ′(Mn)} be a realizable m-consistent system for MI(D), where, for
i = 1, . . . ,n, T ′(Mi) = {(Ki, j, fi, j,ei, j) | j = 1, . . . ,si}, and let E be the integral
closure of D in a realization L of T ′ for MI(D), so [L : F ] = m. Then the following
hold:
(4.5.1) There exists a positive integer t such that [(E/Ni, j) : Fi] = t for all i, j if and
only if the products fi fi, j are equal for all i, j, and then t = fi fi, j .
(4.5.2) If [(E/Ni, j) : Fi] = m for all i, j (as in Theorem 4.1), then ∑si


j=1 ei, j = fi for
i = 1, . . . ,n.
(4.5.3) If [(E/Ni, j) : Fi] = t for all i, j, as in (4.5.1), and if no prime integer divides
each fi, then m is a positive multiple of t and t (and hence m) is a positive multiple
of each fi.


The following theorem that combines Theorems 3.3 and 4.1 is [HRR3,
Theorem 5.1].


Theorem 4.6. With the notation of (3.1) and (3.2) (so I = M1
e1 · · ·Mn


en , where the ei


are positive integers and n > 1), assume that each Ki = D/Mi is finite and let Ki be
a fixed algebraic closure of Ki. For i = 1, . . . ,n let fi be a positive integer such
that Ki is an extension field of a subfield Fi with [Ki : Fi] = fi, and let Ki


∗ be the
unique extension field of Ki of degree f1··· fn


fi
that is contained in Ki. Then the sys-


tem U = {U(M1), . . . ,U(Mn)} is a realizable e1 · · ·en f1 · · · fn-consistent system for
MI(D), where, for i = 1, . . . ,n, U(Mi) = {(Ki, j,


f1··· fn
fi


, e1···en
ei


| j = 1, . . . ,ei fi} (with
Ki, j = Ki


∗ for j = 1, . . . ,ei fi). Therefore, there exists a separable algebraic extension
field L of degree e1 · · ·en f1 · · · fn over the quotient field F of D, and a finite integral
extension Dedekind domain E of D with quotient field L such that, for i = 1, . . . ,n,
there are exactly ei fi maximal ideals Ni,1, . . . ,Ni,ei fi in E that lie over Mi, and it
holds that [(E/Ni, j) : Fi] = f1 · · · fn for all i and j, and IE = (Rad (IE))e1···en =
(N1,1 · · ·Nen fn)


e1···en .


5 Rees-good bases of ideals


We introduce the following terminology in [HRR4].


Definition 5.1. Let I be a regular proper ideal in a Noetherian ring R. An element
b ∈ I is said to be Rees-good for I in case bV = IV for all Rees valuation rings V
of I. A basis b1, . . . ,bg of I is said to be Rees-good in case bi is Rees-good for I for
i = 1, . . . ,g.


Thus, assumption (a) of the Introduction is that the ideal I has a Rees-good basis.
We summarize in this section several results concerning Rees-good bases of ideals
that are proved in [HRR4].
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Notation 5.2. Let I be a regular proper ideal in a Noetherian ring R and let
{(Vi,Ni)}n


i=1 be the set of Rees valuation rings of I. For j ∈ {1, . . . ,n}, let Hj


= {x ∈ I | xVj � IVj}.


Lemma 5.3. With the notation of (5.2), the following hold:
(5.3.1) Hi = HiVi ∩ I is an ideal in R that is properly contained in I for i = 1, . . . ,n.
(5.3.2) An element b ∈ I is Rees-good for I if and only if b /∈ H1 ∪·· ·∪ Hn.
(5.3.3) If either I is principal or I has only one Rees valuation ring, then I has a
Rees-good basis.


Let I be a regular proper ideal of the Noetherian ring R. H. T. Muhly and
M. Sakuma prove in [MS, Lemma 3.1] that some power Ik of I contains an ele-
ment b such that bV = IkV for all Rees valuation rings V of I, or equivalently of
Ik. Thus b is a Rees-good element of Ik. It follows that bh is a Rees-good element
of Ikh for every positive integer h. It is noted preceding Theorem 1.3 that if either
(i) R contains an infinite field or (ii) R is local with an infinite residue field, then all
regular proper ideals in R have a Rees-good basis.


Example 5.4 exhibits a Gorenstein local ring (R,M) of altitude one such that M
contains no Rees-good elements and no power of M has a Rees-good basis.


Example 5.4. Let F be the field with two elements, let X ,Y be independent indeter-
minates over F , let R = F [[X ,Y ]]/(XY (X +Y )), and let x,y denote the images in R
of X ,Y , respectively. Then M = (x,y)R has three Rees valuation rings


V1 := F [[X ,Y ]]/(X) V2 := F [[X ,Y ]]/(Y ) V3 := F[[X ,Y ]]/((X +Y).


With notation as in (5.2), notice that


H1 = xR + M2 H2 = yR + M2 and H3 = (x + y)R + M2.


Therefore M = H1 ∪H2 ∪H3, so M does not have any Rees-good elements. Since
xy(x + y) = 0 and F is of characteristic two, one has x2y = xy2, and for n ≥ 3


xn−1y = xn−2y2 = · · · = xyn−1.


Thus {xn, xn−1y, yn} is a minimal basis of Mn for every n � 2. It follows that the
only Rees-good element for Mn, up to congruence mod Mn+1, is xn +xn−1y+yn, for
every n � 2. For g ∈ Mn can be written g = axn + bxn−1y + cyn + h with a,b,c ∈ F
and h ∈ Mn+1, and g is a Rees-good element for Mn if and only if a = b = c = 1.


The concept of asymptotic prime divisors as in Definition 5.5 is used in [HRR4].


Definition 5.5. Let I be a regular proper ideal in a Noetherian ring R. The set
of asymptotic prime divisors of I, denoted A


∗(I), is the set {P ∈ Spec (R) | P ∈
Ass (R/(Ii)a) for some positive integer i}.


It is shown in [Mc, Proposition 3.9] that A
∗(I) is a finite set and that for each


positive integer i, Ass (R/(Ii)a) ⊆ Ass (R/(Ii+1)a).
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Theorem 5.6, which is proved in [HRR4], gives another sufficient condition,
besides (i) and (ii) in the Introduction, for I to have a Rees-good basis.


Theorem 5.6. With the notation of (5.2) and (5.5), assume that n � 2. The following
properties are equivalent.


(1) Card(R/p) > n for each p ∈ A
∗(I) that is a maximal ideal of R.


(2) There exists a set U = {u1, . . . ,un} of elements in R such that the elements in
U ∪{ui −u j | i �= j in {1, . . . ,n}} are units in each Rees valuation ring of I.


If these hold, then each regular ideal H in R such that
⋃{q | q ∈ A


∗(H)} ⊆
⋃{p | p ∈ A


∗(I)} and Card(Rees H) � Card(Rees I) has a Rees-good basis. In
particular, each ideal H of R which is projectively equivalent to I has a Rees-good
basis.


Theorem 5.6 yields the following corollaries.


Corollary 5.7. Let I be a regular proper ideal in a Noetherian ring R and assume
that no member of A


∗(I) is a maximal ideal of R. Then I has a Rees-good basis.


Corollary 5.8. Let R be a Noetherian ring and assume that R/M is infinite for all
maximal ideals M in R. Then every regular proper ideal in R has a Rees-good basis.


The concept of an unramified extension as in Definition 5.9 is used in
Theorem 5.10.


Definition 5.9. A quasi-local ring (R′,M′) is unramified over a quasi-local ring
(R,M) in case R is a subring of R′, M′ = MR′, and R′/M′ is separable over R/M. A
prime ideal p′ of R′ is unramified over p′ ∩R in case R′


p′ is unramified over Rp′∩R.


Theorem 5.10 is the main result in [HRR4]. For a regular proper ideal I in a
Noetherian ring R, Theorem 5.10 implies the existence of a finite free integral ex-
tension ring of R that satisfies the conclusions of Theorems 1.2 and 1.3 even without
the assumption of hypothesis (a) of these theorems.


Theorem 5.10. Let I be a regular proper ideal in a Noetherian ring R. There exists
a simple free integral extension ring A of R such that:


1. For each regular ideal H in R whose asymptotic prime divisors are contained
in the union of the asymptotic prime divisors of I and for which Card(Rees H)
� Card(Rees I), the ring AP is unramified over RP∩R for each asymptotic prime
divisor P of HA;


2. Each Rees valuation ring of HA is unramified over its contraction to a Rees
valuation ring of H; and


3. The ideal HA has a Rees-good basis and the same Rees integers as H (with
possibly different cardinalities).


In particular, these properties hold for the ideal H = I.
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6 Projective equivalence and homogeneous prime spectra
of certain Rees rings


Rees rings of filtrations and closely related graded rings have played important
auxiliary roles in many research problems in commutative algebra. There are many
results about them in the literature, and a large portion of these results are concerned
with the set of homogeneous ideals.


We recall the following definitions.


Definition 6.1. Let R be a ring.
(6.1.1) A filtration f = {Ii}i�0 on R is a sequence of ideals Ii of R such that:
(a) I0 = R; (b) Ii ⊇ Ii+1 for all i ∈ N (the set of nonnegative integers); and, (c)
IiI j ⊆ Ii+ j for all i, j ∈ N.
(6.1.2) If f = {Ii}i�0 is a filtration on R and if M = {0 = c0,c1,c2, . . .} is an
additive submonoid of N then f M = {Ici}i�0. (It is shown in [RR, Theorem 3.3] that
f M is a filtration on R.)
(6.1.3) The Rees ring of R with respect to a filtration f = {Ii}i�0 on R is the graded
subring R(R, f ) = R[u,t f ] = R[u,tI1,t2I2, . . . ] of R[u,t], where t is an indeterminate
and u = 1/t.
(6.1.4) The homogeneous prime spectrum of a graded ring A is denoted by
HSpec(A), so HSpec(A) = {p ∈ Spec (A) | p is homogeneous}.


It is shown in [MRS, (2.4), (2.6), (2.8), and (2.9)] that: the set P(I) of all inte-
grally closed ideals that are projectively equivalent to a regular proper ideal I in a
Noetherian ring R is discrete and linearly ordered by inclusion; there exists a unique
positive integer d such that P(I) ⊆ {I( k


d ) | k ∈ N}, where I( k
d ) is the integrally closed


ideal {x ∈ R | xd ∈ (Ik)a}; and, (I( i
d )I( j


d ))a = I( i+ j
d ). And it is shown in [RR, (3.3)]


that P(I) (together with R) is a filtration f ∗ on R which contains the filtration f =
{(Ii)a}i�0 = {I(i)}i�0 as a subfiltration, and, in turn, f ∗ is a subfiltration of the filtra-
tion e = {I( i


k )}i�0. Associated with these filtrations we have graded rings R[u,t f ] =


R[u,tI(1),t
2I(2), . . . ] ∼= A = R[ud,tdI(1),t


2dI(2), . . . ]⊆ B = R[u,tc1I( c1
d ),t


c2I( c2
d ), . . . ]⊆


R(R,e) = R[u,tI( 1
d ),t


2I( 2
d ), . . . ] and these inclusion maps induce isomorphisms on the


homogeneous prime spectra of these graded rings, so HSpec(R[u,t f ]) ∼= HSpec(A)
∼= HSpec(B) ∼= HSpec(R[u,te]). Since R[u,t f ∗] = R[u,tI( c1


d ),t
2I( c2


d ), . . . ], this raises


the question of when HSpec(R[u,t f ]) ∼= HSpec(R[u,t f ∗]). It is shown in [RR, (4.8)]
that this holds if and only if c1 = 1 if and only if P(I) is projectively full. (An earlier
version of [RR] is referenced in [CHRR] under a slightly different title.)


References
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Direct-sum behavior of modules over
one-dimensional rings


Ryan Karr and Roger Wiegand


Abstract Let R be a reduced, one-dimensional Noetherian local ring whose integral
closure R is finitely generated over R. Since R is a direct product of finitely many
principal ideal domains (one for each minimal prime ideal of R), the indecompos-
able finitely generated R-modules are easily described, and every finitely generated
R-module is uniquely a direct sum of indecomposable modules. In this article we
will see how little of this good behavior trickles down to R. Indeed, there are rela-
tively few situations where one can describe all of the indecomposable R-modules,
or even the torsion-free ones. Moreover, a given finitely generated module can have
many different representations as a direct sum of indecomposable modules.


1 Finite Cohen–Macaulay type


If R is a one-dimensional reduced Noetherian local ring, the maximal Cohen–
Macaulay R-modules (those with depth 1) are exactly the non-zero finitely generated
torsion-free modules. One says that R has finite Cohen–Macaulay type provided
there are, up to isomorphism, only finitely many indecomposable maximal Cohen–
Macaulay modules. The following theorem classifies these rings:


Theorem 1.1. Let (R,m,k) be a one-dimensional, reduced, local Noetherian ring.
Then R has finite Cohen–Macaulay type if and only if


(DR1) The integral closure R of R in its total quotient ring can be generated by 3
elements as an R-module; and
(DR2) m(R/R) is a cyclic R-module. ��
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The two conditions above were introduced by Drozd and Roı̆ter in a remarkable
1967 paper [12]. They proved the theorem in the special case of a ring essentially fi-
nite over Z and asserted that it is true in general. In 1978 Green and Reiner [16] gave
a much more detailed proof of the theorem in this special case. In 1989 R. Wiegand
[43] proved necessity of the conditions (DR), in general, and sufficiency assuming
only that each residue field of R is separable over k = R/m. Since, by (DR1), the
residue field growth is of degree at most 3, this completed the proof of Theorem 1.1
except in the cases where char(k) = 2 or 3. The case of characteristic 3 was handled
by indirect methods in [45], leaving only the case where k is imperfect of character-
istic 2. In his 1994 Ph.D. dissertation, Nuri Cimen [6] then used explicit, and very
difficult, matrix reductions to prove the remaining case of the theorem.


We will sketch some of the main ingredients of the proof, though we will not
touch on the matrix reductions in [16] and [6]. The pullback representation, which
we describe in more generality than needed in this section, is a common theme in
most of the research leading up to the proof of the theorem. For the moment, let R be
any one-dimensional Noetherian ring, not necessarily local, and let R be the integral
closure of R in the total quotient ring K of R. We assume that R is finitely generated
as an R-module. (This assumption is no restriction: A reduced one-dimensional lo-
cal ring is automatically Cohen–Macaulay. If, further, R has finite Cohen–Macaulay
type, then R has to be finitely generated over R (cf. [45, Lemma 1] or Proposition 1.2
below).) The conductor f := {r ∈ R | rR ⊆ R} contains a non-zerodivisor of R; there-
fore R/f and R/f are Artinian rings, and we have a pullback diagram


R −−−−→ R
⏐
⏐
�


⏐
⏐
�


R
f −−−−→ R


f


The bottom line of the pullback is an example of an Artinian pair [43], by which
we mean a module-finite extension A ↪→ B of commutative Artinian rings. Of course
this pullback has the additional property that R/f is a principal ideal ring. Given an
Artinian pair A = (A ↪→ B), one defines an A-module to be a pair V ↪→ W , where
W is a finitely generated projective B-module and V is an A-submodule of W with
the property that BV = W . A morphism (V1 ↪→W1) → (V2 ↪→W2) of A-modules is,
by definition, a B-homomorphism from W1 to W2 that carries V1 into V2. With sub-
modules and direct sums defined in the obvious way, we get an additive category
in which every object has finite length. We say A has finite representation type pro-
vided there are, up to isomorphism, only finitely many indecomposable A-modules.
In the local case, the bottom line tells the whole story:


Proposition 1.2 ([43, (1.9)]). Let (R,m) be a one-dimensional, reduced, Noethe-
rian local ring with finite integral closure R. Then R has finite Cohen–Macaulay
type if and only if the Artinian pair R


f ↪→ R
f has finite representation type. ��
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The proof of this proposition is not very hard. The key ingredients are the
following:


1. Krull–Remak–Schmidt: For an Artinian pair A, every A-module is uniquely
(up to order and isomorphism of the factors) a direct sum of indecomposable
A-modules.


2. Dickson’s Lemma [9]: N
n
0 has no infinite antichains. (Here, N0 is the well-


ordered set of natural numbers, and N
n
0 has the product partial order.)


3. Given a finitely generated, torsion-free R-module M, let RM be the R-submodule
of KM generated by M. Assume R �= R. Then M1


∼= M2 ⇐⇒ the (R/f ↪→ R/f)-
modules (M1/fM1 ↪→ RM1/fM1) and (M2/fM2 ↪→ RM2/fM2) are isomorphic.
(The fact that R is local is crucial here.)


The proof of Theorem 1.1 then reduces to the following:


Proposition 1.3. Let A = (A ↪→ B) be an Artinian pair in which A is local, with
maximal ideal m and residue field k. Assume that B is a principal ideal ring. Then
A has finite representation type if and only if the following conditions are satisfied:


(dr1) dimk(B/mB) � 3


(dr2) dimk
mB + A
m2B + A


� 1. ��


Green and Reiner proved Proposition 1.3 under the additional assumption that
the residue fields of B are all equal to k. There is an obvious way to eliminate resi-
due field growth, assuming one is trying to prove the more difficult implication that
(dr1) and (dr2) imply finite representation type: Adjoin roots. More precisely, we
observe that by (dr1) B has at most three local components, and at most one of these
has a residue field properly extending k. Moreover, the degree of the extension is at
most 3. Choose a primitive element θ , let f ∈ A[T ] be a monic polynomial reducing
to the minimal polynomial for θ , and pass to the Artinian pair A′ := (A′ ↪→ B′),
where A′ = A[T ]/( f ) and B′ = B⊗A A′ = B[T ]/( f ). The problem is that if θ is in-
separable then B′ may not be a principal ideal ring, and all bets are off. If, however,
θ is separable, all is well: The Drozd–Roı̆ter conditions ascend to A′, and finite
representation type descends. This is not difficult, and the details are worked out in
[43]. (If k(θ )/k is a non-Galois extension of degree 3, one has to repeat the con-
struction one more time.) This proves sufficiency of the Drozd–Roı̆ter conditions,
except when k is imperfect of characteristic 2 or 3.


We now sketch the proof of the “if” implication in Theorem 1.1 in the case of
residue field growth of degree 3. By (DR1), R must be local, say with maximal
ideal n (necessarily equal to mR) and residue field �. If R is seminormal (that is, R/f
is reduced), then R/f = �. The ring B′ described above is now a homomorphic image
of �[T ] and therefore is a principal ideal ring (even if �/k is not separable). The work
of Green and Reiner [16] now shows that A′ has finite representation type, and the
descent argument of [43] proves that R has finite Cohen–Macaulay type.


Suppose now that R is not seminormal. Then f is properly contained in n. Still
assuming (DR1) and (DR2), and that [� : k] = 3, one can show [45, Lemma 4] that
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R is Gorenstein, with exactly one overring S (the seminormalization of R) strictly
between R and R. (The argument amounts to a careful computation of lengths, and
both (DR1) and (DR2) are used.) Now we use an argument that goes back to Bass’s
“ubiquity” paper [3, (7.2)]: Given a maximal Cohen–Macaulay R-module M, sup-
pose M has no free direct summand. Then M∗ = HomR(M,m), which is a module
over E := EndR(m). Clearly E contains R properly and therefore must contain S.
Thus M∗ is an S-module, and hence so is M∗∗, which is isomorphic to M (as R
is Gorenstein and M is maximal Cohen–Macaulay). Thus every non-free indecom-
posable maximal Cohen–Macaulay R-module is actually an S-module. The Drozd-
Roı̆ter conditions clearly pass to the seminormal ring S, which therefore has finite
Cohen–Macaulay type. It follows that R itself has finite Cohen–Macaulay type.


The remaining case, when R has a residue field that is purely inseparable of
degree two over k, was handled via difficult matrix reductions in Cimen’s tour de
force [6].


Next, we will prove necessity of the conditions (DR). This was proved in [43],
but we will prove a stronger result here, giving a positive answer to the analog, in
the present context, of the second Brauer–Thrall conjecture. Recall that a module
M over a one-dimensional reduced Noetherian ring R has constant rank n, provided


MP
∼= R(n)


P for each minimal prime ideal P.


Theorem 1.4. Let (R,m,k) be a one-dimensional, reduced, local Noetherian ring
with finite integral closure. Assume that either (DR1) or (DR2) fails. Let n be an
arbitrary positive integer.


1. There exists an indecomposable maximal Cohen–Macaulay R-module of con-
stant rank n.


2. If the residue field k is infinite, there exist |k| pairwise non-isomorphic indecom-
posable maximal Cohen–Macaulay modules of constant rank n.


We will prove (2) of Theorem 1.4. The additional arguments needed to prove (1)
when k is finite are rather easy and are given in detail in [43]. Shifting the problem
down to the bottom line of the pullback, we let A = (A ↪→ B), where A = R/f and
B = R/f. We keep the notation of Proposition 1.3, so that now m is the maximal ideal
of A. We assume that either (dr1) or (dr2) fails, and we want to build non-isomorphic
indecomposable A-modules V ↪→W , with W = B(n). Given any such A-module, the
module M defined by the pullback diagram


M −−−−→ R
(n)


⏐
⏐
�


⏐
⏐
�


V −−−−→ W


will be an indecomposable maximal Cohen–Macaulay R-module, and non-
isomorphic A-modules will yield non-isomorphic R-modules.


We first deal with the annoying case where (dr1) holds but (dr2) fails. (The reader
might find it helpful to play along with the example k[[t3,t7]].) Thus we assume, for
the moment, that
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dimk(B/mB) � 3 (1)


dimk
mB + A
m2B + A


� 2 (2)


We claim that we actually have equality in (2). To see this, we note that m2B∩A is
properly contained in m (lest mB ⊆ m2B). Computing lengths, we have


�A
m2B + A


m2B
= �A


A
m2B∩A


� 2. (3)


Since B is a principal ideal ring, mB/m2B is a cyclic B/mB-module. Therefore, (1)
implies that


�A(mB/m2B) � 3. (4)


Finally, we have �A
A+mB


mB = �A
A


A∩(mB) = 1, and the claim now follows from (3)
and (4).


Now put C := A +mB, and note that C/mC ∼= k[X ,Y ]/(X2,XY,Y 2). The functor
(V,W ) �→ (V,BW ) from (A ↪→C)-mod to A-mod is clearly faithful; and it is full, by
the requirement that CV = W . Therefore, this functor is injective on isomorphism
classes, and it preserves indecomposability. Therefore we may replace B by C in this
case (the only casualty being that B is now no longer a principal ideal ring).


Returning to the general case, where either (dr1) or (dr2) fails, we put D := B/mB
when (dr1) fails, and D = C/mC otherwise. We now have either


D is a principal ideal ring and dimk D � 4, or (5)


D ∼= k[X ,Y ]/(X2,XY,Y 2). (6)


We now pass to the Artinian pair (k ↪→ D). The functor (V,W ) �→ (V+mW
mW , W


mW ),
from (A ↪→ B)-mod to (k ↪→ D)-mod is surjective on isomorphism classes and re-
flects indecomposables. Therefore, it suffices to build our modules over the Artinian
pair (k ↪→ D).


We now describe a general construction, a modification of constructions found
in [7,12,43]. Let n be a fixed positive integer, and suppose we have chosen a,b ∈ D
with {1,a,b} linearly independent over k. Let I be the n× n identity matrix, and
let H the n× n nilpotent Jordan block with 1’s on the superdiagonal and 0’s else-
where. For t ∈ k, we consider the n × 2n matrix Ψt :=


[
I | aI + b(tI + H)


]
. Put


W := D(n), viewed as columns, and let Vt be the k-subspace of W spanned by the
columns of Ψt .


Suppose, now, that we have a morphism (Vt ,W ) → (Vu,W ), given by an n× n
matrix ϕ over D. The requirement that ϕ(V ) ⊆ V says there is a 2n× 2n matrix θ
over k such that


ϕΨt = Ψuθ . (7)
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Write θ =
[


α β
γ δ


]


, where α,β ,γ,δ are n× n blocks. Then (7) gives the following


two equations:


ϕ = α + aγ + b(uI + H)γ
aϕ + bϕ(tI + H) = β + aδ + b(uI + H)δ (8)


Substituting the first equation into the second, and combining terms, we get a mess:


−β + a(α − δ )+ b(tα −uδ + αH −Hδ )+ (a + tb)(a + ub)γ
+ab(Hγ + γH)+ b2(HγH + tHγ + uγH) = 0. (9)


In the “annoying” case (6), we set a and b equal to the images of X and Y ,
respectively. Then


a2 = b2 = ab = 0 (10)


and from (9) and the linear independence of {1,a,b}, we get the equations


β = 0, α = δ , α((t −u)I + H) = Hα. (11)


If, now, ϕ is an isomorphism, we see from (8) that α has to be invertible. If, in
addition, t �= u, the third equation in (11) gives a contradiction, since the left side
is invertible and the right side is not. Thus, (Vt ,W ) �∼= (Vu,W ) if t �= u. To see that
(Vt ,W ) is indecomposable, we take u = t and suppose ϕ , as above, is idempotent.
Squaring the first equation in (8), and comparing “1” and “a” terms, we see that
α2 = α and γ = αγ + γα . But (11) says that αH = Hα , and it follows that α is in
k[H], which is a local ring. Therefore α = 0 or 1, and either possibility forces γ = 0.
Thus ϕ = 0 or 1, as desired.


Having dealt with the annoying case, we assume from now on that that
dimk D � 4 and that D is a principal ideal ring. Assume, for the moment, that there
exists an element a ∈ D such that {1,a,a2} is linearly independent. Choose any ele-
ment b ∈ D such that {1,a,a2,b} is linearly independent. Then, for almost all t ∈ k,
the set {1,a,b,(a+ tb)2} is linearly independent. (The set of such t is open, and it is
non-empty since it contains 0.) Moreover, for almost all t ∈ k, the set {1,a,b,(a +
tb)(a + ub)} is linearly independent for almost all u ∈ k. Thus, it will suffice to
show that if t �= u, and if {1,a,b,(a + tb)2} and {1,a,b,(a + tb)(a + ub)} are lin-
early independent over k, then (Vt ↪→ W ) is indecomposable and not isomorphic
to (Vu ↪→W ).


Suppose, as before, that ϕ : (Vt ↪→ W ) → (Vu ↪→ W ) is a homomorphism. With
the same notation as in (7)–(9), we claim that γ = 0. To do this, we use descending
induction on i and j to show that HiγH j = 0 for all i, j = 0, . . . ,n. If either i =
n or j = n this is clear. Assuming Hi+1γH j = 0 and HiγH j+1 = 0, we multiply
the mess (9) by Hi on the left and H j on the right. In the resulting equation, the
“ab” and “b2” terms are 0 by the inductive hypothesis. Since {1,a,b,(a + tb)(a +
ub)} is linearly independent, the “coefficient” HiγH j of (a + tb)(a + ub) must be
0. This completes the induction and proves the claim. The rest of the proof that
(Vt ↪→W ) is indecomposable and not isomorphic to (Vu ↪→W ) is the same as in the
annoying case.
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The special case, where {1,a,a2} is linearly dependent for every element a ∈ A,
is analyzed in detail in [43]. This case reduces to the following three cases:


• Case 1: There are elements a,b ∈ D such that {1,a,b} is linearly independent
over k and a2 = ab = b2 = 0.


• Case 2: There are elements a,b∈D such that {1,a,b,ab} is linearly independent
and a2 = b2 = 0.


• Case 3: The characteristic of k is 2, and there are elements a,b ∈ D such that
{1,a,b,ab} is linearly independent and both a2 and b2 are in k.


We have already dealt with Case 1. In Case 2, the mess (9) again yields (11), and
we proceed exactly as before. In Case 3, the mess yields the equations


β = (a2 + tub2)γ + b2(HγH + tHγ + uγH), α = δ ,


α((t −u)I + H) = Hα, (t + u)γ + Hγ + γH = 0. (12)


Suppose t �= u. Then t +u �= 0 (characteristic two), and the fourth equation shows,
via the same descending induction argument as before, that γ = 0. Then the third
equation and a now-familiar argument show that (Vt ↪→W ) �∼= (Vu ↪→W ).


Finally, we must show that (Vt ↪→W ) is indecomposable in Case 3. Suppose t = u
and ϕ2 = ϕ . The third and fourth equations of (12) now show that α and γ are in
k[H]. In particular, αγ = γα . Therefore, when we square the first equation of (8)
and compare “a” terms, we see that γ = 2αγ = 0. Now ϕ = α ∈ k[H], a local ring,
and it follows that ϕ = 0 or 1. This completes the proof of Theorem 1.4. ��


One might expect that even if k is finite one could construct a countably infinite
family of pairwise non-isomorphic maximal Cohen–Macaulay modules of constant
rank n. In fact, this is not the case:


Proposition 1.5. With (R,m,k) as in Theorem 1.1, suppose k is a finite field. Let n
be a positive integer. Then R has only finitely many isomorphism classes of maximal
Cohen–Macaulay modules of constant rank n.


Proof. Let A = (R/f ↪→ R/f) be the Artinian pair associated with R. Recall [43,
(1.7)] that two maximal Cohen–Macaulay R-modules M1 and M2 are isomorphic
if and only if their associated A-modules (Mi/fMi ↪→ RMi/fMi) are isomorphic.
Therefore it is enough to show that there are only finitely many A-modules (V ↪→W )
with W = (R/f)(n). But this is clear because |W | < ∞. ��


1.1 Finiteness of the integral closure


Let (R,m) be a local Noetherian ring of dimension one, let K be the total quotient
ring {non-zerodivisors}−1R, and let R be the integral closure of R in K. Suppose
R is not finitely generated over R. Then we can build an infinite ascending chain
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of finitely generated R-subalgebras of R. Each algebra in the chain is a maximal
Cohen–Macaulay R-module, and it is easy to see [45, Lemma 1] that no two of
the algebras are isomorphic as R-modules. It follows [45, Proposition 1] that R is
finitely generated as an R-module if R has finite Cohen–Macaulay type. If, now, R
is Cohen–Macaulay and x is a non-zero nilpotent element, we claim that R is not
finitely generated over R. To see this, choose a non-zerodivisor t ∈ m, and note that
R x


t ⊂ R x
t2 ⊂ x


t3 ⊂ . . . is an infinite ascending chain of R-submodules of R. We have
proved:


Proposition 1.6. Let (R,m,k) be a one-dimensional, Cohen–Macaulay local ring
with finite Cohen–Macaulay type. Then R is reduced, and the integral closure R is
finitely generated as an R-module. ��


What if R is not Cohen–Macaulay? The following result, together with
Theorem 1.1, gives the full classification of one-dimensional local rings of finite
Cohen–Macaulay type:


Theorem 1.7 ([45, Theorem 1]). Let (R,m) be a one-dimensional local ring, and
let N be the nilradical of R. Then R has finite Cohen–Macaulay type if and only if


(1) R/N has finite Cohen–Macaulay type, and
(2) mi ∩N = (0) for i >> 0. ��


For example, k[[X ,Y ]]/(X2,XY ) has finite Cohen–Macaulay type, since (x) is
the nilradical and (x,y)2 ∩ (x) = (0). However k[[X ,Y ]]/(X3,X2Y ) has infinite
Cohen–Macaulay type: For each i � 1, xyi−1 is a non-zero element of (x,y)i ∩ (x).


Corollary 1.8 ([45, Corollary 2]). Let (R,m) be a one-dimensional local ring.
Then R has finite Cohen–Macaulay type if and only if the m-adic completion R̂
has finite Cohen–Macaulay type. ��
The analogous statement can fail in higher dimensions (cf. Examples 2.1 and 2.2
of [33]).


1.2 Rings containing the rational numbers


For local rings containing Q, the rings of finite Cohen–Macaulay type have a
particularly nice classification. First, we recall the 1985 classification, by Greuel
and Knörrer, of complete equicharacteristic-zero singularities of finite Cohen–
Macaulay type. Recall that the simple (or “ADE”) plane curve singularities are the
following rings corresponding to certain Dynkin diagrams:


(An) k[[X ,Y ]]/(X2 +Yn+1) (n � 1)
(Dn) k[[X ,Y ]]/Y (X2 +Y n−2) (n � 4)
(E6) k[[X ,Y ]]/(X3 +Y4)
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(E7) k[[X ,Y ]]/X(X2 +Y 3)
(E8) k[[X ,Y ]]/(X3 +Y5)


Theorem 1.9 ([17]). Let (R,m,k) be a one-dimensional complete local Cohen–
Macaulay ring containing Q, and assume that k is algebraically closed. Then R
has finite Cohen–Macaulay type if and only if R birationally dominates a simple
plane curve singularity. ��


To say that R birationally dominates a local ring S means that R sits between S
and the total quotient ring of S, and that the maximal ideal of R lies over the maximal
ideal of S. For example, the space curves k[[T 3,T 4,T 5]] and k[[T 3,T 5,T 7]] have
finite Cohen–Macaulay type, since they birationally dominate the (E8)-singularity
k[[T 3,T 5]]. To handle the case of a residue field that is not algebraically closed, we
quote the following theorem (which works in all dimensions):


Theorem 1.10 ([46, Theorem 3.3]). Let k be a field with separable closure ks,
and let f be a non-unit in the formal power series ring k[[X0, . . . ,Xd ]]. Then
k[[X0, . . . ,Xd ]]/( f ) has finite CM type if and only if ks[[X0, . . . ,Xd ]]/( f ) has finite
CM type. ��


As one might expect, inseparable extensions can cause difficulties:


Example 1.11. Let k be an imperfect field of characteristic 2, choose α ∈ k − k2


and put K := k(
√


α). Let f = X2 + αY 2, and put R := k[[X ,Y ]]/( f ). Then R is a
one-dimensional complete local domain, and the integral closure R is generated, as
an R-module, by the two elements 1 and x


y ; and both x and y multiply x
y into R. By


Theorem 1.1, R has finite Cohen–Macaulay type. On the other hand, Proposition 1.6
implies that K[[x,y]]/( f ) does not have finite Cohen–Macaulay type, since it is
Cohen–Macaulay and has non-zero nilpotents.


2 Bounded Cohen–Macaulay type


In this section, we consider one-dimensional Cohen–Macaulay local rings (R,m,k).
We will say that R has bounded Cohen–Macaulay type provided there is a bound
on the multiplicities of the indecomposable maximal Cohen–Macaulay R-modules.
Since the notion of rank is perhaps more intuitive, we mention that if M is an R
module of constant rank r, then the multiplicity e(M) of M satisfies


e(M) = r · e(R).


If R is reduced, then Theorems 1.1 and 1.4 imply that finite and bounded Cohen–
Macaulay types agree. In 1980 Dieterich [10] observed that the group ring k[[X ]][G]
has bounded Cohen–Macaulay type if |G| = 2 and char(k) = 2. Of course this
ring is just k[[X ,Y ]]/(Y 2). In 1987 Buchweitz, Greuel and Schreyer [5] classified
the indecomposable maximal Cohen–Macaulay modules over k[[X ,Y ]]/(Y 2) and
k[[X ,Y ]]/(XY 2), the (A∞) and (D∞) singularities, for every field k. A consequence
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of their classification is that these singularities have bounded Cohen–Macaulay
type. Of course, by Proposition 1.6, these rings do not have finite Cohen–Macaulay
type. Rather surprisingly, there is, in the complete equicharacteristic case, only one
additional ring with bounded but infinite Cohen–Macaulay type:


Theorem 2.1 ([34, Theorem 2.4]). Let (R,m,k) be a one-dimensional local Cohen–
Macaulay ring. Assume that R contains a field and that k is infinite. Then R has
bounded but infinite Cohen–Macaulay type if and only if the m-adic completion R̂
is k-isomorphic to one of the following:


(1) A := k[[X ,Y ]]/(Y 2)
(2) B := k[[X ,Y ]]/(XY 2)
(3) C := k[[XY,YZ,Z2]], the endomorphism ring of the maximal ideal of B


If, on the other hand, R has unbounded Cohen–Macaulay type, then R has, for each
positive integer r, an indecomposable maximal Cohen–Macaulay module of con-
stant rank r. ��
The proof of the “only if ” direction of this theorem involves some rather techni-
cal ideal theory. We don’t know whether or not the theorem is correct without the
assumption that k be infinite.


For the rings A and B of Theorem 2.1, we see from the explicit presentations in
[5] that the indecomposable maximal Cohen–Macaulay modules are generated by at
most two elements. This gives us a bound of six on the multiplicities of these mod-
ules. Since C = EndB(mB), where mB is the maximal ideal of B, we see that C is a
module-finite extension of B. Therefore every maximal Cohen–Macaulay C-module
M is also maximal Cohen–Macaulay when viewed as a B-module. Moreover, since
C is contained in the total quotient ring of B and M is torsion-free, we see that
EndB(M) = EndC(M). In particular, if M is indecomposable as a C-module, it is
also indecomposable as a B-module. Thus the multiplicities of the indecomposable
maximal Cohen–Macaulay B-modules are also bounded by six. The “if ” direction
of Theorem 2.1 now follows from the next theorem, on ascent to and descent from
the completion.


Theorem 2.2 ([34, Theorem 2.3]). Let (R,m,k) be a one-dimensional Cohen–
Macaulay local ring with completion R̂. Assume R contains a field and that k is
infinite. Then R has bounded Cohen–Macaulay type if and only if R̂ has bounded
Cohen–Macaulay type. Moreover, if R has unbounded Cohen–Macaulay type, then
R has, for every positive integer r, an indecomposable maximal Cohen–Macaulay
module of constant rank r. ��


By Lech’s Theorem [32, Theorem 1] each of the rings in Theorem 2.1 is the
completion of an integral domain. Suppose, for example, that (R,m,k) is a one-
dimensional local domain whose completion is k[[X ,Y ]]/(Y 2). Then R has bounded
but infinite Cohen–Macaulay type. Therefore the assumption, in Theorem 1.4, that
R be finitely generated over R, cannot be removed.
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3 Modules with torsion


In this section, we consider arbitrary finitely generated modules over local rings of
dimension one. Every such ring (R,m) obviously has an infinite family of pairwise
non-isomorphic indecomposable modules, namely, the modules R/mn. With a little
more work, one can produce indecomposable modules requiring arbitrarily many
generators, as long as R is not a principal ideal domain. To see this, fix n � 1, let
x and y be elements of m that are linearly independent modulo m2, and let I and
H be the n× n identity and nilpotent matrices used in the proof of Theorem 1.4.
Then the cokernel of the matrix xI + yH is indecomposable, and it clearly needs n
generators. To prove indecomposability, one can pass to R/m2 and use an argument
similar to, but much easier than, the one used in the proof of Theorem 1.4. See, for
example, [21, Proposition 4.1] or [39]. Similar constructions can be found in the
work of Kronecker [28] and Weierstrass [40] on classifying pairs of matrices up to
simultaneous equivalence. The idea is not exactly new!


It is much more difficult to build indecomposable modules of large multiplicity.
Of course it is impossible to do so if R is a principal ideal ring. More generally, recall
from [29–31] that a local ring (R,m,k) is Dedekind-like provided R is reduced and
one-dimensional, the integral closure R is generated by at most two elements as
an R-module, and m is the Jacobson radical of R. In a long and difficult paper [30]
Levy and Klinger classify the indecomposable finitely generated modules over most
Dedekind-like rings. There is one exceptional case where the classification has not
yet been worked out, namely, where R is a local domain whose residue field is purely
inseparable of degree two over k. We will call these Dedekind-like rings exceptional.
The ring of Example 1.11 is such an exception. Before stating the next result, which
is a consequence of the classification in [30], we note that a Dedekind-like ring has
at most two minimal prime ideals and that the localization of R at a minimal prime
is a field. If R has two minimal primes P1 and P2, the rank of the R-module M is the
pair (r1,r2), where ri is the dimension of MPi as a vector space over RPi .


Theorem 3.1 ([30]). Let M be an indecomposable finitely generated module over a
local Dedekind-like ring R.


1. If R has two minimal prime ideals P1 and P2, then the rank of M is (0,0),
(1,0),(0,1) or (1,1).


2. If R is a domain and R is not exceptional, then M has rank 0,1 or 2. ��
In a series of papers [20–22], Hassler, Klingler, and the present authors proved a


strong converse to this theorem:


Theorem 3.2 ([21, Theorem 1.2]). Let R be a local ring of dimension at least one,
and assume R is not a homomorphic image of a Dedekind-like ring. Let P1, . . . ,Ps


be an arbitrary set of pairwise incomparable non-maximal prime ideals, and let
n1, . . . ,ns be non-negative integers. Then there are |k|ℵ0 pairwise non-isomorphic


indecomposable R-modules Mα such that (Mα )Pi
∼= R(ni)


Pi
for each i � s and


each α . ��
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The proof [21] of this result is rather involved. It makes heavy use of the fact [29]
that the category of finite-length R-modules has wild representation type if R is not
a homomorphic image of a Dedekind-like ring.


4 Monoids of modules


In this section, we study the different ways in which a finitely generated module can
be decomposed as a direct sum of indecomposable modules. Let (R,m,k) be a local
ring and C a class of modules closed under isomorphism, finite direct sums, and
direct summands. We always assume that C ⊆ R−mod, the class of all finitely gen-
erated R-modules. There is a set V(C) ⊆ C of representatives; each element M ∈ C


is isomorphic to exactly one element [M] ∈ V(C). We make V(C) into an additive
monoid in the obvious way: [M] + [N] = [M ⊕N]. This monoid encodes informa-
tion about direct-sum decompositions in C. We will tacitly assume that all of our
monoids are written additively, and that they are reduced (x+y = 0 =⇒ x = y = 0).


Suppose R is complete (in the m-adic topology). Then the Krull–Remak–Schmidt
theorem holds for finitely generated modules, that is, each M ∈ R-mod is uniquely a
direct sum of indecomposable modules (up to isomorphism and ordering of the sum-


mands). In the language of monoids, V(R−mod)∼= N
(I)
0 , the free monoid with basis


{bi | i ∈ I}, where the bi range over a set of representatives for the indecomposable
finitely generated R-modules.


For a general local ring R, we can exploit the monoid homomorphism


j : V(R−mod) → V(R̂−mod)


taking [M] to [R̂⊗R M]. This homomorphism is injective [11, (2.5.8)], and it fol-
lows that the monoid R−mod is cancellative: x + z = y + z =⇒ x = y. (cf. [14,38].)
Since, in this section, we will deal only with local rings, all of our monoids are tac-
itly assumed to be cancellative.


The homomorphism j actually satisfies a much stronger condition. If x,y ∈
V(R−mod) and j(x) | j(y), then x | y. (For elements x and y in a monoid Λ we
say x divides y, written “x | y” provided there is an element λ ∈ Λ such that
x + λ = y.) Here is a proof, given by Reiner and Roggenkamp [36] in a slightly
different context: Suppose M′ and M are finitely generated modules over a local
ring R, and that R̂ ⊗R M′ | R̂ ⊗R M. We identify R̂ ⊗R M′ and R̂ ⊗R M with the
completions M̂′ and M̂ of M′ and M. Choose R̂-homomorphisms ϕ : M̂′ → M̂ and
ψ : M̂ → M̂′ such that ψϕ = 1M̂′ . Since H := HomR(M′,M) is a finitely gener-
ated R-module, it follows that Ĥ = R̂⊗R H = HomR̂(M̂, N̂). Therefore, ϕ can be
approximated to any order by an element of H. In fact, order 1 suffices: Choose
f ∈ HomR(M,N) such that f̂ −ϕ ∈ m̂Ĥ. Similarly, we can choose g ∈ HomR(N,M)
with ĝ − ψ ∈ m̂HomR̂(N̂,M̂). Then the image of ĝ f̂ − 1M̂ is in m̂M̂, and now


Nakayama’s lemma implies that ĝ f̂ is surjective, and therefore an isomorphism. It
follows that ĝ is a split surjection (with splitting map f̂ (ĝ f̂ )−1). By faithful flatness
g is a split surjection.
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A divisor homomorphism j : Λ1 → Λ2 (between reduced, cancellative monoids)
is a homomorphism such that, for all x,y ∈ Λ1, j(x) | j(y) =⇒ x | y. The result we
just proved is a special case of the following theorem:


Theorem 4.1 ([24, Theorem 1.3]). Let R → S be a flat local homomorphism of
Noetherian local rings. Then the map V(R−mod)→V(S−mod) taking [M] to [S⊗R


M] is a divisor homomorphism. ��


Definition 4.2. A Krull monoid is a monoid that admits a divisor homomorphism
into a free monoid.


Every finitely generated Krull monoid admits a divisor homomorphism into N
(t)
0


for some positive integer t. Conversely, it follows easily from Dickson’s Lemma
(Item 2 following Proposition 1.2) that a monoid admitting a divisor homomorphism


to N
(t)
0 must be finitely generated.


Finitely generated Krull monoids are called positive normal affine semigroups
in [4]. From [4, Exercise 6.1.10, p. 252], we obtain the following characterization
of these monoids:


Proposition 4.3. The following conditions on a monoid Λ are equivalent:


1. Λ is a finitely generated Krull monoid.
2. Λ ∼= G∩N


(t) for some positive integer t and some subgroup G of Z
(t).


3. Λ ∼= W ∩N
(u) for some positive integer u and some Q-subspace W of Q


(n).
4. There exist positive integers m,n and an m× n matrix α over Z such that Λ ∼=


N
(n)∩ker(α). ��


Item (4) says that a finitely generated Krull monoid can be regarded as the collection
of non-negative integer solutions of a homogeneous system of linear equations. For
this reason these monoids are sometimes called Diophantine monoids.


In order to study uniqueness of direct-sum decompositions, it is really enough
to examine a small piece of the class R-mod of all finitely generated modules.
Given a finitely generated module M, we let add(M) be the class of modules that
are isomorphic to direct summands of direct sums of finitely many copies of M.
We note that +(M) := V(add(M)) is a finitely generated Krull monoid, since the
divisor homomorphism j : V(R−mod) → V(R̂−mod) carries +(M) into the free
monoid generated by the isomorphism classes of the indecomposable direct sum-
mands of M̂.


The key to understanding the monoids V(R−mod) and +(M) is knowing which
modules over the completion actually come from R-modules. More generally, if
R → S is a ring homomorphism, we say that the S-module N is extended (from R)
provided there is an R-module M such that S⊗R M ∼= N. In dimension one, a beau-
tiful result due to Levy and Odenthal [35] tells us exactly which R̂-modules are
extended. First, we define, for any one-dimensional local ring (R,m,k) the Artinian
localization a(R) as follows:


a(R) = (R− (P1 ∪·· ·∪Ps))−1R,
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where P1, . . . ,Ps are the minimal prime ideals of R (the prime ideals distinct from m).
If R is Cohen–Macaulay, this is just the classical quotient ring. If R is not Cohen–
Macaulay, the natural map R → a(R) is not one-to-one.


Theorem 4.4 ([35]). Let (R,m,k) be a one-dimensional local ring, and let N be a
finitely generated R̂-module. Then N is extended from R if and only if a(R̂)⊗R̂ N is
extended from a(R). ��
We refer the reader to [24, Theorem 4.1] for the proof of a somewhat more general
result.


We return now to the situation of Section 1, where (R,m,k) is a local ring whose
completion R̂ is reduced. The localizations at the minimal primes are then fields. If
A := L1 ×·· ·×Lt is a K-algebra, where K and the Lj are fields, a finitely generated
A-module N is extended from K if and only if dimLi(LiN) = dimLj (LjN) for all i, j.
Therefore, Theorem 4.4 has the following consequence:


Corollary 4.5. Let (R,m,k) be a one-dimensional local ring whose completion R̂ is
reduced, and let N be a finitely generated R̂-module. Then N is extended from R if
and only if dimRP(NP) = dimRQ(NQ) whenever P and Q are prime ideals of R̂ lying
over the same prime ideal of R. In particular, if R is a domain, then N is extended if
and only if N has constant rank. ��


This gives us a strategy for producing strange direct-sum behavior:


(1) Find a one-dimensional domain R whose completion has lots of minimal
primes.


(2) Build indecomposable R̂-modules with highly non-constant ranks.
(3) Put them together in different ways to get constant-rank modules.


Suppose, for example, that R is a domain whose completion R̂ has two minimal
primes P and Q. Suppose we can build indecomposable R̂-modules U,V,W and
X , with ranks (2,0),(0,2),(2,1) and (1,2), respectively. Then U ⊕V is extended,
say, U ⊕V ∼= M̂. Similarly, there are R-modules N,F and G such that V ⊕W ⊕W ∼=
N̂,W ⊕X ∼= F̂ and U ⊕X ⊕X ∼= Ĝ. Using the Krull–Remak–Schmidt theorem over
R̂, we see easily that no non-zero proper direct summand of any of the modules
M̂, N̂, F̂ ,Ĝ has constant rank. It follows from Corollary 4.5 that M,N,F and G
are indecomposable, and of course no two of them are isomorphic since (again
by Krull–Remak–Schmidt) their completions are pairwise non-isomorphic. Finally,
we see that M ⊕F ⊕F ∼= N ⊕G, since the two modules have isomorphic comple-
tions. Thus we easily obtain a mild violation of Krull–Remak–Schmidt uniqueness
over R.


It’s easy to accomplish (1), getting a one-dimensional domain with a lot of split-
ting. In order to facilitate (2), however, we want to ensure that R̂/P has infinite
Cohen–Macaulay type for each minimal prime ideal P. The following example from
[47] does the job nicely:


Example 4.6 ([47, (2.3)]). Fix a positive integer s, and let k be any field with |k|� s.
Choose distinct elements t1, . . . ,ts ∈ k. Let Σ be the complement of the union of the
maximal ideals (X − ti)k[X ], i = 1, . . . ,s. We define R = Rs by the pullback diagram
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R −−−−→ Σ−1k[X ]
⏐
⏐
�


⏐
⏐
�π


k −−−−→ Σ−1k[X ]
(X−t1)4·····(X−ts)4


where π is the natural map. Then R is a one-dimensional local domain, and R̂ is
reduced with exactly s minimal prime ideals.


Let P1, . . . ,Ps be the minimal prime ideals of R̂. By the rank of a finitely gen-
erated R̂-module N, we mean the s-tuple (r1, . . . ,rs), where ri is the dimension
of NPi as a vector space over RPi . A jazzed-up version of the argument used to prove
Theorem 1.4 yields the following:


Theorem 4.7 ([47, (2.4)]). Fix a positive integer s, and let (r1, . . . ,rs) be any non-
trivial sequence of non-negative integers. Then R̂s has an indecomposable maximal
Cohen–Macaulay module N with rank(N) = (r1, . . . ,rs). ��


Thus even the case s = 2 of Example 4.6 yields the pathology discussed after
Corollary 4.5


Recalling (4) of Proposition 4.3, we say that the finitely generated Krull monoid


Λ can be defined by m equations provided Λ = N
(n)
0 ∩ker(α) for some n and some


m× n integer matrix α . Given such an embedding of Λ in N
(n)
0 , we say a column


vector λ ∈ Λ is strictly positive provided each of its entries is a positive integer. By
decreasing n (and removing some columns from α) if necessary, we can harmlessly
assume (without changing m) that Λ contains a strictly positive element (cf. [49,
Remark 3.1]).


Corollary 4.8 ([47, Theorem 2.1]). Fix a non-negative integer m, and let R be the
ring Rm+1 of Example 4.6. Let Λ be a finitely generated Krull monoid defined by m
equations and containing a strictly positive element λ . Then there exist a maximal
Cohen–Macaulay R-module M and a commutative diagram


Λ ⊆−−−−→ N
(n)
0


ϕ
⏐
⏐
�∼= ψ


⏐
⏐
�∼=


V(+(M)) i−−−−→ V(+(M̂))


,


in which


(1) i is the natural map taking [F ] to [F̂ ],
(2) ϕ and ψ are monoid isomorphisms, and
(3) ϕ([M]) = λ .


Proof. We have Λ = N
(n)
0 ∩ ker(α), where α = [ai j] is an m × n matrix over Z.


Choose a positive integer h such that ai j � 0 for all i, j. For j = 1, . . . ,n, choose,
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using Theorem 4.7, a maximal Cohen–Macaulay R̂-module Lj such that rank(Lj) =
(a1 j + h, . . . ,am j + h,h).


Given any column vector β = [b1 b2 . . .bn]tr ∈ N
(n)
0 , put Nβ = L(b1)


1 ⊕·· ·⊕L(bn)
n .


The rank of Nβ is


(
n


∑
j=1


(a1 j + h)b j, . . . ,
n


∑
j=1


(am j + h)b j,


(
n


∑
j=1


b j


)


h


)


.


Since R is a domain, Corollary 4.5 implies that Nβ is in the image of j :


V(R−mod) → V(R̂−mod) if and only if ∑n
j=1(ai j + h)b j = (∑n


j=1 b j)h for each


i, that is, if and only if β ∈ N
(n)
0 ∩ker(α) = Λ . To complete the proof, we let M be


the R-module (unique up to isomorphism) such that M̂ ∼= Nλ . ��
This corollary makes it very easy to demonstrate spectacular failure of Krull–


Remak–Schmidt uniqueness:


Example 4.9. Let Λ =
{[ x


y
z


]
∈ N


(3)
0 | 72x + y = 73z


}
. This has three atoms (minimal


non-zero elements), namely


α :=


⎡


⎣
1
1
1


⎤


⎦ , β :=


⎡


⎣
0


73
1


⎤


⎦ , γ :=


⎡


⎣
73
0
72


⎤


⎦ .


Note that 73α = β + γ , Taking s = 2 in Example 4.6, we get a local ring R and
indecomposable R-modules M,F,G such that M(t) has only the obvious direct-sum
decompositions for t � 72, but M(73) ∼= F ⊕G.


We define the splitting number spl(R) of a one-dimensional local ring R by


spl(R) = |Spec(R̂)|− |Spec(R)|.


The splitting number of the ring Rs in Example 4.6 is s − 1. Corollary 4.8 says
that every finitely generated Krull monoid defined by m equations can be realized
as +(M) for some finitely generated module over a one-dimensional local ring (in
fact, a domain essentially of finite type over Q) with splitting number m. This is the
best possible:


Theorem 4.10. Let M be a finitely generated module over a one-dimensional local
ring R with splitting number m. Then the Krull monoid +(M) is defined by m equa-
tions.


Proof. Write M̂ = V (e1)
1 ⊕ ·· · ⊕V (en)


n , where the Vj are pairwise non-isomorphic
indecomposable R̂-modules and the ei are all positive. We have an embedding


+(M) ↪→ N
(n)
0 taking [F] to [b1 . . .bn]tr, where F̂ ∼= V (b1)


1 ⊕ ·· · ⊕V (bn)
n , and we


identify +(M) with its image Λ in N
(n)
0 . Given a prime P ∈ Spec(R) with, say, t
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primes Q1, . . . ,Qt lying over it, there are t − 1 homogeneous linear equations on
the b j that say that N̂ has constant rank on the fiber over P (cf. Corollary 4.5).
Letting P vary over Spec(R), we obtain exactly m = spl(R) equations that must
be satisfied by elements of Λ . Conversely, if the b j satisfy these equations, then


N :∼= V (b1)
1 ⊕ ·· · ⊕V (bn)


n has constant rank on each fiber of Spec(R̂) → Spec(R).


By Corollary 4.5, N is extended from an R-module, say N ∼= F̂ . Clearly F̂ | M̂(u)


if u is large enough, and it follows from Theorem 4.1 that F ∈ +(M), whence
[b1 . . .bn]tr ∈ Λ . ��


In [27], Karl Kattchee showed that, for each m, there is a finitely generated Krull
monoid Λ that cannot be defined by m equations. Thus, no single one-dimensional
local ring can realize every finitely generated Krull monoid in the form +(M) for a
finitely generated module M.


We have seen that the monoids +(M) have a very rich structure. In contrast,
the monoids V(R−mod), for R a one-dimensional reduced local ring, are pretty
boring. For certain Dedekind-like rings we will encounter the submonoid Γ of


the free monoid N
(ℵ0)
0 consisting of (finitely non-zero) sequences [ai] satisfying


∑i(−1)iai = 0. For rings that are not Dedekind-like, we fix a positive integer q and
let v1,v2,v3, . . . be an enumeration of the elements of Z


(q). Let F be the free monoid
with countably infinite basis {b1,b2,b3, . . .}, and define f : F → Z


(q) by bi �→ vi.
Now let τ be an infinite cardinal, and define g : F (τ) → Z


(q) by taking the map f on


each component. We let Λ(q,τ) = ker(g). Finally, we let Λ(0,τ) = N
(τ)
0 , the free


monoid with basis of cardinality τ .
The following theorem, from [15] and [21], is an easy consequence of


Theorem 2.2 and Theorem 4.4:


Theorem 4.11. Let (R,m,k) be a reduced one-dimensional local ring, with splitting
number q = spl(R). Put τ = |k|ℵ0.
(1) If R is not Dedekind-like, then V(R−mod) ∼= Λ(q,τ).
(2) If R is a discrete valuation ring, then V(R−mod) ∼= Λ(0,ℵ0) = N


(ℵ0)
0 .


(3) If R is Dedekind-like, R is not a discrete valuation ring, and q = 0,


then V(R−mod) ∼= N
(ℵ0)
0 .


(4) If R is Dedekind-like and q > 0, then q = 1 and V(R−mod) ∼= Γ ⊕N
(τ)
0 .


In every case, the divisor class group of V(R−mod) is Z
(q). ��


The theorem raises two questions. First, what if R has non-zero nilpotents? The
problem is that we do not have, in this case, a useful criterion for an R̂-module to be
extended. Theorem 4.4 reduces the problem to the case of Artinian rings, but that
does not eliminate the difficulty. The interested reader is referred to [24, Section 6]
for a discussion of this problem.


Secondly, is there a similar classification of the monoid C(R) of isomorphism
classes of maximal Cohen–Macaulay modules (say, when the completion is re-
duced)? If R has finite Cohen–Macaulay type, such a classification has been worked
out by Nicholas Baeth and Melissa Luckas in [1] and [2]. At the other extreme,
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when each analytic branch has infinite Cohen–Macaulay type, Andrew Crabbe and
Silvia Saccon [8] have a result similar to Theorem 4.7 above, from which one can
decode the structure of C(R). The intermediate case, e.g., R = k[[X ,Y ]]/X(X3−Y 4),
where R has infinite Cohen–Macaulay type but at least one branch has finite Cohen–
Macaulay type, is discussed in [8], but much less is known about the possible ranks
of the indecomposables in this case.


5 Direct-sum cancellation


Let R be a commutative Noetherian ring. In very general terms, the direct-sum can-
cellation question is this: If M, N, and L are R-modules in some fixed subcategory
C ⊆ R−mod, where R−mod is the category of all finitely generated R-modules,
when does M⊕L ∼= N ⊕L always imply M ∼= N? When this is the case, we say that
cancellation holds for R (with respect to the chosen category). Otherwise, we say
cancellation fails for R.


Evans [14] and Vasconcelos [38] showed that cancellation of arbitrary finitely
generated modules always holds over semilocal rings. Since the cancellation ques-
tion is interesting only if the ring is not semilocal, we focus largely on non-semilocal
rings in this section. However, the localizations of a ring R do play a role in answer-
ing some kinds of cancellation questions over R itself.


The cancellation question gained prominence in 1955 through its connection with
the celebrated conjecture of Serre [37]: If R is the polynomial ring in a finite number
of variables over a field, is every finitely generated projective R-module free? Serre
reduced his question to a cancellation question involving projective modules: If P
and Q are finitely generated projective R-modules such that P⊕R ∼= Q⊕R, are P
and Q necessarily isomorphic?


Well before the proof of Serre’s Conjecture by Quillen and Suslin in 1976, the
cancellation question had taken on a life of its own. The emphasis shifted to other
categories of modules and other rings. In 1962, Chase [6] studied cancellation of
finitely generated torsion-free modules over two-dimensional rings. He proved, for
example, that torsion-free cancellation holds for the ring R = k[X ,Y ] when k is an
algebraically closed field of characteristic zero. He also produced non-isomorphic
torsion-free modules A and B over R = R[X ,Y ] such that A⊕R ∼= B⊕R.


The first known failure of cancellation for finitely generated modules is per-
haps due to Kaplansky, who used the non-triviality of the tangent bundle on the
two-sphere to produce a module T over R = R[X ,Y ]/(X2 +Y 2 + Z2 − 1) such that
T ⊕R ∼= R3 and yet T �∼= R2. For quite a while, every known failure of cancellation
for finitely generated modules over commutative rings involved rings of dimension
greater than one. Even as late as 1973, Eisenbud and Evans [13] raised the follow-
ing question: Does cancellation hold for arbitrary finitely generated modules over
one-dimensional Noetherian rings?


In the 1980s, effective techniques, such as those in [48], were developed for
studying the cancellation of finitely generated torsion-free modules over one-
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dimensional rings. We will sketch some of the main ideas. We assume, from now
on, that all modules are finitely generated.


Borrowing from the notation we used previously for local rings, we let R be a
one-dimensional domain such that the integral closure R of R in its quotient field is a
finitely generated R-module. As before, the conductor of R in R is denoted by f. (The
reader may find it helpful to refer to the pullback that precedes Proposition 1.2.) The
main technique in [48] is to examine the relationship between M/fM and RM/fM
for torsion-free R-modules M.


Given a torsion-free R-module M, one defines the so-called “delta group” of M,
denoted ΔM . This is the subgroup of (R/f)× consisting of determinants of automor-
phisms of RM/fM that carry M/fM into itself. (See [48] for the basic properties of
ΔM .) There are two important facts we need:


(1) ΔM⊕N = ΔM ·ΔN .
(2) If Mm


∼= Nm for each maximal ideal m, then ΔM = ΔN .


The first fact allows one to restrict attention to indecomposable torsion-free
R-modules. The second fact says that the delta group is an invariant of the lo-
cal isomorphism class of M. Now let Λf be the image of (R)× in (R/f)×. We call
this the group of liftable units with respect to f. The next theorem follows directly
from Lemma 1.6 and Proposition 1.9 in [48].


Theorem 5.1. Let R, R, and f be as above. Then R has torsion-free cancellation if
and only if (R/f)× ⊆ ΔM ·Λf for all torsion-free R-modules M. ��


Next, consider the cancellation question for arbitrary finitely generated modules.
We shall call this the mixed cancellation question. Is there a result similar to the
preceding theorem that pertains to the mixed cancellation question? Such a result
appears in [23]. Let S denote the complement of the union of the maximal ideals of
R that contain f. Then S−1R is a semilocal domain of dimension one. One defines
a delta group for S−1M, denoted ΔS−1M. From Corollary 4.4 of [23] one gets the
following result, where now ΛS denotes the group of units of S−1R that lift to units
of R.


Theorem 5.2. Let R, R, and S be as above. Then R has mixed cancellation if and
only if (S−1R)× ⊆ ΔS−1M ·ΛS for every finitely generated R-module M.


An important question one can raise at this point is whether torsion-free can-
cellation implies mixed cancellation. It was shown in [23] that the two kinds of
cancellation are not equivalent in general. We will give an example from that paper
in Section 5.2 below.


Suppose, now, that R is an order in an algebraic number field K. That is, suppose
OK is the ring of algebraic integers of K and R is a subring of OK such that QR = K.
(Then R = OK .) If R is a quadratic order then R has finite Cohen–Macaulay type. In
[41], definitive results were obtained for torsion-free cancellation over quadratic or-
ders. In [26], one can find decisive answers to the torsion-free cancellation question
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for a large family of cubic orders having finite Cohen–Macaulay type. In these two
papers, each of the present authors used methods based on the calculation of delta
groups. We will revisit these results in more detail below.


In [25] and [26], a connection between cancellation and finite Cohen–Macaulay
type is exploited. The work is based on the idea that the failure of finite Cohen–
Macaulay type often implies the failure of cancellation. In these two papers, negative
answers to the torsion-free cancellation question are given for many quartic and
higher-degree orders.


In the remainder of this section, we will focus on the cancellation question for
one-dimensional Noetherian domains R, although many of the results given below
are known to hold for other classes of rings as well, especially for reduced rings.
Throughout, R will be a one-dimensional domain with quotient field K. Also, R will
always be the integral closure of R in K. We insist that R be finitely generated as an
R-module.


5.1 Torsion-free cancellation over one-dimensional domains


Let D(R) denote the kernel of the natural map on Picard groups PicR → PicR. If
D(R) �= 0 then one can show that R has an invertible ideal I �∼= R such that I ⊕R ∼=
R⊕R (cf. [41, Corollary 2.4]). This is one of the easiest ways in which torsion-free
cancellation can fail. For certain kinds of rings, D(R) is exactly the obstruction to
torsion-free cancellation. For example, the following is from Theorem 0.1 of [44]:


Theorem 5.3. Let R be as above. Assume further that R is finitely generated as a
k-algebra for some infinite perfect field k. Then R has torsion-free cancellation if
and only if D(R) = 0. ��


For examples of affine k-domains where D(R) = 0, we have Dedekind domains
and the rings F + XK[X ], where k ⊆ F ⊆ K are field extensions of finite degree. In
fact [44, (1.7)], up to analytic isomorphism, these are the only examples! In par-
ticular [41, Corollary 3.3], an affine domain over an algebraically closed field has
torsion-free cancellation if and only if it is a Dedekind domain.


Another case where D(R) controls torsion-free cancellation is provided by
Theorem 2.7 of [41]:


Theorem 5.4. Let R be as above. Assume that every ideal of R is two-generated.
Then R has torsion-free cancellation if and only if D(R) = 0. ��
In [41], the theorem above is applied to orders in quadratic number fields. We state
the following classification result for imaginary quadratic orders (Theorem 4.5 of
[41]):


Theorem 5.5. Let d be a squarefree negative integer, and let R be an order in
Q(


√
d). Then R has torsion-free cancellation if and only if either R = R or else


R satisfies one of the following:
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(1) R = Z[
√


d] where d ≡ 1 mod 8
(2) R = Z[2


√−1]
(3) R = Z[


√−3]
(4) R = Z


[ 3
2 (1 +


√−3)
] ��


For real quadratic orders R, the situation is more complicated. The condition
D(R) = 0 depends on subtle arithmetical properties of the fundamental unit of R,
and it is extremely difficult to give a version of Theorem 5.5 that classifies those
real quadratic orders having torsion-free cancellation. But given any specific real
quadratic order R, a finite calculation involving the fundamental unit of R will de-
termine whether or not torsion-free cancellation holds.


The cancellation question can be answered decisively if one knows all the delta
groups that come from indecomposable torsion-free R-modules. In cases where
R has finite Cohen–Macaulay type, one has some hope of calculating these delta
groups. This is indeed the case for quadratic orders. The following result is equiva-
lent to Corollary 4.2 of [41] but is stated in terms of data intrinsic to the ring. Recall
that f is the conductor of R in R.


Theorem 5.6. Suppose R = Z + fOK is an order in a quadratic number field K,
where f ∈ Z is a nonzero nonunit. Then torsion-free cancellation holds for R if and
only if (R/f)× ⊆ (R/f)× ·Λf. ��


Let us compare this with Theorem 5.1, where the statement of the condition
for cancellation to hold depends on the entire family of isomorphism classes of
indecomposable torsion-free R-modules. For a quadratic order R, it is known [3]
that every indecomposable torsion-free R-module has rank one. Furthermore, there
are only finitely many isomorphism classes of such modules. This makes it possi-
ble to replace the condition in Theorem 5.1 with a condition that depends only on
subgroups of (R/f)×.


We now state some results for cubic orders. It is well known that every quadratic
order R in K has the form R = Z+ fOK for some nonzero rational integer f . While
this is not necessarily true for cubic orders, one can consider cubic orders of that
same form. Now, a cubic order R having finite Cohen–Macaulay type may have
indecomposable torsion-free modules of rank greater than 1. The following result
is a special case of Theorem 31 in [26] and depends crucially on the existence of
indecomposable torsion-free R-modules of rank two:


Theorem 5.7. Suppose R = Z+ pOK is an order in a cubic number field K, where
p ∈ Z is nonzero. Further, suppose pR is a prime ideal. Then torsion-free cancella-
tion holds for R if and only if


(1) (R/f)× ⊆ (R/pR)× ·Λf, and
(2) (R/f)× ⊆ ((R/f)×)2 ·Λf ��
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This is similar to Theorem 5.6. Once again, the torsion-free cancellation question
for R is answered in terms of subgroups of (R/f)×. Using this result, one can find
examples of cubic orders R for which D(R) = 0 and yet torsion-free cancellation
fails for R.


There also exist many cubic orders that do not have finite Cohen–Macaulay type.
Moreover, most orders in number fields of degree four and higher do not have finite
Cohen–Macaulay type. Using the Drozd–Roı̆ter conditions [12] (cf. Theorem 1.1 in
Section 1), we easily get the following (see Proposition 19 of [26]).


Lemma 5.8. Let K be a number field of degree d and suppose R = Z+ fOK is an
order, where f ∈ Z is a nonzero nonunit. Then R has finite Cohen–Macaulay type if
and only if either (i) d = 2 or (ii) d = 3 and f is square-free. ��


Failure of finite Cohen–Macaulay type often leads to failure of torsion-free can-
cellation. Many such examples can be given using the following result, which is a
specialized version of Theorem 26 in [26].


Theorem 5.9. Let K be a number field of degree at least four. Suppose R = Z+ fOK


is an order, where f ∈ Z is a nonzero nonunit. Then torsion-free cancellation holds
for R if and only if (R/f)× ⊆ Λf. ��


The condition appearing in the result above is quite satisfying, given that the
category of torsion-free R-modules for these orders is generally intractable. It turns
out that the condition (R/f)× ⊆ Λf is rarely satisfied. For example, the next result
follows directly from Corollary 7.1 in [25].


Corollary 5.10. Let K be a number field of degree four or higher. Then there are
only finitely many primes p ∈ Z for which the order R = Z+ pOK has torsion-free
cancellation. ��


5.2 Mixed cancellation for one-dimensional domains


In [23], Hassler and Wiegand found a way to extend the techniques in [48] to handle
arbitrary finitely generated modules. The original motivation for the work in [23]
was the following question: When does torsion-free cancellation imply mixed can-
cellation? The following theorem gives a class of rings for which the answer is
affirmative (see Theorem 6.1 of [23]):


Theorem 5.11. Let R be a one-dimensional Noetherian domain. Further, suppose R
is finitely generated as k-algebra, where k is an infinite field of characteristic zero.
The following are equivalent:


(1) D(R) = 0
(2) R has torsion-free cancellation
(3) R has mixed cancellation ��
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In the same paper [23], the class of Dedekind-like rings is considered. A one-
dimensional, reduced, Noetherian ring R is defined to be Dedekind-like if Rm is
Dedekind-like for all maximal ideals m of R. (See Section 3 for the definition of lo-
cal Dedekind-like rings.) The following is from Corollary 6.11 in [23] and depends
heavily on Levy and Klingler’s classification [30] of indecomposable modules over
local Dedekind-like rings:


Theorem 5.12. Suppose R is a Dedekind-like order in a number field. Then torsion-
free cancellation implies mixed cancellation. ��
Likewise, Hassler [18] has proved the following theorem. (We note that orders in
quadratic number fields need not be Dedekind-like. For example, Z[2


√−1] is not
Dedekind-like.)


Theorem 5.13. Suppose R is an order in an imaginary quadratic field. Then torsion-
free cancellation implies mixed cancellation. ��


Now, suppose R is an order in a real quadratic field such that R is not Dedekind-
like. Does torsion-free cancellation still imply mixed cancellation over R? The au-


thors in [23] show that the order R = Z


[
17 1+


√
17


2


]
has torsion-free cancellation but


does not have mixed cancellation!
Finally, we remark that when R is an order in a real quadratic field, Hassler has


shown in [19] that the mixed cancellation question for R can often be answered by
a computation that involves the fundamental unit of R. The computation is a more
complicated version of the one mentioned in the paragraph that follows Theorem 5.5
above.
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37. Serre, J.-P.: Faisceaux algébriques cohérents. Ann. Math. 61(2), 197–278 (1955) in French
38. Vasconcelos, W.V.: On local and stable cancellation. An. Acad. Brasil. Ci. 37, 389–393 (1965)
39. Warfield, R.B. Jr.: Decomposability of finitely presented modules. Proc. Am. Math. Soc. 25,


167–172 (1970)
40. Weierstrass, K.: Zur Theorie der bilinearen und quadratischen Formen. Monatsberichte


Königl. Preuß. Akad. Wiss. Berlin 310–338 (1968)
41. Wiegand, R.: Cancellation over commutative rings of dimension one and two. J. Algebra 88,


438–459 (1984)
42. Wiegand, R.: Direct sum cancellation over commutative rings. Proc. Udine Conference on


Abelian Groups and Modules, CISM 287, 241–266 (1985)
43. Wiegand, R.: Noetherian rings of bounded representation type, Commutative Algebra, Pro-


ceedings of a Microprogram (June 15 – July 2, 1987), pp. 497–516. Springer, New York
(1989)


44. Wiegand, R.: Picard groups of singular affine curves over a perfect field. Math. Z. 200,
301–311 (1989)


45. Wiegand, R.: One-dimensional local rings with finite Cohen–Macaulay type, Algebraic
Geometry and its Applications, pp. 381–389. Springer, New York (1994)


46. Wiegand, R.: Local rings of finite Cohen–Macaulay type. J. Algebra 203, 156–168 (1998)
47. Wiegand, R.: Direct-sum decompositions over local rings. J. Algebra 240, 83–97 (2001)
48. Wiegand, R., Wiegand, S.: Stable isomorphism of modules over one-dimensional rings.


J. Algebra 107, 425–435 (1987)
49. Wiegand, R., Wiegand, S.: Semigroups of modules: a survey, Proceedings of the International


Conference on Rings and Things, Contemp. Math.. Am. Math. Soc. (to appear). Available at
http://www.math.unl.edu/∼rwiegand1/papers.html











The defect


Franz-Viktor Kuhlmann∗


Abstract We give an introduction to the valuation theoretical phenomenon of
“defect”, also known as “ramification deficiency”. We describe the role it plays in
deep open problems in positive characteristic: local uniformization (the local form
of resolution of singularities), the model theory of valued fields, the structure the-
ory of valued function fields. We give several examples of algebraic extensions with
non-trivial defect. We indicate why Artin–Schreier defect extensions play a central
role and describe a way to classify them. Further, we give an overview of various re-
sults about the defect that help to tame or avoid it, in particular “stability” theorems
and theorems on “henselian rationality”, and show how they are applied. Finally, we
include a list of open problems.


1 Valued fields


Historically, there are three main origins of valued fields:


(1) Number theory: Kurt Hensel introduced the fields Qp of p-adic numbers and
proved the famous Hensel’s Lemma (see below) for them. They are defined as the
completions of Q with respect to the (ultra)metric induced by the p-adic valuations
of Q, similarly as the field of reals, R, is the completion of Q with respect to the
usual metric induced by the ordering on Q.


(2) Ordered fields: R is the maximal archimedean ordered field; any ordered field
properly containing R will have infinite elements, that is, elements larger than all
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reals. Their inverses are infinitesimals. The classes of magnitude, called archimedean
classes, give rise to a natural valuation. These valuations are important in the theory
of ordered fields and in real algebraic geometry.


In connection with ordered fields and their classes of magnitude, Hans Hahn
[27] introduced an important class of valued fields, the (generalized) power series
fields. Take any field K and any ordered abelian group G. Let K((G)) (also de-
noted by K((tG)) ) be the set of all maps μ from G to K with well-ordered support
{g∈G | μ(g) �= 0}. One can visualize the elements of K((G)) as formal power series
∑g∈G cgtg for which the support {g ∈ G | cg �= 0} is well-ordered. Using this condi-
tion one shows that K((G)) is a field. Also, one uses it to introduce the valuation:


vt ∑
g∈G


cgtg = min{g ∈ G | cg �= 0} (1)


(the minimum exists because the support is well-ordered). This valuation is called
the canonical valuation or t-adic valuation of K((G)), and sometimes called the
minimum support valuation. Note that vtt = 1. For G = Z, one obtains the field of
formal Laurent series K((t)).
(3) Function fields: if K is any field and X an indeterminate, then the rational
function field K(X) has a p(X)-adic valuation for every irreducible polynomial
p(X) ∈ K[X ], plus the 1/X -adic valuation. These valuations are trivial on K. As a
valuation can be extended to every extension field, these valuations together with the
p-adic valuations mentioned in (1) yield that a field admits a non-trivial valuation as
soon as it is not algebraic over a finite field. In particular, all algebraic function fields
over!K (i.e., finitely generated field extensions of K of transcendence degree ≥ 1)
admit non-trivial valuations that are trivial on K. Such valued function fields play a
role in several areas of algebra and number theory, some of which we will mention
in this paper. Throughout, function field will always mean algebraic function field.


If K is a field with a valuation v, then we will denote its value group by vK and
its residue field by Kv. For a ∈ K, its value is va, and its residue is av. An extension
of valued fields is written as (L′|L,v), meaning that L′|L is a field extension, v is a
valuation on L′ and L is equipped with the restriction of this valuation. Then there
is a natural embedding of the value group vL in the value group vL′, and a natural
embedding of the residue field Lv in the residue field L′v. If both embeddings are
onto (which we just express by writing vL = vL′ and Lv = L′v), then the extension
(L′|L,v) is called immediate. For a ∈ L′ we set v(a−L) := {v(a− c) | c ∈ L}. The
easy proof of the following lemma is left to the reader:


Lemma 1.1. The extension (L′|L,v) is immediate if and only if for all a ∈ L′ there is
c ∈ L such that v(a− c) > va. If the extension (L′|L,v) is immediate, then v(a−L)
has no maximal element and is an initial segment of vL, that is, if α ∈ v(a−L) and
α > β ∈ vL, then β ∈ v(a−L).


If for each a ∈ L′ and every α ∈ vL′ there is c ∈ L such that v(a− c) > α , then
we say that (L,v) is dense in (L′,v). If this holds, then the extension (L′|L,v) is
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immediate. The maximal extension in which (L,v) is dense is its completion (L,v)c,
which is unique up to isomorphism.


Every finite extension L′ of a valued field (L,v) satisfies the fundamental
inequality (cf. (17.5) of [18] or Theorem 19 on p. 55 of [67]):


n ≥
g


∑
i=1


eifi (2)


where n = [L′ : L] is the degree of the extension, v1, . . . ,vg are the distinct extensions
of v from L to L′, ei = (viL′ : vL) are the respective ramification indices and fi =
[L′vi : Lv] are the respective inertia degrees. If g = 1 for every finite extension L′|L
then (L,v) is called henselian. This holds if and only if (L,v) satisfies Hensel’s
Lemma, that is, if f is a polynomial with coefficients in the valuation ring O of
(L,v) and there is b ∈ O such that v f (b) > 0 and v f ′(b) = 0, then there is a ∈ O


such that f (a) = 0 and v(b−a) > 0.
Every valued field (L,v) admits a henselization, that is, a minimal algebraic ex-


tension which is henselian (see Section 4 below). All henselizations are isomorphic
over L, so we will frequently talk of the henselization of (L,v), denoted by (L,v)h.
The henselization becomes unique in absolute terms once we fix an extension of
the valuation v from L to its algebraic closure. All henselizations are immediate
separable-algebraic extensions. If (L′,v) is a henselian extension field of (L,v), then
a henselization of (L,v) can be found inside of (L′,v).


For the basic facts of valuation theory, we refer the reader to [5, Appendix],
[18, 19, 59, 65, 67]. For ramification theory, we recommend [18, 19, 55]. For basic
facts of model theory, see [11].


For a field K, K̃ will denote its algebraic closure and Ksep will denote its
separable-algebraic closure. If charK = p, then K1/p∞


will denote its perfect hull.
If we have two subfields K,L of a field M (in our cases, we will usually have the
situation that L ⊂ K̃) then K.L will denote the smallest subfield of M which contains
both K and L; it is called the field compositum of K and L.


2 Two problems


Let us look at two important problems that will lead us to considering the phe-
nomenon of defect:


2.1 Elimination of ramification


Given a valued function field (F |K,v), we want to find nice generators of F over
K. For instance, if F |K is separable then it is separably generated, that is, there
is a transcendence basis T such that F|K(T ) is a finite separable extension, hence
simple. So we can write F = K(T,a) with a separable-algebraic over K(T ).
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In the presence of the valuation v, we may want to ask for more. The problem of
smooth local uniformization is to find generators x1, . . . ,xn of F |K in the valuation
ring O of v on F such that the point x1v, . . . ,xnv is smooth, that is, the Implicit
Function Theorem holds in this point. We say that (F |K,v) is inertially generated if
there is a transcendence basis T such that F lies in the absolute inertia field K(T )i


(see Section 4 for its definition). A connection between both notions is given by
Theorem 1.6 of [35]:


Theorem 2.1. If (F |K,v) admits smooth local uniformization, then it is inertially
generated.


If (F |K,v) is inertially generated by the transcendence basis T , then vF = vK(T ),
and Fv|K(T )v is separable. If this were not true, we would say that (F |K(T ),v) is
ramified. Let us consider an example.


Example 2.2. Suppose that v is a discrete valuation on F which is trivial on K and
such that Fv|K is algebraic. So there is an element t ∈F such that vF = Zvt = vK(t).
Take the henselization Fh of F with respect to some fixed extension of v to the
algebraic closure of F .


Assume that trdegF |K = 1; then F |K(t) is finite. Take K(t)h to be the henseliza-
tion of K(t) within Fh. Then Fh|K(t)h is again finite since Fh = F.K(t)h (cf.
Theorem 4.14 below). If trdegF |K > 1, we can take T to be a transcendence basis
of F|K which contains t. Then again, Fh|K(T )h is finite, and vF = vK(T ). But does
that prove that F|K is inertially generated? Well, if for instance K is algebraically
closed, then it follows that Fv = K = K(T )v, so Fv|K(T )v is separable. But “in-
ertially generated” asks for more. In order to show that F |K is inertially generated
in this particular case, we would have to find T such that F ⊆ K(T )h, that is, the
extension Fh|K(T )h is trivial (see Section 4).


Since K(T )h is henselian, there is only one extension of the given valuation from
K(T )h to Fh. By our choice of T , we have e= (vFh : vK(T )h) = (vF : vK(T )) = 1,
and if K is algebraically closed, also f= (Fhv : K(T )hv) = (Fv : K(T ))v = 1. Hence
equality holds in the fundamental inequality (2) if and only if Fh|K(T )h is trivial.


This example shows that it is important to know when the fundamental inequality
(2) is in fact an equality, or more precisely, what the quotient n/ef is. A first and
important answer is given by the Lemma of Ostrowski. Assume that (L′|L,v) is a
finite extension and the extension of v from L to L′ is unique. Then the Lemma of
Ostrowski says that


[L′ : L] = pν · (vL′ : vL) · [L′v : Lv] with ν ≥ 0 (3)


where p is the characteristic exponent of Lv, that is, p = charLv if this is positive,
and p = 1 otherwise. The Lemma of Ostrowski can be proved using Tschirnhausen
transformations (cf. [59, Theoreme 2, p. 236]). But it can also be deduced from
ramification theory, as we will point out in Section 4 (see also [67, Corollary to
Theorem 25, p. 78]).
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The factor d = d(L′|L,v) = pν is called the defect (or ramification deficiency as
in [67, p. 58]) of the extension (L′|L,v). If d = 1, then we call (L′|L,v) a defect-
less extension; otherwise, we call it a defect extension. Note that (L′|L,v) is always
defectless if charKv = 0.


We call (L,v) a defectless field, separably defectless field or inseparably defect-
less field if equality holds in the fundamental inequality (2) for every finite, finite
separable or finite purely inseparable, respectively, extension L′ of L. One can trace
this back to the case of unique extensions of the valuation; for the proof of the
following theorem, see [38] (a partial proof was already given in Theorem 18.2 of
[18]):


Theorem 2.3. A valued field (L,v) is a defectless field if and only if its henselization
is. The same holds for “separably defectless” and “inseparably defectless”.


Therefore, the Lemma of Ostrowski shows:


Corollary 2.4. Every valued field (L,v) with charLv = 0 is a defectless field.


The defect is multiplicative in the following sense. Let (L|K,v) and (M|L,v) be
finite extensions. Assume that the extension of v from K to M is unique. Then the
defect satisfies the following product formula


d(M|K,v) = d(M|L,v) ·d(L|K,v) (4)


which is a consequence of the multiplicativity of the degree of field extensions and
of ramification index and inertia degree. This formula implies:


Lemma 2.5. (M|K,v) is defectless if and only if (M|L,v) and (L|K,v) are defectless.


Corollary 2.6. If (L,v) is a defectless field and (L′,v) is a finite extension of (L,v),
then (L′,v) is also a defectless field. Conversely, if there exists a finite extension
(L′,v) of (L,v) such that (L′,v) is a defectless field, the extension of v from L to L′
is unique, and the extension (L′|L,v) is defectless, then (L,v) is a defectless field.
The same holds for “separably defectless” in the place of “defectless” if L′|L is
separable, and for “inseparably defectless” if L′|L is purely inseparable.


The situation of our Example 2.2 becomes more complicated when the valuations
are not discrete:


Example 2.7. There are valued function fields (F |K,v) of transcendence degree 2
with v trivial on K such that vF is not finitely generated. Already on a rational
function field K(x,y), the value group of a valuation trivial on K can be any subgroup
of the rationals Q (see Theorem 1.1 of [42] and the references given in that paper). In
such cases, if F is not a rational function field, it is not easy to find a transcendence
basis T such that vF = vK(T ). But even if we find such a T , what do we know then
about the extension (Fh|K(T )h,v)? For example, is it defectless?


An extension (L′|L,v) of henselian fields is called unramified if vL′ = vL,
L′v|Lv is separable and every finite subextension of (L′|L,v) is defectless. Hence if







282 Franz-Viktor Kuhlmann


charLv = 0, then (L′|L,v) is unramified already if vL′ = vL. Note that our definition
of “unramified” is stronger than the definition in [18, Section 22] which does not
require “defectless”.


For a valued function field (F |K,v), elimination of ramification means to find
a transcendence basis T such that (Fh|K(T )h,v) is unramified. According to
Theorem 4.18 in Section 4 below, this is equivalent to F lying in the absolute
inertia field K(T )i. Hence, (F |K,v) admits elimination of ramification if and only if
it is inertially generated.


If charK = 0 and v is trivial on K, then (F |K,v) is always inertially generated;
this follows from Zariski’s local uniformization [66] by Theorem 2.1. Since then
charFv = charKv = charK = 0, Zariski did not have to deal with inseparable resi-
due field extensions and with defect. But if charK > 0, then the existence of defect
makes the problem of local uniformization much harder. This becomes visible in the
approach to local uniformization that is used in the papers [34] and [35]. Local uni-
formization can be proved for Abhyankar places in positive characteristic because
the defect does not appear [34]; we will discuss this in more detail below. For other
places [35], the defect has to be “killed” by a finite extension of the function field
(“alteration”).


2.2 Classification of valued fields up to elementary equivalence


Value group and residue field are invariants of a valued field, that is, two isomor-
phic valued fields have isomorphic value groups and isomorphic residue fields. But
two valued fields with the same value groups and residue fields need not at all be iso-
morphic. For example, the valued field (Fp(t),vt) and (Fp((t)),vt) both have value
group Z and residue field Fp, but they are not isomorphic since Fp(t) is countable
and Fp((t)) is not.


In situations where classification up to isomorphism fails, classification up to el-
ementary equivalence may still be possible. Two algebraic structures are elemen-
tarily equivalent if they satisfy the same elementary (first order) sentences. For
example, Abraham Robinson proved that all algebraically closed valued fields of
fixed characteristic are elementarily equivalent (cf. [60, Theorem 4.3.12]). James Ax
and Simon Kochen and, independently, Yuri Ershov proved that two henselian val-
ued fields are elementarily equivalent if their value groups are elementarily equiv-
alent and their residue fields are elementarily equivalent and of characteristic 0 (cf.
[6] and [11, Theorem 5.4.12])). They also proved that all p-adically closed fields
are elementarily equivalent (cf. [7, Theorem 2]). Likewise, Alfred Tarski proved
that all real closed fields are elementarily equivalent (cf. [60, Theorem 4.3.3] or
[11, Theorem 5.4.4]). This remains true if we consider non-archimedean real closed
fields together with their natural valuations [12]. These facts (and the correspond-
ing model completeness results) all have important applications in algebra (for in-
stance, Nullstellensätze, Hilbert’s 17th Problem, cf. [28, Chap. A4, Section 2]). So
we would like to know when classification up to elementary equivalence is possible
for more general classes of valued fields.
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Two elementarily equivalent valued fields have elementarily equivalent value
groups and elementarily equivalent residue fields. When does the converse hold?
We mentioned already that the henselization is an immediate extension. So the ele-
mentary properties of value group and residue field do not determine whether a field
is henselian or not. But being henselian is an elementary property, expressed by a
scheme of elementary sentences, one each for all polynomials of degree n, where n
runs through all natural numbers. In our above example, (Fp((t)),vt) is henselian,
but (Fp(t),vt) is not, so they are not elementarily equivalent. We see that in order to
have classification up to elementary equivalence relative to value groups and residue
fields, our fields need to be (at least) henselian. But if the characteristic of the resi-
due fields is positive, then we may have proper immediate algebraic extensions of
henselian valued fields, as we will see in the next section. So our fields need to be (at
least) algebraically maximal, that is, not admitting any proper immediate algebraic
extensions.


Our fields even have to be defectless. Indeed, every valued field (K,v) admits
a maximal immediate extension (M,v). Then (M,v) is maximal and therefore
henselian and defectless. Since vK = vM and Kv = Mv, we want that (K,v)≡ (M,v).
The property “henselian and defectless field” is elementary (cf. [16, 1.33], [38] or
the background information in [46]), so (K,v) should be a henselian defectless field.


If L is an elementary language and A⊂B are L-structures, then we will say that
A is existentially closed in B and write A ≺∃ B if every existential sentence with
parameters from A that holds in B also holds in A. When we talk of fields, then
we use the language of rings ({+,−, ·,0,1}) or fields (adding the unary function
symbol “.−1”). When we talk of valued fields, we augment this language by a unary
relation symbol for the valuation ring or a binary relation symbol for valuation divis-
ibility (“vx ≤ vy”). For ordered abelian groups, we use the language of groups aug-
mented by a binary predicate (“x < y”) for the ordering. For the meaning of “exis-
tentially closed in” in the settings of fields, valued fields and ordered abelian groups,
see [51, p. 183].


By model theoretical tools such as Robinson’s Test, the classification problem
can be transformed into the problem of finding conditions which ensure that the
following Ax–Kochen–Ershov Principle holds:


(K,v) ⊆ (L,v) ∧ vK ≺∃ vL ∧ Kv ≺∃ Lv =⇒ (K,v) ≺∃ (L,v). (5)


In order to prove that (K,v) ≺∃ (L,v), we first note that existential sentences in L
only talk about finitely many elements of L, and these generate a function field over
K. So it suffices to show (K,v) ≺∃ (F,v) for every function field F over K con-
tained in L. One tool to show that (K,v) ≺∃ (F,v) is to prove an embedding lemma:
we wish to construct an embedding of (F,v) over K in some “big” (highly satu-
rated elementary) extension (K∗,v∗) of (K,v). Existential sentences are preserved
by embeddings and will then hold in (K∗,v∗) from where they can be pulled down
to (K,v). In order to construct the embedding, we need to understand the algebraic
structure of (F,v).
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Example 2.8. Assume that (K,v) is henselian (the same will then be true for
(K∗,v∗) ) and that (F |K,v) is an immediate extension of transcendence degree
1. Pick an element x ∈ F transcendental over K. Even if we know how to embed
(K(x),v) in (K∗,v∗), how can we extend this embedding to (F,v)? Practically the
only tool we have for such extensions is Hensel’s Lemma. So if F ⊂ K(x)h, we can
use the universal property of henselizations (Theorem 4.11 below) to extend the
embedding to K(x)h and thus to F . If F is not a subfield of K(x)h, we do not know
what to do.


More generally, we have to deal with extensions which are not immediate, but
for which the conditions “vK ≺∃ vL” and “Kv ≺∃ Lv” hold. By the saturation of
(K∗,v∗), they actually provide us with an embedding of vF over vK in v∗K∗ and
an embedding of Fv over Kv in K∗v∗. Using Hensel’s Lemma, they can be lifted to
an embedding of (F,v) in (K∗,v∗) if (F,v) is inertially generated with a transcen-
dence basis T such that (K(T ),v) can be embedded, as we will discuss at the end
of Section 5.1. If (F,v) is not inertially generated, we are lost again. So we see that
both of our problems share the important approach of elimination of ramification.


Before we discuss the stated problems further, let us give several examples of
defect extensions, in order to meet the enemy we are dealing with.


3 Examples for non-trivial defect


In this section, we shall give examples for extensions with defect > 1. There is one
basic example which is quick at hand. It is due to F. K. Schmidt.


Example 3.1. We consider Fp((t)) with its canonical valuation v = vt . Since Fp((t))|
Fp(t) has infinite transcendence degree, we can choose some element s ∈ Fp((t))
which is transcendental over Fp(t). Since (Fp((t))|Fp(t),v) is an immediate exten-
sion, the same holds for (Fp(t,s)|Fp(t),v) and thus also for (Fp(t,s)|Fp(t,sp),v).
The latter extension is purely inseparable of degree p (since s,t are algebraically
independent over Fp , the extension Fp(s)|Fp(sp) is linearly disjoint from Fp(t,sp)|
Fp(sp) ). Hence, Theorem 4.1 shows that there is only one extension of the valua-
tion v from Fp(t,sp) to Fp(t,s). So we have e = f = g = 1 for this extension and
consequently, its defect is p.


Remark 3.2. This example is the easiest one used in commutative algebra to show
that the integral closure of a noetherian ring of dimension 1 in a finite extension of
its quotient field need not be finitely generated.


In some sense, the field Fp(t,sp) is the smallest possible admitting a defect
extension. Indeed, a function field of transcendence degree 1 over its prime field
Fp is defectless under every valuation. More generally, a valued function field of
transcendence degree 1 over a subfield on which the valuation is trivial is always a
defectless field; this follows from Theorem 5.1 below.
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With respect to defects, discrete valuations are not too bad. The following is easy
to prove (cf. [38]):


Theorem 3.3. Let (K,v) be a discretely valued field, that is, with value group
vK �Z. Then every finite separable extension is defectless. If in addition charK = 0,
then (K,v) is a defectless field.


A defect can appear “out of nothing” when a finite extension is lifted through
another finite extension:


Example 3.4. In the foregoing example, we can choose s such that vs > 1 = vt. Now
we consider the extensions (Fp(t,sp)|Fp(t p,sp),v) and (Fp(t + s,sp)|Fp(t p,sp),v)
of degree p. Both are defectless: since vFp(t p,sp) = pZ and v(t + s) = vt = 1,
the index of vFp(t p,sp) in vFp(t,sp) and in vFp(t + s,sp) must be (at least) p.
But Fp(t,sp) Fp(t + s,sp) = Fp(t,s), which shows that the defectless extension
(Fp(t,sp)|Fp(t p,sp),v) does not remain defectless if lifted up to Fp(t + s,sp) (and
vice versa).


We can derive from Example 3.1 an example of a defect extension of henselian
fields.


Example 3.5. We consider again the immediate extension (Fp(t,s)|Fp(t,sp),v) of
Example 3.1. We take the henselization (Fp(t,s),v)h of (Fp(t,s),v) in Fp((t))
and the henselization (Fp(t,sp),v)h of (Fp(t,sp),v) in (Fp(t,s),v)h. We find
that (Fp(t,s),v)h|(Fp(t,sp),v)h is again a purely inseparable extension of degree p.
Indeed, the purely inseparable extension Fp(t,s)|Fp(t,sp) is linearly disjoint
from the separable extension Fp(t,sp)h|Fp(t,sp), and by virtue of Theorem 4.14,
Fp(t,s)h = Fp(t,s).Fp(t,sp)h. Also for this extension we have that e = f = g = 1
and again, the defect is p. Note that by Theorem 3.3, a proper immediate extension
over a field like (Fp(t,sp),v)h can only be purely inseparable.


The next example is easily found by considering the purely inseparable extension
K̃|Ksep. In comparison to the last example, the involved fields are “much bigger”,
for instance, they do not have value group Z anymore.


Example 3.6. Let K be a field which is not perfect. Then the extension K̃|Ksep is
non-trivial. For every non-trivial valuation v on K̃, the value groups vK̃ and vKsep


are both equal to the divisible hull ṽK of vK, and the residue fields K̃v and Ksepv are
both equal to the algebraic closure of Kv (cf. Lemma 2.16 of [42]). Consequently,
(K̃|Ksep,v) is an immediate extension. Since the extension of v from Ksep to K̃ is
unique (cf. Theorem 4.1 below), we find that the defect of every finite subextension
is equal to its degree.


Note that the separable-algebraically closed field Ksep is henselian for every val-
uation. Hence, our example shows:


Theorem 3.7. There are henselian valued fields of positive characteristic which
admit proper purely inseparable immediate extensions. Hence, the property
“henselian” does not imply the property “algebraically maximal”.
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We can refine the previous example as follows. Let p > 0 be the characteristic of
the residue field Kv. An Artin–Schreier extension of K is an extension of degree p
generated over K by a root of a polynomial X p −X − c with c ∈ K. An extension
of degree p of a field of characteristic p is a Galois extension if and only if it is
an Artin–Schreier extension. A field K is Artin–Schreier closed if it does not admit
Artin–Schreier extensions.


Example 3.8. In order that every purely inseparable extension of the valued field
(K,v) be immediate, it suffices that vK be p-divisible and Kv be perfect. But these
conditions are already satisfied for every non-trivially valued Artin–Schreier closed
field K (see Corollary 2.17 of [42]). Hence, the perfect hull of every non-trivially
valued Artin–Schreier closed field is an immediate extension.


Until now, we have only presented purely inseparable defect extensions. But our
last example can give an idea of how to produce a separable defect extension by in-
terchanging the role of purely inseparable extensions and Artin–Schreier extensions.


Example 3.9. Let (K,v) be a valued field of characteristic p > 0 whose value group
is not p-divisible. Let c ∈ K such that vc < 0 is not divisible by p. Let a be a root
of the Artin–Schreier polynomial X p −X − c. Then va = vc/p and [K(a) : K] =
p = (vK(a) : vK). The fundamental inequality shows that K(a)v = Kv and that the
extension of v from K to K(a) is unique. By Theorem 4.1 below the further extension
to K(a)1/p∞


= K1/p∞
(a) is unique. It follows that the extension of v from K1/p∞


to
K1/p∞


(a) is unique. On the other hand, [K1/p∞
(a) : K1/p∞


] = p since the separable
extension K(a)|K is linearly disjoint from K1/p∞ |K. The value group vK1/p∞


(a) is
the p-divisible hull of vK(a) = vK + Zva. Since pva ∈ vK, this is the same as the
p-divisible hull of vK, which in turn is equal to vK1/p∞


. The residue field of K1/p∞
(a)


is the perfect hull of K(a)v = Kv. Hence, it is equal to the residue field of K1/p∞
.


It follows that the extension (K1/p∞
(a)|K1/p∞


,v) is immediate and that its defect is
p, like its degree.


Similarly, one can start with a valued field (K,v) of characteristic p > 0 whose
residue field is not perfect. In this case, the Artin–Schreier extension K(a)|K is
constructed as in the proof of Lemma 2.13 of [42]. We leave the details to the reader.


In the previous example, we can always choose (K,v) to be henselian (since
passing to the henselization does not change value group and residue field). Then
all constructed extensions of (K,v) are also henselian, since they are algebraic
extensions (cf. Theorem 4.14 below). Hence, our example shows:


Theorem 3.10. There are henselian valued fields of positive characteristic which
admit immediate Artin–Schreier defect extensions.


If the perfect hull of a given valued field (K,v) is not an immediate extension,
then vK is not p-divisible or Kv is not perfect, and we can apply the procedure of
our above example. This shows:


Theorem 3.11. If the perfect hull of a given valued field of positive characteristic is
not an immediate extension, then it admits an immediate Artin–Schreier extension.
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An important special case of Example 3.9 is the following:


Example 3.12. We choose (K,v) to be (Fp(t),vt) or (Fp((t)),vt) or any intermediate


field, and set L := K(t1/pi | i ∈ N), the perfect hull of K. By Theorem 4.1 below,
v = vt has a unique extension to L. In all cases, L can be viewed as a subfield of the
power series field Fp((Q)). The power series


ϑ :=
∞


∑
i=1


t−1/pi ∈ Fp((Q)) (6)


is a root of the Artin–Schreier polynomial


X p −X − 1
t


because


ϑ p −ϑ − 1
t


=
∞


∑
i=1


t−1/pi−1 −
∞


∑
i=1


t−1/pi − t−1


=
∞


∑
i=0


t−1/pi −
∞


∑
i=1


t−1/pi − t−1 = 0.


By Example 3.9, the extension L(ϑ)|L is an immediate Artin–Schreier defect
extension. The above power series expansion for ϑ was presented by Shreeram
Abhyankar in [1]. It became famous since it shows that there are elements algebraic
over Fp(t) with a power series expansion in which the exponents do not have a
common denominator. This in turn shows that Puiseux series fields in positive char-
acteristic are in general not algebraically closed (see also [30, 40]). With p = 2, the
above was also used by Irving Kaplansky in [29, Section 5] for the construction of
an example that shows that if his “hypothesis A” (see [29, Section 3]) is violated,
then the maximal immediate extension of a valued field may not be unique up to
isomorphism. See also [49] for more information on this subject.


Let us compute v(ϑ −L). For the partial sums


ϑk :=
k


∑
i=1


t−1/pi ∈ L (7)


we see that v(ϑ −ϑk) =−1/pk+1 < 0. Assume that there is c ∈ L such that v(ϑ −c)
> −1/pk for all k. Then v(c−ϑk) = min{v(ϑ − c),v(ϑ −ϑk)} = −1/pk+1 for all
k. On the other hand, there is some k such that c ∈ K(t−1/p, . . . ,t−1/pk


) = K(t−1/pk
).


But this contradicts the fact that v(c−t−1/p− . . .−t−1/pk
) = v(c−ϑk)=−1/pk+1 /∈


vK(t−1/pk
). This proves that the values −1/pk are cofinal in v(ϑ −L). Since vL is a


subgroup of the rationals, this shows that the least upper bound of v(ϑ −L) in vL is
the element 0. As v(ϑ −L) is an initial segment of vL by Lemma 1.1, we conclude
that v(ϑ −L) = (vL)<0. It follows that (L(ϑ)|L,v) is immediate without (L,v) being
dense in (L(ϑ),v).
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A version of this example with (K,v)= (F̃p((t)),vt ) was given by S. K. Khanduja
in [31] as a counterexample to Proposition 2′ on p. 425 of [4]. That proposition states
that if (K,v) is a perfect henselian valued field of rank 1 and a ∈ K̃ \K, then there is
c ∈ K such that


v(a− c) ≥ min{v(a−a′) | a′ �= a conjugate to a over K}.


But for a = ϑ in the previous example, we have that a− a′ ∈ Fp so that the right
hand side is 0, whereas v(ϑ − c) < 0 for all c in the perfect hull L of Fp((t)). The


same holds if we take L to be the perfect hull of K = F̃p((t)). In fact, it is Corollary 2
to Lemma 6 on p. 424 in [4] which is in error; it is stated without proof in the paper.


In a slightly different form, the previous example was already given by Alexander
Ostrowski in [57], Section 57:


Example 3.13. Ostrowski takes (K,v) = (Fp(t),vt), but works with the polynomial
X p − tX − 1 in the place of the Artin–Schreier polynomial X p −X − 1/t. After an
extension of K of degree p− 1, it also can be transformed into an Artin–Schreier
polynomial. Indeed, if we take b to be an element which satisfies bp−1 = t, then re-
placing X by bX and dividing by bp will transform X p − tX −1 into the polynomial
X p −X −1/bp. Now we replace X by X + 1/b. Since we are working in character-
istic p, this transforms X p −X −1/bp into X p −X −1/b. (This sort of transforma-
tion plays a crucial role in the proofs of Theorem 5.1 and Theorem 5.10 as well as
in Abhyankar’s and Epp’s work.). Now we see that the Artin–Schreier polynomial
X p −X −1/b plays the same role as X p −X −1/t. Indeed, vb = 1


p−1 and it follows


that (vFp(b) : vFp(t)) = p− 1 = [Fp(b) : Fp(t)], so that vFp(b) = Z
1


p−1 . In this
value group, vb is not divisible by p.


Interchanging the role of purely inseparable and Artin–Schreier extensions in
Example 3.12, we obtain:


Example 3.14. We proceed as in Example 3.12, but replace t−1/pi
by ai, where we


define a1 to be a root of the Artin–Schreier polynomial X p −X − 1/t and ai+1 to
be a root of the Artin–Schreier polynomial X p −X + ai . Now we choose η such
that η p = 1/t. Note that also in this case, a1, . . . ,ai ∈ K(ai) for every i, because
ai = ap


i+1 − ai+1 for every i. By induction on i, we again deduce that va1 = −1/p
and vai =−1/pi for every i. We set L := K(ai | i∈N), that is, L|K is an infinite tower
of Artin–Schreier extensions. By our construction, vL is p-divisible and Lv = Fp is
perfect. On the other hand, for every purely inseparable extension L′|L the group
vL′/vL is a p-group and the extension L′v|Lv is purely inseparable. This fact shows
that (L(η)|L,v) is an immediate extension.


In order to compute v(η −L), we set


ηk :=
k


∑
i=1


ai ∈ L . (8)
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Bearing in mind that ap
i+1 = ai+1 −ai and ap


1 = a1 + 1/t for i ≥ 1, we compute


(η −ηk)p = η p −η p
k =


1
t
−


k


∑
i=1


ap
i =


1
t
−
(


k


∑
i=1


ai −
k−1


∑
i=1


ai +
1
t


)


= ak .


It follows that v(η −ηk) = vak
p =−1/pk+1 . The same argument as in Example 3.12


now shows that again, v(η −L) = (vL)<0.


We can develop Examples 3.12 and 3.14 a bit further in order to treat complete
fields.


Example 3.15. Take one of the immediate extensions (L(ϑ)|L,v) of Example 3.12
and set ζ = ϑ , or take one of the immediate extensions (L(η)|L,v) of Example 3.14
and set ζ = η . Consider the completion (L,v)c = (Lc,v) of (L,v). Since every finite
extension of a complete valued field is again complete, (Lc(ζ ),v) = (L(ζ ).Lc,v) is
the completion of (L(ζ ),v) for every extension of the valuation v from (Lc,v) to
L(ζ ).Lc. Consequently, the extension (Lc(ζ )|L(ζ ),v) and thus also the extension
(Lc(ζ )|L,v) is immediate. It follows that (Lc(ζ )|Lc,v) is immediate. On the other
hand, this extension is non-trivial since v(ζ −L) = (vL)<0 shows that ζ /∈ Lc.


A valued field is maximal if it does not admit any proper immediate extension.
All power series fields are maximal. A valued field is said to have rank 1 if its value
group is archimedean, i.e., a subgroup of the reals. Every complete discretely valued
field of rank 1 is maximal. Every complete valued field of rank 1 is henselian (but
this is not true in general in higher ranks). The previous example proves:


Theorem 3.16. There are complete fields of rank 1 which admit immediate
separable-algebraic and immediate purely inseparable extensions. Consequently,
not every complete field of rank 1 is maximal.


In Example 3.14, we constructed an immediate purely inseparable extension not
contained in the completion of the field. Such extensions can be transformed into
immediate Artin–Schreier defect extensions:


Example 3.17. In the situation of Example 3.14, extend v from L(η) to L̃. Take d ∈ L
with vd ≥ 1/p, and ϑ0 a root of the polynomial X p −dX −1/t. It follows that


−1 = v
1
t


= v(ϑ p
0 −dϑ0) ≥ min{vϑ p


0 ,vdϑ0} = min{pvϑ0,vd + vϑ0}


which shows that we must have vϑ0 < 0. But then


pvϑ0 < vϑ0 < vd + vϑ0,


so


vϑ0 = − 1
p
.
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We compute:


pv(ϑ0 −η) = v(ϑ0 −η)p = v(ϑ p
0 −η p) = v(dϑ0 + 1/t−1/t) = vd + vϑ0 ≥ 0.


Hence, v(ϑ0 −η) ≥ 0, and thus for all c ∈ L,


v(ϑ0 − c) = min{v(ϑ0 −η),v(η − c)} = v(η − c).


In particular, v(ϑ0 −L) = v(η −L) = (vL)<0. The extension (L(ϑ0)|L,v) is imme-
diate and has defect p ; however, this is not quite as easy to show as it has been
before. To make things easier, we choose (K,v) to be henselian, so that also (L,v),
being an algebraic extension, is henselian. So there is only one extension of v from
L to L(ϑ0). Since v(ϑ0 − c) < 0 for all c ∈ L, we have that ϑ0 /∈ L. We also choose
d = bp−1 for some b ∈ L. Then we will see below that L(ϑ0)|L is an Artin–Schreier
extension. If it were not immediate, then e = p or f = p. In the first case, we can
choose some a ∈ L(ϑ0) such that 0,va, . . . ,(p−1)va are representatives of the dis-
tinct cosets of vL(ϑ0) modulo vL. Then 1,a, . . . ,ap−1 are L-linearly independent and
thus form an L-basis of L(ϑ0). Writing ϑ0 = c0 + c1a+ . . .+ cp−1ap−1, we find that
v(η − c0) = v(ϑ0 − c0) = min{vc1 + va, . . . ,vcp−1 +(p− 1)va} /∈ vL as the values
vc1 +va, . . . ,vcp−1 +(p−1)va lie in distinct cosets modulo vL. But this is a contra-
diction. In the second case, f= p, one chooses a ∈ L(ϑ0) such that 1,av, . . . ,(av)p−1


form a basis of L(ϑ0)v|Lv, and derives a contradiction in a similar way. (Using this
method one actually proves that an extension (L(ζ )|L,v) of degree p with unique
extension of the valuation is immediate if and only if v(ζ − L) has no maximal
element.)


Now consider the polynomial X p − dX − 1/t = X p − bp−1X − 1/t and set X =
bY . Then X p − dX − 1/t = bpY p − bpY − 1/t, and dividing by bp we obtain the
polynomial Y p−Y −1/bpt which admits ϑ0/b as a root. So we see that (L(ϑ0)|L,v)
is in fact an immediate Artin–Schreier defect extension. But in comparison with
Example 3.14, something is different:


v


(
ϑ0


b
− L


)


=
{


v


(
ϑ0


b
− c


)


| c ∈ L


}


=
{


v


(
ϑ0


b
− c


b


)


| c ∈ L


}


= {v(ϑ0 − c)− vb | c ∈ L} = {α ∈ vL | α < vb},


where vb > 0.


A similar idea can be used to turn the defect extension of Example 3.1 into a
separable extension. However, in the previous example we made use of the fact that
η was not an element of the completion of (L,v), that is, v(η − L) was bounded
from above. We use a “dirty trick” to first transform the extension of Example 3.1
to an extension whose generator does not lie in the completion of the base field.


Example 3.18. Taking the extension (Fp(t,s)|Fp(t,sp),v) as in Example 3.1, we
adjoin a new transcendental element z to Fp(t,s) and extend the valuation v in
such a way that vs � vt, that is, vFp(t,s,z) is the lexicographic product Z×Z.
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The extension (Fp(t,s,z)|Fp(t,sp,z),v) is still purely inseparable and immediate,
but now s does not lie anymore in the completion Fp(t,sp)((z)) of Fp(t,sp,z).
In fact, v(s−Fp(t,sp,z)) = {α ∈ vFp(t,sp,z) | ∃n ∈ N : nvt ≥ α} is bounded from
above by vz.


Taking ϑ0 to be a root of the polynomial X p − zp−1X − sp we obtain that
v(ϑ0 − c) = v(s− c) for all c ∈ Fp(t,sp,z) and that the Artin–Schreier extension
(Fp(t,ϑ0,z)|Fp(t,sp,z),v) is immediate with defect p. We leave the proof as an ex-
ercise to the reader. Note that one can pass to the henselizations of all fields involved,
cf. Example 3.5.


The interplay of Artin–Schreier extensions and radical extensions that we have
used in the last examples can also be transferred to the mixed characteristic case.
There are infinite algebraic extensions of Qp which admit immediate Artin–Schreier
defect extensions. To present an example, we need a lemma which shows that there
is some quasi-additivity in the mixed characteristic case.


Lemma 3.19. Let (K,v) be a valued field of characteristic 0 and residue character-
istic p > 0, and with valuation ring O. Further, let c1, . . . ,cn be elements in K of
value ≥− vp


p . Then


(c1 + . . .+ cn)p ≡ cp
1 + . . .+ cp


n (mod O).


Proof. Every product of p many ci’s has value ≥ −vp. In view of the fact that


every binomial coefficient
(


p
i


)


is divisible by p for 1 ≤ i ≤ p− 1, we find that


(c1 + c2)p ≡ cp
1 + cp


2 (mod O). Now the assertion follows by induction on n.


Example 3.20. We choose (K,v) to be (Q,vp) or (Qp,vp) or any intermediate field.
Note that we write vp = 1. We construct an algebraic extension (L,v) of (K,v) with
a p-divisible value group as follows. By induction, we choose elements ai in the
algebraic closure of K such that ap


1 = 1/p and ap
i+1 = ai . Then va1 = −1/p and


vai = −1/pi for every i. Hence, the field L := K(ai | i ∈ N) must have p-divisible
value group under any extension of v from K to L. Note that a1, . . . ,ai ∈ K(ai)
for every i. Since (vK(ai+1) : vK(ai)) = p, the fundamental inequality shows that
K(ai+1)v = K(ai)v and that the extension of v is unique, for every i. Hence, Lv =
Qpv = Fp and the extension of v from K to L is unique.


Now we let ϑ be a root of X p −X −1/p. It follows that vϑ = −1/p. We define
bi := ϑ − a1 − . . .− ai . By construction, vai ≥ −1/p for all i. It follows that also
vbi ≥−1/p for all i. With the help of the foregoing lemma, and bearing in mind that
ap


i+1 = ai and ap
1 = 1/p, we compute


0 = ϑ p −ϑ − 1
p


= (bi + a1 + . . .+ ai)p − (bi + a1 + . . .+ ai)−1/p


≡ bp
i −bi + ap


1 + . . .+ ap
i −a1 − . . .−ai−1/p = bp


i −bi−ai (mod O).
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Since vai < 0, we have that vbi = 1
p vai = −1/pi+1 . Hence, (vK(ϑ ,ai) : vK(ai)) =


p = [K(ϑ ,ai) : K(ai)] and K(ϑ ,ai)v = K(ai)v = Fp for every i. If [L(ϑ) : L] < p,
then there would exist some i such that [K(ϑ ,ai) : K(ai)] < p. But we have just
shown that this is not the case. Similarly, if vL(ϑ) would contain an element that
does not lie in the p-divisible hull of Z = vK, or if L(ϑ)v would be a proper ex-
tension of Fp , then the same would already hold for K(ϑ ,ai) for some i. But we
have shown that this is not the case. Hence, (L(ϑ)|L,v) is an Artin–Schreier defect
extension.


For the partial sums ϑk = ∑k
i=1 ai we obtain v(ϑ −ϑk) = vbk =−1/pk+1, and the


same argument as in Example 3.12 shows again that v(ϑ −L) = (vL)<0.


From this example we can derive a special case which was given by Ostrowski
in [57, Section 39] (see also [8, Chap. VI, Section 8, Exercise 2].


Example 3.21. In the last example, we take K = Q2. Then (L(
√


3)|L,v) is an
immediate extension of degree 2. Indeed, this is nothing else than the Artin–Schreier
extension that we have constructed. If one substitutes Y = 1− 2X in the minimal
polynomial Y 2 − 3 of


√
3 and then divides by 4, one obtains the Artin–Schreier


polynomial X p −X −1/2.
This is Ostrowski’s original example. A slightly different version was pre-


sented by Paulo Ribenboim (cf. Example 2 of Chap. G, p. 246): The extension
(L(


√−1)|L,v) is immediate. Indeed, the minimal polynomial Y 2 + 1 corresponds
to the Artin–Schreier polynomial X p −X + 1/2 which does the same job as X p −
X −1/2.


As in the equal characteristic case, we can interchange the role of radical exten-
sions and Artin–Schreier extensions:


Example 3.22. We proceed as in Example 3.20, with the only difference that we
define a1 to be a root of the Artin–Schreier polynomial X p − X − 1/p and ai+1


to be a root of the Artin–Schreier polynomial X p − X + ai , and that we choose
η such that η p = 1/p. Note that also in this case, a1, . . . ,ai ∈ K(ai) for every i,
because ai = ap


i+1 −ai+1 for every i. By induction on i, we again deduce that va1 =
−1/p and that vai =−1/pi for every i. As before, we define bi := η −a1− . . .−ai .
Using Lemma 3.19 and bearing in mind that ap


i+1 = ai+1−ai and ap
1 = a1 +1/p, we


compute


0 = η p − 1
p


= (bi + a1 + . . .+ ai)p −1/p


≡ bp
i + ap


1 + . . .+ ap
i −1/p = bp


i + ai (mod O).


It follows that v(bp
i + ai) ≥ 0 > vai . Consequently, vbp


i = −1/pi+1 , that is, vbi =
1
p vai = vai+1 . As before, we set L := K(ai | i ∈ N). Now the same arguments as
in Example 3.20 show that (L(η)|L,v) is an immediate extension with v(η −L) =
(vL)<0.







The defect 293


It can happen that it takes just a finite defect extension to make a field defectless
and even maximal. The following example is due to Masayoshi Nagata ([54,
Appendix, Example (E3.1), pp. 206–207]):


Example 3.23. We take a field k of characteristic p and such that [k : kp] is infinite,
e.g., k = Fp(ti|i ∈ N) where the ti are algebraically independent elements over Fp.
Taking t to be another transcendental element over k we consider the power series
fields k((t)) and kp((t)) = kp((t p))(t) = k((t))p(t). Since [k : kp] is not finite, we
have that k((t))|kp((t)).k is a non-trivial immediate purely inseparable algebraic
extension. In fact, a power series in k((t)) is an element of kp((t)).k if and only if
its coefficients generate a finite extension of kp. Since kp((t)).k contains k((t))p,
this extension is generated by a set X = {xi | i ∈ I} ⊂ k((t)) such that xp


i ∈ kp((t)).k
for every i ∈ I. Assuming this set to be minimal, or in other words, the xi to be
p-independent over kp((t)).k, we pick some element x ∈ X and put K := kp((t)).
k(X \ {x}). Then k((t))|K is a purely inseparable extension of degree p. Moreover,
it is an immediate extension; in fact, k((t)) is the completion of K. As an algebraic
extension of kp((t)), K is henselian.


This example proves:


Theorem 3.24. There is a henselian discretely valued field (K,v) of characteristic p
admitting a finite immediate purely inseparable extension (L|K,v) of degree p such
that (L,v) is complete, hence maximal and thus defectless.


For the conclusion of this section, we shall give an example which is due to
Françoise Delon (cf. [16], Example 1.51). It shows that an algebraically maximal
field is not necessarily a defectless field, and that a finite extension of an alge-
braically maximal field is not necessarily again algebraically maximal.


Example 3.25. We consider Fp((t)) with its t-adic valuation v = vt . We choose
elements x,y ∈ Fp((t)) which are algebraically independent over Fp(t). We set
L := Fp(t,x,y) and define


s := xp + typ and K := Fp(t,s).


Then s is transcendental over Fp(t) and therefore, K has p-degree 2, that is,
[K : K p] = p2. We take F to be the relative algebraic closure of K in Fp((t)).
Since the elements 1,t1/p, . . . ,t(p−1)/p are linearly independent over Fp((t)), the
same holds over F . Hence, the elements 1,t, . . . ,t p−1 are linearly independent over
F p. Now if F had p-degree 1, then s could be written in a unique way as an F p-
linear combination of 1,t, . . . ,t p−1. But this is not possible since s = xp + typ and
x,y are transcendental over F . Hence, the p-degree of F is still 2 (as it cannot in-
crease through algebraic extensions). On the other hand, vF = vFp((t)) = Z and
Fv = Fp((t))v = Fp , hence (vF : pvF) = p and [Fv : Fvp] = 1. Now Theorem 6.3
shows that (F,v) is not inseparably defectless. Again from Theorem 6.3, we infer
that F1/p = F(t1/p,s1/p) must be an extension of F with non-trivial defect. So F is
not a defectless field.
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On the other hand, Fp((t)) is the completion of F since it is already the
completion of Fp(t) ⊆ F . This shows that Fp((t)) is the unique maximal imme-
diate extension of F (up to valuation preserving isomorphism over F). If F would
admit a proper immediate algebraic extension F ′, then a maximal immediate exten-
sion of F ′ would also be a maximal immediate extension of F and would thus be
isomorphic over F to Fp((t)). But we have chosen F to be relatively algebraically
closed in Fp((t)). This proves that (F,v) must be algebraically maximal.


As (F,v) is algebraically maximal, the extension F1/p|F cannot be immediate.
Therefore, the defect of F1/p|F implies that both F1/p|F(s1/p) and F1/p|F(t1/p)
must be non-trivial immediate extensions. Consequently, F(s1/p) and F(t1/p) are
not algebraically maximal.


Let us add to Delon’s example by analyzing the situation in more detail and prov-
ing that F is the henselization of K and thus a separable extension of K. To this end,
we first prove that K is relatively algebraically closed in L. Take b∈ L algebraic over
K. The element bp is algebraic over K and lies in Lp = Fp(t p,xp,yp) and thus also
in K(x) = Fp(t,x,yp). Since x is transcendental over K, K is relatively algebraically
closed in K(x) and thus, bp ∈ K. Consequently, b ∈ K1/p = Fp(t1/p,s1/p). Write


b = r0 + r1s
1
p + . . .+ rp−1s


p−1
p with ri ∈ Fp(t1/p,s) = K(t1/p).


By the definition of s,


b = r0 + r1x + . . .+ rp−1xp−1 + . . .+ t1/pr1y + . . .+ t(p−1)/prp−1yp−1


(in the middle, we have omitted the summands in which both x and y appear). Since
x,y are algebraically independent over Fp, the p-degree of Fp(x,y) is 2, and the ele-
ments xiy j, 0≤ i < p, 0≤ j < p, form a basis of Fp(x,y)|Fp(xp,yp). Since t and t1/p


are transcendental over Fp(xp,yp), we know that Fp(x,y)|Fp(xp,yp) is linearly dis-
joint from Fp(t,xp,yp)|Fp(xp,yp) and from Fp(t1/p,xp,yp)|Fp(xp,yp). This shows
that the elements xiy j also form a basis of L|Fp(t,xp,yp) and are still Fp(t1/p,xp,yp)-
linearly independent. Hence, b can also be written as a linear combination of these
elements with coefficients in Fp(t,xp,yp), and this must coincide with the above
Fp(t1/p,xp,yp)-linear combination which represents b. That is, all coefficients ri


and ti/pri, 1 ≤ i < p, are in Fp(t,xp,yp). Since ti/p /∈ Fp(t,xp,yp), this is impos-
sible unless they are zero. It follows that b = r0 ∈ K(t1/p). Assume that b /∈ K.
Then [K(b) : K] = p and thus, K(b) = K(t1/p) since also [K(t1/p) : K] = p. But
then t1/p ∈ K(b) ⊂ L, a contradiction. This proves that K is relatively algebraically
closed in L.


On the other hand, t1/p = y−1(s1/p − x) ∈ L(s1/p). Hence, L.K1/p = L(t1/p,s1/p)
= L(s1/p) and [L.K1/p : L] = [L(s1/p) : L] ≤ p < p2 = [K1/p : K], that is, L|K is
not linearly disjoint from K1/p|K and thus not separable. Although being finitely
generated, L|K is consequently not separably generated; in particular, it is not a
rational function field. At the same time, we have seen that K(s1/p) admits a non-
trivial purely inseparable algebraic extension in L(s1/p) (namely, K1/p). In contrast,
K(s1/p) and L are K-linearly disjoint because s1/p /∈ L.
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Let us prove even more: if K1|K is any proper inseparable algebraic extension,
then t1/p ∈ L.K1 . Take such an extension K1|K. Then there is some separable-
algebraic subextension K2|K and an element a ∈ K1 \K2 such that ap ∈ K2 . Since
K2|K is separable and K is relatively algebraically closed in L, we see that K2


is relatively algebraically closed in L2 := L.K2 . Hence, a /∈ L2 and therefore,


[L2(a) : L2] = p. On the other hand, K1/p
2 = K1/p.K2 and thus, L2.K


1/p
2 = L2.K1/p =


L.K1/p.K2 . Consequently, [L.K1/p : L] = p implies that [L2.K
1/p
2 : L2] = [L.K1/p.K2 :


L.K2] ≤ p. Since a ∈ K1/p
2 ⊂ L2.K


1/p
2 and [L2(a) : L2] = p, it follows that L2.K


1/p
2 =


L2(a). We obtain:


t1/p ∈ K1/p ⊆ K1/p
2 ⊆ L2.K


1/p
2 = L2(a) ⊆ L.K1.


If F |K were inseparable, then t1/p ∈ L.F , which contradicts the fact that L.F ⊆
Fp((t)). This proves that F |K is separable. Since F is relatively closed in the
henselian field Fp((t)), it is itself henselian and thus contains the henselization Kh


of K. Now Fp((t)) is the completion of Kh since it is already the completion of
Fp(t)⊆ Kh. Since a henselian field is relatively separable-algebraically closed in its
completion (cf. [65], Theorem 32.19), it follows that F = Kh.


Note that the maximal immediate extension Fp((t)) of F is not a separable ex-
tension since its subextension L.F |F is not linearly disjoint from K1/p|K.


This example proves:


Theorem 3.26. There are algebraically maximal fields which are not inseparably
defectless. Hence, “algebraically maximal” does not imply “defectless”. There are
algebraically maximal fields admitting a finite purely inseparable extension which
is not an algebraically maximal field.


4 Absolute ramification theory


Assume that L|K is an algebraic extension, not necessarily finite, and that v is a non-
trivial valuation on K. We choose an arbitrary extension of v to the algebraic closure
K̃ of K. Then for every σ ∈ Aut(K̃|K), the map


vσ = v◦σ : L � a �→ v(σa) ∈ vK̃ (9)


is a valuation of L which extends v. All extensions of v from K to L are conjugate:


Theorem 4.1. The set of all extensions of v from K to L is


{vσ | σ an embedding of L in K̃ over K}.


In particular, a valuation on K has a unique extension to every purely inseparable
field extension of K.
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We will now give a quick introduction to absolute ramification theory, that is,
the ramification theory of the extension K̃|K with respect to a given valuation v
on K̃ with valuation ring OK̃ . For a corresponding quick introduction to general
ramification theory, see [40].


We define distinguished subgroups of the absolute Galois group G := GalK :=
Aut(K̃|K) = Aut(Ksep|K) of K, with respect to a fixed extension of v to K̃, which
we again call v. The subgroup


Gd := {σ ∈ G | vσ = v on K̃} (10)


is called the absolute decomposition group of (K,v) (w.r.t. (K̃,v)). Further, the
absolute inertia group (w.r.t. (K̃,v)) is defined to be


Gi := {σ ∈ G | ∀x ∈ OK̃ : v(σx− x) > 0}, (11)


and the absolute ramification group (w.r.t. (K̃,v)) is


Gr := Gr(L|K,v) := {σ ∈ G | ∀x ∈ OK̃ \ {0} : v(σx− x) > vx}. (12)


The fixed fields Kd , Ki and Kr of Gd , Gi and Gr, respectively, in Ksep are called the
absolute decomposition field, absolute inertia field, and absolute ramification field
of (K,v) (with respect to the given extension of v to K̃).


Remark 4.2. In contrast to the classical definition used by other authors, we take
decomposition field, inertia field and ramification field to be the fixed fields of the
respective groups in the separable-algebraic closure of K. The reason for this will
become clear later.


By our definition, Kd , Ki, and Kr are separable-algebraic extensions of K, and
Ksep|Kr, Ksep|Ki, Ksep|Kd are (not necessarily finite) Galois extensions. Further,


1 ⊂ Gr ⊂ Gi ⊂ Gd ⊂ G and thus, Ksep ⊃ Kr ⊃ Ki ⊃ Kd ⊃ K . (13)


(For the inclusion Gi ⊂Gd note that vx ≥ 0 and v(σx−x) > 0 implies that vσx ≥ 0.)


Theorem 4.3. Gi and Gr are normal subgroups of Gd, and Gr is a normal subgroup
of Gi. Therefore, Ki|Kd, Kr|Kd, and Kr|Ki are (not necessarily finite) Galois exten-
sions.


First, we consider the decomposition field Kd . In some sense, it represents all
extensions of v from K to K̃.


Theorem 4.4. (a) vσ = vτ on K̃ if and only if στ−1 is trivial on Kd.
(b) vσ = v on Kd if and only if σ is trivial on Kd.
(c) The extension of v from Kd to K̃ is unique.
(d) The extension (Kd |K,v) is immediate.


WARNING: It is in general not true that vσ �= vτ holds already on Kd if it holds
on K̃.
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Assertions (a) and (b) are easy consequences of the definition of Gd . Part
(c) follows from (b) by Theorem 4.1. For (d), there is a simple proof using a
trick mentioned by James Ax in [5, Appendix]; see also [5, Theorem 22, p. 70 and
Theorem 23, p. 71] and [19].


Now we turn to the inertia field Ki. Let MK̃ denote the valuation ideal of v on K̃
(the unique maximal ideal of OK̃). For every σ ∈ Gd we have that σOK̃ = OK̃ , and
it follows that σMK̃ = MK̃ . Hence, every such σ induces an automorphism σ of
OK̃/MK̃ = K̃v = K̃v which satisfies σ(av) = (σa)v. Since σ fixes K, it follows that
σ fixes Kv.


Lemma 4.5. The map
Gd � σ �→ σ ∈ GalKv (14)


is a group homomorphism.


Theorem 4.6. (a) The homomorphism (14) is onto and induces an isomorphism


Aut(Ki|Kd) = Gd/Gi � Aut(Kiv|Kdv). (15)


(b) For every finite subextension F |Kd of Ki|Kd,


[F : Kd ] = [Fv : Kdv]. (16)


(c) We have that vKi = vKd = vK. Further, Kiv is the separable closure of Kv, and
therefore


Aut(Kiv|Kdv) = GalKv. (17)


If F|Kd is normal, then (b) is an easy consequence of (a). From this, the general
assertion of (b) follows by passing from F to the normal hull of the extension F |Kd


and then using the multiplicativity of the extension degree. (c) follows from (b) by
use of the fundamental inequality.


We set p := charKv if this is positive, and p := 1 if charKv = 0. Given any
abelian group Δ , the p′-divisible hull of Δ is defined to be the subgroup {α ∈ Δ̃ |
∃n ∈ N : (p,n) = 1 ∧ nα ∈ Δ} of all elements in the divisible hull Δ̃ of Δ whose
order modulo Δ is prime to p.


Theorem 4.7. (a) There is an isomorphism


Aut(Kr|Ki) = Gi/Gr � Hom
(
vKr/vKi , (Krv)×


)
, (18)


where the character group on the right hand side is the full character group of
the abelian group vKr/vKi. Since this group is abelian, Kr|Ki is an abelian Galois
extension.
(b) For every finite subextension F |Ki of Kr|Ki,


[F : Ki] = (vF : vKi). (19)


(c) Krv = Kiv, and vKr is the p′-divisible hull of vK.







298 Franz-Viktor Kuhlmann


Part (b) follows from part (a) since for a finite extension F|Ki, the group vF/vKi is
finite and thus there exists an isomorphism of vF/vKi onto its full character group.
The equality Krv = Kiv follows from (b) by the fundamental inequality. The second
assertion of part (c) follows from the next theorem and the fact that the order of
all elements in (Kiv)× and thus also of all elements in Hom


(
vKr/vKi , (Kiv)×


)
is


prime to p.


Theorem 4.8. The ramification group Gr is a p-group, hence Ksep|Kr is a
p-extension. Further, vK̃/vKr is a p-group, and the residue field extension K̃v|Krv
is purely inseparable. If charKv = 0, then Kr = Ksep = K̃.


We note:


Lemma 4.9. Every p-extension is a tower of Galois extensions of degree p. In
characteristic p, all of them are Artin–Schreier extensions.


From Theorem 4.8 it follows that there is a canonical isomorphism


Hom
(
vKr/vKi , (Kiv)×


) � Hom
(
vK̃/vK , (K̃v)×


)
. (20)


The following theorem will be very useful for our purposes:


Theorem 4.10. If K′|K is algebraic, then the absolute decomposition field of (K′,v)
is Kd .K′, its absolute inertia field is Ki.K′, and its absolute ramification field is
Kr.K′ .


From part (c) of Theorem 4.4 we infer that the extension of v from Kd to K̃
is unique. On the other hand, if L is any extension field of K within Kd , then
by Theorem 4.10, Kd = Ld . Thus, if L �= Kd , then it follows from part (b) of
Theorem 4.4 that there are at least two distinct extensions of v from L to Kd and
thus also to K̃ = L̃. This proves that the absolute decomposition field Kd is a min-
imal algebraic extension of K admitting a unique extension of v to its algebraic
closure. So it is the minimal algebraic extension of K which is henselian. We call
it the henselization of (K,v) in (K̃,v). Instead of Kd , we also write Kh. A valued
field is henselian if and only if it is equal to its henselization. Henselizations have
the following universal property:


Theorem 4.11. Let (K,v) be an arbitrary valued field and (L,v) a henselian ex-
tension field of (K,v). Then there is a unique embedding of (Kh,v) in (L,v)
over K.


From part (d) of Theorem 4.4, we obtain another very important property of the
henselization:


Theorem 4.12. The henselization (Kh,v) is an immediate extension of (K,v).


Corollary 4.13. Every algebraically maximal and every maximal valued field is
henselian. In particular, (K((t)),vt) is henselian.
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We employ Theorem 4.10 again to obtain:


Theorem 4.14. If K′|K is an algebraic extension, then the henselization of K′ is
K′.Kh . Every algebraic extension of a henselian field is again henselian.


In conjunction with Theorems 4.6 and 4.7, Theorem 4.10 is also used to prove
that there are no defects between Kh and Kr:


Theorem 4.15. Take a finite extension K2|K1 such that Kh ⊆ K1 ⊆ K2 ⊆ Kr. Then
(K2|K1,v) is defectless.


Proof. Since K3 := K2 ∩Ki
1 is a finite subextension of Ki


1|K1, we have by parts (b)
and (c) of Theorem 4.6 that [K3 : K1] = [K3v : K1v] and vK3 = vK1. Since Ki


1|K1 is
Galois, K2 is linearly disjoint from Ki


1 over K3. That is, [K2.Ki
1 : Ki


1] = [K2 : K3]. By
Theorem 4.10, K2 ⊆ Kr = K1.Kr = Kr


1, so also K2.Ki
1|Ki


1 is a finite subextension of
Kr


1|Ki
1. By part (b) of Theorem 4.7, we thus have [K2.Ki


1 : Ki
1] = (v(K2.Ki


1) : vKi
1).


By Theorem 4.10, Ki
1 = Ki


1.K3 = Ki
3 and K2.Ki


1 = Ki
2, so by part (c) of Theorem 4.6,


vKi
1 = vKi


3 = vK3 and v(K2.Ki
1) = vKi


2 = vK2. Therefore,


[K2 : K3] = [K2.K
i
1 : Ki


1] = (v(K2.K
i
1) : vKi


1) = (vK2 : vK3) = (vK2 : vK1)


Putting everything together, we obtain


[K2 : K1] = [K2 : K3][K3 : K1] = (vK2 : vK1)[K3v : K1v]
≤ (vK2 : vK1)[K2v : K1v] ≤ [K2 : K1],


so that equality must hold everywhere, which shows that (K2|K1,v) is defectless.


An algebraic extension of Kh is called purely wild if it is linearly disjoint from Kr


over Kh. The following theorem has been proved by Matthias Pank (see Theorem 4.3
and Proposition 4.5 of [49]):


Theorem 4.16. Every maximal purely wild extension W of Kh satisfies W.Kr = K̃
and hence is a field complement of Kr in K̃. Moreover, W r = W̃ , vW is the p-divisible
hull of vK, and Wv is the perfect hull of Kv.


Lemma 4.17. If (L|Kh,v) is a finite extension, then its defect is equal to the defect
of (L.Kr|Kr,v).


Proof. We put L0 := L∩Kr. We have L.Kr = Lr and Lr
0 = Kr by Theorem 4.10.


Since Kr|Kh is normal, L is linearly disjoint from Kr = Lr
0 over L0 , and (L|L0,v) is


thus a purely wild extension.
As a finite subextension of (Kr|Kh,v), the extension (L0|Kh,v) is defectless.


Hence by the multiplicativity of the defect (4),


d(L|Kh,v) = d(L|L0,v). (21)
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It remains to show d(L|L0,v) = d(L.Kr|Kr,v). Since L|L0 is linearly disjoint from
Kr|L0 , we have


[Lr : Lr
0] = [L.Kr : Lr


0] = [L : L0]. (22)


Since L|L0 is purely wild, vL/vL0 is a p-group and Lv|L0v is purely inseparable. On
the other hand, by Theorem 4.7,


vLr is the p′-divisible hull of vL and Lrv = (Lv)sep,
vLr


0 is the p′-divisible hull of vL0 and Lr
0v = (L0v)sep.


It follows that


(vLr : vLr
0) = (vL : vL0) and [Lrv : Lr


0v] = [Lv : L0v]. (23)


From (21), (22) and (23), keeping in mind that L.Kr = Lr and Kr = Lr
0, we deduce


d(L.Kr|Kr,v) = d(Lr|Lr
0,v) =


[Lr : Lr
0]


(vLr : vLr
0)[Lrv : Lr


0v]


=
[L : L0]


(vL : vL0) · [Lv : L0v]
= d(L|L0,v) = d(L|Kh,v).


We can now describe the ramification theoretic proof for the lemma of Ostrowski
(see also [67, Corollary to Theorem 25, p. 78]). Take a finite extension (L′|L,v) of
henselian fields. Then L = Lh. By the foregoing theorem, d(L′|L,v) = d(L′.Lr|Lr,v).
It follows from Theorem 4.7 that [L′.Lr : Lr] is a power of p. Hence also
d(L′.Lr|Lr,v), being a divisor of it, is a power of p.


We see that non-trivial defects can only appear between Kr and K̃, or equiva-
lently, between Kh and W . These are the areas of wild ramification, whereas the
extension from Ki to Kr is the area of tame ramification. Hence, local uniformiza-
tion in characteristic 0 and the classification problem for valued fields of residue
characteristic 0 only have to deal with tame ramification, while the two problems
we described in Section 2 also have to fight the wild ramification.


An algebraic extension (L′|L,v) of henselian fields is called unramified if every
finite subextension is unramified. An algebraic extension (L′|L,v) of henselian fields
is called tame if every finite subextension (L′′|L,v) is defectless and such that
(L′′v|Lv) is separable and p does not divide (vL′′ : vL). A henselian field (L,v) is
called a tame field if (L̃|L,v) is a tame extension, and it is called a separably tame
field if (Lsep|L,v) is a tame extension. The fields W of Theorem 4.16 are examples
of tame fields.


The proof of the following theorem is given in [38].


Theorem 4.18. The absolute inertia field is the unique maximal unramified
extension of Kh in (K̃,v). The absolute ramification field is the unique maximal
tame extension of Kh in (K̃,v).


Note that an extension is tame if and only if it is defectless and “tamely rami-
fied” in the sense of [18, Section 22]. As we have already mentioned, our notion
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of “unramified” is the same as “defectless” plus “unramified” in the sense of
[18, Section 22] Hence for defectless valuations, the above theorem follows from
[18, Corollary (22.9)].


In algebraic geometry, the absolute inertia field is often called the strict henseli-
zation. Theorem 2.1 can be understood as saying that the Implicit Function
Theorem, or equivalently, Hensel’s Lemma, works within and only within the
strict henselization. That the limit is the strict henselization and not the henseliza-
tion becomes intuitively clear when one considers one of the equivalent forms of
Hensel’s Lemma which states that if f has coefficients in the valuation ring of a
henselian field, then every simple root of the reduced polynomial f v (obtained by
replacing the coefficients by their residues) can be lifted to a root of f . On the
other hand, irreducible polynomials have only simple roots if and only if they are
separable. Hence, it is clear that Hensel’s Lemma works as long as the residue field
extensions are separable, which is the case between Kh and Ki.


We summarize our main results in the following table:


GalK


Gd


Gi


Gr


1


Galois group


K


Kh


Ki


Kr


Ksep


K̃


field


vK


vK


vK


1
p′∞ vK


ṽK


ṽK


value group


Kv


Kv


(Kv)sep


(Kv)sep


K̃v


K̃v


residue field


GalKv


Char


immediate


Galois,
defectless


abelian Galois
p′-extension,
defectless


Galois
p-extension


purely
inseparable


division
by p


division
prime to p


Galois


purely
inseparable


absolute
decomposition


field


absolute
inertia
field


absolute
ramification


field


separable-
algebraic
closure


where 1
p′∞ vK denotes the p′-divisible hull of vK and Char denotes the character


group (20).
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5 Two theorems


5.1 The stability theorem


In this section we present two theorems about the defect which we have used for
our results on local uniformization and in the model theory of valued fields in pos-
itive characteristic. The first one describes situations where no defect appears. The
second one deals with certain situation where defect may well appear, but shows
that the defect can be eliminated.


Let (L|K,v) be an extension of valued fields of finite transcendence degree. Then
the following well known form of the “Abhyankar inequality” holds:


trdegL|K ≥ rrvL/vK + trdegLv|Kv, (24)


where rrvL/vK := dimQ (vL/vK)⊗Q is the rational rank of the abelian group
vL/vK, i.e., the maximal number of rationally independent elements in vL/vK. This
inequality is a consequence of Theorem 1 of [8, Chap. VI, Section 10.3], which
states that if


⎧
⎨


⎩


x1, . . . ,xρ ,y1, . . . ,yτ ∈ L such that
vx1, . . . ,vxρ are rationally independent over vK, and
y1v, . . . ,yτ v are algebraically independent over Kv,


(25)


then x1, . . . ,xρ ,y1, . . . ,yτ are algebraically independent over K. We will say that
(L|K,v) is without transcendence defect if equality holds in (24). In this case, every
set {x1, . . . ,xρ ,y1, . . . ,yτ} satisfying (25) with ρ = rrvL/vK and τ = trdegLv|Kv is
a transcendence basis of L|K.


If (F |K,v) is a valued function field without transcendence defect, then the
extensions vF |vK and Fv|Kv are finitely generated (cf. [34, Corollary 2.2]).


Theorem 5.1. (Generalized Stability Theorem)
Let (F |K,v) be a valued function field without transcendence defect. If (K,v) is a
defectless field, then (F,v) is a defectless field. The same holds for “inseparably
defectless” in the place of “defectless”. If vK is cofinal in vF, then it also holds for
“separably defectless” in the place of “defectless”.


If the base field K is not a defectless field, we can say at least the following:


Corollary 5.2. Let (F |K,v) be a valued function field without transcendence defect,
and E|F a finite extension. Fix an extension of v from F to K̃.F . Then there is a
finite extension L0|K such that for every algebraic extension L of K containing L0 ,
(L.F,v) is defectless in L.E . If (K,v) is henselian, then L0|K can be chosen to be
purely wild.


Theorem 5.1 was stated and proved in [37]; the proof presented in [45] is an
improved version.


The theorem has a long and interesting history. Hans Grauert and Reinhold
Remmert [21, p. 119] first proved it in a very restricted case, where (K,v) is
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an algebraically closed complete discretely valued field and (F,v) is discrete too.
A generalization was given by Laurent Gruson [26, Théorème 3, p. 66]. A good
presentation of it can be found in the book on non-archimedean analysis by Siegfried
Bosch, Ulrich Güntzer and Reinhold Remmert [9, Section 5.3.2, Theorem 1]. Fur-
ther generalizations are due to Michel Matignon and Jack Ohm, and also follow
from results in [23] and [24]. Ohm arrived independently of [37] at a general ver-
sion of the Stability Theorem for the case of trdegL|K = trdegLv|Kv (see the second
theorem on p. 306 of [56]). He deduces his theorem from Proposition 3 on p. 215 of
[9], (more precisely, from a generalized version of this proposition which is proved
but not stated in [9]).


All authors mentioned in the last paragraph use methods of non-archimedean
analysis, and all results are restricted to the case of trdegF |K = trdegFv|Kv. In
this case we call the extension (F |K,v) residually transcendental, and we call the
valuation v a constant reduction of the algebraic function field F |K. The classical
origin of such valuations is the study of curves over number fields and the idea
to reduce them modulo a p-adic valuation. Certainly, the reduction should again
render a curve, this time over a finite field. This is guaranteed by the condition
trdegF|K = trdegFv|Kv, where F is the function field of the curve and Fv will
be the function field of its reduction. Naturally, one seeks to relate the genus of
F |K to that of Fv|Kv . Several authors proved genus inequalities (see, for example,
[17, 23, 53] and the survey given in [22]). To illustrate the use of the defect, we
will cite an inequality proved by Barry Green, Michel Matignon, and Florian Pop
[23, Theorem 3.1]. Let F|K be a function field of transcendence degree 1, and v a
constant reduction of F |K. We choose a henselization Fh of (F,v); all henselizations
of subfields of F will be taken in Fh. We wish to define a defect of the extension
(Fh|Kh,v) even though this extension is not algebraic. The following result helps:


Theorem 5.3. (Independence Theorem)
The defect of the algebraic extension (Fh|K(t)h,v) is independent of the choice of
the element t ∈ F, provided that tv is transcendental over Kv.


In [56], Ohm proves a more general version of this theorem for arbitrary transcen-
dence degree, using his version of the Stability Theorem. The Stability Theorem
tells us that in essence, the defect of a residually transcendental function field, and
more generally, of a function field without transcendence defect, can only come
from the base field. The following general Independence Theorem was proved in
[37, Theorem 5.4 and Corollary 5.6]:


Theorem 5.4. Take a valued function field (F |K,v) without transcendence defect,
and set ρ = rrvF/vK and τ = trdegFv|Kv. The defect of the extension


(Fh|K(x1, . . . ,xρ ,y1, . . . ,yτ)h,v)


is independent of the choice of the elements x1, . . . ,xρ ,y1, . . . ,yτ as long as they
satisfy (25). Moreover, there is a finite extension K′|K such that


(Fh.K′|K′(x1, . . . ,xρ ,y1, . . . ,yτ )h,v)
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is defectless and


d(Fh.K′|K(x1, . . . ,xρ ,y1, . . . ,yτ)h,v) = d(Kh.K′|Kh,v).


A special case for simple transcendental extensions (K(x)|K,v) satisfying


trdegK(x)|K = rrvK(x)/vK


was proved by Sudesh Khanduja in [33].


An interesting proof of Theorem 5.3 is given in [23], as it introduces another
notion of defect. We take any valued field extension (L|K,v) and a finite-
dimensional K-vector space V ⊆ L. We choose a system V of representatives of
the cosets va+ vK, 0 �= a ∈V . For every K-vector space W ⊆V and every γ ∈ V we
set Wγ := {a ∈W | va ≥ 0} and W ◦


γ := {a ∈W | va > 0}. The quotient Wγ/W ◦
γ is in


a natural way a Kv-vector space. The vector space defect of (V |K,v) is defined as


dvs(V |K,v) := sup
W⊆V


dimK W


∑γ∈V dimKv Wγ/W ◦
γ


,


where the supremum runs over all finite-dimensional subspaces W . For a finite ex-
tension (L|K,v), by [23, Proposition 2.2],


dvs(L|K,v) =
[L : K]


(vL : vK)[Lv : Kv]


which is equal to the ordinary defect d(L|K,v) if the extension of v from K to L is
unique.


Note that quotients of the form Wγ/W ◦
γ also appear in the definition of the graded


ring of a subring in a valued field, then often written as “Pγ/P+
γ ” (see, for instance,


[64, Section 2]). Graded rings are used by Bernard Teissier in his program for a
“characteristic blind” local uniformization, see [62].


The following result ([23, Theorem 2.13]) implies the Independence Theorem 5.3:


Theorem 5.5. For every element t ∈ F such that tv is transcendental over Kv,


dvs(F |K,v) = (Fh|K(t)h,v) .


Now we are ready to cite the genus inequality for an algebraic function field F |K
with distinct constant reductions v1, . . . ,vs which have a common restriction to K.
We assume in addition that K coincides with the constant field of F |K (the relative
algebraic closure of K in F). Then:


1−gF ≤ 1− s+
s


∑
i=1


dieiri(1−gi) (26)


where gF is the genus of F |K and gi the genus of Fvi|Kvi , ri is the degree of the
constant field of Fvi|Kvi over Kvi , di = dvs(F |K,vi), and ei = (viF : viK) (which is
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always finite in the constant reduction case, see, for instance, [42, Corollary 2.7]).
It follows that constant reductions v1,v2 with common restriction to K and g1 =
g2 = gF ≥ 1 must be equal. In other words, for a fixed valuation on K there is at
most one extension v to F which is a good reduction, that is, (i) gF = gFv , (ii) there
exists f ∈ F such that v f = 0 and [F : K( f )] = [Fv : Kv( f v)], (iii) Kv is the constant
field of Fv|Kv . An element f as in (ii) is called a regular function.


More generally, f is said to have the uniqueness property if f v is transcendental
over Kv and the restriction of v to K( f ) has a unique extension to F . In this case,
[F : K( f )] = d · e · [Fv : Kv( f v)] where d is the defect of (Fh|Kh,v) and e = (vF :
vK( f )) = (vF : vK). If K is algebraically closed, then e= 1, and it follows from the
Stability Theorem that d= 1; hence, in this case, every element with the uniqueness
property is regular.


It was proved in [24, Theorem 3.1] that F has an element with the uniqueness
property already if the restriction of v to K is henselian. The proof uses Abraham
Robinson’s model completeness result for algebraically closed valued fields, and
ultraproducts of function fields. Elements with the uniqueness property also exist
if vF is a subgroup of Q and Kv is algebraic over a finite field. This follows from
work in [25] where the uniqueness property is related to the local Skolem property
which gives a criterion for the existence of algebraic v-adic integral solutions on
geometrically integral varieties. This result is a special case of a theorem proved in
[32] which states that elements with the uniqueness property exist if and only if the
completion of (K,v) is henselian.


As an application to rigid analytic spaces, the Stability Theorem is used to prove
that the quotient field of the free Tate algebra Tn(K) is a defectless field, provided
that K is. This in turn is used to deduce the Grauert–Remmert Finiteness Theorem, in
a generalized version due to Gruson; see [9, pp. 214–220] for “a simplified version
of Gruson’s approach”.


In contrast to the approaches that use methods of non-archimedean analysis, we
give in [37,38] and [45] a new proof which replaces the analytic methods by valua-
tion theoretical arguments. Such arguments seem to be more adequate for a theorem
that is of (Krull) valuation theoretical nature.


Our approach has much in common with Abhyankar’s method of using rami-
fication theory in order to reduce the question of resolution of singularities to the
study of purely inseparable extensions and of Galois extensions of degree p and the
search for suitable normal forms of Artin–Schreier-like minimal polynomials (cf.
[2]). Given a finite separable extension (L′|L,v) of henselian fields of positive char-
acteristic, we can study its properties by lifting it up to the absolute ramification
fields. From Lemma 4.17 we know that the defect of (L′|L,v) is equal to the defect
of (L′.Lr|Lr,v). From Lemma 4.9 we know that the extension L′.Lr|Lr is a tower of
Artin–Schreier extensions.


Abhyankar’s ramification theoretical reduction to Artin–Schreier extensions and
purely inseparable extensions is also used by Vincent Cossart and Olivier Piltant
in [13] to reduce resolution of singularities of threefolds in positive character-
istic to local uniformization on Artin–Schreier and purely inseparable coverings.
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The Artin–Schreier extensions appearing through this reduction are not necessarily
defect extensions. According to Piltant, those that are, are harder to treat than the
defectless ones.


In the situation of Theorem 5.1, we have to prove for L = Fh that (L′|L,v) is
defectless, or equivalently, that each Artin–Schreier extension in the tower is de-
fectless. Looking at the first one in the tower, assume that it is generated by a root
ϑ of a polynomial X p −X − a with a ∈ Lr. Using the additivity of the Frobenius
in characteristic p, we see that the element ϑ − c, which generates the same ex-
tension, has minimal polynomial X p −X − (a− cp + c). Hence, if a contains some
p-th power cp, we can replace it by c without changing the extension. Using this
fact and the special structure of (Fh,v) given by the assumptions of Theorem 5.1 on
(F,v), we deduce normal forms for a which allow us to read off that the extension
is defectless. This fact in turn implies that (Fh(ϑ),v) is again of the same special
form as (Fh,v), which enables us to proceed by induction over the extensions in the
tower.


Note that when algebraic geometers work with Artin–Schreier extensions they
usually work with polynomials of the form X p − dX − a. The reason is that they
work over rings and not over fields. A polynomial like X p − bp−1X − a over a
ring R can be transformed into the polynomial X p − X − a/bp, as we have seen
in Example 3.17, but a/bp does in general not lie in the ring anymore. Working
with a polynomial of the form X p −X − a is somewhat easier than with a polyno-
mial of the form X p −dX −a, and it suffices to derive normal forms as needed for
the proof of Theorem 5.1, and of Theorem 5.10 which we will discuss below.


In the case of mixed characteristic, where the valued fields have characteristic
0 and their residue fields have positive characteristic, Artin–Schreier extensions
are replaced by Kummer extensions (although re-written with corresponding
Artin–Schreier polynomials), and additivity is replaced by quasi-additivity (cf.
Lemma 3.19).


Related normal form results can be found in the work of Helmut Hasse, George
Whaples, and in Matignon’s proof of his version of Theorem 5.1. See also Helmut
Epp’s paper [20], in particular the proof of Theorem 1.3. This proof contains a gap
which was filled in [43].


Let us reconsider Examples 2.2 and 2.7 in the light of Theorem 5.1. In
Example 2.2 we have an extension without transcendence defect if and only the
transcendence degree is 1. In this case, (K(t)h,v) is a defectless field, and we have
that F ⊂ K(t)h. In the case of higher transcendence degree, this may not be the case,
as Example 3.1 shows. At least we know that every separable extension of K(T )h


is defectless since it is discretely valued. The situation is different in Example 2.7.
If the extension is without transcendence defect, then again, (K(t)h,v) is a defectless
field, and moreover, vF/vK and Fv|Kv are finitely generated ([42, Corollary 2.7]).
But if charK > 0, then there are valuations v on K(x,y), trivial on K, such that
K(x,y)v = K, vK(x,y) not finitely generated, and such that (K(x,y),v) admits an
infinite tower of Artin–Schreier defect extensions ([42, Theorem 1.2]).
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Applications of Theorem 5.1 are:


• Elimination of ramification. In [34] we use Theorem 5.1 to prove:


Theorem 5.6. Take a defectless field (K,v) and a valued function field (F|K,v)
without transcendence defect. Assume that Fv|Kv is a separable extension and
vF/vK is torsion free. Then (F |K,v) admits elimination of ramification in the
following sense: there is a transcendence basis T = {x1, . . . ,xr,y1, . . . ,ys} of
(F |K,v) such that


(a) vF = vK ⊕Zvx1 ⊕ . . .⊕Zvxr,
(b) y1v, . . . ,ysv form a separating transcendence basis of Fv|Kv.


For each such transcendence basis T and every extension of v to the algebraic clo-
sure of F, (Fh|K(T )h,v) is unramified.


Corollary 5.7. Let (F |K,v) be a valued function field without transcendence defect.
Fix an extension of v to F̃. Then there is a finite extension L0|K and a transcendence
basis T of (L0.F |L0,v) such that for every algebraic extension L of K containing L0 ,
the extension ((L.F)h|L(T )h,v) is unramified.


• Local uniformization in positive and in mixed characteristic. We consider places
P and their associated valuations v = vP of a function field F |K, by which we mean
that P|K is the identity and hence v|K is trivial. We write aP = av and denote by O


the valuation ring of v on F . Rewriting our earlier definition, we say that P admits
smooth local uniformization if there is a model for F on which P is centered at a
smooth point, that is, if there are x1, . . . ,xn ∈ O such that F = K(x1, . . . ,xn) and the
point x1P, . . . ,xnP is smooth. (Note that in [34] and [35] we add a further condition,
which we drop here for simplicity.) The place P is called an Abhyankar place if
equality holds in the Abhyankar inequality, which in the present case means that
trdegF|K = rrvF + trdegFP|K.


Theorem 5.6 is a crucial ingredient for the following result (cf. [34, Theorem 1.1],
[39]):


Theorem 5.8. Assume that P is an Abhyankar place of the function field F|K such
that FP|K is separable. Then P admits smooth local uniformization.


The analogous arithmetic case ([34, Theorem 1.2]) uses Theorem 5.1 in mixed
characteristic. Note that the condition “FP|K is separable” is necessary since it is
implied by elimination of ramification.


• Model theory of valued fields. In [47] we use Theorem 5.6 to prove the following
Ax–Kochen–Ershov Principle:


Theorem 5.9. Take a henselian defectless valued field (K,v) and an extension
(L|K,v) of finite transcendence degree without transcendence defect. If vK is exis-
tentially closed in vL and Kv is existentially closed in Lv, then (K,v) is existentially
closed in (L,v).
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Let us continue our discussion from the end of Section 2.2. The conditions “vK ≺∃
vL” and “Kv ≺∃ Lv” imply that vF/vK is torsion free and Fv|Kv is a separable
extension. So we can apply Theorem 5.6 to obtain the transcendence basis T =
{x1, . . . ,xr,y1, . . . ,ys} of (F |K,v) with the properties as specified in that theorem.
Because of these properties, the embeddings of vL in v∗K∗ and of Lv in K∗v∗ lift
to an embedding ι0 of (K(T ),v) in (K∗,v∗) over K. Using Hensel’s Lemma and the
fact that Fv|K(T )v is separable, one finds in Fh|K(T ) a subextension F1|K(T ) with
F1v = Fv and [F1 : K(T )] = [F1v : K(T )v] (Fv|K(T )v is finite by the remark preced-
ing Theorem 5.1). Using Hensel’s Lemma and the embedding of Lv in K∗v∗ again,
one extends ι0 to an embedding ι1 of (F1,v) in (K∗,v∗). The extension (Fh|Fh


1 ,v) is
immediate, and as it is an extension inside the unramified extension (Fh|K(T )h,v),
it must be defectless and hence trivial. As (K∗,v∗) is henselian, being an elementary
extension of the henselian field (K,v), one can now use the universal property of
henselizations to extend ι1 to an embedding ι2 of (Fh,v) in (K∗,v∗). The restriction
of ι2 to F is the desired embedding which transfers every existential sentence valid
in (F,v) into (K∗,v∗).


5.2 Henselian rationality of immediate function fields


Let us return to Example 2.8. If (F,v) does not lie in the henselization K(x)h, we are
lost. This happens if and only if (Fh|K(x)h,v) has non-trivial defect (the equivalence
holds because (F|K(x),v) is finite and immediate, Fh = F.K(x)h and henselizations
are immediate extensions).


So the question arises: how can we avoid the defect in the case of immediate
extensions? The answer is a theorem proved in [37] (cf. [38] and [48]):


Theorem 5.10. (Henselian Rationality)
Let (K,v) be a tame field and (F |K,v) an immediate function field of transcendence
degree 1. Then


there is x ∈ F such that (Fh,v) = (K(x)h,v), (27)


that is, (F |K,v) is henselian generated. The same holds over a separably tame field
(K,v) if in addition F |K is separable.


Since the assertion says that Fh is equal to the henselization of a rational function
field, we also call F henselian rational in this case. For valued fields of residue
characteristic 0, the assertion is a direct consequence of the fact that every such
field is defectless. Indeed, take any x ∈ F \K. Then K(x)|K cannot be algebraic
since otherwise, (K(x)|K,v) would be a proper finite immediate (and hence de-
fect) extension of the tame field (K,v), a contradiction to the definition of “tame”.
Hence, F |K(x) is algebraic and immediate. Therefore, (Fh|K(x)h,v) is algebraic
and immediate too. But since it cannot have a non-trivial defect, it must be triv-
ial. This proves that (F,v) ⊂ (K(x)h,v). In contrast to this, in the case of posi-
tive residue characteristic only a very carefully chosen x ∈ F \K will do the job.







The defect 309


As for the Generalized Stability Theorem, the proof of Theorem 5.10 in positive
characteristic uses ramification theory and the deduction of normal forms for Artin–
Schreier extensions. This time however, all Artin–Schreier extensions are immediate
and hence defect extensions. The normal forms serve a different purpose, namely, to
find a suitable generator x. The proof also uses significantly a theory of immediate
extensions which builds on Kaplansky’s paper [29, Sections 2 and 3].


Open problem (HR): Improve Theorem 5.10 by finding versions that work with
weaker assumptions. For instance, can the assumption “tame” be replaced by
“henselian and perfect” or just “perfect”, or can it even be dropped altogether?
Then, even with a weaker assumption on (K,v), can the assumption “immediate”
be replaced by “vF/vK is a torsion group and Fv = Kv”?


Note that in order to allow Fv|Kv to be any algebraic extension, a possible
generalization of Theorem 5.10 would have to replace (27) by


there is x ∈ F such that (Fi,v) = (K(x)i,v). (28)


Applications of Theorem 5.10 in conjunction with Theorem 5.1 are:


• Local uniformization in positive and in mixed characteristic. Theorem 5.10
together with Theorem 5.6 is a crucial ingredient for the proof of “local uniformiza-
tion by alteration” (cf. [35, Theorem 1.2], [39]):


Theorem 5.11. Assume that P is a place of the function field F|K. Then there is
a finite extension F ′|F and an extension P′ of P from F to F ′ such that P′ admits
smooth local uniformization. The extension F ′|F can be chosen to be Galois. Alter-
natively, it can be chosen such that (F ′,P′)|(F,P) is purely wild, hence vP′F ′/vPF
is a p-group and F ′P′|FP is purely inseparable.


The analogous arithmetic case ([35, Theorem 1.4]) uses Theorems 5.10 and 5.1
in mixed characteristic. While local uniformization by alteration follows from de
Jong’s resolution of singularities by alteration (see [3]), the additional informa-
tion on the extension F ′|F does not follow. Moreover, the proofs of Theorems 5.8
and 5.11 use only valuation theory.


Recently, Michael Temkin ([61, Corollary 1.3]) proved “Inseparable Local
Uniformization”:


Theorem 5.12. In the setting of Theorem 5.11, the extension F ′|F can also be
chosen to be purely inseparable.


It is interesting that local uniformization has now been proved up to separable
alteration on the one hand, and up to purely inseparable alteration on the other.
These two results are somewhat “orthogonal” to each other. Can they be put together
to get rid of alteration? While this appears to be an attractive thought at first sight,
one should keep in mind Example 3.17 which shows that every purely inseparable
defect extension of degree p of (L,v) which does not lie in the completion of (L,v)
can be transformed into an Artin–Schreier defect extension. Thus, the “same” defect
may appear in a separable extension and in a purely inseparable extension (see the
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next section for details), which leaves us the choice to kill it either with separable or
with inseparable alteration. So this fact does not in itself indicate whether we need
or do not need alteration for local uniformization.
Open problem (LU): Prove (or disprove) local uniformization without extension of
the function field.


In fact, one reason for the extension of the function field in our approach is the
fact that we apply Theorem 5.10 to fields of lower transcendence degree than the
function field itself. However, subfunction fields are too small to be tame fields, so
we enlarge our intermediate fields so that they become (separably) tame, and once
we have found local uniformization in this larger configuration, we collect the only
finitely many new elements that are needed for it and adjoin them to the original
function field. So we see that if we can weaken the assumptions of Theorem 5.10,
then possibly we will need smaller extensions of our function field. Temkin’s work
contains several developments in this direction, one of which we will discuss in
more detail in the next section.


• Model theory of valued fields. In [47] we use Theorem 5.10 together with
Theorem 5.6 to prove the following:


Theorem 5.13. (a) If (K,v) is a tame field, then the Ax–Kochen–Ershov Principle
(5) holds.


(b) The Classification Problem for valued fields has a positive solution for tame
fields: If (K,v) and (L,v) are tame fields such that vK and vL are elementarily
equivalent as fields and Kv and Lv are elementarily equivalent as ordered groups,
then (K,v) and (L,v) are elementarily equivalent as valued fields.


This theorem comprises several classes of valued fields for which the classification
had already been known to hold, such as the already mentioned henselian fields with
residue fields of characteristic 0.


Open problem (AKE): Prove Ax–Kochen–Ershov Principles for classes of non-
perfect valued fields of positive characteristic. This problem is connected with the
open problem whether the elementary theory of Fp((t)) is decidable (cf. [38,41,47]).


6 Two types of Artin–Schreier defect extensions


In this section, we assume all fields to have characteristic p > 0. In Section 3 we have
given several examples of Artin–Schreier defect extensions, i.e., Artin–Schreier de-
fect extensions with non-trivial defect. Note that every such extension is immediate.
Some of our examples were derived from immediate purely inseparable extensions
of degree p (Examples 3.17 and 3.18). If an Artin–Schreier defect extension is de-
rived from a purely inseparable defect extension of degree p as in Example 3.17,
then we call it a dependent Artin–Schreier defect extension. If it cannot be de-
rived in this way, then we call it an independent Artin–Schreier defect extension.
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More precisely, an Artin–Schreier defect extension (L(ϑ)|L,v) with ϑ p −ϑ ∈ L
is defined to be dependent if there is a purely inseparable extension (L(η)|L,v) of
degree p such that


for all c ∈ L, v(ϑ − c) = v(η − c).


The extension (L(ϑ)|L,v) constructed in Example 3.12 is an independent Artin–
Schreier defect extension. This is obvious if we choose K = Fp(t) or K = Fp((t))
because then L is the perfect hull of K and does not admit any purely inseparable
defect extensions at all. But if for instance, K = Fp(t,s) with s ∈ Fp((t)) transcen-
dental over Fp(t), then L is not perfect. How do we know then that (L(ϑ)|L,v) is an
independent Artin–Schreier defect extension? The answer is given by the following
characterization proved in [37] (see [38] and [46]):


Theorem 6.1. Take an Artin–Schreier defect extension (L(ϑ)|L,v) with ϑ p−ϑ ∈ L.
Then this extension is independent if and only if


v(ϑ −L) + v(ϑ −L) = v(ϑ −L). (29)


Note that v(ϑ − L)+ v(ϑ − L) := {α + β | α,β ∈ v(ϑ −L)} and that the sum of
two initial segments of a value group is again an initial segment. Equation (29)
means that v(ϑ −L) defines a cut in vL which is idempotent under addition of cuts
(defined through addition of the left cut sets). If vL is archimedean, then there are
only four possible idempotent cuts, corresponding to v(ϑ − L) = /0 (which is im-
possible), v(ϑ −L) = (vL)<0, v(ϑ −L) = (vL)≤0, and v(ϑ −L) = vL (which means
that ϑ lies in the completion of (L,v)).


It is important to note that v(ϑ −K) ⊆ (vL)<0. Indeed, if there were some c ∈ K
such that v(ϑ − c)≥ 0, then


0 ≤ v((ϑ − c)p − (ϑ − c)) ≤ v(ϑ p −ϑ − (cp − c)).


But a polynomial X p −X − a with va ≥ 0 splits completely in the absolute inertia
field of (L,v) and thus cannot induce a defect extension. Therefore, if vL is
archimedean, then (29) holds if and only if v(ϑ − L) = (vL)<0. This shows that
the extension (L(ϑ)|L,v) of Example 3.12 is an independent Artin–Schreier defect
extension even if L is not perfect. On the other hand, the extension (L(ϑ0)|L,v) of
Example 3.17, where ϑ0/b is a root of the polynomial X p −X −1/bpt, is a depen-
dent Artin–Schreier defect extension as it was obtained from the purely inseparable
defect extension (L(η)|L,v). And indeed,


v


(
ϑ0


b
− L


)


+ v


(
ϑ0


b
− L


)


= {α ∈ vL | α < vb} + {α ∈ vL | α < vb}
�= {α ∈ vL | α < vb}


since vb �= 0. Note that since vL is p-divisible, we in fact have that


{α ∈ vL | α < vb}+{α ∈ vL | α < vb} = {α ∈ vL | α < 2vb}.
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This example also shows that the criterion of Theorem 6.1 only works for roots of
Artin–Schreier polynomials. Indeed, v(ϑ0 − L) = v(η − L) = (vL)<0, which does
not contradict the theorem since the minimal polynomial of ϑ0 is X p − dX − 1/t
with vd �= 0.


Each of the perfect fields (L,v) from Example 3.12 provides an example of
a valued field without dependent Artin–Schreier defect extensions, but admitting
an independent Artin–Schreier defect extension. Valued fields without independent
Artin–Schreier defect extensions but admitting dependent Artin–Schreier defect ex-
tensions are harder to find; one example is given in [46].


The classification of Artin–Schreier defect extensions and Theorem 6.1 are the
main tool in the proof of the following criterion ([37]; see [38] and [46]):


Theorem 6.2. A valued field (L,v) of positive characteristic is henselian and de-
fectless if and only if it is algebraically maximal and inseparably defectless.


This criterion is very useful when one tries to construct examples of defectless fields
with certain properties, as was done in [41, Section 4]. How can one construct de-
fectless fields? One possibility is to take any valued field and pass to its maximal
immediate extension. Every maximal field is defectless. But it is in general an ex-
tension of very large transcendence degree. If we want something smaller, then we
could use Theorem 5.1. But that talks only about function fields (or their henseliza-
tions). If we want to construct a field with a certain value group (as in [41]), we
may have to pass to an infinite algebraic extension. If we replace that by any of its
maximal immediate algebraic extensions, we obtain an algebraically maximal field
(M,v). But Example 3.25 shows that such a field may not be defectless. If, however,
we can make sure that (M,v) is also inseparably defectless, then Theorem 6.2 tells
us that (M,v) is defectless.


How do we know that a valued field (L,v) is inseparably defectless? In the case
of finite p-degree [K : K p] (also called Ershov invariant of K), Delon [16] gave a
handy characterization of inseparably defectless valued fields:


Theorem 6.3. Let L be a field of characteristic p > 0 and finite p-degree [L : Lp].
Then for the valued field (L,v), the property of being inseparably defectless is equiv-
alent to each of the following properties:


(a) [L : Lp] = (vL : pvL)[Lv : Lvp], i.e., (L|Lp,v) is a defectless extension


(b) (L1/p|L,v) is a defectless extension


(c) Every immediate extension of (L,v) is separable


(d) There is a separable maximal immediate extension of (L,v).


The very useful upward direction of the following lemma was also stated by
Delon ([16], Proposition 1.44):


Lemma 6.4. Let (L′|L,v) be a finite extension of valued fields of characteristic p>0.
Then (L,v) is inseparably defectless and of finite p-degree if and only if (L′,v) is.
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The condition of finite p-degree is necessary, as Example 3.23 shows. In that
example, (k((t))|K,v) is a purely inseparable defect extension of degree p. Hence
(K,v) is not inseparably defectless. But (k((t)),v) is, since it is a maximal and hence
defectless field.


6.1 Work in progress


(a) An analogue of the classification of Artin–Schreier defect extensions and of
Theorem 6.2 has to be developed for the mixed characteristic case (valued fields of
characteristic 0 with residue fields of characteristic p). Temkin and other authors
have already done part of the work.


(b) The classification of Artin–Schreier defect extensions is also reflected in their
higher ramification groups. This will be worked out in [50].


We have seen in Example 3.17 that every purely inseparable defect extension of
degree p of (L,v) which does not lie in the completion of (L,v) can be transformed
into a (dependent) Artin–Schreier defect extension. This can be used to prove the
following result (cf. [46]):


Proposition 6.5. Assume that (L,v) does not admit any dependent Artin–Schreier
extension. Then every immediate purely inseparable extension lies in the completion
of (L,v).


Corollary 6.6. Every non-trivially valued Artin–Schreier closed field lies dense
in its perfect hull. In particular, the algebraic closure of a non-trivially valued
separable-algebraically closed field (L,v) lies in the completion of (L,v).


Which of the Artin–Schreier defect extensions are the more harmful, the depen-
dent or the independent ones? There are some indications that the dependent ones
are more harmful. Temkin’s work (especially [61, Theorem 3.2.3]) seems to indicate
that there is a generalization of Theorem 5.10 which already works over henselian
perfect instead of tame valued fields (K,v). When K is perfect, then (K,v) does
not have dependent Artin–Schreier defect extensions. The independent ones do not
seem to matter here, at least when (K,v) has rank 1. This improvement is one of the
keys to Theorem 5.12. Let us give an example which illustrates what is going on
here.


Example 6.7. Assume that (F |K,v) is an immediate function field of transcendence
degree 1, rank 1 and characteristic p > 0, and that we have chosen x ∈ F such that
(Fh|K(x)h,v) is of degree p. We want to improve our choice of x, that is, find y ∈ F
such that Fh = K(y)h. The procedure given in [37, 48] uses the fact that because
(F |K,v) is immediate, x is a pseudo limit of a pseudo Cauchy sequence (aν)ν<λ in K
which has no pseudo limit in K ([29, Section 2]). The hypothesis that (K,v) be tame
(or separably tame and F |K separable) guarantees that (aν)ν<λ is of transcendental
type, that is, if f is any polynomial in one variable over K, then the value v f (aν) is
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fixed for all large enough ν < λ ([29, p. 306]). This is essential in our procedure.
If we drop the tameness hypothesis, then (aν)ν<λ may not be of transcendental
type and may in fact have some element in some immediate algebraic extension of
(K,v) as a pseudo limit. Now suppose that this element is the root ϑ of an Artin–
Schreier polynomial over K. The fact that both x and ϑ are limits of (aν)ν<λ implies
that v(x −ϑ) > v(ϑ −K). If the Artin–Schreier defect extension (K(ϑ)|K,v) is
independent, then because of our rank 1 assumption, it follows that v(x−ϑ) ≥ 0.
If we assume in addition that Kv is algebraically closed, then there is some c ∈ K
such that v(x −ϑ − c) > 0. But then, by a special version of Krasner’s Lemma
(cf. [42, Lemma 2.21]), the polynomial X p −X − (ϑ p −ϑ) splits in (K(x)h,v), so
that ϑ ∈ K(x)h. This shows that K is not relatively algebraically closed in K(x)h.
Replacing K by its relative algebraic closure in K(x)h, we will avoid this special
case of pseudo Cauchy sequences that are not of transcendental type.


If on the other hand, the extension (K(ϑ)|K,v) is dependent, then it does not
follow that v(x−ϑ) ≥ 0. But if v(x−ϑ) < 0, Krasner’s Lemma is of no use. How-
ever, by assuming that K is perfect we obtain that (K,v) does not admit dependent
Artin–Schreier defect extensions. Assuming in addition that K is relatively alge-
braically closed in Fh, we obtain that (aν)ν<λ does not admit any Artin–Schreier
root ϑ over K as a limit. This fact alone does not imply that under our additional
assumptions, (aν)ν<λ must be of transcendental type. But with some more technical
effort, building on results in [46], this can be shown to be true.


Another indication may come from the paper [15] by Steven Dale Cutkosky and
Olivier Piltant. They give an example of an extension R ⊂ S of algebraic regular
local rings of dimension two over a field k of positive characteristic and a valua-
tion on the rational function field QuotR, with QuotS|QuotR being a tower of two
Artin–Schreier defect extensions, such that strong monomialization in the sense of
Theorem 4.8 of their paper does not hold for R ⊂ S ([15, Theorem 7.38]).


Work in progress with Laura Ghezzi and Samar El-Hitti indicates that both ex-
tensions are dependent Artin–Schreier defect extensions. In fact, in Piltant’s own
words, he chose the valuation in the example such that it is “very close” to [the
behavior of] a valuation in a purely inseparable extension.


Open problem (CPE): Is there a version of the example of Cutkosky and Piltant
involving independent Artin–Schreier defect extensions? Or are such extensions in-
deed less harmful than the dependent ones? Can strong monomialization always be
proven when only independent Artin–Schreier defect extensions are involved?


7 Two languages


Algebraic geometers and valuation theorists often speak different languages. For
example, while the defect was implicitly present already in Abhyankar’s work, it has
been explicitly studied rather by the early valuation theorists like Ostrowski, and by
researchers interested in the model theory of valued fields in positive characteristic
or in constant reduction, most of them using a field theoretic language and “living
in the Kaplansky world of pseudo Cauchy sequences” (cf. [29, Section 2], [38]).
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For instance, our joint investigation with Ghezzi and ElHitti of the example
given by Cutkosky and Piltant is facing the difficulty that the valuation in the
example is given by means of generating sequences, whereas our criterion for
dependence/independence is by nature closer to the world of pseudo Cauchy se-
quences, which can also be used to describe valuations.


Open problem (CGS): Rewrite the criterion given in Theorem 6.1 in terms of gen-
erating sequences.


As to the problem of how to describe valuations, Michel Vaquié has done much
work generalizing MacLane’s approach using families of key polynomials. In this
approach, he also showed how to read off defects as invariants of such families (see
[63]). A closer look reveals that a set like v(ϑ −L) can be directly determined from
Vaquié’s families of key polynomials.


Open problem (CV): Is there an efficient algorithm to convert generating sequences
into Vaquié’s families of key polynomials? More generally, find algorithms that con-
vert between generating sequences, key polynomials, pseudo Cauchy sequences and
higher ramification groups.


A lot of work has been done by several authors on the description of valuations on
rational function fields, working with key polynomials or pseudo Cauchy sequences.
For references, see [42].


Open problem (RFF): Develop a thorough theory of valuations on rational func-
tion fields, bringing the different approaches listed in (CV) together, then generalize
to algebraic function fields. Understand the defect extensions that can appear over
rational function fields.


Problems (CGV), (CV), and (RFF) can be understood as parts of a larger
program:


Open problem (DIC): Develop a “dictionary” between algebraic geometry and
valuation theory. This would allow us to translate results known about the defect
into results in algebraic geometry, and open questions in algebraic geometry into
questions in valuation theory. It would help us to investigate critical examples from
several points of view and to use them both in algebraic geometry and valuation
theory.


Let us conclude with the following
Open problem (DAG): What exactly is the meaning of the defect in algebraic ge-
ometry? How can we locate and interpret it? What is the role of dependent and
independent Artin–Schreier defect extensions, e.g., in the work of Abhyankar, of
Cutkosky and Piltant, or of Cossart and Piltant?
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63. Vaquié, M.: Famille admissible de valuations et défaut d’une extension. (French) [Admissible
family of valuations and defect of an extension] J. Algebra 311, 859–876 (2007)







318 Franz-Viktor Kuhlmann
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The use of ultrafilters to study the structure
of Prüfer and Prüfer-like rings


K. Alan Loper


Abstract The notion of a sequence of objects converging to a limit point is very
natural in the context of topology. In a collection of articles from the last couple
decades ultrafilters were employed to great effect in forcing sequences of prime
ideals or valuation domains to converge without reference to topology. The context
of these results was the study of Prüfer domains and rings of integer-valued poly-
nomials. More recently Fontana and Loper clarified these results by demonstrating
that ultrafilters can be used to define a topology which is equivalent to the classi-
cal constructible or patch topology. The history of these results is recounted in this
expository article in chronological sequence.


1 Introduction


Let S be an infinite set. An ultrafilter on S is a collection of subsets U of S which
satisfies the following properties. (See [7] for more details concerning ultrafilters.)


1. If B ∈U and B ⊆C ⊆ S then C ∈U .
2. If B,C ∈U then B∩C ∈U .
3. If B∪C = S and B∩C = Φ then exactly one of B and C lies in U .


It is easy to see that examples of ultrafilters exist. Choose an element x ∈ S.
Let Ux be the collection of all subsets of S which contain x. Then Ux satisfies the
axioms of an ultrafilfer. We call such an ultrafilter principal. It is not as simple to
show that nonprincipal ultrafilters exist. It is easy to show that collections of subsets
exist which satisfy (1), (2), and the additional restriction that the empty set not be
a member. (Such a collection is called a filter.) For example, the collection of all
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subsets of S which are complements of finite subsets is a filter. We can order the
collection of filters by inclusion. Zorn’s lemma then implies that maximal filters
exist and it is easy to show that these maximal filters are ultrafilters. Moreover, a
maximal filter containing a nonprincipal filter will be a nonprincipal ultrafilter.


It is not possible to explicitly list all of the subsets constituting a nonprincipal
ultrafilter, but it is possible to exert some control over what subsets are in an ultra-
filter. In particular, if we start with a collection Λ of subsets of an infinite set S such
that any finite intersection of members of Λ is not empty then it is easy to extend Λ
to a filter, and then to an ultrafilter. So any collection of subsets which satisfies this
finite intersection property can be embedded in an ultrafilter.


Ultrafilters have been used by various authors is recent years to construct exotic
examples of rings by means of what are called ultraproducts. The focus of this ar-
ticle will be somewhat different. Our focus is on a collection of articles (written by
the present author and some coauthors) in which ultrafilters are used to analyze the
structure of rings that are defined by other means. Our presentation will develop the
subject in the same order in which it was developed in the literature. Also, our focus
will be less on the main results of the papers cited and more on how the ultrafil-
ters were employed. We start with a short motivating section in which we explain
in heuristic terms how ultrafilters might be used to analyze ideal structure or col-
lections of valuation overrings along with a motivating example and then give some
basic theorems to apply in our investigations. In the following section we go through
some results in the literature where these ideas have been used. We conclude with a
section that gives some topological underpinnings to the subject and suggests some
further applications that could be investigated.


2 Motivation


It is well known that in the classical ring of integer-valued polynomials, Int(Z) =
{ f (X)∈ Q[X ] | f (Z)⊆ Z}, the maximal ideals can be indexed naturally by the rings
of p-adic integers, Ẑp. In particular, if p is a prime number and α is a p-adic integer
then Mp,α = { f (X) ∈ Int(Z) | f (α) ∈ pẐp} is a maximal ideal, and all maximal
ideals have this form. Since Int(Z) is a Prüfer domain, the valuation overrings in
which p is a nonunit can similarly be indexed by the p-adic integers. By means
of this correspondence, the metric topologies on the rings of p-adic integers can
be exploited to investigate the structure of Int(Z) and its overrings. The following
theorem is an example.


Let p be a prime number. For any p-adic integer α let Vp,α be the valuation ring
obtained by localizing Int(Z) at the maximal ideal Mp,α . Then let Λ be a collection
of p-adic integers. Define


DΛ = ∩α∈ΛVp,α
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Since DΛ is an overring of Int(Z) it is a Prüfer domain. It is obvious that each
valuation domain Vp,α where α ∈ Λ is an overring of DΛ . It also seems plausible
that there could be many other valuation overrings besides the ones from the defining
collection.


Theorem 1 ([16, Lemma 26]). Assume the notation of the preceding paragraph.
Then the valuation overrings of DΛ in which p is a non-unit are exactly those of the
form Vp,β corresponding to p-adic integers β which lie in the p-adic closure of Λ .


Note in the above discussion that the maximal ideals Mp,α are perhaps more
naturally defined when α is a rational integer than when it is a non-rational p-adic
integer. Then we observe that the p-adic integers arise by means of convergence of
sequences of rational integers. Note also that the above theorem suggests that the
topological closure of sets of p-adic integers is somehow mirrored by the “closure”
of sets of prime ideals or valuation domains. The question then arises of whether the
notion of convergence of ideals or of overrings can be extended to a broader class
of rings, where we do not necessarily have the natural connection with the p-adic
integers. Perhaps, as is the case with Int(Z), there are ideals which can be defined
simply, and then other, more interesting, ideals can be obtained by means of some
type of convergence. The subject is then of a topological sort, and the applicability
of ultrafilters is not obvious. However, ultrafilters have a magical ability to impose
convergence in situations where it is not at all apparent that it exists.


Definition 2 Let D be a domain and let Ω be a collection of ideals of D. Let U be
an ultrafilter on Ω . For an element d ∈ D we define the set B(d) = {I ∈ Ω | d ∈ I}.
We then define IU = {d ∈ D | B(d) ∈U}.


It is easy to see that IU as defined above is an ideal. (Note: it may be the zero
ideal.) We say that IU is an ultrafilter limit ideal of the set Ω . We thank the referee for
pointing out that, in fact, the notion of an ultrafilter limit ideal can be expressed using
the terminology of ultraproducts. The idea is to consider the ultraproduct of rings of
the form D/I where I runs over all the ideals in Ω . The kernel of the canonical map
from D into this ultraproduct is then the ideal IU.


We state a lemma next which gives tremendous power to this method in the
results to follow.


Lemma 3 Suppose that D, Ω and U are as above and suppose that all of the ideals
in Ω are prime ideals. Then IU is also a prime ideal.


We should note that when this method was first employed in [3] and [17] the
context was rings of integer-valued polynomials and rational functions, and it was
not presented quite as plainly as above. In particular, the ultrafilter was placed on
pairs consisting of an element and a prime ideal, and it seemed to be something
whose applicability was narrowly limited to the integer-valued polynomial/rational
function setting.
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3 Applications


3.1 Integer-valued rational functions


In [3], the authors were interested in the ideal structure of rings of integer-valued
rational functions. Let D be a domain with quotient field K. We then define
IntR(D) = {φ(X) ∈ K(X) | φ(D) ⊆ D}. Much of the paper is specialized to the case
where D is a valuation domain (which we denote now by V ). In this case the ring
of integer-valued polynomials Int(V ) = { f (X) ∈ K[X ] | f (V ) ∈ V} is simply equal
to V [X ] except for the special case where V is a DVR with a finite residue field (in
which case Int(V ) is a Prüfer domain). Interesting cases arise more frequently when
looking at the ring of integer-valued rational functions. For example, [3, Theorems
3.2, 3.5] IntR(V ) is a Prüfer domain for a valuation domain V if either the maximal
ideal of V is principal, or if the residue field is not algebraically closed. It is inter-
esting then to investigate ways in which Prüfer domains of integer-valued rational
functions differ from Prüfer domains of integer-valued polynomials.


Let V be a DVR with finite residue field and maximal ideal m. Then, as noted
above, Int(V ) is a Prüfer domain. Moreover, if M is a prime ideal of Int(V ) which
lies over m then M has the form Mm,α = { f (X) ∈ Int(V ) | f (α) ∈ mV̂} where V̂
is the m-adic completion of V . It follows that each prime ideal of Int(V ) which lies
over m is maximal. One of the goals of [3] was to determine the extent to which this
property carries over to rings of integer-valued rational functions.


Let V be a valuation domain with quotient field K such that the maximal ideal m is
not principal and the residue field is not algebraically closed. We know that IntR(V )
is a Prüfer domain. As we observed above in the classical case of Int(Z), it is easy
to define maximal ideals of IntR(V ) by choosing an element d ∈ V and then defin-
ing Mm,d = {φ(X) ∈ IntR(V ) | φ(d) ∈ m}. In the case of Int(Z) it is easy to talk
about convergence of the maximal ideals containing a prime p because of the corre-
spondence with the compact metric space of p-adic numbers. In the current setting
things are not as clear, because in the valuation domain V , the fact that m is not
principal means that there are sequences of elements of V for which it does not
seem to make any sense to talk about convergence. In particular, let {d1,d2,d3, . . .}
be a sequence of elements in m such that the sequence {v(d1),v(d2), . . .} converges
to zero where v is a valuation corresponding to V . The sequence (and every subse-
quence) of elements does not converge (at least not in the standard m-adic topology).
However, we can assign a maximal ideal of IntR(V ) to each element di by defining
Mi = {φ(X) ∈ IntR(V ) | φ(di) ∈ m} as above. We can then use an ultrafilter to force
the sequence {M1,M2,M3, . . .} to converge.


We list the steps in our analysis of this process:


1. Let U be an ultrafilter on the collection {M1,M2,M3, . . .} of maximal ideals of
IntR(V ). As we noted in the introduction, we cannot specify all of the sets in
an ultrafilter, but we can specify some of them. In particular, we choose here
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to insure that every set of the form {Mi,Mi+1,Mi+2, . . .} is in the ultrafilter.
This is possible because this collection of subsets satisfies the finite intersection
condition.


2. We define the ideal MU as in Definition 2. We know that MU is a prime ideal of
IntR(V ) by Lemma 3. It is also easy to see that each Mi lies over m and then it
follows easily from the definition that MU also lies over m.


3. Let φ(X) ∈ IntR(V ). We can write φ(X) = f (X)
g(X) with f ,g ∈V [X ]. Further, recall-


ing that V is a valuation domain, we can write any polynomial h(X) ∈V [X ] as a
product h(X) = (d)(k(X)) where d ∈V , k(X) ∈V [X ] and one of the coefficients
of k is a unit in V – simply factor out the coefficient with smallest value. Finally,
we can write any rational function φ(X) ∈ IntR(V ) in the form φ(X) = d f (X)


g(X)
where f ,g ∈ V [X ] and each has a unit coefficient and d ∈ K. Such a represen-
tation is not unique, but it is clear that the value of d is determined by choice
of φ . Let M∗ be the collection of all φ(X) ∈ IntR(V ) for which the choices of the
constant d associated with φ lie in m.


4. It is easy to show that M∗ is a prime ideal. It is also easy to show that M∗ ⊆
MU. To see this choose a rational function φ(X) = d f (X)


g(X) ∈ M∗ as above. Then


consider elements of the form φ(di). Since both f and g have a coefficient which
is a unit, we can make the values of f (di) and g(di) as small as we wish by
choosing a sufficiently large value of i. However, the value of d is constant and
positive and so the value of φ(di) must be positive for sufficiently large i. Hence,
φ(X) ∈ Mi for all sufficiently large i, which is sufficient for φ(X) to lie in MU.


5. We have proven that M∗ ⊆ MU. It is also obvious from the definition that M∗
lies over m. We next investigate whether these two prime ideals are the same.
Recall that MU was defined to be essentially a limit of the maximal ideals Mi.
Thus, we can view MU as being the collection of rational functions which map a
sufficiently large set of the elements di into m. Note that the polynomial φ(X) =
X maps every di into m and so X ∈ MU. But X �∈ M∗. It follows that prime ideals
of IntR(V ) which lie over m are not necessarily maximal.


Proposition 4 ([3, Theorem 6.6]). Let V be a valuation domain with non-principal
maximal ideal m and with residue field not algebraically closed. Then the ring
IntR(V ) of integer-valued rational functions over V contains prime ideals which
lie over m but are not maximal.


3.2 Sequence domains


Let D be a domain with quotient field K. The ring of integer-valued polynomials
over D is defined by Int(D) = { f (X) ∈ K[X ] | f (D) ⊆ D}. One of the key questions
concerning integer-valued polynomials for a long time was to determine necessary
and sufficient conditions on D in order that Int(D) should be a Prüfer domain.
Chabert proved in [5] that a necessary condition was that D should be an almost
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Dedekind domain (i.e. the localization DM is a DVR for each maximal ideal M of D)
with all residue fields finite. If V is a DVR with a finite residue field and maximal
ideal m then Int(V ) is a Prüfer domain and the maximal ideals which lie over m
are naturally indexed by the elements of the m-adic completion of V – generalizing
the situation with the p-adic numbers and Int(Z) described above. Suppose however
that D is an almost Dedekind domain (not a valuation domain) with all residue fields
finite. We know that Int(DM) is a Prüfer domain for each maximal ideal M. If we
also knew that Int(D)M = Int(DM) (where Int(D)M is Int(D) localized at the mul-
tiplicatively closed set D−M) for each maximal ideal M then we could prove that
Int(D) was a Prüfer domain. Chabert called this equality Int(D)M = Int(DM) (for all
maximal ideals M) good behavior under localization and questioned whether this
was a necessary and sufficient condition for Int(D) to be a Prüfer domain.


One of the goals of [17] was to demonstrate that good behavior under localiza-
tion is not necessary for Int(D) to be a Prüfer domain. Again, the core idea was to
utilize the notion of convergence of maximal ideals both in D and in Int(D). Since
this notion of convergence was still far from clearly understood it seemed wise to
construct the domain D in such a way that the convergence there was plain. So we
considered domains which satisfied the following properties. (The paper actually
considered a class of domains somewhat larger than that defined below – which we
referred to as sequence domains.)


1. D is an almost Dedekind domain with quotient field K and with all residue fields
finite.


2. D contains a countable number of maximal ideals which we designate as {P1,P2,
P3, . . .} and P∗.


3. We designate qi to be the order of the residue field of Pi for each i and q∗ to be
the order of the residue field of P∗.


4. Each residue field has the same characteristic p.
5. The set {qi | i ∈ Z+} is bounded.
6. Each Pi is finitely generated while P∗ is not finitely generated.
7. We designate vi to be a valuation on K corresponding to DPi and v∗ to be a


valuation on K corresponding to DP∗ . The value groups of the vi’s are not nec-
essarily assumed to be the additive group of the integers. v∗ is assumed to have
the integers as value group.


8. The sequence {vi(d) | i ∈ Z+} is eventually constant for each nonzero element
d ∈ D.


9. For each i the valuation vN
i is the normed valuation (with Z as value group)


corresponding to DPi .
10. The set {vN


i (d)|i ∈ Z+} is bounded for each nonzero element d ∈ D.
11. For any nonzero element d ∈ K we have v∗(d) = limi→∞(vi(d)) ∈ Z+ ⋃{0}.
12. There exists an element π ∈ D such that vi(π) = 1 for each i.


The convergence of the sequence {P1,P2,P3, . . .} to P∗ is sufficiently clear from
the strong restrictions placed on the structure of D that we were able to analyze
many properties of Int(D) without leaning on ultrafilters. In particular, we proved
that if D satisfies all of the conditions above then Int(D) is a Prüfer domain. We did
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use the ultrafilters for the question of behaving well under localization however. The
key theorem proven [17, Theorem 5.13] was


Theorem 5 Let D be a sequence domain defined as above. Then Int(D) behaves
well under localization if and only if both of the following conditions hold.


1. qi = |D/Pi| = |D/P∗| = q∗ for all but finitely many i ∈ Z+.


2. vi = v(N)
i for all but finitely many i ∈ Z+.


We sketch the basic idea of the argument. Suppose that V is a DVR with maximal
ideal m with residue field of order q, Suppose also that m = dV for some element
d ∈ V . And suppose that M is a maximal ideal of Int(V ) which lies over m. Then
|Int(V )/M| = q and MInt(V )M is generated by d. The point of behaving well under
localization is that these structural similarities between V and Int(V ) should glob-
alize to similarities between the structure of D and Int(D) when Int(D) is a Prüfer
domain. So we suppose that we do not have the conditions of Theorem 5 and inves-
tigate what goes wrong. The basic idea is to choose a sequence of maximal ideals of
Int(D) lying over the ideals Pi which converges to a maximal ideal lying over P∗. If
such a sequence is chosen carefully then the structure of the limit prime will mirror
the properties of the maximal ideals which converge to it and thereby cannot match
the maximal ideals which correspond to those of Int(DP∗).


First suppose that qi = |D/Pi| > |D/P∗| for an infinite number of values of i. The
finite generation of the Pi’s is sufficient to show that the maximal ideals of Int(D)
which lie over them are well behaved. In particular, they can all be defined by means
of the Pi-adic completions of D as described above. So we choose a collection of
positive integers n1 < n2 < n3 < .. . such that qni = |D/Pni | > |D/P∗| for each ni.
The residue field of Pni has order qni which means that the multiplicative group
is a cyclic group of order qni − 1. Choose an element di in D which corresponds
to a generator of this cyclic group. Then for each i we define a maximal ideal Mi


of Int(D) which lies over Pni corresponding to di. We then place a nonprincipal
ultrafilter U on the collection of ideals {M1,M2,M3, . . .} and construct the ultrafilter
limit prime MU. The structure of D insures that MU lies over P∗. However, MU


is defined as a collection of polynomials which sends (ultrafilter) large collections
of elements di into the corresponding maximal ideals Pni . Then the choice of the
elements di guarantees that the residue field of MU will have order larger than q∗ –
the order of the residue field of P∗. It follows that MU cannot be defined by means
of an element in the P∗-adic completion of D. It follows that D is not well-behaved
under localization although Int(D) is a Prüfer domain.


The problems that arise if condition (2) above are violated are similar. Essentially,
the idea is that all of the maximal ideals of Int(DP∗) which lie over P∗ are locally


generated by the element π ∈ D. But, if the condition vi = v(N)
i for all but finitely


many i ∈ Z+ fails then we can choose a sequence of maximal ideals M1,M2, . . .,
with Mi lying over Pi, such that π is not a local generator for any of them. Hence, an
ultrafilter limit prime MU will lie over P∗ but will not have π as a local generator.
And again, we will have proven that D is not well behaved under localization with
Int(D) a Prüfer domain.
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3.3 Characterizing when Int(D) is a Prüfer domain


In [18], a leap forward was taken in understanding the nature of the convergence of
prime ideals that had been employed as described above. The question was to char-
acterize the domains D such that Int(D) is a Prüfer domain. Chabert proved that a
necessary condition is that D be an almost Dedekind domain with all residue fields
finite. On the other hand, Gilmer [14] and Chabert [6] each constructed examples of
almost Dedekind domains with finite residue fields such that Int(D) was not Prüfer.
In each case, the proof that Int(D) is not a Prüfer domain is accomplished by demon-
strating that Int(D) ⊆ DP[X ] for some maximal ideal P of D. The almost Dedekind
domains involved in these proofs were obtained by means of countably infinite in-
tegral extensions of Dedekind domains (in particular, rings of algebraic integers).
Properties of the field extensions made clear which prime ideal P was the offend-
ing prime which would satisfy Int(D) ⊆ DP[X ]. Chabert hypothesized a two-part
boundedness condition as being necessary and sufficient for Int(D) to be a Prüfer
domain. We give the condition here.


• Let D be an almost Dedekind domain with quotient field K and with all residue
fields finite. Suppose that K has characteristic 0. (The characteristic p case is
similar – we will not go into details here.)


• For each maximal ideal P of D let v(N)
P represent the normalized valuation (i.e.


the value group is the additive group of the integers.) on K associated with P.
• Note that the finiteness of the residue fields implies that each maximal ideal


contains a prime number p.
• For each prime number p which is not a unit in D we define two sets


– Fp = {|D/P| | p ∈ P}
– Ep = {v(N)


P (p) | p ∈ P}
Definition 6 Let D be an almost Dedekind domain as described above. We say that
D is doubly-bounded provided Ep and Fp are bounded sets for each prime p which
is a nonunit in D.


This double-boundedness condition is essentially the same as the one suggested
by Chabert as a necessary and sufficient condition for Int(D) to be a Prüfer domain.
The sufficiency is essentially proven in [2, Proposition VI.4.4]. The statement there
is more modest, but the proof is easily extended to the general case. The neces-
sity was more problematic. As noted above, the method used previously to show
that Int(D) was not a Prüfer domain was to find a maximal ideal P of D such that
Int(D) ⊆ DP[X ]. The difficulty in the general setting is to identify which maximal
ideal P is the offending prime which will make the proof work. The use of ultrafil-
ters along with the double-boundedness condition make it easy to identify the bad
prime. We outline the proof.


1. Suppose that D is an almost Dedekind domain as described above except we
assume that D is not doubly-bounded.
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2. First, suppose that Fp is not bounded for some prime p. Then we can find a
collection of maximal ideals {P1,P2,P3, . . .} of D such that each residue field
has characteristic p and such that |D/Pi+1| > |D/Pi| for each i. Then we can
place a nonprincipal ultrafilter on the collection {P1,P2,P3, . . .} and define the
ultrafilter limit prime PU. It is then possible to prove that Int(D) ⊆ DPU [X ].


3. Next, we suppose that Ep is not bounded for some prime p. We then find a
collection of maximal ideals {P1,P2,P3, . . .} of D such that each residue field


has characteristic p and such that v(N)
Pi+1


(p) > v(N)
Pi


(p) for each i. Then as above
we place a nonprincipal ultrafilter on the collection {P1,P2,P3, . . .} and define
the ultrafilter limit prime PU. Again we can prove that Int(D) ⊆ DPU [X ].


The proof that Int(D) ⊆ DPU [X ] in both of the above cases is accomplished by
means of some technical lemmas regarding coefficients of integer-valued polynomi-
als. The key use of the ultrafilters was in identifying the appropriate maximal ideal.
The use of the ultrafilters in this paper represented a departure from the way they had
been used in the previous papers described. Previously, ultrafilters considered pairs
consisting of prime ideals and elements of the coefficient ring D which made the
application of the method peculiar to the province of integer-valued polynomials. In
this paper, however, the ultrafilters are applied to a sequence of maximal ideals in
an almost Dedekind domain in a manner that could be generalized to prime ideals
in any ring.


3.4 Characterizing when Int(D) is a PvMD


In [4], the main goal was to characterize the domains D such that Int(D) is a PvMD.
Recall that a domain D is a PvMD provided DP is a valuation domain for each
maximal t-ideal P of D. Recall also that any domain is equal to the intersection
of the localizations at the maximal t-ideals. A necessary condition for Int(D) to be
a PvMD is that D itself be a PvMD. To accomplish the characterization the prime
ideals of D are partitioned into two groups, the int primes and the polynomial primes.
A prime P of D is an int prime provided Int(D) �⊆ DP[X ] and is a polynomial prime
otherwise. Given these relevant collections of ideals there were two fundamental
results concerning ultrafilters which have potentially broad use beyond the context
of [4].


Theorem 7 ([4, Proposition 2.5]). Let D be a domain and let Λ = {Iα} be an
infinite collection of t-ideals of D. Let U be an ultrafilter on the set Λ and define the
ultrafilter limit ideal IU. If IU is not the zero ideal then it is a t-ideal.


(Note: In [10], the above theorem was generalized to the case where the t-
operation is replaced by any star operation of finite type. The proof is the same
as in [4].)
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Theorem 8 ([4, Proposition 2.8]). Let D be the intersection D =
⋂


λ∈Λ Vλ of a
family of valuation domains. For each λ ∈ Λ , denote by Pλ , the center in D of
the maximal ideal of Vλ .


1. If I is a t-ideal of D, then I is contained in the limit prime PU of the family {Pλ}
with respect to some ultrafilter U.


2. If moreover, I is maximal, or if I is t-maximal and every Vλ is essential (that is,
Vλ = DPλ ), then I = PU.


The characterization given in [4] using int and polynomial primes is technical. It
is easy to explain, however, the major application of ultrafilters given.


1. Let D be a domain.
2. Let {Pi | i ∈ Ω} be a collection of prime ideals of D.
3. For each element d ∈ D define B(d) = {i ∈ Ω | d ∈ Pi}.
4. P is a nonzero prime ideal of D.


Proposition 9 ([4, Lemma 2.2]). Assume the notation in (1)–(4) above. Then the
following are equivalent.


1. P is contained in the limit prime PU of the family {Pi | i ∈ Ω} with respect to
some ultrafilter U.


2. The finite intersections of the sets of the form B(d) for d ∈ P are not empty.
3. For each finitely generated ideal J contained in P there is some ideal Pi


containing J.


The proof of this result is straightforward. The key element is to note that the sets
B(d) for d ∈ P satisfy the finite intersection property and hence can be extended to
an ultrafilter on Ω .


This result is then key in proving that if Int(D) is a PvMD then each polynomial
prime contains a finitely generated ideal which is contained in no int prime. If it
were otherwise then we could use Proposition 9 above to find an ultrafilter limit of
int primes which contains a polynomial prime – which is impossible. This property
of polynomial primes is a key element in the characterization given in the paper. For
our purposes however the key points to glean from this paper are the ways ultrafilters
are used to obtain results. In particular, we used the fact that nonzero ultrafilter limit
ideals of t-ideals are still t-ideals (note that the ideals here need not be prime).
We learned that when we have a representation of a domain as an intersection of
valuation domains then we can obtain certain prime ideals as ultrafilter limits of
the centers of the defining family. It is not stated above, but it is also proven that
when Int(D) is a PvMD it follows that an ultrafilter limit of int primes is again an
int prime. What the results of this paper demonstrated was that given a collection
of ideals of a domain there are many important properties of ultrafilter limit ideals
which can be deduced from knowledge of the ideals in the collection.
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Another step forward that occurred in [4] was the realization that the notion of
ultrafilter limit could be applied to a collection of rings that were all subrings of one
large fixed ring. In particular, this is interesting with regard to valuation overrings
of domains.


Definition 10 Let K be a field and let {Di | i ∈ Ω} be a collection of quasi-local
domains with quotient field K. Let U be an ultrafilter on Ω . For an element d ∈ K
we define the set B(d) = {i∈Ω | d ∈ Di}. We then define DU = {d ∈ K | B(d)∈U}.


It is easy to see that DU as defined above is again a quasi-local domain with
quotient field K. (Note: it may actually be K.) We say that DU is an ultrafilter limit
ring of the set {Di}
Lemma 11 Suppose that K, Ω and U are as above and suppose that all of the
domains in Ω are valuation rings. Then DU is also a valuation ring.


This notion of convergence of valuation domains rather than ideals was put to
frequent use in [19] where the goal was to classify integrally closed rings of poly-
nomials which lie between Zp[X ] and Q[X ] where p is a prime number. The notion
was not key to proving a powerful theorem as in earlier papers. Rather it provides
a convenient way of describing/identifying certain valuation domains which play
important roles in the results. For example, a partial order was placed on all valu-
ation overrings of Z[X ] which contain a given prime p. It is easy to see then that
ultrafilters could be of use in proving the existence of minimal valuation domains
within certain subcollections – the ultrafilter limit process respects the ordering and
the limit of valuation domains is again a valuation domain.


4 Topology and questions


The original motivation for using ultrafilters on collections of prime ideals came
from the behavior of maximal ideals in Int(Z) which they inherited from the com-
pact metric spaces of p-adic integers. It is certainly unreasonable to expect that every
space of prime ideals of a ring (or valuation overrings) is similarly governed by a
metric space topology. It is true, however, that the space of prime ideals of a ring
or valuation overrings of a domain can be viewed naturally as a compact Hausdorff
space. We next give a quick review of some results on topological structures which
have been naturally defined on spaces of prime ideals or valuation domains.


Definition 12 ([9, Chap. I]).


1. Let R be a ring and let Spec(R) denote the collection of prime ideals of R. For
any ideal I of R we let V (I) be the set of all prime ideals P of R such that I ⊆ P.
Then the sets of the form V (I) comprise the closed sets of a topology which we
call the Zariski topology on Spec(R).
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2. Let D be an integral domain with quotient field K and let X(D) denote the set of
all valuation overrings of D. For any finite collection {d1,d2, . . . ,dn} of elements
of K we let E(d1, . . . ,dn) denote the collection of valuation overrings V of D
such that {d1,d2, . . . ,dn} ⊆ V . Then the sets E(d1, . . . ,dn) comprise a basis for
the open sets of a topology on X(D) which we call the Zariski


In both of the cases above, the Zariski topology is well-known to be quasi-
compact but is generally far from being Hausdorff. There is a refinement of the
Zariski topology however, which always yields a compact Hausdorff space.


Definition 13 [15] Let R be a ring and let Spec(R) be the collection of prime ideals
as above. Start with the Zariski topology as above. Then for every element d ∈ R
consider the set V ((d)). The coarsest topology which refines the Zariski topology
and includes every set V ((d)) as above as both an open set and a closed set is known
as the patch topology on Spec(R). In a similar fashion we can start with the Zariski
topology on the space X(R) of valuation overrings of a domain D and determine
that the sets of the form E(d) where d ∈ K should be closed as well as open. The
topological space generated from this process is also known as the patch topology.


There is another well known description of the patch topology [13, pp. 337–339]
or [1, Chap. 3, Exercises 27, 28, and 30]. Let R be a ring and let f : R → T be a
homomorphism from R to another ring T . Then the set { f−1(P) | P ∈ Spec(T )} is
a subset of Spec(R). If we consider all such sets for all possible homomorphisms
into all possible rings T the resulting collection of subsets of Spec(R) comprises the
closed sets of a topology known as the constructible topology.


Proposition 14 For a ring R, the patch topology and the constructible topology on
the set Spec(R) of prime ideals of R are identical.


It should be noted that the definition of the constructible topology actually
predated the definition of the patch topology. An early discussion of the con-
structible topology can be found in [12].


In [8], it is demonstrated that for an integral domain D the Zariski topology on
the space X(D) of valuation overrings of D can be naturally identified with the ordi-
nary Zariski topology on the prime spectrum of the Kronecker function ring Kr(D).
Hence, we can naturally define the constructible topology (which will again be iden-
tical to the patch topology) on X(D) as well.


Given the above topologies on Spec(R) or X(D) it is natural to ask whether the
convergence properties we have observed involving ultrafilters are related to these
topologies. In [11] we use ultrafilters to define a topology on Spec(R) and prove that
the resulting topology is the same as the patch/constructible topology.


Definition 15 Let R be a ring and let C be an infinite subset of Spec(R). Let U be
an ultrafilter on C and let PU be the ultrafilter limit prime as defined in the previous
section. If U is a principal ultrafilter based on a prime P ∈ Spec(R) then P = PU.
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Let C be C together with its ultrafilter limit primes (considering all possible ultrafil-
ters). We then say that C is ultrafilter closed if C = C. The collection of all ultrafilter
closed subsets of Spec(R) (together with the empty set) are the closed sets of a
topology which we call the ultrafilter topology.


The main goal of [11] is to connect the ultrafilter topology with the patch/
constructible topology on a ring.


Theorem 16 Let R be a commutative ring. The ultrafilter topology and the patch/
constructible topologies are identical.


The primary tool used in proving the above result is an absolutely flat ring T (R)
which can be associated with a commutative ring R such that the constructible/patch
topologies on R and T (R) are homeomorphic and such that on T (R) the Zariski and
constructible/patch topologies are identical. Detail concerning this ring can be found
in [20].


As above, recall that we can identify the space of valuation overrings of an inte-
gral domain D with the prime ideals of the Kronecker function ring of D. We then
take a collection of valuation overrings of D and define ultrafilter limit primes of
the collection and then define closed sets of valuation domains as those that contain
all of their ultrafilter limit points. As with the topologies on Spec(R) this ulrafilter
topology is the same as the classical patch topology.


So we have proven that the convergence properties we observed are actually con-
sequences of a well-known Hausdorff topology. It seems, however, that the ultra-
filter viewpoint has some advantages over the classical definitions. In particular, it
is possible to have a great deal of control over convergent sequences with the ul-
trafilter context. In fact, the ultrafilters give the topology a localized character since
closure is defined one ultrafilter at a time. We now make note of some topics left to
be investigated that might be of future interest.


1. Much of the utility of the ultrafilter techniques developed so far have to do with
properties of ultrafilter limit primes which are inherited from the collection
of primes on which the ultrafilter is placed. It would be nice to have a better
description of what properties are transferred from a collection of primes to a
limit prime. For example, say that a prime ideal P of a domain D is essential
provided DP is a valuation domain. Let D be a domain and let {Pi | i ∈ Ω} be
a collection of essential primes of D. Place a nonprincipal ultrafilter on Ω . The
ultrafilter can be viewed as being on either the collection of primes or on the
collection of valuation overrings arising be means of localization. If we look at
this from the valuation overring point of view, the ultrafilter limit will be a limit
of a collection of valuation domains – which is again a valuation domain. It is
not at all clear, however, that the corresponding ultrafilter limit prime within
D will again be an essential prime. It would be interesting to know if or when
such a prime is essential.


2. In our original motivating example, portions of the maximal spectrum of a
Prüfer domain were identified with a well studied compact metric space. Let
D be a quasi-local domain with maximal ideal M. Consider the space of all
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valuation overrings of D whose maximal ideals lie over M. It is too much to ask
that such a space always be metrizable. But it seems clear that it will sometimes
be metrizable. For example, if D is a countable ring then this space should be
metrizable. Perhaps, this is true if D is a Noetherian local ring – countable or
not. It would be nice to know when this space is metrizable and if it is whether
there is a natural description of the metric.


3. In defining the ultrafilter topology we allowed the use of any ultrafilter defined
on a given collection of prime ideals. If only the principal ultrafilters are used
then we could use the same construction and end up with something very close
to the discrete topology. Perhaps other interesting topologies which lie between
the patch/constructible and the discrete topologies could be constructed by us-
ing collections of ultrafilters which contain all the principal ultrafilters but not
all ultrafilters.


4. As well as giving an alternate description of the patch topology, the ultrafilters
generalize it. The classical patch topology is generally defined on sets of prime
ideals or valuation domains. If R is a ring and M is an R-module then the ultra-
filter topology can be defined naturally on the collection of all R-submodules of
M. So, for example, we can define the topology on the collection of all ideals of
a ring R, or if D is a domain with quotient field K then we can define the topol-
ogy on the set of all D-submodules of K. In fact, we can define the ultrafilter
topology on the set of subgroups of an infinite group. (Note that the ultrafilter
limit of a collection of normal subgroups is again a normal subgroup.) There
are surely applications beyond what is outlined in this paper in these more
general settings.
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Intersections of valuation overrings
of two-dimensional Noetherian domains


Bruce Olberding


Abstract We survey and extend recent work on integrally closed overrings of
two-dimensional Noetherian domains, where such overrings are viewed as intersec-
tions of valuation overrings. Of particular interest are the cases where the domain
can be represented uniquely by an irredundant intersection of valuation rings, and
when the valuation rings can be chosen from a Noetherian subspace of the Zariski-
Riemann space of valuation rings.


1 Introduction


This article is motivated by the problem of trying to understand the integrally closed
domains that can occur between an arbitrary Noetherian domain D of Krull dimen-
sion 2 and its quotient field. In general such a ring need not be Noetherian, and
from the idiosyncratic standpoint of this article, the Noetherian rings are less inter-
esting than the non-Noetherian ones. This is because we approach integrally closed
rings from the “outside,” and seek to describe them as an intersection of valuation
overrings, and in particular how they are cut out of the quotient field by these inter-
sections. It is known, thanks to a 1969 theorem of Heinzer which we state below,
how the integrally closed Noetherian overrings of D are cut out in this way: they are
precisely the overrings having a finite character representation consisting of DVRs.
Recall that a collection of valuation overrings of a domain H has finite character if
each nonzero element of H is a unit in all but at most finitely many valuation rings in
the collection. A DVR is a discrete rank one valuation ring, or, equivalently, a local
PID. An overring of H is a ring between H and its quotient field. Heinzer’s theorem
then states:
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Theorem 1.1 (Heinzer [7]). Let H be an integrally closed overring of a two-
dimensional Noetherian domain. Then H is a Noetherian domain if and only if H is
a finite character intersection of DVR overrings of H.1


From well-known properties of Krull domains, we deduce then that an integrally
closed overring H of a two-dimensional Noetherian domain is Noetherian if and
only if H can be written uniquely as an irredundant finite character intersection of
DVRs. Thus, each integrally closed Noetherian overring is determined in a precise
way by a unique set of DVR overrings. This gives additional evidence that from our
peculiar point of view, the Noetherian case is particularly transparent.


In this article, we consider other classes of rings that can be represented in a
similar way. We are particularly interested in existence and uniqueness of nice
representations of overrings of two-dimensional Noetherian domains. Of course, the
richness and complexity of the class of two-dimensional integrally closed Noethe-
rian domains, despite the transparent way in which they are assembled from DVRs,
suggest that intersections of even “more” valuation overrings which need not be
DVRs, should produce even more complicated rings. So our goal is not so much to
shed light on the ideal theory or the internal structure of the integrally closed over-
rings of D, as it is to understand better the different sorts of representations of these
rings one can encounter in the vast expanse between a two-dimensional Noetherian
domain and its quotient field.


In keeping with the theme of Heinzer’s theorem, we intersect valuation rings
coming from topologically “small” (in actuality, Noetherian) subspaces of the
Zariski–Riemann space of all valuation overrings of D, and we show that a fairly
complete and satisfactory account can be given of these intersections. In so doing,
since finite character collections of valuation rings are Noetherian spaces, we also
generalize Heinzer’s theorem, and classify the integrally closed overrings of D that
are finite character intersections of arbitrary valuation overrings of D, not just DVRs.


Our approach to these topics is from the following more general point of view.
With D a two-dimensional Noetherian domain, let R be an integrally closed overring
of D. If H is an integrally closed overring of D such that D ⊆ H ⊆ R, then there
exists a collection Σ of valuation overrings of D, none of which contain R, such that
H = (


⋂
V∈Σ V )∩R. When not many such valuation rings are needed, i.e., when Σ


can be chosen a Noetherian subspace of the space of all valuation overrings of D,
then we can say quite a lot about H in terms of R, but of course, what we can say is
limited by our knowledge of R. However, choosing R to be the quotient field of D,
we then obtain the setting described in the preceding paragraph, and our results are
more definitive.


The most success with this sort of approach has been achieved by K. A. Loper
and F. Tartarone in their very interesting recent study [13] of the integrally closed
rings between Z[X ] and Q[X ]. They use MacLane’s notion of key polynomials to


1 Heinzer gave a direct proof of this result in [7]. Later, in 1976, Nishimura showed that Heinzer’s
theorem was a quick corollary of a more general result: If H is a Krull domain such that H/P is a
Noetherian domain for each height 1 prime ideal P of H, then H is a Noetherian domain [16]. So
to obtain Heinzer’s theorem, apply Nishimura’s criterion, along with Proposition 1.2 below.
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place a tree structure on the valuation overrings of Z[X ], and from this structure
deduce information about integrally closed rings between Z[X ] and Q[X ], such as
when such rings are Prüfer, Noetherian or Mori. The framework they introduce to
consider such questions is beyond the scope of the present paper, but we do recall
one of their main results below, in Theorem 2.11.


By way of introduction, we review next some general properties of integrally
closed overrings of two-dimensional Noetherian domains, and discuss the valuation
theory of these domains. The following proposition, which can be found in [19]
and is an easy consequence of well-known results, perhaps misleads one to be-
lieve that the class of integrally closed overrings of D might have more tractability
than it does, in that the factor rings and localizations at nonzero nonmaximal prime
ideals are Noetherian domains. Yet even given these strong constraints, there exist
numerous examples of complicated non-Noetherian integrally closed overrings of
two-dimensional Noetherian domains, as is suggested by the rings we consider later
in Section 4.


Proposition 1.2 ([19, Proposition 2.3]). Let H be an integrally closed overring of
the two-dimensional Noetherian domain D, and suppose that P is a nonzero prime
ideal of H. Then H has Krull dimension ≤ 2, H/P is a Noetherian domain, and if P
is not a maximal ideal of H, then HP is a DVR.


Applying the proposition to the special case of valuation overrings of D, we see
that every such valuation overring V has Krull dimension at most 2, and if V has
Krull dimension 2, then for P the height 1 prime ideal of V , we have that both V/P
and VP are DVRs; equivalently, the value group of V is isomorphic to Z⊕Z, ordered
lexicographically. This classifies the valuation overrings of D of Krull dimension 2.
In fact the basic valuation theory of two-dimensional Noetherian domains can be
described rather briefly. For ease of reference we restate first our classification of
the two-dimensional case.


(1.3) Valuation rings of Krull dimension 2. A valuation overring V of a two-
dimensional Noetherian domain has Krull dimension 2 if and only if there is a prime
ideal P of V such that both V/P and VP are DVRs.


(1.4) Rational and irrational valuation rings. A valuation domain is rational if its
value group is isomorphic as a totally ordered abelian group to a nonzero subgroup
of the rational numbers. A valuation domain is irrational if it is not rational and its
value group is isomorphic as a totally ordered abelian group to a nonzero subgroup
of the real numbers. A valuation ring has Krull dimension 1 if and only if its value
group is isomorphic as a totally ordered group to a subgroup of the real numbers [4];
hence a valuation ring has Krull dimension 1 if and only if it is rational or irrational.


(1.5) Prime divisors. Among the DVR overrings of the two-dimensional Noether-
ian domain D, the essential prime divisors of D are those of the form DP, where D is
the integral closure of D in its quotient field and P is a height one prime ideal of D.
The hidden prime divisors are those valuation overrings V that are DVRs having
maximal ideals contracting to a maximal ideal of D and such that the residue field
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of V has transcendence degree 1 over the residue field of its center in D. A hidden
prime divisor has the property that its residue field is a finitely generated extension
of the residue field of its center MV ∩D in D [1, Theorem 1(4)]. Moreover, a hidden
prime divisor of D cannot be an essential prime divisor of D. The classes of essential
and hidden prime divisors do not generally account for all the DVR overrings of D.2


There remains the class of DVRs having maximal ideals contracting to a height 2
maximal ideal of D and such that the residue field of V is algebraic over the residue
field of its center in D. See [23, p. 102] for explicit examples of such DVRs.


Notation. Most of our notation is standard, with a few possible exceptions. When
H is a domain, R is an overring of H and P is a prime ideal of H, we write RP for
the ring RHP = (H \P)−1R. We also always denote the maximal ideal of a valuation
ring V by MV , and when V has a height 1 prime ideal, we denote this by PV . Of
course it can happen that PV = MV .


2 Strongly irredundant representatives


An integral domain is integrally closed if and only if it is an intersection of valuation
overrings, but in general no one valuation overring is special enough to be necessary
in this representation. However, the phenomenon of being necessary in the repre-
sentation does occur, as we will see often throughout the rest of this article. To
formalize this idea, we introduce first some terminology. Let R be an overring of a
domain H. A collection Σ of valuation overrings of H is an R-representation of H if
H = (


⋂
V∈Σ V )∩R. When R is the quotient field of H, then H =


⋂
V∈Σ V , and we say


simply that Σ is a representation of H. As discussed in the introduction, the added
generality here in allowing R to range over various integrally closed overrings is a
useful framework for considering the case where R is an integrally closed overring
of the two-dimensional Noetherian domain D, and H is an integrally closed do-
main with D ⊆ H ⊆ R, since then H has an R-representation consisting of valuation
rings not containing R. For this reason, most of what follows is phrased in terms of
R-representations, but by choosing R to be the quotient field of D, one effortlessly
obtains stronger consequences.


The existence of an R-representation of the domain H is a triviality, since one
may always choose the set Zar(H) of all valuation overrings of H, or even the set
{V ∈ Zar(H) : R �⊆ V} for the representation. Thus, a more interesting issue is the
existence of “nice” R-representations. In particular, in this section we are interested
in when such a representation is unique; uniqueness, as usual, presupposes irre-
dundance: An R-representation Σ of H is irredundant if no proper subset of Σ is an
R-representation of H. The main question we address then is: When can an integrally


2 However, if D is a two-dimensional complete local Noetherian domain, then every DVR overring
of D is either a hidden prime divisor or an essential prime divisor [11, Corollary 2.4]
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closed overring of D have two different irredundant R-representations? The short
answer is: “frequently,” but we will see that this is because the question is not quite
posed correctly.


The following easy example makes this clearer. Let P be a height 1 prime ideal
of an integrally closed local Noetherian domain H of Krull dimension 2. Let X be
the collection of height 1 prime ideals of H distinct from P, and let R =


⋂
Q∈X HQ.


If W is any valuation overring of H of Krull dimension 2 such that H ⊆ W ⊆ HP,
then H = W ∩R = HP ∩R and W and HP are irredundant in these representations,
yet W �= HP.


Thus, uniqueness fails in the example because one of the valuation rings, W , can
be replaced in the representation by one of its valuation overrings, namely HP. So
we refine our notion of irredundance to exclude the phenomenon in the example,
and we say that an R-representation Σ of H is strongly irredundant if no member V
of Σ can be replaced with a proper overring V1 of V . More precisely, Σ is a strongly
irredundant R-representation of H if for every V ∈ Σ and proper overring V1 of V ,
{V1}∪ (Σ \ {V}) is not an R-representation of H.


The more interesting question then is: When can an integrally closed overring
of D have two different strongly irredundant R-representations? We will see be-
low that the answer for a large class of strongly irredundant R-representations is
“never,” and hence that for this class, strongly irredundant representations are al-
ways unique. We postpone till the next section the very relevant question of when
such representations occur. But even putting aside this issue of existence, the finite
case is still interesting. For a consequence of the uniqueness theorem, Theorem 2.8,
is that if R is an integrally closed overring of D, and V1, . . . ,Vn,W1, . . . ,Wm are valu-
ation overrings of D not containing R such that:


V1 ∩·· ·∩Vn ∩R = W1 ∩·· ·∩Wm ∩R,


then by throwing out any Vi or Wj that is not needed, and by replacing wher-
ever possible Vi or Wj with an overring (finiteness here allows all this), we may
assume that these intersections are strongly irredundant. Hence, from the unique-
ness theorem, we have cancellation: namely, {V1, . . . ,Vn} = {W1, . . . ,Wm}.


Uniqueness depends heavily on our hypotheses here. For example, it fails in di-
mension higher than 2: Let K be a field, and let X ,Y,Z be indeterminates for K.
Define D = K[X ,Y ], U = D[Z](Z) and H = K + ZU . Then H is an integrally closed
overring of a three-dimensional Noetherian domain that has uncountably many dis-
tinct strongly irredundant representations [18, Example 6.2]. Uniqueness can also
fail if R is not integrally closed. Briefly, following Example 6.1 in [18], where more
details are included, let D = Q[X ,Y ], and let P = (Y 2 −X3−X +1)Q[X ,Y ]. Then P
is a prime ideal. Let A = (D+ PDP)/PDP. Then the quotient field of A is DP/PDP.
Write A = Q[x,y], where x,y ∈ A and y2 = x3 + x− 1. Consider the subring Q[x]
of DP/PDP, and let U = Q[x](x−1). Then there exist two distinct valuation rings U1


and U2 with quotient field DP/PDP such that U = U1 ∩Q(x) = U2 ∩Q(x). More-
over, there exists a subring R of DP such that PDP ⊆ R ⊆ DP and R/PDP = Q(x),
and there exist valuation overrings V1 and V2 of D such that V1/PDP = U1 and
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V2/PDP = U2. Now (V1 ∩R)/PDP = U1 ∩Q(x) = U = U2 ∩Q(x) = (V2 ∩R)/PDP.
Hence, V1 ∩ R = V2 ∩ R, but V1 �= V2 since U1 �= U2. In light of the uniqueness
theorem, the problem here– the reason that uniqueness fails– is that R is not
integrally closed.


The above two examples involve valuation rings of Krull dimension >1, and
it is in dealing with these valuation rings where it is important that we work over
two-dimensional Noetherian domains. But if one restricts to valuation rings of Krull
dimension 1, then this hypotheses is not needed, as long as the collections are as-
sumed to have finite character. This is part of a theorem due to Heinzer and Ohm,
which we state shortly. But first we introduce some terminology: Let H be a domain,
and let R be an overring of H. If V is a valuation overring of H, then we say that V is
a (strongly) irredundant R-representative of H if there exists an R-representation Σ
of H such that V ∈Σ and V is (strongly) irredundant in this representation. Thus V is
a strongly irredundant R-representative of H if and only if there exists an integrally
closed overring R1 of H such that H = V ∩R1 ∩R and V is strongly irredundant in
this intersection. In the case where R is the quotient field of H, we simply say that
V is a strongly irredundant representative of H. Thus, V is a strongly irredundant
representative of H if and only if there exists an integrally closed overring R1 of H
such that H = V ∩R1 and V is strongly irredundant in this intersection. In particular,
a strongly irredundant R-representative is a strongly irredundant representative.


A valuation ring that has Krull dimension 1 is, trivially, an irredundant represen-
tative if and only if it is a strongly irredundant representative. As noted above, it is
in treating valuation overrings of Krull dimension >1 where we need to work over
a two-dimensional Noetherian domain in order to obtain the strongest results. But
restricting for the moment to one-dimensional valuation rings, there exist some very
general results, the first of which concerns rational valuation rings:


Proposition 2.1 (Heinzer–Ohm [9, Lemma 1.3]). Let H be a domain. If there exists
a rational valuation overring V of H such that H = V ∩R for some overring R �= H,
then V is a localization of H. In particular, every rational valuation overring of H
that is a strongly irredundant representative of H is a localization of H.


A slight technical generalization of the proposition is proved in Lemma 3.1 of
the article [18]: If H = V ∩R, where V is a valuation overring of H not necessarily
of Krull dimension 1, and there exists a nonmaximal prime ideal P of V such that
V/P is a rational valuation ring and V ⊆ HP∩H, then V is a localization of H or
H = VP∩R. The relevance of this more general version is that if H is an overring of
the two-dimensional Noetherian domain D, and V has Krull dimension 2, then V/P
is a DVR, hence a rational valuation ring, where P is the nonzero nonmaximal prime
ideal of V . This is the main step in obtaining the following useful characterization.


Proposition 2.2 ( [18, Propositions 3.2 and 3.4]). Let H be an overring of the two-
dimensional Noetherian domain D, and suppose there exists a valuation overring V
of Krull dimension 2 such that H = V ∩ R for some overring R �= H. Then V is
strongly irredundant in H = V ∩R if and only if either V is a localization of H or
the nonzero prime ideals of V contract to a maximal ideal of H.
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A domain H is completely integrally closed if for every x in the quotient field,
x belongs to H whenever the powers xn (n ≥ 0) are contained in a finitely generated
H-submodule of the quotient field of H. For example, an intersection of valuation
rings of Krull dimension 1 is completely integrally closed. We observe in the next
proposition, which will be useful in Section 4, that the only strongly irredundant
representatives a completely integrally closed domain possibly can have are those
of Krull dimension 1.


Proposition 2.3. Let H be a domain, and let R be an overring of H. Suppose there
exists a valuation overring V of Krull dimension > 1 such that H = V ∩R, and V is
strongly irredundant in this intersection. Then H is not completely integrally closed.


Proof. Let P be a nonzero nonmaximal prime ideal of V , and let U = VP. Then
H � U ∩R, since V is strongly irredundant in H = V ∩R. Choose 0 �= h ∈ P∩H.
Then h(U ∩ R) ⊆ hU ∩ R ⊆ P∩ R ⊆ V ∩ R = H. Choose x ∈ (U ∩R) \H. Then
hH[x] ⊆ h(U ∩R) ⊆ H, so that H[x] ⊆ h−1H. Since x �∈ H and h−1H is a finitely
generated H-module, we see that H cannot be completely integrally closed. 
�


In particular, an integrally closed Noetherian domain D, since it is completely
integrally closed, cannot have a strongly irredundant representative of Krull dimen-
sion > 1. In fact, if D has Krull dimension 2, the only strongly irredundant repre-
sentatives of D are its essential prime divisors [19, Corollary 3.7].


Returning to the general setting where we do not assume H is an overring of
a two-dimensional Noetherian domain, and continuing with the theme of identify-
ing when irredundant representatives are localizations, we see in the special case
where R has nonzero Jacobson radical, then not only are irredundant representatives
localizations, but so is the ring R:


Proposition 2.4 (Heinzer [8, Corollary 1.16]). Let H be an integrally closed do-
main, and let R be an overring of H having nonzero Jacobson radical. If H =
V1 ∩V2 ∩·· ·∩Vn ∩R, where V1, . . . ,Vn are valuation overrings of Krull dimension 1
that are irredundant in this intersection, then R and the valuation rings Vi are all
localizations of H.


The next proposition also concerns valuation overrings of Krull dimension 1 that
are irredundant representatives. The V -value referred to in the proposition is the
value of a given element under the valuation corresponding to the valuation ring V .
In light of Proposition 2.1, the real content of the proposition is that if V is an
irrational irredundant representative, then its maximal ideal is generated as an ideal
of V by its center in H.


Proposition 2.5 (Heinzer–Ohm [10, Theorem 1.1]). Let H be a domain, and sup-
pose V is a valuation overring of Krull dimension 1 such that H = V ∩R for some
overring R with H �= R. Then either V is a DVR, or H contains elements of arbitrar-
ily small V -value.


An example due to Ohm in [17, Example 5.3] illustrates the proposition. Let p be
a prime integer, and let vp be the p-adic valuation on Q. Extend vp to a mapping v
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on Q[X ] by defining for each ∑n
i=0 aiXi ∈ Q[X ], v(∑n


i=0 aiXi) = inf{vp(ai) + iπ}.
Then, by defining v( f/g) = v( f )−v(g) for all f ,g ∈Q[X ], g �= 0, we have that v is a
valuation on Q(X) that extends vp [4, Theorem 2.2.1]. Let H =V ∩Q[X ], where V is
the valuation ring corresponding to v. Then V is an irrational valuation ring irredun-
dant in this representation. Moreover, if M = MV ∩H, then by the proposition, MV
is the maximal ideal of V . Ohm’s original motivation for introducing this example
was to show that a domain that is an (irredundant) intersection of valuation overrings
of Krull dimension 1 need not have the property that every nonunit is contained in
a height one prime ideal. Indeed, in the example, the maximal ideal M is the radical
of pH in H [17, Corollary 5.6].


We turn now to the framing of our main uniqueness result, Theorem 2.8. The
dimension 1 case, which is due to Heinzer and Ohm, works without assumptions on
being an overring of a two-dimensional Noetherian domain. Note that the theorem
asserts both existence and uniqueness:


Theorem 2.6 (Heinzer–Ohm [10, Corollary 1.4]). Let H be a domain, let R be
an overring of H and suppose that H has a finite character R-representation Σ
consisting of valuation overrings of Krull dimension 1. Then every irredundant
R-representative of H of Krull dimension 1 is a member of Σ , and the set of all
such representatives of H is a finite character R-representation of H. In particular,
H has a unique irredundant R-representation of H consisting of valuation rings of
Krull dimension 1.


As alluded to earlier, the valuation overrings of Krull dimension > 1 cause more
difficulties. But in the context of overrings of two-dimensional Noetherian domains,
as discussed in (1.3), a valuation overring of Krull dimension > 1 must be a dis-
crete valuation ring of Krull dimension 2. Let V be such a valuation ring, and let P
denote the nonzero nonmaximal prime ideal of V . Then V/P is a DVR with quo-
tient field VP/P. If also P contracts to a height 2 maximal ideal of D, then, as in
(1.5), VP/P is a finitely generated field extension of D/(P∩D) of transcendence
degree 1, a fact that allows the strong approximation theorem for projective curves
to be exploited in the treatment of V . This is done in [18] to obtain one of the main
results of that article:


Theorem 2.7 ([18, Theorem 5.3]). Let H ⊆ R be integrally closed overrings of the
two-dimensional Noetherian domain D, and let V be a valuation overring of H of
Krull dimension 2. Then V is a strongly irredundant R-representative of H if and
only if V is a member of every R-representation of H.


The next theorem, our main uniqueness theorem, appears in slightly weaker form
in Corollary 5.6 of [18]. It is a consequence of Theorems 2.6 and 2.7. We need the
added strength of the present version in order to prove Corollary 2.12 below.


Theorem 2.8. Let H ⊆ R be integrally closed overrings of the two-dimensional
Noetherian domain D. Suppose that Σ and Γ are collections of valuation overrings
of H such that
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H =


(
⋂


V∈Σ
V


)


∩R =


(
⋂


V∈Γ
V


)


∩R,


and let Δ be the subcollection of irrational valuation rings in Γ . If each maximal
ideal of H has at most finitely many members of Δ centered on it (which is the case
if Δ has finite character), and the members of Σ and Γ are strongly irredundant in
these intersections, then Σ = Γ .


Proof. We claim that H = (
⋂


V∈Σ∩Γ V ) ∩ R. For if this is the case, then since
Σ ∩Γ ⊆ Σ , and Σ is an irredundant R-representation of H, necessarily Σ ∩Γ = Σ ,
and a similar argument shows that Σ ∩Γ = Γ ; hence Σ = Γ . By way of contra-
diction, suppose that H �= (


⋂
V∈Σ∩Γ V )∩R. By Theorem 2.7, a valuation ring of


Krull dimension 2 is in Σ if and only if it is in Γ . Thus, by replacing R with
(
⋂


V∈Σ∩Γ V )∩R, Σ with Σ \ (Σ ∩Γ ) and Γ with Γ \ (Σ ∩Γ ), we may assume with-
out loss of generality that Σ ∩Γ is empty and every valuation ring in Σ and Γ has
Krull dimension 1. We will derive a contradiction to the assumption that Σ ∩Γ is
empty, and by so doing conclude that Σ = Γ .


Let V ∈ Σ . Since V is a strongly irredundant R-representative of H, there exists
an integrally closed ring R1 ⊆ R such that H = V ∩R1 and V is strongly irredun-
dant in this intersection. Let P = MV ∩H. We show that P is a nonmaximal prime
ideal of H. Suppose otherwise. By Lemma 5.2 of [18], since H = V ∩R1, the set
Γ (P) := {V ∈ Γ : P ⊆ MV } is an R1-representation of H, so if U ∈ Γ (P), then
necessarily, since P is a maximal ideal of H, P = MU ∩H. Moreover, if some mem-
ber U ∈ Γ (P) is a rational valuation ring, then by Proposition 2.1, U = HP, and
hence the irredundancy of Γ implies that U is the only member of Γ centered on P;
i.e., Γ (P) = {U}. Otherwise, every member of Γ (P) is an irrational valuation ring,
so by assumption there are at most finitely many members of Γ centered on the
maximal ideal P. Hence, in every case, Γ (P) is a finite set. Thus since V is an irre-
dundant R1-representative of H, and Γ (P) is a finite R1-representation of H, we have
by Theorem 2.6 that V ∈ Γ (P) ⊆ Γ . But we have assumed that Σ ∩Γ is empty, so
this contradiction shows that every valuation ring in Σ is centered on a nonmaximal
prime ideal of H.


Now let W ∈ Γ . Then there exists an integrally closed ring R2 ⊆ R such that
H = W ∩R2 and W is strongly irredundant in this intersection. Let Q = MW ∩H.
By Lemma 5.2 of [18], Σ(Q) is an R2-representation of H; in particular Σ(Q) is
nonempty, and we may choose U ∈ Σ(Q). As we have shown above, every mem-
ber of Σ is centered on a nonmaximal prime ideal of H, so necessarily, since
Q ⊆ MU ∩ H and H has Krull dimension at most 2 (Proposition 1.2), it must be
that Q = MU ∩H, and Q is a nonmaximal prime ideal of H. But HQ ⊆W ∩U , and
since by Proposition 1.2, HQ is a DVR, we have W = U ∈ Σ . This contradicts the
assumption that Σ ∩Γ is nonempty, so we conclude that Σ = Γ . 
�


Theorem 2.8 does not appear to generalize in any obvious way to higher di-
mensions, a fact which is not too surprising given our reliance, as discussed
above, on a reduction to the case of projective curves. Example 6.2 of [18],
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which was recalled earlier in this section, demonstrates in fact that uniqueness of
strongly irredundant representations fails rather dramatically for overrings of three-
dimensional Noetherian domains. Example 6.1 of [18], which was also recalled
earlier, shows that Theorem 2.8 can fail if R is not integrally closed. However, I do
not know of any examples that show the restriction on Δ is needed in the theorem.
This raises:


Question 2.9. Can the restriction on Δ in Theorem 2.8 be omitted? That is, sup-
pose that R is an integrally closed overring of the two-dimensional Noetherian
domain D, and Σ and Γ are collections of valuation overrings of D such that
(
⋂


V∈Σ V )∩R = (
⋂


V∈Γ V )∩R. If the members of Σ and Γ are strongly irredun-
dant in these intersections, is Σ = Γ ?


To answer the question in the affirmative, the proof of Theorem 2.8 shows that
it is enough to prove the question has a positive answer in the case where Σ and Γ
consist of irrational valuation rings. This raises a more general question, one in
which we do not restrict to overrings of two-dimensional Noetherian domains.


Question 2.10. Suppose that H is a domain, R is an overring of H and Σ and Γ are
collections of valuation overrings of H of Krull dimension 1 such that (


⋂
V∈Σ V )∩


R = (
⋂


V∈Γ V )∩R. If the members of Σ and Γ are irredundant in these intersections,
is Σ = Γ ? Theorem 2.6 shows that the answer to the question is yes if Σ has finite
character.


See also Question 4.3 for another approach to answering Question 2.9. In lieu of
not knowing the answer to Question 2.9, we give next a specific instance in which
the restriction on Δ in Theorem 2.8 is automatically satisfied. We consider integrally
closed rings between V [X ] and F[X ], where V is a DVR with finite residue field and
F is the quotient field of V . In [13], Loper and Tartarone prove the remarkable
fact that locally, each such domain has an F [X ]-representation requiring only one
valuation ring:


Theorem 2.11 (Loper–Tartarone [13, Corollary 3.3]). Let V be a DVR having finite
residue field and quotient field F, and let X be an indeterminate for F. Let H be an
integrally closed domain such that V [X ] ⊆ H ⊆ F [X ]. Then for each prime ideal P
of H, there exists a valuation overring V of H such that HP = V ∩F[X ]P.


Using the theorem, we can prove for R = F [X ] a uniqueness result that on the
surface appears stronger than Theorem 2.8.


Corollary 2.12. Let V be a DVR having finite residue field and quotient field F, and
let X be an indeterminate for F. Suppose that Σ and Γ are collections of valuation
overrings of V [X ] such that


(
⋂


V∈Σ
V


)


∩F [X ] =


(
⋂


V∈Γ
V


)


∩F[X ],


and the members of Σ and Γ are strongly irredundant in these intersections. Then
Σ = Γ .
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Proof. Let H = (
⋂


V∈Σ V )∩F [X ]. To apply Theorem 2.8 we need only show that
there are at most finitely many members of Γ centered on any given maximal ideal
of H. Let M be a maximal ideal of H such that some member, say W , of Γ , is
centered on M. By Theorem 2.11, HM = V ∩F [X ]M for some valuation overring V
of H. On the other hand, since W is a strongly irredundant F [X ]-representative of H,
there exists an integrally closed ring R⊆F [X ] such that H =W ∩R and W is strongly
irredundant in this intersection. Moreover, since W is centered on M, W is strongly
irredundant in HM = W ∩RM [18, Proposition 3.2]; in particular, HM �= RM. Since
R ⊆ F [X ], we have HM = V ∩RM, and by possibly replacing V with an overring
of V , since HM �= RM we may assume without loss of generality that V is strongly
irredundant in this representation. Thus, we have V ∩RM = HM =W ∩RM , with both
V and W strongly irredundant in their respective representations. Consequently, by
Theorem 2.8, V = W . This then shows that for each valuation ring W in Γ centered
on M, W is equal to an overring of V , and since V has at most three overrings, we
conclude that only finitely many members of Γ are centered on M. 
�


3 Noetherian representations


We consider in this section the special case in which the overring H of the two-
dimensional Noetherian domain D has a Noetherian R-representation; i.e., an
R-representation that is a Noetherian subspace of the space of all valuation over-
rings of D. The Zariski–Riemann space of a domain H is the set Zar(H) of all
valuation overrings of H endowed with the topology whose basic open sets are of
the form


U(x1, . . . ,xn) := {V ∈ Zar(H) : x1, . . . ,xn ∈V},
where x1, . . . ,xn are in the quotient field of H; cf. [23, Chap. VI, Section 17]. We
are particularly interested in Noetherian subspaces of Zar(H), where a topological
space X is Noetherian if X satisfies the ascending chain condition for open sets.
One of our main motivations for considering the class of Noetherian subspaces of
Zar(H) is that it includes finite character collections:


Proposition 3.1 ( [21, Proposition 3.2 and Theorem 3.4]). If Σ is a finite character
collection of valuations overrings of the domain H, then Σ is a Noetherian subspace
of Zar(H). Conversely, if Σ is a Noetherian space, then the set of all valuation over-
rings V of H of Krull dimension 1 with U ⊆V for some U ∈ Σ has finite character.


Thus for Σ a collection of valuation overrings of Krull dimension 1, Σ is a
Noetherian space if and only if Σ has finite character. But if Σ is a Noetherian
space that contains valuation rings of Krull dimension 2, then Σ may not have finite
character, even in the special case where Σ consists of valuation overrings of a two-
dimensional Noetherian domain. This is a consequence of the following proposition,
which also provides a useful source of examples of Noetherian subspaces of Zar(D),
where D is a two-dimensional Noetherian domain. For Σ ⊆ Zar(D), we define


Σ1 = {U ∈ Zar(D) : U has Krull dimension 1 and V ⊆U for some V ∈ Σ}.
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By Proposition 3.1 and the fact that every valuation overring of D has Krull
dimension ≤2, if Σ is a Noetherian space, then Σ1 has finite character. The con-
verse is true in the following special case.


Proposition 3.2 ( [18, Lemma 4.3]). Suppose that Σ is a collection of valuation
overrings of the two-dimensional Noetherian domain D, and suppose that among
the valuation rings in Σ1, there are only finitely many essential prime divisors of D.
Then Σ is a Noetherian subspace of Zar(D) if and only if Σ1 has finite character.


It follows from the proposition that a Noetherian space of valuation rings need not
have finite character. For example, suppose that D is a two-dimensional Noetherian
domain, and V is a hidden prime divisor of D. Then by the proposition, the collection
of all valuation rings U with D ⊆U ⊆V is a Noetherian subspace of Zar(D), and it
is easy to see that since by (1.5), the field V/MV has transcendence degree 1 over
the residue field D/(MV ∩D), there are infinitely many such valuation rings U ,
and since each contains MV , the collection of all such rings U does not have finite
character.


The proposition suggests the question of whether Σ1 having finite character al-
ways implies that Σ is a Noetherian space. This is not the case, as follows from (4.5)
and Proposition 4.6 in the next section, where there is exhibited an integrally closed
overring H of a two-dimensional Noetherian domain such that Σ1 has finite charac-
ter but H does not have a Noetherian representation. In fact, the domain H in (4.5)
does not have any irredundant representatives. By contrast, if H can be written as
an intersection of valuation rings from a Noetherian subspace of Zar(H), this phe-
nomenon of having no irredundant representatives can never happen:


Theorem 3.3 ( [18, Corollary 5.7]). Let H � R be integrally closed overrings of the
two-dimensional Noetherian domain D. If H has a Noetherian R-representation,
then the collection of all strongly irredundant R-representatives of H is a Noetherian
R-representation of H and it is the unique strongly irredundant R-representation
of H.


Unpacking the theorem, we see that a Noetherian R-representation of an overring
of a two-dimensional Noetherian domain (a) can always be replaced by a strongly ir-
redundant Noetherian R-representation, (b) this R-representation is unique, and (c) it
consists of all the strongly irredundant R-representatives of H. Statement (a) holds
much more generally (see below), while statement (b) follows from Theorem 2.8.
Statement (c) is a bit more subtle, in that strongly irredundant R-representatives of H
are defined “locally”: V is a strongly irredundant R-representative if H = V ∩R1 for
some integrally closed overring R1 ⊆ R. Thus (c) asserts that the collection of all
such representatives is large enough to form a representation of H yet small enough
to be strongly irredundant, a fact which is not obvious.


The existence of a strongly irredundant R-representation in Theorem 3.3 is a
consequence of a general result: If a domain H with overring R has a Noetherian
(resp., finite character) R-representation Σ of valuation overrings, then H has a
strongly irredundant Noetherian (resp., finite character) R-representation Γ of val-
uation overrings. Moreover, every member of Γ can be chosen a valuation overring
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of a member of Σ [21, Theorem 4.3]. Following Brewer and Mott in [2], where this
result was proven for finite character collections and in the case where R is the quo-
tient field, the main idea behind the proof of this result is to pass to a Kronecker
function ring of H, and to sort things out there, which is easier to do since this ring
is a Prüfer domain, meaning that each valuation overring is a localization. In fact,
the argument given in [21] works for collections of integrally closed domains, not
just valuation rings.


One of the consequences of Theorem 3.3 is that to exhibit a (the!) strongly
irredundant R-representation of H, one must find all the strongly irredundant
R-representatives of H; these then form the unique strongly irredundant R-
representation of H. Identifying which valuation overrings are strongly irredundant
R-representatives is in general not easy. The next proposition considers a special
sort of Noetherian R-representation, one which contains only finitely many essential
prime divisors, and for which R is “close” to H. In this case, H has a very transpar-
ent strongly irredundant R-representation. In the theorem, we use the notation PV


to denote the height 1 prime ideal of a valuation ring V of Krull dimension ≥1.


Proposition 3.4 ( [18, Lemma 4.3 and Theorem 4.5]). Let H ⊆ R be integrally
closed overrings of the two-dimensional Noetherian domain D. If there is a Noethe-
rian R-representation Σ of H such that there are at most finitely many essential
prime divisors of D contained in Σ1, and R⊆U for each U ∈ Σ1, then {V ∈ Zar(H) :
R �⊆V, R ⊆VPV } is a strongly irredundant Noetherian R-representation of H.


In particular, suppose A is an integrally closed overring of the two-dimensional
Noetherian domain D, suppose that A is not completely integrally closed, and let R
be the intersection of all the valuation overrings of A of Krull dimension 1. Then A �=
R, since A is not completely integrally closed. Choose any collection Σ of valuation
overrings of A such that Σ1 is finite, and define H = (


⋂
V∈Σ V )∩R. Then, assuming


some V in Σ does not contain R, the theorem implies that {V ∈ Zar(H) : R �⊆ V} is
the unique strongly irredundant R-representation of H; see Corollary 4.8 of [18] for
more details and a stronger version of this fact.


Another quick consequence of the theorem is that if V and W are distinct val-
uation overrings of D such that W has Krull dimension 2 with V ∩ R ⊆ W and
R ⊆VPV ∩WPW , then necessarily R ⊆W . More generally:


Corollary 3.5 ( [18, Corollary 4.6]). Let R be an integrally closed overring of
the two-dimensional Noetherian domain D, and let V and W be valuation over-
rings of the two-dimensional Noetherian D. If V ∩ R ⊆ W, then V ⊆ W or
VPV ∩WPW ∩R ⊆W.


Along these same lines, the theorem also implies the following corollary, which
is interesting when H is not completely integrally closed, and hence H �= H ′.


Corollary 3.6 ( [18, Corollary 4.7]). Let H be an overring of the two-dimensional
Noetherian domain D, let H ′ be the intersection of all the valuation overrings of H
of Krull dimension 1, and let V be a valuation overring of H. Then Zar(H ′ ∩V ) =
{V}∪Zar(H ′).
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We turn now to the classification of quasilocal overrings H of the two-dimensional
Noetherian domain D that have a Noetherian R-representation. This restriction to the
quasilocal case is a reasonable reduction to make because of the next proposition.
It follows from general principles, so we do not restrict to the case where H is an
overring of a two-dimensional Noetherian domain.


Proposition 3.7 ( [21, Theorems 3.5 and 3.7]). Let Σ be a Noetherian collection of
valuation overrings of the domain H. If S is a multiplicatively closed subset of H,
then HS =


⋂
V∈Σ VS and {VS : V ∈ Σ} is a Noetherian subspace of Zar(H).


Thus, if H has a Noetherian (resp., finite character) R-representation, and M is
a maximal ideal of H, then by Proposition 3.7, HM has a Noetherian (resp., finite
character) RM-representation, and for this reason we are interested in the quasilocal
case. One of the main results of the article [19] is the following characterization.


Theorem 3.8 ( [19, Corollary 6.7]). Let H ⊆ R be integrally closed overrings of
the two-dimensional Noetherian domain D, with H quasilocal but not a valuation
domain, and let E = {r ∈ R : rM ⊆ M}, where M is the maximal ideal of H. The
following statements are equivalent.


(1) H has a Noetherian (resp., finite character) R-representation.
(2) E/M is a Noetherian ring (resp., finitely generated H/M-algebra) and E =


A∩B∩R, where B is an integrally closed Noetherian overring of H and A
is either the quotient field of H or a finite intersection of irrational valuation
overrings of H.


In the special case where R is the quotient field of D, Theorem 3.8 can be
formulated more succinctly using Corollary 8.3 of [19], which states that the ring
H has a Noetherian representation (that is, a Noetherian R-representation where R
is the quotient field of H) if and only if End(M) has a Noetherian representation for
some maximal ideal M of H. (For an ideal I of a domain H with quotient field F ,
we let End(I) = {q ∈ F : qI ⊆ I}).


Corollary 3.9. Suppose that H is a quasilocal integrally closed overring of the two-
dimensional Noetherian domain D. Let M denote the maximal ideal of H. Then H
has a Noetherian representation if and only if H is a valuation domain, a Noetherian
domain or End(M) = A∩B, where B is an integrally closed Noetherian domain and
A is either the quotient field of H or a finite intersection of irrational valuation
overrings of H.


The reader familiar with pullbacks will recognize Theorem 3.8 as asserting that
the ring H is a pullback of the Noetherian ring E/M and the ring E = A∩B∩R.
This insight, as indicated by the next corollary, is useful in locating examples of
rings with Noetherian R-representations.


Corollary 3.10 ( [19, Corollaries 4.9 and 5.4]). Let H ⊆ R be integrally closed over-
rings of the two-dimensional Noetherian domain D, and suppose that J is an ideal of
R such that D∩J is a maximal ideal of D and R/J is a reduced indecomposable ring
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having finitely many minimal prime ideals. Then every integrally closed overring C
of D such that J ⊆C ⊆ R has a Noetherian R-representation. If also R/J is a finitely
generated D/(D∩ J)-algebra, then every such ring C has a finite R-representation.


For example, suppose that R is an integrally closed overring of the two-
dimensional Noetherian domain D, and R is a finitely generated D-algebra. Choose
a maximal ideal m of D, and let J be an intersection of prime ideals of R minimal
over mR such that R/J is an indecomposable ring (e.g., choose J to be a prime ideal
of R minimal over mR). Then by the corollary, the integral closure of D + J in its
quotient field has a finite R-representation.


The next theorem is more or less implicit in Theorems 6.5 and 6.6 of [19]. It
gives an extrinsic classification of the quasilocal overrings of a two-dimensional
Noetherian domain having a Noetherian R-representation, with emphasis on how
these rings are assembled from valuation rings.


Theorem 3.11. Let H be a quasilocal integrally closed overring of the two-
dimensional Noetherian domain D that is not a valuation domain, and let R be
an integrally closed overring of H. Then H has a Noetherian R-representation if
and only if there exists a Noetherian integrally closed overring B of H such that one
of the following statements holds.


(a) H = B∩R
(b) There exist unique irrational valuation rings V1, . . . ,Vn such that:


H = V1 ∩·· ·∩Vn ∩B∩R,


and each Vi is irredundant in this intersection
(c) There exist unique irrational valuation rings V1, . . . ,Vn and a unique collection


Γ of valuation overrings of H of Krull dimension 2 such that: Γ1 is finite,


H = V1 ∩·· ·∩Vn ∩ (
⋂


V∈Γ
V )∩B∩R,


and each member of {V1, . . . ,Vn}∪Γ is strongly irredundant in this intersec-
tion; or


(d) There exists a unique collection Γ of valuation overrings of H of Krull dimen-
sion 2 such that: Γ1 is finite,


H = (
⋂


V∈Γ
V )∩B∩R,


and each member of Γ is strongly irredundant in this intersection.


Proof. Let E = {r ∈ R : rM ⊆ M}. By Theorem 3.8, H has a Noetherian
R-representation if and only if E/M is a Noetherian ring and E = A ∩ B ∩ R,
where B is an integrally closed Noetherian overring of E and A is either the quotient
field of H or a finite intersection of valuation overrings of H. Suppose that H has a
Noetherian R-representation. If H = E , then H = A∩B∩R, and if A can be omitted
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from this representation, then H = B∩R, and hence (a) is satisfied. If A cannot be
omitted, then there exist finitely many irrational valuation overrings V1, . . . ,Vn of H
such that H = V1 ∩·· ·∩Vn ∩B∩R. We may assume in fact that no Vi is irredundant
in this intersection, and hence by Theorem 2.8 each Vi is unique. Thus, in the case
where H = E = A∩B∩R, and A cannot be omitted, we see that (b) is satisfied.


Otherwise, suppose that H �= E . Then since H is not a valuation domain,
Proposition 4.6 and Corollary 4.7 of [19] imply there exists a unique collection Γ of
two-dimensional valuation overrings of H such that Γ1 is finite and Γ is a strongly
irredundant E-representation of H. In particular,


H = (
⋂


V∈Γ
V )∩E = (


⋂


V∈Γ
V )∩A∩B∩R.


If A can be omitted from this intersection, then (d) is satisfied. If, on the other hand,
A cannot be omitted, then since A is a finite intersection of irrational valuation over-
rings, we may throw away those not needed in the representation of H and obtain
(c), where uniqueness follows from Theorem 2.8. Conversely, in (c) and (d), since
Γ1 finite, we have by Proposition 3.2 that Γ is a Noetherian space. Thus it is clear
since a finite union of Noetherian spaces is Noetherian that each of (a)–(d) implies
H has a Noetherian R-representation. 
�


Examples given in the next section illustrate each case in Theorem 3.11. From the
theorem we draw the following corollary, which is implicit in Theorems 6.5 and 6.6
of [19], and classifies quasilocal overrings of two-dimensional Noetherian domains
having a finite character R-representation.


Corollary 3.12. Let H be a quasilocal integrally closed overring of the two-
dimensional Noetherian domain D, and let R be an integrally closed overring
of H. Then H has a finite character R-representation if and only if (a), (b), (c) or
(d) of Theorem 3.11 hold, with the additional assumption that Γ in (c) and (d) must
be a finite set.


Proof. Suppose that H has a finite character R-representation. Then since by
Proposition 3.1 a finite character R-representation is a Noetherian R-representation,
we have by Theorem 3.11 that one of (a)–(d) holds. Suppose that (d) holds. Then
necessarily, since Γ1 is finite, we have by Proposition 3.2 that Γ is a strongly ir-
redundant Noetherian (B∩R)-representation of H. In particular, every member of
Γ is a strongly irredundant R-representative of H. However, since H has a finite
character R-representation, say Σ , then every strongly irredundant R-representative
of H is a member of Σ ∪Σ1, with Σ ∪Σ1 a finite character collection [18, Corollary
5.8]. Thus, since Γ ⊆ Σ ∪Σ1, the set Γ has finite character, and since each member
of Γ is centered on the maximal ideal of H (indeed, by Proposition 1.2, a valuation
ring centered on a nonmaximal prime ideal is a DVR), Γ must be finite. Similarly,
if (c) holds, then Γ is a strongly irredundant Noetherian (A∩B∩R)-representation
of H, and as above, Γ must be finite. Conversely, since a finite union of finite
character collections of valuation overrings has finite character, it follows that (a),
(b), (c) and (d), with Γ finite in (c) and (d), each implies that R has a finite character
R-representation. 
�
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The next theorem considers Noetherian representations (i.e., Noetherian
R-representations, with R the quotient field of H) of one-dimensional overrings
of two-dimensional Noetherian domains.


Theorem 3.13 ( [19, Theorem 8.6]). Suppose that H is an integrally closed overring
of the two-dimensional Noetherian domain D, and that H is not a valuation domain.
Then the following statements are equivalent.


(1) H is a quasilocal domain of Krull dimension 1 that has a Noetherian
representation.


(2) There exists a hidden prime divisor U of D of such that H =
⋂


V⊆U V , where
V ranges over the valuation overrings of D contained in U.


(3) There exists a hidden prime divisor U of D of such that H is the integral
closure of the ring D +MU in its quotient field.


To close this section, we mention that it is somewhat complicated to describe
Spec(H) when H has a Noetherian R-representation: in general some prime ideals
are contracted from R, others are contracted from prime ideals of the valuation rings
in the representation, and some arise from neither of these sources. We omit the
details of how to account for these prime ideals, and refer instead to Section 7 of
[19]. However, the analysis of the particular case where R is the quotient field of D
does lead to some nice consequences.


Theorem 3.14 ([19, Theorem 8.1, Corollary 8.2 and Theorem 8.9]). Let H be a
quasilocal overring of the two-dimensional Noetherian domain D such that H has a
Noetherian representation and H is not a field. Then Spec(H) is a Noetherian space,
and for each nonzero radical ideal J of H, H/J is a Noetherian ring. Moreover, H is
a Noetherian domain if and only if H has a height 1 finitely generated prime ideal.


4 (Counter)examples


In this section, we give examples of some ill-behaved integrally closed overrings of
two-dimensional Noetherian domains, “ill-behaved” because they lie outside the
reach of our preceding results or prevent us from tightening our results further,
but they are not atypical. Indeed, loosely speaking, one should expect that “most”
integrally closed overrings of two-dimensional Noetherian domains belong in this
section, rather than to the orderly classification in the previous ones.


First we prove a theorem to illustrate that all the cases in Theorem 3.11 can occur,
and that it is possible to have more than one strongly irredundant representative cen-
tered on a maximal ideal of an overring of a two-dimensional Noetherian domain.
This is in dramatic contrast to the quasilocal rings HP in Theorem 2.11, which have
a Noetherian representation (indeed the representation consists of a single valuation
ring) yet have only one strongly irredundant representative centered on a maximal
ideal. We discuss the consequences of the theorem in more detail after the proof.
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Theorem 4.1. Let K be a field of characteristic 0, let X and Y be indeterminates for
K, and let n > 1. Then there exists a finitely generated K-subalgebra D of K[X ,Y ]
having quotient field K(X ,Y ) and valuation overrings V1, . . . ,Vn of D such that each
Vi is strongly irredundant in H := V1 ∩ ·· · ∩Vn ∩K[X ,Y ], and each Vi is centered
on the same maximal ideal of H. Moreover, each Vi may be chosen to be either an
irrational valuation ring or a valuation ring of Krull dimension 2.


Proof. Without loss of generality we assume that K contains Q, the field of rational
numbers. For each i = 1,2, . . . ,n, let Gi be a totally ordered free abelian group of
rational rank 2. Then either (a) Gi can be viewed as a free subgroup of the real
numbers, at least one of whose generators is an irrational number, or (b) Gi is iso-
morphic as a totally ordered abelian group to Z⊕Z ordered lexicographically. We
will construct a valuation vi having value group Γi ⊆ Gi, such that either, in case (a),
the valuation ring of vi is an irrational valuation, or, in case (b), the valuation ring of
vi has Krull dimension 2.


Choose rationally independent generators σi and τi of Gi with 0 < τi < σi such
that τi is contained in the smallest nontrivial convex subgroup of Gi (possibly this
subgroup is all of Gi). For each i = 1,2, . . . ,n, since K[X ,Y ] = K[X + iY,Y ], we may
write each f (X ,Y ) in K[X ,Y ] in the form


f (X ,Y ) = ∑
k,�


αk,�(X + iY )kY �,


where each αk,� ∈ K. With this in mind we define a mapping vi : K[X ,Y ]→Gi∪{∞}
by vi(0) = ∞ and


vi( f (X ,Y )) = min{knσi − �τi : αk,� �= 0},


for each 0 �= f (X ,Y ) = ∑k,� αk,�(X + iY )kY � ∈ K[X ,Y ]. For each g,h ∈ K[X ,Y ], with
h �= 0, let vi(g/h) = vi(g)−vi(h). Then vi defines a valuation on K(X ,Y ) with value
group Γi ⊆ Gi generated by nσi and τi [4, Theorem 2.2.1]. In particular, if Gi is
chosen a subgroup of the reals, then vi has an irrational value group Γi, while if
Gi is chosen to be Z⊕Z ordered lexicographically, then Γi also is isomorphic to
Z⊕Z ordered lexicographically, and the valuation ring corresponding to vi has Krull
dimension 2.


For each i, let Vi be the valuation ring associated to vi. First observe that for i �= j
in {1,2, . . . ,n}, we have v j(X + iY ) =−τ j. Indeed, suppose by way of contradiction
that v j(X + iY ) �=−τ j. Then, since v j(Y ) =−τ j, we have v j(X + iY ) �= v j(Y ). Since
the value of the sum of two elements, each having distinct values, is the minimum
of the values of the elements, it follows that:


nσ j = v j(X + jY ) = v j(X + iY +( j− i)Y)
= min{v j(X + iY ),v j(( j− i)Y )}
= min{v j(X + iY ),−τ j} ≤ −τ j.


But −τ j < 0 < nσ j, a contradiction which shows that for each j �= i,
v j(X + iY ) = −τ j.
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Now we show that H := V1 ∩ ·· · ∩Vn ∩K[X ,Y ] is an irredundant intersection.
Define g(X ,Y ) = (X +Y )(X + 2Y ) · · · (X + nY ), and for each i = 1, . . . ,n, define
gi(X ,Y ) = (X + iY )−1g(X ,Y ). We claim that for each i, gi(X ,Y ) ∈ ⋂


j �=iVj but
gi(X ,Y ) �∈Vi. To see that this is the case, observe that:


v j(gi(X ,Y )) =


(
n


∑
k=1


v j(X + kY)


)


− v j(X + iY )


= ∑
k �=i


v j(X + kY )


Thus, if j = i, then


vi(gi(X ,Y )) = ∑
k �=i


vi(X + kY ) = ∑
k �=i


−τi = −(n−1)τi.


Otherwise, if j �= i, then


v j(gi(X ,Y )) = ∑
k �=i


v j(X + kY )


= v j(X + jY )+ ∑
k �=i, j


v j(X + kY )


= nσ j − (n−2)τ j.


In the former case, vi(gi(X ,Y )) = −(n−1)τi < 0; in the latter case:


v j(gi(X ,Y )) = nσ j − (n−2)τ j > nσ j −nτ j > 0,


since τ j was chosen with 0<τ j <σ j. Therefore, gi(X ,Y )∈⋂
j �=iVj, while gi(X ,Y ) �∈


Vi. This proves that H = V1 ∩·· ·∩Vn ∩K[X ,Y ] is an irredundant intersection.
We in fact claim that each Vi is strongly irredundant in this intersection. If each


Vi has Krull dimension 1, then the claim is clear. So suppose that some Vi, say
V1, has Krull dimension 2. To prove that V1 is strongly irredundant, we must show
that (V1)P ∩ (


⋂n
j=2Vj)∩K[X ,Y ] �⊆ V1, where P is the height 1 prime ideal of V1.


The value group Γ1 of v1, since V1 has Krull dimension 2, has rank 2, and so there
exists a unique proper nontrivial convex subgroup Δ of Γ1. Moreover, the mapping
w : K(X ,Y ) →Γ1/Δ ∪{∞} defined by w(0) = ∞ and w(q(X ,Y )) = v1(q(X ,Y ))+Δ
for all 0 �= q(X ,Y ) ∈ K(X ,Y ) is a valuation having valuation ring (V1)P [4, p. 44].
By assumption, 0 < τ1 < σ1, with τ1 ∈ Δ . From our above calculations then, we see
that since v1(g1(X ,Y )) = −(n−1)τ1, we have


w(g1(X ,Y )) = v1(g1(X ,Y ))+ Δ = −(n−1)τ1 + Δ = 0 + Δ ,


and hence g1(X ,Y ) ∈ (V1)P. We verified earlier that g1(X ,Y ) ∈ ⋂n
j=2 Vj and


g1(X ,Y ) �∈ V1, so we conclude that g1(X ,Y ) ∈ (V1)P ∩ (
⋂n


j=2Vj)∩ K[X ,Y ], but
g1(X ,Y ) �∈V1. This proves that each Vi is strongly irredundant in the representation
H = V1 ∩·· ·∩Vn ∩K[X ,Y ].
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Next we show that each Vi is centered on the same maximal ideal of H. Each Vi is
necessarily centered on a maximal ideal of H, since otherwise by Proposition 1.2, Vi


is a DVR. Let M = MV1 ∩H. Then we claim that M ⊆MVi ∩H for all i = 1,2, . . . ,n,
and to prove this it suffices to show that for each f ∈ M, vi( f ) > 0. This in turn is
equivalent to proving that for each f ∈H, if vi( f ) = 0 for some i, then v1( f ) = 0 also.
We in fact prove the slightly stronger claim: If f (X ,Y ) ∈ H, and vi( f (X ,Y )) = 0
for some i = 1,2, . . . ,n, then vi( f (X ,Y )) = 0 for all i = 1,2, . . . ,n.


Let f (X ,Y ) ∈ H, and suppose that vi( f (X ,Y )) = 0 for some i ∈ {1,2, . . . ,n}.
Since f (X ,Y ) ∈ K[X ,Y ] = K[X + iY,Y ], we may write


f (X ,Y ) = ∑
k,�


αk,�(X + iY )kY �,


where each αk,� ∈ K. Therefore,


0 = vi( f (X ,Y )) = min{vi(αk,�(X + iY )kY �) : αk,� �= 0}
= min{knσi − �τi : αk,� �= 0},


and hence there exist k and � such that αk,� �= 0 and 0 = knσi − �τi. Since σi and
τi are rationally independent and n > 0, it follows that k = � = 0, so that α0,0 �= 0.
Therefore, since


f (0,0) = ∑
k,�


αk,�(0 + i ·0)k0� = α0,0,


we conclude f (0,0) �= 0.
Now, using the fact that f (0,0) �= 0, we claim that v j( f (X ,Y )) = 0 for all j =


1, . . . ,n. Let j be such an integer, and write f (X ,Y ) = ∑k,� βk,�(X + jY )kY �, where
βk,� ∈ K. As above, we have:


v j( f (X ,Y )) = min{v j(βk,�(X + jY )kY �) : βk,� �= 0}
= min{nkσ j − �τ j : βk,� �= 0}.


By our above calculation, 0 �= f (0,0), so


0 �= f (0,0) = ∑
k,�


βk,�(0 + j ·0)k0� = β0,0.


Therefore, since β0,0 �= 0,


v j( f (X ,Y )) = min{nkσ j − �τ j : βk,� �= 0} ≤ 0.


But by assumption, f (X ,Y ) ∈ H ⊆ Vj, so v j( f (X ,Y )) = 0, which proves the claim
that each Vi is centered on the same maximal ideal of H.


Finally, we claim that H is an overring of a finitely generated K-subalgebra D of
K[X ,Y ] having quotient field K(X ,Y ). Let


D = K[g(X ,Y ),(X +Y)g(X ,Y ),(X + 2Y)g(X ,Y )].
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For each i, j ∈ {1,2, . . . ,n}, we have:


vi((X + jY )g(X ,Y )) = vi(X + jY )+ vi(g(X ,Y ))


= vi(X + jY )+
n


∑
k=1


vi(X + kY )


= 2vi(X + jY )+ ∑
k �= j


vi(X + kY ).


Thus, if i = j, we have


vi((X + jY )g(X ,Y )) = 2vi(X + jY )+ ∑
k �= j


vi(X + kY )


= 2nσi − (n−1)τi > nσi −nτi > 0,


while if i �= j, we have


vi((X + jY )g(X ,Y )) = 2vi(X + jY )+ ∑
k �= j


vi(X + kY )


= −2τi + vi(X + iY )+ ∑
k �=i, j


vi(X + kY )


= −2τi + nσi− (n−2)τi = nσi −nτi > 0.


Thus, in the case j = 1, we have for all i, vi((X +Y )g(X ,Y )) > 0, so that (X +
Y )g(X ,Y ) ∈ Vi. Similarly, for j = 2, we have for all i, (X + 2Y)g(X ,Y ) ∈ Vi. Also,
as above, for each i, vi(g(X ,Y )) = nσi − (n−1)τi > nσi −nτi > 0, so we conclude
that D ⊆ H. Moreover, X +Y and X + 2Y are in the quotient field of D, so Y =
X + 2Y − (X +Y ) and X = (X +Y )−Y are in the quotient field of D. Therefore,
since D ⊆ K(X ,Y ), D has quotient field K(X ,Y ). 
�


We apply the theorem to illustrate the various cases that occur in Theorem 3.11:


(4.2) Let K be a field of characteristic 0, and choose m,n > 0. Then by the
theorem, there exist a two-dimensional Noetherian domain D ⊆ K[X ,Y ] with quo-
tient field K(X ,Y ), irrational valuation overrings V1, . . . ,Vn and valuation rings
W1, . . . ,Wm of Krull dimension 2 such that each of these valuation rings is strongly
irredundant in the intersection:


H := V1 ∩·· ·∩Vn ∩W1 · · · ∩Wm ∩K[X ,Y ],


and each Vi and Wj is centered on the same maximal ideal M of H. Localizing at M
we have


HM = V1 ∩·· ·∩Vn ∩W1 · · · ∩Wm ∩K[X ,Y ]M.


The valuation rings V1, . . . ,Vn,W1, . . . ,Wm remain strongly irredundant in this lo-
calization [18, Proposition 3.2], so HM illustrates case (c) of Theorem 3.11. If in
our application of the theorem we had omitted the Wj’s, we would have obtained
an example of case (b) of the theorem. Similarly, by omitting each Vi we would
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exhibit case (d). This shows that all the cases of Theorem 3.11 can occur, and
also, interestingly, there is no bound on the number of irrational valuation over-
rings needed to represent a quasilocal overring of a two-dimensional Noetherian
domain. (I am not aware of other examples of this last phenomenon, or examples
of Theorem 3.11(c), in the literature.) Case (d) also is illustrated by the one-
dimensional domains occurring in Theorem 3.13.


In summary, let H be a quasilocal integrally closed overring of a two-dimensional
Noetherian domain, and let M denote the maximal ideal of H. If H has a strongly
irredundant representative V that is a rational valuation ring centered on M, then
H = V (Proposition 2.1). Thus, if H is not a valuation ring, then a strongly irredun-
dant representative of H centered on M (assuming one exists) is either an irrational
valuation ring or a valuation ring of Krull dimension 2. Theorem 3.13 shows that H
may have infinitely many strongly irredundant representatives of Krull dimension
2 centered on M, while the preceding discussion shows that for each m,n ≥ 0, H
can have precisely n strongly irredundant irrational representatives centered on M
and precisely m strongly irredundant representatives of Krull dimension 2 centered
on M. Thus one question that remains is:


Question 4.3. Does there exist an integrally closed overring H of a two-dimensional
Noetherian domain such that H has infinitely many strongly irredundant represen-
tatives that are irrational valuation rings and all lie over the same maximal ideal
of H? (If the answer is negative, then it follows from Theorem 2.8 that the answer
to Question 2.9 is affirmative.)


As hinted at in the previous discussion, it is possible that an overring of a
two-dimensional Noetherian domain has no irredundant representatives. Such an
example is given by a construction of Nagata. Krull conjectured in 1936 that a
quasilocal completely integrally closed domain of Krull dimension 1 had to be a
valuation ring. Later, in 1952, Nagata in [14] (but see also [15]) intersected a large
number of valuation rings together to form a counterexample to this conjecture. We
apply his construction in the next proposition, which gives another example of how
large classes of valuation overrings of two-dimensional Noetherian domains can
intersect in complicated ways.


Proposition 4.4 (cf. Nagata [14, 15]). Let k be a field, and let U and X be indeter-
minates over k. Then there exists a quasilocal completely integrally closed domain
H of Krull dimension 1 that is an overring of k[U,X ] and is not a valuation domain.
Moreover, H has no irredundant representatives.


Proof. In Theorem 1 of [14], Nagata shows that if K is an algebraically closed field
having a nontrivial valuation v whose value group G is a proper subgroup of the real
numbers, then there exists a collection Σ of valuation rings extending v and having
quotient field K(X) whose value groups are subgroups of the reals, and such that
A =


⋂
V∈Σ V is a quasilocal completely integrally closed domain of Krull dimension


1 that is not a valuation domain and has quotient field K(X). The set Σ is constructed
in the following way. Choose a positive real number α not in the value group G of v.
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For every element e ∈ K such that α < v(e) < 2α (since K is algebraically closed,
2α �∈ G), define a valuation ve of K(X) such that


ve


(
n


∑
i=0


ai(X + e)i


)


= min{v(ai)+ 2αi} (ai ∈ K).


Also, for every real number λ with α ≤ λ ≤ 2α , define a valuation vλ such that


vλ


(
n


∑
i=0


aiX
i


)


= min{v(ai)+ λ i} (ai ∈ K).


Then Σ consists of the valuation rings corresponding to all the ve’s and vλ ’s.
We apply this result to show that k[U,X ] has an overring that is a quasilocal


completely integrally closed domain of Krull dimension 1 but is not a valuation
ring. To do so, we imitate aspects of the proof Theorem 2 in [14]. Let K be the
algebraic closure of k(U), and let v0 be the valuation corresponding to k[U ](U). Then
v0 extends to a valuation v of K whose value group is the group of rational numbers.
Thus, by Nagata’s theorem there exists a collection Σ of valuation rings extending v
and having quotient field K(X) whose value groups are subgroups of the reals, and
such that A =


⋂
V∈Σ V is a quasilocal completely integrally closed domain of Krull


dimension 1 that is not a valuation domain and the quotient field of A is K(X). Let
A be the integral closure of A in K(X), the algebraic closure of K(X), and let N be
a maximal ideal of A. Let H = AN ∩ k(U,X). Then since A is completely integrally
closed, so is AN [14, Lemma 3]. Therefore, since H = AN ∩k(U,X), H is completely
integrally closed also. Similarly, since AN is quasilocal of Krull dimension 1, so is
H. But also AN ∩K(X) = A [14, Lemma 1], and since A is not a valuation domain,
AN is also not a valuation domain. If H is a valuation ring, then the integral closure
H of H in K(X) is a Prüfer domain [5], and since H ⊆ AN , it follows that AN is a
valuation domain, a contradiction. Therefore, H is a quasilocal completely integrally
closed domain of Krull dimension 1 that is not a valuation domain. Examination of
the valuations used above to build Σ shows that U,X ∈ A. Indeed, it is clear that
ve(U),vλ (U) > 0 for all e and λ . Also, for e ∈ K such that 0 < α < v(e) < 2α ,
since ve(X + e) = 2α , we have


ve(X) = ve(X + e− e) = min{v(X + e),v(e)} = v(e) > 0.


Thus, it follows that k[U,X ] ⊆ H ⊆ k(U,X), and hence H is an overring of k[U,X ].
If H has an irredundant representative V , then by possibly replacing V with


a proper overring of V , we may assume without loss of generality that H has a
strongly irredundant representative. To see that H has no strongly irredundant rep-
resentatives, suppose by way of contradiction that there exists a valuation overring
V of H and an integrally closed overring R such that H = V ∩R, with V strongly
irredundant in this intersection. Since H is quasilocal of Krull dimension 1, R has
nonzero Jacobson radical, and V is necessarily centered on the maximal ideal of
H. Thus by Proposition 2.4, since H is not a valuation ring, it must be that V has
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Krull dimension 2. But since H is completely integrally closed, H has no strongly
irredundant representatives of Krull dimension 2 (Proposition 2.3). This contradic-
tion shows that H has no irredundant representatives. 
�


We recall next from [18] a different sort of example of having no irredundant
representatives. It has the additional property of having a representation Σ such that
Σ1 has finite character, and hence H is in some sense close to having a Noetherian
representation. The ring is a Prüfer domain, meaning that each valuation overring is
a localization.


(4.5) Let K be a field of characteristic 0 that is not algebraically closed, and let D
be a two-dimensional integrally closed local Noetherian domain with maximal ideal
m such that D has residue field K and D is the localization of a finitely generated
K-algebra. Let Σ be the set of all valuation overrings V of D of Krull dimension 2
such that the residue field of V is K and V ⊆ Dp for some height one prime ideal
p of D. Let H =


⋂
V∈Σ V , and observe that Σ1 has finite character. It is shown in


Example 6.4 of [18] using resolution of singularities that H is a two-dimensional
Prüfer domain having no irredundant representatives.


We discuss another naturally occurring example exhibiting some of the same
traits as (4.5). Let R be a domain with quotient field F . Then the ring of R-valued
polynomials is defined to be Int(R) = { f (X) ∈ F [X ] : f (R) ⊆ R}. The ring Int(Z)
is a two-dimensional Prüfer (hence non-Noetherian) overring of the two dimen-
sional Noetherian domain Z[X ], and has a rich and well-studied structure; see [3].
In the next proposition, we wish to consider Int(Ẑp), where Ẑp denote the ring of
p-adic integers, and Q̂p denotes its quotient field. This ring is a two-dimensional
completely integrally closed Prüfer domain that cannot be written as an intersec-
tion of valuation overrings of Krull dimension 1 [3, Propositions VI.2.1, VI.2.2 and
Remark VI.1.8].


Proposition 4.6. Let H = Int(Ẑp), and let Σ = Zar(H). Then Σ1 = Zar(Q̂p[X ]), and
Σ1 has finite character but H does not have a Noetherian representation, and H has
no irredundant Q̂p[X ]-representatives.


Proof. The proof of Proposition VI.2.2 in [3] shows that the intersection of all the
valuation overrings of H of Krull dimension 1 is Q̂p[X ]. Thus, H has a Q̂p[X ]-
representation consisting of valuation rings of Krull dimension 2. Moreover, the
prime spectrum of H is not a Noetherian space [3, Proposition VI.2.8], and hence
H does not have a Noetherian representation (Theorem 3.14), which in turn im-
plies since Q̂p[X ] is a Dedekind domain that H does not have a Noetherian Q̂p[X ]-
representation. Since Q̂p[X ] is the intersection of all the valuation overrings of H


of Krull dimension 1, we have Σ1 = Zar(Q̂p[X ]), and hence Σ1 has finite character.
Finally, since H is completely integrally closed, H has no strongly irredundant rep-
resentatives of Krull dimension 2 (Proposition 2.3), so since every valuation over-
ring of H of Krull dimension 1 contains Q̂p[X ], we conclude that H has no strongly
irredundant Q̂p[X ]-representatives. Since an irredundant Q̂p[X ]-representative that
is not a strongly irredundant Q̂p[X ]-representative can be replaced with a proper







Intersections of Valuation Overrings of Two-Dimensional Noetherian Domains 359


overring, the existence of irredundant Q̂p[X ]-representatives implies the existence of
strongly irredundant Q̂p[X ]-representatives. Having ruled out the latter possibility,
the claim is proved. 
�


We collect below a few more examples from other sources. As with the last
two examples, these are also interesting instances of Prüfer overrings of two-
dimensional Noetherian domains.


(4.7) Let K be a field of characteristic 0 that is not algebraically closed, let
D = K[X ,Y ] and let H be the intersection of all the valuation overrings of D having
residue field K. Then H is a Prüfer domain of Krull dimension 2 having no irre-
dundant representatives (apply [6, Lemma 1.6 and Theorem 1.7] and [20, Theorem
4.7(i)]). This ring is also interesting in that it is a Hilbert ring such that for each
nonzero proper finitely generated ideal I of H, there exist for each h = 1,2 and
d = 0,1, infinitely many prime ideals minimal over I of height h and dimension d
[20, Proposition 3.11 and Theorem 4.7]. All these claims remain true if D is assumed
to be a two-dimensional affine K-domain such that K is existentially closed in the
quotient field of D; moreover, similar results hold in higher dimensions; see [20].
See also [12] for a way to create similar examples with no restriction on whether
K is algebraically closed, and using all the valuation overrings of D, not just those
with residue field K: the caveat is that these valuation overrings must be extended
to F(T ), where F is the quotient field of D and T is an indeterminate for F . But
the ring so created remains an overring of a two-dimensional Noetherian domain,
namely, D(T ), where D(T ) is the Nagata function ring of D.


(4.8) This example, which is taken from [22], gives a somewhat natural con-
struction of a Prüfer overring of a two-dimensional Noetherian domain that has a
strongly irredundant representation but does not have a Noetherian representation.
Let K be a field that is not algebraically closed, and let D = K[X ,Y ]. We recall the
notion of an order valuation: Let m be a maximal ideal of D, and define a map-
ping ordm : Dm → Z∪{∞} by ordm(0) = ∞ and ordm( f ) = sup{k : f ∈ mk} for
all f ∈ Dm. Since Dm is a regular local ring, the mapping ordm extends to a rank
one discrete valuation (the order valuation with respect to m) on the quotient field
of D. Let E be a subset of K2. Then the order holomorphy ring with respect to E is
the ring H =


⋂
p∈E Vp, where for each p = (a,b) ∈ E , Vp is the order valuation ring


of D(X−a,Y−b). The representation {Vp : p ∈ E} of H is strongly irredundant [22,
Theorem 2.3], yet if E is chosen so that it intersects with some algebraic set in K2


in infinitely many points, then H does not have a Noetherian representation. The
reason is that H is necessarily an almost Dedekind domain (that is, HM is a DVR for
each maximal ideal M) [22, Theorem 2.6], yet if H has a Noetherian representation,
then by Theorem 3.14, Spec(H) is a Noetherian space, so that necessarily H is a
Dedekind domain. But then every element of D is contained in at most finitely many
maximal ideals in {(X − a,Y − b)D : (a,b) ∈ E}, which is impossible if E meets
some algebraic set in infinitely many points. In fact, there is a one-to-one correspon-
dence between the irreducible algebraic sets that E meets in infinitely many points
and the valuation overrings of H that are not strongly irredundant representatives
[22, Theorem 2.6].
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(4.9) Here is another example, taken from Example 6.3 of [18], that like (4.8)
shows a strongly irredundant representation is not enough in general to guarantee
the existence of a Noetherian representation. Let K be an infinite field that is not
algebraically closed, and let D be a two-dimensional regular local ring with maximal
ideal m such that K ⊆ D and K = D/m. Let x,y ∈ m be such that m = (x,y)D, and
define B = D[x/y]. Then B/yB is isomorphic to the polynomial ring K[Z], where Z
is an indeterminate for K. Hence, since K is an infinite field, there exists an infinite
collection P of maximal ideals of B such that for each n ∈ P, m ⊆ n and B/n = K.
For each n∈P choose a valuation overringV of B such that PV ∩B = n, where PV is
the height one prime ideal of V , and the residue field of V is K. As discussed in [18],
one may in fact choose V to be of Krull dimension 1 or 2. Let Σ be the collection of
these valuation rings, one for each member of P, and define H =


⋂
V∈Σ V . Then, as is


shown in Example 6.3 of [18], H is a Prüfer domain, and Σ is a strongly irredundant
representation of H, but there does not exist a Noetherian representation of H.
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Almost perfect domains and their modules


Luigi Salce


Abstract The discussion of almost perfect domains and their modules presented in
this survey paper is divided in two parts. In the first part the ring-theoretical proper-
ties of almost perfect domains are investigated, and different possibilities concerning
the behaviour of their archimedean valuation overrings are shown. Connections of
almost perfect domains with other well known classes of integral domains are es-
tablished. The second part illustrates the influence of the property of a domain R of
being almost perfect on the category of R-modules, focusing on the subcategories
of torsion modules, flat modules, and divisible modules. A final section summarizes
the module-theoretical results in the frame of the cotorsion pairs. The two parts are
separated by a section containing concrete examples of different kinds of almost
perfect domains. A final section on open questions concludes the paper.


1 Introduction


Almost perfect domains emerged in the investigation of the existence of strongly flat
covers of modules over commutative integral domains, that Silvana Bazzoni and the
author undertook in 2001, trying to answer the third of the five questions posed by
Jan Trlifaj in the notes of the Cortona 2000 workshop (see [37, p. 36]). The main
result obtained in [5] was the proof of the equivalence of the following conditions
for a commutative integral domain R:


(i) Every R-module has a strongly flat cover.
(ii) Every flat module is strongly flat.
(iii) Every proper homomorphic image of R is a perfect ring.


We called the domains satisfying condition (iii) almost perfect, in analogy with other
classes of domains defined in terms of a property satisfied by all their proper factors,
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e.g., almost maximal, almost henselian, almost Bézout or almost Dedekind domains
(see [15]). Actually, in the local case almost perfect domains have been investigated
40 years ago by J. R. Smith [35], under the name of domains with topologically
T -nilpotent radical (for short, T TN-domains). As in the case of almost maximal
domains (see [10] or [15]), the passage to the global case involves the property of
h-locality.


Some further investigations of almost perfect domains have been performed
since 2001, both of ring-theoretical and module-theoretical type, mainly by Silvana
Bazzoni, Paolo Zanardo and the author, in different combinations (see the refer-
ences). Recently, Fuchs and Lee [14], the author [30], and Bazzoni[3] found more
characterizations of almost perfect domains in terms of weak-injective and divisible
modules, which gave more consistency to the theory.


This survey paper is the first attempt to present in an organized form a large
portion of the results obtained up to now on almost perfect rings. The paper is well
balanced between ring theory and module theory. Sections 1–4 are devoted to de-
scribe the ring-theoretical properties of almost perfect rings and their connections
with other well known classes of integral domains. Section 5 acts as a watershed be-
tween rings and modules, providing numerous examples of almost perfect domains
with different features. Sections 6–8 consider three classes of modules whose struc-
ture is heavily influenced by the property of the domain of being almost perfect,
that is, torsion modules, flat and divisible modules. Actually, specific properties of
each one of these three classes provide a characterization of almost perfect domains.
Section 9 includes the results of the previous two sections in the frame of cotorsion
pairs. Finally, Section 10 collects some open questions, both of ring-theoretical and
module-theoretical nature.


We state here the theorem collecting the main characterizations of almost per-
fect domains that will be proved in different sections, where the definitions of the
involved notions will be given.


Main Theorem. For an integral domain R with field of quotients Q =R the
following conditions are equivalent:


(1) R is almost perfect.
(2) R is h-local and every localization of R at a maximal ideal is almost perfect.
(3) Q/R is semiartinian and isomorphic to


⊕
P(Q/RP), where P ranges over the


maximal spectrum of R.
(4) Every torsion R-module T is semiartinian and isomorphic to


⊕
P TP, where P


ranges over the maximal spectrum of R.
(5) Every flat R-module is strongly flat.
(6) Every weakly cotorsion R-module is cotorsion.
(7) Every R-module of weak dimension ≤1 has projective dimension≤1.
(8) Every divisible R-module is weak injective. ��


Conditions (5) and (6) can be expressed by saying that the cotorsion pair
(SF,WC), consisting of strongly flat and weakly cotorsion modules, coincides with
the cotorsion pair (F,C), consisting of flat and cotorsion modules. Similarly, con-
ditions (7) and (8) can be expressed by saying that the cotorsion pair (F1,WI),
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consisting of modules of flat dimension ≤1 and weak injective modules, coincides
with the cotorsion pair (P1,D), consisting of modules of projective dimension ≤1
and divisible modules.


In this paper, we cannot provide long and technical proofs. However, we will
present some short and simple proofs that help the understanding of the subject, and
some details for certain examples. Some topics are not covered, as universal test
modules for strong flatness, whose existence in ZFC characterizes almost perfect
domains among Matlis domains (see [16]). Some other topic is just touched on, for
instance, the three topologies investigated in [28] and [29], especially the Prüfer
topology and its connections with the commutativity of the endomorphism ring of
the minimal injective cogenerator in the local case, and with the classical rings (see
Vámos [38]), are briefly discussed at the end of Section 6. Our basic reference text
for modules over commutative integral domains is the monograph [15].


2 Commutative perfect rings and almost perfect rings


The origin of our topic dates back to the 1960s, when perfect rings have been
introduced by H. Bass [2] in order to characterize the rings all whose modules admit
a projective cover. Actually, often and also here, the property that every left module
has a projective cover is taken as definition of left-perfect rings.


Among the many characterizations of left-perfect rings, it is worthwhile to recall
the following one: R/J is semisimple (where J denotes the Jacobson radical of R)
and J is a left T -nilpotent ideal. Recall that a left ideal I of a ring R is left T -nilpotent
if, given any sequence {xn}n∈N of elements in I, there exists an index n ∈ ω such
that the product x1 · . . . · xn vanishes. A T -nilpotent ideal is obviously contained in
the nilradical, hence in the Jacobson radical, of R.


In this paper, we will consider commutative rings only, so the term “ring” will
always mean “commutative ring”.


Since the property of the ideals of being T -nilpotent plays a crucial role in the
whole theory of perfect and almost perfect rings, it is convenient to furnish the
following useful characterization of T -nilpotency, whose proof can be found for
instance in [21, Theorem 23.16]. It shows that the multiplication by a T -nilpotent
ideal produces the same effect on an arbitrary R-module as the multiplication by
an arbitrary ideal contained in the Jacobson radical produces on a finitely generated
R-module, according to the Nakayama’s Lemma.


Proposition 2.1. For an ideal I of a commutative ring R the following conditions
are equivalent:


(1) I is T -nilpotent.
(2) if M is an R-module, then IM = M implies that M = 0.
(3) if N is a submodule of an R-module M such that IM + N = M, then N = M.
(4) if M is an R-module, then M[I] = 0 implies that M = 0. ��







366 Luigi Salce


In Proposition 2.1(4), as usual, we set M[I] = {x ∈M | Ix = 0}.
Recall that by a local (respectively, semilocal) ring we mean a commutative


ring, not necessarily Noetherian, with only a unique maximal ideal (respectively,
with finitely many maximal ideals), and that a module is semiartinian if every
non-zero quotient of it has non-zero socle, that is, there are non-zero elements whose
annihilator ideal is a maximal one.


The following theorem collects the most useful characterizations of perfect com-
mutative rings; for its proof see [2, Theorem P], [21, Theorems 23.20 and 23.24]
and [36, Proposition 5.1].


Theorem 2.2. For a commutative ring R the following conditions are equivalent:


(1) R is a perfect ring.
(2) R satisfies the DCC on principal ideals.
(3) R is a finite direct product of local rings with T -nilpotent maximal ideals.
(4) R is semilocal and every localization of R at a maximal ideal is a perfect ring.
(5) R is semilocal and semiartinian.
(6) All flat R-modules are projective.
(7) The class of projective R-modules is closed under direct limits. ��


As a direct consequence of point (3) we deduce the following


Corollary 2.3. A commutative integral domain is perfect if and only if it is a field.
��


Corollary 2.3 shows that only rings with non-zero zero-divisors furnish non-
trivial examples of perfect rings, being the fields considered “trivial” examples.
A homomorphic image of a perfect ring is still perfect, by Theorem 2.2(5), as both
the properties of being semilocal and semiartinian are inherited by homomorphic
images. It is an interesting fact that a ring with non-zero zero-divisors is perfect
provided all its proper homomorphic images are perfect.


Proposition 2.4. Let R be a ring such that all its proper homomorphic images are
perfect. If R is not a domain, then R is perfect.


Proof. We just sketch the proof; a detailed demonstration can be found in [6]. First
note that R is 0-dimensional since, if L is a non-zero prime ideal, then R/L is a
perfect domain, hence a field. Then one proves that R is semilocal, so a reduction
to the local case is possible by Theorem 2.2(4). For R a 0-dimensional local ring
with maximal ideal P, one can show that, if R/aR is perfect for some element a∈ P,
then R/a2R is perfect. Then the conclusion easily follows, since P is the nilradical
of R. ��


Proposition 2.4 motivates the following


Definition. A ring R is said to be almost perfect if all its proper homomorphic
images are perfect.
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So Proposition 2.4 says that almost perfect rings which are not domains are
indeed perfect rings. This result is reminiscent of similar results proved for almost-
maximal valuation rings (see [17] or [15, Proposition 6.4, Chap. II]), or almost-
Henselian local rings (see [39] or [15, p. 85]).


Proposition 2.4 also enables us to restrict the investigation of almost perfect
rings and their modules to integral domains, as perfect commutative rings and their
modules have been investigated since a long while (for a comprehensive exposition
of this subject we refer to [21, Sections 23 and 24]). Thus, from now on, the objects
of our investigation will be the almost perfect domains, that we will denote for short
by APD.


3 Intrinsic properties of APDs


Let R be a domain with field of quotients Q = R. Recall that R is a Matlis domain
if p.d.R(Q) = 1, and that this property is equivalent to the fact that every divisible
module is h-divisible, i.e., a quotient of an injective module (see [15, Theorem 2.8,
Chap. VII]).


A domain R is said to be h-local if it satisfies the following two conditions:


(i) Every proper factor ring of R is semilocal.
(ii) Every proper factor domain of R is local.


Obviously, for 1-dimensional (i.e., of Krull dimension 1) domains h-locality can be
checked just looking at condition (i), since condition (ii) is automatically satisfied.
A ring R satisfying condition (i) is said to have finite character.


Lemma 3.1. If R is a local 1-dimensional domain with maximal ideal P, then, for
every 0 = a ∈ P, Q/R =


⋃
n a−nR/R.


Proof. An ideal L of R maximal with respect to L∩{an}n∈N = /0 is a prime ideal,
hence L = 0. Therefore, for every 0 = r ∈ R there exists an n≥ 1 such that an ∈ rR,
equivalently, r−1 ∈ a−nR. The conclusion easily follows. ��


Note the difference, focused by the proof of Lemma 3.1, between local 1-
dimensional domains and local almost perfect domains: the former domains satisfy
the property that, fixed 0 = r ∈ R and called P the maximal ideal, given a sequence
{an}n∈N, with an constantly equal to a fixed element a∈ P, there exists a k such that
the product a1 · . . . · ak = ak ∈ rR (we say that P is almost nil); the latter domains
satisfy the same property but for an arbitrary sequence {an}n∈N contained in P,
that is, P is almost T -nilpotent. This difference is clear if one considers valuation
domains.


Example 3.2. Let R be a 1-dimensional valuation domain. Then R is an APD if and
only if R is discrete. The sufficiency being obvious, assume that R is non-discrete.
The value group Γ of R is a dense subgroup of the reals, so it contains a sequence
of positive elements γn (n ≥ 1) such that γn < 2−n. If the an (n ≥ 1) are elements
of R of value γn, then every product a1 · . . . ·ak has value < 1, so R cannot be almost
perfect. ��







368 Luigi Salce


The property of the maximal ideal P of a local domain of being almost nilpotent
(that is, Pn≤I for every non-zero ideal I ≤ R, for some n depending on I) is stronger
than almost T -nilpotency, hence domains satisfying this property are necessarily
APDs. We anticipate in the next Lemma 3.3 a characterization of these domains,
that will be used especially in Section 6. We need the notion of Loewy series of a
module M, which is the transfinite ascending sequence of submodules


0 = L0(M)≤ L1(M) ≤ ·· · ≤ Lλ (M)≤ ·· ·


defined inductively as follows: Lα+1(M) is the inverse image in M of the socle
of M/Lα(M), and, if β is a limit ordinal, Lβ (M) is the union of the Lα (M) for
α < β . By cardinality reasons, there exists a first ordinal λ such that Lλ (M) =
Lλ+1(M), and this ordinal is the Loewy length of M, denoted by l(M). The module M
is semiartinian if and only if M = Lλ (M) for λ = l(M).


Lemma 3.3. For a local APD R with maximal ideal P the following conditions are
equivalent:


(1) P is almost nilpotent.
(2) There exists an element 0 = a ∈ P such that Pn ≤ aR for some n.
(3) The Loewy length l(Q/R) of Q/R is ω . ��


The proof of the lemma is straightforward.
Thus, for a maximal ideal P of a local domain R, we have the following


implications, none of which can be reversed:


almost nilpotent⇒ almost T -nilpotent (R APD)⇒
almost nil (R 1-dimensional).


Lemma 3.1 shows that, for a local 1-dimensional domain R, the field of
quotients Q is countably generated, hence, by a well known result, R is a Matlis
domain. This fact extends to h-local domains.


Lemma 3.4. Let R be a 1-dimensional h-local domain. Then R is a Matlis domain.


Proof. We must show that p.d.R Q = 1, equivalently, that p.d.R(Q/R) = 1. The
h-locality of R is equivalent (by [24], see also [15, Theorem 3.7, Chap. IV]) to
the direct decomposition Q/R ∼= ⊕


P(Q/RP), where P ranges over Max(R). Since
RP is local and 1-dimensional, by Lemma 3.1 we have that, for every 0 = x ∈ PRP,
Q/RP =


⋃
n x−nRP/RP. In particular, Q/RP is countably generated as RP-module,


so that p.d.RP
(Q/RP) = 1. The h-locality of R implies that R-submodules of torsion


RP-modules are RP-modules too (see [15, Lemma 3.8, Chap. IV]), hence the ele-
ments x−n (n≥ 0) generate Q/RP also as R-module. Consequently p.d.R(Q/RP) = 1
for every maximal ideal P, therefore p.d.R(Q/R) = p.d.R(


⊕
P(Q/RP)) = 1. ��


The assumption that R is h-local in Lemma 2.4 is essential. In fact, Olberd-
ing proved in [26], as a byproduct of the development of the notion of “Prüfer
sections” of Noetherian domains, that there exists an almost Dedekind domain R
that is not a Matlis domain. Note that such a domain R satisfies the property that
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every localization RP at a maximal ideal P is a DVR, hence an APD, but R itself is
not an APD, in view of the next result.


Proposition 3.5. Let R be an APD. Then R is a 1-dimensional, h-local and Matlis
domain.


Proof. Let L be a non-zero prime ideal of R. Then R/L is a perfect domain, hence a
field, by Corollary 2.3. Thus, L is maximal and consequently R is 1-dimensional. R
is h-local, since every proper factor ring is semilocal, by Theorem 2.2. The property
of being Matlis follows from Lemma 3.4. ��


We are now in the position to prove the first characterization of APDs in the
Main Theorem. As usual for other properties, a domain R is said to be locally almost
perfect if every localization RP at a maximal ideal P is an APD.


Theorem 3.6. A domain R is an APD if and only if it is h-local and locally almost
perfect.


Proof. Assume R an APD. It is h-local by Proposition 3.5. If P is a maximal ideal
of R, let J be a non-zero proper ideal of RP. Then J = IRP for some non-zero ideal
I ≤ P of R. But RP/IRP


∼= R/I⊗R RP
∼= (R/I)P/I, and the last ring, as a localization


at the maximal ideal P/I of the perfect ring R/I, is also perfect, by Theorem 2.2(4).
Conversely, assume R h-local and locally almost perfect. Then, fixed an element


0 = r ∈ R, R/rR∼= ⊕
P(RP/rRP), where P ranges over the finite set of the maximal


ideals containing r. Hence, R/rR is a finite product of local perfect rings, hence the
conclusion follows from Theorem 2.2(3). ��


We will show now that there exist locally almost perfect domains which fail to
be h-local. The construction of the Bézout domain R in the next Example 3.7 is due
to Heinzer–Ohm [20], the remark that every cyclic torsion R-module is semiartinian
is due to Bazzoni–Salce [6].


Example 3.7. Consider the lattice-ordered group Z
N with the pointwise ordering.


Let Γ be its subgroup consisting of the eventually constant sequences. Γ properly
contains the direct sum of the Z’s and becomes a lattice-ordered group under the
induced ordering. Let R be a Bézout domain with divisibility group Γ (such a do-
main does exist by the Kaplansky–Jaffard–Ohm theorem, see [15, Theorem 5.3,
Chap. III]). The maximal ideals of R are the ideals Pn (n ∈ N), corresponding to
the filters Fn consisting of the vectors in Γ+ whose n-th coordinate is > 0, and one
more, denoted by P∞, corresponding to the filter F∞ consisting of the vectors in Γ+


that are eventually strictly positive. R has no other non-zero prime ideals, hence it
is 1-dimensional. All the localizations at maximal ideals of R are rank one discrete
valuation domains, so R is an almost Dedekind domain, hence, in particular, R is
locally almost perfect, by Example 3.2. R is not Noetherian, since the ideal P∞ is
not finitely generated, and it is not h-local, because the principal ideal of R corre-
sponding to the element (1,1,1, . . .) ∈ Γ is contained in all the maximal ideals of
R. Finally, it is not difficult to show that R satisfies also the condition that, for every
non-zero ideal I, the cyclic R-module R/I has non-zero socle. ��
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It is worthwhile to observe that the domain R in Example 3.7 satisfies the
condition that the R-module Q/R is semiartinian, as one can derive from the next
Proposition 7.1. This condition implies that R is locally almost perfect. The converse
is not true, as shown in [13], where the locally almost perfect domains R with
Q/R semiartinian are characterized in Theorem 5.2. Furthermore, examples of al-
most Dedekind domains (hence, in particular, locally almost perfect domains) are
provided which fail to have Q/R semiartinian (see Example 5.5 in [13]).


Theorem 3.6 reduces the investigation of APDs to the local case. Actually, as
recalled in the Introduction, local APDs have been introduced by J. R. Smith [35]
under the name of domains with TTN (that is, with topologically T -nilpotent
radical).


4 Valuation overrings of APDs


Let R be a local domain with field of quotients Q and maximal ideal P. A local ring V
with maximal ideal M is said to dominate R if R⊆V ⊆ Q and M∩R = P. A classi-
cal result [9, p. 92] states that every local domain R is dominated by a valuation
domain V . Recall that a 1-dimensional valuation domain is called archimedean.
J. R. Smith improved the above result [35, p. 235] by proving the following:


Theorem 4.1. Let R be a 1-dimensional local domain with field of quotients Q and
maximal ideal P. Then there exists an archimedean valuation domain V dominat-
ing R. Furthermore, if R is an APD, V necessarily satisfies the condition that the
elements in P have value (in the valuation of V) larger or equal to a positive ele-
ment γ of the value group of V . ��


The next result is a useful consequence of the last claim in Theorem 4.1; it states
that the P-adic topology on a local APD with maximal ideal P is Hausdorff.


Corollary 4.2. Given a local APD with maximal ideal P,
⋂


n Pn = 0.


Proof. Using the notation of Theorem 4.1, an element in Pn has value ≥ n · γ; so if
r ∈ ⋂n Pn, then its value is ≥ n · γ for all n ≥ 1, hence it is ∞, consequently r = 0.
��


One could ask when there exists a unique archimedean valuation domain domi-
nating a local APD. The answer is given in the following result, whose proof, valid
for arbitrary 1-dimensional local domains, can be found in [40, Theorem 3.2 and
Proposition 3.1].


Theorem 4.3. Let R be a local APD. The following conditions are equivalent:


(1) There exists a unique archimedean valuation domain V dominating R
(2) The integral closure R̄ of R contains an ideal of V .


If these equivalent conditions hold, then R̄ is local and shares the maximal ideal
with V , hence R is a pseudo-valuation domain. ��
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Instead of starting, as in Theorem 4.1, with a local almost perfect domain
and look for archimedean valuation overrings dominating it, we can consider the
converse process, namely, start with an archimedean valuation domain V and look
for local subrings R dominated by V which are almost perfect. Zanardo obtained
[40, Theorem 3.1] the following satisfactory result.


Theorem 4.4. Let V be an archimedean valuation domain. Then there exists an APD
dominated by V .


Proof. We can assume that V is not discrete, otherwise we can set R = V , by
Example 3.2. Let Q be the field of quotients of V , v the valuation on Q determined
by V , and P the maximal ideal of V . The construction of an APD R inside V is of
two different types, depending on whether V contains a field K or not. Note that the
first case always happens in case V has positive characteristic. We skip the details
of the proof, for which we refer to [40, Theorem 3.1], and just indicate how the ring
R is defined.


Assume first that V contains the field K. Choose an element z ∈ P and set R =
K +zV . Then one can prove that R is an APD with unique maximal ideal zV , and that
V dominates R. Then assume that V does not contain a field, so V has characteristic 0
and contains, up to isomorphism, the ring Z of the integers. There exists a unique
prime integer p belonging to P. Consider the multiplicative part of V : S = {m+ px |
m ∈ Z\ pZ,x ∈V}. The subring of V :


R = {(n + py)/s | n ∈ Z,y ∈V,s ∈ S}


is an APD with pZ as unique maximal ideal, and is still dominated by V . ��
Note that in both the constructions in the proof of Theorem 4.4 the maximal ideal


M of R not only satisfies the condition stated by Smith in Theorem 4.1 (namely,
v(M) ≥ γ , where γ is a positive element of the value group of V ), but also the
additional condition that it contains (actually it equals) an ideal of V properly con-
tained in P. This last condition has been shown by J. R. Smith to suffice to force
a local subring R of V (with maximal ideal M such that v(M) ≥ γ > 0) to be an
APD. However, the condition is not necessary, as the next example shows (see [40,
Example 3.1]), which is a slight generalization of [6, Example 3.8]). For another
example see [35, pp. 236–238].


Example 4.5. Let M1 < M2 < M3 < · · · be a strictly increasing sequence of positive
integers. Let us define a sequence of additive subsemigroups of the rational numbers
as follows:


Σ0 = {0}; Σn = {m/2n | m ∈ N,m/2n ≥Mn}, n≥ 1.


Each Σn is a submonoid of Σn+1 and Σ =
⋃


nΣn is a semigroup generating the group
Γ = {m/2n | m ∈ Z,n ∈ N}. Let F be a field of positive characteristic and K a
purely transcendental extension of F . Let K[Σ ] and K[Γ ] denote the rings of formal
polynomials over K with exponents respectively in the semigroups Σ and Γ+. For
every f ∈ K[Γ ], denote by f (0) its constant term.
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Let us consider now the two subrings of K[Γ ]:


V = { f/g | f ,g ∈ K[Γ ],g(0) = 1}
R = { f/g | f ,g ∈ K[Σ ], f (0) ∈ F, g(0) = 1}


and denote by Q their common field of fractions. Then one can show that


– R is an almost perfect domain (the proof is not easy; one needs to use the special
properties of Σ ; see ([6, Lemma 3.6]).


– R is dominated by the valuation domain V .
– R does not contain an ideal of V ; this depends on the fact that there are arbitrarily


large elements of Γ+ which do not belong to Σ ; in fact, fixed 0 < h ∈ N, choose
n ≥ 2 such that Mn > h. Then there exists an odd natural number m satisfying
2n < m < 2nMn. It is immediate to check that m/2n /∈ Σ .


From Theorem 4.3 we deduce that the ring V is the unique archimedean valuation
domain dominating R. In fact, the integral closure of R is the ring R̄ = { f/g | f ,g ∈
K[Γ ], f (0) ∈ F,g(0) = 1}, which contains the maximal ideal P of V . ��


Up to now we have not seen examples of APDs dominated by more than one
archimedean valuation domain. If we look for finitely many of them, the following
lemma is very useful.


Lemma 4.6. Let V1, . . . ,Vn be archimedean valuation domains with the same field
of quotients Q, and with respective maximal ideals P1, . . . ,Pn. Then there exists a
non-zero element z ∈ P1∩·· ·∩Pn. ��


Lemma 4.6 can be readily proved by an application of the Approximation
Theorem (see [25]), or directly using induction (see [40, Lemma 3.3]); it is the
starting point in the following construction. Take the archimedean valuation do-
mains V1, . . . ,Vn and let 0 = z ∈ P1 ∩ ·· · ∩ Pn be the element, whose existence is
ensured by the lemma. Assume now, as in the first case of the proof of Theorem 4.3,
that all the domains Vi contain the same field K; generalizing the construction of that
proof, consider the ring R = K +(zV1∩·· ·∩zVn). In this notation, one can prove the
following result (see [40, Theorem 4.1]).


Theorem 4.7. The domain R = K +(zV1∩·· ·∩zVn) is an APD with field of quotients
Q, and the rings V1, . . . ,Vn are exactly the archimedean valuation domains in Q
dominating R. ��


To complete the panorama, we need an example af an APD with infinitely many
archimedean valuation domains dominating it. In the next example, we sketch the
construction of such a domain; for details we refer to [40, Example 4.3].


Example 4.8. Let Q = K(Y,Xn | n ∈ N), where K is an arbitrary field and Y and the
Xn’s are indeterminates. For all integers i set Di = K(Xn | n = i)[Y,Xi], and let vi be
the discrete valuation on Q defined in the following way: if f (Y,Xi) is a non-zero
polynomial in Y and Xi with coefficients in K(Xn | n = i), set vi( f ) to be the minimal
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degree of the homogeneous components of f . Then vi can be extended to a rank one
discrete valuation of Q. Let Vi be the corresponding valuation domain, with maximal
ideal Pi. Set M =


⋂
n∈N Pn and consider the ring R = K +M. Then one can prove that


R is an APD and that every valuation overring Vn dominates R. It turns out that R
fails to be integrally closed. ��


5 Connections with other classes of domains


For people working in module theory, three of the most important classes of rings
are the class of coherent rings and its subclasses of Prüfer and Noetherian rings. So
our first goal is to compare APDs with coherent and Noetherian domains.


Proposition 5.1. (1) A 1-dimensional Noetherian domain is an APD.
(2) A coherent APD is Noetherian.


Proof. (1) If R is a 1-dimensional Noetherian domain, then, for every non-zero ele-
ment r ∈ R, R/rR is artinian, hence perfect. Therefore, R is an APD.


(2) Let R be coherent and almost perfect. Since an h-local domain is Noetherian
if and only if it is locally Noetherian, we can assume R to be local. Pick a non-zero
element r ∈ R; then R/rR is perfect, so it has a minimal ideal isomorphic to R/P;
by coherency, P/rR is finitely generated, so the same holds for P. The conclusion
follows by Cohen’s theorem. ��


An immediate consequence is the following


Corollary 5.2. Let R be a Prüfer domain. Then R is almost perfect if and only if it
is a Dedekind domain. ��


Thus, the domains which are both Prüfer and almost perfect are necessarily
Noetherian. Note however that there exist APDs which are Noetherian but not inte-
grally closed, so not Dedekind (see next Example 6.1).


At this point a natural question is: when is an APD R Noetherian? As we have
seen in the proof of Proposition 5.1, one can consider the local case only, by the h-
locality of R. In this case, being P the unique non-zero prime ideal, a trivial answer
is, by Cohen’s theorem: exactly when the maximal ideal P is finitely generated.
More information and a slight improvement are in the following proposition, whose
proof can be found in [28] and [34, Theorem 5.2].


Proposition 5.3. Let R be a local APD with maximal ideal P. Then:


(1) R is a DVR if and only if P is principal.
(2) R is Noetherian if and only if P/P2 is a finitely generated R-module. ��


There exists another characterization of local Noetherian APDs in terms of the
overring R1 = P : P, where P is the maximal ideal of R. Note that, if P is a principal
ideal, then R1 = R; otherwise, R1 is a fractional ideal of R and R1/R coincides with
the socle of Q/R.
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Proposition 5.4. A local APD R with maximal ideal P is Noetherian if and only if
Q/R has finitely generated socle and R1 = p−1


1 P∩·· · ∩ p−1
n P for suitable elements


pi ∈ P. ��
For the proof see [28, Theorem 2.3.3]. It is an open question (see Question 3)


whether the hypothesis that Q/R has finitely generated socle in Proposition 5.4
implies that R1 = p−1


1 P∩ ·· · ∩ p−1
n P for suitable elements pi ∈ P. The opposite


implication is certainly false, as we will see in the Example 6.1.
There are local APDs R, with almost nilpotent maximal ideal P, which have


a very simple ideal structure, called P-chained domains; they are defined by the
additional condition that, for every proper non-zero ideal I, there exists an n such
that Pn+1 ≤ I ≤ Pn. This is equivalent to say that P is almost nilpotent and pP = P2


for every p ∈ P\P2, or that the overring R1 = P : P is a DVR with maximal ideal P
(see [29, Proposition 4.1]). It is easy to deduce that, given two incomparable ideals
I and J, the inclusion PJ ≤ I holds; hence, from a result by Hedstrom–Houston [19,
Theorem 1.4], we obtain the following proposition (for the proof of the converse see
[29, Proposition 4.3]).


Proposition 5.5. A P-chained domain R is a pseudo-valuation domain. If R is
Noetherian, the converse holds. ��


If we require that in a local domain R with maximal ideal P, pP = P2 does not
hold for every p∈ P\P2, as in the case of P-chained domains, but just for a selected
p∈P\P2, then we obtain a larger class of APDs, called P-stable. This notion agrees
with the notion of stability of Eakin–Sathaye [11], and is stronger then the stability
notion of Sally–Vasconcelos [33], who define P to be stable if it is projective in its
endomorphism ring.


It is an easy exercise to prove (see [29, Lemma 2.3.5]) that R is P-stable exactly
if P is a principal ideal of the overring R1 = P : P, and in this case R1/P∼= Pn/Pn+1


for all n.


Proposition 5.6. A 1-dimensional P-stable local domain has P almost nilpotent,
hence it is an APD. It is Noetherian if and only if Q/R has finitely generated
socle. ��


For the simple proof see [29, 2.3.6 and 2.3.7]). An example of P-stable APD is
given below.


Example 5.7. Let F be a field and K a proper extension of F . Fix n≥ 1 and set Sn =
F + FX + FX2 + · · ·+ FXn−1 + XnK[[X ]]. Sn is local 1-dimensional with maximal
ideal Pn = FX +FX2 + · · ·+FXn−1 +XnK[[X ]]. Then Pn = XSn and Pn : Pn = Sn−1


(obviously S0 = K[[X ]]). Each Sn is a Pn-stable APD, not P-chained if n > 1. S0 is
the unique archimedean valuation domain dominating Sn for each n. ��
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6 Examples of APDs


Three main sources of examples of APDs are the D + M construction, the simple
integral extensions of APDs, and the semigroup rings over submonoids of the non-
negative real numbers. In this section, we will present examples of each type.


Example 6.1. Let V = K[[X ]] be the DVR of the power series over an arbitrary field
K, and let F be a proper subfield of K. The ring R = F +XK[[X ]] of the power series
with constant term in F is a local domain with the same maximal ideal P = XK[[X ]]
of V , which fails to be a valuation domain. The ideal P of R is almost nilpotent, so
R is an APD, and, by Lemma 3.3, the Loewy length of Q/R is ω . R is Noetherian
if and only if the degree [K : F ] is finite, and it is integrally closed provided F
is algebraically closed in K. So there exist integrally closed APDs which are not
valuation domains. Note that (Q/R)[P] is infinitely generated if [K : F ] is infinite
and P : P = X−1P. Clearly R is a P-chained domain. ��
Example 6.2. In this example, we already start with a local APD R with maximal
ideal P, and construct a larger APD containing R. If Q denotes the field of quotients
of R, let F be a field extension of Q. Let us assume that there exists an element
x ∈ F \Q which is integral over R. Let f (X) = Xn+1 + rnXn + · · ·+ r1X + r0 be a
monic polynomial in R[X ] of minimum degree n + 1 > 1 such that f (x) = 0. Then
R[x] is an APD if and only if all the coefficients ri belong to P. If this happens,
R[x] is local with maximal ideal M = P + xR + x2R + · · ·+ xnR; R[x] is Noetherian
if and only if R is Noetherian. If P is almost nilpotent, also M is almost nilpotent.
The proof of these facts are in Smith [35, Section 5] and [6, Proposition 3.5]. The
property of being P-chained is not inherited in general passing from R to R[x] (see
[29, Example 4.6]). ��


A concrete ring obtained as in Example 6.2 is R = Zp[ p
√


p ], where Zp is the lo-
calization of the ring of the integers at the prime p. Its field of quotients F = Q[


√
p ]


is algebraic over Q and x = p
√


p is integral over Zp, with minimal polynomial
X2− p3, and p3 ∈ P = pZp. Note that Zp[ p


√
p ] is Noetherian but not integrally


closed, since
√


p /∈R is integral over R, and the maximal ideal of R is M = pZp +xR.
The general technique developed in the next example have been already used in


a particular case in Example 4.5.


Example 6.3. Let Σ be a submonoid of the additive monoid of the non-negative real
numbers, and denote by Σ+ its subset of the positive elements. Given a field K of
positive characteristic p, consider the semigroup ring K[Σ ], which is a domain, since
Σ is cancellative torsionfree. Let R be the localization of K[Σ ] at the maximal ideal
M generated by the elements Xσ , for σ ∈ Σ+. Denote by P the maximal ideal of
R, that is, P = MK[Σ ]M . The same construction as above, but using the group Γ
generated by Σ , instead of Σ , produces a valuation domain V dominating R. If Σ is
assumed to satisfy the following property:


– Given σ > τ in Σ , m(σ − τ) ∈ Σ for all integers m large enough
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then the ring R is 1-dimensional. If, furthermore, Σ is assumed to satisfy the
additional property:


– If σ1, . . . ,σn ∈ Σ+, there exists σ0 ∈ Σ+ such that σ1 + · · ·+σn−σ0 ∈ Σ
then the maximal ideal P of R is almost nilpotent, hence R is almost perfect, and is
dominated by V . The positivity of the characteristic of K is needed to prove that any
two principal proper ideals of R have the same radical, so that R is 1-dimensional,
an argument borrowed by [1]. It is easy to see that, under the above assumptions on
Σ , R is not P-chained, but P is almost nilpotent. ��


All the examples of local APDs R exhibited in this and in the previous sections
satisfy the condition that the maximal ideal P is almost nilpotent, or, equivalently,
by Lemma 3.3, Q/R has Loewy length ω . As we will see in Section 7, the Loewy
length of Q/R is the supremum of the Loewy lengths of all torsion R-modules, hence
l(Q/R) = ω implies that the structure of all torsion R-modules, from the point of
view of the Loewy series, is relatively simple. Thus, a crucial question is: are there
local APDs such that l(Q/R) > ω?


A simple argument shows that the Loewy length of a divisible module is a limit
ordinal. The first example of a local APD R with l(Q/R) = ω · 2 was given in [6,
pp. 12–16], using the technique illustrated in Example 6.4, that is, constructing a
subsemigroup Σ of the non-negative real numbers satisfying particular properties,
and then considering the semigroup ring K[Σ ] over a field K of positive charac-
teristic. A completely different example of local APD R with l(Q/R) = ω · 2 was
constructed in [40, Example 4.4], modifying the definition of the valutions vi in
Example 4.8.


A more complicated construction was presented in [32], a paper entirely devoted
to prove that, for every positive integer n, there exists a local APD R such that
l(Q/R) = ω · n. The construction elaborates on that in [40, Example 4.4], and it is
too technical to be illustrated here. We just state the result, for further references.


Theorem 6.4. For every positive integer n there exists a local APD R such that Q/R
has Loewy length ω ·n. ��


Up to now, we don’t have any example of non-Noetherian APD which is not
local. The next example fills this gap, providing an APD with uncountably many
maximal ideals, all whose localizations are DVR’s except one, which is non-
Noetherian. Since the example appears here for the first time, we furnish all the
details.


Example 6.5. Let K be an algebraically closed field, F a proper subfield such that
[K : F ] = ∞, X an indeterminate. Let R = F + XK[X ]. We will prove that R is a
non-Noetherian almost perfect domain with infinitely many maximal ideals, which
are P = XK[X ], and those of the form Pa = (1−aX)R, for all 0 = a ∈ K. First note
that a polynomial f ∈ K[X ] lies in R if and only if f (0) ∈ F . We have a canonical
factorization of the elements of R. In fact, since K is algebraically closed, we have
two possibilities:
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(i) If f (0) = 0 then we may uniquely write f = c∏m
i=1(1−aiX), for suitable c ∈ F


and ai ∈ K
(ii) If f (0) = 0 then we may uniquely write f = bXk∏m


i=1(1− aiX), for suitable
k > 0, b ∈ K and ai ∈ K (here bX ∈ R). Note that, presently, f ∈ P.


It is clear that P is a maximal ideal of R. The fact that Pa = (1− aX)R is also a
maximal ideal, for every 0 = a∈K, follows from the equality Pa = (1−aX)K[X ]∩R
and from the isomorphisms:


R/Pa
∼= (R +(1−aX)K[X ])/(1−aX)K[X ]= K[X ]/(1−aX)K[X ]∼= K.


Let us show that there are no other maximal ideals. Assume, by way of contradic-
tion, that J is a maximal ideal different from P and from all the Pa. Pick 0 = f ∈ J.
We consider the factorization of f . If f = c∏m


i=1(1− aiX), as in (i), then J prime
implies that 1−ahX ∈ J, for some h≤ m. It follows that J contains Pah , impossible,
since Pah is maximal. Thus, necessarily, f = bxk∏m


i=1(1−aiX), as in (ii). It follows
that f ∈ P; since f ∈ J was arbitrary, we conclude that J ⊆ P, another contradiction.


Since the factorizations in (i) and (ii) are unique, we see that any element of
R is contained in only finitely many maximal ideals. Hence, to conclude that R is
h-local, it suffices to show that R is 1-dimensional. Let H be a nonzero prime ideal
of R, and pick 0 = f ∈ H. Arguing as above, if f is as in (i), we get that H ≥ Pah ,
for some h≤m; otherwise, f is as in (ii), and we derive that H ≤ P. So it remains to
prove that P does not properly contain a nonzero prime ideal. Equivalently, the local
domain RP is 1-dimensional. Using (ii), we see that, in the present situation, every
element z of PRP has the form bXku, where b∈K and u is a unit of RP. Then an easy
exercise shows that, for any given nonzero z1,z2 ∈ RP, there exists n > 0 such that
zn


1 ∈ z2RP, whence RP 1-dimensional follows. Finally, R is not Noetherian, since P
is not finitely generated. In fact, take a basis {aλ}λ∈Λ of K over F ; by assumption,
this basis is infinite. A direct check shows that the elements aλX of P are linearly
independent modulo P2, and the desired conclusion follows.


We remark that RPa is a DVR for every 0 = a ∈ K, while RP is a non-Noetherian
local APD. Moreover, if i /∈ F , X is an irreducible element which is not prime; the
equality X ·X = (iX)(−iX) provides a non unique factorization of X2. ��


7 APDs and torsion modules


APDs can be characterized in terms of two properties of their torsion modules T : the
existence of the primary decomposition T ∼=⊕


P∈Max(R) TP, and the semiartinianity.
The first property is equivalent, by a Matlis’ classical theorem (see [24] and [15,
Theorem 3.7, Chap. IV]), to the h-locality of R; the latter is equivalent to some
other properties, as shown in the next result.


Proposition 7.1. For a domain R the following conditions are equivalent:


(1) Every non-zero torsion R-module contains a simple R-module.
(2) Every torsion R-module is semiartinian.
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(3) Q/R is semiartinian.
(4) For every non-zero R-submodule A of Q, Q/A contains a simple module.
(5) For every non-zero ideal I of R, R/I contains a simple R-module.


If R is almost perfect, all the previous conditions hold and each one implies that R
is locally almost perfect.


Proof. The proof of the equivalence of the five conditions can be found in [12,
Theorem 4.4.1]. If R is almost perfect, then condition (5) holds by Theorem 2.2. If
Q/R is a semiartinian R-module, then Q/RP, as a quotient of it, is also a semiartinian
R-module. The only simple R-modules contained in an RP-module are isomorphic
to R/P∼= RP/PRP, hence Q/RP is also a semiartinian RP-module. Therefore RP is
an APD. ��


From Theorems 2.2, 3.6 and Proposition 7.1 one easily deduces the equivalence
of conditions (1), (3) and (4) in the Main Theorem.


Theorem 7.2. A domain R is an APD if and only if it is h-local and satisfies one
of the equivalent conditions of Proposition 7.1. In particular, if R is local, these
conditions are all equivalent to the fact that R is an APD. ��


In a torsion module M over a local APD R, beside the ascending Loewy series
0 = L0(M) ≤ L1(M) ≤ ·· · ≤ Lλ (M) ≤ ·· · we have also the descending chain of
submodules, called the P-series of M:


M ≥ PM ≥ P2M ≥ ·· · ≥ PλM ≥ ·· ·


where PλM = P(Pλ−1M) if λ is a successor ordinal, otherwise PλM =
⋂
σ<λ PσM.


A simple but crucial result concerning this chain is the next Proposition 9.1(2),
which states that M is divisible if and only if PM = M. Hence the divisible sub-
module d(M) of the module M is PλM, where λ is the first ordinal such that
PλM = Pλ+1M. In general, d(M) is not a direct summand of M, unless R is a DVR,
by the well known fact that all torsion divisible modules are injective if and only if
the domain is Dedekind.


Recall that a relevant phenomenon concerning torsion modules over a local
APD R, arising when the maximal ideal P is not almost nilpotent, is that Q/R can
have Loewy length ω ·n, for any positive integer n (see Theorem 6.4). Another sim-
pler phenomenon arising when the maximal ideal P is not almost nilpotent is that a
bounded module M (i.e., rM = 0 for some 0 = r ∈ R) can very well have an infinite
P-series.


Example 7.3. Let R be a local APD with maximal ideal P not almost nilpotent. By
Lemma 3.3, for every 0 = a ∈ R, Pn is not contained in aR for all n, hence (Pn +
aR)/aR is not zero for all n. On the other hand, (Pn +aR)/aR is not divisible, since
it is bounded, hence it strictly contains P((Pn + aR)/aR) = (Pn+1 + aR)/aR. ��


One main question for a torsion module M over local APDs is: what is its Loewy
length l(M)? We can give easily an upper bound for these lengths.
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Proposition 7.4. Let R be a local APD and M a torsion R-module. Then l(M) ≤
l(Q/R).


Proof. The Loewy length does not increase passing to submodules and quotients. So
l(M) ≤ l(E(M)), where E(M) is the injective envelope of M. Being R a Matlis do-
main, divisible R-modules are h-divisible, so Q/R is a generator for the full subcate-
gory of Mod(R) consisting of the torsion divisible R-modules (see [15, Theorem 2.8,
Chap. VII]), hence E(M) is a quotient of a direct sum of copies of Q/R. Therefore,
l(M) ≤ l(E(M))≤ l(Q/R). ��


Among torsion modules over a local APD R, beside Q/R there is another module
which deserves a particular attention, namely E(R/P), the minimal injective cogen-
erator. We summarize here the known results on E(R/P), referring to [28] for a
more precise discussion on this subject.


The fact that l(E(R/P)) = ω is equivalent to say that the P-adic topology of R
is finer than the Prüfer topology (which has as basis of neighborhoods of 0 the
family of non-zero ideals I such that R/I has finitely generated socle; see [29,
Proposition 2.2]); this fact is certainly true when P is almost nilpotent, that is, when
l(Q/R) =ω , by Lemma 3.3. We don’t know whether l(E(R/P)) = l(Q/R) is always
true (see Question 5).


The behavior of E(R/P) and of its endomorphism ring EndR(E(R/P)) is com-
pletely different when R is a Noetherian APD with respect to the non-Noetherian
case. In the former case, Matlis’ theory of injective modules developed in [23]
applies; Q/R is injective exactly when R is divisorial or, equivalently, R : P is
2-generated (see [15, Proposition 5.8, Chap. IV]); the P-adic topology coincides
with the R-topology (with neighborhoods of zero all the non-zero ideals) and also
with the Prüfer topology; and, finally, the two modules E(R/P) and Q/R both have
endomorphism ring isomorphic to the completion of R in these topologies.


When R is not Noetherian, the three above topologies can be different, Q/R
cannot be injective (see [6, Proposition 2.6]), and EndR(E(R/P)) is not commu-
tative in general; its center is isomorphic to the completion of R in the Prüfer topol-
ogy, by a result of Vámos [38, Proposition 1.6], and it contains the completion of
R in the R-topology (which is the endomorphism ring of Q/R for any domain R,
see [15, Chap. VIII]).


A concrete example af local APD R with EndR(E(R/P)) not commutative is ob-
tained by taking R to be a simple integral extension of a P-chained non-Noetherian
APD, as in Example 6.3 (see [28, Theorem 4.8]).


8 APDs and flat modules


The discovery of APDs was made in [5], where a completely satisfactory solu-
tion was given to the following problem: characterize the integral domains such
that every R-module has a strongly flat cover. The problem was settled in [37] af-
ter the Flat Cover Conjecture was positively solved by Bican-El Bashir-Enochs.
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In fact, in [8] it was proved in two different ways that all modules over any ring
have a flat cover. In order to state a similar result, replacing flat modules by strongly
flat modules in the case of integral domains, we must restrict to the class of APDs;
in which case, flat modules turn out to be strongly flat, so they have a particularly
nice structure (see next Proposition 8.3).


We recall some basic definitions. Recall that a module F over a domain R with
field of quotients Q is strongly flat if Ext1R(F,M) = 0 for all modules M such that
Ext1R(Q,M) = 0; this is equivalent to saying that F is a direct summand of a module
which is an extension of a free module by a divisible torsionfree module. Clearly,
such a module is flat.


Let C be a class of R-modules closed under isomorphisms and direct summands.
Given a module M, a map f : C→M, where C∈C, is said to be a C-precover of M if,
for every C′ ∈ C, the induced map HomR(C′,C)→ HomR(C′,M) is surjective. The
C-precover C is a C-cover provided f · g = f for an endomorphism g of C implies
that g is an automorphism.


The main result in [5] proves inter alia the equivalence of the conditions
(1) and (5) in the Main Theorem.


Theorem 8.1. For a domain R the following are equivalent:


(1) R is almost perfect.
(2) Every flat R-module is strongly flat.
(3) Every R-module has a strongly flat cover.
(4) The class of strongly flat modules is closed under direct limits. ��


The proof of the core part in Theorem 8.1, namely, (1)⇔ (2), is complicated and
makes use of several intermediate results (see Proposition 4.4 in [5]).


Another interesting result concerning the existence of strongly flat covers proved
in [5, Theorem 4.9] is that a domain R is h-local if and only if every finitely
generated torsion R-module has a strongly flat cover. The proof of this fact relies
on the analogous result proved by Bass [2, Theorem 2.1], stating that a ring is semi-
perfect if and only if all finitely generated R-modules have a projective cover; recall
that the ring R is semiperfect if R/J(R) is semisimple and the idempotents lift mod-
ulo J(R); when R is a commutative domain, this is equivalent to the fact that R is
h-local (see [5, Theorem 4.9]).


From the equivalence of (1) and (7) in the Main Theorem (discussed in the next
two Sections) we derive the following fact concerning subprojective modules over
APDs.


Corollary 8.2. Let R be an APD. Then a flat submodule A of a projective module B
is projective.


Proof. The weak dimension of B/A is ≤ 1. By (7) in the Main Theorem, we have
that the projective dimension of (B/A) is ≤ 1, therefore A is projective. ��


If R is only a Matlis domain, one can prove that a strongly flat submodule A of a
projective R-module B is projective, but with the additional assumption that B/A is
torsion (see [7, Proposition 2.5]).







Almost perfect domains and their modules 381


We close this section recalling that a deep investigation of strongly flat modules
over a domain R, hence of flat modules in case R is an APD, is made in [7]. In
particular, from [7, Theorem 2.1 and Corollary 2.7] one deduces the following:


Proposition 8.3. Let R be an APD and M an R-module. The following conditions
are equivalent:


(1) M is flat.
(2) The completion of M in the R-topology is a summand of the completion of a free


module.
(3) M⊗R (Q/R) is isomorphic to a summand of a direct sum of copies of Q/R.


If R is local, then “a summand of” can be cancelled in (2) and (3). ��


9 APDs and divisible modules


A first relevant property of divisible modules over APDs is that they are all
h-divisible, that is, homomorphic images of injective modules. This property
depends only on (actually, it is equivalent to) the fact that an APD is a Matlis
domain. In this section we will see that more specific properties of divisible mod-
ules over APDs are available.


We start with a characterization of injective and divisible modules over APDs;
the latter have been obtained in the local case by J. R. Smith in [35].


Proposition 9.1. Let R be an APD. Then


(1) An R-module E is injective if and only if Ext1R(R/P,E) = 0 for every maximal
ideal P.


(2) An R-module M is divisible if and only if PM = M for every maximal ideal P.


Proof. (1) The Baer’s criterion says that E is injective if and only if Ext1R(R/I,E)=0
for every non-zero ideal I. But the factors of the Loewy series of R/I are semisimple
modules, so a ubiquitous lemma on Ext (see [15, Lemma 2.5, Chap. VI]) applies.


(2) If M is divisible, then obviously PM = M for every maximal ideal P. To prove
the viceversa, let 0 = r ∈ R; we want to show that M = rM, that is, M/rM = 0.
Being R h-local, we have that M/rM ∼= ⊕


1≤i≤n MPi/rMPi , where P1, . . . ,Pn are the
maximal ideals containing r. So we are led to prove the claim for R local. Let P be
the maximal ideal; then P̄ = P/rP is a T -nilpotent ideal of the perfect ring R/rR and
M̄ = M/rM = P̄M̄. From Proposition 2.1 we get that M̄ = 0, as desired. ��


We recall some basic definitions. A module M over a domain R with field of
quotients Q is said to be weak injective if Ext1R(F,M) = 0 for every R-module F of
weak (i.e., flat) dimension≤1. Such a module is divisible, in view of the characteri-
zation of divisible modules D by the property that Ext1R(R/I,D) = 0 for all invertible
(i.e., projective) ideals I (see [15, Lemma 7.2, Chap. I]).
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Let C be a class of R-modules closed under isomorphisms and direct summands.
Given a module M, a map f : M→C, where C ∈ C, is said to be a C-preenvelope
of M if, for every C′ ∈ C, the induced map HomR(C,C′)→ HomR(M,C′) is surjec-
tive. The C-preenvelope C is a C-envelope provided g · f = f for an endomorphism
g of C implies that g is an automorphism.


Recently, Fuchs and Lee proved [14, Theorem 6.4] that a domain that is not a
field has global weak injective dimension 1 if and only if it is an APD. The first
condition amounts to say that, given any module M, E(M)/M is weak injective
(E(M) denotes the injective envelope of M); Lee proved [22, Lemma 3.6] that this
is equivalent to the fact that all divisible modules are weak injective. So we can
formulate the result in the form appearing in our Main Theorem, with an additional
characterization; a proof can be found in [30].


Theorem 9.2. For a domain R the following are equivalent:


(1) R is almost perfect.
(2) Every divisible R-module is weak injective.
(3) For every flat R-module F, the embedding of F into its injective envelope E(F)


is a divisible envelope. ��
Trlifaj (see [37] and [18, Theorem 4.1.3]) and Lee [22, Lemma 4.1] proved that


the class of weak injective modules over any ring is an enveloping class, that is,
every R-module has a weak injective envelope. Since for APDs the two classes of
divisible and weak injective modules coincide, we derive the following:


Corollary 9.3. All modules over an APD have a divisible envelope. ��
We conjectured in [30] that for no other domains the class of divisible modules


is an enveloping class, on the ground that, if this happens for an almost maximal
Prüfer domain R, then R must be a Dedekind domain, that is, R must be an APD.
Very recently, Bazzoni proved in [3] that this conjecture is true, by showing that a
domain R whose divisible modules form an enveloping class must be h-local and
locally almost perfect.


We consider now two more classes of divisible modules. A module is finitely
injective if every finitely generated submodule is contained in an injective summand;
a module M is FP-injective (or absolutely pure) if Ext1R(F,M) = 0 for all finitely
presented modules F . It is easy to see that finitely injective modules are FP-injective
and that FP-injective modules are divisible. Over Noetherian rings the two classes
coincide. Over general APDs, we have the following result, whose proof can be
found in [31, Theorem 3.4].


Theorem 9.4. Let R be a countable APD. Then every FP-injective module is finitely
injective if and only if R is Noetherian. ��
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10 APDs and cotorsion pairs


The frame of the cotorsion pairs is very useful to prove results for classes of modules
that are right or left Ext-orthogonal of other classes (the original name of cotorsion
pairs in [27] was “cotorsion theories”, in analogy with the “torsion theories” which
use the functor Hom instead of Ext).


A cotorsion pair is a pair (A,B) of classes of modules (over any ring R) such that


A = {M ∈Mod(R) | Ext1R(M,B) = 0 for all B ∈B}
B = {M ∈Mod(R) | Ext1R(A,M) = 0 for all A ∈A}.


Given two cotorsion pairs (A,B) and (A′,B′), we set (A,B)≤ (A′,B′) if A ⊆ A′,
equivalently, if B′ ⊆ B. So (Mod(R),I) is the maximal cotorsion pair, where I


denotes the class of the injective R-modules, and (P,Mod(R)) is the minimal one,
where P denotes the class of the projective R-modules. For a systematic treatment
of the subject of the cotorsion pairs we refer to the monograph [18].


Of course, given two cotorsion pairs (A,B) and (A′,B′), the two equalities
A = A′ and B = B′ are each other equivalent. This fact is used to derive in the
Main Theorem that condition (5) is equivalent to condition (6), and condition (8) is
equivalent to condition (7).


Therefore, in order to prove that (5) is equivalent to (6), it is enough to know that,
over a domain R:


(i) (F,C) is a cotorsion pair, where F denotes the class of flat modules, and C that
of cotorsion modules C, defined by Ext1R(F,C) = 0 for all flat modules F (this
is true over any ring).


(ii) (SF,WC) is a cotorsion pair, where SF denotes the class of strongly flat
modules, and WC that of weakly cotorsion modules M, defined by the property
that Ext1R(Q,M) = 0, where Q is the field of quotients of R (see [24]).


Note that (SF,WC) ≤ (F,C). Similarly, in order to prove that (7) is equivalent
to (8), it is enough to know that, over a domain R:


(iii) (P1,D) is a cotorsion pair, where P1 denotes the class of modules of projective
dimension ≤1, and D that of divisible modules.


(iv) (F1,WI) is a cotorsion pair, where F1 denotes the class of modules of weak
dimension ≤1, and WI that of weak injective modules.


Note that (P1,D)≤ (F1,WI). The proofs of (i), (ii) and (iv) can be found in [18].
The fact that (P1,D) is a cotorsion pair was proved only very recently in a remark-
able paper by Bazzoni–Herbera [4], and it does not hold over general rings. The
cotorsion pair naturally associated to the class D of divisible modules is (CS,D),
where CS denotes the class of the direct summands of modules admitting a filtration
of cyclically presented modules (see [18, p. 136]). One of the main consequences
obtained in [4] is that, if R is a commutative integral domain, then the class CS


consists exactly of the modules of projective dimension≤1.
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11 Open questions


Throughout this section R denotes an integral domain and Q its field of quotients.
If R is assumed to be local, then P will denote its maximal ideal. l(M) denotes the
Loewy length of a module M,


Question 1. Is every perfect commutative ring R the quotient of an APD?


Question 2. Is a local APD R, such that Q/R has finitely generated socle,
necessarily Noetherian?


Question 3. Does a local APD R exist such that l(Q/R) is ≥ ω2?


Question 4. Does a local APD R exist such that l(Q/R) is strictly bigger than l(E),
where E = E(R/P) is the minimal injective cogenerator?


Question 5. Is a local APD R such that EndR(E(R/P)) is commutative necessarily
Noetherian?


Question 6. Is there a functorial relationship between modules over a local APD R
and modules over an archimedean valuation domain V dominating it?


Question 7. Is it true that for every APD R (without the countability assumption
of Theorem 8.3), all FP-injective modules are finitely injective exactly if R is
Noetherian?


Question 8. Is it possible to extend the theory of almost perfect rings to the non-
commutative setting?
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Characteristic p methods in characteristic zero
via ultraproducts


Hans Schoutens


Abstract In recent decades, by exploiting the algebraic properties of the Frobenius
in positive characteristic, many so-called homological conjectures and intersection
conjectures have been established, culminating into the powerful theory of tight
closure and big Cohen–Macaulay algebras. In the present article, I give a survey of
how these methods also can be applied directly in characteristic zero by taking ul-
traproducts, rather than through the cumbersome lifting/reduction techniques. This
has led to some new results regarding rational and log-terminal singularities, as well
as some new vanishing theorems. Even in mixed characteristic, we can get positive
results, albeit only asymptotically.


1 Introduction


In the last three decades, all the so-called Homological Conjectures have been
settled completely for Noetherian local rings containing a field by work of Peskine–
Szpiro, Hochster–Roberts, Hochster, Evans-Griffith, et. al. (some of the main papers
are [21, 28, 30, 43, 58]; for an overview, see [11, Section 9] or [85]). More recently,
Hochster and Huneke have given more simplified proofs of most of these results by
means of their elegant tight closure theory, including a more canonical construction
of big Cohen–Macaulay algebras (see [19, 36, 41]; for a survey, see [45, 77, 83]).
However, tight closure theory also turned out to have applications to other fields, in-
cluding the study of rational singularities; see for instance [34,35,37,38,47,80–82].


Most of these results have in common that they are based on characteristic p
methods, where results in characteristic zero are then obtained by reduction to char-
acteristic p. To control the behavior under this reduction in its greatest generality,
strong forms of Artin Approximation [59, 84, 86] are required, rendering the the-
ory highly non-elementary. Moreover, there are plenty technical difficulties, which
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offset the elegance of the characteristic p method. It is the aim of this survey paper
to show that when using ultraproducts as a means of transfer from positive to zero
characteristic, the resulting theory is, in comparison, (a) easier and more elementary
(at worst, we need Rotthaus’s version of Artin Approximation [63]); (b) more ele-
gant; and (c) more powerful. In Section 4, I will substantiate the former two claims,
and in Section 5, the latter. In a final section, I discuss briefly the status in mixed
characteristic.


2 Characteristic p methods


Let A be a ring of prime characteristic p. One feature that distinguishes it
immediately from any ring in characteristic zero is the presence of the Frobe-
nius morphism x �→ xp. We will denote this ring homomorphism by FrobA, or, when
there is little room for confusion, by Frob.1 In case A is a domain, with field of
fractions K, we fix an algebraic closure K̄ of K, and let A+ be the integral closure
of A in K̄. We call A+ the absolute integral closure of A; it is uniquely defined up
to isomorphism. Although no longer Noetherian, it has many good properties. We
start with a result, the proof of which we will discuss below (the reader be warned
that we are presenting the results in a reversed logical, as well as historical, order).


Theorem 2.1. If A is an excellent regular local ring of characteristic p, then A+ is
a flat A-algebra.


From this fact, many deep theorems can be deduced. To discuss these, we need a
definition.


2.1 Big Cohen–Macaulay algebras


Given a Noetherian local ring R, we call an R-module M a big Cohen–Macaulay
module,2 if there exists a system of parameters3 which is an M-regular sequence.
If every system of parameters is M-regular, then we say that M is a balanced
big Cohen–Macaulay module. There are big Cohen–Macaulay modules which are
not balanced, but this can be overcome by taking their completion ([11, Corollary
8.5.3]). We will make use of the following criterion (whose proof is rather straight-
forward).


1 The key fact about this map, of course, is its additivity: (a+b)p = ap +bp, since in the expansion
of the former, all non-trivial binomials


(p
i


)
are divisible by p, whence zero in A.


2 The nomenclature is meant to emphasize that the module need not be finitely generated.
3 A tuple of the same length as the dimension of R is called a system of parameters if it generates
an m-primary ideal; such an ideal is then called a parameter ideal.
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Lemma 2.2 ([3, Lemma 4.8]). If M is a big Cohen–Macaulay module in which ev-
ery permutation of an M-regular sequence is again M-regular, then M is a balanced
big Cohen–Macaulay module. ��


If M has moreover the structure of an R-algebra, we call it a (balanced) big
Cohen–Macaulay algebra. Hochster [28] proved the existence of big Cohen–
Macaulay modules in equal characteristic, and showed how they imply several
homological conjectures (we will give an example below). These ideas went back
to the characteristic p methods introduced by Peskine and Szpiro [58], which
together with Kunz’s theorem [50] and the Hochster–Roberts theorem [43] form the
precursors of tight closure theory (see [45, Chap. 0]).


Theorem 2.3. Every Noetherian local ring of characteristic p admits a balanced
big Cohen–Macaulay algebra.


Proof. Since completion preserves systems of parameters, it suffices to prove this
for R a complete Noetherian local ring. Killing a minimal prime of maximal di-
mension, we may moreover assume that R is a domain. Let (x1, . . . ,xd) be a system
of parameters. By Cohen’s structure theorem, there exists a regular subring S ⊆ R
with maximal ideal (x1, . . . ,xd)S such that R is finite as an S-module. In particular,
R+ = S+. By Theorem 2.1, the map S→ S+ is flat, and hence (x1, . . . ,xd) is a regular
sequence in S+ = R+. ��
Remark 2.4. We cheated by deriving the existence of big Cohen–Macaulay algebras
from Theorem 2.1, since currently the only known proof of the latter theorem is
via big Cohen–Macaulay algebras. Here is the correct logical order: Hochster and
Huneke show in [36], by different, and rather technical means, that R+ is a balanced
big Cohen–Macaulay R-algebra whenever R is an excellent local domain (see [45,
Chap. 7] or [46]). This result in turn implies the flatness of R+ if R is regular, by the
following flatness criterion ([45, Theorem 9.1] or [71, Theorem IV.1]).


Proposition 2.5. A module over a regular local ring is a balanced big Cohen–
Macaulay module if and only if it is flat.


Proof. One direction is immediate since flat maps preserve regular sequences. So let
M be a balanced big Cohen–Macaulay module over the d-dimensional regular local
ring R. Since all modules have finite projective dimension, the functors TorR


i (M, ·)
vanish for i � 0. Let e be maximal such that TorR


e (M,N) = 0 for some finitely
generated R-module N. We need to show that e = 0, so, by way of contradiction,
assume e ≥ 1. Using that N admits a filtration 0 = N0 ⊆ N1 ⊆ . . .Ns = N in which
each subsequent quotient has the form R/pi with pi a prime ideal ([17, Proposition
3.7]), we may assume that N = R/p for some prime p. Let h be the height of p, and
choose a system of parameters (x1, . . . ,xd) in R such that p is a minimal prime of
I := (x1, . . . ,xh)R. Since p is then an associated prime of R/I, we can find a short
exact sequence


0→ R/p→ R/I→C→ 0
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for some finitely generated R-module C. Tensoring the above exact sequence
with M, yields part of a long exact sequence


TorR
e+1(M,C)→ TorR


e (M,R/p)→ TorR
e (M,R/I). (1)


The first module in (1) is zero by the maximality of e. The last module is isomorphic
to TorR/I


e (M/IM,R/I) = 0 since (x1, . . . ,xh) is both R-regular and M-regular. Hence
the middle module is zero too, contradiction. ��


Since the Frobenius preserves regular sequences, we immediately get one half of
Kunz’s theorem [50]:


Corollary 2.6 (Kunz). The Frobenius is flat on a regular ring. ��
To illustrate the power of the existence of big Cohen–Macaulay modules, let me


derive from it one of the so-called Homological Conjectures:


Theorem 2.7 (Monomial Conjecture). In a Noetherian local ring R of charac-
teristic p, every system of parameters (x1, . . . ,xd) is monomial, in the sense that
(x1x2 · · ·xd)t /∈ (xt+1


1 , . . . ,xt+1
d )R, for all t.


Proof. Assume that the statement is false for some system of parameters (x1, . . . ,xd)
and some t. Let B be a balanced big Cohen–Macaulay R-algebra. Hence,
(x1x2 · · ·xd)t belongs to (xt+1


1 , . . . ,xt+1
d )B. However, (x1, . . . ,xd) is B-regular, and


it is not hard to prove that a regular sequence is always monomial, leading to the
desired contradiction. ��


2.2 Tight closure


Let I be an ideal in a Noetherian ring A of characteristic p. We denote the ideal
generated by the image of I under FrobA by FrobA(I)A (one also writes I[p]). If I =
( f1, . . . , fs)A, then Frob(I)A = ( f p


1 , . . . , f p
s )A. In particular, Frob(I)A⊆ I p, but most


of the time, this is a strict inclusion. Hochster and Huneke defined the tight closure of
an ideal as follows. Let A◦ be the multiplicative set in A of all elements not contained
in any minimal prime ideal of A. An element z belongs to the tight closure clA(I) of
I (in the literature, the tight closure is more commonly denoted I∗), if there exists
some c ∈ A◦ such that


cFrobn
A(z) ∈ Frobn


A(I)A (2)


for all n� 0. Using that A◦ is multiplicative, one easily verifies that cl(I) is an ideal,
containing I, which itself is tightly closed, meaning that it is equal to its own tight
closure. Equally easy to see is that, if I ⊆ J, then cl(I)⊆ cl(J).


Remark 2.8. The following observations all follow very easily from the definitions
(see ([45, Section 1] for details).
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1. If A is a domain, then the only restriction on c is that it be non-zero. We may
always reduce to the domain case since z belongs to the tight closure of I if and
only if the image of z belongs to the tight closure of I(A/p), where p runs over
all minimal prime ideals of A.


2. If A is reduced – a situation we may always reduce to by Remark 2.8(1) – or if I
has positive height, then we may require (2) to hold for all n.


3. It is crucial to note that c is independent from n. If A is a domain, then we may
take pn-th roots in (2), to get c1/pn


z ∈ IA1/p∞ , for all n, where A1/p∞ is the sub-
ring of A+ consisting of all pn-th roots of elements of A. If we think of c1/pn


approaching 1 as n goes to infinity, then the condition says, loosely speaking,
that in the limit z belongs to IA1/p∞ . The strictly weaker condition that z∈ IA1/p∞


is equivalent with requiring c to be 1 in (2), and leads to the notion of Frobenius
closure. This latter closure does not have properties as good as tight closure.


4. A priori, c does depend on z as well as I. However, in many instances there is
a single c which works for all z, all I, and all n; such an element is called a test
element. Unlike most properties of tight closure, the existence of test elements is
a more delicate issue (see, for instance, [37] or [45, Section 2]). Fortunately, for
most of applications, it is not needed.


Example 2.9. It is instructive to look at an example. Let K be a field of characteristic
p > 3, and let A := K[x,y,z]/(x3−y3− z3)K[x,y,z] be the projective coordinate ring
of the cubic Fermat curve. Let us show that x2 is in the tight closure of I := (y,z)A.
For a fixed e, write 2pe = 3h+ r for some h∈N and some remainder r ∈ {1,2}, and
let c := x3. Hence


cx2pe
= x3(h+1)+r = xr(y3 + z3)h+1.


A quick calculation shows that any monomial in the expansion of (y3 + z3)h+1 is
a multiple of either ype


or zpe
, showing that (2) holds for all e, and hence that


(x2,y,z)A ⊆ cl(I).
It is often much harder to show that an element does not belong to the tight


closure of an ideal. By Theorem 2.10 below, any element outside the integral closure
is also outside the tight closure. Since (x2,y,z)A is integrally closed, we conclude
that it is equal to cl(I).


The following five properties all have fairly simple proofs, yet are powerful
enough to deduce many deeper theorems.


Theorem 2.10. Let A and B be Noetherian rings of prime characteristic p, and let
I be an ideal in A.


(weak persistence) In an extension of domains A ⊆ B, tight closure is preserved
in the sense that clA(I)B⊆ clB(IB).


(regular closure) If A is a regular local ring, then I is tightly closed.
(plus closure) If A is a of domain, then IA+∩A⊆ clA(I).
(colon capturing) If A is a homomorphic image of a local Cohen–Macaulay ring


then ((x1, . . . ,xi)A : xi+1) ⊆ cl((x1, . . . ,xi)A), for each i and each system of
parameters (x1, . . . ,xd).
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(integral closure) Tight closure, cl(I), is contained in integral closure, Ī; if I is
principal, then cl(I) = Ī.


Proof. Weak persistence is immediate from the fact that (2) also holds, by
functoriality of the Frobenius, in B, and c remains non-zero in B. In fact, the
much stronger property, persistence, where the homomorphism does not need to
be injective, holds in many cases. However, to prove this, one needs test elements
(see Remark 2.8(4)).


To prove the regularity property, suppose A is regular but I is not tightly closed.
Hence, there exists z ∈ cl(I) not in I. In particular, (I : z) is contained in the maximal
ideal m of A. By definition, there is some non-zero c such that cFrobn(z)∈Frobn(I)A
for all n� 0. Since the Frobenius is flat on a regular ring by Corollary 2.6, and since
flat maps commute with colons (see for instance [77]), we get


c ∈ (Frobn(I)A : Frobn(z)) = Frobn(I : z)A


for all n. Since (I : z) ⊆ m, we get c ∈ Frobn(m)A ⊆ mn, for all n, yielding the
contradiction that c = 0 by Krull’s intersection theorem.


To prove the plus closure property, let z ∈ IA+ ∩A. Hence, there exists a finite
extension A ⊆ B⊆ A+ such that already z ∈ IB. Choose an A-linear (module) mor-
phism g : B→ A sending 1 to a non-zero element c ∈ A.4 Applying the Frobenius
to z ∈ IB, yields Frobn


A(z) ∈ Frobn
B(IB)B for all n. Applying g to the latter shows


cFrobn
A(z) ∈ Frobn


A(I)A, for all n, that is to say, z ∈ clA(I).
Colon capturing knows many variants. Let me only discuss the special, but im-


portant case that A is moreover complete. By Cohen’s structure theorem, we can
find a regular local subring (S,n) of A such that A is finite as an S-module and
nA = (x1, . . . ,xd)A. Suppose zxi+1 ∈ (x1, . . . ,xi)A. Applying powers of Frobenius,
we get


Frobn(zxi+1) ∈ (Frobn(x1), . . . ,Frobn(xi))A (3)


for all n. Let R be the S-subalgebra of A generated by z, and as above, choose an
R-linear morphism g : A→ R with c := g(1) = 0. Applying g to (3) yields a relation


cFrobn(z)Frobn(xi+1) ∈ (Frobn(x1), . . . ,Frobn(xi))R (4)


for all n. Since R is a hypersurface ring, it is Cohen–Macaulay. In particular,
(x1, . . . ,xd), being a system of parameters in R, is R-regular, and so is therefore the
sequence (Frobn(x1), . . . ,Frobn(xd)). This allows us to cancel Frobn(xi+1) in (4),
getting the tight closure relations cFrobn(z) ∈ (Frobn(x1), . . . ,Frobn(xi))R. Weak
persistence then shows that z also belongs to the tight closure of (x1, . . . ,xi)A, as we
needed to show.


Finally, the containment cl(I) ⊆ Ī is immediate from the integrality criterion
that z ∈ Ī if and only if czn ∈ In for some c ∈ A◦ and infinitely many n (note that
Frobn(I)A⊆ I pn


). If I is principal, then Frobn(I)A = I pn
. ��


4 Let K be the field of fractions of A. Embed B in a finite dimensional vector space Kn and choose
a projection Kn→ K so that the image of 1 under the composition is non-zero. The required map
B→ A is obtained from this composition by clearing denominators.
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Remark 2.11. It follows from the last property that the tight closure of an ideal is
contained in its radical. In particular, radical ideals are tightly closed. It had been
conjectured that IA+ ∩A is equal to the tight closure of I, but this has now been
disproved by the counterexample in [9]. Nonetheless, for parameter ideals they are
the same by [79]; see also Remark 2.14(3).


To convince the reader of the strength of these properties, I provide a short tight
closure proof of the following celebrated theorem of Hochster and Roberts (see also
Theorem 4.5 below):


Theorem 2.12 (Hochster–Roberts [43]). If R→ S is a cyclically pure extension of
Noetherian local rings (that is to say, if IS∩R = I for all ideals I ⊆ R), and if S is
regular, then R is Cohen–Macaulay.


Proof. We leave it to the reader to verify that all properties pass to the completion,
and so we may assume that R and S are moreover complete. Let (x1, . . . ,xd) be a
system of parameters in R. We have to show that it is R-regular, that is to say, that
(Ji : xi+1) is equal to Ji := (x1, . . . ,xi)R, for all i. By colon capturing, the former
ideal is contained in the tight closure of Ji, whence by weak persistence (note that R
is a domain since R→ S is in particular injective) in the tight closure of JiS. Since
S is regular, the latter ideal is tightly closed, showing that (Ji : xi+1) is contained in
JiS∩R = Ji, where the last equality follows from cyclic purity. ��


2.3 Tight closure and singularities


The regularity property suggests the following paradigm: the larger the collection
of tightly closed ideals in a Noetherian ring A of prime characteristic p, the closer it
is to being regular.


Definition 2.13. If every ideal is tightly closed, A is called weakly F-regular; if
every localization is weakly F-regular, then A is called F-regular. If A is local and
some parameter ideal is tightly closed, the ring is called F-rational. If A is reduced
and the Frobenius is pure on A, that is to say, each base change of the Frobenius is
injective, then A is called F-pure.


Table 1: Correspondence (partly conjectural)


F-singularity Classical singularity


F-rational Rational singularities
F-pure Log-canonical
F-regular Log-terminal
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Remark 2.14. In Section 5, I will discuss the connection with the singularities in the
above table. For now, let me just make some remarks on the tight closure versions.


1. Regular rings are F-regular by Theorem 2.10, but these are not the only ones.
In fact, the proof of Theorem 2.12 shows that any cyclically pure subring of a
regular local ring is F-regular. It is a major open question whether in general
F-regular and weakly F-regular are the same. This is tied in with the problem of
the behavior of tight closure under localization (only recently, [9], tight closure
has been shown to not always commute with localization).


2. Notwithstanding, the property of being F-rational is preserved under localization.
Therefore, any weakly F-regular ring is F-rational. Moreover, in an F-rational
local domain, every parameter ideal, and more generally, every ideal generated by
part of a system of parameters is tightly closed ([45, Theorem 4.2]). In particular,
every principal ideal is tightly closed, since it is generated by a parameter. Hence
every principal ideal is integrally closed by the last property in Theorem 2.10,
from which it follows that an F-rational ring is normal. Moreover, by colon cap-
turing, any system of parameters is regular (same argument as in the proof of
Theorem 2.12), proving that an F-rational ring is Cohen–Macaulay.


3. Smith has shown in [79] that for a local domain A, the tight closure of a parameter
ideal I is equal to IA+∩A, and hence such an A is F-rational if and only if some
parameter ideal is contracted from A+.


4. A weakly F-regular ring is F-pure: given an ideal I ⊆ A, we have


IA1/p∩A⊆ IA+∩A⊆ cl(I),


by Remark 2.11. Hence, by weak F-regularity, the latter ideal is just I. This shows
that the Frobenius is cyclically pure. Since A is normal by remark (2) above, this
in turn implies the purity of the Frobenius by [29, Theorem 2.6].


3 Difference closure and the ultra-Frobenius


From the proofs of the five basic properties of tight closure listed in Theorem 2.10,
we extract the following three key properties of the Frobenius: its functoriality, its
contractive nature (sending a power of an ideal into a higher power of the ideal),5


and its preservation of regular sequences. Moreover, it is not necessary that the
Frobenius acts on the ring itself; it suffices that it does this on some faithfully flat
overring. So I propose the following formalization of tight closure.


Definition 3.1 (Difference hull). Let C be a category of Noetherian rings (at
this point we do not need to make any characteristic assumption). A difference


5 The Frobenius is a contractive homeomorphism on the metric space given by the maximal adic
topology; this is not to be confused with tight closure coming from contraction in finite extensions.
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hull on C is a functor D(·) from C to the category of difference rings,6 and a
natural transformation η from the identity functor to D(·), with the following three
additional properties:


1. each ηA : A→ D(A) is faithfully flat;
2. the endomorphism σA of D(A) preserves D(A)-regular sequences;
3. for any ideal I ⊆ A, we have σA(I)⊆ I2D(A).


Functoriality here means that, for each A in C, we have a ring D(A) together with
an endomorphism σA, and a ring homomorphism ηA : A→D(A), such that for each
morphism A→ B in C, we get an induced morphism of difference rings D(A)→
D(B) for which the diagrams commute.


A
ηA


��


��


D(A)


��


σA
�� D(A)


��


B
ηB


�� D(B)
σB


�� D(B).


Since ηA is in particular injective, we will henceforth view A as a subring of D(A)
and omit ηA from our notation. Given a difference hull D(·) on some category C, we
define the difference closure clD(I) of an ideal I ⊆ A of a member A of C as follows:
an element z ∈ A belongs to clD(I) if there exists c ∈ A◦ such that


cσn(z) ∈ σn(I)D(A) (5)


for all n� 0. Here, σn(I)D(A) denotes the ideal in D(A) generated by all σn(y)
with y ∈ I, where σ is the endomorphism of the difference ring D(A). It is crucial
here that c belongs to the original ring A, although the membership relations in (5)
are inside the bigger ring D(A). An ideal that is equal to its difference closure will
be called difference closed. One easily checks that clD(I) is a difference closed ideal
containing I.


Example 3.2 (Frobenius hull). It is clear that our definition is inspired by the
membership test (2) for tight closure, and indeed, this is just a special case. Namely,
for a fixed prime number p, let Cp be the category of all Noetherian rings of char-
acteristic p and let D(·) be the functor assigning to a ring A the difference ring
(A,FrobA). It is easy to see that this makes D(·) a difference hull in the above sense,
and the difference closure with respect to this hull is just the tight closure of the
ideal.


6 A difference ring is a ring with an endomorphism; a morphism of difference rings is a ring
homomorphism between difference rings that commutes with the respective endomorphisms.
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Remark 3.3. Let C be a category with a difference hull D(·), consisting of local
rings. We can extend this difference hull to any Noetherian ring A all of whose
localizations belong to C. Indeed, let D(A) be the Cartesian product of all D(Am)
where m runs over all maximal ideals of A. The product of all σAm is then an endo-
morphism satisfying the conditions of difference hull in Definition 3.1. In particular,
this yields a difference closure on A as well.


Before we discuss how we will view tight closure in characteristic zero as a dif-
ference closure, we discuss the difference analogue of three of the five key proper-
ties of tight closure (for the remaining two, one needs some additional assumptions,
which I will not discuss here).


Theorem 3.4. Let C be a category endowed with a difference hull D(·), and let
A→ B be a morphism in C with B a domain.


(weak persistence) If A ⊆ B is injective, then clD(I)B ⊆ clD(IB), for each ideal
I ⊆ A.


(regular closure) If A is a regular local ring, then every ideal is difference closed.
(colon capturing) If A is a homomorphic image of a local Cohen–Macaulay ring,


then ((x1, . . . ,xi)A : xi+1) ⊆ clD((x1, . . . ,xi)A), for each i and each system of
parameters (x1, . . . ,xd).


Proof. The arguments in the proof of Theorem 2.10 carry over easily, once we have
shown that σ : A→ D(A) is flat whenever A is regular. This follows from the fact
that σ preserves regular sequences, so that D(A) is a balanced big Cohen–Macaulay
A-algebra, whence flat by Proposition 2.5. ��
Remark 3.5. Note that exactly these three properties were required to deduce
Theorem 2.12.


3.1 Lefschetz rings


By a Lefschetz ring,7 we mean a ring of characteristic zero which is realized as the
ultraproduct of rings of prime characteristic. More precisely, let W be an infinite
index set and Aw a ring, for each w ∈W . Let A∞ be the Cartesian product of the Aw.
We may view A∞ as a Z∞-algebra, where Z∞ is the corresponding Cartesian power
of Z. We call a prime ideal p in Z∞ non-standard, if it is a minimal prime ideal of
the direct sum ideal ⊕wZ⊆ Z∞. An ultraproduct of the rings Aw is any residue ring
of the form A� := A∞/pA∞, where p⊆ Z∞ is some non-standard prime ideal. Given
elements aw ∈ Aw, we call the image of the sequence (aw)w in A� the ultraproduct
of the aw. If each Aw is a Z-algebra, for some ring Z, then so is A�. The structure
map Z → A� is given as follows: if we write zw for z viewed as an element of Aw,
then we send z to the ultraproduct z� of the zw.


7 The designation alludes to an old heuristic principle in algebraic geometry regarding transfer
between positive and zero characteristic, which Weil [88] attributes to Lefschetz.
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Although a simple and elegant algebraic definition, the aforesaid is not the usual
definition of an ultraproduct, and to formulate the main properties and prove them,
we need to turn to its classical definition from logic. Namely, let U be an ultrafilter
on W – that is to say, a collection of infinite subsets of W closed under finite
intersections and supersets, and such that any subset of W or its complement belongs
to U. Let aU be the ideal in A∞ of all sequences almost all of whose entries are
zero (a property is said to hold for almost all w if the subset of all indices w for
which it holds belongs to the ultrafilter). We call the residue ring A� := A∞/aU the
ultraproduct8 of the Aw. To connect this to our previous definition, one then shows
that aU is of the form pA∞ for some non-standard prime p. More precisely, p is
generated by all characteristic functions 1W (viewed as elements in Z∞) with W /∈U.
The main property of an ultraproduct is the following version of what logicians
call Łos’ Theorem (its proof is a straightforward verification of the definitions [77,
Theorem 2.3.1]).


Proposition 3.6 (Equational Łos’ Theorem). Let A� be the ultraproduct of rings
Aw, let aw be a tuple of length n in Aw and let a� be their ultraproduct in A�.
Given a finite set of polynomials f1, . . . , fs ∈ Z[x] in n indeterminates x, we have
that f1(aw) = · · · = fs(aw) = 0 in Aw for almost all w if and only if f1(a�) = · · · =
fs(a�) = 0 in A�.


Remark 3.7. Instead of just equations, we may also include inequations. If all Aw


are Z-algebras, over some ring Z, then so is A�, and we may take the polynomials fi


with coefficients over Z. The full, model-theoretic, version, Łos’ Theorem, allows
for arbitrary first-order sentences, which are obtained from equational formulae
by taking finite Boolean combinations and quantification (for in-depth discussions
of ultraproducts, see [12, 18, 44]; for a brief review see [69, Section 2] or [77,
Section 2]). However, the above version is often sufficient to prove transfer results
between an ultraproduct and its components. For instance, one easily deduces from
it that A� is reduced (respectively a domain, or a field), if and only if almost all
components Aw are. Indeed, reducedness follows from the equation x2 = 0 only
having the zero solution. Unfortunately, one of the most fundamental properties
used in commutative algebra, Noetherianity, is rarely preserved under ultraproducts
(the case of fields mentioned above is a providential exception). One of our main
tasks, therefore, will be to circumvent this major obstacle.


Remark 3.8. One can also define ultraproducts sheaf-theoretically as follows (see
[77, Section 2.6]). Let Aw be a collection of rings indexed by an infinite set W .
Viewing W in the discrete topology, we can encode this as a sheaf of rings A on W ,
whose stalk Aw at w ∈W is equal to Aw. There exists a unique Hausdorff compacti-
fication i : W →W∨, called the Stone-Čech compactification of W , where W∨ is the
set of all maximal filters on W . Let A∨ := i∗A be the direct image sheaf of A under


8 More generally, if Aw are certain algebraic, or more precisely, first-order structures, then their
ultraproduct is defined in a similar way, by taking the quotient of the Cartesian product A∞ modulo
the equivalence relation that two sequences are equivalent if and only if almost all their entries are
the same.
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i. Then there is a one-one correspondence between all different ultraproducts A� of
Aw and all stalks of A∨ at boundary points, that is to say, at points in W∨−W .


Let A� be an ultraproduct of rings Aw of positive characteristic pw. Using the
above theorem, one can show that A� has equal characteristic zero if and only if the
pw are unbounded, meaning that for every N, almost all pw > N. A ring with this
property will be called a Lefschetz ring. Our key example is:


Proposition 3.9. The field of complex numbers is a Lefschetz ring.


Proof. For each prime number p, let F̄p be the algebraic closure of the p-element
field, and let F � be their ultraproduct (with respect to some ultrafilter on the set
of prime numbers). By our above discussions F � is again a field of characteristic
zero. Since one can express in terms of equations that a field is algebraically
closed, Proposition 3.6 proves that F � is algebraically closed. One checks that
its cardinality is that of the continuum. So we may invoke Steinitz’s theorem to
conclude that it must be the unique algebraically closed field of characteristic zero
of that cardinality, to wit, C. ��
Remark 3.10. It is clear from the above proof that the isomorphism F �


∼= C is far
from explicit. This is the curse when working with ultraproducts: they are highly
non-constructive; after all, the very existence of ultrafilters hinges on the Axiom of
Choice. Steinitz’s theorem holds of course also in higher cardinalities, and we may
therefore extend the above result to: every algebraically closed field of characteristic
zero of cardinality 2κ for some infinite cardinal κ is Lefschetz.9 In particular, any
field of characteristic zero is contained in some Lefschetz field. No countable field
can be Lefschetz because of cardinality reasons. In particular, the algebraic closure
of Q is an example of an algebraically closed field of characteristic zero which is
not Lefschetz.


Our main interest in Lefschetz rings comes from the following observation. Let
Frob∞ := ∏w FrobAw be the product of the Frobenii on the components. It is not
hard to show that any non-standard prime ideal p is generated by idempotents, and
hence Frob∞(pA∞) = pA∞. In particular, we get an induced homomorphism on A�,
which we call the ultra-Frobenius of A� and which we continue to denote by Frob∞.
In other words, Lefschetz rings are difference rings in a natural way, and this is our
point of departure to define tight closure in characteristic zero.


4 Tight closure in characteristic zero


As mentioned above, we will use Lefschetz rings as difference hulls to define tight
closure in characteristic zero. However, before we describe the theory, let us see how
Hochster and Huneke arrive at a tight closure operation in characteristic zero, which


9 If one assumes the (generalized) Continuum Hypothesis, then this just means any uncountable
algebraically closed field.
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for emphasis, we will denote clHH(·).10 Their method goes back, once more, to the
seminal work [58] of Peskine and Szpiro: use generic flatness and Artin Approx-
imation to lift results in characteristic p to characteristic zero. The method was
elaborated upon further by Hochster [28], and can be summarized briefly as follows
(see also [11, Chap. 8] or [85]). Given a Noetherian ring A of equal characteristic
zero we first construct a suitable finitely generated subalgebra A0 ⊆ A and then
reduce modulo p, to obtain the rings A0/pA0 of characteristic p. Of course, we must
do this in such way that properties of A are reflected by properties of A0 and these
in turn should be reflected by properties of the closed fibers A0/pA0. The former
requires Artin Approximation (see below) and the latter generic flatness. Moreover,
due to these two techniques, only properties expressible by systems of equations
stand a chance of being transferred. To carry this out, quite some machinery is
needed, which unfortunately drowns tight closure’s elegance in technical prereq-
uisites; see [45, Appendix] or [41].


So, let us describe the ultraproduct method, in which transfer will be achieved
mainly through Łos’ Theorem. Given a Noetherian ring of equal characteristic
zero, we must construct a Lefschetz ring L(A) containing A in such a way that
the functor L(·) constitutes a difference hull; we will call L(·) a Lefschetz hull.
Condition 3.1.(3) is clear, whereas a simple application of Łos’ Theorem can be
used to prove that any ultraproduct of regular sequences is again a regular sequence,
showing that also condition 3.1.(2) is automatically satisfied. So, apart from functo-
riality, remains to construct L(A) so that the embedding A⊆ L(A) is faithfully flat.
Part of functoriality is easily obtained: if we have a Lefschetz hull L(A) for A, and
I⊆A is an ideal, then we can take L(A/I) := L(A)/IL(A) as a Lefschetz hull for A/I.
Indeed, L(A)/IL(A) is again Lefschetz by Lemma 4.1 below; all three properties in
Definition 3.1 now follow by base change.


Lemma 4.1. Any residue ring of a Lefschetz ring modulo a finitely generated ideal
is again Lefschetz.


Proof. Let B� be an arbitrary Lefschetz ring and J ⊆ B� a finitely generated ideal.
By assumption, B� is the ultraproduct of rings Bw of positive characteristic. Let
f1, . . . , fs ∈ B� generate J, and choose fiw ∈ Bw so that for each i, the ultraproduct
of the elements fiw is equal to fi. Let Jw := ( f1w, . . . , fsw)Bw. It is an easy but
instructive exercise on Łos’ Theorem to show that the image of ∏Jw ⊆ B∞ in B�


is equal to J, and that the ultraproduct of the Bw/Jw is equal to B�/J, proving in
particular that the latter is again Lefschetz. ��


With notation as in the proof, we call J the ultraproduct of the Jw. A note
of caution: infinitely generated ideals in B� need not be realizable as an ultraproduct
of ideals, and so their residue rings need not be Lefschetz. An example is the ideal of
infinitesimals, introduced in Proposition 4.10 below.


10 In fact, there are several candidates for tight closure in characteristic zero, depending on the
choice of a base field, which are only conjecturally equivalent; clHH (·) is the smallest of these
variants.
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We will prove the existence of Lefschetz hulls for two classes of rings:
affine algebras over a field K of characteristic zero,11 and equicharacteristic zero
Noetherian local rings. Since the only issue is the flatness of the hull, we may
always pass to a faithfully flat extension of the ring A. Hence, in either case, we
can find, by Remark 3.10, a sufficient large algebraically closed Lefschetz field K,
such that in the affine case, A is finitely generated over K, and in the local case, A
is complete, with residue field K. By Noether Normalization and Cohen’s structure
theorem, A is a residue ring of respectively the polynomial ring K[x] or the power
series ring K[[x]], where x is a finite tuple of indeterminates. By our above discussion
on residue rings, this then reduces the problem to finding a Lefschetz hull of the
polynomial ring and the power series ring respectively. We start with the easiest
case, the polynomial case.


4.1 Tight closure for affine algebras


Let K be an (algebraically closed) Lefschetz field, realized as the ultraproduct of
(algebraically closed) fields Kw of positive characteristic, and let x be a finite tuple
of indeterminates. Put Aw := Kw[x] and let A� be their ultraproduct. Clearly, K is
a subring of A�. For each i, let us write also xi for the ultraproduct of the constant
sequence xi. By Łos’ Theorem, each xi, is transcendental over K, and hence the
polynomial ring A = K[x] embeds in A�. So remains to show that this embedding
is faithfully flat. This fact was first observed by van den Dries in [15], and used
by him and Schmidt in [64] to deduce several uniform bounds in polynomial rings;
further extensions based on this method can be found in [65,66,75]; for an overview,
see [77].


Proposition 4.2. The embedding A⊆ A� is faithfully flat.


Proof. Since K is algebraically closed, every maximal ideal m ⊆ A is of the form
(x1− a1, . . . ,xn− an)A by Hilbert’s Nullstellensatz. After a change of coordinates,
we may assume that m = (x1, . . . ,xd)A. Since mA� is the ultraproduct of the maximal
ideals mw := (x1, . . . ,xd)Aw, it too is maximal, and (A�)mA�


is the ultraproduct of
the localizations (Aw)mw . It suffices, therefore, to show that the homomorphism
Am → (A�)mA�


is flat. We already remarked that ultraproducts preserve regular
sequences, showing that (x1, . . . ,xd) is (A�)mA�


-regular. Hence, (A�)mA�
is a big


Cohen–Macaulay Am-algebra. Moreover, every permutation of an (A�)mA�
-regular


sequence is again regular, since this is true in each (Aw)mw . So (A�)mA�
is a balanced


big Cohen–Macaulay algebra by Lemma 2.2. Since Am is regular, Am→ (A�)mA�
is


flat by Proposition 2.5. ��
Remark 4.3. The original proof in [15] employed an induction on the number
of indeterminates based on classical arguments of Hermann from constructive


11 We call an algebra A affine if it is finitely generated over a field.
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commutative algebra. The above approach via big Cohen–Macaulay algebras
has the advantage that one can extend this method to other situations, like
Proposition 4.7 below. Yet another approach, through a coherency result due to
Vasconcelos, can be found in [2].


By our previous discussion, we have now constructed a Lefschetz hull L(C) for
any affine algebra C over a field k of characteristic zero. Namely, with notation
as above, if C⊗k K ∼= A/I, then L(C) := A�/IA�. The positive characteristic affine
algebras Cw whose ultraproduct equals L(C) will be called approximations of C.
It is justified to call L(C) a hull, since any K-algebra homomorphism C → B�


into an ultraproduct B� of finitely generated Kw-algebras Bw, induces a unique
homomorphism of Lefschetz rings L(C)→ B� (that is to say, an ultraproduct of Kw-
algebras Cw→ Bw). It follows that L(C) only depends on the choice of algebraically
closed Lefschetz field K, and on the way we represent the latter as an ultraproduct
of algebraically closed fields of positive characteristic, that is to say, on the choice
of ultrafilter (see Remark 3.8 for how the different choices are related). An example
due to Brenner and Katzman [8] indicates that different choices of ultrafilter may
lead to different tight closure notions: this is true for ultra-closure as defined below
in Section 4.11, and most likely also for tight closure to be defined shortly; see
[8, Remark 4.10]. Nonetheless, this dependence on the ultrafilter is in all what we
will do with Lefschetz hulls of no consequence, and we will henceforth pretend
that, once K has been fixed, the Lefschetz hull is unique. Nonetheless, even when
fixing the ultrafilter, the approximations Cw are not uniquely defined by C: given a
second approximation C′w, we can at best conclude that Cw


∼= C′w for almost all w.
Again, this seems not to matter. The approximations do carry a lot of the structure
of the affine algebra (to a much larger extent than the characteristic p reductions
of C used in the Hochster–Huneke tight closure clHH(·) in characteristic zero; see
[73, Section 2.17]), and we summarize this in the following theorem, stated without
proof.


Theorem 4.4 ([69, Theorem 4.18]). Let K be an algebraically closed Lefschetz
field, let C be a K-affine algebra, and let Cw be approximations of C. Then C has
the same dimension and depth as almost all Cw. Moreover, C is a domain, normal,
regular, Cohen–Macaulay, or Gorenstein, if and only if almost all Cw are. ��


In particular, we can extend the Lefschetz hull to any localization of a K-affine
algebra: if p is a prime ideal in C, then by construction, L(C)/pL(C) is a Lefschetz
hull of C/p. By Theorem 4.4, the approximations of C/p are domains, and hence, by
Łos’ Theorem, so is their ultraproduct, proving that pL(C) is a prime ideal. Hence,
we can take L(C)pL(C) as a Lefschetz hull of Cp. Since we will treat the local case
below, I skip the details.


In any case, we may apply the difference closure theory from Section 3, to define
the tight closure12 clC(I) of an ideal I ⊆C as the collection of all z ∈C for which
there exists c ∈C◦ such that cFrobn


∞(z) ∈ Frobn
∞(I)L(C) for all n� 0, where Frob∞


12 I previously referred to it as non-standard tight closure.
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is the ultra-Frobenius on the Lefschetz hull L(C). We remind the reader that the
analogues of all five properties in Theorem 2.10 hold in characteristic zero (we did
not give details for two of these; they can be found in [69]).13 In particular, any ideal
in a polynomial ring, and more generally, in a regular K-algebra, is tightly closed.


As in positive characteristic, we immediately get the characteristic zero version
of the Hochster–Roberts theorem for affine algebras (see Remark 3.5). To state
the original version, let us call an affine scheme X a quotient singularity, if there
exists a smooth scheme Y = Spec(A) over C, and a linearly reductive algebraic
group G (meaning, that G is the complexification of a compact real Lie group),
acting C-rationally on Y by C-algebra automorphisms, so that X is the quotient Y/G
given as the affine scheme Spec(AG), where AG is the subring of A of G-invariant
elements.


Theorem 4.5 (Hochster–Roberts, [43]). A quotient singularity is Cohen–
Macaulay.


Proof. With notation as above, from Lie theory or a general argument about linearly
reductive groups, we get the so-called Reynolds operator ρG : A→AG, that is to say,
a homomorphism of AG-modules. In particular, the inclusion AG ⊆ A is split whence
cyclically pure, and the result now follows, after localization, from the analogue of
Theorem 2.12.


For another application in characteristic zero, first proven using deep methods
from birational geometry [16], but subsequently reproved and generalized by a
simple tight closure argument in characteristic p in [42], see [67]. Yet another
problem requiring sophisticated methods for its solution, but now admitting a very
simple tight closure proof, is the Briançon–Skoda Theorem.14


Theorem 4.6. The following Briançon–Skoda type properties hold:


(Briançon–Skoda, [10]) If f is a power series without constant term in s
variables x over C, then f s lies in the Jacobian ideal of f , that is to say,
f s ∈ (∂ f/∂x1, . . . ,∂ f/∂xs)C[[x]];


(Lipman-Sathaye, [52]) If R is a regular local ring and a⊆ R an ideal generated
by s elements, then the integral closure as of as is contained in a;


(Hochster–Huneke, [35]) If A is a Noetherian ring containing a field and if a⊆ A
is an ideal generated by s elements, then as ⊆ cl(a).


Proof. We start with the last assertion. Assume first that A has characteristic p. Let
a = (a1, . . . ,as)A and assume z lies in the integral closure of as. Hence,


czN ∈ asN , (6)


for all N and some c∈ A◦. One easily verifies that asN is contained in (aN
1 , . . . ,aN


s )A.
In particular, (6) with N = pn yields the tight closure relation (2), showing that z ∈
13 In fact, the plus closure property is almost trivial in characteristic zero, since for A normal, we
always have IA+ ∩A = I (see [11, Remark 9.2.4]).
14 According to Wall [87], the question was originally posed by Mather.
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cl(I). Suppose next that A is an affine algebra over a field of characteristic zero with
approximations Aw and Lefschetz hull L(A). Choose s-generated ideals aw ⊆ Aw


whose ultraproduct equals aL(A) (see the discussion following Lemma 4.1), and
choose zw ∈ Aw with ultraproduct equal to z viewed as an element in L(A). By the
previous argument, we have a tight closure relation


cwFrobn
Aw


(zw) ∈ Frobn
Aw


(aw)Aw


in each Aw, for some cw ∈ A◦w. Taking ultraproducts, we get a relation


c�Frobn
∞(z) ∈ Frobn


∞(I)L(A) (7)


in L(A), where c� is the ultraproduct of the cw. A priori, c� does not belong to the
subring A of L(A), so that (7) is not a true tight closure relation. Nevertheless, in
[69, Proposition 8.4], I show that there always exist test elements cw ∈ Aw such that
their ultraproduct lies in A◦. By a more careful bookkeeping, we can circumvent this
complication altogether, at least when a has positive height, the only case of interest.
Namely, an easy calculation (see [3, Theorem 6.13] or [77, Theorem 5.4.1]) yields
the following variant of (6): for all N, we have an inclusion asdzN ⊆ asN , where d
is the degree of an integral equation exhibiting z ∈ as. By Łos’ Theorem, we may
choose the zw to satisfy an integral equation of the same degree, and hence in the
ultraproduct we get a relation asdFrobn


∞(z)⊆ Frobn
∞(I)L(A). Taking, therefore, any c


in asd∩A◦ yields a true tight closure relation, proving that z∈ cl(a). We will shortly
define tight closure for Noetherian local rings containing Q, and by Remark 3.3, we
may then extend this to any Noetherian ring containing the rationals (see also [3,
Section 6.17]); the previous argument is still applicable, thus completing the proof
of the last assertion.


From this the validity of the second property in equal characteristic follows
immediately,15 since any ideal is tightly closed in a regular ring. To obtain the
first property, a nice little exercise on the chain rule – which, incidentally, requires
us to be in characteristic zero – and using that an element lies in the integral
closure of an ideal if and only if it lies in the extension of the ideal under any
C-algebra homomorphism C[[x]] → C[[t]] for t a single variable (see [70, Fact
5.1]), shows that f lies in the integral closure of its Jacobian ideal. The original
Briançon–Skoda theorem then follows from the second property applied to the
regular local ring C[[x]] with a equal to the Jacobian ideal of f (see [70] for a
different argument deducing the characteristic zero case from the characteristic p
case using ultraproducts). ��


4.2 Local case


To extend tight closure to an arbitrary Noetherian local ring containing Q, we need
to construct a Lefschetz hull for A := K[[x]], where K is an algebraically closed


15 So far, no tight closure proof in mixed characteristic exists.
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Lefschetz field, given as the ultraproduct of algebraically closed fields Kw of prime
characteristic. In analogy with the affine case, we expect the Lefschetz hull to be
the ultraproduct A� of the power series rings Aw := Kw[[x]]. However, there is no
immediate K[x]-algebra embedding of A into A�. The very existence of such an
embedding, in fact, has non-trivial ramifications, as we shall see.


Proposition 4.7. There exists an ultraproduct L(A) of the power series rings Aw and
a faithfully flat K[x]-algebra embedding of A into L(A).


Proof. Once we have defined a K[x]-algebra homomorphism A→ L(A), its flatness
follows by the same argument as in the proof of Proposition 4.2. To prove the
existence of A→ L(A), we use Proposition 4.8 below, with Z := K[x] and B = A�.
To apply this result, let f1(y) = · · · = fs(y) = 0 be a system of equations in the
unknowns y with coefficients in Z. Given a solution y in A = K[[x]], we need to
construct a solution z in A�. By Artin Approximation ([1, Theorem 1.10]), there
exists already a solution ỹ in the Henselization Z∼ of Z. Recall that the Henselization
of Z (at the maximal ideal (x1, . . . ,xn)Z) is the smallest Henselian subring Z∼ of A
containing Z (see for instance [57]), and is equal to the ring of algebraic power
series over K. Since the Aw are complete, they are in particular Henselian, and
hence, by Łos’ Theorem, so is their ultraproduct A�. By the universal property of
Henselization, we have a (unique) Z-algebra homomorphism Z∼ → A�. The image
of ỹ under this homomorphism is then the desired solution in A�. By Proposition 4.8,
there is therefore a Z-algebra homomorphism from A to some ultrapower L(A)
of A�. Since an ultraproduct of ultraproducts is itself an ultraproduct, L(A) is a
Lefschetz ring. ��


In the above proof, we used the following result, which originates with Henkin
[25], and has proven to be useful in other situations related to Artin Approximation;
for instance, see [6, Lemma 1.4] and [85, Lemma 12.1.3].


Proposition 4.8 ([3, Corollary 2.5] or [77, Theorem 7.1.1]). For a Noetherian ring
Z, and Z-algebras A and B, the following are equivalent:


1. Every system of polynomial equations with coefficients from Z which is solvable
in A, is solvable in B;


2. There exists a Z-algebra homomorphism A→ B�, where B� is some ultrapower
of B. ��
Proposition 4.7, which was proven using Artin Approximation, in turn implies


the following stronger form of Artin Approximation.


Theorem 4.9 (Uniform strong Artin Approximation, [5, Theorem 4.3]). There
exists a function N : N


2→ N with the following property. Let K be a field, put Z :=
K[x] with x an n-tuple of indeterminates, and let m be the ideal generated by these
indeterminates. Let f1(y) = · · · = fs(y) = 0 be a polynomial system of equations in
the n unknowns y with coefficients from Z, such that each fi has total degree at most
d (in x and y). If there exists some y in Z such that fi(y)≡ 0 mod mN(n,d)Z for all i,
then there exists z in K[[x]] such that fi(z) = 0 for all i.







Characteristic p methods in characteristic zero via ultraproducts 405


Proof. Towards a contradiction, assume such a bound does not exist for the pair
(d,n), so that for each w ∈ N we can find a counterexample consisting of a field
Kw, and polynomial equations f1w(y) = · · · = fsw(y) = 0 in the unknowns y over
Zw := Kw[x] of total degree at most d, admitting an approximate solution xw in Zw


modulo mwZw but no actual solution in Aw := Kw[[x]]. Note that the size, s, of these
systems can be bounded in terms of d and n only (see for instance [77, Lemma
4.4.2]), and hence, in particular, can be taken independent from w. Let K and A� be
the ultraproduct of the Kw and Aw respectively, and let fi and x be the ultraproduct of
the fiw and xw respectively. Since ultraproducts commute with finite sums, each fi


is again a polynomial over K of total degree at most d. Moreover, by Łos’ Theorem,
fi(x)≡ 0 mod mNR� for all N. By Proposition 4.10 below, we have an epimorphism
A�→ A := K[[x]] having kernel equal to the intersection of all mNA�. In particular,
the image of x under this surjection is a solution in A of the system f1 = · · ·= fs = 0.


Since there exists a Z-algebra homomorphism A → L(A) by Proposition 4.7,
where L(A) is some ultrapower of A� (note that nowhere in the proof we used that
the fields were algebraically closed nor that they had a certain characteristic), the
image of x in L(A) remains a solution of this system, and hence by Łos’ Theorem,
we can find, contrary to our assumptions, for almost each w (with respect to the
larger ultrafilter defining L(A)), a solution of f1w(y) = · · ·= fsw(y) = 0 in Aw. ��
Proposition 4.10. There is a canonical epimorphism A� → A whose kernel is the
ideal of infinitesimals IA�


:=
⋂


N mNA�.


Proof. Given f ∈ A�, choose f w ∈ Aw whose ultraproduct is equal to f , and expand
as a power series


f w = ∑
ν∈Nn


aν,wxν


for some aν,w ∈Kw. For each ν , let aν ∈K be the ultraproduct of the aν,w and define


f̃ := ∑
ν∈Nn


aνxν ∈ A.


One checks that the map f �→ f̃ is well-defined (that is to say, independent of the
choice of the f w), and is a ring homomorphism, which is surjective, with kernel
equal to the ideal of infinitesimals (see [77, Proposition 7.1.7]). ��


In Section 6.2 below, we will rephrase this as A is the cataproduct A� of
the Aw. For some other uniform versions of Artin Approximation proven using
ultraproducts, see [13, 14]. Returning to the issue of defining a Lefschetz hull,
whence a tight closure operation, on the category of Noetherian local rings
containing Q, there is, however, a catch. Let x̃ be a subtuple of x. Put Ã := K[[x̃]],
and let Ã� be the ultraproduct of the Ãw := Kw[[x̃]]. In the polynomial case, the
inclusion K[x̃] ⊆ K[x] extends to a homomorphism of Lefschetz rings B̃� → B�,
where B̃� and B� are the respective ultraproducts of the Kw[x̃] and Kw[x], making
the whole construction functorial. However, it is no longer true that the inclusion
Ã ⊆ A leads to a similar homomorphism Ã� → A�. In fact, in [3, Section 4.33] we
give a counterexample based on an observation of Roberts in [61] – which itself







406 Hans Schoutens


was intended as a counterexample to an attempt of Hochster [31] to generalize
tight closure via the notion of solid closure; see footnote 21. Nonetheless, such
a homomorphism does exist if x̃ is an initial tuple of x. To prove this, and thus
salvage the functoriality of the construction, we have to prove a filtered version of
Proposition 4.8. To apply this filtered version, however, a deeper Artin Approxi-
mation result, due to Rotthaus [63], is needed. In turn, we derive a filtered version
of Theorem 4.9. All this needs some work and is explained in full detail in [3]; for
a weaker form of functoriality, still sufficient for applications, see [77, Section 7.3].
Although functoriality is essential for applications, we will not say more about it
here in order to keep the exposition transparent, but see the discussion preceding
Theorem 5.3 on the relative Lefschetz hull, which recovers some of this functoriality
required for defining ultra-cohomology.


In sum, we have now a tight closure operation on any equicharacteristic
Noetherian local ring, and by Remark 3.3, even on any Noetherian ring containing
a field. It has the five properties listed in Theorem 2.10. So, in equal charac-
teristic zero, there are many, potentially different notions: the tight closure clHH(·)
(and its variants) introduced by Hochster and Huneke, our notion cl(·) (which
a priori depends on the choice of ultrafilter), and some variants that I will now
discuss briefly. Let A be either an affine algebra or a local ring, with Lefschetz
hull L(A), realized as the ultraproduct of positive characteristic rings Aw, called
approximations of A. Given an ideal I ⊆ A, choose Iw ⊆ Aw with ultraproduct equal
to IL(A).


Definition 4.11 (Ultra-tight closure). We define the ultra-tight closure16 of I as
the ideal ultra− cl(I) := J� ∩A, where J� ⊆ L(A) is the ultraproduct of the Jw :=
clAw(Iw).


In other words, z ∈ ultra− cl(I), if almost each zw belongs to the tight closure of
Iw, for some choice of zw ∈ Aw with ultraproduct equal to z. We have the following
comparison between these three notions


clHH(I)⊆ ultra− cl(I)⊆ cl(I) (8)


where the latter inclusion holds under some mild conditions; see [69, Theorems 8.5
and 10.4] for the affine, and [3, Corollaries 6.23 and 6.26] for the local case.


Another variant is derived from the observation that a single power of the ultra-
Frobenius has all the contractive power, in the sense of Definition 3.1(3), needed
to prove that regular rings are F-regular. So we may define the simple tight closure
of an ideal I as the collection of all elements z ∈ A such that there exists c ∈ A◦
for which cFrob∞(z) ∈ Frob∞(I)L(A). Clearly, simple tight closure contains tight
closure. All these variants satisfy the five main properties listed in Theorem 2.10,
except that I do not know whether simple tight closure admits strong persistence. To
define a last variant, we turn again to big Cohen–Macaulay algebras.


16 Elsewhere, I called this generic tight closure.
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4.3 Big Cohen–Macaulay algebras


Hochster and Huneke [39] also construct (balanced) big Cohen–Macaulay algebras
in equal characteristic zero, but their construction is highly non-canonical.17 Using
ultraproducts, we can restore canonicity modulo the choice of ultrafilter (for the
affine case, see [72]).


Theorem 4.12. Any equal characteristic Noetherian local ring A admits a balanced
big Cohen–Macaulay algebra B(A).


Proof. By the same argument as in Theorem 2.3, we may reduce to the case
that A is a complete d-dimensional Noetherian local domain with algebraically
closed residue field of characteristic zero. The local analogue of Theorem 4.4
gives the same transfer results between the ring A and its approximations Aw (see
[3, Section 5]). In particular, by the same argument as in the discussion after
Theorem 4.4, almost each approximation Aw is a domain. Hence, almost each
absolute integral closure A+


w is a balanced big Cohen–Macaulay Aw-algebra (see
Remark 2.4). Let B(A) be the ultraproduct of the A+


w , so that we have a canonical
homomorphism L(A)→ B(A). Hence, B(A) is an A-algebra via the composition
A→ L(A)→ B(A). Let x be a system of parameters in A, and choose tuples xw


over Aw with ultraproduct equal to x (as a tuple in L(A)). Since L(A)/xL(A) is the
Lefschetz hull of A/xA, almost all Aw/xwAw have, like A/xA, dimension zero. Since
almost each Aw has dimension d, almost each xw is therefore a system of parameters
in Aw, whence A+


w -regular by the proof of Theorem 2.3 (see Remark 2.4). By Łos’
Theorem, their ultraproduct x is then B(A)-regular. ��


This proves the characteristic zero version of Theorem 2.7, as well as all the
other Homological Conjectures that follow from the existence of big Cohen–
Macaulay modules (see [28] for an exhaustive list). The big Cohen–Macaulay
algebra construction is even weakly functorial (for details see [3, Section 7]). Unlike
the Hochster–Huneke construction, we can preserve some of the good properties
of the absolute integral closure from positive characteristic: B(A) is absolutely
integrally closed (though not integral over A!). In particular, the sum of prime ideals
is either the unit ideal or again prime (see [72, Proposition 3.2 and Corollary 3.3]).


One can also define a closure operation using the big Cohen–Macaulay algebra
B(A) by taking for closure of the ideal I ⊆ A, the ideal clB(I) := IB(A) ∩ A.
It satisfies the five main properties of tight closure ([72, Theorem 4.2] and [3,
Theorem 7.14]), and it even commutes with localization in certain cases ([72,
Theorems 4.3 and 5.2]). If A is a complete local domain, then clB(I)⊆ ultra− cl(I),
with equality, by [79], if I is a parameter ideal.


17 The naive guess that absolute integral closure also yields big Cohen–Macaulay algebras in
characteristic zero is manifestly false; see footnote 13.
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5 Rational singularities


So far in our discussion, the tight closure theory in characteristic zero via
ultraproducts has not brought anything new to the table: it merely gives an
alternative, more streamlined, theory than the Hochster–Huneke constructions,
but anything proven in our theory can also be proven with theirs. However,
this is no longer true when it comes to F-singularities (the definitions in 2.13
extend verbatim to characteristic zero). Since the Hochster–Huneke tight closure
is contained in ours, to be F-regular or F-rational in their theory is a priori weaker
than in ours. For instance, it is not known whether F-rational in their sense implies
rational singularities, but it does for our notion. They also introduced the notions
of F-regular type and F-rational type, which do characterize the corresponding
singularity notions given in Table (1), but these notions do not (a priori) behave well
enough with respect to quotients.18


Definition 5.1 (Rational Singularities). An equicharacteristic zero excellent
local domain R is said to have rational singularities if it is normal, analytically
unramified, and Cohen–Macaulay, and the canonical embedding


H0(W,ωW )→ H0(X ,ωX) (9)


is surjective (it is always injective), where W → X := SpecR is a resolution of
singularities, and where in general, ωY denotes the canonical sheaf on a scheme
Y . To make the definition in the absence of a resolution of singularities, one calls
(R,m) (in either characteristic) pseudo-rational if the canonical map


δW : Hd
m(R)→ Hd


E(OW ) (10)


is injective (it always is surjective), for all proper birational maps π : W → X with
W normal, where d is the dimension of R and E = π−1(m) the closed fiber of π .


Note that in (9) we take sheaf cohomology, whereas in (10) we take cohomology
with support, which in the local case amounts to local cohomology. By [53,
Section 2, Remark (a) and Example (b)], if δW in (10) is injective for some non-
singular W , then R is pseudo-rational, and, in fact, has rational singularities. By
Matlis duality, therefore, if R is essentially of finite type over a field of charac-
teristic zero then R has rational singularities if and only if it is pseudo-rational.


The key to study rational singularities using tight closure theory is the following
result due to Smith:


Theorem 5.2 ([80]). A d-dimensional excellent local ring (R,m) of characteristic p
is F-rational if and only if Hd


m(R) admits no non-trivial submodule closed under the
action of Frobenius. ��


18 In [73], I prove that in the affine case, they are actually equivalent with the notions in this paper,
and hence admit the desired properties; this, however, relies on a deeper result due to Hara [22].
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Note that the top local cohomology Hd
m(R) is the cokernel of the final map


in the Čech complex Ry1 ⊕ ·· · ⊕ Ryd → Ry where y = x1x2 · · ·xd and yi = y/xi,
for (x1, . . . ,xd) a system of parameters in R. In particular, the Frobenius acts on
these localizations, whence on the top local cohomology. To formulate the analogue
in characteristic zero, we define the ultra-local cohomology UH•m(R) of R as the
ultraproduct of the local cohomology of its approximations. To describe this as the
cohomology of a complex over R, we need the notion of a relative Lefschetz hull
LR(S), for S a finitely generated R-algebra (we do not need this in case R itself
is essentially of finite type over a field). The construction is a relative version of
the affine Lefschetz hull. More precisely, it suffices to make the construction for a
polynomial ring R[x], as follows: let Rw be approximations of R, and define LR(R[x])
as the ultraproduct of the Rw[x]. For S arbitrary, say, of the form R[x]/I, we put
LR(S) := LR(R[x])/ILR(R[x]). The natural maps R[x]→ L(R)[x]→ LR(R[x]), induce
by base change a homomorphism S→ LR(S). By the same argument as in the affine
case, LR(·) is a difference hull on the category of finitely generated R-algebras ([77,
Proposition 7.4.3]). We can now also realize UHd


m(R) as the cokernel of


LR(Ry1)⊕·· ·⊕LR(Ryd )→ LR(Ry).


In particular, there is a natural morphism Hd
m(R)→ UHd


m(R).
Since the ultra-Frobenius acts on relative hulls, it also acts on UHd


m(R). The
analogue of Theorem 5.2 in characteristic zero is then that R is ultra-F-rational,
meaning that some parameter ideal is equal to its ultra-closure, if and only if
UHd


m(R) has no non-trivial submodule closed under the action of the ultra-
Frobenius. From this characterization, we get:


Theorem 5.3. If an equicharacteristic excellent local ring is F-rational, then it is
pseudo-rational.


Proof. Let R be an equicharacteristic excellent F-rational local ring. By Remark
2.14(2), and its characteristic zero analogue, R is Cohen–Macaulay and normal.
Since R is excellent, it is therefore also analytically unramified. Moreover, R is ultra-
F-rational by (8). Let π : W → SpecR be a proper birational map with W normal. By
functoriality, the submodule of UHd


m(R) generated by the kernel of the surjection
δW in (10) is invariant under the action of Frobenius, whence has to be trivial by
Theorem 5.2 and our previous discussion. ��


Smith19 [80] proved Theorem 5.3 in characteristic p and Hara [22] has proven its
converse; in the affine case, I proved that having rational singularities is equivalent
with being ultra-F-rational ([72, Theorem 5.11]); I do not know whether this is also
true in general, nor do I know whether ultra-F-rational and F-rational are equivalent.
From the discussion at the end of the previous section it follows that R is ultra-F-
rational if and only if I = clB(I), for some parameter ideal I ⊆ R.


19 Much of the work discussed in this section is based on Karen Smith’s ideas, and grew out from
some stimulating conversations I had with her.
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Soon after Hochster and Roberts proved Theorem 4.5, Boutot, using some deep
vanishing theorems, improved this by showing that quotient singularities have
rational singularities. This is just a special case of the following more general result:


Theorem 5.4 ([76, Main Theorem A]). Let A → B be a cyclically pure homo-
morphism of Noetherian rings containing Q. If B is regular, then A is pseudo-
rational.


Proof. As in the proof of Theorem 4.5, we may reduce to the local case.
Remark 2.14(1) yields that A is F-rational, whence pseudo-rational by
Theorem 5.3. ��


At present, no proof of this using Hochster–Huneke tight closure is known.
Boutot actually proves a stronger version in the affine case, in which he only
assumes that B itself has rational singularities. I gave a tight closure proof of this
more general result under the additional assumption that B is Gorenstein ([72,
Section 5.14]), but I do not know whether this also holds in the general case.


We already observed that a cyclically pure subring of a regular ring is in fact
F-regular, which is stronger than being F-rational. According to Table (1), we expect
quotient singularities therefore to be actually log-terminal. This was proven for a
quotient modulo a finite group by Kawamata [48]. I will now discuss an extension
of this result.


Definition 5.5 (Q-Gorenstein Singularities). Let R be an equicharacteristic zero
Noetherian local domain and put X := SpecR. We say that R is Q-Gorenstein if it is
normal and some positive multiple of the canonical divisor KX is Cartier; the least
such positive multiple is called the index of R. If R is the homomorphic image of
an excellent regular local ring (which is for instance the case if R is complete), then
X admits an embedded resolution of singularities f : Y → X by [26]. If Ei are the
irreducible components of the exceptional locus of f , then the canonical divisor KY


is numerically equivalent to f ∗(KX )+∑aiEi (as Q-divisors), for some ai ∈ Q. The
rational number ai is called the discrepancy of X along Ei; see [49, Definition 2.22].
If all ai > −1, we call R log-terminal (in case we only have a weak inequality, we
call R log-canonical).


If r is the index of the Q-Gorenstein ring R, then OX(rKX ) ∼= OX , where X :=
SpecR and KX the canonical divisor of X . This isomorphism induces an R-algebra
structure on


R∗ := H0(X ,OX ⊕OX(KX )⊕·· ·⊕OX((r−1)KX)),


which is called the canonical cover of R; see [48]. To relate log-terminal
singularities to F-singularities, we use the following characterization:


Proposition 5.6 ([48, Proposition 1.7]). Let R be a homomorphic image of an
excellent regular local ring (e.g., R is complete). If R has equal characteristic zero
and is Q-Gorenstein, then it has log-terminal singularities if and only if its canonical
cover is rational. ��







Characteristic p methods in characteristic zero via ultraproducts 411


Unfortunately, we cannot use this characterization directly to conclude that a
cyclically pure local subring R of a regular ring S has log-terminal singularities. For
starters, we do not know whether the assumptions imply that R is Q-Gorenstein. We
resolve this by simply adding this as an additional assumption on R. Now, by our
previous discussion, R is F-regular – in fact, it is easy to show that is also ultra-F-
regular in the sense that any ideal is equal to its ultra-closure in any localization
of R. However, in order to show that R has log-terminal singularities, we would like
to invoke Proposition 5.6, and so it would suffice to show that its canonical cover
R∗ is (ultra-)F-regular too, whence has rational singularities by Theorem 5.3. We
know that F-regularity is preserved under étale extensions,20 but the canonical cover
R→ R∗ is only étale in codimension one (see for instance [81, 4.12]). It was Smith’s
brilliant observation that a strengthening of the F-regularity condition, however, is
preserved under this type of maps.


5.1 Strong F-regularity


Let R be an equicharacteristic excellent normal local ring. If R has characteristic p,
then we call it strongly F-regular, if for any non-zero c, there exists an n := n(c)
with the property that for any element z ∈ R and any ideal I ⊆ R, if cFrobn


R(z) ∈
Frobn


R(I)R, then z ∈ I. In other words, for each given c, a single tight closure
equation (2) of a sufficiently high power implies already ideal membership. In
particular, a strongly F-regular ring is F-regular. The converse is conjectured to hold,
but is currently only known in the graded case [54]. If this condition holds just for
c = 1, then we call R strongly F-pure.


To make the definition in characteristic zero, we must allow non-standard powers
of the ultra-Frobenius: let α be a positive element in Z�, the ultrapower of Z (in
other words, α is an ultraproduct of positive integers αw). We define Frobα∞ as the


homomorphism R → L(R) sending x ∈ R to the ultraproduct of the Frobαw
Rw


(xw),
where Rw are approximations of R and xw ∈ Rw with ultraproduct equal to x (viewed
as an element in L(R)). One checks that this yields a well-defined homomorphism.
We can now define similarly what it means for R to be strongly F-regular (respec-
tively, strongly F-pure) in characteristic zero: for every non-zero c (for c = 1), there
exists some positive α := α(c) ∈ Z� with the property that for any element z ∈ R
and any ideal I ⊆ R, if cFrobα∞(z) ∈ Frobα∞(I)L(R), then z ∈ I. We have:


Proposition 5.7 ([81, Theorem 4.15] and [76, Proposition 7.8]). Let R ⊆ S be a
finite extension of equicharacteristic excellent normal local rings which is étale in
codimension one. If R is strongly F-regular, then so is S. ��


20 A finite extension (R,m)⊆ (S,n) of equal characteristic zero Noetherian local rings is étale if it
is flat, and unramified, meaning that mS = n.







412 Hans Schoutens


Theorem 5.8 ([76, Main Theorem B]). Let R → S be a cyclically pure
homomorphism of equicharacteristic zero excellent local rings with S regular
and R a homomorphic image of a regular local ring. If R is Q-Gorenstein, then it is
log-terminal.


Proof. The regular local ring S is strongly F-regular since its ultra-Frobenius is flat
(use the argument in the proof of Theorem 2.10). Moreover, it is easy to check
that R, being a cyclically pure subring, is then also strongly F-regular. Therefore,
its canonical cover R∗ is strongly F-regular by Proposition 5.7. In particular, R∗ is
F-rational whence has rational singularities by Theorem 5.3. Proposition 5.6 implies
then that R is log-terminal. ��


5.2 Kawamata–Viehweg vanishing


As a final application of our methods, I discuss some vanishing theorems and a
conjecture of Smith on quotients of Fano varieties. Let X be a connected projective
scheme of finite type over C; a projective variety, for short. Choose an ample line
bundle P on X , and let S be section ring of the pair (X ,P), defined as the graded
ring


S :=
⊕


n∈Z


H0(X ,Pn). (11)


The section ring is a finitely generated, positively graded C-algebra, which encodes
both the projective variety, to wit, X = Proj(S), as well as the ample line bundle,


to wit, P ∼= S̃(1). The vertex of S is the localization of S at its irrelevant maximal
ideal S>0. By a vertex of X , we then mean the vertex of some section ring associated
to some ample line bundle. It is common wisdom that (global) properties of the
projective variety are often already captured by the (local) properties of one of its
vertices. Following Smith, we define:


Definition 5.9. Let X be a projective variety. We call X globally F-regular if it has
some strongly F-regular vertex. We call X globally F-pure if it has some strongly
F-pure vertex.


If R is globally F-regular (respectively, globally F-pure), then any vertex is
strongly F-regular (respectively strongly F-pure); see [82, Theorem 3.10] or [73,
Remark 6.3]. In particular, the vertex is Cohen–Macaulay, whence so is X . The
main technical result, inspired by Smith’s work, is:


Theorem 5.10 ([73, Theorem 6.5 and Remark 6.6]). Let X be a projective variety
over C, let i > 0, and let L be an invertible OX -module. Each of the following two
conditions implies the vanishing of Hi(X ,L):


1. X is globally F-pure and Hi(X ,Ln) = 0 for all n� 0;
2. X is globally F-regular and for some effective Cartier divisor D, all Hi(X ,Ln(D))


= 0 for n� 0. ��
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Using this we can now derive the following vanishing theorems:


Theorem 5.11. Let X be a projective variety over C and let L be an invertible
OX -module. Then Hi(X ,L−1) vanishes for all i < dimX, in the following two cases:


(Kodaira Vanishing) X is globally F-pure and Cohen–Macaulay, and L is ample;
(Kawamata-Viehweg Vanishing) X is globally F-regular, and L is big and


numerically effective.


Proof. To prove the first vanishing theorem, observe that by Serre duality ([23,
III. Corollary 7.7]), the dual of Hi(X ,L−n) is Hd−i(X ,ωX ⊗Ln) where d is the
dimension of X and ωX the canonical sheaf on X . Because L is ample, the latter
cohomology group vanishes for large n, and hence so does the first. The conclusion
then follows from Theorem 5.10(1).


To prove the second vanishing theorem, fix some i < d. Because L is big and
numerically effective, we can find an effective Cartier divisor D such that Lm(−D)
is ample for all m� 0, by [49, Proposition 2.61]. Hence


Hi(X ,(L−m(D))n) = Hi(X ,(Lm(−D))−n) = 0


for all sufficiently large m and n, where the vanishing follows from Serre duality
and the fact that Lm(−D) is ample. Hence, for fixed m, Theorem 5.10(1) yields the
vanishing of Hi(X ,L−m(D)). Since this holds for all large m, Theorem 5.10(2) then
gives Hi(X ,L−1) = 0. ��


Recall that a normal projective variety X is called Fano, if its anti-canonical sheaf
ω−1


X is ample. The following was conjectured by Smith:


Theorem 5.12. Any quotient of a smooth Fano variety by a reductive group (in the
sense of Geometric Invariant Theory) admits Kawamata-Viehweg Vanishing.


Proof. The key fact is that a Fano variety X is globally F-regular ([73, Theorem
7.1]). This rests on some deep result due to Hara [22], which itself was proven using
Kodaira vanishing. Assuming this fact, let S be a section ring with strongly F-regular
vertex. If G is a reductive group acting algebraically on X , then SG is a section ring
of the GIT quotient X//G. Since SG ⊆ S is split (see the proof of Theorem 4.5),
whence cyclically pure, the vertex of SG is strongly F-regular too, showing that
X//G is globally F-regular. The result now follows from Theorem 5.11. ��
Remark 5.13. Because of the analogy with the notion of Frobenius split (see
[82, Proposition 3.1]) and the fact that a Schubert variety has this property
[56, Theorem 2], it is reasonable to expect that a Schubert variety is globally
F-pure. This is known in characteristic p by [51]. In particular, if this result on
Schubert varieties also holds in characteristic zero, then we get Kodaira Vanishing
for any GIT quotient of a Schubert variety.
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6 Mixed characteristic


Tight closure and big Cohen–Macaulay modules are two powerful tools, as we
showed above, but unfortunately, neither one is currently available in mixed charac-
teristic. Hochster [31, 32] has made some attempts to define a closure operation
akin to tight closure in mixed characteristic, called solid closure,21 and some
amendments have been made by Brenner [7], but as of yet, the theory is not powerful
enough to derive any new result in mixed characteristic. Some of the homological
theorems are now known in mixed characteristic due to work of Roberts [60, 62],
but the preferred method, through big Cohen–Macaulay modules is only available
in dimension at most three by work of Heitmann [24] and Hochster [33].22


Neither has the ultraproduct method being able to prove any of the outstanding
problems in mixed characteristic. At best, we obtain asymptotic results, meaning
that a certain property holds if the residual characteristic of the ring is large with
respect to other invariants associated to the problem. There are essentially two
approaches, which I will now sketch briefly. From this, the inherent asymptotic
nature of the results should then also become clear.


6.1 Protoproducts


In a first approach, we use a mixed characteristic analogue of Proposition 3.9,
the celebrated Ax–Kochen–Ershov Principle [4, 19, 20]: for each w, let Omix


w be a
complete discrete valuation ring of mixed characteristic with residue field Kw of
characteristic pw. To each Omix


w , we associate a corresponding equicharacteristic
complete discrete valuation ring with the same residue field, by letting O


eq
w :=


Kw[[t]], where t is a single indeterminate.


Theorem 6.1 (Ax–Kochen–Ershov). If the residual characteristics pw are un-
bounded, then the ultraproduct of the O


eq
w is isomorphic (as a local ring) with the


ultraproduct of the Omix
w . ��


Let O� be this common ultraproduct. It is an equal characteristic zero (non-
discrete) valuation ring with principal maximal ideal, such that O�/IO�


is a


complete discrete valuation ring. Fix a tuple of indeterminates x. Let Aeq
w := O


eq
w [x],


and let Aeq
� be their ultraproduct. Since O� ⊆ Aeq


� and the x are algebraically


independent in Aeq
� , we have an inclusion O�[x] ⊆ Aeq


� . We call O�[x] the


protoproduct of the Aeq
w ; it is the subring of all ultraproducts f � of elements f w ∈ Aeq


w


21 Solid closure also intended to provide an alternative approach in characteristic zero, avoiding any
reference to reductions modulo p. A counterexample due to Roberts [61], however, has seriously
undermined this approach.
22 Some earlier attempts that alas led nowhere were made by Hochster in [27].
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having bounded degree.23 The inclusion O�[x]⊆ Aeq
� is almost a difference hull as in


Definition 3.1, except that it is flat, but not faithfully flat ([74, Theorem 4.2]). Using
instead the mixed characteristic discrete valuation rings, we get Amix


w := Omix
w [x],


whose ultraproduct Amix
� contains O�[x] as a flat subring. A note of caution: the


Ax–Kochen–Ershov principle is false in higher dimensions: Aeq
� and Amix


� are no


longer isomorphic. Therefore, the transfer between the Aeq
w and the Amix


w is achieved
via their common subring O�[x], and we may thus think of them as respectively
the mixed and equal characteristic approximations of O�[x]. That the latter is
not Noetherian causes quite some headaches; for details, see [68, 74]. The main
technical result is that any local ring R which is essentially of finite type over O�


admits the analogue of a big Cohen–Macaulay algebra. This enables us to prove
some non-Noetherian analogues of the homological conjectures over R, which then
descend to its mixed characteristic approximations. Since the transfer requires the
degree to be bounded, we can only get an asymptotic version: the residual charac-
teristic has to be sufficiently large with respect to the degrees of the data involved.
For instance, we get:


Theorem 6.2 (Asymptotic Monomial Conjecture, [74, Corollary 9.5]). For each
N, we can find a bound μ(N) with the following property. Let O be a mixed charac-
teristic discrete valuation ring and let R be a finite extension of the localization
S := O[x](x1,...,xd)O[x]. If R is defined by at most N polynomials of degree at most
N over S, then the tuple (x1, . . . ,xd), viewed as a system of parameters in R, is
monomial, provided the residual characteristic of O is at least μ(N). ��


6.2 Cataproducts


In the second approach, rather than subrings, we look for nice residue rings. Let
(Rw,mw) be Noetherian local rings and let R� be their ultraproduct. We already
observed that R� is hardly ever Noetherian, and hence the usual methods from
commutative algebra do not apply. Nonetheless, Proposition 4.10 and the property of
the Ax–Kochen–Ershov ring O� are not isolated events; there is often a Noetherian
residue ring lurking in the background:


Proposition 6.3. If the Rw have bounded embedding dimension,24 then their
cataproduct R� := R�/IR�


is a complete Noetherian local ring.


Proof (Sketch; see [77, Theorem 8.1.4] or [78, Lemma 5.6]). By Łos’ Theorem,
R� has a finitely generated maximal ideal. By saturatedness of ultraproducts, every
Cauchy sequence in R� has a limit. Hence the Haussdorfication of R�, that is to say,
R�, is complete. Now, a complete local ring with finitely generated maximal ideal is
Noetherian by [55, Theorem 29.4]. ��
23 We may similarly view an affine algebra over a field of characteristic zero as the protoproduct
of its approximations; this is the point of view in [77, Chap. 9].
24 The embedding dimension of a local ring is the minimal number of generators of its maximal
ideal.
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Moreover, the Rw share many properties with their cataproduct, and a transfer
result, albeit weaker than Theorem 4.4, holds (see, for instance, [78, Corollaries 8.3
and 8.7, and Theorem 8.10]). Suppose the Rw have mixed characteristic. If their
residual characteristics are unbounded, then by Łos’ Theorem, their cataproduct has
equal characteristic zero (since the ultraproduct of the residue fields of the Rw is
the residue field of R�). In the remaining case, almost all Rw have residual charac-
teristic p, for some p, and in that case R� has characteristic p if the ramification
indices of the Rw are unbounded, that is to say, if for all N, we have p ∈ mN


w
for almost all w, whence p ∈ IR�


. So in either case, we get an equicharacteristic
cataproduct with a tight closure operation and a balanced big Cohen–Macaulay
algebra. However, neither construction descends to the components Rw (intuitively,
an ultraproduct can only transfer finitely many information). I conclude with an
application of the method, and a discussion how this could potentially lead to the
full conjecture.


Given a Noetherian local ring R, let F• be a complex of length s consisting of
finite free R-modules. We say that the rank of F• is at most r, if each free R-module
Fi in F• has rank at most r; we say that F• has homological complexity at most l,
if each homology group Hi(F•) for i > 0 has length at most l, and H0(F•) has a
minimal generator generating a submodule of length at most l.


Theorem 6.4 (Asymptotic Improved New Intersection Theorem, [78, Theorem
13.6]). For each triple of non-negative integers (m,r, l), there exists a bound
ν(m,r, l) with the following property. Let R be a mixed characteristic Noetherian
local ring of embedding dimension at most m. If F• is a finite free complex of rank at
most r and homological complexity at most l, then its length is at least the dimension
of R, provided the residual characteristic or the ramification index of R is at least
ν(m,r, l). ��


If we can show that the above bound grows slowly enough, then we can even
deduce the full version from this. The idea is to reach a contradiction from a minimal
counterexample by increasing its ramification, but controlling the growth of the
other data. Without proof, I quote:


Theorem 6.5 ([78, Theorem 13.8]). If for each fixed (m,r) the bound ν(m,r, l) from
the previous theorem grows sub-linearly in l, in the sense that there exists some
0≤ α := αm,r < 1 and c > 0 such that ν(m,r, l) ≤ c · lα for all l, then the Improved
New Intersection Theorem holds. ��
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holomorphes en un point de Cn . C. R. Acad. Sci. Paris 278, 949–951 (1974)
11. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge


(1993)
12. Chang, C., Keisler, H.: Model theory. North-Holland, Amsterdam (1973)
13. Denef, J., Lipshitz, L.: Ultraproducts and approximation in local rings II. Math. Ann. 253,


1–28 (1980)
14. Denef, J., Schoutens, H.: On the decidability of the existential theory of Fp[[t]]. In: Valuation


theory and its applications, vol. II (Saskatoon, 1999), Fields Inst. Commun., vol. 33,
pp. 43–60. Am. Math. Soc. (2003)


15. van den Dries, L.: Algorithms and bounds for polynomial rings. In: Logic Colloquium,
pp. 147–157 (1979)


16. Ein, L., Lazarsfeld, R., Smith, K.: Uniform bounds and symbolic powers on smooth varieties.
Invent. Math. 144, 241–252 (2001)


17. Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts
in Mathematics, vol. 150. Springer, New York (1995)


18. Eklof, P.: Ultraproducts for algebraists. In: Handbook of Mathematical Logic, pp. 105–137.
North-Holland (1977)
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Rees valuations


Irena Swanson


Abstract This expository paper contains history, definitions, constructions, and the
basic properties of Rees valuations of ideals. A section is devoted to one-fibered
ideals, that is, ideals with only one Rees valuation. Cutkosky [17] proved that there
exists a two-dimensional complete Noetherian local integrally closed domain in
which no zero-dimensional ideal is one-fibered. However, no concrete ring of this
form has been found. An emphasis in this paper is on bounding the number of Rees
valuations of ideals. A section is on the projective equivalence of ideals, with the
discussion of “rational powers” of ideals. The last section is about the Izumi–Rees
Theorem, which establishes comparability of Rees valuations with the same center.
Several examples are computed explicitly. More on Rees valuations can be done via
the projective equivalence of ideals, and there have been many articles along that
line. See the latest article by Heinzer, Ratliff, and Rush, in this volume.


All rings in this paper are commutative with identity, and most are Noetherian
domains. The following notation will be used throughout:


– Q(R) denotes the field of fractions of a domain R.
– For any prime ideal P in a ring R, κ(P) denotes the field of fractions of R/P.
– If V is a valuation ring, mV denotes its unique maximal ideal, and v denotes an


element of the equivalence class of valuations naturally determined by V .
– We say that a Noetherian valuation is normalized if its value group is a subset


of Z whose greatest common divisor is 1.
– If R is a ring and V is a valuation overring, then the center of V on R is mV ∩R.
– A valuation ring V (or a corresponding valuation v) is said to be divisorial with


respect to a subdomain R if Q(R) = Q(V ) and if tr.degκ(p)κ(mV ) = ht p− 1,
where p = mV ∩R. It is a fact that every divisorial valuation with respect to a
Noetherian ring R is essentially of finite type over R.
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– If I is an ideal in a ring R, the I-adic order is the function ordI : R → Z�0 ∪{∞}
given by


ordI(x) = sup{n ∈ Z : x ∈ In}.
– If R is a domain and v is a valuation on Q(R), we allow v to be defined on all of


R by setting v(0) = ∞.
– For any Noetherian valuation v that is non-negative on a domain R, and for any


ideal I in R, v(I) is min{v(r) : r ∈ I}.


Many of the omitted proofs can be found in Chap. 10 in [12].


1 Introduction


David Rees was the first to systematically study the valuations associated to an ideal
that were later called Rees valuations. Rees proved their existence, uniqueness, he
proved that they determine the integral closures of the powers of the given ideal, and
over the years he and others proved many applications.


Recall that if I is an ideal in a ring R, we denote by I the integral closure of I,
namely,


I = {r ∈ R : rn + a1rn−1 + · · ·+ an = 0 for some positive n and some a j ∈ I j}.


It is well-known that this equals


I =
⋂


V


IV ∩R,


as V varies over the valuation rings that are R-algebras, or alternatively, as V varies
over the valuation rings between R/P and Q(R/P), and P varies over the set Min(R)
of minimal prime ideals in R. In case R is Noetherian, the valuation rings may all
be restricted to be Noetherian valuations rings. If R/I is Artinian, by the descending
chain property, there exists a finite set S of valuation rings such that I =


⋂
V∈S IV ∩R.


Finiteness of the needed set of valuations is a desirable property in general, as it
simplifies existence proofs and algorithmic computations. Rees valuations aim for
more: there are finitely many valuations that suffice in the sense above not just for I
but also for I, I2, I3, I4, . . . simultaneously. Here is a formal definition:


Definition 1.1. Let R be a ring and I an ideal in R. A set of Rees valuation rings of I
is a set {V1, . . . ,Vs} consisting of valuation rings, subject to the following conditions:


1. Each Vi is Noetherian and is not a field.
2. For each i = 1, . . . ,s, there exists a minimal prime ideal Pi of R such that Vi is a


ring between R/Pi and Q(R/Pi).
3. For all n ∈ N, In = ∩s


i=1(I
nVi)∩R.


4. The set {V1, . . . ,Vs} satisfying the previous conditions is minimal possible.
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By a slight abuse of notation, the notation RV (I) stands for a set of Rees
valuation rings of I – even though the set is in general not uniquely determined.
(Uniqueness is discussed in Section 2.)


For each valuation ring there is a natural corresponding equivalence class of
valuations. A set of representatives of valuations for a set of Rees valuation rings is
called a set of Rees valuations. Typically, we take the normalized representatives.


By the standard abuse of notation, each valuation v is defined on the whole ring R
and takes on in addition the value ∞, with {r ∈ R : v(r) = ∞} being a prime ideal.
If a valuation vi corresponds to a Rees valuation ring Vi, then {r ∈ R : vi(r) = ∞} is
precisely the minimal prime ideal Pi of R as in condition 2. above. With this notation,
condition 3. translates to:


In = {r ∈ R : v1(r) � nv1(I), . . . ,vs(r) � nvs(I)} for all n � 0.


All Rees valuations are constructed as localizations of the integral closures of
finitely many finitely generated R-algebras contained in Q(R), as we explain in
Section 2. One idea of where Rees valuations might be found is contained in the
following observation: If {V1, . . . ,Vs} is a set of Rees valuation rings of I (unique or
not), then for all n,


In =
s⋂


j=1


(InVj ∩R)


is a (possibly redundant) primary decomposition of In, and thus
⋃


n�1


Ass(R/In) ⊆ {{r ∈ R : rVj �= Vj} : j = 1, . . . ,s} (1)


= {mVj ∩R : j = 1, . . . ,s} (2)


is a finite set.


It is straightforward to verify that for all ideals I, RV (I) = RV(I).
A basic property of Rees valuations of an ideal is that they localize, in the sense


that for any multiplicatively closed set W in R, RV(W−1I) = {V ∈ RV(I) : mV ∩
W = /0}. This follows in a straightforward way from the definitions.


How do Rees valuations behave under extending the ideal to an overring? Let
R → S be a ring homomorphism of rings such that S is either faithfully flat over R
or S is integral over R. Then for any ideal I in R, I = IS∩R (proofs can be found
in Propositions 1.6.1 and 1.6.2 of [12]). If Rees valuations exist for IS, this implies
that


RV (I) ⊆ {V ∩Q(R) : V ∈ RV(IS)}.
If S is the integral closure of the Noetherian domain R in its field of fractions, even
equality holds, i.e., RV(I) = {V ∩Q(R) : V ∈ RV (IS)} = RV(IS). Furthermore, if
(R,m) is a Noetherian local ring and I is an m-primary ideal of I, then IR̂ is the
integral closure of IR̂, whence also in this case, RV(I) = {V ∩Q(R) : V ∈RV(IR̂)}.
If in addition R̂ is a domain, no two Noetherian valuations on Q(R̂) centered on
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mR̂ contract to the same valuation on Q(R), so in that case the numbers of Rees
valuations of I and of IR̂ are the same if I is m-primary. More generally, Katz and
Validashti [16, Theorem 5.3] proved the following:


Theorem 1.2. (Katz and Validashti [16, Theorem 5.3]). Let I be an ideal in a
Noetherian local ring (R,m) that is not contained in any minimal prime ideal. Let w
be a Rees valuation of IR̂ with center mR̂, and let Q be the corresponding minimal
prime ideal in R̂ such that w is a valuation on κ(Q). Then w restricted to κ(Q∩R)
is a Rees valuation of I with center m. The function


w �→ w|κ({r∈R:w(r)=∞})


from Rees valuations of IR̂ with center on mR̂ to Rees valuations of I with center on
m is a one-to-one and onto function.


The results above were in the direction of where to search for Rees valuations of
a given ideal; the following result searches for an ideal for which a given valuation
is a Rees valuation:


Proposition 1.3. Let R be a Noetherian domain. Let V be a divisorial valuation ring
with respect to R. Then there exists an ideal I in R, primary to P = mV ∩R, such that
V is one of its Rees valuation rings.


Conversely, let J be an ideal and W a Rees valuation ring of J. Set P = mW ∩R
and assume that RP is formally equidimensional. Then W is a divisorial valuation
ring with respect to R and RP.


(A proof can be found for example in [12, Propositions 10.4.3 and 10.4.4].)
For this reason, on Noetherian locally formally equidimensional domains, the


Rees valuations of non-zero ideals are the same as the divisorial valuations with
respect to R.


Examples


1. A maximal ideal m in a regular ring has only one Rees valuation, namely
the m-adic valuation. The m-adic valuation ring equals R[mx ](x)R[mx ] for any


x ∈ m\m2.
2. Let R = k[X1, . . . ,Xd ] be a polynomial ring over a field k. For any monomial


ideal I in R, the convex hull of the set {(a1, . . . ,ad) ∈ N
d : Xa1


1 · · ·Xad
d ∈ I} in


R
d is called the Newton polyhedron of I, and is denoted NP(I). The Newton


polyhedron of I contains the information on the integral closure of I:


I = (Xa1
1 · · ·Xad


d | (a1, . . . ,ad) ∈ NP(I)∩N
d).


By Carathéodory’s Theorem the convex hull is bounded by the coordinate
hyperplanes and by finitely many other faces/hyperplanes, each of the form
c1X1 + · · ·+cdXd = 1 for some ci ∈Q. The corresponding hyperplane bounding
the Newton polyhedron of In has the form c1X1 + · · ·+ cdXd = n. Thus
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In = (Xa1
1 · · ·Xad


d : c1a1 + · · ·+ cdad � n,


as (c1, . . . ,cd) varies over the hyperplane coefficients as above).


For each such irredundant bounding hyperplane c1X1 + · · ·+ cdXd = 1, define
a monomial valuation v : R → Q by v(Xa1


1 · · ·Xad
d ) = c1a1 + · · ·+ cdad and


by v(∑n
i=1 mi) = min{v(mi) : i = 1, . . . ,n}, where the mi are products of non-


zero elements of k with distinct monomials. By above, these valuations are the
Rees valuations of I. (Hübl and the author generalized this in [11] to all ideals
generated by monomials in a regular system of parameters.)


3. In particular, in a polynomial ring k[X1, . . . ,Xn], every ideal of the pure power
form (Xa1


1 , . . . ,Xam
m ) has only one Rees valuation.


4. The above can easily be worked on the monomial ideal (X ,Y ) in the polynomial
ring R = k[X ,Y,Z] over a field k, to get that the only Rees valuation of (X ,Y ) is
the monomial valuation v1, which takes value 1 on X and Y and value 0 on Z.
Similarly, the only Rees valuation of (X ,Z)k[X ,Y,Z] is the monomial
valuation v2 taking value 1 on X and Z and value 0 on Y .
The valuations v1 and v2 are not the only Rees valuations of the product of the
two ideals (X ,Y ) and (X ,Z), by the following reasoning: v1((X ,Y )(X ,Z)) = 1
since v1(XZ) = 1, and similarly v2((X ,Y )(X ,Z)) = 1. However, v1(X) =
v2(X) = 1 as well, but X �∈ (X ,Y )(X ,Z).


Related to the last example is the following:


Proposition 1.4. (Cf. Muhly–Sakuma [23]) For any non-zero ideals I and J in a
Noetherian domain R, RV (I)∪RV (J) ⊆ RV (IJ). If I is locally principal or if R is
Noetherian locally formally equidimensional of dimension at most 2, then RV(I)∪
RV(J) = RV(IJ).


The example above the proposition shows that the inclusion RV (I)∪RV (J) ⊆
RV(IJ) may be proper.


On page 423 it was mentioned that RV(I) = RV(J) if the integral closures of
I and J coincide. It is similarly clear that for ideals I ⊆ J, I = J if and only if
for every Rees valuation ring V of I, IV = JV . It is not much harder to prove
that for every positive integer n, RV (I) = RV (In). Furthermore, if Im = Jn for
some positive integers m, n, then RV (I) = RV(J). However, the converse may fail,
namely RV(I) = RV(J) does not imply that Im = Jn for some positive integers m, n.
For example, let I = (X2,Y )5 ∩ (X ,Y 2)4 and J = (X2,Y )4 ∩ (X ,Y 2)5, and use the
monomial ideal method above for finding the Rees valuations. The two ideals I and
J have the same two monomial Rees valuations, yet the integral closures of powers
of I do not coincide with the integral closures of powers of J.


We recall some more vocabulary: an ideal J is a reduction of an ideal I if J ⊆ I
and J = I. The first crucial paper on reductions is [24], by Northcott and Rees.







426 Irena Swanson


2 Existence and uniqueness


There is the question of existence and uniqueness of Rees valuation rings. For the
zero ideal in a domain, any one Noetherian valuation ring V between R and Q(R) is
the Rees valuation ring. Thus we have existence but not uniqueness in this case.


The first case of the existence and uniqueness of Rees valuations was proved
by David Rees in [25], for zero-dimensional ideals in equicharacteristic Noetherian
local rings. The second case was proved by Rees in [27] for arbitrary ideals I in
Noetherian domains for which the following Artin–Rees-like assumption holds:
there exists an integer t such that for all sufficiently large n, It+n+1 ∩ In ⊆ In+1.
Neither of the two cases of existence in [25] and [27] is covered by the other. The
general existence theorem, for all ideals in [26] Noetherian rings, was proved by
Rees in [28]. Uniqueness was proved in [25]. A good reference is also [26]. Here
is a summary general result (for a proof, see for example [12, Theorems 10.1.6 and
10.2.2]):


Theorem 2.1. (Existence and uniqueness of Rees valuations) Let R be a
Noetherian ring. Then for any ideal I of R, there exists a set of Rees valuation
rings, and if I is not contained in any minimal prime ideal of R, then the set of Rees
valuation rings is uniquely determined.


The main case of the proof of the existence is actually when R is a Noetherian
domain and I is a non-zero principal ideal. In that case, by the Mori–Nagata
Theorem, the integral closure R of R is a Krull domain, so that the associated primes
of InR, as n varies, are all minimal over I, there are only finitely many of them,
and the localizations of R at these primes are Noetherian valuation domains. These
finitely many valuation rings are then the Rees valuation rings of IR, and hence of I.


The reduction of the existence proof in general to the non-zero principal ideal
case is via the extended Rees algebra R[It,t−1] (cf. [12, Exercise 10.6]):


RV (I) = {V ∩Q(R) : V ∈ RV(t−1R[It,t−1])}.


The reduction to the domain case relies on the fact that the integral closure of ideals
is determined by the integral closures when passing modulo the minimal primes.


It turns out that in a Noetherian ring, all minimal prime ideals play a role in the
Rees valuations of all ideals of positive height, in the sense that for every ideal I
of positive height and every P ∈ Min(R) there exists a Rees valuation v of I such
that {r ∈ R : v(r) = ∞} = P. But even more is true (and does not seem to be in the
literature):


Proposition 2.2. Let R be a Noetherian ring and I an ideal in R not contained in
any minimal prime ideal. For each P ∈ Min(R), let TP be the set of Rees valuations
of I(R/P). By abuse of notation, these valuations are also valuations on R, with
{r ∈ R : v(r) = ∞} = P. Then ∪PTP is the set of Rees valuations of I.


Proof. The standard proofs of the existence of Rees valuations show that RV (I) ⊆
∪PTP. We need to prove that no valuation in ∪PTP is redundant.
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Let Q ∈ Min(R) and v ∈ TQ. By the minimality of Rees valuations of I(R/Q),
there exist n ∈ N and r ∈ R such that for all w ∈ TQ \ {v}, w(r) � nw(I), yet r �∈
In(R/Q) (i.e., v(r) < nv(I)). Let r′ be an element of R that lies in precisely those
minimal prime ideals that do not contain r. Then r + r′ is not contained in any
minimal prime ideal, for all w ∈ TQ \{v}, w(r + r′) � nw(I), and v(r + r′) < nv(I)).
Let J′ be the intersection of all the minimal primes other than Q, let J′′ be the
intersection of all the centers of w ∈ TQ, and let s ∈ J′ ∩ J′′ \ Q. By assumption
on r, there exists a positive integer k such that for all w ∈ TQ \ {v},


v(s)
v(I)


− w(s)
w(I)


+ 1 < k


(
w(r + r′)


w(I)
− v(r + r′)


v(I)


)


.


Note that for all w ∈ ∪P �=QSP, w(s) = ∞. Thus for all w ∈ ∪PTP \ {v}, v(s)
v(I) − w(s)


w(I) +


1 < k
(


w(r+r′)
w(I) − v(r+r′)


v(I)


)
. Then with m = 
 v(s(r+r′)k)


v(I) �, s(r + r′)k �∈ Im+1, yet for all


w ∈ ∪PTP \ {v}, w(s(r + r′)k) � (m + 1)w(I). This proves that v is not redundant.
�


How does one construct the Rees valuation rings in practice? The steps indicated
above of computing the integral closure of R[It,t−1] require an additional variable
over R, and afterwards one needs to take the intersections of the obtained valuation
rings with Q(R). There is an alternative construction that eliminates these two
steps of extending and intersecting, namely a construction using blowups: if I =
(a1, . . . ,ar), then


RV(I) =
r⋃


j=1


RV


(


a jR


[
I


a j


])


.


Just as the first construction, this one also reduces to the case of principal ideals.
As announced, this construction avoids introducing a new indeterminate and then
intersecting the valuation rings with a field, but it instead requires the computation
of r integral closures of rings. This can also be computationally daunting. If there
is a way of making r smaller, the task gets a bit easier. Since RV(J) = RV(I)
whenever I = J, one can replace I in this alternative construction with J, if J has
fewer generators than I. A standard choice for J is a minimal reduction of I, or even
a minimal reduction of a power of I. It is known that in a Noetherian local ring R,
every ideal has a power that has a reduction generated by at most dimR elements. In
case the residue field is infinite, the ideal itself has a reduction generated by at most
dimR elements (see [24] or [12, Propositions 8.3.7, 8.3.8]).


Even better, if R contains an infinite field, or if R is local with an infinite
residue field, there exists a “sufficiently general” element a ∈ I such that RV (I) =
RV(aR[ I


a ]). In fact, RV (I) = RV(aR[ I
a ]) whenever aV = IV for all V ∈ RV (I).


Unfortunately, the “sufficient generality” is not so easily determined, and might be
doable only after the Rees valuations have already been found.
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Sally proved a determinate case when only one affine piece of the blowup suffices
for finding the Rees valuations:


Theorem 2.3. (Sally [33, page 438]) Let (R,m) be a Noetherian formally equidi-
mensional local domain of dimension d > 0, and let I be an m-primary ideal
minimally generated by d elements. Then for any a ∈ I that is part of a minimal
generating set, any Rees valuation ring V of I is the localization of the integral
closure of R[ I


a ] at a height one prime ideal minimal over a.


Similarly, if x1, . . . ,xr is a regular sequence in a Noetherian domain R, then for
every Rees valuation ring V of I = (x1, . . . ,xr), and for every i = 1, . . . ,r, xiV = IV ,
and V is the localization of the integral closure of S = R[ I


xi
] at a height one prime


ideal containing xi.
Thus, there are occasions when the alternative construction of Rees valuations


using blowups only requires the computation of the integral closure of one ring, and
sometimes this one ring is known a priori.


There is yet another construction of Rees valuations, this one via the (ordinary)
Rees algebra R[It]: the set of Rees valuation rings of I equals the set of all rings
R[It]P ∩Q(R), as P varies over the prime ideals in R[It] that are minimal over IR[It].


A consequence of this formulation is a criterion for recognizing when the
associated graded ring and the associated “integral” graded ring are reduced:


Theorem 2.4. (Hübl–Swanson [10]) If R is integrally closed, then grI(R) is reduced
if and only if all the powers of I are integrally closed and if for each (normalized
integer-valued) Rees valuation v of I, v(I) = 1. Also, R/I ⊕ I/I2 ⊕ I2/I3 ⊕ ·· · is a
reduced ring if and only if for each (integer-valued) Rees valuation v of I, v(I) = 1.


Here is an example illustrating this result. Let X ,Y,Z be variables over C,
and R = C[X ,Y,Z]/(X2 + Y 3 + Z5). Then R is an integrally closed domain. By
Flenner [5, 3.10], R is a rational singularity ring, so that by Lipman [17], all
the powers of the maximal ideal m = (X ,Y,Z)R are integrally closed, and the
blowup rings in the construction of Rees valuations of m are integrally closed.
As X ∈ (Y,Z)R, it follows that RV(m) = RV((Y,Z)), and by Sally’s Theorem 2.3


above, RV(m) = RV
(


YR
[


(Y,Z)
Y


])
. Certainly, X


Y is integral over R
[


(Y,Z)
Y


]
, so that


RV(m) = RV
(


Y R
[


(X ,Y,Z)
Y


])
. By the cited Lipman’s result, with X ′ = X


Y and


Z′ = Z
Y ,


R


[
(X ,Y,Z)


Y


]
∼= R


[m


Y


]∼= C[X ′,Y,Z′]
((X ′)2 +Y +Y 3(Z′)5)


is integrally closed, and there is only one minimal prime over (Y ), namely (X ′,Y ),
so that m has only one Rees valuation. Locally at (X ′,Y ), the maximal ideal is
generated by X ′, so that if v is the natural corresponding valuation, v(X ′) = 1,
v(Z′) = 0, from Y (1 + Y 2(Z′)5) = −(X ′)2 we get that v(Y ) = 2, hence v(X) =
v(X ′)+ v(Y ) = 3, v(Z) = v(Z′)+ v(Y ) = 2, whence v(m) � 2. However, notice that
grm(R) = R/m⊕m/m2 ⊕·· · ∼= C[x,y,z]/(x2) is not reduced.
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The listed constructions of Rees valuations above give several methods for
finding the unique set. All the methods require passing to finitely generated ring
extensions, then taking the integral closure of the ring, followed by finding minimal
primes over some height one ideals. The whole procedure may be fairly challenging:
the integral closures of rings and primary decompositions of ideals are in practice
hard to compute.


The following theorem gives a method for finding the centers of the Rees
valuations without going through the full construction of the valuations. Recall
(see [24]) that the analytic spread of an ideal I in a Noetherian local ring (R,m)
is the Krull dimension of (R/m)⊕ (I/mI)⊕ (I2/mI2)⊕·· · . If R/m is infinite, this
number is the same as the number of generators of any ideal minimal reduction
of I, and in general, there always exists a power of I with a reduction generated
minimally by this number of elements.


Theorem 2.5. (Burch [1], McAdam [20]) Let R be a Noetherian ring, I an ideal in
R and P a prime ideal in R. If the analytic spread of IRP equals dim(RP), then P is
the center of a Rees valuation of I. If R is locally formally equidimensional and P is
the center of a Rees valuation of I, then the analytic spread of IRP equals dim(RP).


I end this section with another example of where Rees valuations appear. In [30],
Rees defined the degree function of an m-primary ideal I in (R,m) as follows: for
any x ∈ m such that dim(R/(x)) = dim(R)− 1, set dI(x) = eR/(x)(I(R/(x))), i.e.,
dI(x) is the multiplicity of the ideal I in the ring R/(x). Rees proved that for all
allowed x,


dI(x) = ∑
v∈RV′(I)


d(I,v)v(x)


for some positive integers d(I,v) depending only on I and v, where RV ′(I) is the set
of those Rees valuations of I that are divisorial with respect to R. (Rees avoided the
name “Rees valuation”).


3 One-fibered ideals


Definition 3.1. An ideal I is called one-fibered if RV(I) has exactly one element.


By the constructions of Rees valuations, this means that I is one-fibered if and
only if the radical of t−1R[It,t−1] is a prime ideal, which holds if and only if the
radical of IR[It] is a prime ideal.


Zariski [35] proved that if (R,m) is a two-dimensional regular local ring, then
for every divisorial valuation v on R that is centered on m, there exists an ideal
I such that v is the only Rees valuation of I. Namely, by Proposition 1.3, v is a
Rees valuation of some ideal I of height two. This ideal may be assumed to be
integrally closed, since RV (I) = RV(I). Zariski proved that in a two-dimensional
regular local ring the product of any two integrally closed ideals is integrally closed,
and each integrally closed ideal factors uniquely (up to order) into a product of
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simple integrally closed ideals. Then by Proposition 1.4, v is a Rees valuation of
some simple integrally closed ideal I of height two. It is a fact that a simple integrally
closed m-primary ideal in a two-dimensional regular local ring has only one Rees
valuation, so v is the only Rees valuation of I.


Lipman [17] generalized Zariski’s result to all two-dimensional local rational
singularity rings, and Göhner [G] proved it for two-dimensional complete integrally
closed rings with torsion class group. Muhly [22] showed that there are two-
dimensional analytically irreducible local domains for which Zariski’s conclusion
fails. Recall that a Noetherian local ring (R,m) is analytically irreducible if the
m-adic completion of R is a domain.


More strongly, Cutkosky [2] proved that there exists a two-dimensional complete
integrally closed local domain (R,m) in which every m-primary ideal has at least
two Rees valuations. However, no concrete example of such a ring with no one-
fibered zero-dimensional ideals has been found. One of the quests, alas unfulfilled,
of the following section, is to find such a ring.


We discuss in this section what, if any, restrictions on the ring does the
existence of a one-fibered ideal impose, and we also discuss various criteria for
one-fiberedness.


Theorem 3.2. (Sally [33]) Let (R,m) be a Noetherian local ring whose m-adic
completion is reduced (i.e., R is analytically unramified), and that has a one-
fibered m-primary ideal I. Then R is analytically irreducible, i.e., the m-adic
completion of R is a domain.


Katz more generally proved in [15] that if (R,m) is a formally equidimensional
Noetherian local ring, then for any m-primary ideal I, the number of Rees valuations
is bounded below by the number of minimal prime ideals in the m-adic completion
of R. Thus, if R has a one-fibered m-primary ideal, then R̂ has only one minimal
prime ideal. The converse fails by Cutkosky’s example [2] mentioned earlier in this
section.


By the more recent work of Katz and Validashti, see Theorem 1.2, if (R,m)
is a Noetherian local ring of positive dimension, the number of Rees valuations
of an m-primary ideal I is the same as the number of Rees valuations of IR̂. By
Proposition 2.2, the number of Rees valuations of IR̂ is at least the number of
the minimal primes in R̂, so that if R has a one-fibered ideal, the completion must
have only one minimal prime ideal. If in addition the completion is assumed to be
reduced, this forces the completion to be a domain, thus proving Theorem 3.2.


Another proof of Theorem 3.2, without assuming Theorem 1.2 and Proposition
2.2, goes as follows: Rees proved in [29] that since R is analytically unramifed, there
exists an integer k such that for all n, In+k ⊆ In. Let V be the Rees valuation ring of
I, and let r be an integer such that IV = mr


V . As I is m-primary, m is the center of


V on R. Then for all n, mr(n+k) ⊆ m
r(n+k)
V V ∩R = In+kV ∩R = In+k ⊆ In ⊆ mn, so


that the m-adic completion of R is contained in the mV -adic completion of V . But
the latter is a domain since V is regular.


An arbitrary Noetherian local ring may have a zero-dimensional one-fibered
ideal, yet not be analytically irreducible or even analytically unramified (of course
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the example is due to Nagata, see [12, Exercise 4.11]): Let k0 be a perfect field
of characteristic 2, let X ,Y,X1,Y1,X2,Y2, . . . be variables over k0, let k be the field
k0(X1,Y1,X2,Y2, . . .), f = ∑∞


i=1(XiXi +YiY i), and R = k2[[X ,Y ]][k][ f ]. Then R is an
integrally closed Noetherian local domain whose completion R̂ is isomorphic to
k[[X ,Y,Z]]/(Z2). The integral closures of powers of (X ,Y )R are contracted from the
integral closures of powers of (X ,Y )R̂, hence clearly (X ,Y )R has only one Rees
valuation.


As proved in Fedder–Huneke–Hübl [4, Lemma 1.3], the following are equivalent
for an analytically unramified one-dimensional local domain R:


1. The integral closure R of R is local.
2. R has a non-zero one-fibered ideal.
3. Every non-zero ideal in R is one-fibered.


How does one find one-fibered ideals in arbitrary Noetherian local domains? In
case R̂ is a domain, R has a one-fibered m-primary ideal if and only if the integral
closure of R̂ has a one-fibered zero-dimensional ideal (see Sally [33, page 440]).


If (R,m) is a Noetherian local analytically irreducible domain, and I an
m-primary ideal, then I is one-fibered if and only if there exists an integer b
such that for all positive integers n and all x,y ∈ R, xy ∈ I2n+b implies that either x
or y lies in In (see Hübl–Swanson [10]). A question that appeared in the same paper
and has not yet been answered may be worth repeating:


Question. Let I be an m-primary ideal in an analytically irreducible Noetherian
local domain (R,m). Suppose that for all n ∈ N and all x,y such that xy ∈ I2n, either
x or y lies in In. Or even suppose that for all x ∈ R such that x2 ∈ I2n, necessarily
x ∈ In. Are all the powers of I then integrally closed?


Another criterion of one-fiberedness was observed first by Sally [4, page 323] in
dimension one, and the more general case below appeared in [9, page 3510]:


Theorem 3.3. Let (R,m) be a Noetherian d-dimensional analytically unramified
local ring, and let l be a positive integer satisfying the following:


If f ∈ m\ In, then there exist g2, . . . ,gd ∈ I such that In+l ⊆ ( f ,g2, . . . ,gd),
and for all Rees valuations v of I, v(In+l) � v( f ).


Then I is one-fibered.


Remark 3.4. Lipman [17] proved that the quadratic transformations of two-dimen-
sional rational singularity rings are integrally closed. However, this does not mean
that the maximal ideal has only one Rees valuation. For example, let c � 3 and take R
to be the localization of C[X ,Y,Z]


(X2+Y 2+Zc) at (X ,Y,Z). By Flenner [5], Korollar (3.10), R is


a rational singularity ring. The quadratic transformation S = R
[


x
z ,


y
z


]
is isomorphic


to a localization of C[Z,A,B]
(A2+B2+Zc−2) and is integrally closed, so that the primes in S


minimal over ZS are (Z,A + iB), (Z,A− iB). By the blowup construction of Rees
valuations, this says that (X ,Y,Z) has at least two Rees valuations. In fact, since
(Y,Z) is a minimal reduction of (X ,Y,Z), Sally’s result [33, page 438] shows that
(X ,Y,Z) has exactly two Rees valuations, the two arising from the two obtained
prime ideals.
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Muhly and Sakuma [23, Lemma 4.1] proved the following result on one-fibered
ideals I1, . . . , Ir in a two-dimensional universally catenary Noetherian integral
domain R: If for j = 1, . . . ,r, RV(I j) = {Vj}, and the corresponding valuations
v1, . . . ,vr are pairwise not equivalent, then det(vi(I j)i, j) �= 0. Here is a sketch
of the proof. Let A be the r × r matrix (vi(I j)i, j). Suppose that detA = 0.
Then the columns of A are linearly dependent over Q, and we can find integers
a1, . . . ,ar, not all zero, such that for all i, ∑ j a jvi(I j) = 0. By changing indices, we
assume that a1, . . . ,at ,−at+1, . . . ,−ar are non-negative integers. Let I = Ia1


1 · · · Iat
t ,


J = I−at+1
t+1 · · · I−ar


r for some positive integer t < r. By Proposition 1.4, RV (I) =
{V1, . . . ,Vt}, RV (J) = {Vt+1, . . . ,Vr}. Since for all i = 1, . . . ,r, vi(I) = vi(J), we
have In = Jn for all n, so I and J have the same Rees valuations, which is a
contradiction.


4 Upper bounds on the number of Rees valuations


The main goal of this section is to bound above the number of Rees valuations of
ideals in an arbitrary Noetherian local ring (R,m), and to find m-primary ideals with
only one Rees valuation, if possible.


If R is a one-dimensional Noetherian semi-local integral domain, then it follows
easily from the constructions of Rees valuations that {RP : P ∈ MaxR} = ∪IRV(I)
is finite, as I varies over all the ideals of R. Thus the total number of Rees valuations
of all possible ideals in a one-dimensional Noetherian semi-local ring is finite, and
this number is a desired upper bound on the number of Rees valuations of any one
ideal.


In higher dimensions, there is no upper bound on the number of all possible Rees
valuations of ideals. For one thing, there are infinitely many prime ideals of height
one, and each one of these has at least one Rees valuation centered on the prime
itself. But more importantly, even if we restrict the ideals to m-primary ideals, there
is no upper bound on the number of Rees valuations:


Proposition 4.1. Let (R,m) be a Noetherian local domain of dimension d > 1.
Let (x1, . . . ,xd) be an m-primary ideal. Then ∪nRV (xn


1,x2, . . . ,xd) is not a finite set.
Furthermore, there is no upper bound on |RV(I)| as I varies over m-primary ideals.


Proof. The last statement follows from the first one, by Proposition 1.4.
Suppose that the set S of all Rees valuations of (xn


1,x2, . . . ,xd), as n varies, is
finite. Let N be a positive integer such that for all v ∈ S, Nv(x1) � v(x2), . . . ,v(xd).
Then for all n � N, the integral closure of (xn


1,x2, . . . ,xd) is independent of n,
whence xN


1 ∈ (xn
1,x2, . . . ,xd). Let ′ denote the images modulo (x2, . . . ,xd). Then


in the one-dimensional Noetherian ring R′, x′1 is a parameter, and x′N1 ∈ (x′1)n for all
n � N. We may even pass to the completion of R′ and then go modulo a minimal
prime ideal to get a one-dimensional complete Noetherian local domain A and a
parameter x such that for all n � N, xN ∈ (xn). Since A is analytically unramified,
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by Rees [29] there exists an integer l such that for all n � l, (xn) ⊆ (xn−l). Thus
xN ⊆ ∩n�N,l(xn−l) = (0), which is a contradiction. �


As already mentioned, a maximal ideal in a regular ring has only one Rees
valuation. For zero-dimensional monomial ideals (in polynomial or power series
rings, or even zero-dimensional monomial ideals in a regular system of parameters
in a regular local ring), the number of Rees valuations is exactly the number
of bounding non-coordinate hyperplane faces of the Newton polyhedron. By
Carathéodory’s Theorem, each of these hyperplanes is determined by d = dimR
of the exponent vectors of the generators of I. With this geometric consideration
one obtains a very crude upper bound on the number of Rees valuations of a
zero-dimensional monomial ideal in terms of its generators:


|RV(I)| �
(


number of generators of I
dim(R)


)


.


In practice, this upper bound is much too generous. I thank Ezra Miller for providing
the following much better upper bound: the number of Rees valuations of I is at most


⎧
⎪⎪⎨


⎪⎪⎩


2


(


1 + m+
(m+1


2


)
+
(m+2


3


)
+ · · ·+ (m−1+ d−1


2
d−1


2


)
)


; if d is odd;


(m−1+ d
2


d
2


)
+ 2


(


1 + m+
(m+1


2


)
+
(m+2


3


)
+ · · ·+ (m−1+ d−2


2
d−2


2


)
)


; if d is even,


where n is the number of generators of I and m = n−d−1. In particular, for fixed d,
this upper bound on the number of Rees valuations of monomial ideals in d variables
is a polynomial in the number of generators of degree 
d/2�. This follows among
others from the Upper Bound Theorem for simplicial complexes.The relevant
ingredients using Hilbert functions can be found in Lemma 16.19, Exercise 14.34,
and Definition 16.32 in [13].


In general, however, the number of Rees valuations is not a function of the
number of generators: at least when R is a polynomial ring over an infinite field
(see [19]), or if (R,m) is a Noetherian local ring with infinite residue field (see [24]),
every ideal I has a minimal reduction J generated by dim(R) elements, we already
know that RV (I) = RV (I) = RV (J) = RV(J), yet the number of Rees valuations
is unbounded when the ring dimension is strictly bigger than one.


We now concentrate on finding upper bounds on the number of Rees valuations
of ideals in Noetherian local rings. Let (R,m) be a Noetherian local ring. For every


ideal I in R, I = IR̂∩R, so that the number of Rees valuations of IR̂ is an upper
bound on the number of Rees valuations of I. By Proposition 2.2, it then suffices
to find an upper bound on the number of Rees valuations of I(R̂/Q) for each Q ∈
Min(R̂) (and adding them), so finding bounds on the number of Rees valuations of
I reduces to the ring being a complete local domain. These reductions preserve the
property of ideals being primary to the maximal ideal. As established on page 427,
we may replace I by its power, and in particular, by a power that has a d-generated
reduction, where d is the dimension of the ring. (Or alternatively, we could first
pass in the standard way to R[X ]mR[X ], which is a faithfully flat extension of (R,m)
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with an infinite residue field, to have the existence of d-generated reductions for all
m-primary ideals.) We have thus reduced to finding upper bounds on the number
of Rees valuations of a d-generated m-primary ideal in a complete Noetherian local
domain (R,m) of dimension d. To simplify matters, we now restrict our attention
to the case where R contains a field. In that case, by the Cohen Structure Theorem,
there exists a regular local subring A = k[[X1, . . . ,Xd ]] of R, with k ∼= R/m a field
and X1, . . . ,Xd variables over k, such that R is module-finite over A and such that
JR = I, where J = (X1, . . . ,Xd)A. If the field of fractions of R is separable over that
of A, there exists an element z ∈ R such that A[z] ⊆ R is a module-finite extension of
domains with identical fields of fractions. Necessarily, A[z] is a hypersurface ring,
and the Rees valuations of JA[z] are the Rees valuations of JR = I (see page 423).
Under the separable assumption we have thus reduced to finding upper bounds on
the number of Rees valuations of the parameter ideal (X1, . . . ,Xd) in the complete
local hypersurface domain


R =
A[Z]


(Zn + a1Zn−1 + · · ·+ an)
=


k[[X1, . . . ,Xd ,Z]]
(Zn + a1Zn−1 + · · ·+ an)


,


where ai ∈ A. Since without loss of generality z may be replaced by any A-multiple
of z, we may assume that z is in the integral closure of I, so that we may assume that
ai ∈ JiA for all i. We can even control the degree n: since 1 = eA((X1, . . . ,Xd)A) =
eR(I) [R/m : k]/[Q(R) : Q(A)] = eR(I)/n, we get n = eR(I). Now we handle the
general case, not assuming that R is separable over A. By the standard field theory,
there exists a purely inseparable field extension k′ of k and a positive integer m such


that the field of fractions of B[R] = R[k′][X1/pm


1 , . . . ,X1/pm


d ] is finite and separable


over the field of fractions of B = k′[X1/pm


1 , . . . ,X1/pm


d ]. Note that B[R] is a module
finite (hence integral) extension of R, and by page 423, an upper bound on the set of
Rees valuations of IB[R] is an upper bound on the set of Rees valuations of I. Thus, it
suffices to replace R by B[R]. The field of fractions of this ring is separably generated
over that of B, and the extension B⊆ B[R] has the same form as the extension A ⊆ R,
so we are in the situation as above. In this case, the degree of the integral extension
from B to B[R] is [Q(B[R]) : Q(B)] = eB[R] (IB[R])[k′ : k] = eR(I) [Q(B[R]) : Q(R)].


In summary, in all cases of Noetherian local rings containing a field, we
reduce the computation of the bounds on the number of Rees valuations of I to
the computation of upper bounds on the number of Rees valuations of the ideal
(X1, . . . ,Xd)R in the domain


R =
k[[X1, . . . ,Xd ,Z]]


(Zn + a1Zn−1 + · · ·+ an)
,


where ai ∈ (X1, . . . ,Xd)ik[[X1, . . . ,Xd]]. We can even control the degree n as eR(I) if
R is separably generated over k, say in characteristic 0.


Proposition 4.2. With notation as above,


|RV ((X1, . . . ,Xd)R)| � n.
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Proof. Let S = R[X2
X1


, . . . , Xd
X1


]. Then


S ∼= k[[X1, . . . ,Xd ,Z]][T2, . . . ,Td ]
(Zn + b1Zn−1 + · · ·+ bn,X1T2 −X2, . . . ,X1Td −Xd)


,


for some bi ∈ Xi
1k[[X1, . . . ,Xd , ]][T2, . . . ,Td ]. By Theorem 2.3, all the Rees valuations


of (X1, . . . ,Xd)R are of the form (S)P, where S is the integral closure of S, and P is a
height one prime ideal in S containing X1.


Let P be such a prime ideal, and let p = P∩ S. Since R is formally equidimen-
sional, by the Dimension Formula, ht(p) = ht(P) = 1. Necessarily p is a prime
ideal in S minimal over X1S, hence p = (X1, . . . ,Xd ,Z). Thus, it suffices to prove
that the number of prime ideals in (S)S\p that contract to p in S is at most n.
By [12, Proposition 4.8.2], it suffices to prove that the number of minimal primes
in the completion Ŝp of Sp is at most n. Let T = k[[X1, . . . ,Xd ]][


X2
X1


, . . . , Xd
X1


], and let
q = (X1, . . . ,Xd)T . Then Tq is a regular local ring of dimension 1, and the maximal
ideal is generated by X1. The q-adic completion of Tq is Tq[[Y ]]/(X1 −Y ), which
is a regular local ring of dimension 1 with maximal ideal generated by Y . But
Ŝp is Tq[Z][[Y ]]/(Zn + b1Zn−1 + · · ·+ bn,X1 −Y ), which has at most n minimal
primes. �


Here is a table for the number of Rees valuations of the maximal ideal in
R = k[[X ,Y,Z]]


(Xa+Yb+Zc) (with 2 � a � b � c) that illustrates the proposition above, showing


that the number of Rees valuations of (X ,Y,Z) is at most a. By page 425, it
suffices to bound the number of Rees valuations of the ideal (X ,Y,Z) in the ring


R = C[X ,Y,Z]
(Xa+Y b+Zc) . Some of the calculations below were done with Anna Guerrieri.


a,b,c #RV(X ,Y,Z)
2,2,2 1
2,2,c � 3 1 if k = R, 2 if k = C


2,3,c � 3 1
2,4,4 1
2,4,c � 5 1 if k = R, 2 if k = C


2,5,c � 5 1
2,6,6 1
2,6,c � 7 1 if k = R, 2 if k = C


3,3,3 1
3,3,c � 4 2 if k = R, 3 if k = C


On the list above, do all of the rings have an (X ,Y,Z)-primary ideal with only one
Rees valuation? Can one find examples that are generated by monomials in X ,Y,Z?
This is indeed the case:


Proposition 4.3. Let R = C[[X ,Y,Z]]
(Xa+Y b+Zc) or R = C[X ,Y,Z]


(Xa+Yb+Zc) , with 2 � a � b � c integers.


Then the ideal (Xa,Y b,Zc) has exactly one Rees valuation.
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Proof. By page 423, it suffices to prove the proposition for the ideal I = (Xa,Y b,Zc)
in the ring R = C[X ,Y,Z]


(Xa+Y b+Zc) . Let S be obtained from R by adjoining a (bc)th


root x of X , an (ac)th root y of Y , and an (ab)th root z of Z. Then S = C[x,y,z]
(xabc+yabc+zabc)


and IS = (xabc,yabc,zabc)S. By reductions on page 423, it suffices to prove that
IS has only one Rees valuation. But RV (IS) = RV (IS) = RV ((x,y,z)abcS) =
RV((x,y,z)S), so it suffices to prove that the ideal (x,y,z) in the ring S =
C[x,y,z]/(xd + yd + zd) has only one Rees valuation. Since (x,y) is a reduction
of (x,y,z), by Theorem 2.3, all the Rees valuations of (x,y,z) are of the form
T ′


P, as P varies over the height one prime ideals in T ′ that are minimal over xT ′,
where T ′ = S[y/x]. Since clearly z/x is integral over T ′, all the Rees valuations of
(x,y,z) are of the form T P, as P varies over the minimal prime ideals over Y T , and
T = S[y/x,z/x]. Note that


T ∼= C[x,y,z,U,V ]
(xU − y,xV − z,1 +Ud +V d)


.


By the Jacobian criterion, T is an integrally closed domain, so that each Rees
valuation corresponds to a prime ideal in T minimal over xT , but xT is a prime
ideal. �


5 The Izumi–Rees theorem


The Izumi–Rees theorem is a very powerful and possibly surprising theorem, saying
that all divisorial valuations over a good ring R with the same center are comparable,
in the sense that if v and w are such valuations, there exists a constant C such
that for all x ∈ R, v(x) � Cw(x). Since over good rings divisorial valuations are
the same as Rees valuations (of possibly different ideals), this theorem enables us
to compare Rees valuations with the same center. The surprising part of the Izumi–
Rees Theorem is the contrast with the fact that if v and w are any two non-equivalent
integer-valued valuations on a field K (such as on Q(R)), then for any integers
n,m ∈Z there exists x ∈ K such that v(x) = n and w(x) = m. The difference between
this result and the Izumi–Rees Theorem is that the former takes elements from the
field of fractions, but the Izumi–Rees Theorem only from the (good) subring.


Izumi [14] characterized analytically irreducible local domains, in the context
of analytic algebras, without passing to the completion of the domains. Rees [31]
generalized Izumi’s result to the following two versions:


Theorem 5.1. (Rees [31, (C)]) A Noetherian local ring (R,m) is analytically
irreducible if for a least one m-primary ideal I, and only if, for all m-primary
ideals I, there exist constants C and C′, depending only on I, such that


ordI(xy)−ordI(y) � C ordI(x)+C′, for all non-zero x,y ∈ R.
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Theorem 5.2. (Rees [31, (E)]) Let (R,m) be a complete Noetherian local domain
and let v,w be divisorial valuations centered on m. Then there exists a constant C
such that for all non-zero x ∈ R, v(x) � Cw(x).


Rees’s proof first reduces to the proof in Krull dimension two, and then uses the
existence of desingularizations and intersection numbers of m-adic valuations: in
case the intersection number [v,w] of v and w is non-zero, the constant C in Rees’s
theorem may be taken to be C = −[w,w]/[v,w].


A stronger version of Theorem 5.2 was stated in Hübl–Swanson [10]: whenever
(R,m) is an analytically irreducible excellent local domain and whenever v is
a divisorial valuation centered on m, there exists a constant C such that for all
divisorial valuations w centered on m and all non-zero x ∈ R, v(x) � Cw(x). In
recent conversations with Shuzo Izumi, we removed the excellent assumption above,
analytically irreducible assumption suffices.


A version of the Izumi–Rees Theorem for affine rings, with explicit bounds for
comparisons of valuations in terms of MacLane key polynomials, was given by
Moghaddam in [21].


One of the consequences of the Izumi–Rees Theorem is a form of control of zero
divisors modulo powers of ideals:


Theorem 5.3. (Criterion of analytic irreducibility [10, Theorem 2.6]) Let (R,m)
be a Noetherian local ring. The following are equivalent:


1. R is analytically irreducible.
2. There exist integers a and b such that for all n ∈ N, whenever x,y ∈ R and xy ∈


man+b, then either x ∈ mn or y ∈ mn.
3. For every m-primary ideal I there exist integers a and b such that for all n ∈ N,


whenever x,y ∈ R and xy ∈ Ian+b, then either x ∈ In or y ∈ In.


In [34], the author used the Izumi–Rees Theorem to prove the following: Let R be
a Noetherian ring and I,J ideals in R such that the topology determined by {In : J∞}n


is equivalent to the I-adic topology. Then the two topologies are equivalent linearly,
i.e., there exists an integer k such that for all n, Ikn : J∞ ⊆ In. In particular, if I is a
prime ideal for which the topology determined by the symbolic powers is equivalent
to the I-adic topology, then there exists an integer k such that I(kn) ⊆ In. However,
one cannot read k from the proof.


Subsequently, Ein, Lazarsfeld, and Smith in [3], and Hochster and Huneke in [7]
proved that in a regular ring containing a field, the constant k for the prime ideal I
may be taken to be the height of I. (The two papers [3] and [7] prove much more
general results).


In short, the Izumi–Rees Theorem has proved to be a powerful tool for handling
powers of ideals.


Rond used the Izumi–Rees Theorem in a very different context: he proved in [32]
that the Izumi–Rees Theorem is equivalent to a bounding of the Artin functions by a
special upper bound of a certain family of polynomials. Also, Rond used the Izumi–
Rees Theorem to bound other Artin functions.
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6 Adjoints of ideals


In this final section, I present yet another construction that is related to Rees
valuations, and I end with an open question.


As already mentioned, Ein, Lazarsfeld and Smith [3] proved that for any prime
ideal P in a regular ring containing a field of characteristic 0, P(nh) ⊆ Pn for all
integers n, where h is the height of P. Hochster and Huneke [7] extended this to
regular rings containing a field of positive prime characteristic, but no corresponding
result is known in mixed characteristic. Hochster and Huneke used tight closure,
and Ein, Lazarsfeld and Smith used the multiplier ideals. A possible approach to
proving such a result in mixed characteristic is to use the adjoint ideals. The adjoint
and multiplier ideals agree whenever they are both defined. However, the theory of
multiplier ideals has access to powerful vanishing theorems, whereas adjoint ideals
do not.


Definition 6.1. (Lipman [18]) Let R be a regular domain with field of fractions K.
The adjoint of an ideal I in R is the ideal


adj I =
⋂


V


{r ∈ K : rJV/R ⊆ IV},


where V varies over all the divisorial valuations with respect to R, and JV/R denotes
the Jacobian ideal of the essentially finite-type extension R ⊆V .


The adjoint adj I is an integrally closed ideal in R containing the integral closure
of I, and hence containing I. Also, adj(I) = adj(I), and if x ∈ R, then adj(xI) =
x · adj(I). In particular, the adjoint of every principal ideal is the ideal itself.


In general, adjoints are not easily computable. One problem is the apparent need
to use infinitely many valuations in the definition. The emphasis in the rest of this
section is on limiting the number of necessary valuations, and the connection with
Rees valuations.


Howald [8] proved that if I is a monomial ideal in k[X1, . . . ,Xd ], then adj I =
(Xe : e ∈ N


d ,e + (1, . . . ,1) ∈ NP◦(I)), where NP◦(I) is the interior of the Newton
polyhedron of I. Hübl and Swanson [11] extended this to all ideals generated by
monomials in an arbitrary permutable regular sequence X1, . . . ,Xd in a regular ring
R such that for every i1, . . . , is ∈ {1, . . . ,d}, the ring R/(Xi1 , . . . ,Xis) is a regular
domain. Furthermore, [11] proved that for such I, adjI =


⋂
V{r ∈ K : rJV/R ⊆ IV},


where V varies only over the finite set of Rees valuations of I.
In addition, [11] proved that for all ideals I in a two-dimensional regular local


ring, adj I =
⋂


V {r ∈ K : rJV/R ⊆ IV}, where V varies only over the finite set of Rees
valuations.


However, in general, Rees valuations do not suffice for computing the adjoints of
ideals, see [11].


Question. Given an m-primary ideal I in a regular local ring (R,m), does there exist
a finite set S of valuations such that the adjoint of all the (integer) powers of I can
be computed by using only the valuations from S?
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If there is such a set S, by [11] it always contains the set of Rees valuations of I.
In general, S contains other valuations as well. There is as yet no good criterion on
what the other needed valuations might be.


Acknowledgements I thank Masataka Tomari and Dan Katz for their insight, Ezra
Miller for providing a polynomial upper bound on the number of Rees valuations of
monomial ideals, and the referee for all the suggestions.


References


1. Burch, L.: Codimension and analytic spread. Proc. Cambridge Phil. Soc. 72, 369–373 (1972)
2. Cutkosky, S.D.: On unique and almost unique factorization of complete ideals II. Invent. Math.


98, 59–74 (1989)
3. Ein, L., Lazarsfeld, R., Smith, K.E.: Uniform bounds and symbolic powers on smooth


varieties. Invent. Math. 144, 241–252 (2001)
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Weak normality and seminormality


Marie A. Vitulli


Abstract In this survey article we outline the history of the twin theories of weak
normality and seminormality for commutative rings and algebraic varieties with
an emphasis on the recent developments in these theories over the past 15 years.
We develop the theories for general commutative rings, but specialize to reduced
Noetherian rings when necessary. We hope to acquaint the reader with many of the
consequences of the theories.


All rings in this paper are commutative with identity, all modules are unitary, and
ring homomorphisms preserve the identity.


1 Introduction


The operation of weak normalization was formally introduced in 1967 by
A. Andreotti and F. Norguet [3] in order to solve a problem that arose while
constructing a certain parameter space associated with a complex analytic variety.
Their construction was dependent on the embedding of the space in complex
projective space. In this setting the normalization of the parameter space is
independent of the embedding, but no longer parametrizes what it was intended
to since one point may split into several in the normalization. To compensate one
“glues” together points on the normalization that lie over a single point in the
original space. This leads to the weak normalization of the parameter space, a new
space whose underlying point set is in one-to-one correspondence with the point
set of the parameter space. A few years later weak normalization was introduced
in the context of schemes and their morphisms by A. Andreotti and E. Bombieri.
For an integral extension B of a local ring A, they first introduced the notion of
gluing the prime ideals of B lying over the unique maximal ideal of A, mirroring
the complex analytic construction. This notion of gluing, which we will refer to
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as weak gluing, appears in Lemma 3.1 and is formally defined in Definition 3.2.
The weak gluing of A in B results in a local ring, integral over A, and whose
residue field is purely inseparable over the residue field of A [2]. For a general
integral extension A ⊂ B, an element b ∈ B is in the weak normalization of A in
B if and only if for every point x ∈ Spec(A), the image of b is in the weak gluing
of Ax in Bx over x. Andreotti and Bombieri then turned their attention to schemes
and their structure sheaves. They assumed they were working with preschemes,
however, what was called a prescheme in those days (e.g. see Mumford’s Red
Book [32]) is today called a scheme so we dispense with the prescheme label.
They defined the weak subintegral closure of the structure sheaf pointwise using
the notion of gluing they already defined for local rings. They next defined the
weak normalization σ : X∗ → X of a reduced algebraic scheme X over an arbitrary
field so that the scheme ∗X represents the weak subintegral closure of the structure
sheaf of X . Andreotti and Bombieri established a universal mapping property of
this pair (X∗,σ), which we discuss in Section 3.4.


At about the same time C. Traverso [50] introduced the closely related notion
of the seminormalization of a commutative ring A in an integral extension B. Like
in the Andreotti–Bombieri construction, given a local ring A one glues the prime
ideals of B lying over the unique maximal ideal of A (i.e, the maximal ideals of B)
but this time in a way that results in a local ring with residue field isomorphic to
that of A (see Definition 2.2). For an arbitrary integral extension of rings A ⊂ B, an
element b ∈ B is in the seminormalization +


B A of A in B if and only if for every point
x ∈ Spec(A), the image of b is in the gluing of Ax in Bx over x. Traverso showed
[50, Theorem 2.1] that for a finite integral extension of Noetherian rings A ⊂ B, the
seminormalization +


B A of A in B is obtained by a finite sequence of gluings. Traverso
defined a seminormal ring to be a ring that is equal to its seminormalization in A,
where A denotes the integral closure of A in its total ring of quotients. Traverso
showed that for a reduced Noetherian ring A with finite normalization and a finite
number of indeterminates T , the ring A is seminormal if and only if the canonical
homomorphism Pic(A) → Pic(A[T ]) is surjective. Here, Pic(A) denotes the Picard
group of A, namely the group of isomorphism classes of rank one projective modules
over A with ⊗A as the group law.


A few years after Traverso’s paper appeared E. Hamann showed that a
seminormal ring A contains each element a of its total quotient ring such that
an,an+1 ∈ A for some positive integer n (see [23, Prop. 2.10]). A ring that satisfies
this property is said to be (n, n+1)-closed. Hamann showed that this property
is a characterization of seminormality for a pseudogeometric ring [23, Prop.
2.11]; today pseudogeometric rings are more commonly known as Nagata rings.
More generally, Hamann’s criterion characterizes seminormal reduced Noetherian
rings. It also can be used to characterize arbitrary seminormal extensions, as we
shall see. The integers n,n + 1 that appear in Hamann’s characterization can be
replaced by any pair e, f of relatively prime positive integers [28, Prop. 1.4].
A long-known construction by Schanuel shows that if for a reduced ring A, the
canonical map Pic(A) → Pic(A[T ]) is an isomorphism, then A is (2,3)-closed (see
[11, Appendix A]).
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A slight but significant refinement of Hamann’s criterion was made in 1980 by
R. Swan [47]. Swan realized that the condition given by Hamann could be revised so
that it became an internal condition on a general ring A and that with the revamped
definition an arbitrary reduced ring is seminormal if and only if the canonical
homomorphism Pic(A) → Pic(A[T ]) is surjective. Swan defined a seminormal ring
as a reduced ring A such that whenever b,c ∈ A satisfy b3 = c2 there exists a ∈ A
such that b = a2,c = a3. For reduced Noetherian rings (or, more generally, any
reduced ring whose total quotient ring is a product of fields), Swan’s definition of
a seminormal ring is equivalent to Traverso’s. It was pointed out by D.L. Costa
[12] that a ring that satisfies Swan’s criterion is necessarily reduced so the b3 = c2


criterion alone characterizes seminormality. Swan showed in [47, Theorem 1] that
Pic(A) ∼= Pic(A[T ]) for some finite set of indeterminates T is equivalent to the
seminormality of Ared. In [19] Gilmer and Heitmann presented an example of a
non-Noetherian reduced ring that is equal to its own total ring of quotients but
such that Pic(A) is not canonically isomorphic to Pic(A[T ]). Thus, according to
Traverso’s original definition of a seminormal ring, the seminormality of A isn’t
equivalent PicA ∼= PicA[T ]. In [47] Swan constructed the seminormalization of a
general commutative ring in a way that is reminiscent of the construction of the
algebraic closure of a field. He went on to show that any reduced commutative ring
has an essentially unique seminormalization (i.e., a subintegral extension +A of A
such that +A is a seminormal ring).


Early in the 1980s, both Greco-Traverso [20] and Leahy–Vitulli [28] published
pivotal papers that linked the earlier work of Andreotti-Norguet-Bombieri to the
work of Traverso and looked at the singularities of schemes and varieties. Both
pairs of authors showed that a reduced, complex analytic space is weakly normal
at a point x ∈ X in the sense of Andreotti-Norguet if and only if the local ring of
germs of holomorphic functions OX ,x is seminormal in the sense of Traverso (cf. [28,
Prop. 2.24] and [20, Cor. 5.3]). Leahy–Vitulli defined a weakly normal singularity
called a multicross (see [28] and [29]). Briefly a point x on a variety X is a multicross
if x ∈ X is analytically isomorphic to z ∈ Z where Z is the union of linearly disjoint
linear subspaces. Most singularities of a weakly normal variety are of this type in
the sense that the complement of the set of multicrosses forms a closed subvariety of
codimension at least 2 [29, Theorem 3.8]. Leahy and Vitulli worked with algebraic
varieties over an algebraically closed field of characteristic 0.


A few years later, Yanagihara gave an intrinsic definition of a weakly normal ring
analogous to the Swan definition of a seminormal ring (see Definition 3.12 or [57]).
Yanagihara said that a reduced ring A is weakly normal provided that the ring is
seminormal in the sense of Swan and another condition involving rational primes
holds.


Before we can talk about the next set of results we need to recall a pair of
definitions. An integral extension of rings A ⊂ B is called a (weakly) subintegral
extension if for each prime ideal P of A there is a unique prime ideal Q of B lying
over P and the induced map of residue fields AP/PAP →BQ/QBQ is an isomorphism
(a purely inseparable extension) (see Definitions 2.5 and 3.4). An element b ∈ B
is said to be (weakly) subintegral over A provided that the extension A ⊂ A[b] is
(weakly) subintegral.
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In a series of papers by L. Reid, L. Roberts, and B. Singh that appeared in the
mid to late 1990s, a criterion for an element to be subintegral over a ring was
introduced and developed. At first Reid, Roberts, and Singh worked with Q-algebras
and introduced what they called a system of subintegrality (SOSI). They proved
that an element b in an integral extension B ⊃ A admits a SOSI if and only if b
is subintegral over A. A system of subintegrality is global in nature and makes
no reference to local gluings. We view the SOSI as the first true “element-wise”
criterion for subintegrality over a Q-algebra. Over the years Reid, Roberts, and
Singh showed each of many conditions is equivalent to the existence of a system
of subintegrality. Among the equivalent conditions is the existence of a highly-
structured sequence of monic polynomials of various degrees such that the element
b is a common root of each of these polynomials.


Reid, Roberts, and Singh were eventually able to drop the assumption that the
rings are Q-algebras, but only if they talked about weak subintegrality rather than
subintegrality. However they still talked about SOSIs, which perhaps should have
been renamed systems of weak subintegrality.


In 1999, Roberts observed that the lower degree polynomials are rational
multiples of the polynomial of highest degree. Gaffney and Vitulli [18, Prop. 2.2
and Prop. 2.3] have recently expanded this observation to make some geometric
sense out of the sequence of equations that appears in the work of Reid, Roberts,
and Singh. Proposition 3.26 in this paper is an original result that gives a new
element-wise characterization of weak subintegrality. Our result also provides a
simple, purely algebraic explanation for why an element satisfying the sequence of
equations introduced by Roberts, Reid, and Singh is necessarily weakly subintegral
over the base ring.


The element-wise criteria of Reid, Roberts, and Singh enabled the current author
and Leahy to talk about when an element b of a ring B is weakly subintegral over
an ideal I of a subring A and define the weak subintegral closure of an ideal either
in the containing ring A or an integral extension ring B [54]. Vitulli and Leahy
showed that for an extension A ⊂ B of rings, an ideal I of A, and b ∈ B, the element
b is weakly subintegral over Im if and only if btm is weakly subintegral over the
Rees ring A[It] [54, Lemma 3.2]. Thus, the weak subintegral closure ∗


BI of I in
B is an ideal of the weak subintegral closure ∗


BA of A in B [54, Prop. 2.11]. In
particular, the weak subintegral closure of I in A is again an ideal of A, which we
denote simply by ∗I . Vitulli and Leahy showed that given an ideal I in a reduced
ring A with finitely many minimal primes and total quotient ring Q, it holds that
∗(A[It]) = ⊕n�0


∗
Q(In)tn [54, Cor. 3.5]. Gaffney and Vitulli [18] further developed


the theory of weakly subintegrally closed ideals in both the algebraic and complex
analytic settings. They defined a subideal I> of the weak subintegral closure ∗I of an
I in a Noetherian ring that can be described solely in terms of the Rees valuations of
the ideal and related this subideal to the minimal reductions of I. Gaffney and Vitulli
also proved a valuative criterion for when an element is in the weak subintegral
closure of an ideal. H. Brenner [8] has proposed another valuative criterion in terms
of maps into the appropriate test rings.
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We now describe the contents of this paper. Section 2 deals with seminormality
and seminormalization. In Section 2.1, we recall Traverso’s notion of gluing the
maximal ideals of an integral extension of a local ring and prove the fundamental
properties that the ring so obtained enjoys. We give Traverso’s definition of the
seminormalization of a ring A in an integral extension B of A and provide proofs of
the fundamental properties of seminormalization. In Section 2.2, we take a look at
Swan’s revamped notion of a seminormal ring and his construction of the seminor-
malization of a ring. We discuss seminormality and Chinese Remainder Theorems in
Section 2.3. In Section 2.4, we explore the connections between seminormality and
the surjectivity of the canonical map Pic(A) → Pic(A[T ]). In Section 2.5, we recall
some characterizations of seminormal one-dimensional local rings. In Section 3
we develop the theories of weakly subintegral extensions and weak normality. We
discuss weakly subintegral and weakly normal extensions and the operation of weak
normalization in Section 3.1. We look at systems of subintegrality in Section 3.2.
We offer a new algebraic criterion for the weak subintegrality of an element over a
subring in Section 3.3. We give the reader a very brief glimpse of some geometric
aspects of weakly normal varieties in Section 3.4. In Section 3.5, we recall a
couple of Chinese Remainder Theorem results for weakly normal varieties. Our final
section, Section 3.6, is devoted to the notions of weak subintegrality over an ideal
and the weak subintegral closure of an ideal. We recall the Reid-Vitulli geometric
and algebraic characterizations of the weak subintegral closure of a monomial ideal.
We introduce the ideal I> that was defined by Gaffney and Vitulli and cite some of
their results connected with this ideal.


2 Seminormality and seminormalization


In Section 2.1, we will outline the development of gluings of prime ideals,
subintegral extensions, and the seminormalization of a ring in an integral extension
ring, a relative notion dependent on the extension ring. In Section 2.2, we will
deal with the absolute notions of a seminormal ring and seminormalization; these
notions do not depend on particular integral extensions. In Section 2.3, we discuss
seminormality in relation to various versions of the Chinese Remainder Theorem.
In Section 2.4, we discuss some Picard group results connected with seminor-
mality. Most of the original proofs of these results were K-theoretic in nature, but
Coquand’s recent treatment, which we sketch, is more elementary. In Section 2.5,
we discuss some results on one-dimensional seminormal rings.


We work with arbitrary commutative rings in this section. We do not assume
the rings we are discussing are reduced, Noetherian, or have any other special
properties.
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2.1 Subintegral and seminormal extensions and seminormalization
relative to an extension


We start by giving the local construction that leads to the seminormalization of a ring
in an integral extension. For a ring B we let R(B) denote the Jacobson radical of B.
We notationally distinguish between a prime ideal P = Px of B and the corresponding
point x ∈ Spec(B), when this is convenient. For an element b ∈ B and point
x ∈ Spec(B) we let b(x) denote the image of b in the residue field κ(x) = Bx/PxBx.
If A ⊂ B are rings and x ∈ Spec(A) we let Bx denote the ring obtained by localizing
the A-module B at the prime ideal x.


Lemma 2.1. Let (A,m) be a local ring and A ⊂ B be an integral extension. Set
A′ = A + R(B)⊂ B and m′ = R(B). For each maximal ideal ni of B let
ωi : A/m → B/ni be the canonical homomorphism. The following assertions hold.


1. (A′,m′) is a local ring and the canonical homomorphism A/m → A′/m′ is an
isomorphism;


2. A′ is the largest intermediate local ring (C,n) such that A/m∼= C/n; and
3. An element b ∈ B is in A′ if only if


a. b(xi) ∈ ωi(κ(x)) for all closed points xi of Spec(B), and
b. ω−1


i (b(xi)) = ω−1
j (b(x j)) for all i, j.


Proof. 1. We first show that A′ = A + R(B) is local with unique maximal ideal m′ =
R(B). It is clear that the canonical map A/m → A′/m′ is an isomorphism and hence
m′ is a maximal ideal of A′. Suppose that n is any maximal ideal of A′. By Lying
Over there exists a necessarily maximal ideal ni of B lying over n. Since we have
n = ni∩A′ ⊃ R(B)∩A′ = R(B) = m′ we may conclude that m′ is the unique maximal
ideal of A′.


2. Suppose that A ⊂ C ⊂ B are rings and that (C,n) is local with residue field
isomorphic to that of A. As in the proof of 1. we must have n ⊂ R(B) and since
A/m →C/n is an isomorphism we may conclude that C ⊂ A + R(B).


3. Suppose that b ∈ B satisfies (a) and (b) above. Choose a ∈ A such that
ωi(a(x)) = b(xi) for some i, and hence for every i. Then b−a∈ ni for every maximal
ideal ni of B, and hence, b ∈ A + R(B) = A′. It is clear that if b ∈ A′ then b satisfies
conditions a. and b. above. �
Definition 2.2. Let (A,m) be a local ring and A ⊂ B be an integral extension. We
say that A + R(B) is the ring obtained from A by gluing the maximal ideals in B
over m or that A + R(B) is the ring obtained from A by gluing in B over m. Letting
x ∈ Spec(A) denote the point corresponding to the maximal ideal m, this ring is
sometimes denoted by +


x A.


We can also glue the prime ideals of an integral extension ring lying over an arbitrary
prime ideal. We state the result and leave the proof up to the reader.







Weak normality and seminormality 447


Lemma 2.3. Let A ⊂ B be an integral extension of rings and x ∈ Spec(A). For
each point xi ∈ Spec(B) lying over x, let ωi : κ(x) → κ(xi) denote the canonical
homomorphism of residue fields. Set A′ = {b ∈ B | bx ∈ Ax + R(Bx)}. The following
assertions hold.


1. There is exactly one point x′ ∈ Spec(A′) lying over x and the canonical
homomorphism κ(x) → κ(x′) is an isomorphism.


2. A′ is the largest intermediate ring with one point lying over x and with isomorphic
residue field at the corresponding prime; and


3. An element b ∈ B is in A′ if and only if


a. b(xi) ∈ ωi(κ(x)) for all points xi of Spec(B) lying over x, and
b. ω−1


i (b(xi)) = ω−1
j (b(x j)) for all i, j.


We will now recall Traverso’s global definition and its first properties.


Definition 2.4. Let A ⊂ B be an integral extension of rings. We define the seminor-
malization +


B A of A in B to be


+
B A = {b ∈ B | bx ∈ Ax + R(Bx) for all x ∈ Spec(A)}. (1)


Before stating the first properties of +
B A, it will be useful at this point to recall


the notion of a subintegral extension. Such extensions were first studied by Greco
and Traverso in [20], who called them quasi-isomorphisms. In his 1980 paper,
R. Swan [47] called them subintegral extensions and this is what they are called
today.


Definition 2.5. A subintegral extension of rings is an integral extension A ⊂ B such
that the associated map Spec(B)→ Spec(A) is a bijection and induces isomorphisms
on the residue fields. An element b ∈ B is said to be subintegral over A provided that
A ⊂ A[b] is a subintegral extension.


Notice that there are no proper subintegral extensions of fields. We now look at
some first examples of subintegral extensions.


Example 2.6. Let A ⊂ B be an extension of rings, b ∈ B and b2,b3 ∈ A. Then,
A ⊂ A[b] is easily seen to be a subintegral extension. If A is any ring and b,c ∈ A
satisfy b3 = c2 then the extension A ⊂ A[x] := A[X ]/(X2−b,X3 − c), where X is an
indeterminate, is thus a subintegral extension.


Definition 2.7. An elementary subintegral extension is a simple integral extension
A ⊂ A[b], such that b2,b3 ∈ A.


The seminormalization +
B A of A in an integral extension B is the filtered union of all


subrings of B that can be obtained from A by a finite sequence of elementary
subintegral extensions. Here by filtered union we mean that given any rings
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C1,C2 with the property there is a third ring C with the property and satisfying
A ⊂ Ci ⊂ C ⊂ B (i = 1,2). In particular, the union of all subring of B with this
property is again a ring.


The notion of a seminormal extension, which we now define, is complementary
to that of a subintegral extension.


Definition 2.8. If A ⊂ B is an integral extension of rings, we say A is seminormal in
B if there is no subextension A ⊂C ⊂ B with C �= A and A ⊂C subintegral.


We point out that A is seminormal in B if and only if A = +
B A. We now recall


Traverso’s results regarding the seminormalization of A in an integral extension B.


Theorem 2.9. [50, (1.1)] Let A ⊂ B be an integral extension of rings. The following
assertions hold.


1. The extension A ⊂ +
B A is subintegral;


2. If A ⊂C ⊂ B and A ⊂C is subintegral, then C ⊂ +
B A;


3. The extension +
B A ⊂ B is seminormal; and


4. +
B A has no proper subrings containing A and seminormal in B.


Proof. 1. This follows immediately from Lemma 2.3.
2. Now suppose that A ⊂C ⊂ B and that A ⊂C is subintegral. Let P ∈ Spec(A)


and let Q ∈ Spec(C) be the unique prime lying over P. Since AP/PAP → CP/QCP


is an isomorphism and QCP ⊂ R(BP) we must have CP ⊂ AP + R(BP). Since P was
arbitrary, C ⊂ A′.


3. This follows immediately from parts 1. and 2.
4. Suppose that A ⊂C ⊂ +


B A and that C ⊂ B is seminormal. Observe that C ⊂ +
B A


is necessarily subintegral and hence C = +
B A. �


Paraphrasing this result, +
B A is the unique largest subintegral extension of A in B


and is minimal among the intermediate rings C such that C ⊂ B is seminormal.
We mention some fundamental properties of seminormal extensions.


Proposition 2.10. Let A ⊂ B ⊂C be integral extensions of rings.


1. If A ⊂ B is a seminormal extension, then the colon ideal A : B is a radical ideal
of B (contained in A).


2. A ⊂ B is seminormal if and only if A : A[b] is a radical ideal of A[b] for every
b ∈ B.


3. If A ⊂ B and B ⊂C are seminormal extensions, then so is A ⊂C.


Proof. For the proof of the first statement see [50, Lemma 1.3] and for the second
and third see [28, Prop. 1.4 and Cor. 1.5]. �


Before recalling a criterion due to Hamann and its generalizations we recall some
definitions.


Definition 2.11. Let A ⊂ B be an integral extension of rings and m,n be positive
integers. We say that A is n-closed in B if A contains each element b ∈ B such that
bn ∈ A. We say that A is (m,n)-closed in B if A contains each element b ∈ B such
that bm,bn ∈ A.
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Hamann [23, Prop. 2.10] showed that a ring A that is seminormal in A, the integral
closure of A in its total quotient ring, is (n,n + 1)-closed in A. She also showed
that this property is a characterization of seminormality for pseudogeometric rings
(also known as Nagata rings) ([23, Prop. 2.11]. We will say that a ring A (respec-
tively, an integral extension A ⊂ B) satisfies Hamann’s criterion provided that A
is (n,n + 1)-closed in A (respectively, B), for some positive integer n. Seminor-
mality arose in Hamann’s study of R-invariant and steadfast rings. An R-algebra
A is R-invariant provided that whenever A[x1, . . . ,xn] ∼=R B[y1, . . . ,yn] for indeter-
minates xi,y j, we must have A ∼=R B. Finally, R is called steadfast if the polynomial
ring in one variable R[x] is R-invariant. Hamann used Traverso’s work on seminor-
mality and the Picard group to show that a pseudogeometric local reduced ring A
that is seminormal in A is steadfast ([23, Theorem 2.4]) and a domain A that is
seminormal in A is steadfast [23, Theorem 2.5]. Hamann’s criterion characterizes
reduced Noetherian rings that are seminormal in A. It also can be used to charac-
terize arbitrary seminormal extensions as we shall see. The integers n,n + 1 that
appear in Hamann’s characterization can be replaced by any pair e, f of relatively
prime positive integers ([28, Prop. 1.4].


The following was proven by Leahy and Vitulli.


Proposition 2.12. [28, Prop. 1.4] Let A ⊂ B be an integral extension of rings. The
following are equivalent.


1. A is seminormal in B;
2. A is (n,n + 1)-closed in B for some positive integer n; and
3. A is (m,n)-closed in B for some relatively prime positive integers m,n.


The reader should note if A is seminormal in B, then A is (m,n)-closed in B for
every pair of relatively prime positive integers m and n. Recall from the introduction
Hamann’s results that assert that a ring A that is seminormal in A is (n,n+1)-closed
for every positive integer n and that a pseudogeometric ring A that is (n,n + 1)-
closed is necessarily seminormal in A .


The most commonly cited version of 2. above is with n = 2, that is, the integral
extension A ⊂ B is seminormal if and only if it is (2,3)-closed (see [23, Props. 2.10
and 2.11].


We point out that a normal integral domain A is (2,3)-closed, and hence
seminormal in any reduced extension ring B. For if 0 �= b ∈ B and b2,b3 ∈ A,
then b = b3/b2 is in the quotient field of A and is integral over A, hence b ∈ A. In
particular, if K is a field, then K[x2] ⊂ K[x] is a seminormal extension.


With the previous characterization of a seminormal extension, it is easy to show
that seminormal extensions are preserved under localization.


Proposition 2.13. [28, Cor. 1.6] If A ⊂ B is a seminormal extension and S is
any multiplicative subset, then S−1A ⊂ S−1B is again seminormal. Moreover, the
operations of seminormalization and localization commute.


Swan gave another useful characterization of a subintegral extension.
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Lemma 2.14. [47, Lemma 2.1] An extension A ⊂ B is subintegral if and only if B is
integral over A and for all homomorphisms ϕ : A → F into a field F, there exists a
unique extension ψ : B → F.


Proof. This follows from noting that ϕ is determined by specifying a prime Q (which
will serve as kerψ) lying over P = kerϕ and an extension of κ(P) → F to a map
κ(Q) → F . �


2.2 Seminormal rings, seminormalization, and Swan’s refinements


Traverso’s original definition of a seminormal extension of rings and his
construction of the seminormalization of a ring A in an integral extension B
of A are still accepted by specialists in the field today. Since this conceptual-
ization of seminormalization depends on the extension ring we’ll refer to it as
the relative notion. However, the current absolute notion of a seminormal ring
and the construction of the seminormalization of a ring are the result of Swan’s
insights. As the reader shall see, Swan defined a seminormal ring without any
mention of an extension ring. To say it differently, the relative theory is still due
to Traverso but the absolute theory commonly used today is due to Swan. We
recall from the introduction that Traverso defined a seminormal ring as a ring
A that is equal to its seminormalization in the integral closure of A in its total
quotient ring. We will not formally give Traverso’s definition, but rather will follow
Swan’s approach. One compelling reason for modifying the definition is that the
modification enabled Swan to prove that Ared is seminormal if and only if every
rank one projective module over the polynomial ring A[T ] is extended from A
[47, Theorem 1]. The reader is referred to Swan’s original paper [47] for more
details. Lemma 2.16 below illustrates that under mild assumptions, Swan’s absolute
notion of a seminormal ring is equivalent to the earlier notion of Traverso. We also
present the Swan example that shows that, in general, the definitions disagree. We
mention the Gilmer–Heitmann example that show these definitions disagree even for
reduced rings.


For a ring A we let A denote the integral closure of A in its total ring of quotients.
Notice that if A is a ring and b is an element of the total ring of quotients of A


such that b2,b3 ∈ A, then b is necessarily integral over A. Thus a ring A = +
A


A if and
only if it is (2,3)-closed in its total quotient ring.


We now present Swan’s definition of a seminormal ring.


Definition 2.15. A seminormal ring is a ring A such that whenever b,c ∈ A satisfy
b3 = c2 there exists a ∈ A such that b = a2,c = a3.


D. L. Costa [12] observed that if A is seminormal in this sense, then A is necessarily
reduced. Just suppose A is not reduced. Then, there is some nonzero element b ∈ A
such that b2 = 0. Then, b3 = b2 and hence there exists a ∈ A such that b = a2,
b = a3. Hence, b = a3 = aa2 = ab = aa3 = b2 = 0, a contradiction. Swan’s original
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definition of a seminormal ring stipulated that the ring is reduced, but in light of the
previous remark this is redundant and we have omitted it from our definition.


Suppose that A is seminormal and let K denote its total ring of quotients. Assume
that b ∈ K and b2,b3 ∈ A. Then, there exists an element a ∈ A such that a2 = b2,
a3 = b3. Then, (a− b)3 = a3 − 3a2b + 3ab2 − b3 = a3 − 3b3 + 3a3 − b3 = 0 and
hence b = a ∈ A, since A is reduced. Thus A = +


A
A. This same argument shows that


for a seminormal ring A and elements b,c ∈ A satisfying b3 = c2, there exists a
unique element a ∈ A such that b = a2,c = a3. If K is a product of fields and A is
seminormal in A, then A is a seminormal ring, as we will now show.


Lemma 2.16. Suppose that A is a ring whose total ring of quotients K is a product
of fields and let B = A. Then, A = +


B A if and only if A is seminormal.


Proof. Let K = ∏Ki, where Ki are fields, and let ρi : A → Ki be the inclusion
followed by the projection. Notice that A is reduced. Assume that A = +


B A. Suppose
that b,c ∈ A and b3 = c2. If b = 0 then b = 02,c = 03. Now assume b �= 0. Consider
the element α = (αi) ∈ K where


αi =
{


0 if ρi(b) = 0
ρi(c)/ρi(b) if ρi(b) �= 0


One can check that α2 = b,α3 = c ∈ A. Since A = +
B A, α = (ρi(a)) for some


a ∈ A. Then, a2 = b,a3 = c, as desired.
The converse was observed to be true in the preceding paragraph. �
We wish to define the seminormalization +A of a reduced ring A to be a


seminormal ring such that A ⊂ +A is a subintegral extension. It turns out that any
such extension has a universal mapping property that makes it essentially unique;
we will make this precise after stating Swan’s theorem. In light of Lemma 2.16 and
Theorem 2.9, if the ring A is reduced and its total ring of quotients K is a product of
fields, then we may define +A = +


A
A, where A is the normalization of A. If the total


quotient ring isn’t a product of fields, this doesn’t always produce a seminormal ring
as the following example that appeared in Swan [47] illustrates.


Example 2.17. A ring that is seminormal in its integral closure in its total
quotient ring need not be seminormal. Let (B,n,k) be a local ring and set
A = B[X ]/(nX ,X2) = B[x]. Notice that A is local with unique maximal ideal
m = (n,x). Since m consists of zero divisors for A the ring A is equal to its own total
ring of quotients K and hence A = +


K A. However, A is not a seminormal ring, since
it isn’t reduced.


Gilmer and Heitmann [19, Example 2.1] constructed an example of a reduced
local ring A that is equal to its own quotient ring, but the canonical map
Pic(A)→ Pic(A[T ]) is not surjective. As we shall see in the next section, this implies
A is not a seminormal ring. However, since A is equal to its own quotient ring, A
is seminormal in its integral closure in its quotient ring. Gilmer and Heitmann’s
construction and proof that the canonical map Pic(A) → Pic(A[T ]) is not surjective
is more complicated; we refer the reader to their original paper for the details.
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Swan constructed the seminormalization of a reduced ring using elementary
subintegral extensions and mimicking the construction of the algebraic closure of
a field. He also proved the following universal mapping property.


Theorem 2.18. [47, Theorem 4.1] Let A be any reduced ring. Then there is a
subintegral extension A ⊂ B with B seminormal. Any such extension is universal
for maps of A to seminormal rings: If C is seminormal and ϕ : A →C, then ϕ has a
unique extension ψ : B →C. Furthermore ψ is injective, if ϕ is.


Thus if there exist subintegral extensions A ⊂ B and A ⊂ C of a reduced ring A
with B and C seminormal, then there is a unique ring homomorphism ψ : B → C
which is the identity map on A, and ψ is an isomorphism. In this strong sense, A
admits an essentially unique seminormalization.


Mindful of Hamann’s examples in [23], Swan calls an extension of rings A ⊂ B
p-seminormal if b ∈ B,b2,b3, pb ∈ A imply b ∈ A; here p denotes a positive integer.
Swan proves in [47, Theorem 9.1] that a reduced commutative ring is steadfast if and
only if it is p-seminormal for all rational primes p. This assertion had been proven
for domains by Asanuma [4]. Greither [21, Theorem 2.3] proved that a projective
algebra in one variable over a seminormal ring is the symmetric algebra of an R-
projective module. Before we conclude this section we’d like to mention some
results of Greco and Traverso on faithfully flat homomorphisms, pull-backs, and
completions.


Definition 2.19. A Mori ring is a reduced ring A whose integral closure A in its total
ring of quotients is a finite A-module.


We point out that an affine ring is Mori. More generally, a reduced excellent ring
is Mori.


Theorem 2.20. Consider a faithfully flat ring homomorphism f : A → A′. Let B be
a finite overring of A and put B′ = A′ ⊗A B.


1. If A′ is seminormal in B′, then A is seminormal in B.
2. If A′ is a seminormal Mori ring, then A is a seminormal Mori ring.


Proof. See [20, Theorem 1.6 and Cor. 1.7]. �
Greco and Traverso also proved this result on pull-backs in order to prove a result


for reduced base change.


Lemma 2.21. [20, Lemma 4.2] Let R be a ring and let


A
f


��


g
��


B


u
��


C
v


�� D


be a pull-back diagram of R-algebras, that is,


A = B×D C := {(b,c) ∈ B×C | u(b) = v(c)}.
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Assume that the horizontal arrows are injective and finite, and that the vertical ones
are surjective. If C is seminormal in D, then A is seminormal in B.


This lemma is used to prove the following base change result. Recall that a
homomorphism f : A → A′ is reduced if it is flat and all of its fibers A′ ⊗A κ(P)
are geometrically reduced. The latter is equivalent to saying that for any prime P of
A and any finite extension L of κ(P), the ring B⊗A L is reduced.


Theorem 2.22. [20, Theorem 4.1] Let A ⊂ B be a finite integral extension and let
A → A′ be a reduced homomorphism. If A is seminormal in B, then A′ is seminormal
in B′ = A′ ⊗A B.


We conclude this section by recalling a result on seminormality and completions.
A proof of this result for algebro-geometric rings can be found in Leahy–Vitulli [28,
Theorem 1.21].


Theorem 2.23. [20, Cor. 5.3] An excellent local ring is seminormal if and only if its
completion is seminormal.


2.3 Seminormality and Chinese remainder theorems


Let A be a commutative ring and I1, . . . , In be ideals of A. We say that the Chinese
Remainder Theorem (CRT) holds for {I1, . . . , In} provided that given a1, . . . ,an ∈ A
such that ai ≡ a j mod Ii + I j(i �= j), there exists an element a ∈ A such that a ≡
ai mod Ii for all i.


Notice that if the ideals I j are co-maximal we get the statement of the classical
Chinese Remainder Theorem.


Note too that in the generalized sense the CRT holds for any pair of ideals since
the sequence


0 → A/(I1 ∩ I2)
α→ A/I1 ×A/I2


β→ A/(I1 + I2) → 0


where α(a + I1 ∩ I2) = (a + I1,a + I2) and β (a1 + I1,a2 + I2) = a1 − a2 + I1 + I2 is
always exact.


The generalized Chinese Remainder Theorem need not hold for 3 ideals.
Consider the ideals I1 = (X), I2 = (Y ), I3 = (X − Y ) ⊂ C[X ,Y ]. There isn’t
an element f ∈ C[X ,Y ] such that f ≡ Y mod (X), f ≡ X mod (Y ) and f ≡
1 mod (X −Y).


We now mention a few of the results on seminormality, weak normality, and
results in the spirit of the Chinese Remainder Theorem that are due to Dayton,
Dayton-Roberts, and Leahy–Vitulli. These results appeared at about the same time.
The results in Leahy–Vitulli were stated for algebraic varieties over an algebraically
closed field of characteristic 0. The first result appeared both in [17, Theorem 2] and
in [16, Theorem A], where a direct proof of the result is given.
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Theorem 2.24. Let A be a commutative ring and I1, . . . , In be ideals of A. Suppose
that Ii + I j is radical for i �= j and let B = ∏A/Ii. Then, the CRT holds for {I1, . . . , In}
if and only if A/∩ Ii is seminormal in B.


Another form of the CRT appears in [17, Theorem 2]. To put this result in some
context we remind the reader that if A ⊂ B is a seminormal extension of rings,
then the colon ideal A : B is a radical ideal of A. A general ring extension A ⊂ B
is seminormal if and only if A : A[b] is a radical ideal of A[b] for every b ∈ B. Both
statements about colon ideals (once called conductors) appeared in Proposition 2.10.
The theorem below is preceded by a lemma on colon ideals.


Lemma 2.25. Let A be a commutative ring and I1, . . . , In ideals of A with ∩Ii = 0.
Let B = ∏A/Ii and set c = A : B. Then, c = ∑i


(∩ j �=iI j
)


= ∩i
(
Ii +∩ j �=iI j


)
.


Theorem 2.26. Let A be a commutative ring and I1, . . . , In ideals of A with ∩Ii = 0.
Let B = ∏A/Ii, c = A : B and ci the projection of c in A/Ii. Assume also that A/Ii is
seminormal for each i and that I j + Ik is radical all j,k. Then conditions 1. and 2.
below are equivalent.


1. A is seminormal.
2. The CRT holds for {I1, . . . , In}.


These imply the next 5 conditions, which are equivalent.


3. For each i, ∩ j �=i(Ii + I j) = Ii +∩ j �=iI j.
4. For each i, Ii +∩ j �=iI j is a radical ideal in A.
5. For each i, ci = ∩ j �=i((Ii + I j)/Ii).
6. For each I, ci is a radical ideal in A/Ii.
7. c is a radical ideal in B.


The above imply the next 2 conditions, which are equivalent.


6. c is a radical ideal in A.
7. c = ∪ j �=k(I j + Ik).


If, in addition, A/∩ j �=i I j is seminormal for any i then 7. ⇒ 1.


There are various results in the spirit of the Chinese Remainder Theorem given in
[28, Section 2], where they are stated for varieties over an algebraically closed field
of characteristic 0. These results appeared at the same time as the algebraic results
cited above. Their proofs use an algebro-geometric characterization of weakly
normal varieties that will be introduced in Section 3.4.


2.4 Seminormality and the Traverso-Swan Picard group result
with Coquand’s simplification


Recall that Pic(A) denotes the Picard group of A, i.e., the group of isomorphism
classes of rank one projective modules over A. Given a homomorphism of rings
φ : A → B we get a homomorphism of groups
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Pic(φ) : Pic(A) → Pic(B), (2)


defined by extending scalars to B. When B = A[X ] and φ is the natural inclusion,
evaluation at zero defines a retract ρ : A[X ] → A. We thus have group homomor-
phisms


Pic(A)
Pic(φ)→ Pic(A[X ])


Pic(ρ)→ Pic(A), (3)


whose composition is the identity map. We point out that the first homomorphism
is always injective and the second always surjective. The maps Pic(φ) and Pic(ρ)
are isomorphisms if and only if the first is surjective if and only if the second is
injective. Therefore to show that Pic(φ) : Pic(A) → Pic(A[X ]) is an isomorphism is
equivalent to showing: if P is a rank one projective over A[X ] and P(0) := Pic(ρ)(P)
is a free A-module, then P is a free A[X ]-module.


Various people have proven in different cases that Pic(φ) is an isomorphism
if and only if A is seminormal. This was proven by Traverso in case A is a
reduced Noetherian ring with finite normalization [50, Theorem 3.6], by Gilmer
and Heitmann for an arbitrary integral domain [19], by Rush for a reduced ring
with finitely many minimal primes [43, Theorems 1 and 2], and by Swan for an
arbitrary reduced ring [47, Theorem 1]. Both Traverso and Swan used standard
K-theoretic results to prove the ‘if’ direction and a construction of Schanuel to
prove the ‘only if’ direction. A recent paper by Coquand [11] simplified the
connection between seminormality and the Picard group result by giving a self-
contained proof of Swan’s result. For a finite integral extension of reduced rings
A ⊂ B, Coquand’s work suggests an algorithmic approach to finding a sequence
of elements a1,a2, . . . ,an ∈ B such that a2


i+1,a
3
i+1 ∈ A[a1, . . . ,ai] for i = 1, . . . ,n−1


and +
B A = A[a1, . . .an]. Another algorithm was recently given by Barhoumi and


Lombardi [5].
Since Pic(A)∼= Pic(Ared) and A seminormal implies A is reduced we will assume


that our base ring A is reduced in the remainder of this section.
As pointed out by Swan [47] one can replace finitely-generated projective


modules by “projection matrices,” as we now explain. If


0 → K → An π→ P → 0


is a presentation of a finitely-generated projective A-module and ρ : P → An is a
section of π then ρ ◦ π : An → An is given by an n× n idempotent matrix M such
that im(M) = P; this matrix is referred to as a projection matrix and is said to
present P.


Suppose that M,M′ are two idempotent matrices over the ring A, not necessarily
of the same size. We write M ∼=A M′ to express that M and M′ present isomorphic
A-modules. We write M ∼=A 1 to express that M presents a free A-module. Let Pn


denote the n× n matrix [pi j] such that p11 = 1 and all other entries are 0. Let In


denote the n×n identity matrix.
Coquand shows that given an n× n idempotent matrix M with entries in A[X ],


one has M(0) ∼=A 1 only if M ∼=A[X ] 1. He does this by establishing a sequence of
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straightforward lemmas that culminate in the main result. He first shows that for A
seminormal, M ∈ A[X ]n×n a rank one projection matrix such that M(0) = Pn, it must
be the case that M ∼=A[X ] 1. Finally he shows that for A seminormal, M ∈ An×n a rank
one projection matrix such that M(0) ∼=A 1, it must be the case that M ∼=A[X ] 1. The
reader is referred to Coquand’s paper for the proofs of these results. To give a flavor
of the statements of these results and to present Schanuel’s example, we mention 2
of Coquand’s results.


Lemma 2.27. [11, Lemma 1.1] Let M be a projection matrix of rank one over a
ring A. We have M ∼=A 1 if and only if there exist xi,y j ∈ A such that mi j = xiy j. If we
write x for the column vector (xi) and y for the row vector (y j) this can be written
as M = xy. Furthermore the column vector x and the row vector y are uniquely
defined up to a unit by these conditions: if we have another column vector x′ and
row vector y′ such that M = x′y′, then there exists a unit u ∈ A such that x = ux′ and
y′ = uy.


Coquand then proves a result which is well known to many, that asserts that if
f ,g ∈ A[X ], A reduced, and f g = 1 then f = f (0),g = g(0) in A[X ]. Next he proves
the following.


Lemma 2.28. [11, Corollary 1.3] Let A′ be an extension of the reduced ring A.
Let M be an n× n projection matrix over A[X ] such that M(0) = Pn. Assume that
fi,g j ∈ A′[X ] are such that mi j = fig j and f1(0) = 1. If M ∼=A[X ] 1 then fi,g j ∈ A[X ].


We state the main theorem of Coquand’s paper, which was previously established
by Swan. Notice that this result gives a direct proof for rank one projective modules
of the theorem of Quillen-Suslin settling Serre’s Conjecture.


Theorem 2.29. [47, Theorem 1][11, Theorem 2.5] If A is seminormal then the
canonical map Pic(A) → Pic(A[X1, . . . ,Xn]) is an isomorphism.


It is straightforward to see, using a construction of Schanuel that originally
appeared in a paper by Bass [6], more recently appeared in [11, Appendix A.],
and in different garb in both [50] and [47], that if Pic(φ) : Pic(A) → Pic(A[X ]) is an
isomorphism, then A is seminormal. We give a quick proof.


Lemma 2.30. If A is a reduced ring and Pic(φ) : Pic(A) → Pic(A[X ]) is an isomor-
phism, then A is seminormal.


Proof. Suppose that b,c ∈ A satisfy b3 = c2 and let B be a reduced extension
of A containing an element a such that b = a2,c = a3. Consider the following
polynomials with coefficients in B.


f1 = 1 + aX , f2 = bX2, g1 = (1−aX)(1 + bX2), g2 = bX2 (4)


The matrix M = ( fig j) is a projection matrix of rank one over A[X ] such that
M(0) = P2. Assuming that Pic(φ) is an isomorphism we may conclude that this
matrix presents a free module over A[X ]. By Lemma 2.28 this implies fi,g j ∈ A[X ]
and hence a ∈ A. �







Weak normality and seminormality 457


To conclude this section we would like to mention related work of
J. Gubeladze [22] that settled a generalized version of Anderson’s Conjecture [1],
which postulated that finitely-generated projectives are free over normal monomial
subalgebras of k[X1, . . . ,Xn]. In what follows, by a seminormal monoid we mean a
commutative, cancellative, torsion-free monoid M with total quotient group G such
that whenever x ∈ G and 2x,3x ∈ M we must have x ∈ M.


Theorem 2.31. [22] Let R be a PID and M be a commutative, cancellative, torsion-
free, seminormal monoid. Then all finitely-generated projective R[M]-modules are
free.


The original proof of Gubeladze was geometric in nature. Swan gave an algebraic
proof of Gubeladze’s result in [48]. To read more about Serre’s Conjecture and
related topics the reader is referred to the recent book by Lam [27].


2.5 Seminormal local rings in dimension one


A basic fact about a reduced, Noetherian 1-dimensional local ring A is that A is
normal if and only if it is a discrete rank one valuation ring. This leads to a well-
known characterization of the normalization of a Noetherian integral domain A with
quotient field K. Namely, an element b ∈ K is in the normalization of A if and only
if b is in every valuation subring V of K containing A.


Reduced, Noetherian 1-dimensional seminormal local rings with finite normal-
ization are also fairly well-behaved, particularly in the algebro-geometric setting.
Let e(R) and emdim(R) denote the multiplicity and embedding dimension of a local
ring (R,m), respectively. The following theorem was proven by E. D. Davis.


Theorem 2.32. [15, Theorem 1] Let (R,m) be a reduced, Noetherian, 1-dimensional
local ring with finite normalization S. The following are equivalent.


1. R is seminormal.
2. grm(R) is reduced and e(R) = emdim(R).
3. Proj(grm(R)) is reduced and e(R) = emdim(R).


If the local ring comes from looking at an algebraic curve at a closed point
one can say more. The following result of Davis generalizes earlier results of
Salmon [44] for plane curves over an algebraically closed field and Bombieri [7]
for arbitrary curves over an algebraically closed field.


Corollary 2.33. [15, Corollary 1] Let x be a closed point of an algebraic (or
algebroid) curve at which the Zariski tangent space has dimension n. Then:


1. x is seminormal if, and only if, it is an n-fold point at which the projectivized
tangent cone is reduced.


2. For an algebraically closed ground field, x is seminormal if, and only if, it is an
ordinary n-fold point (i.e., a point of multiplicity n with n distinct tangents).
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Thus analytically, a 1-dimensional algebro-geometric seminormal local ring over an
algebraically closed field K looks like K[X1, . . . ,Xn]/(XiXj | i �= j). Here are some
specific examples.


Example 2.34. Let K be an algebraically closed field. Consider the curve C =
{(x,y) ∈ K2 | xy− x6 − y6 = 0}. Let f = xy− x6 − y6 and P = (0,0). Since P is
a point of multiplicity 2 with 2 distinct tangent lines (the x- and y- axes), it is an
ordinary double point (also called a node) and the local ring of A = K[x,y]/( f ) at P
is seminormal by Corollary 2.33. Since P is the only singular point of A we may
conclude that A is seminormal. This curve is drawn below in Fig. 1a.


Example 2.35. Let K be an algebraically closed field. Consider the curve C =
{(x,y)∈ K2 | x2 = x4 +y4}. Let f = x2−x4−y4 and P = (0,0). Since P is a point of
multiplicity 2 with 1 tangent line (the y-axis) occurring with multiplicity 2, the local
ring of A = K[x,y]/( f ) at P fails to be seminormal by Corollary 2.33. This curve is
called a tacnode and is sketched below in Fig. 1b.


0


-1


1


(a) Node


-1 0 1


-1


1


(b) Tacnode


Fig. 1: A Seminormal and a nonseminormal curve


3 Weak normality and weak normalization


Let’s change gears and speak about weak subintegrality and weak normalization.
The reader should keep in mind that weak normalization and seminormalization are
not the same concept in positive characteristic.
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3.1 Weakly subintegral and weakly normal extensions and weak
normalization relative to an extension


We now recall the Andreotti–Bombieri definition of weak normalization and its first
properties. Recall that the characteristic exponent e of a field k is 1 if char(k) = 0
and is p if char(k) = p > 0. As earlier we only distinguish between a prime ideal
P = Px of a ring B and the corresponding point x ∈ Spec(B) when it is convenient to
do so.


Lemma 3.1. [2, Prop. 2] Let (A,m,k) be a local ring, e be the characteristic expo-
nent of k, and A ⊂ B an integral extension. Set


A′ = {b ∈ B | bem ∈ A + R(B) for some m � 0}


and let m′ = R(A′). For each maximal ideal ni of B let ωi : A/m → B/ni be the
canonical homomorphism. The following assertions hold.


1. (A′,m′,k′) is a local ring and the induced extension of residue fields
k = κ(x) ⊂ k′ = κ(x′) is purely inseparable;


2. A′ is the largest intermediate ring that is local and has residue field a purely
inseparable extension of k.


3. An element b ∈ B is in A′ if and only if there exists some integer m � 0 such that


a. b(xi)em ∈ ωi(κ(x)) for all closed points xi of Spec(B), and
b. ω−1


i (b(xi)em
) = ω−1


j (b(x j)em
) for all i, j.


Proof. Either see the proof of [2, Prop. 2] or modify the proof of Lemma 2.1
above. �
Definition 3.2. We will refer to the ring A′ described above as the weak gluing of
A in B over m. Letting x ∈ Spec(A) denote the point corresponding to the maximal
ideal m, this ring is sometimes denoted by ∗


xA.


The weak normalization of a ring A in an integral extension B is defined analogously
to the seminormalization (see (1)).


Definition 3.3. Let A ⊂ B be an integral extension of rings. We define the weak
normalization ∗


BA of A in B to be


∗
BA = {b ∈ B | ∀x ∈ Spec(A),∃m � 0 such that (bx)em ∈ Ax + R(Bx)}. (5)


In this description, e denotes the characteristic exponent of the residue field of Ax.


Notice that from the definition we have A ⊂ +
B A ⊂ ∗


BA for an arbitrary integral
extension A ⊂ B.


Before stating some fundamental properties of weak normalization we introduce
some additional terminology.
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Definition 3.4. An integral extension of rings A ⊂ B is said to be weakly subintegral
if the associated map Spec(B) → Spec(A) is a bijection and induces purely
inseparable extensions of the residue fields. An element b ∈ B is said to be weakly
subintegral over B provided that A ⊂ A[b] is a weakly subintegral extension.


Notice that a weakly subintegral extension of fields is a purely inseparable
extension. A subintegral extension must be weakly subintegral (by definition),
but the converse need not be true since a purely inseparable extension of fields
is weakly subintegral but not subintegral. The following lemma is the basis for
what Yanagihara calls an elementary weakly subintegral extension. We include
Yanagihara’s proof for the convenience of the reader.


Lemma 3.5. [57, Lemma 3] Let A ⊂ A[b] be a simple extension of rings, where p is
a rational prime and pb,bp ∈ A. Then, A ⊂ B is weakly subintegral.


Proof. Let P ⊂ A be a prime ideal. First suppose that p /∈ P. Then, b = pb/p ∈ AP,
which implies AP = BP and the residue fields are isomorphic. Now suppose that
p ∈ P, so that A/P is an integral domain of characteristic p. By the Lying Over
Theorem, PB∩A = P. Suppose Q1,Q2 are prime ideals of B lying over P. Consider
the extension A′ := A/P ⊂ B′ := B/PB and let Q′


i = Qi/PB(i = 1,2). Then, Q′
1


and Q′
2 both lie over the zero ideal in A′. Notice that f p ∈ A′ for any element f ∈ B′.


Consider f ∈ Q′
1. Then, f p ∈ Q′


1∩A′ = {0}⊂Q′
2 ⇒ f ∈ Q′


2. Hence Q′
1 ⊂Q′


2, which
implies Q1 ⊂ Q2. Similarly, Q2 ⊂ Q1 and, hence, Q1 = Q2. Thus there is a unique
prime ideal Q of B lying over P and κ(P) ⊂ κ(Q) is purely inseparable. �
Definition 3.6. An elementary weakly subintegral extension is a simple extension
A ⊂ A[b] of rings such that pb,bp ∈ A, for some rational prime p.


The notion of a weakly normal extension, which we now define, is comple-
mentary to that of a weakly subintegral extension.


Definition 3.7. If A ⊂ B is an integral extension of rings, we say A is weakly normal
in B if there is no subextension A⊂C ⊂ B with C �= A and A⊂C weakly subintegral.


The following result is well known and can be proven by modifying the proof of
Theorem 2.9.


Theorem 3.8. Let A ⊂ B be an integral extension of rings. The following assertions
hold.


1. The extension A ⊂ ∗
BA is weakly subintegral;


2. If A ⊂C ⊂ B and A ⊂C is weakly subintegral, then C ⊂ ∗
BA;


3. The extension ∗
BA ⊂ B is weakly normal; and


4. ∗
BA has no proper subrings containing A and weakly normal in B.


The reader will note that ∗
BA is the unique largest weakly subintegral extension


of A in B and is minimal among the intermediate rings C such that C ⊂ B is
weakly normal. With this result in hand, we see that an integral extension A ⊂ B
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is weakly normal if and only if A = ∗
BA. In light of the inclusions A ⊂ +


B A ⊂ ∗
BA, a


weakly normal extension is necessarily seminormal, but the converse is not true as
Example 3.11 will illustrate.


H. Yanagihara proved a weakly subintegral analogue of Swan’s characterization
of subintegral extensions in terms of extensions of maps into fields, which we now
state.


Lemma 3.9. [57, Lemma 1] Let A ⊂ B be an integral extension of rings. It is a
weakly subintegral extension if and only if for all fields F and homomorphisms
ϕ : A → F there exists at most one homomorphism ψ : B → F extending ϕ .


The positive integer p that appears in the work of Hamann and Swan also
appears in Yanagihara’s characterization of a weakly normal extension. Yanagihara
showed [56] that if a ring A contains a field of positive characteristic, an integral
extension A ⊂B is weakly normal provided that A⊂ B is seminormal and A contains
every element b ∈ B such that bp and pb ∈ A, for some rational prime p. This result
has been widely cited but didn’t appear in print until much later. Subsequently,
Itoh [25, Proposition 1] proved the above-mentioned characterization holds for any
integral extension A ⊂ B and Yanagihara gave an alternate proof [56, Theorem 1].
We now recall the generalized result.


Proposition 3.10. Let A ⊂ B be an integral extension of rings. Then, A is weakly
normal in B if and only if the following hold:


1. A is seminormal in B; and
2. A contains each element b ∈ B such that bp, pb ∈ A, for some rational prime p.


Thus, A is weakly normal in B if and only if A doesn’t admit any proper
(elementary) subintegral or weakly subintegral extensions in B. In fact, this charac-
terizes a weakly normal extension by [57, Corollary to Lemma 4].


For an integral extension A ⊂ B the weak normalization ∗
BA is the filtered union


of all subrings of B that can be obtained from A by a finite sequence of elementary
weakly subintegral extensions. We now offer an example of a seminormal extension
of rings that isn’t weakly normal. Indeed, this example shows that a normal domain
need not be weakly normal in an extension domain.


Example 3.11. Let K be a field of characteristic 2, X be an indeterminate, and
consider the integral extension A := K[X2] ⊂ B := K[X ]. Since X2 and 2X = 0 are
both in A but X is not in A, this extension is not weakly normal. However, it is a
seminormal extension, since K[X2] is a normal domain and B is reduced.


Inspired by Swan’s intrinsic definition of a seminormal ring, Yanagihara made
the following definition in [57].


Definition 3.12. A ring A is said to be weakly normal if A is reduced and the
following conditions hold:


1. For any elements b,c ∈ A with b3 = c2, there is an element a ∈ A with a2 = b and
a3 = c; and
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2. For any element b,c,e ∈ A and any non-zero divisor d ∈ A with cp = bd p and
pc = de for some rational prime p, there is an element a ∈ A with b = ap and
e = pa.


As the reader may recall, condition 1. implies that the ring A is reduced so we
omitted that requirement in the definition of a weakly normal ring. Since A is
reduced, the element a that occurs in condition 1. is necessarily unique. Since this
definition is quite complicated we will look at some special instances of weakly
normal rings.


Lemma 3.13. A product of fields is weakly normal.


Proof. We first show that a field K is weakly normal. We start by observing that
K is seminormal since it is (2,3)-closed in itself. Now suppose that b,c,e ∈ K and
0 �= d ∈ K with cp = bd p and pc = de for some rational prime p. Setting a = c/d
we have b = ap, e = pa. Now let K = ∏Ki be a product of fields. Again, K is
seminormal. Suppose b = (bi),c = (ci)∈K and b3 = c2. Setting ai = ci/bi whenever
bi �= 0 and ai = 0 whenever bi = 0, we have b = a2,c = a3. Now suppose that
b,c,e∈ K and d ∈ K a non-zero divisor with cp = bd p and pc = de for some rational
prime p. Since d = (di), where each di �= 0 we can let ai = ci/di and set a = (ai).
Then, b = ap, e = pa. �
Lemma 3.14. Let A be a reduced ring whose total quotient ring is a product of
fields. If A is normal, then A is weakly normal.


Proof. Let A be a normal ring whose total quotient ring is a product of fields. Since
a ring A with such a total quotient ring is seminormal if and only if it is equal
to +


B A, where B is the normalization of A, we may conclude that A is seminormal.
Now suppose that b,c,e ∈ A and d ∈ A is not a zero divisor such that cp = bd p and
pc = de for some rational prime p. Since (c/d)p = b ∈ A and A is normal, we must
have c/d ∈ A so we may let a = c/d as in the above example. �


We now recall a pair of results by Yanagihara that we will find helpful.


Proposition 3.15. [57, Propositions 3 and 4] Let A and B be reduced rings.


1. If A is weakly normal and B is a subring of the total quotient ring of A containing
A, then A is weakly normal in B.


2. If A is a subring of a weakly normal ring B such that any non-zero divisor in A is
also not a zero divisor in B and A is weakly normal in B, then A is weakly normal.


The next result is a weakly normal analog of the fact that a ring whose total quotient
ring is a product of fields is a seminormal ring if and only if it is equal to its semi-
normalization in A.


Corollary 3.16. Let A be a reduced ring whose total quotient ring is a product of
fields and let B denote the normalization of A. The following are equivalent.


1. A is weakly normal;
2. A = ∗


BA; and
3. A is weakly normal in B.
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Proof. The last two items are equivalent as remarked after the proof of Theorem 3.8.
The equivalence of the first and last statements follows from Lemma 3.14 and the
second part of 3.15. �


When the base ring is reduced and contains a field of positive characteristic,
weak normality has a simple characterization. Notice that to say a reduced ring A is
n-closed in its normalization for some positive integer n is the same thing as saying
that A contains each element b of its total quotient ring such that bn ∈ A. If the latter
condition holds we will say A is n-closed in its total quotient ring K even though
A ⊂ K need not be an integral extension.


Corollary 3.17. Suppose that A is a reduced ring whose total quotient ring is a
product of fields and that A contains a field of characteristic p > 0. Then, A is
weakly normal if and only if A is p-closed in its total quotient ring.


Proof. Let A be a reduced ring whose total quotient ring K is a product of fields
and suppose that A contains a field k of characteristic p > 0. By Lemma 3.16 and
Hamman’s criterion it suffices to show that A is (2,3)-closed in K and contains each
element b ∈ K such that qb,bq ∈ A for some rational prime q. Suppose that b ∈ K
and qb,bq ∈ A for some rational prime q. If q �= p, then b = qb/q ∈ A. Suppose
q = p. Since A is p-closed in K by assumption, b ∈ A. Now suppose that b is an
element of K and b2,b3 ∈ A. Then, bn ∈ A for all n � 2. In particular, bp ∈ A and
hence b ∈ A. �


Looking at the complementary notion of weak subintegrality in positive charac-
teristic we have another simple characterization, which we now recall.


Proposition 3.18. [38, Theorems 4.3 and 6.8] Let A ⊂ B be an extension of
commutative rings and suppose that A contains a field of characteristic p > 0.
Then b ∈ B is weakly subintegral over A if and only if bpn ∈ A for some n � 0.


We mention a few more results of Yanagihara regarding localization, faithfully
flat descent, and pull-backs.


Proposition 3.19. [57, Prop. 7] A ring A is weakly normal if all localizations of A
at maximal ideals are weakly normal.


Proposition 3.20. [57, Prop. 5] Let B be a weakly normal ring and A be a subring
of B such that A has only a finite number of minimal prime ideals. If B is faithfully
flat over A, then A is weakly normal.


Proposition 3.21. [55, Prop. 1] Let


D
α


��


β
��


A


f
��


B
g


�� C


be a pull-back diagram of commutative rings. Assume that A is weakly normal
domain, that B is a perfect field of positive characteristic p, and that C is reduced.
Then, D is weakly normal.
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Yanagihara does not construct the weak normalization of a general commutative
ring.


Itoh went on to prove a result like Greither’s. He showed [25, Theorem] that a
finite extension A ⊂ B of reduced Noetherian rings is a weakly normal extension
if and only if for every A-algebra C, B⊗A C ∼= SymB(Q),Q ∈ Pic(B), implies C ∼=
SymA(P), for some P ∈ Pic(A).


3.2 Systems of (weak) subintegrality


The reader may have noticed that the only way to determine if an element b in an
integral extension ring B of a general ring A is weakly subintegral over A is to check
if the ring extension A⊂ A[b] is weakly subintegral. Beginning in 1993, in a series of
papers [34–38,41,42] by Reid, Roberts, and Singh, a genuine element-wise criterion
for weak subintegrality was introduced and developed. At first they worked with
Q-algebras, where weak subintegrality and subintegrality coincide, and discussed a
criterion for subintegrality that involved what they called a system of subintegrality
or SOSI. Over time, they were able to handle general rings, but only if they discussed
weak subintegrality rather than subintegrality. However, since the term system of
subintegrality had already been used extensively in their earlier papers they kept it
instead of redefining the system as a system of weak subintegrality. Reid, Roberts
and Singh constructed in [38, Section 2] a “universal weakly subintegral extension”
based on systems of subintegrality. Later, Roberts [40] wrote a paper that helped
to elucidate the earlier work. Much more recently Gaffney and the current author
[18] gave a more intuitive geometric description of the element-wise criterion for
weak subintegrality for rings that arise in the study of classical algebraic varieties
or complex analytic varieties. We offer a new algebraic criterion for weak subinte-
grality in this section.


We begin with a recap of the work of Reid, Roberts, and Singh.


Theorem 3.22. [38, Theorems 2.1 ,5.5, and 6.10] Let A ⊂ B be an extension of
rings, b ∈ B, and q a nonnegative integer. The following statements are equivalent.


1. There exists a positive integer N and elements c1, . . . ,cq ∈ B such that


bn +
q


∑
i=1


(
n
i


)


cib
n−i ∈ A for all n � N.


2. There exists a positive integer N and elements c1, . . . ,cq ∈ B such that


bn +
q


∑
i=1


(
n
i


)


cib
n−i ∈ A for N � n � 2N + 2q−1.


3. There exist elements c1, . . . ,cq ∈ B such that


bn +
q


∑
i=1


(
n
i


)


cib
n−i ∈ A for all n � 1.
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4. There exist elements a1,a2,a3, . . . ∈ A such that


bn +
n


∑
i=1


(−1)i
(


n
i


)


aib
n−i = 0 for all n > q.


5. There exist elements a1, . . . ,a2q+1 in A such that


bn +
n


∑
i=1


(−1)i
(


n
i


)


aib
n−i = 0 for q + 1 � n � 2q + 1. (6)


6. The extension A ⊂ A[b] is weakly subintegral.


Notice condition 2. in the above theorem is a finite version of condition 1. and
that condition 3. is a special case of condition 1. with N = 1. Similarly, condition 5.
is a finite version of condition 4.


We now recall the definition that was the basis of the work of Reid, Roberts, and
Singh.


Definition 3.23. Let A ⊂ B be an extension of rings and b ∈ B. A system of subinte-
grality (SOSI) for b over A consists of a nonnegative integer q, a positive integer N,
and elements c1, . . . ,cq ∈ B such that


bn +
q


∑
i=1


(
n
i


)


cib
n−i ∈ A for all n � N. (7)


Originally, an element b admitting a SOSI was called quasisubintegral over A
but Reid, Roberts, and Singh later dropped this terminology for reasons which will
soon be clear.


In light of the equivalence of conditions 1. and 6. of Theorem 3.22 we say an
element b ∈ B is weakly subintegral over A provided that b admits a SOSI over A;
we will not mention a quasisubintegral element again. By this theorem, an element b
is weakly subintegral over A if and only if b satisfies a highly structured sequence (6)
of equations of integral dependence.


Let F(T ) = T n + ∑n
i=1(−1)n


(n
i


)
aiT n−i. Notice that F ′(T ) = nFn−1(T ). So the


equations that appear in part 5. of Theorem 3.22 are rational multiples of the
derivatives of the equation of highest degree. In the section to follow we will show
directly that this system of equations implies that b is weakly subintegral over A.
Hopefully our proof will shed more light on why this system of equations of integral
dependence implies weak subintegrality.


3.3 A new criterion for weak subintegrality


We will now develop a new criterion for an element to be weakly subintegral over
a subring. First, we look at the case of an extension of fields and state our result in
such a way that it will generalize to an extension of arbitrary rings.
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Lemma 3.24. Suppose that K ⊂ L is an extension of fields and that x ∈ L.
Then, x is weakly subintegral over K if and only if x is a root of some monic
polynomial F(T ) ∈ K[T ] of degree n > 0 and its first � n


2� derivatives.


Proof. First assume that x is a root of some monic polynomial F(T ) ∈ K[T ] of
degree n > 0 and its first � n


2� derivatives. Let E ⊃ L be an extension field over
which F(T ) splits. Our condition says that, counting multiplicities, more than half
the roots of F(T ) in E are x. Let f (T ) be the minimal polynomial of x over K
and write F(T ) = f (T )eg(T ), where g(T ) ∈ K[T ] and g(x) �= 0. Then, counting
multiplicities, more than half the roots of f (T ) in E are x. Recall that every root
of f (T ) occurs with the same multiplicity. So f (T ) can have only one distinct root.
Therefore, either x ∈ K or x is purely inseparable over K.


Now assume that x is weakly subintegral over K. If K has characteristic 0, then
x ∈ K and F(T ) = T − x is the required polynomial. If K has characteristic p > 0
then xpm ∈ K for some m > 0 and F(T ) = T pm − xpm


is the required polynomial. �
An immediate consequence of the above proof is the following.


Corollary 3.25. Let K ⊂ L be an extension of fields and x ∈ L be algebraic over K.
Then, x is weakly subintegral over K if and only if the minimal polynomial of x
over K is f (T ) = T em −xem


for some positive integer m, where e is the characteristic
exponent of K.


Next, we present our new element-wise criterion for weak subintegrality and
give an elementary self-contained proof that an element satisfying a system of (6) is
weakly subintegral over the base ring of an arbitrary integral extension.


Proposition 3.26. Let A ⊂ B be an integral extension of rings and b ∈ B. Then, b is
weakly subintegral over A if and only if there is a monic polynomial F(T ) in A[T ]
of degree n > 0 such that b is a root of F(T ) and its first � n


2� derivatives.


Proof. First, assume that F(T ) in A[T ] is a monic polynomial of degree n > 0 such
that b is a root of F(T ) and its first � n


2� derivatives. Replacing B by A[b] we may
and shall assume that A ⊂ B is a finite integral extension. Let P ∈ Spec(A) and e be
the characteristic exponent of κ(P). We will show that bem


P ∈ AP + R(BP) for some
m � 1. Replacing A,B, and b by AP,BP, and bP, respectively, we may and shall
assume that (A,P,K) is local and K has characteristic exponent e. Let Qi denote
the maximal ideals of B, and ωi : K = κ(P) → κ(Qi) the canonical injections of
residue fields. Let F denote the polynomial obtained from F by reducing coeffi-
cients modulo P. Fix a maximal ideal Qi of B and let b(Qi) denote the image
of b in κ(Qi) = B/Qi. By Lemma 3.24 we may conclude b(Qi)em ∈ ωi(κ(P))
for some m. Since there are finitely many maximal ideals in B there is some
positive integer m such b(Qi)em ∈ ωi(κ(P)) for all i. Since F has at most one root
in κ(P) = K of multiplicity at least � n


2� we may conclude that ω−1
i (b(Qi)em


) =
ω−1


j (b(Q j)em
) for all i, j. Hence, bem ∈ A + R(B), as desired.


Now assume that b is weakly subintegral over A. Then, there exist q � 0 in
Z and elements a1, . . . ,a2q+1 in A such that bm + ∑m


i=1(−1)i
(n


i


)
aibm−i = 0 for all


integers q with q + 1 < m < 2q + 1 by part 5. of Theorem 3.22. Let n = 2q + 1 and
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F(T ) = T n + ∑n
i=1(−1)i


(n
i


)
aiT n−i. By our earlier remarks, b is a root of F(T ) and


its first � n
2� derivatives. �


We feel that there should be a direct proof of the ‘only if’ part of the above result,
i.e., a proof that doesn’t depend on Theorem 3.22 or [38, Theorem 6.8].


3.4 First geometric properties of weakly normal varieties


In the introduction, we traced the history of weak normality and weak normal-
ization, beginning with its roots in complex analytic space theory. We’d like to
further discuss the history of weakly normal complex analytic spaces and then take
a brief glimpse at the theory of weakly normal algebraic varieties from a geometric
point of view.


Weak normalization first was defined for complex analytic spaces by Andreotti
and Norguet [3]. Some say that their quotient space construction was already
implicit in the work of Cartan [10]. The sheaf Oc


X of c-regular functions on a
complex analytic space X is defined by setting its sections on an open subset U ⊂ X
to be those continuous complex-valued functions on U which are holomorphic at
the regular points of U ; this coincides with setting Γ (U,Oc


X) equal to the set of
continuous complex-valued functions on U that become regular when lifted to the
normalization of U . The weak normalization Xw of X represents the sheaf Oc


X in
the category of complex analytic spaces, i.e., Oc


X becomes the sheaf of germs of
holomorphic functions on Xw. A complex analytic space is weakly normal if and
only if the sheaf of c-regular functions on X coincides with the sheaf of regular
functions on X . The weak normalization of a what is today called a scheme was
introduced by A. Andreotti and E. Bombieri [2]. After introducing the notion of
“gluing” the prime ideals of B lying over the unique maximal ideal of a local ring
A, where A ⊂ B is an integral extension, Andreotti and Bombieri constructed the
weak normalization of the structure sheaf of a scheme pointwise using the gluing
they previously defined for local rings. They then turned their attention to defining
and constructing the weak normalization σ : X∗ → X of a reduced algebraic scheme
X over an arbitrary field K. They showed that (X∗,σ) is maximal among all pairs
(Z,g) consisting of an algebraic scheme Z over K and a K-morphism g : Z → X
that is birational and a universal homeomorphism, where the latter means that all
maps Z′ → X ′ obtained by base change are homeomorphisms. If we study algebraic
varieties rather than schemes we can either proceed as in the case of schemes or we
can capture some of the ideas that permeated the original complex analytic theory
of weakly normal spaces. We will build on the complex analytic viewpoint.


In this section, let K be a fixed algebraically closed field of characteristic 0. When
we speak of an algebraic variety over K we assume that the underlying topological
space is the set of closed points of a reduced, separated scheme of finite type
over K. By an affine ring (over K) we mean the coordinate ring of an affine variety
(over K). By assuming char K = 0 we avoid all inseparability problems and hence
the operations of seminormalization and weak normalization coincide. We will use
the latter terminology.
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Consider an algebraic variety X defined over K. One might expect that if you
define the sheaf Oc


X of c-regular functions on X so that its sections on an open subset
U ⊂ X are the continuous K-valued functions that are regular at the nonsingular
points of U then Oc


X becomes the sheaf of regular functions on the weak normal-
ization of X (see [28, Definition 2.4] and the corrected definition by the current
author [52, Definition 3.4]). This isn’t the case due to the very special nature of
the Zariski topology in dimension one [52, Example 3.3]. We recall the corrected
definition and an alternate characterization now.


Definition 3.27. [52, Definition 3.4] Let X be a variety defined over K and let
π : X̃ →X be the normalization of X . The sheaf of c-regular functions on X , denoted
by Oc


X , is defined as follows. For an open subset U ⊂ X , we let


Γ (U,Oc
X) = {φ : U → K | φ ◦π ∈ Γ (π−1(U),OX̃)}.


Notice that a c-regular function on an affine variety X may be identified with
a regular function on the normalization X̃ of X that is constant on the fibers of
π : X̃ → X . This observation and Theorem 3.30 below show that the c-regular
functions on an affine variety may be identified with the regular functions on the
weak normalization of X . We now describe a c-regular function without reference
to the normalization. In this result the underlying topology is the Zariski topology.


Theorem 3.28. [52, Theorem 3.9] Let X be an affine variety defined over K without
any 1-dimensional components and consider a function φ : X → K. Then, φ is
c-regular if and only if every polynomial in φ with coefficients in Γ (X ,OX) is
continuous and the graph of φ is closed in X ×K.


We wish to present some characterizations of the weak normalization of an affine
ring. First we recall a variant of a well-known result.


Lemma 3.29. [46, Theorem 7, p. 116] Let π : Y → X be a dominating finite
morphism of irreducible varieties and let n = [K(Y ) : K(X)] denote the degree of
the extension of fields of rational functions. Then there is a nonempty open subset U
of X such that for each x ∈U the fiber π−1(x) consists of n distinct points.


With this result in hand one can prove the following result, which has an
immediate corollary.


Theorem 3.30. [28, Theorem 2.2] Let A ⊂ B be a finite integral extension of affine
rings and define A′ by A′ = {b ∈ B | bx ∈ Ax + R(Bx) ∀x ∈ X = Var(A)}. Then
A′ = +


B A. Thus if π : Y = Var(B) → X is the induced morphism, then ∗
BA consists of


all regular functions f on Y such that f (y1) = f (y2) whenever π(y1) = π(y2).


If you work with an integral extension A ⊂ B of affine rings over an algebraically
closed field of characteristic 0, the condition that the residue fields are isomorphic
in the definition of a seminormal extension is redundant, as we shall now see.
Furthermore, you only need to verify that for each maximal ideal of A there exists a
unique prime ideal of B lying over A.
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Corollary 3.31. Let A ⊂ B be an integral extension of affine rings over K. The
extension is weakly subintegral if and only if the induced map of affine varieties
Var(B) → Var(A) is a bijection.


Proof. The only if direction follows from the definition. Now suppose that the
induced map of varieties is a bijection. Let Q ∈ Spec(B) and apply Lemma 3.29
to the induced map Var(B/Q)→ Var(A/(Q∩A)) to deduce that the induced map of
fields of rational functions is an isomorphism. Since Q was arbitrary, the extension
is weakly subintegral. �


We now present an example of a weakly normal surface.


Example 3.32. [The Whitney Umbrella] Let A = K[u,uv,v2] ⊂ B = K[u,v], where
K is an algebraically closed field of characteristic 0. Notice that B is the normal-
ization of A. We claim that A is weakly normal. Let π : A


2 → A
3 be given


by π(u,v) = (u,uv,v2) and let X denote the image of π . Then, π : A
2 → X


is the normalization of X . Suppose f ∈ B agrees on the fibers of π . Write
f = ∑m


i=0 gi(u)vi,gi ∈ K[u]. Then f (0,c) = f (0,−c) for all c ∈ K and hence
∑m


i=0 gi(0)vi = ∑m
i=0(−1)igi(0)vi. Thus, gi(0) = 0 whenever i is odd. Then


f = ∑[gi(u)− gi(0)]vi + ∑i even gi(0)vi is in A since gi(u)− gi(0) ∈ uB ⊂ A. This
example generalizes to higher dimensions (see [28, Prop. 3.5].) The zero set of
y2 = x2z is X together with the negative z-axis and is called the Whitney umbrella.
Here is a sketch of the umbrella minus its handle, which is the negative z-axis.


Fig. 2: Whitney Umbrella


Let X be an algebraic variety over K. In the introduction we said that a point
x ∈ X is a multicross if x ∈ X is analytically isomorphic to z ∈ Z where Z is the
union of linearly disjoint linear subspaces and z is the origin. We now recall the
precise definition and cite a theorem, which asserts that a variety is weakly normal
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at a multicross singularity. Then we cite a result about generic hyperplane sections
of weakly normal varieties whose proof relies on various characterizations of the
multicrosses due to Leahy and the current author.


Definition 3.33. [see [28, Definition 3.3] and [29, Definition 3.1]] Let
C = {T1, . . . ,Tr} be a nonempty collection of disjoint subsets of {1, . . . , p} and
let z1, . . . ,zp be indeterminates. We let RC denote the complete local ring defined by


RC = K[[z1, . . . ,zp]]/(zα zβ | α ∈ Ti,β ∈ Tj, i �= j}. (8)


We say a point x on a variety X is a multicross if ÔX ,x is isomorphic (as a K-algebra)
to RC for some C as above.


We cite two fundamental results about the multicrosses.


Proposition 3.34. [28, Prop. 3.4] Let X be an algebraic variety over an
algebraically closed field of characteristic 0. If x ∈ X is a multicross then OX ,x


is weakly normal.


Theorem 3.35. [29, Theorem 3.8] Suppose X is a weakly normal variety over an
algebraically closed field of characteristic 0 and let Z denote the complement of the
set of multicrosses. Then, Z is a closed subvariety of codimension at least two.


The following result of the current author parallels well-known results of
Seidenberg [45, see Theorems 7, 7′, and 14] on generic hyperplane sections of
irreducible normal varieties. The theorem was independently proven by C. Cumino,
S. Greco, and M. Manaresi in [13]. The conclusion of this theorem fails in positive
characteristic as illustrated by a class of examples that Cumino, Greco, and Manaresi
introduced in [14]. In the statement of the next theorem, for a point a ∈ A


m+1 by Ha


we mean the hyperplane a0 + a1X1 + · · ·+ amXm = 0 in A
m+1.


Theorem 3.36. [51, Theorem 3.4] Let X ⊂ A
m be an equidimensional weakly


normal affine variety over an algebraically closed field of characteristic 0. Then
there exists a dense open subset U of A


m+1 such that X ∩ Ha is weakly normal
whenever a ∈U.


Instead of asking about whether a property that a variety has is also enjoyed by
a general hyperplane section, one can ask that if a general hyperplane section has
a property, does that property “lift” to the original variety. Cumino and Manaresi
defined a WN1 variety as a weakly normal variety such that the normalization
X → X is unramified in codimension one. In [14] Cumino, Greco, and Manaresi
showed that if the general hyperplane sections are WN1 then so is the original
variety. They used this fact to show that in positive characteristic, the general
hyperplane section of a weakly normal variety is not weakly normal.


More recently R. Heitmann proved a strong lifting result for seminormality,
which we now state. Since we are dealing with general rings now we can not blur
the distinction between seminormal and weakly normal rings.


Theorem 3.37. [24, Main Theorem] If (R,m) is a Noetherian local ring, y is a
regular element in m, and R/yR is seminormal, then R is seminormal.
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3.5 Weak normality and Chinese remainder theorems


In Section 2.3, we reported on seminormality and the Chinese Remainder Theorem.
We now mention a couple of results by Leahy and Vitulli that connect weak
normality and the Chinese Remainder Theorem. All varieties are taken over an
algebraic closed field of characteristic 0. The reader should see what these results
say about affine rings and contrast the results to Theorems 2.24 and 2.26.


For a closed subvariety Y of an algebraic variety X we let IY denote the sheaf of
ideals defining Y . For a point X ∈ X we let TX ,x denote the tangent space of X at x.


Theorem 3.38. [28, Prop. 2.19] Let X = X1 ∪ ·· · ∪Xn where each Xi is a closed
subvariety and suppose that Xi is weakly normal for each i. Further assume
that Xi ∩ Xj = Y whenever i �= j. Then X is weakly normal if and only if
IY = IXi + IX1∪···∪Xi−1 for i = 2, . . . ,n.


If, in addition, we assume that the common intersection Xi ∩Xj = Y is weakly
normal we get the following result. This result can be used to show that a variety is
weakly normal at a multicross singularity.


Theorem 3.39. [28, Prop. 2.23] Let X = X1 ∪ ·· · ∪ Xn be a union of closed
subvarieties and assume that Xi ∩ Xj = Y whenever i �= j, where Y is weakly
normal. The following assertions are true.


1. X is weakly normal if and only if each Xi is weakly normal and
IY = IXi +IX1∪···∪Xi−1 for i = 2, . . . ,n.


2. Suppose in addition that Y is nonsingular. Then X is weakly normal if and only
if each Xi is weakly normal and TY,x = TXi,x ∩ TX1∪···∪Xi−1,x for all x ∈ Y and
i = 2, . . .n.


3.6 The weak subintegral closure of an ideal


In this section, we discuss the weak subintegral closure of an ideal. We use the
definition proposed by the current author and Leahy [54], which in turn is based
on the criterion of Reid, Roberts and Singh [38]. Our definition stands in the same
relation to the definition of Reid, Roberts, and Singh, as the definition of the integral
closure of an ideal does to the normalization of a ring. In our definition we absorb
the factor of (−1)n that appears in (6).


Definition 3.40. Consider an A-ideal I and a ring extension A ⊂ B. We say an
element b ∈ B is weakly subintegral over I provided that there exist q ∈ N and
elements ai ∈ Ii (1 � i � 2q + 1), such that


bn +
n


∑
i=1


(
n
i


)


aib
n−i = 0 (q + 1 � n � 2q + 1). (9)
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We let
∗
BI = {b ∈ B | b is weakly subintegral over I}.


We call ∗BI the weak subintegral closure of I in B. We write ∗I instead of ∗
AI and refer


to ∗I as the weak subintegral closure of I.


The paper [54] contains an important link between weak normalization of a
graded ring and weak subintegral closure of an ideal, which we now recall. Suppose
that A ⊆ B are rings, I is an ideal in A, and b ∈ B. Then, b is weakly subintegral
over Im if and only if the element btm ∈ B[t] is weakly subintegral over the Rees
ring A[It] by [54, Lemma 3.2]. Thus ∗


BI is an ideal of ∗
BA [54, Prop. 2.11]. In


particular, ∗I is an ideal of A. Vitulli and Leahy also showed that for an ideal I
in a reduced ring A with finitely many minimal primes and total quotient ring Q, we
have ∗(A[It]) = ⊕n�0


∗
Q(In)tn by [54, Corollary 3.5].


Let’s make a quick observation about a sufficient condition for an element to be
weakly normal over an ideal.


Lemma 3.41. Suppose that I is an ideal of a ring A, b ∈ A and bn ∈ In for all
sufficiently high powers of n. Then, b ∈ ∗I.


Proof. Suppose q is such that bn ∈ In for all n > q. Set ai = 0 for i = 1, . . . ,q.
Define aq+1 =−bq+1. Suppose aq+1, . . . ,an−1 have been defined for q+1 � n−1 <


2q + 1. Set an = −[bn + ∑n−1
i=q+1


(n
i


)
aibn−i]. Since ai is an integer multiple of bi for


i = 1, . . . ,n−1, we have an ∈ In and bn + ∑n
i=1


(n
i


)
aibn−i = 0. By induction, we can


define coefficients ai so that (9) are satisfied. �
We can compare the weak subintegral closure of an ideal to what is usually called


the Ratliff–Rush closure and was introduced by Ratliff and Rush in [33].


Corollary 3.42. Let I be an ideal in a Noetherian ring A containing a regular
element of A and let Ĩ denote the Ratliff-Rush ideal associated with I, that is,
Ĩ = ∪n�0(In+1 : In). Then, Ĩ ⊂ ∗I.


Proof. This following immediately from the preceding corollary and the fact that
Ĩn = In for all sufficiently high powers of n, which was proven in [33]. �


For an ideal I of a ring A we have inclusions I ⊂ ∗I ⊂ I ⊂ √
I and if I is a


regular ideal (i.e, I contains a regular element) of a Noetherian ring we also have
I ⊂ Ĩ ⊂ ∗I ⊂ I ⊂√


I.
Vitulli and Reid [39] algebraically characterized weakly normal monomial ideals


in a polynomial ring over a field. Recall that the integral closure of a monomial
ideal I in a polynomial ring K[x1, . . . ,xn] is generated by all monomials xγ such that
xmγ ∈ Im for some positive integer m. This is independent of the characteristic of K.
The condition to be in the weak subintegral closure of a monomial ideal is slightly
stronger and is characteristic dependent as we now explain.


Proposition 3.43. [39, Proposition 3.3] Let I be a monomial ideal in a polynomial
ring K[x1, . . . ,xn] in n indeterminates over a field K.
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1. If char(K) = 0, then ∗I is the monomial ideal generated by all monomials xγ such
that xmγ ∈ Im for all sufficiently large positive integers m.


2. If char(K) = p > 0, then ∗I is the monomial ideal generated by all monomials xγ


such that xpmγ ∈ I pm
for some nonnegative integer m.


Reid and Vitulli [39, Theorem 4.10] also presented a geometric characterization
of the weak subintegral closure of a monomial ideal over a field of characteristic 0
in terms of the Newton polyhedron conv(Γ ) of the exponent set Γ = Γ (I) of the
monomial ideal I. We recall that Γ (I) consists of all exponents of monomials in I
and conv(Γ ) is the convex hull of Γ = Γ (I). We write Γ for the set of integral points
in conv(Γ ); thus, Γ is the exponent set of the integral closure I of I. We present a
streamlined version of their characterization due to the current author. First we recall
the pertinent definitions.


Definition 3.44. For a polyhedron P we define the relative interior of P by


relint(P) := P−∪E,


where the union is taken over all facets E of P.


Definition 3.45. For a face F of the Newton polyhedron Σ = conv(Γ ) of a
monomial ideal, define


∗F =
{


x ∈ relint(F) | x = ∑niγi, γi ∈ F ∩Γ ,ni ∈ Z
}


.


That is, ∗F is the intersection of the group generated by F ∩Γ with the relative
interior of F .


Remark 3.46. In [39] the additional requirement that ∑ni = 1 was part of the
definition of ∗F . Lemma 3.5 of [53] shows that this condition may and shall be
deleted.


Before going further, we look at some examples.


Example 3.47. Consider I = (xn,x2yn−2,yn) ⊂ K[x,y], where n = 2m + 1, let
Γ = Γ (I), and Σ = conv(Γ ). Notice that


(n,0) = (0,n)+ n(1,−1) (10)


(2,n−2) = (0,n)+ 2(1,−1). (11)


Subtracting m times (11) from (10) we get


(n,0)+ (m−1)(0,n)−m(2,n−2)= (1,−1). (12)


With this one can check that every lattice point on the line segment E from (0,n)
to (n,0), which is a face of Σ , is in the group generated by E ∩Γ . We may conclude
that ∗E = {(1,n−1),(2,n−2), . . .,(n−1,1)}.
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Example 3.48. Consider I = (xn,x2yn−2,yn)⊂K[x,y], where n is even, let Γ = Γ (I),
and Σ = conv(Γ ).


Using the preceding example (after dividing all coordinates by 2) we see
that every lattice point with even coordinates on the line segment E from (0,n)
to (n,0), which is a face of Σ , is in the group generated by E ∩ Γ so that
∗E ={(2,n−2), . . . ,(n−2,2)}.


Here, is the geometric characterization of the weak subintegral closure of a
monomial ideal in characteristic 0.


Theorem 3.49. Let Γ = Γ (I) be the exponent set of a monomial ideal I in a
polynomial ring K[x1, . . . ,xn] over a field K of characteristic 0. Then, an integral
point γ ∈ conv(Γ ) is in the exponent set of ∗I if and only if γ ∈ ⋃∗F, where the
union is taken over all faces F of conv(Γ ).


We include an example that illustrates the distinction between the integral closure
and weak subintegral closure of a bivariate monomial ideal over a field K of charac-
teristic 0. By pos(X) we mean the positive cone of the subset X of R


n.


Example 3.50. Let I = (x6,x2y4,y6) ⊂ K[x,y], Γ = Γ (I), ∗Γ = Γ (∗I) and
Σ = conv(Γ ). The exponent set Γ consists of all lattice points on or above the
thick-lined staircase figure and Σ is the 1st quadrant with the lower left-hand corner
clipped, i.e., Σ consists of all points on or above the oblique line joining V1 and V2.
Observe that Σ and is the sole 2-dimensional face of conv(Γ ), E1 = {0}× [6,∞),
E2 = [(0,6),(6,0)], and E3 = [6,∞)× {0} are the edges and V1 = {(0,6)} and
V2 = {(6,0)} are the vertices of Σ . The sets Γ , Σ , E1,E2,E3,V1,V2 are depicted
below. The lattice points depicted by open circles are in Σ \ ∗Γ . The lattice points
depicted by filled circles are in ∗Γ .
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Fig. 3: Weak Subintegral Closure of (x6,x2y4,y6)
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Observe that


∗Σ = (Γ \ (E1 ∪E2 ∪E3)∩Γ )∪{(4,3),(5,2),(5,3)};
∗E1 = {(0,7),(0,8),(0,9), . . .};
∗E2 = {(2,4),(4,2)};
∗E3 = {(7,0),(8,0),(9,0), . . .};
∗Vi = Vi (i = 1,2);
∗Γ = Γ ∪{(4,2),(4,3),(5,2),(5,3)}; and


Γ = Γ ∪{(1,5),(3,3),(4,2),(4,3),(5,1),(5,2),(5,3)}.


Thus we have Γ ⊂ ∗Γ ⊂ Γ , where both containments are proper.


Notice that all of the points in the relative interior of the Newton polyhedron
are in the weak subintegral closure of I. An analog of this observation is true for
arbitrary ideals by Prop. 3.57 below, which we will present after we introduce some
necessary notation. For more details the reader should consult [18].


Let I be a monomial ideal over a field of arbitrary characteristic. The proof of
Theorem 3.49 shows that if α is in ∗F for some face F of conv(Γ (I)), then xnα ∈ In


for all sufficiently large n. Thus we may conclude that xα ∈ ∗I by Lemma 3.41. We
now take a look at the ideal with the same monomial generators as in Example 3.50
but over a field of characteristic 2.


Example 3.51. Assume that char(K) = 2, let I = (x6,x2y4,y6) ⊂ K[x,y], Γ = Γ (I),
∗Γ = Γ (∗I) and Σ = conv(Γ ). Notice that


(
xy5


)2
=


(
x2y4)y6 ∈ I2


(
x3y3)2


= x6y6 ∈ I2


(
x4y2)2


= x6 (
x2y4) ∈ I2


(
x5y


)4
=


(
x6


)3 (
x2y4) ∈ I4


Combining these calculations with those in Example 3.48 we see that ∗I = I. This
explicit example illustrates that unlike integral closure, the weak subintegral closure
of a monomial ideal depends on the characteristic of the base field.


We now turn our attention to more general ideals in Noetherian rings.


Notation 3.52. For an ideal I of a Noetherian ring A and an element a ∈ A we write
ordI(a) = n if a ∈ In \ In+1 and ordI(a) = ∞ if a ∈ ⋂


n�1 In. Next we define


vI(a) = lim
n→∞


ordI(an)
n


.


The indicated limit always exists (possibly being ∞; ([31, Prop. 11.1] or [49,
Theorem 10.1.6]) and vI is called the asymptotic Samuel function of I.
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Let I be a regular ideal in a Noetherian ring A and a ∈ A. The asymptotic Samuel
function vI is determined by the Rees valuations v j of I. Namely,


vI(a) = min j


{
v j(a)
v j(I)


}


,


where v j(I) = min{v j(b) | b ∈ I} (see [49, Lemma 10.1.5]). We refer the reader
to Chap. 10 of [49] for the fundamentals on Rees valuations of ideals. Recall that
vI = vJ whenever J = I (see [31, Cor. 11.9]). This immediately implies that J> = I>
whenever J = I.


Notation 3.53. For an ideal I in a Noetherian ring A we let


I> = {a ∈ A | vI(a) > 1}.


By elementary properties of the asymptotic Samuel function, I> is an ideal of A
and a subideal of I. It does not contain the original ideal I by definition of vI .


Example 3.54. Let K be a field and I = (x6,x2y4,y6) ⊂ K[x,y]. Then, I has one Rees
valuation, namely the monomial valuation defined by v(xayb) = a+b (see Chap. 10
of [49] for the fundamentals on monomial valuations). We have v(I) = 6 = v(y6)
and I> = { f ∈ K[x,y] | v( f ) > 6} = (x,y)7


� I.


The ideal I> plays an important role in conditions from stratification theory such
as Whitney’s condition A and Thom’s condition A f ; the reader can learn more about
these conditions in [26]. To give the reader a little more feeling for the ideal I> we
cite some lemmas that were proven in [18].


Lemma 3.55. [18, Lemma 4.2] Let I be a regular ideal in a Noetherian ring A.
Then,


I> =
⋂


i


miIVi ∩A,


where the intersection is taken over all Rees valuation rings (Vi,mi) of I.
In particular, I> is an integrally closed ideal.


Lemma 3.56. [18, Lemma 4.3] Let I be a nonzero monomial ideal in a polynomial
ring over a field. Then, I> is again a monomial ideal.


We now present a generalization of what was known as Lantz’s conjecture (after
a talk D. Lantz gave in 1999 at a Route 81 Conference in upstate New York) and
illustrate the result with an example. Lantz conjectured that if I is an m-primary ideal
in a 2-dimensional regular local ring (A,m), then ∗I contains all elements a∈ A such
that vI(a) > 1.


Proposition 3.57. [18, Prop. 4.4] Let I be an ideal of a Noetherian ring A. Then,
I> ⊆ ∗I.
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Example 3.58. Let K be a field of characteristic 0, let n = 2m + 1, and consider
I = (xn,x2yn−2,yn). We claim that ∗I = I. By Example 3.47 we may conclude that
for the facet E of conv(Γ ), ∗E = {(1,n− 1),(2,n− 2), . . . ,(n− 2,2),(n− 1,1)}.
This, together with the fact that I> ⊂ ∗I, implies that ∗I = I.


Example 3.59. Let K be a field of characteristic 0, let n = 2m, and consider
I = (xn,x2yn−2,yn). Using Example 3.48 and Theorem 3.49 we see that the weak
subintegral closure is ∗I = (xn,xn−2y2, . . . ,x2yn−2,yn).


One consequence of the preceding proposition is the following connection
between the ideal I> and the minimal reductions MR(I) of the ideal I.


Corollary 3.60. [18, Cor. 4.5] Let I be an ideal of a Noetherian ring A. Then,


I> ⊆
⋂


J∈MR(I)


∗J.


We mention another interesting occurrence of the ideal I>. For more results in
the same spirit the reader should consult [18].


Theorem 3.61. [18, Theorem 4.6] Let (A,m,k) be a Noetherian local ring such that
k is algebraically closed of characteristic 0. Suppose that I is an m-primary ideal.
If J is any minimal reduction of I then J + I> = ∗J.


It is well known that the integral closure of an ideal I in an integral domain A
can be characterized in terms of valuation rings. Namely, I =


⋂
V IV ∩A, where the


intersection is taken over all valuation rings of the quotient field of A that contain
A (see [49, Prop. 6.8.2]). This can be rephrased in terms of maps into valuation
rings and for Noetherian rings in terms of maps into discrete rank one valuation
rings. More precisely, an element f in a Noetherian ring A is in I if and only if
ρ( f ) ∈ ρ(I)V for every homomorphism ρ : A → V , where V is a discrete rank one
valuation ring. For algebro-geometric local rings that we can limit which discrete
rank one valuation rings we look at. The following is an analog of the complex
analytic criterion involving germs of morphisms from the germ of the pointed
complex unit disk (D,0) to the germ (X ,x) (e.g., see [30, 2.1 Theorème]).


Proposition 3.62. [18, Prop. 5.4] Let (A,m,k) be the local ring of an algebraic
variety over an algebraically closed field k, I an ideal of A, and h ∈ A. Then,
h ∈ I ⇔ for every local homomorphism of k-algebras ρ : A → k[[X ]] we have
ρ(h) ∈ ρ(I)k[[X ]].


In the criteria, involving maps into discrete valuation rings, one thinks of the
targets of those maps as test rings for determining integral dependence. Recently
H. Brenner [8] suggested a valuative criterion for an element to be in the weak
subintegral closure of an ideal in an algebro-geometric local ring. Brenner used
certain 1-dimensional seminormal local rings as test rings and the results of [18].
Gaffney-Vitulli took another approach to developing a valuative criterion in both
the algebraic and complex analytic settings (see [18, Props. 5.7 and 5.8]).


We end our account here. We hope we have left you, the reader, with a better idea
of the many ramifications of the closely related notions of weak and seminormality.
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Sup. Pisa 23, 430–450 (1969)
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