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Preface


This volume draws on the contributors' talks at the Fourth International Conference on
Commutative Algebra held in Fez, Morocco. The goal of this conference was to
present recent progress and new trends in the growing area of commutative algebra,
with primary emphasis on commutative ring theory and its applications. The
conference also facilitated a fruitful interaction among the participants, whose various
mathematical interests shared the same (commutative) algebraic roots.


The book consists of 34 chapters which, while written as separate articles, provide
nonetheless a comprehensive report on questions and problems of contemporary
interest. Some articles are surveys of their subject, while others present a narrower, in-
depth view. All the manuscripts were subject to a strict refereeing process.


This volume encompasses wide-ranging topics in commutative ring theory (along
with connections to algebraic number theory, algebraic geometry, homological algebra,
and model-theoretic algebra). The topics covered include: algebroid curves, arithmetic
rings, chain conditions, class groups, constructions of examples, divisibility and
factorization, linear Diophantine equations, the going-down and going-up properties,
graded modules and analytic spread, Grobner bases and computational methods,
homological aspects of commutative rings, ideal and module systems, integer-valued
polynomials, integral dependence, Krull domains and generalizations, local
cohomology, prime spectra and dimension theory, polynomial rings, power series
rings, pullbacks, tight closure, ultraproducts, and zero-divisors.


Graduate students and established commutative algebraists will find the book a
valuable and reliable source, as will researchers in many other branches of
mathematics.


The conference was organized by the University of Fez with the scientific
collaboration of the Universita degli Studi "Roma Tre," Italy, and the University of
Nebraska, U.S.A. Financial support was provided by the Commutative Algebra and
Homological Aspects Laboratory, the Faculty of Sciences "Dhar Al-Mehraz," the
International Mathematical Union (CDE), the "Espace Sciences & Vie" Association,
and the Universita degli Studi "Roma Tre."


We wish to express our gratitude to the local organizing committee, especially
Professors A. Benkirane, Chairman of the Department of Mathematics, R. Ameziane
Hassani, and A. Touzani, as well as to Professor M. H. Kadri and Mr. M. A. Chad,
Dean and Secretary-General, respectively, of the Faculty of Sciences "Dhar Al-
Mehraz" at Fez. Special thanks are due to Mr. A. Bennani and Mrs. T. Ibn Abdelmoula
for their constant help with conference arrangements. The efforts of the contributors
and the referees are greatly appreciated; without their work this volume would never
have been produced. Last, we thank the editorial staff at Marcel Dekker, Inc., in
particular, Maria Allegra and Ana Pacheco, for their patience, hard work, and
assistance with this volume.


Marco Fontana
Salah-Eddine Kabbaj


Sylvia Wiegand
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1. INTRODUCTION


Let D be an integral domain with identity and quotient field K. In this paper, we


study the ring D[X2,X3} — D + X2D[X] C D[X], and we compare its behavior


to its polynomial overring -D[Jf]. Of course, D[X2,X3} is never integrally closed


(or seminormal, root closed, etc.); so in this paper, we are mainly interested in


ring-theoretic properties that do not involve "closedness" conditions. Quite often


D[X2,X3} satisfies a given ring-theoretic property if and only if D[X] satisfies


that property. However, in Section 3, the characteristic of D plays an important


role. The ring K[X2,X3} has proved useful in constructing examples concerning


the Picard group (see Theorem 3.4) and nonunique factorization (see [10]). This


paper gives several other cases where the ring D [ X 2 , X Z ] can be used to construct
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interesting, elementary examples (for instance, see Section 3). Many of the results


in this paper generalize to monoid domains; we leave this to a future paper.


We first recall some of the properties we will investigate in this paper. An integral


domain D is said to be a weakly factorial domain (WFD) [4] if each nonzero nonunit


of D is a product of primary elements. Following [9], D is called a generalized weakly


factorial domain (GWFD) if each nonzero prime ideal of D contains a primary


element. Clearly, WFDs are GWFDs; however, if D is a Dedekind domain with


nonzero torsion divisor class group, then R is a GWFD, but not a WFD (cf. [7,


p. 912], [9, Proposition 3.1]). Following [5], D is called a weakly Krull domain


if D = np€ X(i)(D)Dp and the intersection has finite character, where X^(D) is


the set of height-one prime ideals of D, A Krull domain is weakly Krull, and a


Noetherian domain is weakly Krull if and only if every grade-one prime ideal has


height one. In [7, Theorem], it was shown that D is a WFD if and only if D is a


weakly Krull domain and Clt(D} — 0. A Krull domain D is called almost factorial


if Cl(D) is torsion. As in [5], we say that an integral domain D is an almost weakly


factorial domain (AWFD) if for each nonzero nonunit x e £), there is an integer


n = n(x] > 1 such that xn is a product of primary elements. Thus an AWFD is a


GWFD. It was shown in [5, Theorem 3.4] that D is an AWFD if and only if D is


a weakly Krull domain and Clt(D) is torsion. We say that an integral domain D


is an almost GCD-domain (AGCD-dornain) if for all nonzero x,y € D, there exists


an integer n — n(x,y) > 1 such that (xn,yn)v is principal. In [6, Theorem 3.4], it


was proved that Clt(D) is torsion when D is an AGCD-domain.


Throughout this paper, D denotes an integral domain with quotient field K,


Spec(D) its set of prime ideals, and X^(D} its set of height-one prime ideals. For


/ € -frTpf], let Af be the fractional ideal of D generated by the coefficients of /.


Recall that for a nonzero fractional ideal A of D, we have A~l = {x 6 K\xA C D},


Av = (A~l)~l, and At — (J{(ai,...,an}v 0 7^ (ai , . . . ,an) C A}. A nonzero fractional


ideal A of D is called a divisorial ideal (resp., t-ideal) if Av = A (resp., At = A).


We say that D has t-dimension one, written t-dimD = 1, if each prime t-ideal of


D has height one (note that a height-one prime ideal is necessarily a t-ideal). A


weakly Krull domain D has t-dirnD = 1 [5, Lemma 2.1]. An integral ideal of D is


said to be a maximal t-ideal if it is maximal with respect to being a t-ideal, and a
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maximal t-ideal is necessarily a prime ideal.


A nonzero fractional ideal A of D is said to be t-invertible if there exists a


fractional ideal B of D with (AB}t = D, and in this case we can take B = A-1. It is


well known that if A is a t-invertible t-ideal, then A = Jv for some finitely generated


subideal J of A The set of t-invertible t-ideals of D forms an abelian group under


the t-product A * B = (AB}t- The t-class group of D is Clt(D] - the group of t-


invertible fractional t-ideals of D modulo its subgroup of principal fractional ideals.


For D a Krull domain, Clt(D) = Cl(D], the divisor class group; while for D a


Priifer domain or one-dimensional integral domain, Clt(D] = C(D] = Pic(D], the


ideal class group (or Picard group). For a recent survey article on the t-class group,


see [8].


2. THE RING D[X2,X3]


In this section, we study the ring D[X2, X3] = D + X2D[X] and prove some analogs


of the polynomial ring D[X\. Our first goal is to show that D [ X 2 , X 3 } is a UMT-


domain if and only if D is a UMT-domain. The next lemma also holds for monoid


domains (cf. [11, Lemma 2.3]).


LEMMA 2.1. Let I be a nonzero fractional ideal of D. Then


(1) ( I D [ X 2 , X 3 } } - 1 = I ~ 1 D [ X 2 , X 3 } .


(2)


(3)


Proof. (1) It is clear that rlD[X*,X3] C ( I D [ X 2 , X 3 } ) - 1 . Note that since


I ( I D [ X 2 , X 3 } ) - 1 C D [ X 2 , X 3 } CK[X2,X3},v,ehwe(ID[X2,X3}rl C K [ X 2 , X 3 }


If / € ( I D ( X 2 , X 3 } } - 1 , then Afl C D, and hence Af C I'1. So/ € AfD(X2,X3} C


I-1D[X2,X3}. Therefore, ( I D [ X 2 , X 3 } ) - 1 = rlD[X2,X3}.


(2) (ID[X2,X3})V = ( ( I D [ X 2 , X 3 } ) - i ) - 1 = (rlD[X2,X3})-1 =


by (1).


(3) It is clear that if /i, /2, . . . , / *€ I D [ X 2 , X 3 } , then


( f i , . - . , f k ) v C ( ( A f l , . . . , A f l l ) D [ X * , X 3 ] ) v
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= (Afl , .., A f k } v D [ X 2 , X3} C ItD[X\ X3}.


So ( I D [ X 2 , X 3 ] } t C ItD(X2,X3}. For the converse, let J be a nonzero finitely gen-


erated subideal of / . Then JVD[X2,X3] = (JD[X2,X3})V C ( I D [ X 2 , X 3 } ) t by (2).


Thus ItD[X2,X3} C ( I D [ X 2 , X 3 ] ) t , and hence ( I D [ X 2 , X 3 } ) t = ItD[X2,X3}. D


LEMMA 2.2. fcf. [18, Proposition l.Ijj Let Q be a maximal t-ideal ofD[X2,X3}


such that QC\D ^ 0. Then Q = (QnD)[X2,X3]. In particular, QnD is a maximal


t-ideal of D.


Proof. It suffices to show that c(Q)p£2,X3] C Q, where c(Q) is the ideal of D


generated by the coefficients of all the polynomials in Q. If c(Q) <£ Q, then Q C


c ( Q ) ( X 2 , X 3 } . Since Q is a maximal t-ideal, we have c ( Q } t [ X 2 , X 3 } = (c(Q)[X2,X3])t


= D [ X 2 , X 3 ] . So c(Q)t = D; whence there is a polynomial / G Q such that


( A f } v = D. LeiO^aeQnD.


We claim that (aj)~l = D [ X 2 , X 3 } . First note that (a,/)"1 C K [ X 2 , X 3 }


because for g e (a,/)"1, a5 e D[X2,X3] C ^[X2,X3]. Next, if g e (a,/)"1,


then there is an integer m > 1 such that A^+1Ag = A™Afg [16, Theorem 28.1].


Thus (A™+lAg}v = (^A/p). and A9 C (A,)t = ((^+1)^p)v - (A™+lAg)v =


(A?Afg)v = ( ( A f ) v A f 3 ) v = (A /9)u C D. Hence g € Ag[X2,X3} C D(X2,X3}.


Thus (a,/)-1 = DpC2,X3], and hence (a, /)„ = ^[X2,^3], which is a con-


tradiction since Q is a t-ideal. Therefore c(Q)[X2, X3} — Q, and hence Q =


(QnD)[x2,x3}. n


As in [18], D is called a UMT-domain if every upper to zero (a nonzero prime


ideal of D[X] which contracts to zero in D) of D[X] is a maximal t-ideal. Recall


that D[X] is a UMT-domain if and only if D is a UMT-domain [14, Theorem 3.4].


Thus, as a consequence of our next result, D [ X 2 , X3] is a UMT-domain if and only


if D[X] is a UMT-domain.


THEOREM 2.3. D[X2, X3} is a UMT-domain if and only if D is a UMT-domain.


Proof. (=») Suppose that D [ X 2 , X 3 } is a UMT-domain. Let P be a maximal t-


ideal of D. Then PD[X2,X3} is a maximal t-ideal of D [ X 2 , X 3 } by Lemma 2.2.


Also, note that D(X2, X3}PD[X^X3] = D[X]P[X]. Since D[X2,X3} is a UMT-


domain, D[X]p[x] is a t-linkative UMT-domain [14, Theorem 1.5], and hence Dp
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is a i-linkative UMT-domain (see the proof of [14, Theorem 2.4]). Thus D is a


UMT-domain [14, Theorem 1.5].


(«=) Suppose that D is a UMT-domain. To show that D[X2,X3} is a UMT-


domain, it is enough to show that if Q is a maximal i-ideal of D[X2,X3}, then the


integral closure of D[X2, X3]q is a Priifer domain [14, Theorem 1.5].


Let Q be a maximal Mdeal of D[X2, X3} and let Q n D = P. If P ^ 0, then Q =


P[X2,X3] by Lemma 2.2. Moreover, since X2 £ P[X2,X3} we have D[X2,X3}Q =


D[X]p[x\- Thus the integral closure of D[X2,X3\Q is a Priifer domain by [14,


Theorem 1.5] (note that D[X] is a UMT-domain [14, Theorem 2.4] and P[X] is


a prime Mdeal of D[X}}. If P = 0, then D[X2,X3]Q = K[X2,X3}QK[X2tX3],


and hence D[X2,X3]Q is a one-dimensional Noetherian domain. Thus the integral


closure of D[X2, X3]q is a Dedekind domain (cf. [22, Theorem 33.10]), and hence


a Priifer domain. D


LEMMA 2.4. If Q is a prime ideal of D[X2,X3], then there is a unique prime


ideal of D[X] lying over Q. Thus the natural map Spec(D[X}} -» Spec(D[X2, X3}),


given by P —> P D D[X2,X3}, is an order-preserving bijection.


Proof. Let Q be a prime ideal of D[X2,X3}, P = Q n D, and S = {Xn\n =


0,2,3,. . .}.


Casel. P = 0. If QD[X2,X3]S = D[X2,X3]S, then Q = XD[X] n D[X2, X3]


and XD[X] is the unique prime ideal of D[X] lying over Q. Assume that QD[X2, X3]s


CD[X]S. Note that D[X2,X3]S = D[X}S = D[X,X~1}. So QD[X*,X*]S n D[X]


is the unique prime ideal of D[X] lying over Q.


Case 2. P ^ 0. If Q = P[X2,X3}, then P[X] is the unique prime ideal of D[X]


lying over Q. Assume that P[X2,X3} C Q. Note that D[X2,X3]/P[X2,X3} ^


(D/P}[X2,X\ D[X]/P(X] S (D/P)(X], and (Q/P(X2,X3}} n (D/P)(X2,X3} =


0. Thus there is a unique prime ideal of (D/P)[X] lying over Q/P[X2, X3] by Case


1. Since every prime ideal of D[X] lying over Q contains P[X], there is a unique


prime ideal of D[X] lying over Q. D


We next show that the bijection in Lemma 2.4 preserves i-ideals.


THEOREM 2.5. Let Q be a prime ideal of D[X] and let Q' = Q n D[X2,X3}.


Then Q' is a prime t-ideal ofD[X2, X3} if and only ifQ is a prime t-ideal of D[X] .
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Proof. Let P = Q n D = Q' H D and 5 = {X n n = 0, 2, 3, . . . }.


Case 1. P = 0. Then htQ' = htQ = 1 by Lemma 2.4. Thus Q and Q' are prime


Mdeals of D[X] and D[X2,X3], respectively.


Case 2. P ^ 0. Then Q = P[X] if and only if Q' = P[X2,X3} (Lemma 2.4).


Thus, by Lemma 2.1, Q is a prime t-ideal of D[X] if and only if P is a prime i-ideal


of D, if and only if Q' is a prime t-ideal of D[X2, X3}.


Case 3. P + 0. Then P[X] C Q if and only if P[X2,X3} C Q' . Note that if


either Q or Q' is a Mdeal, then X £ Q. For if 0 ^ a G P, then ((


and ((a,X2)£>[X2,X3])v = £>[X2,X3]. Note that D[X2,X3]S =
3]5 = QD[X]s, Q = QD[X]snD(X], and Q' = Q'DfX2,*3^ H


D[X2,X3]. Thus it suffices to show that if either Q or Q' is a t-ideal, then


Q'D[X2,X3]S = QD[X]S is a i-ideal of D[X]S by [19, Lemma 3.17].


Let A be a fractional ideal of D[X] such that A n D ^ 0. We claim that


(ADpCjs)-1 = ^-1D[X]5. It is clear that A-1D[X]S C (AD[X\S)-
1. For the


converse, let u e (AD^ls)-1. Then wA C u(AD[X}s] C D[X]5. Since An D ^ 0,


it € -K"[X]5. Thus u = jjtzr for some g G -K"[^"] and integer m > 0. For any


f £ A, since u/ = (^r)/ G I>[X]s, /5^n € D[X] for some integer n > 0,


and hence fg € £>[X]. Thus g G A'1 and u = ^ G A-1!)^]^. Hence


(AD[X]S)-
1 C A-1D[X]S, and thus (AD[X}S)-


1 = A-X£>[X]5. A similar ar-


gument shows that if A is a fractional ideal of D[X2, X3] with A n D ^ 0, then


Suppose that Q is a t-ideal of D[X] and let B be a finitely generated subideal of


Q. Note that P ^ 0, and for any a G Q, (B,a) is also a finitely generated subideal


of Q and (BD[X]5)t, C ( ( B , a } D [ X } s ) v - So we may assume that B n D ^ Q. By


the previous paragraph, we have that (BD[X]s)v — BvD[X\s- Thus QD[X]s is a


t-ideal. Similarly, we have that if Q' is a t-ideal of D[X2,X3}, then Q'D[X2,X3]S


is a t-ideal. Therefore, the proof is completed. D


Recall that D is a Mori domain if it satisfies the ascending chain condition on


integral divisorial ideals. The class of Mori domains includes Noetherian domains


and Krull domains, and is closed under finite intersections. Recall that D[X] is a


Mori domain if D is an integrally closed Mori domain [24]. However, an example


is given in [25] of a Mori domain D for which D[X] is not a Mori domain. We
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say that an integral domain D satisfies the Principal Ideal Theorem (PIT) if each


prime ideal of D which is minimal over a nonzero principal ideal has height one.


It follows from [12, Proposition 3.1(b)j that an integral domain D satisfies PIT if


and only if each nonzero prime ideal of D is a union of height-one prime ideals. An


integral domain D is called an S-domain if htP[X] = 1 for each prime ideal P of


D with htP = 1 [20]. Note that D[X] is an S-domain for any integral domain D


[2, Theorem 3.2]. Also, note that if D[X] satisfies PIT, then D satisfies PIT and


D is an S-domain [12, Proposition 6.1]; but, D satisfies PIT does not imply that


D[X] satisfies PIT [12, Remark 6.2]. However, if D is integrally closed, then D[X]


satisfies PIT if and only if D satisfies PIT and D is an S-domain [13, Theorem 4].


We next show that D[X2,X3} satisfies any of the above three properties if and


only if D[X] does.


THEOREM 2.6. Let D be an integral domain. Then


(1) D[X2,X3} is an S-domain.


(2) D[X2, X3} satisfies PIT if and only if D[X] satisfies PIT.


(3) D[X2, X3] is a Mori domain if and only if D[X] is a Mori domain.


Proof. (I) Since D[X] is integral over D[X2,X3} (or by Lemma 2.4) and D[X] is


an S-domain, D[X2,X3] is also an S-domain.


(2)(=>) Suppose that D[X2,X3] satisfies PIT. Let Q be a prime ideal of D[X]


and P = Q n D[X2,X3}. We need to show that Q = UQQ, where {Qa} is the set


of height-one prime ideals of D[X] contained in Q. Since D[X2, X3] satisfies PIT,


P = U(Qa H D[X2,X3}} by Lemma 2.4. If X e Q, then Q = (Q n D,X). Thus


P = (QnD,X2,X3). Hence Q = (QnD,X) C uQQ; so Q = UQa. If X £ Q,


then fX2 € P for any / 6 Q. Then fX2 6 Qa for some Qa, and hence / G Qa', so


Q = UQQ. Thus D[X] satisfies PIT. («=) Suppose that D[X] satisfies PIT. Let P


be a prime ideal of D[X2,X3]. By Lemma 2.4, P = Q n D[X2,X3} for some prime


ideal Q of -D[X]. Since D[X] satisfies PIT, Q is a union of height-one prime ideals of


Dpf]. Since each height-one prime ideals of D[X] contracts to a height-one prime


ideal of D[X2,X3} by Lemma 2.4, P is thus a union of height-one prime ideals.


Hence D[X2,X3} satisfies PIT.


(3)(=>-) Suppose that D[X2,X3} is a Mori domain. Let S = {Xn\n = 0, 2,3, . . . }.
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Then D[X] = K[X}nD[X2,X3}s and D[X2,X3}S is a Mori domain [23, Corollary


3], Thus D[X] is also a Mori domain. («=) This follows since D[X2,X3} = D[X] H


/f[X2,X3] and /f[X2,X3] is a one-dimensional Noetherian domain (and hence a


Mori domain). D


Our next result is the D[X2, X3] analog of [3, Proposition 4.11] that D[X] is a


weakly Krull domain if and only if D is a weakly Krull UMT-domain.


PROPOSITION 2.7. (cf. [3, Proposition 4.11]) D[X2,X3} is a weakly Krull


domain if and only if D is a weakly Krull UMT-domain.


Proof. (=>) Suppose that D[X2, X3} is a weakly Krull domain, and hence D[X2, X3}


has t— dimension one. Let P be a prime i-ideal of D. Then PD[X2, X3} is a prime


t-ideal of D[X2,X3], and hence htP = htP[DX2,X3} - 1; whence t-dimD = 1.


Moreover, if 0 7^ a 6 D, then the number of height-one prime ideals of D [ X 2 , X 3 ]


that contain a is finite. Hence {P G Xl(D)\a e P} is finite, and thus D is weakly


Krull.


Let P € X1^)- Then htP[X2,X3] = 1, and hence htP[X] = 1, which implies


that D is a UMT-domain because t-dimD = 1.


(<=) Suppose that D is a weakly Krull UMT-domain, and let P € Xl(D). Then


ht(P[X2,X3]) = 1 by Lemma 2.4. Thus i-dim(L>[X2,X3]) = 1 by Lemma 2.2 (note


that i-dimD = 1 since D is weakly Krull). Hence by [17, Proposition 4] or [19,


Proposition 2.8],


D[X2,X3} = nQ6X1(D[x2,x31)D[X2,X3]Q.


Let 0 ̂  / e D[X2,X3}, A = {PD[X2,X3}\P 6 Xl(D] and / € PD[X2,X3}},


and 5 = [Q € X^DtX2,^3])^ n D = 0 and / € Q}. Since D is weakly Krull, A


is finite. Moreover, since K[X2,X3} is a one-dimensional Noetherian domain, B is


also finite. Therefore, D[X2,X3} is weakly Krull. D


The final result of this section is the D[X2,X3} analog of [24, Lemme 1].


PROPOSITION 2.8. Let D be integrally closed and 0 ̂  / € K[X2,X3]. Then


(1)
( fA7l[X2,X3}, j


(2) /*T[x]n£>[x2,x3]H V J
1 J l J \ f A l ( X ] , i f / (0)=0.
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Proof. (1) Let fg € f K [ X 2 , X * } D D[X2,X3}. Then A/A, C (A,A5)V = (A/,)* C


D because D is integrally closed (cf. [16, Proposition 34.8]). Thus g e A^pf2,^3]


and /tf[X2,X3] n£>[X2,X3] C f A J l [ X 2 , X 3 } . The converse is clear.


(2) Case 1. /(O) = 0. Let /0 e /tf[X] n D[X2,X3}, where p e K[X\. Since


D is integrally closed, A/A5 C (A/Ag)v = (Afg)v C D (cf. [16, Proposition


34.8]). Thus g e ( A f ) - l [ X ] , and hence /K[X]n£[X2,X3] C f A j l [ X } . Moreover,


since /(O) = 0, we have fh e D[X2,X3} for any /i € ( A f ) - l [ X } . Therefore,


fK[X] n D[X2,X3] = f A j l [ X ] for any /i € (A/)"1^].


Case 2. /(O) ^ 0. Since /(O) ^ 0, /5 ^ K[X2,X3} for any p e K[X]-K[X2,X3},


which implies that the proof is identical to the proof of Case 1. D


3. GENERALIZED WEAKLY FACTORIAL DOMAINS


One of the purposes of this section is to find equivalent conditions for D[X2,X3],


over an almost factorial domain D, to be a GWFD. The other is to study the t-class


group Cl^DlX^^X3}). Recall that a GWFD is weakly Krull and has t— dimension


one [9, Corollary 2.3], and that an almost factorial domain is a Krull domain with


torsion divisor class group.


THEOREM 3.1. The following statements are equivalent for an almost factorial


domain D.


(1) D[X2,X3] is an AGCD-domain.


(2) D[X2,X3} is an AWFD.


(3) D[X2,X5] is a GWFD.


(4)


Proof. (1) =» (2): Recall that a Krull domain is a weakly Krull UMT-domain.


Thus D[X2,X3] is a weakly Krull domain by Proposition 2.7. Also, note that an


AGCD-domain has torsion t-class group. Hence D[X2, X3] is an AWFD.


(2) => (3): Let Q be a nonzero prime ideal of D[X2,X3} and let 0 ^ / 6 Q.


By the definition of an AWFD, there is an integer n > 1 such that fn is a product


of primary elements. Thus Q contains a nonzero primary element of D [ X 2 , X 3 ] .


Therefore, D[X2,X3} is a GWFD.
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(3) => (4): Since D [ X 2 , X 3 ] is a GWFD, D[X2,X3]D_{0} = K[X2,X3} is also a


GWFD by [9, Remark 2.5(4)]. Moreover, since charD = charK, it suffices to show


that ch&rK ^ 0.


Suppose that chartf = 0, and let Q = (l+X)K[X]nK[X2, X3}. Since K[X2, X3}


is a GWFD, there is a primary element / € Q such that Q = ^ / f K [ X 2 , X 3 } . Let


S = [Xn\n = 0,2,3,. . .}. Then K[X2,X3]S = K[X]S = K [ X t X ~ 1 ] . Note that


K\X\S is a PID and QK[X}S = (1 + X)K[X]S. Thus fK[X]s = (1 + X


for some integer n > 1, and hence / = u' .ym ' for some integer m and 0 ̂  u G -ft'.


If m > 0, then Xm/ = u(l + X)n, and hence m = 0. Thus / = u(l + X)n,


and u(l + X)n € ^[X2,^3] <^ nuX € ^T[X2,X3] <^ X e X[X2,X3] (note that


charX = 0), a contradiction. Hence m < 0 and / = u(l + X)nX~m € Qn(XK[X]n


K[X2,X3]), which contradicts that / is primary. Thus ch&rK ^ 0.


(4) =>• (1): Let 0 ^ /,p € £>[X2,X3]. Then there is an integer k > 1 and


h e /5T[X] such that (((f,g}D[X})k}v = ((fk,gk)D[X})v = hD[X] (note that D[X]


is a Krull domain with torsion divisor class group) [6, Lemma 3.3]. Thus fk = hfi


and gk = hgi for some fi,gi € D[X], and ((/1,^1)D[X])V = jD[X]. Since charD =


Assume that (/f,5^)u C Z)[X2,X3]. Then there is a height-one prime ideal


Q of £>[X2,X3] such that (/f,^)v C Q (note that t-dim(D[X2 , X3}) = 1 since


D[A"2,A"3] is weakly Krull). Since D[X] is integral over D[X2,X3] (or by Lemma


2.4), there is a height-one prime ideal Q' of D[X] such that Q' n D[X2,X3} = Q.


Thus


D(X] 2 Q' = Q; 3 ((/


a contradiction. Hence (/f ,g^}v = D[X2,X3]. Therefore,


Thus £>[A"2, A"3] is an AGCD-domain. D


COROLLARY 3.2. The following statements are equivalent for a field K.


(1) K[X2,X3] is an AGCD-domain.


(2) K(X2,X3] is an AWFD.
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(3) K[X2,X3]isaGWFD.


(4)


Our next result generalizes Theorem 3.1.


THEOREM 3.3. (cf. [9, Theorem 3.3]) Let D be an integrally closed domain


with charD = p ̂  0. Then the following statements are equivalent.


(1) D[X2,X3]isan AWFD.


(2) D[X2,X3} isaGWFD.


(3) D[X] is an AWFD.


(4) D[X] is a GWFD.


(5) D is a generalized weakly factorial AGCD-domain.


(6) D is an almost weakly factorial AGCD-domain.


(7) D is a weakly Krull AGCD-domain.


Proof. (1) => (2) : This follows from the definitions.


(2) => (4) : By [9, Theorem 2.2], it suffices to show that if Q is a maximal


t-ideal of D[X], then Q = \/fD(X] for some / £ D[X] because t-dimD[X] = t-


dimD[X2,X3} = 1. Let P = Q n D. If P + 0, then Q = P[X] and P[X2,X3} =


\/aD[X2,X3] for some a € P (note that P[X2,X3} is a height-one prime ideal).


Thus P[X] =


Assume that P = 0, and let Q n D[X2,X3} = ^fD[X2,X3}. Note that if


g e D[X], then ^p 6 jD[X2,X3] because charD = p ̂  0. Thus Q = ^fD[X}.


(3) = > • ( ! ) : Recall that D[X] is a weakly Krull domain & D is a weakly Krull


UMT-domain <=> Z)[X2,X3] is a weakly Krull domain. Hence it suffices to show


that Clt(D[X2,X3}} is torsion.


Let Q be a Mnvertible Mdeal of D[X*,X3]. Then ( ( Q D [ X } ) ( Q - l D ( X ] ) ) t =


(QQ~lD[X])t C D[X]. Since Q is Mnvertible, QQ"1 is not contained in any


height-one prime ideal of D[X2, X3} (note that t-dimD[X] = t-dimD[X2, X3} = I ) .


Thus (QD[X])(Q~1D[X]) is not contained in any height-one prime ideal of jD[-X],


and hence ((QJD[X])(Q~1
JD[X]))t = D[X]. Since D[X] is an AWFD and thus


has torsion t-class group, there is an integer n > I and an / G D[X] such that


((QD[X])n}v = (QnD[X])v = fD[X}. Since Q is a finite type t-ideal, by the same
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argument as in the proof of (4) =» (1) in Theorem 3.1, we have that (Qpn)v =


f P D ( X 2 , X 3 } . Therefore, D[X2,X3} is an AWFD.


(3) & (4) <^ (5) <£> (6) <=> (7): These implications are in [9, Theorem 3.3]. D


We close this paper with a discussion of Clt(D[X2,X3}). Recall that an integral


domain D with quotient field K is serninormal if whenever x2,x3 € D for some


x G K, then x e -D; and that Pic(D[X]) = Pic(D) if and only if D is seminormal.


Using the Mayer- Vietoris exact sequence for (U, Pic) (cf. [21, pp. 39-40]), one may


show that Pic(D[X2 , X3}) = Pic(D) © D (as additive abelian groups) when D is


seminormal. Also, Clt(D[X}) = Clt(D) if and only if D is integrally closed [15,


Theorem 3.6]. In analogy with the Picard group case, we ask if C l t ( D [ X 2 , X 3 } ) =


Clt(D) © K (as additive abelian groups) when D is integrally closed. Our final


theorem shows that this does hold in the special case when D is a GCD-domain


since then Clt(D) = 0. For example, letting D = Z, we have Pic(1[X2 , X3}) = 1


THEOREM 3.4. Let D be a GCD-domain with quotient field K. Then, as


additive abelian groups,


(1) Pic(D[X2,X3}) = D.


(2) Clt(D[X2,X3}) = K.


Proof. (1) This follows using the Mayer- Vietoris exact sequence for (U,Pic).


(2) Let S = D - {0}. Then S is an Icm splitting set in D[X2,X3}. Thus


Clt(D[X*,X3]) * Clt(D[X2,X3}s) = Clt(K[X2,X3}) = Pic(K(X2,X3}) = K


by [1, Theorem 4.1]. D


QUESTION 3.5. Compute Clt(D[X2,X3}) for an arbitrary integral domain D


with quotient field K. In particular, does C l t ( D [ X 2 , X * ] ) = Clt(D)@K (as additive


abelian groups) when D is integrally closed?
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On the Complete Integral Closure of
Rings that Admit a (|)-Strongly Prime
Ideal


AYMAN BADAWI, Department of Mathematics, Birzeit University, Box 14, Birzeit,
West Bank, Palestine, via Israel. E-Mail: abring@birzeit.edu


ABSTRACT:
Let R be a commutative ring with 1 and T(R) be its total quotient ring such


that Nil(R) (the set of all nilpotent elements of R] is a divided prime ideal of
R. Then 7?, is called a (^-chained ring (fi-CR) if for every x, y 6 R \ Nil(R), either
x | y or y \ x. A prime ideal P of R is said to be a (^strongly prime ideal if for
every a, 6 6 R \ Nil(R), either a | 6 or aP C bP. In this paper, we show that if R
admits a regular </*-strongly prime ideal, then either R does not admit a minimal
regular prime ideal and c(R) (the complete integral closure of R inside T(R)) =
T(R) is a 0-CR or R admits a minimal regular prime ideal Q and c(R.) — (Q : Q)
is a </>-CR with maximal ideal Q. We also prove that the complete integral closure
of a conducive domain is a valuation domain.


1 INTRODUCTION


We assume throughout that all rings are commutative with 1^0. We begin by
recalling some background material. As in [17], an integral domain R, with quotient
field .RT, is called a pseudo-valuation domain (PVD) in case each prime ideal P of
R is strongly prime, in the sense that xy G P, x € -K", y E K implies that either
x G P or y G P. In [4], Anderson, Dobbs and the author generalized the study of
pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero
zerodivisors). Recall from [4] that a prime ideal P of R is said to be strongly prime
(in R) if aP and bR are comparable (under inclusion) for all a, b € R. A ring R is
called a pseudo-valuation ring (PVR) if each prime ideal of R is strongly prime. A
PVR is necessarily quasilocal [4, Lemma l(b)]; a chained ring is a PVR [4, Corollary
4]; and an integral domain is a PVR if and only if it is a PVD (cf. [1, Proposition
3.1], [2, Proposition 4.2], and [6, Proposition 3]). Recall from [7] and [14] that a
prime ideal P of .R is called divided if it is comparable (under inclusion) to every
ideal of R. A ring R is called a divided ring if every prime ideal of R is divided.


In [8], the author gave another generalization of PVDs to the context of arbitrary
rings (possibly with nonzero zerodivisors). As in [8], for a ring R with total quotient
ring T(R] such that Nil(R) (the set of all nilpotent elements of R) is a divided
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prime ideal of /?., let 0 : T(R) —> K := RHU(R) such that 0(o/6) = a/6 for every
a e jR and every b £ R \ Z(P.}. Then 0 is a ring homomorphism from T(R) into
K, and 0 restricted to R is also a ring homomorphism from R into K given by
0(a;) = x/1 for every x £ R. A prime ideal Q of </>(.R) is called a K-strongly prime
ideal if xy € Q, re € K, y 6 -K" implies that either x € Q or ?/ 6 Q. If each prime
ideal of <j)(R) is K-strongly prime, then 0(jR) is called a K-pseudo-valuation ring (K-
PVR). A prime ideal P of/?, is called a (^-strongly prime ideal if (f>(P) is a K-strongly
prime ideal of <p(R). If a (^strongly prime ideal P of R contains a nonzerodivisor,
then we say that P is a regular (^-strongly prime ideal. If each prime ideal of R is
0-strongly prime, then R is called a (p-pseudo-valuation ring ($ - PVR). For an
equivalent characterization of a ^-PVR, see Proposition 1.1(7). It was shown in [9,
Theorem 2.6] that for each n > 0 there is a 0-PVR. of Krull dimension n that is
not a PVR. Also, recall from [10], that a ring R is called a (^-chained ring (fi-CR)
if Nil(R.) is a divided prime ideal of R and for every x € RNU(R) \ ^(R), we have
a;"1 G (f>(R). For an equivalent characterization of a 0-CR, see Proposition 1.1(9).
A 0-CR. is a divided ring [10, Corollary 3.3(2)], and hence is quasilocal. It was
shown in [10, Theorem 2.7] that for each n > 0 there is a 0-CR of Krull dimension
n that is not a chained ring.


Suppose that Nil(R) is a divided prime ideal of a commutative ring R such
that R. admits a regular </>-strongly prime. In this paper, we show that c(R) (the
complete integral closure of R inside T(R)) is a ^chained ring. In fact, we will
show that either c(R) = T(R) or c(R) = (Q : Q) = {x € T(R) : xQ C Q} for some
minimal regular 0-strongly prime ideal Q of R.


In the following proposition, we summarize some basic properties of PVRs, 0-
PVRs, and 0-CRs.


PROPOSITION 1.1. 1. An integral domain is a PVR if and only if it is a <j>-
PVR if and only if it is a PVD( [1, Proposition 3.1], [2, Proposition 4•%], [6,
Proposition 3], and [8]).


2. A PVR is a divided ring [4, Lemma 1], and hence is quasilocal.


3. A ring R is a PVR if and only if for every a, 6 6 R, either a\binRorb\ac
in R for each nonunit c in R [4, Theorem 5].


4. If R is a PVR, then Nil(R) and Z(R) are divided prime ideals of B. ([4], [8]).


5. A PVR is a <f>-PVR [8, Corollary 7(3)].


6. If P is a (^-strongly prime ideal of R, then P is a divided prime. In particular,
if R is a (fr-PVR, then R is a divided ring [8, Proposition 4], and hence is
quasilocal.


7. Suppose that Nil(R) is a divided prime ideal of R. Then a prime ideal P of
P, is (^-strongly prime if and only if for every a, b € R\ Nil(R), either a \ b
in R or aP C bP. In particular, a ring R is a <j)-PVR if and only if for every
a, 6 e R \ Nil(R), either a \ b in R or b \ ac in R for every nonunit c e R [8,
Corollary 7].


8. Suppose that Nil(R) is a divided prime ideal of R. If P is a (^-strongly prime
ideal of R and Q is a prime ideal of R contained in P, then Q is a (fr-strongly
prime ideal of R [8, Proposition 5J.
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9. Suppose, that Nil(R) is a divided prime ideal of R. Then a ring R is a (f>-CR
if and only if for every a, 6 € R \ Nil(R), either a\binRorb\ain R [10,
Proposition 2.3].


10. A 0-C7?, is a j-PVR [10, Corollary 2.3]. a


2 The COMPLETE INTEGRAL CLOSURE OF
RINGS THAT ADMIT A REGULAR
(^STRONGLY PRIME IDEAL


Throughout this section, Nil(R) denotes the set of all nilpotent elements of jR,
Z(R} denotes the set of all zerodivisor elements of/?,, and c(R) denotes the complete
integral closure of R inside T(R). The following two lemmas are needed in the proof
of Proposition 2.3.


LEMMA 2.1. Suppose Nil(R) is a divided prime ideal of R and P is a regular </>-
strongly prime ideal of R. If s is a regular element of R and z € Z(R), then s \ z
in R. In particular, Z(R) C P.


Proof: Let s be a regular element of P and z € Z(R). Suppose that s f z in R.
Then sP C zP by Proposition 1.1(7). Since s € P, we have z \ s2 in R, which
is impossible. Hence, s | z in R. Thus, Z(R) C P. Now, suppose that s is a
regular element of R \ P. Since P is divided by Proposition 1.1(6), we conclude
that P C (s). Hence, since Z(R) C P, we conclude that s \ z in R. Q


LEMMA 2.2. Suppose that Nil(R,} is a divided prime ideal of R and P is a regular
(^-strongly prime ideal of R. Then x~lP C P for each x G T(R] \ R. In particular,
i f x £ T(R) \ R, then x is a unit of T(R}.


Proof: First, observe that Z(R) C P by Lemma 2.1. Now, let x = a/b e T(R] \ R
for some a £ R and for some 6 € R \ Z(R). Since 6 jfa in PL, Z(R) C P, and P is
divided, we conclude that a G R \ Z(R). Hence, a;"1 € T(R}. Thus, since b fa in
R, we have bP C oP by Propositionl.l(7). Thus x~lP = £P C P. D


In light of the Lemmas 2.1 and 2.2, we have the following proposition.


PROPOSITION 2.3. Suppose that Nil(R) is a divided prime ideal of R and P is a
regular prime ideal of R. Then the following statements are equivalent:


1. P is a (j)-strongly prime ideal of R.


2. (P : P) is a <j>-CR with maximal ideal P.


Proof: (1) =>• (2). First, we show that P is the maximal ideal of (P : P). Let
s G R \ P. Then s is a regular element of R (because P is a divided regular prime
ideal of P., and therefore Z(R] C P). Hence 1/s e (P : P). Thus, s is a unit of
(P : P). Hence, P is the maximal ideal of (P : P). Now, we show that (P : P) is
a 0-CR. Since Nil(K) is a divided prime ideal of R, Nil((P : P)) = Nil(R). Let
x, y € (P : P) \ Nil(R] and suppose that x ]{y in (P : P). Then x = a/s, y = b/s
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for some o, b £ R \ Nil(R), and some s G R \ Z(R}. Since x ][y in (P : P), it is
impossible that a be a regular element of R and 6 G Z(R). Thus, we consider three
cases. Case 1: suppose that a G Z(R) and b G R\Z(R). Then 6 | a in R by Lemma
2.1. Hence, y | x in (P : P). Case 2: suppose that a,b € R\ Z(R). Since a: /y
in (P : P), we conclude that w = |//x G T(P) \ 7?. Hence, w~!P = ^P C P by
Lemma 2.2. Hence, y \ x in (P : P). Case 3: suppose that a, b G Z(#). Since x }[y
in (P : P), we conclude that a J^6 in /i Thus, aP C 6P by Proposition 1.1(7). Let
h be a regular element of P. Then ah = be for some c G P. Suppose that /i | c in
P.,. Then 6 | a in PL. Hence, T/ | x in (P : P). Thus, suppose that h /c in R. Then, c
is a regular element of P. Hence, / = c/h G T(R) \ R. Thus, f~lP - |P c P by
Lemma 2.2. Hence, /~! G (P : P). Thus, ah = be implies that x f ~ l — y. Hence,
x | y in (P : P), a contradiction. Thus, h \ c in PL, and therefore y \ x in (P : P).
Hence, (P : P) is a 0-CR by Proposition 1.1(9). (2) =» (1). This is clear by
Proposition 1.1(10). D


PROPOSITION 2.4. Suppose that Nil(R) is a divided prime ideal of R and P is a
regular (^-strongly prime ideal of R. Then Q = r\^.l(s


l) is a prime ideal of R for
every regular element s of P.


Proof: Suppose that xy G Q for some X,T/ G R. Since Z(R.} C (s1) for each i > 1
by Lemma 2.1, we conclude that Z(R) C Q. Hence, we may assume that neither
a: G Z(R) nor y G Z(R). Thus, assume that x £ Q. Then sn jfx for some n > 1.
Hence, snP C xP by Proposition 1.1(7). In particular, since sn G P, we have
s'2n C xP. Hence, we have xy G (s2n+l) C xsiP C (res') for every i > 1. Thus,
y G (s1) for every i > 1. Hence, y G Q. D


PROPOSITION 2.5. Lei P 6e a re#u/ar prime ideal of R. Then (P : P) C c(P).


Proof: Let x G (P : P), and let s be a regular element of P. Then sxn G P for
every n > I . Hence, x is an almost integral element of R. Thus, x G c(Pi,). D


PROPOSITION 2.6. Suppose that Nil(R.) is a divided prime ideal of R and P is a
regular (^-strongly prime ideal of R. Then T(R) is a $>-CR.


Proof: First, observe that Nil(T(R}} - Nil(R). Hence, it suffices to show that
if a,6 G R\ Nil(R), then either a j b in T(R) or b | o in T(R). Hence, let
o, b G R\Nil(R). Suppose that a jfb in T(R). Then a ]fb in R. Hence, aP C bP by
Proposition 1.1(7). Thus, let s be a regular element of P. Then as = be for some
c G P. Thus, a = 6f . Hence, 6 | a in T(P). a


Now, we state our main result in this section


THEOREM 2.7. Suppose that Nil(R] is a divided prime ideal of R and P is a
regular ^-strongly prime ideal of R. Then exactly one of the following statements
must hold:


1. R, does not admit a minimal regular prime ideal and c(R) — T(R) is a (j>-CR.


2. R admits a minimal regular prime ideal Q and c(R) = (Q : Q} is a (j)-CR with
maximal ideal Q.
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Proof: (1). Suppose that R does not admit a minimal regular prime ideal. We
will show that 1/s G c(R) for every regular element s € R. Hence, let s be a regular
element of R. Suppose that s € R \ P. Then 1/s € (P : P) because P is a divided
prime ideal of R by Proposition 1.1(6). Hence 1/s € (P : P) C c(R) by Proposition
2.5. Thus, suppose that s £ P. We will show that there is regular prime ideal
H C P such that s & H. Deny. Let jP = {D : D is a regular prime ideal of R
and D C P} and N = nD&FD. Then, s € TV. Now, by Proposition 1.1(8) and (6),
we conclude that the prime ideals in the set F are linearly ordered. Hence, N is a
minimal regular prime ideal of R, which is a contradiction. Thus, there is a regular
prime ideal H C P such that s £ H. Hence, once again 1/s G (H : H) C c(R) by
Proposition 2.5. Thus, c(R) = T(R). Now, T(R) is a 0-CR by Proposition 2.6.


(2). Suppose that Q is a minimal regular prime ideal of R. First, observe that
Q C P by Proposition 1.1(6). Thus, Q is a minimal 0-strongly prime ideal of R by
Proposition 1.1(8). Now, (Q : Q} C c(R) by Proposition 2.5. We will show that
c(R) C (Q : Q}. Suppose there is an x £ c(R] \ R. Then x is a unit of T(R) by
Lemma 2.2. We consider three cases. Case 1: suppose that x~l € T(R.) \ R. Then
xQ C Q by Lemma 2.2. Hence, x € (Q : Q}. Case 2: suppose that a;"1 e R \ Q.
Then Q C (x"1) by Proposition 1.1(6). Thus, x e (Q : Q}. Case 3: suppose
that x"1 € Q. This case can not happen, for if x"1 6 Q, then D = ng^x"1)*
contains a regular element of R because x € c(R). But D is a prime ideal of R by
Proposition 2.4. Hence, D is a regular prime ideal of R that is properly contained
in Q. A contradiction, since Q is a minimal regular prime ideal of R. Hence,
c(R) = (Q : Q). Now, c(R) = (Q : Q) is a (fhCR by Proposition 2.3. D


Suppose that Nil(R) is a divided prime ideal of R and P / Nil(R) is a <f>-
strongly prime ideal of -R. Then observe that Nil((f>(R}) is a divided prime ideal of
<j)(R) and 0(P) is a regular K-strongly prime ideal of (f)(R) (recall that K — RNU(R)}-
Now, since <j>(R)Nii(<i>(R)) = KNU(R), we mav think of 0(P) as a ^-strongly prime
ideal of 0(jR). In light of this argument and Theorem 2.7, we have the following
corollary.


COROLLARY 2.8. Suppose that Nil(R) is a divided prime ideal of R and P ^
Nil(R) is a (^-strongly prime ideal of R. Then exactly one of the following state-
ments must hold:


1. (f)(R) does not admit a minimal regular prime ideal and c(0(jR)) = T(0(.R)) =
a K-CR.


2. (t>(R) admits a minimal regular prime ideal Q and c(^(.R)) = (Q : Q} is a
K-CR. U


COROLLARY 2.9. Suppose that R admits a regular strongly prime ideal. Then
exactly one of the statements in Theorem 2. 7 must hold. D


COROLLARY 2.10. Suppose that an integral domain R admits a nonzero strongly
prime ideal of R. Then exactly one of the statements in Theorem 2. 7 must hold
(observe that in this case c(R] is a valuation domain). D


COROLLARY 2.11. Suppose that Nil(R) is a divided prime ideal of R and P is a
regular (^-strongly prime ideal of R. If P contains a finite number, say n, of regular
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prime ideals of R, Pl C P2 C • •• C Pn-i C Pn = P, then c(R} = (Pi : PI). D


Let J(R) denotes the Jacobson radical ideal of R. We have the following result.


COROLLARY 2.12. Suppose that R is a Prilfer domain such that J(R) contains a
nonzero prime ideal of R. Then exactly one of the statements in Theorem 2.7 must
hold (once again, observe that in this case c(R] is a valuation domain).


Proof: Let P be a nonzero prime ideal of R such that P C J(R). Then P is a
strongly prime ideal by [11, Proposition 1.3, and the proof of Theorem 4.3]. Hence,
the claim is now clear. D


It is well-known [17, Proposition 3.2] that if R is a Noetherian pseudo-valuation
domain (which is not a field), then R has Krull dimension one. The following is an
alternative proof of this fact.


PROPOSITION 2.13. ([17, Proposition 3.2]). IfR is a Noetherian pseudo-valuation
domain (which is not a field), then R has Krull dimension one.


Proof: Deny. Let M be the maximal ideal of R. Then there is a nonzero prime
ideal P of /?. such that P C M and M ^ P. Hence, there is an element m e M \ P.
Since P is divided, we have P C (m). Thus, 1/m € c(R}. Since R is Noetherian,
l/?n is also integral over /?, which is impossible. Hence, R has Krull dimension one.
D


3 THE COMPLETE INTEGRAL CLOSURE OF
CONDUCIVE DOMAINS


Throughout this section, R denotes an integral domain with quotient field K, and
c(R) denotes the integral closure of R inside K. If / is a proper ideal of R, then
Rad(I) denotes the radical ideal of R. Recall from [11], that Houston and the author
defined an ideal I of R to be powerful if, whenever xy € / for elements x, y £ A',
we have x € R or y 6 R. Also, recall that in [13, Theorem 4.5] Bastida and Gilmer
proved that a domain R shares an ideal with a valuation domain iff each overring
of R which is different from the quotient field K of R has a nonzero conductor to
R. Domains with this property, called conducive domains, were explicity defined
and studied by Dobbs and Fedder [15], and further studied by Barucci, Dobbs, and
Fontana [12] and [16]. In [11, Theorem 4.1], Houston and the author proved the
following result.


PROPOSITION 3.1. ((11, Theorem 4.1J) An integral domain R is a conducive
domain if and only if R admits a powerful ideal. O


The following proposition is needed in the proof of Theorem 3.2.


PROPOSITION 3.2. ([11, Theorem 1.5 and Lemma 1.1]). Suppose that I is a
proper powerful ideal of R. Then /2 C (s) for every s € R\Rad(I), and x"1/2 C R
for every x e K \ R. D
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Now, we state the main result of this section.


THEOREM 3.3. Suppose that R admits a nonzero proper powerful ideal I, that is,
R is a conducive domain. Then exactly one of the following two statements must
hold:


1. C\^L1I
H ^ 0 and exactly one of the following two statements must hold:


(a) R does not admit a minimal regular prime ideal and c(R) = K is a
valuation domain.


(b) R admits a minimal regular prime ideal Q and c(R) = (Q : Q) is a
valuation domain.


2. r\^=ll
n = 0 and c(R) = {x e K : x~n £ Rad(I) for every n > 1} is a


valuation domain.


Proof: (1). Suppose that P = D£:L1/
n ^ 0. Then P is a nonzero strongly prime


ideal of R by [11, Proposition 1.8]. Hence, the claim is now clear by Theorem 2.7.
(2) Suppose that P = n~=1/


n = 0. Let S = {x £ K : x~n £ Rad(I) for every
n > 1}, and let x € c(R). We will show that x e S. Since P = 0 and x e c(R),
x~n i I for every n > 1. Hence, x e S. Thus, c(R) C S. Now, let s € S. We will
show that s e c(R). Let d be a nonzero element of I2. Hence, for every n > 1 we
have either s~n e K \ R or s~n € R \ Rad(I). Thus, dsn € R for every n > I by
Proposition 3.2. Hence, s € c(R). Thus, 5 C c(R). Therefore, 5 = c(/?,). Now, we
show that c(R) = S is a valuation domain. Let x € K \ 5. Then x~n € Rad(I)
for some n > 1. Hence, xn £ Rad(I) for every n > 1. Thus, x~l e S. Therefore,
c(R) — S is a valuation domain. D
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ABSTRACT. We denote by No the set of nonnegative integers. Let d > I and A =
{QI, . . . , dd} a set of positive integers. For every n 6 No, we write s(n) for the number
of solutions (x\,... ,Xd) G NO of the equation aiTi + • • • + ctdXd = n. We set g(A) =
sup{rt | s(n) = 0} U {—1} the Frobenius number of A. Let S(A) be the subsemigroup of
(N0 ,+) generated by A. We set S'(A) = W0\S(A), N'(A] = CardS'(A) and N(A) = Card


S(,4)n{0,1, ..,g(A)}. Let p be a multiple of \cm(A) and Fp(t) = T]?=1 Eĵ o"1 tJ°'- We Sive


an upper bound for g(A) and reduction formulas for g(A), N'(A) and N(A). Characteriza-
tions of these invariants as well as numerical symmetric and pseudo-symmetric semigroups
in terms of Fp(t), are also obtained.


1 INTRODUCTION


We denote by HO (resp. N) the set of nonnegative (resp. positive) integers. Let
d £ N and A = {ai, . . . ,04} C N. We set p = gcd(A) and / =lcm(^). For every
n E NQ, we write s(n) for the number of solutions ( x i , . . . , xj) € NQ of the equation
a i X i H \-o-dXd — n. We set g(A) = sup{n | s(n) = 0}U{—1} the Frobenius number
of A. Let S(A) be the subsemigroup of (N0,+) generated by A, S'(A) = N0\5(A),
N'(A) = Card S'(A) and N(A) = Card S(A) n {0,1, -,g(A)}. We say that S(A)
is symmetric (resp. pseudo-symmetric) if gcd(A) = 1 and N'(A) = N(A) (resp.
N'(A) = N(A) + 1). The generating function of the s(n) is


Indeed, we have


l d


~~"~~ ~ s(n)f>.
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For p £ /N, we define the Frobenius polynomial


i = l j=0 l l z = ]


and we write


In theorem 3.1 we give formulas for g(A),N'(A) and N(A] in terms of Fp(t). As
a consequence we obtain an upper bound for the Frobenius number (corollary 3.2)
which improves the upper bound given by Chrzastowski-Wachtel and mentioned in
[9] . A characterization of numerical symmetric and pseudo-symmetric semigroups
(corollary 3.4) is also obtained. In theorem 3.7 we prove reduction formulas for
g ( A ) , N'(A) and N(A). The first one generalizes a Raczunas and Chrzastowski-
Wachtel theorem [9]. As a consequence (corollary 3.10) we obtain a generalization
of a Rodseth formula [10]. It is known that the Hilbert function of a graded module
over a polynomial graded ring as well as s(n) are numerical quasi-polynomial func-
tions. In examples 4.9 and 4.10 we give a description of these functions in terms of
the Frobenius polynomial.


2 PRELIMINARIES


Given Q(t) = ]T\ qfi £ QfM"1] and an integer p > 1, there exists a unique


sequence < 2 o , . . . , Q P - i £ QM"1] such that Q(t) = Y?r=otrQr(iF)- Namely,
Qr(t) = Y^kQr+pkt1* • The Qr are called the p-components of Q. We denote by
w(Q) = inf{j | </j ^ 0} the valuation of Q and deg(Q) = sup{j | qj ^ 0} the
degree of Q, with ui(Q) = +00 and deg(O) = — oo. The following invariants will be
associated with Q


up(Q) = sup{u(trQr(t
p}) | 0 < r < p - 1} the p- valuation of Q.


Sp(Q) = inf{deg(trQr(ip)) | 0 < r < p - 1} the p-degree of Q.
P-I


fip(Q) - X)w(Qr) .


r=0


P-I


r-0


Thus we have
Wp(Q) = -foo = QP(Q) and SP(Q) = -oo = AP(Q) if Qr = 0 for some r.


We fix an integer n £ Z and we set


Q(t)=tnQ(rl).


So we have Q = Q and


deg(Q) + w(Q) = n = deg(Q) + w(Q) if Q / 0. (2)
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The p-components Qr of Q can be deduced from the p-components of Q. Namely,
we write n — p\ + 7 with 0 < 7 < p, so we get


p-i 7 p-i


r=0 r=0 r=-y+l


It follows from the uniqueness of the p-components that


Qr(t) = txQ^.r(r
l) for 0 < r < 7 (3)


and


Qr(t) =t*-lQp^_r(r
l) f o r r > 7 . (4)


So we obtain


Qr = 0 & Q7_r = 0 for 0 < r < 7 (5)


and


Qr = 0 <^> gp+7-r = 0 for r > 7. (6)


If Qr ^ 0, we also deduce from (2)-(4) that


A = deg(Qr) + o;(Q7_r) when 0 < r < 7 (7)


and


A - 1 = deg(Qr) +u;(Qp+7_ r) when r > 7. (8)


Moreover, writing n — pA + r + (7 — r) = p(A — 1) + r + (p + 7 — r) we get


n - deg(trQr(t
p}) + u j ( t ^ - r Q ^ _ r ( t p ) ) for 0 < r < 7


and
n = deg(f Q r(<p)) + o;(^-rQp+7_r(<P)) for r > 7.


Hence


n - <JP(Q) + "p(Q) = 3P(Q} + wp(Q). (9)


Furthermore, using (7) and (8) we get


7 P-I


= (7 + 1)A + (p - 7 - 1)(A - 1) = n - p + 1.


It follows that


AP(Q) + np(Q) = n - p + 1 = AP(Q) + flp(Q). (10)
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Given m, j £ Z, we consider the following polynomials


.. m — 1


Wm , ,-(/) = - —- TT (t - ; 4- i) if m > l , N m , j ( t ) = 0 if m < 0 and TVj ,-(<) = 1.
(771 — 1): J--1- '


For Q(/) = 27- 9j<J' € Q[t, rx] such that Q(l) ^ 0, we define


Furthermore, let Q0, . . . ,Qp-i € Q[t,t~l] be the p-components of Q. We consider
the polynomials C/0, . . . , t/p_i 6 QfM"1] defined as follows Ur = 0 if Qr — 0 and
Q r (<) = (1 - t}irUr(t] with L/ r(l) ^ 0 otherwise. For all 0 < r < p - 1, we put
mr = m — ir and we define the function


Hm(Qt .) : Z -> Q by #m(Q, r + pfc) = l/mr ([/,- , fc).


In order to illustrate these definitions we give the following examples.


EXAMPLE 2.1 Let Q(t) = F12 = (1
(_\'^t3) = 1 + *2 + t3 -f t4 + t5 + 2^6 +


r + 2t8 + 2t9 + 2*10 + 2^n + *12 + 2i13 + ^14 + t 15 + ^16 +tl7 + t19.
We take p = 12, n = 19 and m = 2.
We write Q(<) = (1 + Z 1 2 ) +i(2i12) +^ 2 (1 + t12} + <3(1 + t12) + *4(1 + t12) + t5(l +
< i 2 j + 2*


G + < 7 (1 + t1 2) + 2i8 4- 2*9 -f 2i10 4- 1tn.
We see that the 12-components of Q(t) are Q0(0 = Qi(t] - Qa(0 = Q^O =
Qs(0 = Qr(0 = (l + * ) , < 9 i ( < ) = 2^ and Q6(/) = Q8(<) = Q9(<) = Qlo(t) =
Q n ( < ) = 2 .
We also have


wia(Q) = 13, MQ) = 6, Qi2(Q) = 1, A12(Q) = 7.
Nz,0(t)=t + l , N i i l ( t ) = t .
Ur = Qr for all r.
V i ( U r , t ) = 2< + l for 7 - 6 {0,2,3,4,5,7}, V^C/i.t) = 2< and V2(i/r,0 = 2 ( < + l ) for
re {6,8,9,10,11}-
We obtain H2(Q, Uk + r) = 2fc + 1 for r e {0, 2, 3, 4, 5, 7}, H2(Q, 12fc 4- 1) = 2fc and
H2(Q, 12fc 4- r) = 2(fc + 1) for r e {6, 8, 9, 10, 11}.


EXAMPLE 2.2 Let Q(t) = F6(t) = 1 4- 12 + *3 4- 14 + 15 + t7 = ^^"ffta).
We take p = 6, n = 7 and m = 2.
We obtain
W6(Q) = 7, <J6(Q) = 0, fi6(Q) = 1, A6(Q) = 1.
(/r = Qr for all r.


N 2 f o ( 0 = * + 1 . ^ 2 , l ( * ) = ^
V 2 ( U r t t ) = i + l for r e {0, 2, 3, 4, 5} and l/2(t/i^) = < •
^2(Q, 6fc + r) = fc 4- 1 for r € {0, 2, 3, 4, 5} and #2(Q, 6Ar + 1) = ^>-
We observe that #2(^6, •) = #2(^12, • ) •
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Given $(t) € QtfM"1]], we write $(0 = En
 (p(n}^n an^ we introduce


= sup{n \<j>(n) = 0}.


£'($) = {n > 0 | y>(n) = 0}.


= { 0 < n <
= Card S'($).


= Card 5(0).


LEMMA 2.3 Given m £ Z and Q(t) = Ej ?j<J' e QtM"1] swell that Q(l) £ 0,
we consider <b(t) = En <p(n)tn the expansion of (1 — t)~mQ(t) as a formal power
series. Then, the following conditions hold


1. y»(n) - Vm(Q, n) for all n > deg(Q) - m.


2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,


(a) <p(n) = Q&n<u>(Q).


(c) N'($) = max{w(g),0}. In particular, N'($)=u(Q) if Q(t) €Q[<].


PROOF. 1. Suppose m > 0. We have $(<) = (l-/)-mQ(/) = (Ej 9j*j) Ej>o (J'm^T1


So yj(n) = E"=W(Q) ^(""^"i"1)- Moreover. we have


• . i\ 1 m-1


n - j + m - r \ 1 TT _ - H f n > -
V'1 j -r i) ii u ^_ j.im - l I (m - 1)! -1-1-v 1=1


Hence </?(n) = Vm(Q, n) if 71 > deg(Q), in particular, the statement is true for m = 1.
Now, suppose m > 1 and deg(Q) — m < n < deg(Q) then — m < n — cleg(Q) <
n—j < 0 for all j such that n < j < deg(Q). It follows that there exists 1 < i < m— 1
such that n — j + i = 0 thus Nmj(n) = 0. So we can write


Vm(Q,n)=


Furthermore, if m < 0 then ^>(n) = 0 for 77 > deg(Q) — m because $(t) 6 Q^,^"1]
and deg(Q) — m = deg ^>(<).
2. Follows from the fact that <p(n) - EJ=W(Q) ^j^'m"^"1) > 0 if " > "(Q) and
tp(n) = 0 if n <ui(Q) D


THEOREM 2.4 Let m£Z and p € N. Given Q(<) = Ej 9j^j e Q^,*"1] such
that Q(l) 7^ 0, we consider $(t) - ^n<f(n)tn the expansion of (1 - tp)~mQ(t)
as a formal power series. Then the following conditions hold


1. (f>(n) - Hm(Qj n) for all n > deg(Q) - mp.


2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then,


(a) (p(pk + r) = 0 <=> k < w(Q r).
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(b) g($)=up(Q)-p=deg(Q)-p-8p(Q) where Q(t) =td**WQ(r1).


(c) tf'^Ef.lJmaxMQ.O.O}.
In particular, N'(<S>) = tip(Q) if Q(t)


PROOF. We write $(<) = ££:oV(l -^)-rngr(^) = Er=o r ( l - < p ) ~ m r f / r ( < p ) =


Er=o1<r<M<p) where <MO = (1 - < p)-m r£M< p) = £*¥>,-(*)<*• It follows from
lemma 2. 3.1, that p(pk + r) = y j r (&) = V^^t/r-,^) for all Ar > deg(C/ r) - m r. There-
fore, </?(n) = Hm(Q, n] for n > deg(Q) — pm because n = pfc + r > deg(Q) — pra >
p(deg(Q r) - m) + r => fc > deg(Qr) - m - deg(Ur) - mr.
2 (a) follows from lemma 2.3.2 (a).
b) We have g(3>) = max{p#($r) + r | 0 < r < p - l } = max{p(w(Qr) - 1) + r |
0 < ?• < p — 1} = o;p(Q) - p. Moreover, if Q,. 7^ 0 for all r we have wP(Q) — p =
deg(Q)-p-<5 P (Q) by (9). Since wp(Q) = +00 = -SP(Q) if Qr = 0 for some r, the
equality is still true in this case.
c) Follows from lemma 2.3.2 (c) D


LEMMA 2.5 Let £ = e3^ be a primitive p-th root of unity and Q(t) = E!~o trQr(tp


Q^,^"1]. Then, the following conditions are equivalent


1. Q(£3) =QforQ<j<p.


2. Q(l) = pQ r( l ) for 0 < r < p - l .


PROOF. By successive substitutions of 1,£, . . . ,^~l for t in Q(<) = Er=o < r Qr(< p )
we obtain a Vandermonde linear system Ef=o ^'^(l) = <5(<^J) for j = 0, . . . , p— 1.
If Q(^) = ... = Q^-1) = 0, the unique solution is Q r(l) = ^Q(l) for ev-


ery 0 < r < p — 1. Conversely, if ^-^ is the common value of the Q,-(l) then


=J £rj' = 0 = QK'' ) for j = 1, • - • , P - 1 D


LEMMA 2.6 Lei p , g , u 6e positive integers and Q ( t ) , K ( t ) £ QtM"1] 5UC/l


p — qu and K(tu) — Q ( t ) . We denote by Qr (resp. Ks) the p-components of Q
(resp. the q-components of K). Then,


1. Q$u = Ks and Qr — 0 for all r (£ uTL.


2. We set £ = e~ , then the following conditions are equivalent


(a) Q(fJ') = 0 for 0 < j <q.


(b) Q(^) = ?Q r(i) = A'(i) for all r e ul.


PROOF. We can write Q(t) = K(tu) = E!^J tu>K,(tp). It follows from the unique-
ness of the Qr that Qsu = Ks for 0 < s < q. Now, Q(^) = A'(l) and
with a = e^ = £u. We apply lemma 2.5 D


, - . _ .


For every p e /N, we set Fp(t) = [],•=! Ej4o f j a > ^e Frobenius polynomial of A.
We write Fp_r for the p-components of Fp. It is easy to see that for n = deg(Fp) —


pd- E?=i an we have Fp(t) — tnFp(i~1) = Fp(t). Let us write p = qp and a,- = 6,-p
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for all 1 < i < d, where p — gcd(A). So we can write Fp(t) = K ( t p ) with


K ( t ) = j1"^ 6 .


Moreover, for 0 < j < q the number £J'' — e < is a root of fl^iO "~ ^6 l) °f
multiplicity < d because gcd(&i, . . ,&d) = 1 whereas £J is a root of (1 — tq)d of mul-
tiplicity = d, then A'(^) = 0. It follows from lemma 2.6 that Fp>r = Kr. if r E plL


and Ffir = 0 otherwise. We also deduce that Fp_r (1) = -A'(l) = ^—— if 7- e pZ D


3 FROBENIUS NUMBER AND NUMERICAL SEMIGROUPS


In the case of the Frobenius polynomial Fp we set uP(Fp) = up(A), 8p(Fp) — 8P(A),


THEOREM 3.1 For every p 6 /N, we have


1. g(A) = up(A) -p = p(d-l}~ E?=1 a,- - tfp(/l) - /(rf


2 . N ; A = n > l


PROOF. We see that for every p e /N, the function $(/) = (1 - tP}-(lFp(t)
J^n s(n)/n is the generating function of the s(n) so g(A) = g($}-
1. follows from theorem 2.4.2 (b).
2. follows from theorem 2.4.2 (c).
3. is a consequence of (10)D


COROLLARY 3.2


1. For every p € IN, we have


d


g(A) - p(d- 1) - ]Tat- if and only if SP(A) = 0.
i = l


2. g(A) — +00 if and only if p > 1.


3. If p — 1, we /iaue £/ie following upper bound for the Frobenius number


4. // i/iere earisfs h such that I < h < d and gcd(ai, . . . , a/i) = 1 then


fif(X)<lcm(ai>...Jafc)(/»-l)-E?=i«i-
REMARK 3.3 The upper bound we give in 3) improves the following inequality


proved by Chrzastowski-Wachtel and mentioned in [9].


COROLLARY 3.4 Suppose gcd(A) = 1. Then the following conditions hold
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1. S(A) is symmetric <$• AP(A) = ftp(A) + 5p(A] for some p £ IN & AP(A) =
np(A)+6p(A) for all p 6/N.


2. S(A) is peudo-symmetric <=> AP(A) 4- 1 = &P(A) -f (5p(A) for some p G /N <=>
Ap(4) + 1 = fip(,4) + (Jp(,4) for all p e /N.


We suppose gcd(A) = 1. Let qi,..,qd be positive integers such that for all
1 < i < d, qi is a divisor of gcd(ai, . . ,a ;_i , a,-+i, ..,0,4). So gcd(g,-,gj) = 1 for


i £ j because gcd(A) = 1. We set q = Ylj=i1j^i - Hj*i<lj,ai = M» and
B - {&!, ..,6rf}. We have gcd(5) = 1 and / = \cm(A) - g\cm(B). For p 6 /N, we
write p = qu with u E


THEOREM 3.5 The following formulas hold


1. Sp(A) = qSu(B).


3. Qp(A) = q$lu(B) -f


4. Ap(A) = qA.u(B) +


In order to prove this theorem we need a lemma.


LEMMA 3.6 Let q and c be two positive integers, B = {b\,.., b^-i, c}, and A =
{a!, ..,ad-i,c} where ai — 961,.. , a^-i = qbd-i- Suppose gcd(A) = 1 and choose
p 6 lcm(B)N so gcd(g,c) = 1 and qp € lcm(A)N. Then, the following formulas
hold


1. Sqp(A) = q5P(B}.


2. Uqp(A) = q<jjp(B] + (q — l)c.


3. ^gp(A) = q$lp(B] + i(g — l)(c - 1).


PROOF. We denote by


the Frobenius polynomial associated with B and


n-W ^
G(t) = Gw(t) U ;/ = Y t°G3(ti


p}q
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the Frobenius polynomial associated with A. We see that


P-I
G(t) = (1 + tc + .. + t(q-l)c}F(tq) = (1 + tc + .. + t^-Dc) £ tqrFr(t


qp}.
r=0


So we obtain


G(t)= Yl t k F j ( t q p ) = Y, i k F j ( t q p } + E i
0<fc = ic+j'g<<7p— 1 k>qp— I


By identification we deduce that G,(^p) = Fj(Z9p) when s = ic + jq and G,(^p) =
<9pFj (/9P) when s = ic -f jg — qp — ic — (p — j } q . In particular, we have deg(GJS) =
deg(Fj) and u(G3) — u(Fj) when s = ic + jq and deg(G5) = 1 + deg(F,-) and
<jj(G3] = 1 + u(Fj) when s = ic + jq — qp. Therefore, for all s which can be
written in the form s = ic + jq we get deg(25G, (tqp)) — ic + jq + qpdeg(Fj)
and <jj(tsG3(t


qp)) — ic + jq + qpu}(Fj). For all s which can be written in the
form s = ic + jq - qp, we get d e g ( t s G f ( t q p ) ) = ic + jq - qp + qp(l + deg(Fj)) =
ic + jq + qpdeg(Fj) and u(t'Gg(tW)) = ic + jq - qp + gp(l + w(Fj). It follows
that tfqp(G') = min{ic + jq + gpdeg(Fj)} = ?min{j + pdeg(Fj)} = q&p(F) and
w9p(G) = max{»c+jg+gpw(Fj) } = (q-l)c+qmax{j+pu(Fj) } = qup(F)-\-(q-\)c.
We also have


w ( G - )= E w W)+
s=ic-jq


= qttp(F) + ̂ '(c, 9) = gftp(F) + |(g - l)(c - 1). It follows that


PROOF OF THEOREM 3.5. By induction on the number h = d - k + I such
q± — q-2 — .. — qk-\ = 1. If h = 1 the result is given by lemma 3.6. Suppose that
the result is true when q\ — qi — .. = q^-\ = 1. We choose p 6lcm(A)N and we set
v — •P-, ti = qi for i^k and tk = 1. Then, we get £,• = ^ for all i ^ k , ik — qk and


{=•&-. We also have ^ = ^- = 6,-t, for all z ^ k and a^ = 6/c^-. We put c,- = 6,-f,-
for all i and G = {CI,..,Q}, thus a,- = g^c,- for all i / A; and a^. = c^. It follows
from lemma 3.6 and the induction hypothesis that
1) SP(A) = 9fc^(G) = 9A(5) - qSu(B).
2) W p(A) = 9fcu;v(G) + (qk -


- l)(a fc - 1) = ft{fo«(S) 4- |(E=i(«i - l)ci -< + 1)}


4) AP(A) - fip(>l) + 6P(A) = ?AU(B) + I


THEOREM 3.7 T/ie following formulas hold


2. N'(^) = gAT'(S) + I Ef^itft - l)a,- -
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3. N(A) = q N ( B ] + i (£?=1(</i - 1)* - 9 + l) -


REMARK 3.8 In formula 1) if we take qi = .. = qd-i — 1 then we obtain a Brauer
and Shockley formula [5] and if we take <?,• — gcd(^\{a,-}) for all i, we obtain a
Raczunas and Chrzastowski-Wachtel formula [9]. Moreover formula 2) is a general-
ization of a Rodseth formula [10] which is obtained for q\ = .. = q^-i = 1.


THEOREM 3.9 The following conditions hold


1. S(A) is symmetric if and only if S(B) is symmetric.


2. // q > 1 then S(A] is not pseudo-symmetric.


COROLLARY 3.10 Suppose there exists i such that 6,- = 1 (i.e. a, = qi). Then,
S(A) is symmetric and we have


(b) N(A) - N'(A) - |(£?=1(g,-- I K - g + l ) -


2. Suppose, in addition, that &,• = 1 (i.e. a,- = qi) for all i. Then, we have


(b) tf (4) = #'(/!) = l(l(d - 1) - Eti a." + 1).


PROOF. Since 1 6 B, we have S(fl) = NO then g(B) = -1 and N(£) = -/V'(B) = 0.
So 1. follows from theorem 3.7. To prove 2., we observe that i^a,- = g = / = lcm(/4)
if a,- — g,- for all z'D


COROLLARY 3.11 Let 6, d, /?, v 6e positive integers such that b > d > 2 and
gcd(6,-y) = 1. Lei 5 - {6,/i6 + v, .., /i6+ (i - l)v, .., /i6-f (d - l)u}, ( (6i , . . ,6 d ) is
called an "almost" arithmetic sequence). Then,
S(A) is symmetric & 5(5) *'s symmetric ^>(/ = 2 o r 6 = 2 mod(d - 1).


PROOF. We write 6 - 1 = /3(d - 1) + a with 0 < a < d - 1, and we use the


following known formulas g(B) = (h\^\+h-l\b + bv-v[ti\ and N'(B) =


EXAMPLE 3.12 Let A = (150,462,840, 1365} = (5(2 x 3 x 5), 11(2 x 3 x 7), 12(2 x
5 x 7), 13(3 x 5 x 7)}. We set 9l = 7, q2 = 5, q3 = 3, q4 = 2 and B = {5, 11, 12, 13}.
This is an almost arithmetic sequence with 6 = 5 , i > = l , / i = 2,d = 4. We see
that 6 = 2 mod(d - 1) hence S(B) is symmetric and we have g(B) = 19, N'(B) =
N(B) = 10. Moreover, it follows from theorem 3.9 that S(A) is symmetric. Using
theorem 3.7 we obtain g(A) = 210 x 19 + 6 x 150 + 4 x 462+2 x 840+1365 = 9783.
N'(A) = N(A) - 210x 10+|(6x 150 + 4 x 4 6 2 + 2 x 8 4 0 + 1365-210 + 1) =4892.


4 QUASI-POLYNOMIALS


DEFINITION 4.1 A quasi- polynomial P of period p and degree d is a sequence
P ~ (PQt . . . , Pp_i) with Pr 6 Q[t] such that d = sup{deg(Pr) | 0 < r < p - I } .
A quasi-polynomial P is said to be uniform if all the Pr have the same degree d
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and the same leading coefficient c(P). Given a function h : Z — >• Q and r G Z, we
define hr : TL — > Q, k i-> h(pk + r). We say that h is a quasi-polynomial function
if there exists a quasi-polynomial P = (Po, . • • , Pp-i) such that h r ( k ) — Pr(k) for
all k ^> 0 and 0 < r < p. We also say that /i is P-quasi-polynomial. It is easily
seen that a quasi-polynomial function h has a minimal period and every period
of h is a multiple of this minimal period. Furthermore, for a fixed period p, h
is a P-quasi-polynomial for a unique sequence P — (P0, . . . ,Pp^i). A P-quasi-
polynomial h is said to be uniform if P is uniform. We write deg(/i) = deg(P)
and c(h) = c(P). We denote by F(Z) the set of all functions h : 1 -»• Q. For
every integer i > 0 we consider the operators E% and A,-, which act as follows:
(£'/0(n) = h(n + i), (A,-/i)(n) = h(n + i) - h(n). We set E° = /, E1 = E and
AI = A so A = E - I , A0 = 0 and A,- = E1 — I. For a > 0 and n > 1, we have
(/ -f Ea + • • • + F^-1)") o (Ea ~ I) = Ena - I = Ana.


LEMMA 4.2 Given h E F(Z), then the following identities hold


1. (E^h}r ^E'hr / o r i > 0 .


2. (A^/i)r = Am/ir for m > 0.


PROOF. 1. We write (Epih)r(k) = (Epih)(pk + r} = h(p(k + i) + r) =hr(k + i) =


2. We have AJ1 = (^P - /)m = E,"=o(-1)m~' (T)^pi- Therefore, (A^/i)r =
'/0r = E^oC-1)"1'^?)^^ - (E - i)mh.r = Am/» rn


PROPOSITION 4.3 A function h e F(Z) is quasi-polynomial of period p and de-
gree d if and only if there exists (CQ, . . . , cp_i) ^ ( 0 , . . . , 0) such that (Ap/i)r(/:) =
cr for all k » 0 and 0 < r < p - 1.


PROOF. Follows from lemma 4.2 and [6, lemma 4.1.2] D


COROLLARY 4.4 For h 6 F(Z) , if U*i=i(Eai - I)(h)(n) = 0 for n > 0,
then h is quasi-polynomial of period p G /N and degree < d.


PROOF. Follows from A£ = (EP - I)d = ttI?=i(E£o' ^'a')) ° (nf=i(^a ' - /) °


EXAMPLE 4.5 Given m E Z and Q(<) 6 Qtt,*"1] such that Q(l) ^ 0. The
function Hm(Q,.) associated with Q is a P—quasi-polynomial of period p, where
P - (P0, ..,Pp-i) is given by Pr = Vmr(Ur,.).


REMARK 4.6 Suppose m > 0. Then, we have


2. mr > 0 => deg(Pr) = mr - 1 and c(Pr) = (^^1
1
)
),.


3. If Q(l) = pQr(l) ^ 0 for all 0 < r < p- 1, then #m(Q, .) is uniform of degree
m - 1 and its leading coefficient is c(Hm(Q, .)) = ^^r =
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4. Suppose p — qu and there exists K(i] G QtM"1] such that K(tu] — Q ( t ) , we
set £ = e^. If Q(^') = 0 for 0 < j < q and Q(^) ^ 0. Then, the following
conditions hold


(a) Pr = 0 if r i uTL.


(b) deg(Pr) = m - 1 and c(Pr) = ̂  = J^L if r G uZ.


PROPOSITION 4.7 Let m > 0 be an integer and h E F(Z) be a function
satisfying h(n) = 0 for n < 0. We consider $(f) = £„/?(«)*"• T/ien, f/ie
following conditions are equivalent


1. /?. 25 quasi-polynomial of period p and of degree m — 1.


2. (1 -*p)m$(t) = Q(<) G Z^,*"1] one/ Mere exists a p-component Qr of Q such
that Qr(l) /O .


3. There exists a unique Q(t) E 1,[t,t~1} such that degffm(Q,.) = m — 1 and
Hm(Q,n] = h(n) for n > deg(Q) - pm.


In particular, h is a uniform quasi-polynomial function of period p and degree m — 1
if and only if there exists a unique Q(t] £ Z^,^""1] such that Q(l) ^ Q,Q(e-'~p~) = 0
for all 0 < j < p and Hm(Q,n) = h(n) for n > deg(Q) - pm. In this case, the


leading coefficient is c(h) = i,n~\)\ •


PROOF. Assume 1. and set $ r(t) = ^n hr(n)tn for all 0 < r < p - 1. It follows
from [6, 4.1.7] that (1 - t)m$r(t) = Qr(t) e Z[t,t~1}. Since deg(/i) = m - 1 > 0,
there exists 0 < r < p - 1 such that Q,.(l) ^ 0. Setting Q(t) = Y^r=otrQr(^) we


deduce 2.
2. => 3. follows from theorem 2.4.
3. => 1. follows from the definition of Hm.
The particular case follows from lemma 2.6 and remark 4.6 d


COROLLARY 4.8 Let N ( t ) be an element of Z [ t } t ~ 1 } such that N(l) ^ 0 and
p G /N. We set $(<) = J]n /i(7i)tn the expansion of


as a formal Laurent series. Then, h(n) = H d ( N F p , n } for n > deg(AT) — ̂ ,-_1 fli.
Moreover, if in addition gcd(A) — 1, then h — H d ( N F p , . ) is uniform of degree d-l


and its leading coefficient is c(h) = vn d '


EXAMPLE 4.9 We write s(n) for the number of solutions of the equation a\x\ +
.. 4- ddXd = n in nonnegative integers we get s(n] = Hd(Fp, n) for all n > 0 where
p G /M. In particular, if gcd(A) = 1 then n i-» s(n] is a uniform quasi-polynomial


d — 1


function of degree d — I and of leading coefficient c(s) =: / , - \ I T - T « / •& v ' (^-^TILi0-
For instance, the number of solutions of the equation 1x\ -f 3x2 = n is s(n) =
H"2(F6,n) (see example 2.2).
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EXAMPLE 4.10 Let RQ be a commutative ring and R = Ro[ti,... , t d ] . Sup-
pose that R is Z-graded in such a way that every element of RQ is homogeneous
of degree zero and each i,- is homogeneous of degree a,-. Let M = ®ne&Mn be a
finitely generated graded .R-module such that the length /^0(Mn)'of each Mn as
an #0- module is finite. The numerical function H°(M, .) : Z — >• Z, n •-> lRo(Mn)
is called the Hilbert function of M . The iterated cumulative Hilbert functions are
defined by Hj+1(M,n) = £"_0 Hj(M,i). The Poincare series of M is denoted by
PM(t) = £n H°(M,n)tn. By the Hilbert-Samuel theorem [3, 4.2 Theorem 1] there


exists QM(t) 6 ZM'1] such that QM(1) 7^ 0 and PAf(Z) = f .. Moreover,
HI=I i* * ' /


it is known that H°(M, .) is quasi-polynomial [2]. Given p £ /M and j > 1 we set
= 1. So the generating function of the H^(M, .) is


It follows from corollary 4.8 that H^(M,n) = Hd+j(QMFp,n] for all j > 0 and
n > deg(QjV/) — X]a»- Moreover, if j > 0 or .7 = 0 and gcd(,4) = 1 then H^(M, .) is
a uniform quasi-polynomial function of degree d 4- j — 1 and of leading coefficient
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Abstract
Two plane analytic branches are tope-logically equivalent if and only


if they have the same multiplicity sequence. We show that having same
semigroup is equivalent to having same multiplicity sequence, we calculate
the semigroup from a parametrization, and we characterize semigroups
for plane branches. These results are known, but the proofs are new.
Furthermore we characterize multiplicity sequences of plane branches, and
we prove that the associated graded ring, with respect to the values, of a
plane branch is a complete intersection.


1 INTRODUCTION
Let C and C' be two analytic plane irreducible curves (branches) defined in a
neighbourhood of the origin and having singularities there. The branches are
said to be topologically equivalent if there are neighbourhoods U and U' of the
origin such that C is defined in U, C" in U1, and there is a homeomorphism
T: U -> U' such that T(C O U) = C' n U'.


If F ( X , Y) 6 C[[X,y]] is an irreducible formal power series, the local ring
O = C[[X, Y]]/(F) is called a (plane) algebroid branch. Two algebroid branches
are formally equivalent if they have the same multiplicity sequence (see below
for the definition of multiplicity sequence). Every algebroid (analytic resp.)
branch is formally (topologically, resp.) equivalent to an algebraic branch, i.e.
a branch defined by a polynomial [1], and if two analytic branches are formally
equivalent, they are topologically equivalent. We will in the sequel consider
algebroid branches.


Zariski has shown ([2]) that two branches are formally equivalent if and only
if they have the same semigroup of values (see below for the definition of the
value semigroup of a branch).


The crucial result of Section 2 is Proposition 2.3, which gives the relation
between the value semigroups of an algebroid plane branch O and its blowup O'.
It is a result contained in [3]. Apery proved that, in order to show that the value
semigroup v(O] of an algebroid plane branch O is symmetric. Subsequently
Kunz proved that, for any analytically irreducible ring O, O is Gorenstein if
and only if v(O) is symmetric. So now it is more common to say that the
value semigroup of an algebroid plane branch is symmetric because the ring is
Gorenstein (it is in fact a complete intersection). At any rate we are interested
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in Apery's result for different reasons. By its use we give an easy proof of the fact
that two plane algebroid branches are formally equivalent if and only if they have
the same semigroup of values. We get also a well known formula of Hironaka
and apply it again in Sections 3 and 4. The material in Section 3 is classical too
and essentially contained in Enriqes-Chisini's work, but what is new, is the use
of Apery's Lemma in this context. After characterizing all possible multiplicity
sequences for plane branches, we give a criterion to check if a semigroup is the
value semigroup of a plane branch. In Section 4, we determine the semigroup of
a plane branch from its parametrization, here also using results from [3]. This
result is well known, but the proof is new as far as we know. Finally in Section 5
we show that the semigroup ring of the semigroup of a plane curve is a complete
intersection.


2 PLANE BRANCHES


Starting from Apery's article [3], we will proceed to explicate and expand various
elements that are presented in the original arguments in a summary or not
totally developed manner.


Let O = C[[X,Y]}/(F} = C[[x,y]}, where F is irreducible in C[[A,Y']] be
an algebroid plane branch. Since F ( X , Y ) is irreducible, then F(A',Y') must
contain some term A'* and some term V"J' (otherwise F is not irreducible since
we could factor out X or Y ) . Denote the minimal such powers by n and ra
respectively. Then, by the Weierstrass Preparation Theorem, the same ideal (F)
can be generated by an element Xn -\-$(X, Y}, where </>(A", Y) is a polynomial of
degree n — I in X with coefficients which are power series in Y (or vice versa by
an element Ym -fi/>(A, Y), where ifr(X,Y) is a polynomial of degree in— 1 in Y
with coefficients which are power series in X } . This gives that O is generated by
l ,x , ...}x


n~l as C[[y]]-module (or generated by l ,y , ...,ym~l as C[[x']]-module).
The Puiseux Theorem gives that the branch has a parametric representation


x = tm,y = £<M» (or x = Ei>mbit\,y = *?, where C[\t}} = C^]]). Thus
O = C[[x, y]} C C[[t}} = O, which is a discrete valuation ring. Denote by v the
valuation of such ring that consists in associating to any formal power series
in C[[t}} its order. In particular v(x) = m and v(y] — n. Since the fraction
field of O equals the fraction field of O, there exist /i(t),/2(<) 6 O, such that
/i(*)//2(*) = *, so /i(t) - tf2(t) and v(f,) = «(/2) + l. Since gcd(w(/i), w(/2)) =
1, all sufficiently large integers belong to v (O) = { v ( z ) ; z E0\{0}}. Thus v(O)
is a numerical semigroup, i.e., a subsemigroup of N with finite complement to
N.


In the sequel we use the following terminology. If 5 is a subsemigroup of N
and T is a subset of Z, we call T an S-module if s £ S, t £ T implies s +1 6 T.
We call T a free S-module if T - U^Ti with T; OTj = 0 if: ^ j and T{ = nt- + S
for some n,- (E Z. We call n i , . . . , n^ a basis of T.


With the hypotheses and notation above, we will construct a new basis
y o , - •• , ym-i for O as a C[[z]]-module, such that, for each i, y o , - - - , y« is a
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basis for 0,- = C[[x]] + yC[[x]j + h y'C[[x]], and furthermore such that
v (£?,-) = {v(z);z e Oi\ {0}} is a free module over v(C[[x]]) = mN with ba-
sis WQ, . . . ,Wj , where each Wj = v(yj), j — 0 , . . . ,i is the smallest value in
v(O) in its congruence class (mod 772). Let yo = 1> thus WQ = v(yo) — 0
and v(Oo) = v(C[[x]]) = mN. Suppose that y o , . . . ,yk-i,k < rn have been
defined such that v(Ok-i) is a free raN-module with basis WQ, . . . ,uk-i- We
claim that there exists a </>(x, y) 6 Ok-i such that yk = yfc + </>(x, y) has a value
which does not belong to v(Ok-i). If v(y f c) ^ v(<9fc-i), we are ready. Other-
wise v(yk) = v ( z i ) for some z\ € C?fc-i- Then v(yk — c\zi) > v(yk] for some
d € C. If v(yk - cizi) £ v(Ok-i), we are ready. Otherwise take z2 6 (9fc-i
with v(zi) = v(yk — c^i). Then v(y* — CI-TI — 02-22) > v(yk — c\z\} for some
02 6 C a.s.o. Thus we see that the expansion of y* as a power series in t must
contain a term a,-f with a,- ^ 0 and i £ v(Ok-i], since otherwise y* £ Ok-\-


Notice that yiy f c_i = (y+0i(x))(y&"1 + 0/c-i(£,y)) = yk + V>(*> y), V(*> y) £
C?fc- i> so y/c = yiyfc-i + 0(x> y) — V J(X '> y) anc^ we cou^d equally well have defined
yk as an element of the form y\yk-i + <f>(x,y) (where 0(x,y) 6 Ok-i) with a
value which does not belong to v(Ok-\)- In such expression of y/c, u(0(x,y)) >
u(yiy*-i) since otherwise v(yk) = v ( 4 ( x , y ) ) € v(Ok-i). Thus wfc = v(y fc) >
v(y iyfc_ i ) — w(yi) + v(yfe-i) — wi 4 -Wfc_ i . In particular-the sequence w o , w i , . . .
is strictly increasing. Since v(Ok-i) is free over rnZ, this shows that 0;̂  ^ Wj if
j < /:. Any element z G Ofe can be written 2 = ao(x)yo + - • --\-ak(x)yk. All terms
in this sum have values in different congruence classes (mod m). Thus v(z) =
minv(aj(x)y,-). This shows that v(Ok) is free with basis w 0 , . . . ,Wfc . After m
steps, we get that Om-i=O is a C[[x]]-module generated by y o , . . . ,ym-i with
the requested properties.


If 5 is a numerical semigroup and a £ S\ {0}, then the elements no, HI, ... ,
n a _i , where n,- is the smallest element in 5 congruent to i (mod a), is called
the Apery set of S with respect to a. If we order the elements in the Apery
set, and then denote them W Q , .. - , w a _i , we have the ordered Apery set. We
call the elements yo, • • • , ym-i G O constructed as above an Apery basis of O
with respect to x . By the construction, w0 = v(yo), • • • ,um-i — v(ym-i) is the
ordered Apery set of v(O).


In a similar way an Apery basis of O with respect to y is defined.


Example If in O = C[[x,y]] we have gcd(m,n) = 1, where v(x) = m and
ti(y) = n, then y^ = yk, k = 0 , . . . ,m — 1 is an Apery basis of O, and thus
Wfc = fcn, k — 0 , . . . , m — 1 is the ordered Apery set of v(O) with respect to m.


Example If in O = C[[x, y]] we have x = t8, y = t12+f14+t15, then y0 = I , yi =
y, y2 = y2-*3 = 2*26+- • • , y3 = y3-*3y = 2*38, y4 = y4-2x3y2-4x5y+3x6 =
8<53 + . . . , ys = y5 -2x3y3 +x6y-4x8 = 8f65 + • • • , y6 = y6 - 3x3y4 -4x5y3 +
3x6y2+4x8y-x9 = 16<79+- • • , and y7 = y7-3x3y5-t-3x6y3-4x8y2-x9y+4xn =
16i91 + • • • is an Apery basis for O, so the ordered Apery set of v(O] with
respect to 8 is {0,12,26,38,53,65,79,91}. Thus v(O) is minimally generated
by 8,12,26,53.


If S is a numerical semigroup, we denote the Frobenius number of S, i.e.
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max{s E Z] x $ S}, by 7(5). The conductor of S is c(5) = 7(5) + 1 =
minjx; [x,oo) C 5}.


The following lemma is well known, and its easy proof is left to the reader.


LEMMA 2.1 Let S be a numerical semigroup with Frobemus number 7 and
a E 5. I f u j Q , . . . , w a _ i 25 £/ze ordered Apery set of S with respect to a, then
7 = ua-i - a.


Now we are ready for the crucial lemma from [3]. If O = C[[x,y]] with
v(x) < v(y), we denote the quadratic transform (or blowup) C[[x,y/x]] by O'.


LEMMA 2.2 // an Apery basis of O' with respect to x is y'Q, . . . ,y'm_l, then
yi = y[xl , for i = 0, . . . , m — I is an Apery basis of O with respect to x.


Proof. Let F i ( x , y / x ) be the polynomial of degree i in y/x which defines t/,',
i.e. let F i ( x , y / x ) = (y/x}1 + 0- (z ,y /x) , where deg($) < i in y/x. Then
yi = x * F ( x , y / x ) — y1 + <j>i(x, y), <j>i(x, y) E O{-\ is of the requested form and,
if v(y'{) = w,', then a;,- = v(yi] = a;,' + HTI, thus a;,- = a;,' (mod m). We have to
show that uj{ (£ v(Oi-\}. This is because u^ is not congruent to any u>j, if j < i,
and so also a;,- is not congruent to any Uj, if j < i.


As a consequence we get


PROPOSITION 2.3 [3, Lemme 2] If the ordered Apery set of v(O'} with
respect to m — v(x] is 0 = UJ'Q < u>{ < • • • < u'm_lt then the ordered Apery set
of v(O) with respect to m is UQ — u'Q < u}± = ui[ + m < u? — uj'2 -\- 2m < . . . <
w m _i = u'm_i + (m - l)m.


Recall that the multiplicity of the ring O — C[[i',y]], where x = amtm -f
am+lt


m+l + • • • , am £ 0 and y = bnt
n -f bn+lt


n+l + • • • , bn ^ 0, is given by
min(77?.,rc) i.e. the multiplicity of O is the smallest positive value in v(O).


Set O = 0(°), denote by G(l>1) the blowup of O(i) and by e,- the multiplicity
of (9^^. The multiplicity sequence of (9 is by definition the sequence of natural
numbers eo, ei, 62, • • • . Let A: be the minimal index such that e^ — 1, i.e. such
that v(OW) = N. Two algebroid branches are formally equivalent if they have
the same multiplicity sequence.


As a consequence of Proposition 2.3, we get easily a well known formula:


COROLLARY 2.4 [4, Theorem 1] We have lo(O/(O : O)) = £)JL0 e,-(e,- - 1)


and 10(0/(0 : O)) = h(O/O) = |E?=oc.-(e* ~ !)•


Proof. Let u; ( w ' , resp.) be the i'th element in the ordered Apery set
of v(OW), (v(O^+^), resp.), with respect to 6j and let O^ : O = tc>C[[t]}


t^iC[[<]], resp.). By Lemma 2.1 Cj = u^ - GJ + I and


ej + l. Proposition 2.3 gives u^-i = w^.l^ + &j(ej - 1) and so


Cj = cj+i + ej(ej - 1). It follows that c0 = lo(O/(O : O)) = GI + e0(e0 - 1) =







Plane Algebroid Curves 41


- • • = ck + ek-i(ek-i - 1)4- he0(e0- 1) = Z,=oe '(e« ~ !)• Since the ring O
is Gorenstein, we get lo(O/(O : <?)) = lo(O/O] = ±lo(O/(O : O}).


Example Not every symmetric semigroup is the value semigroup of an algebroid
plane branch. The semigroup generated by 4,5,6 is symmetric and has Apery
set 0,5,6,11 with respect to 4. If this were the value semigroup of a plane branch,
then the Apery set of its blowup would be 0, 1 = 5-4, -2 = 6-8, -1 = 11-12
which obviously is impossible.


THEOREM 2.5 [2] Two algebroid plane branches are formally equivalent if
and only if they have the same semigroup.


Proof. Let O - O(0\O^\... be the sequence of blowups of O, and let
e o , . . . , e/c = 1 be the corresponding multiplicity sequence. Then v(O^} — M
has ordered Apery set {0,1, . . . , e /e_ i — 1} with respect to e/._i. Proposition
2.3 gives the ordered Apery set, hence the semigroup, of O^k~^ with respect to
ek-i a.s.o. Thus the multiplicity sequence determines the semigroup of O. On
the other hand, the semigroup of O gives the multiplicity eo of O. Proposition
2.3 gives the Apery set of v(O^), hence v(O^) and so on. Thus the semigroup
v(O) gives the multiplicity sequence.


Let a denote the conductor degree of O(i\ i.e. 0W : O = <Cl€[[*]], and call
( c o , C i , . . . ) the conductor degree sequence of O. Let /,- = lo(i)(O/O^), and call
(/o, /i, • • • ) the sequence of singularity degrees of O.


COROLLARY 2.6 Two algebroid plane branches are formally equivalent if
and only if they have the same conductor degree sequence, and if and only if
they have the same sequence of singularity degrees.


Proof. If WQ < <MI < • • • < a>e,_i is the Apery set of v(O^) with respect to
e,-, then by Lemma 2.1 c,- = u;Ci_i — e,- 4- 1. Thus the multiplicity sequence
of O determines, and is determined by, the conductor degree sequence. Since
each ring O^' is Gorenstein, /,- = Cj/2 and the same is true for the sequence of
singularity degrees.


Example The conductor degree of 0 does not suffice to give formal equivalence.
The branches C[[Z4,*5]] and C[[<3,<7]] both have conductor *12C[[fj], but they
are not formally equivalent.


3 THE MULTIPLICITY SEQUENCE FOR A
PLANE BRANCH


A sequence of numbers eo > e\ > 62 > • • • is a multiplicity sequence of a (not
necessarily plane) branch if and only if 0, eo, CQ + e\, CQ + e\ + 6 2 , . . - constitute
a semigroup [5]. We will now determine which multiplicity sequences occur for
plane branches. We will also use this result together with Proposition 2.3 and
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Theorem 2.5 to get an algorithm to determine if a symmetric semigroup is the
semigroup of a plane branch.


Let O = C[[t6° + £t->,v a,-^ £,->JO M'']] be a branch. Let, for i > I ,
Si - min{j; bj ^ 0,gcd(£ 0 ) . • • ,^- i , j ) < gcd(<J 0 l . . . ,£i-i)}. Let d0 = S0 and
gcd(<$o, • • • , <$i) = di for i > 1. Set also k = min{z; di = I } . (There exists such a
k since the integral closure of O is C[[i]j.) We call the parametrization standard
if N > Sk- The numbers 80,61,... are called the characteristic exponents of O.
It follows from the proof of Lemma 3.1 below, that we always can get a standard
parametrization from a given one.


LEMMA 3.1 Let O = C[[ts° + ̂ >N af<: ' . Ei>j0
 bit^ be a branch with stan~


dard parametrization and with characteristic exponents ( 8 0 , . . . ,Sf.). Then the
characteristic exponents of O' are:
a) ($o, Si - SQ, - - . , 6k - S 0 ) , if 80 < 81 - SQ.
b) (81 — 6Q, 80, SQ + ^2 ~ ^1 , • • • , <^0 + 8k ~ 81), if SQ > Si — SQ and SQ IS not 0


multiple of 81 — 80


c) (Si — £Q ) SQ + 82 — 81,.. . , <$o + S/t — 81}, if 80 is a multiple of Si — SQ .


Proof We can suppose that f(^,->(j bit1) = Si. Then the blowup O' of O is
(t6° + • • • }t


6l~&0 + • • • ) . One of the following three cases will occur:
a) 60 < 81 — SQ
b) SQ > Si — 8Q and S0 is not a multiple of ^i — SQ
c) S0 is a multiple of Si — SQ.
We will in each case write O' in standard form and derive its characteristic
exponents. In case a) O' is of standard form. We keep the meaning of <$,•
and di from above and denote the corresponding entities for O' with 5,' and
£/(. It follows that d'{ = d{ for all i and that O1 has characteristic exponents
( 8 ' 0 , 8 { , . . . ,S'k) = (SQ,SI — SQ, ... ,8/t — SQ). In case b) we first make the co-
ordinate change X = y,Y = x to get (tSl-s°(l + Ei>ic^ l).^° + • • • ) • Let
IQ = min{i; c, ^ 0). Then we choose a new parameter t\, by i = t\(l —
j^tl'0) to get the parametrization (^'"^(l + £i>i c - < \ ) > < i ° + • - • ) • Now
u(/Ct'>i ci '^i) > u ( Z ^ i > i c » ^ ) - ^e continue to change parameter in this way.
After a finite number of steps we get a parametrization of the branch of the
type (t6l~60 + X^j>5 fc M1,^0 H ) with d- = rf,- for all i, and with characteristic
exponents (61 — SQ,SQ,SQ + 8% — 61,... ,SQ + 8^ — S i ) . In case c) finally, we use
a similar reparametrization and get d\ — £ /»+i , and a branch with characteristic
exponents (<5i — ̂ o, SQ + 82 — Si,. .. , SQ + 8k — <^i) -


If mo, mi, • • • and ho, hi, • • • are natural numbers, denote by TTIQ rn[ , • • •
the sequence of natural numbers given by TTIQ repeated /IQ times, mi repeated
hi times and so on. Suppose that for a couple m,n of natural numbers, the
Euclidean algorithm gives


m — nqi + 7*1


r2
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Denote by M(m, n) the sequence of natural numbers n^qi\ r± , • • • , rt-+i •
Of course such a sequence ends with 7',+i = gcd(m,n) (if m < 77, and so q\ = 0,
n appears 0 times, i.e. it does not appear, hence M(m,n) — M(n,m)). With
this notation:


THEOREM 3.2 A sequence of natural numbers is the multiplicity sequence
of an algebroid plane branch if and only if it is of the following form:


M(m 0 ,mi) , M(m2 , 777.3), . . . , M(m2k, m2k+i), 1, 1, • • •


where, for i > 0, gcd(m2,-, m2,-+i) = m2,-+2 and 7n2,-+3 ls su°h tnat m2i+4 <
m2l-+2, and finally gcd(7n2fc,m2/c+i) = 1.


Proof. Let O be an algebroid plane branch with standard parametrization.
Then, by Lemma 3.1, its multiplicity sequence is


*i), M (dl,S2 - Si), M(d2,S3 - 62), . . . , M(4-i A- - 4-i), 1,1, . . .


and is a sequence of the requested form. Conversely, given a sequence of natural
numbers as in the statement, we can get characteristic exponents (So, Si, . . .5k)
and so an O.


We give two concrete examples.


Example 6 ,4 ,2 ,2 ,1 ,1 , . . . = M(10,6), 1, 1, .. . is an admissible multiplicity
sequence (i.e. the multiplicity sequence of an algebroid plane branch), but
6 ,4 ,2 ,1 ,1 , . . . is not.


Example Let O - C[[x, y]] with


X = *2 '2", y = t3'2" -M3'2n+2n-1
 + . . . + t3.2"+2"-1+... + 2+l


The multiplicity sequence is


2n + 1 ,2n ,2n ,2n-1 ,2n-1 , . . . , 4 , 4 , 2 , 2 , 1 , . . . =


M(3-2 n , 2 n + 1 ) ,M(2 n , 2 f l - 1 ) ,M(2 n - 1 , 2 n - 2 ) , . . . ,M(2 , l ) , . . .


Now we are ready to give an algorithm to determine if a symmetric semigroup
is the semigroup of values of a plane curve.


LEMMA 3.3 Let S be a symmetric semigroup, rn = mm(S\ {0}) and let


0 = WQ < ^i < • • • < wm_i


be its ordered Apery set with respect to m. Suppose that w0 < u\ — m < • • • <
^m-i — (m — l)m is the ordered Apery set of a semigroup S1 . Then S' is
symmetric.
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Proof. This follows from [3].


Given a symmetric semigroup S satisfying the hypotheses of Lemma 3.3,
one could repeat the process for the ordered Apery set of 5' with respect to
its minimal non zero element, and so on until we find either a semigroup which
does not satify these hypotheses or we find N. But even if, after a finite number
of steps, we get N, it is not true that 5 is a value semigroup of a plane branch,
as the following example shows.


Example Let 5 = (6, 10, 29); its ordered Apery set with respect to 6 is {0, 10, 20,
29,39,49}. The set obtained applying Lemma 3.3 is {0,4 = 10-6 ,8 =
20-12, 11 = 29-18, 15 = 39-24, 19 = 49-30), hence it is the ordered Apery set
of 5' with respect to 6. Hence S' = {0, 4, 6, 8, 10, 11, 12, 14, - + . . . } = (4, 6, 11).
The ordered Apery set of S' with respect to 4 is 0,6, 11, 17. Hence we get the
new set (0, 2 = 6 - 4, 3 = 11 - 8, 5 = 17 - 12} which is still ordered and deter-
mines the semigroup S" = (2, 3). Its ordered Apery set with respect to 2 is 0, 3.
Thus we get the set {0, 1 — 3 — 2}, which is the ordered Apery set with respect
to 2 of N.


On the other hand the semigroup 5 is not the value semigroup of a plane
branch O since the multiplicity sequence of O should be 6 ,4 ,2 , 1, 1, . . . which
is not admissible, since the subsequence 6,4 can be obtained only by M(10,6)
but M(10,6) = 6 ,4 ,2 ,2 .


Let 5 be the value semigroup of a plane branch O. By Proposition 2.3 we
get that S' (defined as in Lemma 3.3) is again a symmetric semigroup and S' —
v(O'}. Repeating the process, if S^ - S and 5^+1) = ( S ( j ) } ' , and denoting


by rrij the minimal non zero element of S^^ and by U>Q ,u\ , . . . , w^._i its


ordered Apery set with respect to rrij, we get that UQ ,uj\J — m, . . . ,1*)^.


(mj — l)rn.j is the ordered Apery set of a symmetric semigroup S^+l>, and
S(j+i) _ y(00>i)). since there exists an n > 1 such that O^ = C[[t]],
then S"(n) — N. Moreover the sequence mo, . . . , m n _i , 1, . . . is the multiplicity
sequence of O , hence is an admissible multiplicity sequence.


Conversely if 5 = SQ is a symmetric semigroup, let S^\ m j ,u>- be defined


as above. If the sets 0 = ufi\u\3' — mj, . . . , u;^ _i — (mj - l)mj are ordered
Apery sets for every j = 0 , . . . n — 1 and the sequence mo , mi , . . . , mn _ i , 1 , 1 , . . .
is an admissible multiplicity sequence, then S is the value semigroup of a plane
branch. In fact, since the sequence mo, mi, . . . , m n_i , 1 ,1 , . . . is an admissible
multiplicity sequence, then there exists a plane branch O having this sequence
as multiplicity sequence. Now, by Theorem 2.5, the multiplicity sequence de-
termines the value semigroups v(O^}, k = 0 . . . , n — 1, and these semigroups,
by Proposition 2.3 and Lemma 3.3 have the same ordered Apery sets of the
semigroups S^', hence they are the same semigroups.


This discussion gives a criterion to check if S is the value semigroup of a
plane branch, since we can apply repeatedly the process described in Lemma
3.3 until we find either a semigroup which does not satisfy the hypotheses in
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Lemma 3.3 or we find N. If the last case occurs, then it is enough to check if
the sequence mo, . • • ,"in-i, 1,1, . . . is admissible.


The condition that at each step the sequence 0 = UQ ,u[ —mj,... ,u;^ _i —
(mj - l)rn,j is an ordered Apery set (and not only an Apery set) is necessary as
the following example shows.


Example Let S = {0,4,8,9,10,12,13,14,16,-*• . . .} be the semigroup with
ordered Apery set {0,9,10,19} with respect to 4. The sequence 0,5 = 9 — 4,2 =
10 — 8,7 = 1 9 — 1 2 is not increasing. If we consider the semigroup 5' with
ordered Apery set {0,2,5,7} with respect to 4 it is the symmetric semigroup
{ 0 , 2 , 4 , — > • . . . } and then in two more steps we get N.


Notice that the sequence mo, m i , . . . is in this case 4, 2, 2 , 1 , 1 , . . . ; it is ad-
missible as multiplicity sequence since it is M(6,4), M(2,1), 1 ,1 , . . . . However,
applying Theorem 2.5, we get the semigroup {0,4, 6, 8,10,12,13,14, -» . . .}
with ordered Apery set {0,6,13,19} and applying Theorem 3.2 we get the
parametrization O - C[[<4,*6 + t7}].


4 THE SEMIGROUP OF VALUES FOR A
PLANE BRANCH


The following theorem is proved in different ways in e.g. [2], [6], [7], [8], [9].


THEOREM 4.1 Let O = C[[t5° + E,->Ar«i*'.£,->a0 M
1']] be a branch with


standard parametrization. Denote the minimal generators ofv(O) by SQ < • • • <
Ss. Then s = k, SQ = SQ,Si = S\ and Si = 5,-_i -^- + Si — Sj-i if i = 2 , . . . , k.


We will divide the proof into several steps. From now on we will, for a plane
branch with characteristic exponents (£0,^1, • • •), let Si denote the numbers
defined in Theorem 4.1. It is clear that rf,- = gcd(<$o, . . . ,^) = gcd(<5o, . . . , & ) •
We keep also this notation in the sequel.


LEMMA 4.2 The conductor of S = (S0,... , S k ) is


{-4),
"1 0-2 dfc


and S is symmetric.


Proof. Since gcd(^0,^i) = di, we have that iSi, 0 < i < f1 - 1, are all different
(mod SQ). They are also all smaller than S^, since Jo > ^^i • In the same way all


i$i + J^2,0 < i < ̂  — 1,0 < j < ̂  - 1 are all different (mod SQ), and they are


all smaller than ^3, since ^3 > ^S? > (^- — 1)^2 + (f2- —l)^ i a.s.o. In this way we
see that the Apery set of 5 with respect to SQ is {ji$i +72^2 + ' • -+jfc^/t; 0 < ji <
-^-, j; = 1,.. . , k} and iiSi-i-i^S^-^-- • --rikSk > ji^1+^2^2 + ' • '~rjk$k if and only
if ik = j k , • • • , is = js,is-i > js-i for some s, i.e., if the last nonzero coordinate
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of (>'i — j i , . . . ,ik -jk) is positive. (We have found ^-^ • • • -^ = ̂  = d0 = <$o
elements which are smallest in their congruence classes (mod SQ).) Hence, the
largest number in the Apery set is ui? , = f-4 — lUi + (^ — lUo + • • • 4-O r" J O n — I \ di I *• \ Cli I " < <


(-j-1- — 1)4- Since the conductor equals <^s0-i ~ (^ ~ ^ ) (c^- Lemma 2.1), we
get the first statement after a small calculation. If a;,- = i\6i + • • • + ikSk, it
is easy to see that u;^ _ 1 _ J - = (4s1 — 1 — ii)$i + • • • + (~!T~L — 1 — ik)$k- Thus
<jji + u < j o _ l _ i = u>jo_1, which gives that 5 is symmetric (cf. [3]).


For a semigroup 5 and an integer d > 0, we define the d-conductor of 5 to
be Cd(S) — m'm{nd; md E 5 if m > n}. Thus ci(5) is the usual conductor of S.


COROLLARY 4.3 Let S = {J0, • • • ,4) and let d,- = gcd(ft>, • • - , f t ) - Then


di - d,-_i
-d,-)


u.± U2 Uj


for


Proof. By the proof of Lemma 4.2, the semigroup Si = (^-, . . . , ̂ -) has con-
ductor c(5,-) ='


/ r foM ^ di/d,- J2 da c/.-i/d.- ft c


Then Crf . ({Jo, • • - ,4)) — d,-c(5,-). A calculation gives that ft+i > ^^{^o, - - - , ft-})
hence Jj > cd ,((^o, • • • ,4)) if j > t. Thus c d l ( S ) = Q,({4, • • • ,4})-


LEMMA 4.4 For i = 2, . . . , k we have ft = -^ Y?j^\(dj-i-dj)si+si- Thlls


the conductor of S = (So, . . . ,4) is Y^i=i(di-i ~ di)8{ + (1 — do). Furthermore~


Proof. By a calculation, replacing in Lemma 4.2 and in Corollary 4.3 ft with
~T~ Y^i=\(dj-i ~ dj)6j -(- ft, we get the claim.


For the next proposition, we need a technical lemma. Let g(t) = 5Zi>oa '^'
a0 ^ 0 be a power series such that gcd({z; a,- ^ 0}) = 1. Let, for i = 1, . . . , k —
1, di = ( d , - , . . . ,4-i), and let di(g(t)) - ( e , - ( j ) , . . . , c k - i ( g ) ) , where e,(g) =
min{j; a; ^ 0, ds does not divide j}. The easy proof of the next lemma is left
to the reader.


LEMMA 4.5 Let g(t) = Ei>oa^' .°o + 0, h(t) = E,->o6^4 '6o ^ 0, be power
series such that gcd({z; a; ^ 0} = gcd({z; 6,- ^ 0} — 1.
('aj di(gh) > min(d,-(^), dj(/i)) (coefficientwise).
(b) If g = h there is equality in (a).
(c) Ifdi(g(t)) = ( e i , . . . , e f t _ i )


We will call a power series monic if its least nonzero coefficient is 1.
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PROPOSITION 4.6 Let O = C[[t6° + £,-># a,-f, J\>5o M'']] be a branch of
standard parametrization and with characteristic exponents (So,... ,6k). Let Si
be defined as in Theorem 4-1- Then we have (6Q,... ,6k) C v(O), i.e. <$,• 6 v(O)
for i — 0 , . . . , k.


Proof. Let, for i = 1 , . . . , k — 1, d,- = (d , - , . . . , dk-i), where d, = gcd(£0, • • • ,&)
as above. We will, by induction, construct monic elements /,• G O such that
v(ft) = 6i and such that d,-(/,7^') = (<St+i — <^ ,£ i+2— 6i, • • • ,6k—8i) HI < i < k.
We let /0 = ts° + Ei>7v°»'f • If u(£i>50M') is not a multiple of <J 0 > then


°(£,->a0 W) = *i and we let h = bj* E,->*0 M
1'- If «(£,•>,„ W) = ™o<*o, let


/i - EixSo 6'-*' - c/om°. where c ̂  0 is chosen so that v(f{) > o(£t>,0 M1')-
Repeat this until v(/{ ) = 6\, and let /i — c'/|[ , where c' is chosen so that /i
is monic. It is clear that d i ( f i / t S l ) — (62 — 61,63 — < J i , . • . ,rfjt — <^i) . Suppose
we have constructed /o, / i , . . . , /,• 6 O so that the conditions in the proposition
are fulfilled. Then f { ' ' has value 7, = bi-^1-, which is a multiple of rf,-_i.
A simple calculation, using Lemma 4.4, shows that 7,- — ̂ ({Jo , - - - ,^i)) —
Si — di + Jo > 0. Thus of course 7,- > cci,_l ({^o. • • - , ̂ t-i))- This last means that


7.- - ££i n^j fo r some nJ ^ °- We choose ^*+i = ^"1/(il - -ft0 • • • /f-i1 •
From Lemma 4.5(b) it follows that d:-(//-1/dl/^•"1/<'>) = d^/,-/^)- Since.
for j < i, dj(fj/t6>) = (Sj+i - 6 j , . . . ,6k- Sj), we have djtfj/t5*) = (<J,-+1 -
< J j , . . . ,6k — 5j) > (<J,-+i - ^ j , . . . ,6k — 6i) (coefficientwise). Lemma 4.5(a) and
(b) shows that dj(/J° • • •f?l~l


l/ts<) > (6i+l-6i,... ,6k -<J,-). Thus the smallest
power in //+1 which is not a multiple of £/,• and has nonzero coefficient is £,+i.
If v(f-+i) is not a multiple of d,-, we choose /,-+i = c/,-+1 (c chosen so that
/,-+i is monic). If v(f-+l) is a multiple of di, then 7,- > cj^^o, - - • ><^}) shows
that V(//+1 - /O


mo • • -T') = v(//;!) > v(//+1) for some m 0 , . . . ,m,- > 0. We
repeat until v(/u-^{) = ^j+i, and let /,-+i — c'/,-"{, where c' is chosen so that
/,+i is monic. It follows from Lemma 4.5(c) that d,-+i(/i+i/t^>+1) = (^,-+2 —
6i+i,... ,6k -^i+i).


LEMMA 4.7 Let O be a branch with characteristic exponents ( S o , . . . ,6k).
Then the semigroup v(O) has conductor Et-=1(d»-i — di)6i + (1 — d 0 ) .


Proof. We make induction over the number / of blowups we need to get a regular
branch. If / = 1, then O = C[[t5° ,t6o+l + • • •]]. It follows from Proposition 2.3
that v(O) = (<J0 ,^o+l>, which has conductor (50-l)^o - (^o-l)(^o+l)+l-<Jo =
(do — di)6\ + 1 — d0. Suppose the claim is proved for / — 1. Let c and c' denote
the conductors of v(O) and v(O'), respectively. In case a) of Lemma 3.1, a
calculation using Lemma 4.4 gives c — c' — ££=1(^-1 ~ ^O^'-i — <^o ~ ^o- By
induction the statement is true for v(O'). Proposition 2.3 shows it is true for
v(O). A similar calculation in case b) of Lemma 3.1 shows that c — c' = 6% — 60
also in this case. In case c) of Lemma 3.1 finally, we get, by using 6\ — 60 =
di,6o = kdi,6i = (k + l)di for some k, that c — d = k'1d\ + kd\ = 6$ — 60 also
in case c).
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Proof of Theorem 4.1. We know that (6Q,... ,4) C v(O) and that by
Lemmas 4.4 and 4.7 these two semigroups have the same conductor. Since
(t)"0, . . . , 6k) is symmetric, all strictly larger semigroups have smaller conductor.
This gives that the two semigroups are in fact the same.


We get an easy criterion for a semigroup (OQ, . . . , cik) to be a semigroup for
a plane branch. The following seems to be a simpler characterization of the
semigroup of a plane branch, with respect to equivalent characterizations found
in [2] or [10].


PROPOSITION 4.8 Let S be a semigroup which is minimally generated by
a0 < ai < • • • < a^ and let d{ = gcd(ao, . . . , a,-), i — 0, . . . , k. Then S is the
semigroup of a plane branch if and only if the following conditions are satisfied.
(a) dQ > di > • • • > dk - 1 .
(b) a,- > lcm(c/,-_2, ct j- i) for i = 2, . . . , k.


Proof. The necessity follows from Theorem 4.1, the sufficiency from the branch
CfT£a° tai 4- ^ a i + a 2 - l c m ( f f o , a i ) i . . . _i_ 2aH ----- ̂ a* -(\cm(d0,al)-\ ----- ( - l cm(c ( f c _2 , a f c_ i ) ) j ' ]


We give two concrete examples.


Example Let 5 = (30,42,280,855). Then 5 satisfies the conditions in Propo-
sition 4.8, so S = v(O) for some O. We can choose e.g. O = [[<30,i42 +tu2 +
t1-7}}. The conductor equals t1554C[[t]]. With the notation of the previous
section, the multiplicity sequence is M(30, 42), M(6, 70), M(2, 15), . . . , which is
30,12(2),


Example Let O = C[[x,y]] with


x = t2-2", y = *3'2" 4- 13'2^2"'1 + • - • + t3-2"+2""1+-+2+1.


The generators of v(O) are 8Q = 2"+1,Ji = 2n-*'+1(3 - 22l '~2 + (41'-1 - l)/3) for
i — I , . . . , n 4- 1 •


5 COMPLETE INTERSECTION RINGS
ARISING FROM THE SEMIGROUP OF A
PLANE BRANCH


Let S = (60, . . . ,6k) = v(O) be the semigroup of a plane branch, where SQ <
Si < . . . < 6k is a minimal set of generators of 5, and let C[5] = C[ts° , . . . , t k] =
C[Yo, • • • , Yk]/I = T. We will show that T has an associated graded ring (in
the (Ye, . . . , y/j-filtration), which is a complete intersection. In pai\ oular this
implies that T is a complete intersection [11]. We will use [12, Theorem 1] which
states that if all elements in Ap(S, SQ), the Apery set of 5 with respect to <5o,
have unique expressions as linear combinations of the generators of S, then the
relations are determined by the minimal elements above the Apery set. In the
following results, we suppose S = v(O}} where O is a plane branch. We also
keep the notation of the previous sections.
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LEMMA 5.1 All elements in Ap(S,6o] have unique expressions.


Proof. The elements in Ap(5, Jo) are of the form i\6i H ----- h4<$fc , with 0 < ij_<
d j - i / d j (d. proof of Lemma 4. 2). Suppose n^i H ----- \-ik&k = jo$Q H ----- rjkfa-
Then u-4 = >^ (mod cfo_i) . Since i^ -f • • • + ik-ifa-i < 4, this implies
that ik = j k - If k > 1 we get ik-i&k-i = jk-i^k-i (mod <4_2), which gives
»fc-i = Jfe-i a.s.o. Finally 0 = jo^o, so j0 = 0.


Next we determine the "minimals" (cf. [12]), i.e. the minimal elements
(HI , • • • , nk) £ Nfc such that n\ Si 4- ---- (- n^J* ^ Ap(5, SQ) (the order in N^ is
the usual one). Some nj must be at least d j - i / d j , otherwise the element belongs
to Ap(,S, <Jo)- On the other hand at most one rij > dj-i/dj and there must be
equality, if the element is minimal outside Ap(S,oQ). Thus the minimals are


Thus the following theorem follows from [12, Theorem 1].


THEOREM 5.2 A minimal presentation for C[S] is


C[5] = C[y0) . . . ̂ /(Y/0^1 - m l f . . . .y*-^* - m,)


where mj is a monomial in YQ, • • • ,Yj for j — 1, . . . , k. Thus C[5] is a complete
intersection.


COROLLARY 5.3 The associated graded ring of€[S] with respect to the fil-


tration given by powers of (y0l . . . . ft) is C[Yo , . - - , Y k ] / ( Y f ° / d l , . . . , Y^'dk}.
Thus it is a complete intersection.


Proof. Since mj = Y£° • • -Y^1 and no^oH ----- l~"j-i^j-i = (dj-i/dj)6j, it is


clear that n0 + • • • + nj_i > ( d j - i / d j ) , so in(r/J~1/dj - mrf = Y/J-l/d> . Since


YI l , . . . , Yk
 fc k is a regular sequence, we get the result, cf. [11].


Remark. Notice that not only for semigroups of plane branches the two results
above hold. For example, if 5 = (4, 6, 7), then 5 is not the semigroup of a plane
branch, but C[5] = C[X, Y, Z]/(Y2 - X3, Z2 - X2Y) is a complete intersection
and also its associated graded ring is a complete intersection.


COROLLARY 5.4 The generating function for S , i.e. £ i€S*J, equals


Proof. As graded algebra C[S] is generated by k + 1 elements of degrees 5,,
i — 0, . . . , k and has k minimal relations of degrees (di-i/di)6i, i — 1, . . . ,k,
which constitute a regular sequence.


Examples. If O = C[[i8,*12 4- <14 4- 115]], then v(O] = (8, 12,26,53} so the
generating function is (l-t24)(l-t52)(l-<106)/((l-t8)(l-f12)(l-f26)(l-i53)).


If O = C[[<30,t42 + i1124-<127]], then v(O) = (30, 42, 280, 855) so the generat-
ing function is (l-t210}(l-t840)(l-tl7l°)/((l-t30)(l-t42)(l-t280)(l-t855}}.
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On Radical Operations


ALI BENHISSI: Depart. Math., Faculty of Sciences, 5000 Monastir, Tunisia


INTRODUCTION. In the first half of the paper, we recall some facts about


radical operations, especially the ace property for *—ideals and its transfer to the


polynomials and power series rings. Many examples are given illustrating that


radical operations behave in different fashions. Now, it is a standard theorem


of ordinary commutative ring theory that any radical ideal is an intersection of


prime ideals. We extend this fact to *—ideals in a ring equiped with specific radical


operation *. Even though finite decomposition is guaranteed by ace for *—ideals,


we don't know if this condition characterize the finitude of the decomposition.


After we look at the following situation: Let A C B be an extension of rings and


* a radical operation on B. Let P a prime ideal in A and / a *—ideal in B which


contracts to P. We ask two questions: (1) Can / be enlarged to *—prime ideal


which also contracts to P ? (2) Is / the intersection of *—prime ideals contracting


to P ? To answer these questions affirmatively requires additional hypothesis.


1. GENERALITIES. Recalling from [3] the following definition.


DEFINITION 1.1: A radical operation on a ring A assigns to each ideal / of A


an ideal I* of A, called the *-radical of /, subject of the conditions (i) / C /*;


/** = /* and (ii) (/ n J)* = I* n J* = (IJ)*. If I* = /, then / is said to be a


*—ideal.


EXAMPLE 1: For any ideal / of a ring A, let J(I) be the ./-radical of /; i.e., the


intersection of all maximal ideals containing /. It is easy to see that I —>• J ( I ]


is a radical operation. If J ( I ] = /, we say that / is a J—radical ideal.
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The following lemma is proved in [3].


LEMMA 1.2: The following properties hold for each pair of ideals / and J of A


(iii) / C J => /* C J* (iv) (/ + J)* = (/ + J*)* = (/* + J*)*.


(v) (Ijy = (/J*)* - (/*./*)* (vi) /* = \/7*.


PROPOSITION 1.3: If the prime spectrum of a ring A is totally ordered by


inclusion, then for any radical operation * on A, each proper *—ideal of A is


prime.


Proof: By (vi), if / is a proper *—ideal, then I is radical, so / = p)P, where P


ranges over all the primes containing /. Since the family (P) is totally ordered,


then P| P is prime.


2. CHAIN CONDITION FOR *-IDEALS. In this section, we illustrate


some results proved in [3] by examples. The first one shows that the ace for


*—ideals can hold in a non noetherian ring and the second shows that in the same


ring, the ace can hold for some radical operation and not for another.


EXAMPLE 2: Let A be a non noetherian ring with a totally ordered finite prime


spectrum. Then for any radical operation * on A, the ace for *-ideals is satisfied.


EXAMPLE 3: Since every J—ideal is a radical ideal, then the ace for radical


ideals implies the ace for J—ideals. The converse is false and any ring with prime


spectrum an infinite strictly increasing sequence of type P\ C PI C . . . C M is a


counterexample.


Some radical operations satisfy a further axiom: (vii) for each ideal / of A,


I* — UJ*, where J ranges over all finitely generated sub-ideals J C /.


An ideal / of A is called *—finitely generated if there exists a finite subset S


of A such that I =(S)*.


EXAMPLE 4: Let A be a ring and P a cone of A; i.e., a subset of A stable


by addition and multiplication and contains the squares of A. For any ideal


/ of A, put \/7 = (a e A; 3m e IN, 3p e P, a2m + p e /}. In [3], we


showed that PJ~. is a radical operation. If \fl = /, we say that / is a P—ideal.


Any P-finitely generated ideal of A is P-generated by one element. Indeed,
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The following lemma is proved in [3].


LEMMA 2.1: If (vii) is satisfied, then >1 has the ace for *—ideals if and only if


each *-ideal of A is *—finitely generated.


As noted in [3], the implication => is true without (vii), but the reverse


implication needs this hypothesis as will be shown by the following example.


EXAMPLE 5: Let A be the ring of continuous real-valued functions on the unit


interval. By [7, Example 2.10], A does not have the ace for the jT-radical ideals,


but every J"-radical ideal of A is J'-finitely generated. So (vii) is not satisfied.


3. PASSAGE TO POLYNOMIAL AND POWER SERIES RINGS.


Some radical operations satisfy a further axiom: (viii) for any ideal / of A,


(/Apfj)* = /*A[X]. This means the radical operations in A[X] and in A should


fit together. In [3], we prove the following theorem.


THEOREM 3.1: If (vii) and (viii) are additionally satisfied, then A has the ace


for *—ideals if and only if the same is true for ^[A"].


EXAMPLE 6: Let A be a valuation domain with an infinite ascending chain of


primes (0) = PI C PI C . . . , which cannot be refined. (Take for example a


valuation having value group the weak direct sum of countably many copies of the


integers ordered lexicographically.) Since the maximal spectrum of A reduces to


one point, A has the ace for J—ideals and each ./-ideal is J—finitely generated.


By [7, Example 2.9], A[X] does not have the ace for J—ideals and it contains


J'-ideal which is not J"—finitely generated.


EXAMPLE 7: It is well known [3] that if .A is a ring with the ace for radical ideals,


then the same is tue for A[X]. By lemma 2.1, if K is any commutative field and


S an infinite subset of K[X\,..., J£n], then there is a finite subset of S with the


same zeros. Naturally, this can be seen more directly from the classical Hilbert's


basis theorem than from our theorem.


Now, we turn our attention to the transfer of the ace property to formal


power series rings and we start by some examples.







54 Benhissi


EXAMPLE 8: For any non SFT-ring A, A[[X}} does not satisfy the ace for prime


ideals. For example, if A is a non discrete valuation domain of rank 1, then spec(A)


is noetherian, but spec(A[[X]]) has not this property. This is also the case for the


ring A = Q[XZ, i e IN]/(^n, i 6 IN), with n > 2, whose prime spectrum is reduced


to the singleton (Xi,i G IN), but spec(A[[X]]) is not noetherian.


EXAMPLE 9: For any ring A, P = £A2 is a positive cone. An ideal / of A is


P-real if and only if it is real; i.e. , if ai , . . . , an G A are such that a\ + . . . + a2 G /,


then 0,1, . . . , an G /. In [8, §5], Ribenboim showed that if A is a valuation domain


of some valuation v of value group IR and residue field ~ IR, then A satisfies the


ace for real ideals but A X does not have the ace for real ideals.


EXAMPLE 10: If A satisfies the ace for the J"-ideals, then A[[X]] does also.


Indeed, let Max(A) = (MA; A G A}, then Max(A[[X}}) = {MA + XA[(X}}- A G


A}. Let (/»;)7;eiN an increasing sequence of J— ideals of A[[X]]. For each i. there


is a subset A?: C A such that /,; = Q (MA + JO[[X]]), so 7?: n A = p| MA


A6A, A6A,
is J— ideal of A as an intersection of maximal ideals. There exists n € IN, such


that 7j n A = In n A, for each i > n. For i > n, p| MA = p| MA, so


p| (MA + XA[[X]}) - p| (Mx + XA[[X}}}, then LL = In.
A 6 A , AgA,,


However there are some other positive results in the formal power series rings


based on the notion of Zariski topology defined on the prime spectrums of rings.


1) Let A C B domains not fields. By [4, Theorem 2.3], if spec(A) — spec(B),


then the contraction map spec(JB[[JC]]j — >• spec(A[[X]]) is a homeomorphism.


So spec^fpf]]) is noetherian if and only if spec(A[[X]]) is noetherian. By [1,


Proposition 3.3], A and B are local so are A[[X]] and B[[J^T]] and the ace for


J'-iiU-als is trivial. In particular, if A is a PVD with associa"^1 aluation


domain V, then spec(A) — spec(V], so spec(A[[X]]) is noetherian if and only


if spec(V[[X]]) is noetherian. By [1, Proposition 3.5], if A C B is an extension of


rings such that spec(A] — spec(B], the Zariski topologies on spec(A) and spec(B)


coincide. The hypothesis spec(A) = spec(B] can't be weakned in the remark;


since there exists an extension of domains A C B such that the contraction map


spec(B) — >• spec(A) is a homeomorphism, A[[X]] is noetherian, but spec(jB[[X]])
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is not noetherian. Resume Example 2.2 of [4], let A C B an extension of valuation


domains such that B dominates A, the value group of A is TL and the value group


of B is any noncyclic subgroup of IR containing 22, for example ]R, itself; A is a


discrete valuation domain, so A[[X]] is noetherian, but B is not an SFT-ring, so


spec(£[[X]]) is not noetherian. Note that each of the maximal spectrums of A[[A"]]


and jB[[X]j reduces to one point, so these rings satisfy the ace for the J—ideals.


EXAMPLE 11: The ring A = Q + T€[T](T) is a non-noetherian PVD of


dimension 1 associated to the discrete valuation domain (D[T](^), so spec(A[[X]])


is noetherian.


2) Recalling that a globalized pseudo-valuation domain (GPVD) is a subring A


of a Priifer domain B such that the extension A C B be unibranched (i.e., the


contraction map spec(B) —> spec(A) is a homeomorphism) and there exists a


nonzero radical ideal / common to A and B such that any prime ideal of B (resp.


A] containing I is maximal in A (resp. B}. By [6, Theorem 2.4], if A is a GPVD


with the SFT-property. the contraction map •</> : spec(£?[[.X"]]) —>• spec(A[[J^]])


is a homeomorphism, so spec(B[[X]]) is noetherian if and only if spec(A[[Jf ]]) is


noetherian. Since ijj is an order-theoretic isomorphism betwen the two sets, then


-0 induces a homeomorphism Max(JB[[A']]) —> Max(A[[X]]). On the other hand,


by [7], a ring satisfies the ace for the ^—ideals if and only if its maximal spectrum


is noetherian; i.e., satisfies the dec for closed sets. So in the preceding situation


A[[X]] satisfies the ace for the J—ideals if and only if 5[[X]j satisfies the ace for


the J—ideals.


EXAMPLE 12: Resume Example 3.3 of [5]. Let m > 2 be a positive integer.


Consider a field k with the following two properties


(1) There exist m pairwise incomparable one-discrete valuation domains Vi —


k + Mi (with maximal ideal MJ and a common quotient field.


(2) There exist m distinct proper subfields ki of k such that for at least one i,


[k : ki] — oo, 1 < i < m.
m m


Then R = p|(/cf + Mi) is a GPVD, with the associated Priifer domain T = Q VJ.
t:l i:l


Since T is a Dedekind domain (so noetherian), then T and # have the SET-
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property, so their spectrums are noetherian. Note that R is not PVD, non-


noetherian not Priifer. birice T[[X]j is noetherian, then spec(R[[X}}} is noetherian.


3) Let T be a local domain, with residue field K, 0 : T —> K the natural surjec-


tiori, k a subfield of K arid R — $>~~l(k}. By [2, Theorem 3.4], if the contraction map


s p e c ( K [ [ X i , . . . , Xn]}) —> spfic(k[[X-[,..., Xn}]} is a homeomorphism, for each


n > 1, then the same is true for the contraction map spec(T[[Xi,..., Xn}]) —->•


spec(R[[Xi,..., A"n]]). In this case, spec(T[[Xi,..., Xn}}} is noetherian if and only


if spec(R[[Xi,..., Xn}]) is noetherian. The hypothesis in this assertion holds if for


example, the extension k C K is purely inseparable of finite exponent.


EXAMPLE 13: Resume Example 3.6 of [2]. Let A; C K be fields of characteristic


p / 0 such that [K : k] = oo and Kp C k. Let T = K[[Yi,... ,Ym]] and


R = k + (I7!,.. .,Ym}K^Yi,. . . ,ym]], m > 1. Then 7?, is non-noetherian, so


R[[Xi,..., Jfn]] is non-noetherian, but its prime spectrum is noetherian.


Note that the conditions char act k — p / 0 and Kp C A;, in order that the contrac-


tion map spec(K[[Xi,..., XT,]]) —> s p e c ( k [ [ X i , . . . , X n } } ) be a homeomorphism


are not very restrictive, since in [2, Theorem 4.6], one shows that if k C K are fields


such that the contraction map s p e c ( K [ [ X i , . . . , Xn]]) —> s p e c ( k [ [ X i , . . . , ^n]j) is


injective, for some positive integer n > 2, then K/k is purely inseparable.


4. DECOMPOSITION OF *-IDEALS AS INTERSECTION OF


*-PRIME IDEALS. We recall the following theorem from [3].


THEOREM 4.1: If A satisfies the ace for *-ideals, then any * -ideal is the


intersection of a finite number of *-prime ideals.


The uniqueness of the decomposition in the theorem is a matter of com-


mutative algebra. Call a representation of / as an intersection of prime ideals


irredundant if none of the ideals can be omitted.


PROPOSITION 4.2: Let / be an ideal of a commutative ring. Suppose that / can


be expressed in two ways as an irredundant intersection of primes / = Pifl.. .flPr =


Qi n . . . n Qs. Then r — s and, after perhaps renumbering, Pi = Qi.


Proof: We have PI n . . . n Pr C Q1} hence one of the /Vs is contained in Qi.


We can suppose PI C Qi. Similarly one of the Q^'s is contained in P\. By the
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irredundancy, this must Qi, and we have Qi = PI- Similarly each Qi gets equated


to a unique Pi and vice versa.


The first part of the following corollary is proved in [3] and the second derives


from the theorem and the proposition.


COROLLARY 4.3: If A satisfies the ace for *—ideals, then any *—ideal / of A


has a finite number of minimal prime ideals, each of them is *—ideal and their


intersection is /.


In connection with the corollary but without the ace, we start by some


concrete examples and a general result will be proved later.


EXAMPLE 14: Let A be a ring and / a J—ideal of A having a finite number


Q i , . . . ,QS of minimal prime ideals. Suppose that Qi is not a J—ideal and let


a 6 J(Qi) \Qi- If s > 2, take 6?: e Qi \ Qi, for i = 2 , . . . , s. We will show that


u.b-2 ... bs £ J ( I ] — I ^ Ql^ which is impossible. Let M be any maximal ideal of A


containing /, one of the Qi s is contained in M. If Qi C M, then a £ J(Q\] C M.


If Qi C M, for some i > 2, then b% e M. So abi... bs e f| M = J(I).


EXAMPLE 15: Let P be a cone of a ring A, / a P-ideal of A and Qlt.. .,QS


primes, with Qi fl . . . fi Qs = I. Suppose for example that Qi is not P-ideal,


we can find a e A \ Qi, m G IN and p € P such that a2m + p e Q\. Let


bi e Qi\Qi, i = 2 , . . . , s a n d 6 = 6 2 . . . & s , then (ab}2m+pb2m € Qi n . . .nQ s = /,


so ab e \fl — I C Q1; which is impossible.


PROPOSITION 4.4: Let / be a *-ideal of A such that / = PI n . . . n Pn, where


the P^s are prime ideals and Pi £ P,-, for z ^ ji. Then the Pi's are *—ideals and


they are the only minimal elements in the set of *—prime ideals of A containing


/.


Proof: By (ii), we have 1 = 1* — Pf n . . . n P*. Fix ?, 1 < i < n, there is some j


such that PJ C P* C P{. Since the intersection in irredundent, i = j and Pi = Pf


is *—ideal. For any *—prime Q containing / = PI n . . . n Pn, there exits i such


that P1CQ.


As a consequence, if A satifies the ace for *-ideals, then any *—ideal of A


has a finite number of minimal prime ideals, each of them is a *—ideal.
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COROLLARY 4.5: Suppose that each * —ideal of A has a finite number of minimal


primes. Then for each ideal / of A, the set of *-prime ideals containing / has a


finite number of minimal elements.


Proof: The sets of *—prime ideals containing / and /* respectively are the same.


By hypothesis, /* has a finite number of minimal primes say PI, . . . , Pn. Since /*


is radical by (vi), then 7* — PI n . . . n Pn and the proposition is applied.


LEMMA 4.6: Let * be a radical operation on a ring A and T a multiplicative set


of A.


a) If Q is a * —ideal of A maximal in the set of *—ideals with respect to the


exclusion of T, then Q is prime.


b) If (vii) is satisfied and if the set T of all the *-ideals of A disjoint with T is not


empty, then T is inductive hence it admits a maximal element.


Proof: a) Suppose the contrary that ab £ Q, a $ Q, b $ Q. Then (Q + a A}* and


(Q + bA}* are *-ideals properly large than Q, hence they contain elements of T, say


ti and *2, we have tit2 € (Q + aA)*n(Q + &A)* = (Q2+aQ + 6Q+a/M)* C Q* = Q,


by (i i) , a contradiction.


b) Let ( JA)AGA be a totally ordered family of elements of T and / = |̂ J I\. We
AGA


have /* = UJ*, where J ranges over all finitely generated sub-ideals J C. I. Since


(/A) is totally ordered, for each J, there is a A G A such that J C JA, so /* — /.


THEOREM 4.7: Let * be a radical operation on a ring A such that (vii) is satisfied,


then any proper *-ideal / of A is an intersection of *-prime ideals.


Proof: Given an element x not in /, we have to produce a *-prime ideal containing


/ but not containing x. Take T to be the powers of x. Since / is radical by (vi),


then Tn/ = 0. By the lemma, there is a *-ideal Q containing I and maximal with


respect to the exclusion of T and Q is prime.


THEOREM 4.8: Let A C B be an extension of rings and * a radical operation on


B satisfying (vii). Let / be a *-ideal in B such that P — I n A is a prime ideal


in A. Then / can be enlarged to a * —prime ideal in B wnich also contracts to P.


Proof: T is taken to be the complement of P in A and the lemma is applied.
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THEOREM 4.9: Let A C B be an extension of rings and and * a radical operation


on B satisfying (vii). Let I a *—ideal of B such that ab E /, a E A, b E B implies


that a or b is in /. Then / can be expressed as an intersection of *—primes in B


each of which also contracts to P - I n A.


Proof: Let x be an element in B but not in /. We must construct a *-prime ideal


in B which contains /, contracts to P, and fails to contain x. Take T to be the


set of all elements axn where a is in A but not in P. Then T is multiplicative!;/


closed, and it follows from our hypothesis that it is disjoint from /. The lemma


then provides us with a *-prime ideal Q which contains I and is disjoint from T.


The element x is not in Q, since it is in T. Finally to see that Q n A = P, let


a E Q n A. Then ax E Q, and this is a contradiction unless a, E P.
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Throughout, all rings considered are commutative with unity. Recall that a module
is uniserial if its lattice of submodules forms a chain. Let R be a ring and A an
jR-module. We shall use Soc(A) to denote the socle of A and U(A] to denote the
sum of ah1 uniserial submodules of A. If G is an abelian group, U(G] coincides with
the torsion part of G.


In his paper [3], Dickson has introduced the notion of splitting ring. Similarly,
in the present context we call a ring R a splitting ring if for each J?-module A, U(A)
is a direct summand of A.


The purpose of this note is to prove that a ring R is a splitting ring if and only
if R is an Artinian principal ideal ring.


For the terminology and unproved statements in this paper the reader is referred
to [1] or [5].


Before proving the main theorem we establish several preliminary results.


LEMMA 1 Let .R be a splitting ring. Then there are no ideals properly between M
and M2 for any maximal ideal M of R.


Proof. First note that any local .R-module K with non-zero socle is uniserial, as
Soc(K] C U(K] and U(K] is a direct summand of K. If M is a maximal ideal of R
and if we take for K the ^-module R/M2, we get that M/M2 is trivial or simple.


Let R be a splitting ring .Then, in view of Lemma 1, we have the following
well-known results, which will be used repeatedly.


(1) For any maximal ideal M and any positive integer n, the only ideals between
M and Mn are powers of M.


(2) An .R-module A ^ 0 is uniserial if and only if A = R/Mn for some maximal
ideal M and some integer n > 1.
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The next result investigate the local case.


LEMMA 2 A local ring R is a splitting ring if and only if R is a special primary
ring.


Proof. Let M be the maximal ideal of R and suppose that R is a special primary
ring. If A is an jR-module, then for any non-zero x 6 A, Ann(x] is a power of M,
hence x e U(A). Thus A = U(A). Therefore R is a splitting ring.


Conversely, suppose that R is a splitting ring. First of all note that for any
cyclic P^-module A, U(A] is uniserial. Next we show that R is a valuation ring, i.e.,
the set of ideals of R is totally ordered under inclusion. It suffices to show that
any two principal ideals are comparable. Let x, y 6 R and let A = R/(Mx + My}.
Since the submodule N — (Rx -f Ry)/(Mx + My] of A is annihilated by M, then
it is semi-simple and hence N C U(A}. Since U(A) is uniserial, then N is trivial or
simple. If x and y are the images of x and y in N, respectively, then Rx and Ry
are comparable. We may assume Kx C Ry. Then there are elements a e R and
6, c € M such that x — ay — bx + cy. Since 1 — 6 is a unit, we get x G Ry, i.e.,
Rx C Ry. Next we distinguish two cases:


Case 1: M = M2. Here any uniserial Pt-module is simple so that for any R-
module A we have U(A) = Soc(A). Let x e M and consider the module R/Mx. We
have Rx/Mx C Soc(R/Mx), hence Rx/Mx is a direct summand of Soc(R/Mx).
Therefore Rx/Mx is a direct summand of R/Mx since Soc(R/Mx) is itself a direct
summand of R/Mx. But any cyclic module over a local ring is indecomposable, so
Rx/Mx is trivial since Rx/Mx ^ R/Mx. Thus Rx = MX and this clearly implies
x = 0. Since x is arbitrary in M, then M = 0. Thus R is a field.


Case 2: M ^ M2. Let a e M - M2. Since # is a valuation ring and there
are no ideals properly between M and M2, then M — (a), the ideal generated by


oo oo
a. Here we consider the module P — f] R/Mn. First note that f| MfcP = 0.


n=l fc=l


Take x = (xn)n € P denned by xn = 0 if n is odd and xn — an/2 + Mn if n is
even. For any k > I the element y^ =(0, . . .0,X2fc, a^fc-t-i, • • • ) *s m MkP, the element
zfc = (x l t . . . , x2 fc_ i i O, . . . ) is in C/(P) since it is annihilated by Mk~l, and we have
x = yk + Zfc. Therefore, if x is the image of x in P/U(P), then x 6 Mk(P/U(P))
for any /c > 1. Since f/(P) is a direct summand of P, then P/U(P) is isomorphic


oo
to a submodule of P and hence f) Mk(P/U(P}} is trivial. Thus x — 0 and this


fc=i
means x e U(P). Consequently, there exists r > 1 such that arx = 0; in particular
arX2r+2 = 0, so a2r+1 6 (a2r+2), which clearly gives a2r+1 = 0. Thus M is a
nilpotent principal ideal. Therefore any ideal of R is a power of M, and hence R is
a special primary ring. The lemma is completely proved.


Our next goal is to show that the splitting property is inherited by localizations
at maximal ideals. We need the following simple lemma.


LEMMA 3 Let R be a ring, let S be a multiplicatively closed subset of R and
let A be an ^-module. Let AH be the jR-module obtained from A by restriction
of scalars, relatively to the canonical homomorphism R —> RS- Then any direct
summand of A^'is an Pu^-submodule of A, and hence a direct summand of A.
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Proof. Let K be a direct summand of AR, say AR — K © L for some submodule L
of AR. Let x 6 K and let a/s E RS, where a 6 R and 565. Then (a/s}x = y + z
for some y € K, z £ L. If we multiply by s/1, we obtain ax = sy + 52, hence
ax — sy, since AR = K ($ L. This in turn gives (a/s)x = y 6 K. This proves that
A" is an .Rs-submodule of A, since it is already a subgroup of the additive group A.
By symmetry, L is also an ^-submodule of A and hence K is a direct summand
of A


COROLLARY 4 Let R be a splitting ring. Then RM is a special primary ring for
any maximal ideal M of R.


Proof. Let us first recall a well-known fact. Let A be an R -module such that
MkA — 0 for some maximal ideal M of R and positive integer k. It is well- known
(without any assumption on R} that for any multiplicative subset S of R with
5 n M = 0, the localization AS = A, and A is a uniserial ^-module if and only if A
is a uniserial .Rs-module. Using this and Lemma 3 it follows that if R is a splitting
ring, then so is RM for every maximal ideal M of R. Then we apply Lemma 1.


Let R be a ring. Recall from [4] that R is said to be FGS if all cyclic /^-modules
have a finitely generated socle. R is called TC if whenever A is a submodule of a
cyclic module and has a simple essential socle, then A is finitely generated. R is
TC if and only if every finitely embedded cyclic J?-module is Noetherian [4, Lemma
2.6].


We are now ready to prove our main result.


THEOREM 5 A ring R is a splitting ring if and only if R is an Artinian principal
ideal ring.


Proof. If R is an Artinian principal ideal ring, then each proper ideal is a product
of maximal ideals. Therefore any cyclic .R-module is a direct sum of uniserial
submodules, and hence A = U(A) for any ^-module A. In fact, it is well- known
that any module over an Artinian principal ideal ring is a direct sum of cyclic
submodules, so it is a direct sum of uniserial submodules. Conversely, suppose
that R is a, splitting ring. Let A be a cyclic R -module. Since U(A) is a direct
summand of A, then U(A) is cyclic. Therefore, U(A) is a finite sum of uniserial
submodules and is hence of finite length. Since Soc(A) C U(A), then Soc(A) is
finitely generated. If, in addition, Soc(A) is essential in A, then A — U(A) and
hence A is of finite length. Thus R is FGS and TC and so jR is Noetherian by
[4, Theorem 2.4]. Let P be any prime ideal of R and let M be a maximal ideal
containing P. Since, by Corollary 4, RM is a special primary ring, then MRw is
the unique prime ideal of RM- Therefore PR^ = MRw and so P = M. Thus any
prime ideal of R is maximal. By [6, p. 203] , R is then Artinian. Now the zero ideal
is a product of maximal ideals, hence R is an Artinian principal ideal ring, since for
each maximal ideal M of R there are no ideals properly between M and M2.
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1. INTRODUCTION


For a commutative ring jR, recall that a submodule B of a projec-
tive module P is called basic if B^ contains a nontrivial summand
of POT, (or, equivalently, if the image of B in P/971P is nonzero), for
every maximal ideal !9Tt of R. A commutative ring R is called a bcs-
ring if and only if for every positive integer n, every finitely generated
basic submodule of Rn contains a rank one projective summand of
Rn. (This notion was introduced by M. Hautus and E. Sontag in [14]
and called "property (f)." In [1], J. Brewer, D. Katz, and W. Ullery
referred it to as the "UCS-property" It was called the "bcs-property"
and considered systematically by C. Weibel and W. Vasconcelos in
[15].) For over a decade, the present authors have been interested in
knowing whether all Priifer domains are bcs-rings. This question is
analogous to the question, "Is every Bezout domain an elementary
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divisor ring?" One place one might look for a counterexample is in
"rings of integer-valued polynomials."


If D is an integral domain with field of fractions K and if E is a
subset of K, then


lnt(E,D) = { f e K [ X ] : f ( E ) C D }


is called the ring of integer-valued polynomials on the subset E. The
case when E — D will be denoted Int(D). Under certain conditions,
rings of integer-valued polynomials are Priifer domains. Are such
rings bcs-rings?


The present paper is our second concerning this question. In the
first paper [3], we showed that, if D is a semi-local principal ideal
domain with each residue field finite (a technical condition which im-
plies that Int(D) is a two-dimensional Priifer domain), then Int(D)
is a bcs-ring. In this paper, we study two additional situations where
the question has an affirmative answer. Specifically, we consider
Int(£',Vr), where E is a subset of the quotient field of a valuation
domain V. Rings of this type were studied in [5] by P.-J. Cahen, J.-
L. Chabert, and A. Loper and were shown to be higher dimensional
Priifer domains having many nice properties. We prove that they
are bcs-rings. We also study Int(£?,£>) when D is a Bezout domain
and E is a finite set. Using results of S. Chapman, A. Loper, and
W. Smith [6], we show that these rings also are bcs-rings. In both
cases, we do this by showing that the rings are almost local-global
rings, that is, that each proper homomorphic image is a local-global
ring. (See definition below.) Finally, we return to the most funda-
mental example of all, Int(Z). We give an example which shows that
Int(Z) has proper homomorphic images which are not local-global
and hence, that if one is to show that Int(Z) is a bcs-ring, a new
technique will be required.


2. PRELIMINARY RESULTS


It is often convenient to have a matrix-theoretic interpretation
of basic modules and the bcs-property. By the content of a vector
v £ Rn we mean the ideal of R generated by the entries of u, which
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we denote by c(v). The content of a set of vectors is then the ideal
sum of the contents of the individual vectors. Thus, a submodule B
of the free module Rn is basic if and only if the content of the vectors
in B is the unit ideal R. Clearly if B is a basic submodule of jRn, then
only finitely many vectors from B are required to generate the unit
ideal R, and hence there is a finitely generated submodule BQ C B
such that BQ is basic. Therefore, to establish the bcs-property for a
ring R, one need only consider finitely generated basic .R-modules.


If B is a finitely generated submodule of Rn, by a slight abuse of
notation, we also denote by B an n x ra matrix whose columns span
the module B. Thus, the content of the module B is the same as the
content of the matrix B, and the module B is basic if and only if the
matrix B has unit content. Set in this context, the bcs-property says
that, if B is a matrix with unit content, then there exists a matrix
A such that the product BA has the following two properties: BA
has unit content; and all 2 x 2 minors of B A are zero. This follows
from a lemma of R. Gilmer and R. Heitmann [12].


We shall also need a strong form of the bcs-property. A commu-
tative ring R is said to be a bcu-ring if and only if given an n x m
matrix B of unit content, there exists a vector u 6 Rm such that Bu
is unimodular, that is, such that Bu has unit content.


A commutative ring R is said to be a local-global ring if each poly-
nomial over R (in several variables) admitting unit values locally,
admits unit values. (See [8] for more detail.) Following the terminol-
ogy of [9], the commutative ring R is said to be almost local-global
if every proper homomorphic image of R is local-global. One of the
principal results of [2] is Theorem 3: If R is an almost local-global
ring, then R is a bcs-ring . We present next a slight sharpening of
this theorem. Although we do not need its full strength in this paper,
the proof is instructive, and so we include it.


THEOREM 1 Let R be a ring such that


1. For every (nonzero) finitely generated ideal I of R, the residue
class ring R/I is a bcu-ring.


2. For every (nonzero) finitely generated ideal I of R, if M =
(x,y), is a free (R/I)-module of rank one, then there exists an
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element r € R such that M — (x 4- fy).


Then R is a bcs-ring. In particular, if R is an almost local-global
ring, then R is a bcs-ring.


Proof. Let B be a basic submodule of Rn, with x a non-zero
element of B. If x is unimodular, then (x) is already a rank one free
summand of B, and we are finished.


So, suppose that x is not unimodular, and consider the ring R =
R/c(x). By hypothesis (1), the image B in Rn contains a unimodular
vector, say y. If y is any preimage of y in jB, then we have that c(x) +
c(y) = R. Next, consider the (basic) submodule (x,y) of B, and let
/ be the ideal generated by the 2 x 2 minors of the matrix [x y].
If I = (0), then (x,y) is a rank one projective summand of £?, and
we are finished, while if / = R, then x would have be a unimodular
vector, contrary to assumption.


Thus, suppose that (0) ̂  I 7^ R, and consider the residue class
ring R = R/I. Let B be the image of B in Rn, and note that (x, y) C
B is a rank one projective summand, because c(x) -f c(y) = R/I,
and the 2 x 2 minors of [x y] vanish. Since rank one projective mod-
ules over a bcu-ring are free, we have that (x,y) is a free module.
By hypothesis (2), there exists an element r G R such that (x,y) =
(x + fy), and hence c(x 4- ry) 4- I — R. We claim that c(x 4- ry) = R.
Suppose, by way of contradiction, that there exists a maximal ideal
yjl of R such that c(x + ry) C 2JI. Then over the residue field R/VK,
the vectors x and y are linearly dependent, from which it follows
that the 2 x 2 minors of [x y] belong to 99T. Thus, / C 9JI, which is
impossible since c(x + ry) + I = R.It follows that c(x + ry) = R as
claimed, and therefore x + ry is a unimodular vector belonging to
B.


To prove the last statement of the theorem, we need to show that a
local-global ring satisfies both hypotheses (1) and (2). First, we note
that a local-global ring must be a bcu-ring. For let A be an n x m
matrix having unit content, let X\^X^... ,Xn and Yi,Y2, . . . ,Ym
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be indeterminates, and set


Y


Now, A has a unimodular vector in its image if and only g takes on a
unit value. But A has unit content, so g takes on unit values locally.
Thus, over a local-global ring, g must take on a unit value, so that
A would have to have a unimodular vector in its image.


Similarly, if M = (x,y) C Rn, is a free module of rank one, with
x T^ 0, then let Xi,X2, . . . ,Xn, and Y be indeterminates, and set


Then the vector x + ry is unimodular (for some scalar r G R) if and
only if g takes on a unit value. But g does take on unit values locally
(because locally, at least one of x or y is unimodular). Therefore over
a local-global ring, g must take on a unit value, and hence the vector
x + ry is unimodular for some scalar r £ R. •


Our next result is a generalization of the lemma in [3]. It is es-
sentially nothing more than the Chinese Remainder Theorem, which
itself is at the core of why semi-quasi-local rings are local-global. (For
simplicity, and by a slight abuse of notation, we write Max(R/A)
for the set of maximal ideals 2)t of a ring R that contain the ideal
A.)


LEMMA 2 Let R be a ring, and suppose that R has non-zero ide-
als Ji, J2, . . . , Jn such that Max(R) = Max(R/Ji) U Max(R/J2) U
. . . U Max(R/Jn), where, for i^k, Max(R/Ji) n Max(R/Jk) — 0.
// R/ Ji is a local-global ring for I < i < n, then R is a local-global
ring.


Proof. Let / G R[X\,... ,Xm] be a polynomial that represents
a unit locally at each maximal ideal of R. We must find an m-
tuple (ai, 02, . . . , am) 6 Rm such that f(a\, a2, . . . , am) ^ 971 for all
maximal ideals $51 of R. Since R/J\ is local-global, there exists
an m-tuple (61,62,... ,6m) such that 7(61,62,... ,6m) ^ 9ft for all
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Oft 6 Max(R/Ji). Suppose, inductively, that /(6i,62 , . . . ,6m) £ 9ft
for all m G Max(R/Ji) U ... U Max(R/Jk). If /(61? 62 , . . . , 6m) g 2K
for all 9ft G Max(R/Jk+i), we can continue the induction. On the
other hand, i f / (6 i ,6 2 , . . . ,6m) 6 9ft for some 9ft G Max(R/Jk+i)1 we
must modify (61,62? • - • 5 &m)- Since Ji, J2,... , Jfc, Jfc+i are pairwise
comaximal,we can find an element a G R such that a = 0 (mod Ji) for
1 < i < k and a = 1 (mod Jfc+i). Note then that a = 0 (mod 9ft), for
all m G Max(R/Ji) for 1 < i < /c, and a = 1 (mod9ft), for all m G
Max(R/Jk+i). Also, since R/Jk+i is local-global, there exists an ra-
tuple (ci ,C2, . . . .Cm) € Rm such that / (ci ,C2, . . . ,0™) ^ 9}t for all
9JI € Max(R/Jk+i). Consider the m-tuple


v = (bi+ a(ci - 61), 62 + a(c2 - 6 2 ) , . . . , bm + afc™ - 6m))


Working modulo 9JI, one easily checks that f ( v ) £ $R for all lUt E
Max(R/Ji) U Max(R/J2) U ... Max(R/Jk) U Max(R/Jk+i), which
completes the induction and the proof. •


The following well known result is often useful when trying to
verify that a ring is a local-global ring.


LEMMA 3 Let R be a ring, 9Jt a maximal ideal of R, and f a
polynomial in finitely many variables with coefficients from R. Then
f takes on a unit value locally at 9JI if and only if f takes on a unit
value residually in R/911.


Proof. The polynomial / represents a unit modulo 9Jt if and only
if there exist elements ai, 02,. . . , an G R such that f(ai + 9K,a<2 -f-
OJt,... , an + 371) ^ 0 (mod S01). The latter condition holds if and only
if /(ai,a2,.. . ,«n) ^ 9ft- Said otherwise, / represents a unit in the
ring R/yJl if and only if there exists an n-tuple a in (R/Vn)n =
(Rm/yRRm)n such that f ( a ) ^ 0. On the other hand, / represents
a unit in the quasi-local ring Rm if and only if there exists an n-tuple
a G (Rm/mRm)n such that /(a) ^ 0 if and only if f ( a ) i mRm if
and only if /(a) is a unit in Ryu. •
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3. MAIN RESULTS


We begin this section by recalling for the reader the essential'
facts about "higher dimensional integer-valued polynomial Priifer
domains," culled from [5].


NOTATION 4 Let V be a valuation domain, with maximal ideal
yn, and denote by K the quotient field of V. In order to use Cauchy
sequences to define the completion K of K, with respect to the topol-
ogy induced by the valuation associated with V, one must assume a
little something about V to make the topology metrizable. (One could
assume, for example, that V has finite or countable rank, or that V
contains a height-one prime.) Then denote by V the completion of
V under this topology. We assume also that K contains a subset E
whose completion E is compact. (If in fact E is infinite, then this
assumption is enough to force the topology to be metrizable.) It turns
out that E is fractional (that is, there is a nonzero element d 6 V
such that dE C V), and hence we may assume that E is contained
in V. We define


R = Int(E, V) = {/ e K[X] : f ( E ) C V}


the ring of integer-valued polynomials on the subset E of V. This
ring has many lovely properties, including:


1. R is a Priifer domain with the 1^-generator property.
2. R has dimension one more than the dimension ofV. Hence, one


can construct such rings of arbitrary dimension. (In some sense, that
was the point of [5].)


3. The structure of Spec(R) is as follows. Let ty be a non-zero
prime ideal of R. //<p 0^ = 0, then <$ = (p)c = pK[X] fi R for some
irreducible polynomial p of K[X] (just as for Int(%)). If ty n V — p,
for some non-zero prime ideal p of V, then for some element a of the
completion E of E, the prime ideal ty — ̂ 3P)Q = {/ e R : f ( a ) 6 p}.


4- Therefore, if ty is a maximal ideal of R, then either ty = ̂ m,a
for some element a 6 E, or ty = (p)° for some irreducible polynomial
p of K[X]. Furthermore, we note the obvious but useful fact that
yftR C tym^ f°r any element a G E. Moreover, R/yjlR is a zero-
dimensional ring.
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We are now able to prove that such rings of integer-valued poly-
nomials are bcs-rings.


THEOREM 5 If R is a ring of integer-valued polynomials as in
Notation 4, then R is an almost local-global ring. In particular, R is
a bcs-ring.


Proof. Let J be a non-zero proper ideal of R. The maximal
ideals of R are of the form ^5^,0 for elements a G E, or of the
form (p)c for irreducible polynomials p of K[X]. For each such a G
E, we have that 9ft C ^3rrrt,ai and there exist only finitely many
maximal ideals 9fti, . . . ,9ftn of the type (p)c that contain /. Set
Jx = (9ft! H . . . n mn)/I and J2 = (mR + /)//. Then (R/I)/Ji =
R/($Jli n ... fl 9ftn) is semi-quasi-local and hence local-global. Like-
wise, (R/I)/J2 = R/(9RR + I) is a homomorphic image of the zero-
dimensional ring R/9JIR; as zero-dimensional rings are local-global,
it follows that R/'J% is also local-global. Applying Lemma 2 com-
pletes the proof of the first assertion. The second assertion follows
from Theorem 1 above (or Theorem 3 of [2]). •


We can also prove a partial non-noetherian generalization of the
main result of [3], which stated that if D is a semi-local principal
ideal domain with each residue field finite, then Int(D) is a bcs-ring.
We can drop not only the noetherian assumption, but also the one-
dimensional assumption, if we change from Int(D) to Int(.E, D) for
some finite subset E C D.


PROPOSITION 6 Let D be a semi-quasi-local Bezout domain
with maximal ideals 9fti, 9ft2, • • • , ̂ n and let E = {ei, 62,. - . , e^}
be a finite subset of D. Suppose that Int(D) ^ D[X}. Then R =
Int(E, D) is both a Priifer domain and an almost local global ring,
and therefore also a bcs-ring.


Proof. By Theorem 4 of [6], R has the strong two-generator prop-
erty and hence by Proposition 1 of [6] is a Priifer domain. If / is a
non-zero ideal of H, we show that R/I is a semi-quasi-local ring and
hence a local-global ring. A maximal ideal ty of R has the property
that ^p n D = P for some non-zero prime ideal P of D, or ^3 = (p)°
for some irreducible polynomial p of ̂ [X], where K denotes the quo-
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tient field of D. By a result of McQuillan (see [4, page 114, Exercise
2]), the prime ideals of R having non-zero contraction to D are of the
form ^3p,e = {/ £ R I f ( e j ) £ P}i where P is a non-zero prime ideal
of D. It follows that the maximal ideals of R having non-zero con-
traction to D are the ideals %Ti)ej and hence are finite in number.
Moreover, there are only finitely many maximal ideals of the type
(p)c that contain /. It follows that R/I is a semi-quasi-local ring and
thus is a local-global ring. Therefore, R is almost local-global. That
R is a bcs-ring follows from Theorem 1 above (or Theorem 3 of [2]).


•
Perhaps the most interesting open question in this area is the


question, "Is Int(Z) a bcs-ring?" We next give an example which
demonstrates that, if Int(Z) is a bcs-ring, then a new method of
proof will be required.


EXAMPLE 7 Let f ( X ) = X2 + 14. Then Int(Z)/(f(X)Int(Z)) is
not a bcu-ring, and, in particular, 7n£(Z)/(/(X)/n£(Z)) is not a local-
global ring. Thus, Int(Z) is not almost local-global.


Proof. We draw on results and ideas from [1] and [13]. Consider
the prime ideal <£ = f(X)Q(X)n Int(Z) of Int(Z). Then


Q(X)/(f(X)Q(X)) = Q(v/Z14)
U


Int(Z)/<p
U


Z[X\/(f(X)Z[X])=Z[V=i3]


and so D = Int(Z)/$p is a ring between the ring of algebraic integers
ZlV^Ti] and its quotient field Q(V


/I:14). Since Int(Z) is a Priifer
domain, so is D, and hence D contains the ring Z* of all algebraic
integers in Q(>/—14) and must therefore be a Dedekind domain. The
mapping F —> FD is a surjection from the class group of Z* to the
class group of D [10, Theorem 40.4]. The kernel of the map is gener-
ated by {P : P H Z ramifies with respect to Z*} and is an elementary
abelian 2-group. (See [13] and [7].) By [7, pages 261-274], the class
group of Z* is not an elementary abelian 2-group, and so the kernel
of the map is a proper subgroup of the class group of Z*. Thus, D
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is not a principal ideal domain, and hence D is not a bcu-ring [1,
Proposition 4].


It follows that D is not a local-global ring, for, as shown in the
proof of Theorem 1, a local-global ring is a bcu-ring. This already
shows that Int(Z) has a homomorphic image D = Int(Z)/Sp which
is not a local-global ring, nor even a bcu-ring. However, this ideal <p
need not be finitely generated. On the other hand, the bcu-property
is clearly preserved under homomorphic images, so it follows that
that Int(Z)/(/(A")Int(Z)) (which maps onto D) also cannot be a
bcu-ring, nor a local-global ring. •


REMARK 8 In the other direction, the usual method of demon-
strating that a ring is not a bcs-ring is to apply Theorem 2.3 of [15]:
If R is a bcs-ring, then the natural map Pic(R) —»• Pic(R/I) must
be onto for every ideal / of R. (For example, Pic(Zi[X]) is trivial,
but Z[X] admits proper homomorphic images which have nontrivial
Picard groups, so that Z[X] is not a bcs-ring.) Trying to use this ap-
proach to show that Int(L) is not a bcs-ring will be difficult, because
of a theorem of R. Gilmer, W. Heinzer, D. Lantz, and W. Smith [11]:
Pic(Int(Z)) is a free abelian group on a countably infinite basis.
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ABSTRACT. The classical factorials in Z may be generalized by factorial
ideals in every integral domain D. When D is completely integrally
closed, these factorial ideals generate a subgroup of the divisorial group,
the factorial group Tact(D}, and, if D is a Krull domain, Tact(D] is
a free abelian group. The classes of the factorial ideals generate the
Polya group Po(D) and we give some properties of this group Po(D)
especially when D is the ring of integers of a finite Galoisian extension
of Q.


1. DEFINITIONS


We first recall the definition of the factorial ideals of a domain (see [5]).
Let D be an integral domain with quotient field K. Consider the ring of
integer-valued polynomials on D, that is,


Int(D) = {/ € K[X] | /(D) C D}


and, for each n E N, let 3n(D) be the fractional ideal of D formed by the
leading coefficients of the polynomials in Int(D) with degree < n.


Definition 1.1. The factorial ideal of index n of the domain D is the entire
ideal:


(n\)D = 3~l(D) = {a e D \ aln(D) C D}.


Obviously, (0!)jD = D and the sequence {(n!)jr>}neN is a decreasing sequence
of divisorial ideals (that is, of ideals which are intersection of principal frac-
tional ideals).


For instance, (n\)% — n!Z. Such factorial ideals were introduced and studied
in [1] and [11]. We are going to strengthen step by step the hypotheses on the
domain D and finally D will be the ring of integers of a Galoisian extension
K of Q.


Assume now that the domain D is completely integrally closed. One knows
that, if we define the product /* J of two divisorial ideals of D as the smallest
divisorial ideal containing the ideal / • J, then the set V(D) of divisorial
fractional ideals of D is a group [6, Theorem 34.3], the divisorial group.
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Recall that the smallest divisorial ideal containing an ideal 3 is the ideal
(a-1)-1 where


3T1 = {x 6 K | xa C D}.


Definition 1.2. The factorial group of a completely integrally closed do-
main D is the subgroup J:act(D) of the divisorial group T)(D} generated by
the factorial ideals of D.


Examples. 1) Fact(Z) = T>(Z) ~ Q/{±1}.
2) Let V be a rank-one valuation domain. Then, Factiy] ~ Z if the valua-
tion is discrete with finite residue field and jPact(V] ~ {1} otherwise.


The obvious containment


1n(D)'3m(D)C3n+m(D) f o r n , m € N


leads to the following:


(n!)-1 * (m!)^1 C ((n + ro)!)^,


and hence,
((n + m)\)D C (n\)D * (m!)0.


Note that, in the case where D is a Dedekind domain, the previous contain-
ment means that the ideal product (n\}rj (m!)/} divides the ideal ((n-\-m)\}o-


Denote by P(D) the subgroup of V(D) formed by the nonzero principal
fractional ideals of D and consider the class group T>(D}/P(D}.


Definition 1.3. The Polya-Ostrowski group (or shortly, the Polya group] of
the domain D is the image Po(D] of the factorial group Fact(D] in the class
group V(D)/P(D):


Po(D) = Jract(D}/(J:act(D)r]P(D)).


This definition generalizes that given in [4, II. §3] for Dedekind domains.


2. THE FACTORIAL GROUP OF A KRULL DOMAIN


Hypothesis and notation. Assume now that Z) is a Krull domain and
denote by specl(D) the set formed by the height-one prime ideals of D.


One knows that the divisorial group T>(D] of D is a free abelian group with
a basis formed by the elements of spec1(D}. Recall that, in a Krull domain
D, for each n € N and each p € Spec(D), one has [5, Corollary 5.2]:


an(D)p = an(Dp) and ((n!)D)p = (n!)Dp


and that, for each p € specl(D) [4, II.2.9]:


where
and


Note moreover that wq(n) — 0 for n < q.
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Proposition 2.1. If D is a Krull domain, then the ideals 3n(D) are divi-
sorial ideals, more precisely:


Proof. Let m be a maximal ideal of D. If m f specl(D), then Int(Z?m) =
Dm[X] [4, 1.3.5] and 3n(Dm) = An- If m € spec^D), then 3n(£>)m =
m-^(m)(")£)m when N(m) < n and 3n(D)m = Dm when N(m) > n. Conse-
quently, for each m 6 max(D),


Since in a Krull domain, the localization of the inverse of an ideal 3 is equal
to the inverse of the localization of 3, we see that ^n(D] is the inverse of
(nl)rj, and hence, that 3n(D) is a divisorial ideal. Moreover,


D


It follows from the previous proposition that the factorial group Fact(D} of a
Krull domain D is also the subgroup of the divisorial group T>(D) generated
by the fractional ideals 3n(D). In fact, the abelian group Fact(D) is free
and we are going to describe a basis.


Notation. For each integer q > 2, let IIg(D), or shortly IIg, be the product
of all height-one prime ideals of D with norm g, that is,


If there is no p G spec1 (D} with norm q (in particular, if q is not a prime
power), then Hg(D) = D. Note that, in a Krull domain, there are at most
finitely many prime ideals with the same finite norm q.


Proposition 2.2. If D is a Krull domain, then the factorial group Tact(D)
of D is the free abelian subgroup of the divisorial group T>(D) with basis
{Uq\q> 2, ng ^ D}.


Proof.


pespecl(D),N(p)<n


= n f n p
Finally,


(»OD =
q>2
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Thus, Fact(D} is contained in the subgroup of V(D] generated by the IIg's.
Conversely, wn(n) — 1 for each n G N implies that (!!)D = D, (2!)f) =


112,... and (n\)rj — nn x Il2<g<n n^ . We then may prove by induction
on n that all the Fig's belong to Fact(D). Finally, Fact(D) is exactly the
subgroup generated by the ng's.
Moreover, there are no relations between the ideals Ilg's (if we omit the IIg's
such that Eg = D) because the height-one prime ideals involved in distinct
E^'s are also distinct. D


Recall also the following definition given by Polya [9]:


Definition 2.3. We say that the ring Int(D) of integer-valued polynomials
on D has a regular basis if the D-module Int(Z)) admits a basis (/n)neN
where deg(/n) = n.


Proposition 2.4 (Polya). [4, II.1.4] Without any hypothesis on the domain
D, Int(jD) has a regular basis if and only if all the fractional ideals '3n(D)
are principal.


Corollary 2.5. If D is a Krull domain, then the following conditions are
equivalent:


1. Int(D) has a regular basis,
2. for each n £ N, the fractional ideal '3n(D) is principal,
3. for each n E N, the entire ideal (n!)/) is principal,
4. for each q > 2, the ideal Uq is principal,
b. Fact(D) C P(D),
6. Po(D) ~ {!}.


Examples. 1) If D is a unique factorization domain, then Int(D) has a regular
basis [4, Exercise 11.23], and hence, Po(D) ~ {!}.
2) There exist Krull domains with height-one prime ideals of finite norm
whose dimension is strictly greater than 1 [3, Example III.4.2]. For instance,
let p be a prime number and a 6 Qp be transcendental over Q. Denote by
v the valuation of Q(JV) defined by v((p) — vp((p(oi)} for each <p € QPO
where vp is the p-adic valuation of Qp. Let V be the corresponding valuation


domain and let D = 7L U [A"|nV. Then, D is a two-dimensional Noetherian[pj L J


integrally closed domain and D/pD ~ Fp. In fact, D is a unique factorization
domain, and hence Po(D) ~ {!}.


Remark 2.6. In the case where D is a Krull domain, we have other interpre-
tations of the ideals 3n(jD) and (n\}rj-
l)Let O^n(^) be the fractional ideal of D generated by all the coefficients of all
the polynomials of Int(D) with degree < n. Then, 3n(D) = 3n(D) because
3n(D) C 3n(D) C (nl)^1 (see [5, Remark 5.10]) and 3n(D) is divisorial
(Proposition 2.1).
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2) For each polynomial / e K[X], let d(f,D) be the divisorial ideal of D
generated by the values of / on D. Then [5, Proposition 5.9]:


(n\)D = n{d(f,D) | / G D[X], f monic, deg(/) < n}.


3. POLYA GROUPS IN GALOISIAN EXTENSIONS OF Q


If D is a Dedekind domain, then T>(D) is also the group I(D) formed
by the nonzero fractional ideals of D and V(D)/P(D) is the class group
Cl(D) = I(D)/P(D) of D. The factorial group Fact(D) of D is then the
free abelian subgroup of t(D] generated by the ideals Hg (Hq ^ D, q > 2)
where Uq denotes the product of all prime ideals of D of norm q. The Polya
group Po(D) of D is the subgroup of the class group Cl(D) generated by the
classes of the IIg's. In this section, we denote by P the set of prime numbers.


Example [4, Exercise 11.31]. The Polya group of Z[v/z29] is {l,p} where p
denotes the class of the prime ideal lying over 2, it is strictly contained in


If K is a number field or a finite separable extension of Fg(jT), we may
consider for D the ring of integers OK, that is, the integral closure in K
of Z or Yq[T\. Instead of P(OK), 3(OK), Fact(OK), Po(OK), n,(0jc)> • • •
we write shortly P(K), 3(K), Fact(K), Po(K), Uq(K),... and, following
Zantema [11], we say that K is a Poly a- field if Int((9/f) has a regular basis,
that is, Po(K) — {!}. In fact, we are going to only consider for K number
fields that are Galoisian extensions of Q.


One knows that, if K is a finite Galoisian extension of <Q>, for each prime
p, the gp maximal ideals m of OK lying over p are conjugate with respect
to the Galois group Gal(KfQ), they have the same ramification index ep —
ep(A"/Q) and the same residuel degree fp = fp(K/ty), and hence,


epfp9P = [K : Q].
Moreover,


pOK = J] me» = (n,(jFC))ep where q=pf>.
m|p


Consequently, following Ostrowski [8]:


Proposition 3.1. Assume Jtf/Q is a finite Galoisian extension.
1. // q = pf where the prime number p is not ramified in the extension


K/Q, then Rq(K) is principal.
2. The Polya group Po(K) is generated by the classes of the H.q(K) 's where


q — pf and p is ramified in the extension K/Q_.


Gorollary 3.2. Let K/Q be a finite Galoisian extension. For each p € P,
let ep = ep(K/Q). The natural morphismfrom Tact(K] onto Po(K) factors
through ®pepZ/epZ :


ep€PZ/epZ 4 Po(K).
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Moreover, the following sequence of abelian groups is exact:


1 -> Q*/{±1} -> Fact(K) 4 ©pePZ/epZ -> 0.


Proof. As Fact(K) is a free group generated by the ideals Hq(KYa where
<7 = pfp, for each p G P, it is isomorphic to the direct sum ©Pep Z of copies of
Z: an ideal 3 = H ( U q ( K ) ) k p of factffi) corresponds to the element with
kp in the component corresponding to p. As the ideal (Uq(K)}ep is principal,
the natural morphism from Tact(K] onto Po(K) (hence also from ©pepZ
onto Po(K)} factors through ©p€pZ/epZ.


Obviously, the corresponding morphism ty : Tact(K] —> ©pGpZ/epZ is


onto. On the other hand, an ideal 3 = Up(^g(K))kp of ^act(K) is in
Kerfy} if and only if, for each prime p, kp = epmp with mp G Z, that is,


3 — (lip Pmp} OK- In other words, 3 is generated by a rational number and


Ker(4>] corresponds to the ideal group of Z. D


In particular, the order of Po(K] is a divisor of fj ep. Of course, <p is onto.
We will describe Ker((p) later.


Remark 3.3, When K/Q is not Galoisian, Po(K] is not necessarily gener-
ated by the Hp/'s where p is ramified (see [4, Exercise 11.32]).


Notation. Let L/K be a finite extension. On the one hand, the injective
morphism


induces a (non necessarily injective) morphism


CK • 3 e Cl(K) ^ JOE e Cl(L).


On the other hand, the morphism norm (see [10, I, §5])


N$'.I(L)-*I(K)


which is determined by its values on the maximal ideals n of OL-


A#(n) = m/n<L/A")


where m = nPl OK and f n ( L / K ) = [Oi/r\: (9/r/m], induces a morphism:


Recall that, if the extension L/K is separable, then for each 3 6


The factorial subgroups and the Polya subgroups behave well with respect
to these morphisms as soon as K and L are Galoisian extensions of Q:


Proposition 3.4. If K C L are two Galoisian extensions o/Q, then


1.
j%(ract(K)) C Fact(L) and e^(Po(K)) C Po(L)
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2.


N^(Tact(L}) C ?act(K) and v?(Po(L}} C Po(K).


Proof. If q = pf*(KM, then


jk(Hq(K)) = (rV(L))e*<L/*> where qf = q


and if ̂ p'^/^, then


AfOVW) = (ng(ff))lL:K]/ep(L/*) where g = p


D


From now on we use the techniques of the proofs given by Zantema [11] to
characterize the Polya-fields, that is, the number fields K such that Po(K] ~
{1} in order to obtain some description of the Polya group Po(K] itself.


Proposition 3.5. Let A'i/Q and A'2/Q be two finite Galoisian extensions
and let L = KiK%. If[K\ : Q] and [A'2 : Q] are relatively prime, then:


and


vL/Ki(Po(L))=Po(Ki).


Proof. Let n\ = [Ki : Q] and 712 = [K? : Q]. For a fixed prime number p,
let a = ep(Ki/Q) and /; = /P(K,-/Q) (t = 1,2). Then ep(L/Q) = e^2 and
fP(L/Q) = A/2- Let n,- = Upfi(Ki) (i = 1,2) and D = np/1/2(L). Then


PoKi = n?, pOL = neie2, n,-<9L = n88- (i = 1,2).
Writing n; = e,-dt- (i = 1,2), on the one hand one has:


j-p2d2jjuidi Q _ j|C2U2ci2+eiuidi _ rj


this is the first assertion. On the other hand,


(nC2)tt2 =
= x - i = x


This is the last assertion. D


Proposition 3.6. Let # i/Q anrf K2/Q 6e iu;o _^mte Galoisian extensions
and let L = K\Ki. If[K\ : Q] and [K^ : Q] are relatively prime, then:


1. T/ie morphisms e^ and e^2 are injective.
2. T/ie Po/ya ^roup Po(L) is the direct product of its subgroups e^ (Po(Ki))
3. Consequently, one has the isomorphism


Po(L)~Po(Ki) xPo(K2).
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Proof. Let n! = [I<i : Q] and n2 = [K2 : Q].
1. Since the order of Po(K\) is a divisor of the product of the ramification
indices in the extension /^i/Q, the order of any of its elements is a divisor
of a power of ni, and hence is prime to 712. Consequently, the morphism
VL1 0£A'i : ̂  e P°(Ki) •->• 3712 is injective, and e^ also.
2. By considering the orders of the elements we see that


On the other hand, assertion 1 of Proposition 3.5 obviously implies


3. This is an easy consequence of 1 and 2. D


Corollary 3.7. Assume that the extension K/Q is cyclic of degree n. Write
n = Ilpin PVp^ and, for each prime p dividing n, let Kp be the unique


subextension of K such that [Kp : Q] = p"p(n). Then


Po(K)~l[Po(Kp).
p\n


Of course, as a corollary we obtain Zantema's result [11, Theorem 3.4]:


Corollary 3.8. Let Ki/Q and /G/Q be two Galoisian extensions whose
degrees are relatively prime. Then KiKi is a Polya field if and only if KI
and KI are Polya fields.


We still assume that K/Q_ is a Galoisian extension and, for the sake of
completeness, we recall now a cohomological description of the kernel of the
surjective morphism


The Galois group G - Gal(K/Q) acts on the groups K} K*, OK, O%, P(K),
1(K) (where O^ denotes the unit group of OK)- Obviously, the ideals l\.q(K)
are invariant, and hence, in this case, the factorial group Fact^K) is nothing
else than J(K)G, the subgroup of I(K) formed by the ambiguous ideals of
K (that is, the ideals of K invariant by G). Consequently,


Fact(K) n P(K) = I(K)G n P(K) - P(K)G,
and


Po(K) ~ Fact(K)/P(K)G = I(K)G/P(K)G.


Thus, for Galoisian extensions /l'/Q, the Polya group Po(K) is the subgroup
of Cl(K] formed by the classes of the ambiguous ideals of K.


From the short exact sequence


1 -> 0*. -> K* -> P(K) -> 1,


the left exactness of the functor U >-» UG on the abelian category of G-
modules leads, with Hilbert 90, to the following exact cohomological se-
quence:
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Lemma 3.9 (Brumer and Rosen). [2, Lemma 2.1] The following sequence
of abelian groups is exact:


I _> Q*/{±1} -4 P(K}G -4 Hl(G, 0£) -> 1.


With the exact sequence given in Corollary 3.2, we obtain the following
commutative diagram


> Q*/{±i} — >
4-' ^ ^ 4 -


1 __> Q*/{±1} — » 7act(K) A ®p6pZ/epZ — > 0


Let us recall the construction of 0. Let / £ Zl(G, O^) and let / be its image
in Hl(G, 0£). There is x G A"* such that xOK € ^(A')G and J(o:<9/r) - 7-
Since / and a £ G H-> a(x)/x E O£ are congruent modulo B1(G^ O^), we
may define 0 by 0(7) = $(xOK).


By the snake's lemma, we have:


Ker(«) = {1} and Cofcer(«) = = po(K).


Consequently,


Proposition 3.10. [11, p. 163] If K/Q is Galoisian with Galois group G,
the following sequence of abelian groups is exact:


I -4 Hl(G> O%) A ®peP 1/ep1 4 Po(K) -> 1.


In particular,


and hence, if A'/Q is a finite Galoisian extension, K is a Polya-field if and


only if |ff '(G, 0^)| =


If G is cyclic generated by a, one knows that [7, IV.3.7]:


rri(r nx^ rr-i(r n*\ ^^ °KH (G,0K)~H (G, 0K) = - f , _


The cardinality of this last group is known, this is 2[K : Q] if K is real and
) = {!}, this is [K : Q] otherwise. Thus, we have:


Corollary 3.11. Assume that the extension K/Q is cyclic of degree n.


1. IfK is real and N(O%) = {!}, then
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2. Else


p
Acknowledgments. The author thanks F. Halter- Koch for interesting refer-
ences.
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Abstract


The theory of the integral closure of ideals has resisted direct approaches to
some of its basic questions (membership and completeness tests, and con-
struction). We mainly treat the membership problem in the monomial case
by exploiting the connection with multiplicities and its linkage to the compu-
tation of volumes of polyhedra. We discuss several existent software packages
and introduce our own contribution, a Monte Carlo based approach to the
computation of volumes. Finally, we make comparisons of multiplicities of
general ideals and of their initial ideals.


Introduction


Let R denote a Noetherian ring and / one of its ideals. The integral closure of / is
the ideal / of all elements of R that satisfy an equation of the form


zn + aizn~l + • • • + an-iz + an = 0, af € P.


There are several issues associated with this notion, from which we single out the
following. Let R = fc[xi,...,xn] be a ring of polynomials over the field fc, let
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I — (/ii • • • i /m) C R, and let / 6 R. Our main concern is how to carry out the
following tests/construction:


• Membership Test f E 7 ?


• Completeness Test: 1 = 17


• Construction Task: I ̂  I?


• Complexity Cost: cx(J ~> /) ?


In the literature one does not find effective methods to generally deal with these
problems. The difficulty arises, partly, from the specialized nature of the equations
the elements need to satisfy. The exception, when we understand the problem fully,
is the case of monomial ideals. In this case, / is the monomial ideal defined by the
integral convex hull of the exponent vectors of I (see [8, p. 140]). Through the
techniques of integer programming, all four problems can, theoretically and often
in practice, be solved. For non-monomial ideals, only specialized cases of some of
these questions have been dealt with ([7] treats the completeness test for generic
complete intersections) .


Our interest in these questions is reinforced by its connections to another issue,
which has not been adequately dealt with either, the computation of multiplicities
in local rings. If (R, m) is a Noetherian local ring of Krull dimension d, and / is an
m -primary ideal then e(I], the multiplicity of I, is the integer


,. hm
n— foo 7},


where A ( - ) is the length function. The Hilbert function of the ideal is A(/?.//n),
which is given by a polynomial of degree d for n 3> 0 (see [2], [8]). When the ideal is
monomial, the limit can be interpreted as a Riemann sum of volumes (normalized
by the factor dl) and we exploit this connection.


These numbers are not easily captured, if at all, by Grobner bases computations.
In part this is because a large number of indeterminates are required to frame the
calculation. A simplified version occurs when / is the maximal ideal and a conversion
to a monomial ideal is possible through a theorem of Macaulay (Theorem 4.1).
The connection between the two sets of issues, integral closure and multiplicity,
rests primarily on a well-known theorem of Rees ([15], and its generalizations): For
I C L, e(I) = e(L) if and only if L C 1.


We briefly describe our results. The first section is an elementary recasting
of the description of I for a monomial ideal I. It is mainly used to recast the
interpretation of multiplicity as a volume. It also exhibits the fact that the degrees
of the generators of I do not exceed the top degree of a generating set of / by more
than d — 1. In some sense this solves the complexity count of the determination of
I by placing a bounding box around I, according to Corollary 1.3


Equipped with the understanding of multiplicities of monomial ideals of finite
co-length, in section 2 we introduce a Monte. Carlo method for the computation of
volumes of polytopes and report on our experience with it. It is simple to set up and
we found it comparable (in deriving estimates) to the more technical approaches
aimed at exact computation. One of our goals is to explore the existing library
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of software to deal with these questions. We are particularly interested in prob-
lems in large numbers of indeterminates, obviously beyond the horizon of symbolic
computation engines based on Grobner basis techniques.


In section 3, we use standard linear programming techniques to deal with the
four tests above. Ideally, one would like to answer the first two tests through an
oracle matrix. For instance, in the membership test: Given a_monomial ideal /,
there is a matrix A and a vector b such that a monomial xv € / if and only if


A - v > b .


We show how to do this with off-the-shelf software, and rather efficiently for ideals
of finite co-length. For this class of ideals, we also show how any membership oracle
can be used as a completeness test and as a path to the construction task using
exclusively monomial arithmetic.


The last section is an exploration of the relationships between the multiplicities
of an ideal / of finite co-length and of its initial ideal in> (/), for some term ordering.
It always holds that e(I) < e(m>(/)), with equality meaning that for each integer n,
in>(/n) is integral over (m>(/))u (Theorem 4.3). Note that in this case, the initial
algebra of the Rees algebra R[It] is Noetherian (a very infrequent occurrence).


Regrettably, the methods developed to compute multiplicities and treat integral
closure issues do not extend to general ideals of rings of polynomials, or to affine
algebras. In these cases, one can still appeal to Grobner bases methods for small-
scale examples.


1 Integral closure of monomial ideals
To set up the framework, we recall some general facts about the integral closure
of monomial ideals that are required for our treatment of multiplicity. Let R =
k[x\ , . . . , xn] be a ring of polynomials over the field fc, and let / be the ideal generated
by the set of monomials x"1 , . . . , xUm . First we recall two descriptions of the integral
closure of /.


One standard way to describe the integral closure of a monomial ideal is ([8,
Exercise 4.23]):


Proposition 1.1 Suppose R = k [ x i , . . . ,xn], and / is generated by a set of mono-
mials xvi , . . . , xVm . Let T be the set of exponents of monomials in I,


t=l


Regarding F as a subset o/E" , let A be the convex hull o/R" + F, and let F* be the
set of integral points in A. Then I is the ideal generated by x", v £ F*.


We will use a second description (see [20, Section 6.6], [21, Section 7.3]) of the
generators of the integral closure. If xv 6 /, it will satisfy an equation


(x")< € /',
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and therefore we have the following equation for the exponent vectors,


U
This means that v = - + a, where a belongs to the convex hull Conv(v1, . . . , vm)


of v\ , . . . , vm- The vector v can be written as (set w - j ]


v - \w\ + (w - \w\] + a,


and it is clear that the integral vector


VQ = (w - [w j ) + a


also has the property that xu° £ 7.


Proposition 1.2 Let I be an ideal generated by the monomials xvi , . . . , xUm . Let
C be the rational convex hull ofV = {vi,..., vm] and


£ = [0,1) x - - - x [0,l)^[0,l)n .


Then 1 is generated by x", where v e (C 4- B) f) N71 .


For simplicity we set B(V) = (C + B) fj N71.


Figure 1: B(V): The dotted lines indicate the boundary of C + B. The open circles
are those lattice points which give elements in the integral closure of /. The lattice
point that is not in (C + B) fIN71, is in the ideal generated by the lattice points in
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The following help illustrate some of the issues with computing the integral
closure of an ideal. First, a degree bound for the generators of the integral clo-
sure arises directly from Proposition 1.2. A sharper bound might depend on the
codimension of the ideal.


Corollary 1.3 Let I be a monomial ideal of k[xi , . . . , xn], generated by monomials
of degree at most d. Then 7 is generated by monomials of degree at most d + n — 1.


The following example shows that the integral closure of a monomial ideal /,
although by Proposition 1.1 defined by the integral convex hull of all the exponent
vectors of /, may not be generated by the monomials defined by the integral convex
hull of the exponent vectors of a minimal set of generators of /. The vector (3, 5) in
Figure 1 also illustrates this possibility. This, of course, makes the determination of
/ a great deal harder. We will revisit this example when we give two membership
tests.


Example 1.4 Let J be the ideal of the ring of polynomials R = k[xi,...,xs]
defined by the monomials given through exponent vectors vi,...,vs'.


1 1 1 1 1 0 0 0
1 1 1 1 0 1 0 0
1 1 1 1 0 0 1 0
1 1 1 1 0 0 0 1
1 0 0 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1


Let L = 73, and consider the vector v = (2, . . . ,2). In view of the equality


8v = (!,...,!) + 3(vi + - - - + w8),


one has 1 1 1


which shows that xv lies in the integral closure of L; note that this monomial has
degree 16 while L is generated by monomials of degree 15. Since the vectors Vi
are linearly independent, one can easily check with Maple that decrementing u,
in any coordinate, by 1 produces elements that do not lie in the convex hull of
{3ui , . . . , 3t>8 }• It follows that L requires minimal generators of degree at least 16.


We next recall the connection between integral closure, multiplicity and the
computation of volumes of polyhedra. Let f\ = x"1 , . . . , fr = xVr be a set of
monomials generating the ideal I. The convex hull C(V] of the v^s partitions the
positive quadrant into 3 regions: an unbounded connected region, C(V] itself and
the complement P of the other two. The bounded region P is the region most
pertinent to our calculation (see also [18, p. 235], [19]).







92 Delfino et al.


Figure 2: The polytope boundary is C(V) and P is as marked. We will also refer to
the polytope marked by PQ and the simplex that bounds P and PQ will be referred
to as A.


The integral closure / is generated by the monomials whose exponents have the
form


1=1


such that Ti > 0 and ]T>i — 1 and e is a positive vector with entries in [0,1).
Suppose that 7 is of finite co-length, then, using the notation of Proposition 1.1,
A(7?/I) is the number set of lattice points not in C(E" -f F).


Consider the integral closure of 7'1. According to the valuative criterion ([22, p.
350]), 7n is equal to the integral closure of the ideal generated by the nth powers of
the /j's. This means that the generators of 7n are defined by the exponent vectors
of the form


with n and e as above. We rewrite


so the vectors enclosed must have denominators dividing n. To deal with 7™ we are
going to use the set of vectors Vj, but change the scale by 1/n. This means that
each 7n determines the same P. The length £n of 72/7" is the number of scaled
lattice points in P. Placing the lower left corner of a hypercube of side 1/n at each
lattice point we see that the sum of the volumes of the hypercubes is equal to the
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number of lattice points times (l/n)d which in turn is (l/n)d£n = (l/n)d\(R/7").
However, this sum is also a Riemann sum approximating the volume of P and thus
the limit of this quantity as n -4 oo is just the exact volume of P (see Figure 3).
This number, multiplied by d\, is the multiplicity of the ideal.


Figure 3: The cubes of side one and side \ are shown.


Let us sum up some of these relationships between multiplicities and volumes of
polyhedra (see [19, p. 131]).


Proposition 1.5 Let I be a monomial ideal of R = k[x\, . . . ,14] generated by
xvi , . . . , xVm . Suppose that X(R/I) < oo. // P is the region of Nd defined by I then


c(J) = d!-Vol(P).


Example 1.6 Our first example is an ideal of fc[x,y,z]. Suppose


(1)


The inequality ensures that the fourth monomial does not lie in the integral closure
of the other three. A direct calculation shows that the multiplicity is indeed the
volume of the region P times d!, which in this case is given by a nice formula


e(I) = afry + bca + ac/3.
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We observe that P is not a poly tope, but can be expressed as the difference
between two polytopes directly determined by the set of exponents vectors defining
/, V = {vi,...,vm}, Vi 7^ 0. Since / has finite co-length, suppose the first d
exponent vectors correspond to the generators of / Cl k[xi], i = 1, . . . , d. Let A be
the polyhedron defined by these vectors, A = C(0,i;i,. . . ,i/d), and denote by PQ
the convex hull of V (see Figure 2). We note


P = A \ Po,


and therefore


Vol(P) - Vol(A) - Vol(Po) - - Vol(7>0).a!


We use this relationship to compute multiplicities. If we set


= Vol(Po)
P" Vol(A)


then the proposition follows.


Proposition 1.7 Let I be a monomial ideal of finite colength generated by the
monomials x"1 , . . . , x1'"1 . With the notation above, we have


2 A probabilistic approach to volumes and multi-
plicities


There is an extensive literature on the computation of volumes of polyhedra. We
benefited from the discussion of volume computation in [4]. The associated costs
of the various methods depend on how the convex sets are represented. They often
require conversion from one representation to another. We propose a manner in
which to approach the calculation of p, i.e. the calculation of Vo\(PQ) as a fraction
of Vol(A). First, note that A is defined by the equations


A:r ir + - - - + ri^1' *iZQ- (2)M M
According to [6, pp. 284-285], since PQ is the convex hull of the vectors «», i -
1, . . . ,m, there are standard linear programming techniques to convert the convex
hull description of PQ into an intersection of halfspaces


P0 : A - x < b. (3)


Equally important, these linear programming techniques have been converted into
very efficient routines in several programming environments. We will focus on those
routines found in the collection [5] .


Our statistical approach is based on classical Monte Carlo quadrature methods
([17]). Sampling a very large number of points in A, arid checking when those
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points lie in PQ are both computationally straight forward because of the ease of
the descriptions given in equations (2) and (3).


Our proposal consists of making a series of N independent trials, keeping track
of the number of hits H, and using the frequency jj as an approximation for p.
According to basic probability theory, these approximations come with an attached
probability in the sense that for small e > 0


Probability <
H


<


is high. This estimation is based on Chebyshev's inequality ([10, p. 233]). We
briefly review this inequality. If X is a random variable with finite second moment
E(X2), then for any * > 0


P{\X\ > t} < r2E(X2).


In particular for a variable X of mean E(X] = p. and finite variance Var(A'), for
any t > 0


- / * !> * }< * " (4)


For a set of N independent trials z i , . . . , XN of probability p, the random variable
we are interested in is the average number of hits


•y- _


We have E(X) = p and Var(X) = ^
into (4), we obtain


' H
N~P


+ --- + xN _ H_
N ~ N'


. if we set e = *-2Var(X), and substitute


> 1 - 6 .


Since p(l - p) < i, it becomes easy to estimate the required number of trials to
achieve a high degree of confidence. Thus, for instance, a crude application shows
that in order to obtain a degree of confidence of 0.95, and e = 0.02, the required
number of trials should be N > 12,500 (Actually, a refined analysis, using the law
of large numbers, cuts this estimate by |).


We have implemented this probabilistic approach to multiplicity. Our imple-
mentation uses off-the-shelf software. We illustrate our implementation though the
discussion of some examples.


Example 2.1 Computing multiplicity using probability requires a conversion that
uses PORTA (see [5]), a collection of transformation techniques in linear program-
ming.


We will illustrate an application of the probabilistic method for the calculation
of multiplicity in the setting of Proposition 1.5. Let / = (z3,y4,25,w;6,zyzio).
Proposition 1.5 gives e(I) = 342. To apply the probabilistic method, the exponents
are written into a matrix and PORTA is used to obtain the inequalities defining the
convex hull. The PORTA input and output are recorded below.
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The points defining the convex hull must be written in a file with
the extension .poi [say multl.poi] and the routine ('traf" is called


traf multl.poi


The content of multl.poi is:


DIM = 4


CONV_SECTION
3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 6
1 1 1 1


END


The output file is the desired set of linear inequalities
and it is put in the file mult1.poi.ieq:


DIM = 4


VALID


1 1 1 1


INEQUALITIES_SECTION
( 1) -23x1-15x2-12x3-10x4 <= -60
( 2) -20x1-15x2-12x3-13x4 <= -60
( 3) -10x1- 9x2- 6x3- 5x4 <= -30
( 4) - 4x1- 3x2- 3x3- 2x4 <= -12
( 5) +20x1+15x2+12x3+10x4 <= 60


END


A (7++ program is then used to calculate the probability. Testing with 10,000
points gives a probability of .04989 and a multiplicity of 342.04.


Now we present more examples utilizing our implementation of our proposed
probability based algorithm for computing the multiplicity of monomial ideals. We
include an analysis of their run times and probable accuracy of results. In presenting
these examples, the dimension-independence of the method is clear. However, the
differences between theoretical results and implemented results are also clear. All
results listed were obtained on a Pentium III processor that runs at 900 MHZ, has
256 MB RAM and is operating under Red Hat Linux.


We illustrate the results of our algorithm using three examples. For the purposes
of the examples, we will refer to our algorithm as POLYPROB. We revisit Exam-
ple 2.1 and give two other examples for comparing MACAULAY2 [12], VINCI [4],
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NORMALIZ [3], and POLYPROB. VINCI is an alternate program for computing
the volume of a polytope, while our computations in MACAULAY2 are classical,
meaning we compute the leading coefficient of the Hilbert Polynomial of the asso-
ciated graded ring.


Example 2.2 Our second example is again in a four dimensional ring


/ = (x4,y5,z6,iy7 ,xz2w,y2zw


This example is more complicated, but we can still use MACAULAY2, VINCI and
POLYPROB to compute the multiplicity.


Example 2.3 Last we present an example where MACAULAY2 fails, and the is-
sues of accuracy and speed in POLYPROB and VINCI are also illustrated. This
example is sixteen dimensional


(xt , X2, X3, X4, X5 , Xg, X7, Xg, Xg , X10, Xn , X12 , X13 , Xj4, X15, X16,


"̂  2
12X5X7X13,


For this ideal, while we have


when we multiply the probability by 17! to get the multiplicity, we also multiply
the error by this same number. In Example 2.3 for e = .02 and N = 20000 we get
H = 16618 and H/N = .8309 in one trial. The formula states that the probability
that j.8309 - p\ < 4/ 01)(20000) ~ -000625 is greater than .98. However, we can
only say that |(1 - .8309)17! - e(/)| < (.00125)(17!) = 2.22305(10n). Even with
everything else the same and N = 1,000,000, |.8309 - p| < .000025, but |(1 -
.8309)17! - e(/)| < (.0000125)(17!) = 4.44609(109). We would need N = 1014 to
get the error on the multiplicity, using POLYPROB, to around 10. Unfortunately,
the numbers we are dealing with mean that using standard floating point arithmetic
there will be large computer precision error involved. The program VINCI also has
this problem for large computations. We have been able to implement POLYPROB
using GMP [11] aribitrary precision arithmetic and these are the numbers we include
here. Unfortunately, it would take days to run 2.3 in POLYPROB with N = 1014.


For each example, NORMALIZ computed the multiplicity (342, 546, and
60012790921296


respectively) in a negligable amount of time (less than .01 in each of the first two
examples) so we don't list this in the chart to save space. This table lists the ex-
act (up to computer precision error) multiplicity as computed by MACAULAY2 or
VINCI (VI) and the POLYPROB (PP) results for different values of AT. The entries
in the "PP result" column are an average of 10 trials. Averaging trials appears to
give slightly more accurate results. Last we include the CPU run times for each of
the calculations.
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Ex.


2.1


2.2


2.3


M2
re-
sult


342


546


VI result


342


546


(6.001279)*
(1013)


PP result


342.202
342.04
342.043
342.093
547.688
547.642
545.946
545.553
(5.95065)(1013)
(5.98462)(1013)
(6.0257)(1013)
(6.01912)(1013)
(6.01127)(1013)
(6.00291)(1013)


N


5000
10000
20000
50000
10000
20000
50000
100000
10000
20000
50000
100000
500000
1000000


#
ineq.


5


14


494


PP
time


.05


.07


.10


.18


.07


.10


.18


.31


.73
1.42
3.47
6.98
34.93
1:10.57


M2
time


.25


1.37


VI
time


.07


.07


.13


At this point NORMALIZ seems to outperform all of the programs on these
examples. POLYPROB is clearly much better than M2 on even medium problems.
In terms of time VINCI appears to be the best of those programs in the chart.
However, we note that POLYPROB will work as accurately if we give it an ideal of
the form (x°l,..., x"n , /i, • . • fn) where /,- for at least one i is in the integral closure
of the ideal (x" but VINCI will fail to give the correct multiplicity in
this case and as noted before, VINCI is only written using standard floating point
arithmetic.


POLYPROB Implementation


The fundamental operation of our POLYPROB algorithm is a random trial: that is,
generating a random vector within the simplex containing the polytope, and testing
whether the vector is in the polytope. Thus, POLYPROB requires an efficient way
to get random vectors uniformly distributed over a simplex. To see how to do this,
first consider the general problem of generating a vector (x i , . . . , x n ) uniformly
distributed over an n-dimensional polytope P. Given a description of the polytope,
say as the convex hull of a set of vertices, we can calculate tlie minimum and
maximum values for each coordinate of a vector in the polytope. That is, we can
determine that the polytope lies within the hypercube IH-it0*'^]- Our first tas^'
then, is to pick Xi € [ai,&i] according to an appropriate probability distribution.


Thus, for any c e [01,61] we can calculate /(c) - Pr(xi € [ai,c]) by calculating
the volume of P n {(zi , . . . , xn] : 01 < Zi < c} as a percentage of the volume of P.
This gives us a monotone increasing distribution function / : [ai.bi] -> [0,1]. It is
from this distribution function that we want to sample .TI . If we can pick a random
real number X uniformly distributed over [0,1], then we can just take x\ - j ~ l [ X } .
Once xi has been sampled, its value determines an (n —1)-dimensional cross-section
of P so we have now reduced the problem to picking a smaller random vector
(x2 , . . . ,xn) uniformly distributed over that cross-section. Thus we can iteratively
pick X2, • • • , xn by the same algorithm used to pick x\.
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For general poly topes, there are very large practical problems with this algo-
rithm. However, for simplices all of these problems disappear. Since A is a simplex
we only need to perform this algorithm for simplices. Consider a simplex with one
vertex at the origin and vertices v\,..., vn where Vi = (0,... , a,, 0 , . . . , 0). Then


— c


so the inverse of the distribution function is just / l ( X ) = 1 - Xl/n times the
scaling factor a,. And if we sample xi, the cross-section of the simplex at xi is just
the (n - l)-dimensional simplex with vertices at (xi,0,0,...,0) and vi...vn where
«i = (*!,<),. . . , (l-g-te,...).


The source code for our implementation of POLYPROB illustrates our applica-
tion of this method; it is available at
http: //www. math. rutgers. edu/~nweining/polyprob. tar. gz


3 Membership test for integral closure of mono-
mial ideals


In this section we provide a linear programming solution to the membership test
7 £ 7?'


Monomial ideals of finite co-length
We will provide now membership & completeness tests and a construction of the
integral closure of monomial ideals of finite co-length. Our treatment is a by-product
of the half-spaces description of the convex hull given in Eq. (3). We point out how
the following oracle gives a solution to the membership and completeness tests and
the construction task in case of an ideal of finite co-length.


Proposition 3.1 Let I be a monomial ideal of finite co-length as above, and let
f be a monomial. Denote by e = (e i , . . . ,e n ) the exponent vector of f , by v =
( i / i , . . . ,un), A and b the vectors and matrices associated to I as discussed above.
Then f is integral over I if one of the two conditions holds:


A e < b ,


yn ^- > iZ-/t=l Vi - L-


Proof. These conditions simply express the fact that either e lies in the convex
hull of the vectors v i , . . . , vn (in which case / would lie in the integral closure of
(x"1 , . . . , xv")), or that adding /to I does not affect the volume of P. In the second
case, e(I) = e(7, /), / is integral over / by Rees' theorem. D


Definition 3.2 A membership oracle for the integral closure of an ideal / is a
boolean function A such that / G / if and only if A(f) = true.


Proposition 3.1 above shows that monomial ideals of finite co-length admit such
oracles. We show now how given any membership oracle A for a monomial ideal
/ of finite co-length leads also to a completeness test. We begin with a general
observation that shows some of the opportunities and difficulties in developing such
tests.
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Proposition 3.3 Let (R,m) be a Noetherian local ring and let I be an ideal of
finite co-length. Denote by L = I: m the socle ideal of I. Then I is complete if and
only if no element of L\I is integral over I.


Proof. If / € 7\I, then for some power of m, mrf will contain non-trivial elements
in the socle of /. The converse is clear. D


Proposition 3.4 Let I be a monomial ideal in /c[xi, . . . , £< / ] of finite co-length and
let A be a membership oracle for the integral closure of I. Let {/i, . - . , /s} be the
monomials in I : (xi, . . . , Xd) \ I- Then


I - I «=>• A(fi) = false, i = 1 , . . . , s.


Proof. First, we consider the reverse direction. Let L = I: ( x i , . . . , X d ) be the
socle ideal of /. L is generated by the /» and monomials in /. Since I is a monomial
ideal, if / is a monomial e / \ /, by multiplying by another monomial g, we obtain
gf generating a nonzero element in the vector space L/I. This means that gf must
be one of the /;. Since gf is also integral over /, the assertion follows. The other
assertion is obvious. D


The construction of / follows in a straightforward manner:


If / ^ 7, define
= true, i = l , . . . , s ) .


Since /x = I, A is still a membership oracle for the integral closure of /i and we can
repeat until In — I. The program terminates by Proposition 3.4 and is has been
implemented in MACAULAY2.


General monomial ideals
A more comprehensive membership test for the question "/ € I", valid for any
monomial ideal, is the following. However, this test lacks the effectivity of the
method in the previous section.


Proposition 3.5 Let v\, . . . ,vm be a set of vectors in Nn and let A be the n x m
matrix whose columns are the vectors Vi,...,vm. If I = (x.Vl , . . . , xV m ) , then a
monomial x6 lies in the integral closure of I if and only if the linear program:


Maximize x\ + < • -+xm (*)


Subject to Ax < b and x > 0


has an optimal value greater or equal than 1, which is attained at a vertex of the
rational polytopeP - {x 6 Mm | Ax < b and x > 0).


Proof. =>) Let x6 6 I, that is, xp6 € P for some positive integer p. There are
non-negative integers T{ satisfying


xpb - x6 (xvi)ri • • • (x^)7"™ and n + • • • + rm = p.


Hence the column vector c with entries Ci - Tj/p satisfies


Ac < b and c\ + ---- h Cm = 1.
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This means that the linear program has an optimal value greater or equal than 1.
•4=) Observe that the vertices of P have rational entries (see [6, Theorem 18.1])


and that the maximum of x\ -\ ----- h xm is attained at a vertex of the polytopeP,
thus there are non-negative rational numbers GI , . . . , Cm such that


ci + • • • + Cm > 1 and ciVi H ---- + cmvm < b.


By induction on m it follows rapidly that there are rational numbers ei , . . . , em such
that m


0 < €, < Ci Vi and ]P e, = 1.
»=i


Therefore there is a vector 5 € Q" with non-negative entries satisfying


Thus there is an integer p > 0 such that


pb = p6 + pei vi + • • • + ptm vm,


eNn GN GN


and consequently x6 € /. d


Remark 3.6 According to [6, Theorem 5.1] if the primal problem (*) has an opti-
mal solution x, then the dual problem


Minimize b\y\ H ----- h bnyn


Subject to yA > 1 and y > 0


has an optimal solution y such that the optimal values of the two problems coincide.
Thus one can also use the dual problem to test whether xb is in J. Here 1 denotes
the vector with all its entries equal to 1. The advantage of considering the dual is
that one has a fixed polyhedron


Q = {y e l
n | yA > I and y > 0}


that can be used to test membership of any monomial x6, while in the primal
problem the polytope P depends on b. Using PORTA one can readily obtain the
vertices of the polyhedral set Q. The matrix M whose rows are the vertices of Q is
a "membership test matrix" in the sense that a monomial x6 lies in / iff Mb > 1.


Let us illustrate the criterion with a previous example.


Example 3.7 Consider the ideal I of Example 1.4. To verify that x6 = x\ • • • x| is
in /3 one uses the following procedure in Mathematica


ieq:={
3x1 + 3x2 + 3x3 + 3x4 + 3x5<=2,
3x1 + 3x2 + 3x3 + 3x4 + 3x6<=2,
3x1 + 3x2 + 3x3 + 3x4 + 3x7<=2,
3x1 + 3x2 + 3x3 + 3x4 + 3x8<=2,
3x1 + 3x5 + 3x6 + 3x7 + 3x8<=2,
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3x2 + 3x5 + 3x6 + 3x7 + 3x8<=2,
3x3 + 3x5 + 3x6 + 3x7 + 3x8<=2,
3x4 + 3x5 + 3x6 + 3x7 + 3x8<=2}


vars : ={xl , x2 , x3 , x4 , x5 , x6 , x7 , x8}


f :=xl+x2+x3+x4+x5+x6+x7+x8


ConstrainedMax [f , ieq , vars]


The answer is:


{16/15,
{xl -> 2/15, x2 -> 2/15, x3 -> 2/15, x4 -> 2/15, x5 -> 2/15,


x6 -> 2/15, x7 -> 2/15, x8 -> 2/15}}


where the first entry is the optimal value and the other entries correspond to a
vertex of the polytopes P. Using the criterion and the procedure above one rapidly
verifies that x6 is a minimal generator of I3.


4 Computation of general multiplicities


We will make general observations about the computation of the multiplicity of arbi-
trary primary ideals. The input data is usually the following. Let A = k[x\, . . . , xr]/L
be an affine algebra and let / be a primary ideal for some maximal ideal Oft of A.
The Hilbert-Samuel polynomial is the function, n 3> 0


n H-> X ( A / I n ) - ~^-nd + lower terms, dim A^i = d.
\JL-


In other words, e(I] is the ordinary multiplicity of the standard graded algebra


7l>0


For the actual computation, ordinarily one needs a presentation of this algebra


where the right side is not always a standard graded algebra. In the special case of
I — (xi, . . . ,xr}A and L is a homogeneous ideal, one has that


grM(A) ~ A,


and therefore it can be computed in almost all computer algebra systems by making
vise of:


Theorem 4.1 (Macaulay Theorem) Given an ideal I and a term ordering >,
the mapping


NormalForm: R/I — > R/in>(I) (5)


is an isomorphism of k-vector spaces. If I is a homogeneous ideal and > is a degree
term ordering, then NormalForm is an isomorphism of graded k-vector spaces, in
particular the two rings have the same Hilbert function.
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For our case, this implies that


e(I) = deg(A) = deg(fc[xi, . . . ,xr]/in>(L)),


where > is any degree term ordering of the ring of polynomials fc[zi, . . . , xr]. We
can turn the general problem into this case by the following observation (which
hides the difficulties of the conversion). Let (R, m) be a Noetherian local ring and
let / be an m-primary ideal. To calculate the multiplicity e(I) we need some form
of access to a presentation of the associated graded ring gr7(7?),


in order to avail ourselves of the programs that determine Hilbert functions. A
proposed solution, that uses heavily, Grobner basis theory, is given in [14].


Alternatively, one can turn to indirect means. For instance, suppose R =
k[xi , . . . , Xd] is a ring of polynomials and / is an (x\ , . . . , x<f)-primary ideal. Let J
be a minimal reduction of /, then


e(I) = X(R/J).


(A similar approach works whenever R is a Cohen-Macaulay ring.) If > is a term
order of R, then


X(R/I) = A(ft/in>(J)).


The difficulty is to obtain J. It usually arises by taking a set of d generic linear
combination of a generating system of 7. In addition, even when / is homogeneous,
J will not be homogeneous (often it is forbidden to be). One positive observation
that can be made is:


Proposition 4.2 Let I be an (xi, . . . ,x 4) -primary ideal. For any term order > of
R,


e(I) <e ( in>( / ) )<d! -e ( / ) . (6)


Proof. Denote L = in>(/). The multiplicities are read from the leading coefficients
of the Hilbert polynomials X ( R / I n ) and A(#/Ln), n » 0. We note however that
while X(R/I) = A(J?/L), for large n we can only guarantee


X(R/In] = X(R/m>(n) < X(R/Ln),


since the inclusion
(in>(7))ncin>(/n)


may be proper.
The other inequality will follow from Lech's formula ([13]) applied to the ideal


L:
e(L) < d\X(R/L)e(R] < d\e(I],


since e(R) = I and X(R/L) = X(R/I) < e(I). D


As an illustration, let / = (xy,x2 + y2) C fc[x,y]. Picking the deglex ordering
with x > y, gives L = in>(7) = (xy,x2,y3). We thus have


4 = e(7) < e(L) = 5.
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We are now going to explain the equality e(I] — e(L}. Set Ln = in>(/n). Note
that B = ]Cn>o Lntn is the Rees algebra of the filtration defined by I/n's. Actually,
B is the initial algebra in> (R[It}} of the Rees algebra R[It] for the extended term
order of R[t\:


ftr > gts & r > s or r = s and f > g.


In general, B is not Noetherian (which is the case in the simple example above,
according to [9]).


Theorem 4.3 Let I be an (x\ , . . . , xj) -primary ideal of the polynomial ring k [ x i , . . . , X
and let > be a term ordering. The following conditions are equivalent:


(a) e( /)=e(m>(I)) .


(b) B is integral over R[Lt], in particular B is Noetherian.


Proof, (a) =$ (b): To prove that B is contained in the integral closure of R[Lt] it
will be enough to show that for each s, the algebra R[Lst] is integral over R[Lst\,
in other words, to prove the assertion (b) for corresponding Veronese subalgebras.


Since, by hypothesis, the functions \(R/Ln) and X(R/In) = X(R/Ln), for n »
0, are polynomials of degree d with the same leading coefficients, and we have


\(R/(Lsr) > AWL?) > \(R/Lm) = \(R/rsn) =
and


e(Ls) = scle(L) = sde(I) = e(/s),


it follows that Ls and Ls have the same multiplicities. By Rees theorem ([15]), Ls


is integral over Ls.


(b) => (a): It is immediate. D


Some of these facts can be extended to more general affine algebras. Suppose
/ is a monomial ideal of finite co-length and L C I is a monomial subideal. The
multiplicity of I/L arises from the function


We will argue that there is a 'volume formula', similar to Proposition 1.5 that holds
in this case. It is an application of the associativity formula for multiplicities: If
pi, . . . ,pr are the minimal prime ideals of L of dimension 5 = height L, then


t=i


Once the p» have been found, we may apply Proposition 1.5 to each monomial ideal
Ii = (I + pi)/pi- The other terms are co-lengths of monomial ideals. Indeed, the
length li of the localization (R/L)fi is obtained by setting to 1 in R and in L all the
variables which do not belong to pi. On the other hand, the ideal I/pi is obtained
by setting to 0 the variables that lie in pj.
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Proposition 4.4 The multiplicity of the 'monomial' ideal I/L is given by


We can also make comparisons between multiplicities of ideals in general affine
rings and the monomial case. Consider an ideal


I/LcA = R/L = k[xi , . . . , xn]/L


of codimension d. For some term order, let L' and /' be the corresponding initial
ideals. Denoting by (•)' the initial ideal operation, we have


As in the case when L — (0), we have


X(R/(In + L)) = \(Rf(In + L)1) < \(R/(I'n + L')), n > 0,


and consequently,


On the other hand, by Lech's formula ([13]),


e(I'/L') < d\ • \(R/I') • e(R/L') = d\ • \(R/I) • e(R/L),


the substitution e(R/L') = e(R/L) by Macaulay's theorem.
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ABSTRACT We define a pregraduation of a commutative ring A by a family
g = (Gr


n)n6zU{+00} of ideals of A such that Go = A, Goo = (0) and GpGq C Gp+q, for
all p, q 6 Z. The notion of J—independence of order k with respect to a pregraduation
of a ring A is defined as in [1]. We will show that r elements of GI are J-independent
of order k with respect to a pregraduation g if and only if there exist isomorphisms from


A A
the polynomial ring with r indeterminates over ———— to some ————algebras. A


J + Gk J + Crfc
weak notion of J—independence called the regular J—independence will allow to define
the analytic spread of a pregraduation on a ring.


INTRODUCTION


The purpose of this paper is to define and study the analytic independence of a
family (Gn)nezu{+oo} of ideals of a ring A such that GO = A and GpGq C Gp+q


for all p, g € Z, called a pregraduation of A, with the convention that G+00 = (0)
and to give extensions of the analytic spread for a pregraduation.


Theorem 2.4 gives criteria of J—independence of order k with respect to a
pregraduation of a ring A, where k e N* = N* U {+00} and J is an ideal of A.
The maximum number of elements of J which are J-independent of order k
with respect to g — (Gn) will be denoted by t j ( g , k). We show that this number
is different from the analytic spread of a filtration as defined by J.S. Okon in
[4]-


The notion of regular J—independence of order k with respect to a
pregraduation g will allow to define the regular J—analytic spread of g, de-
noted by laj(g, k}, and the regular analytic spread ia(g, k} of g as ia(g, k} =
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(0,fc) : M G Max A}.
Corollary 3.4 gives a characterization of l j ( f , k ) by some integers P.j(Ip,k}


when / = ( I n ) is a ncetherian nitration. When (A, M] is a ncetherian local ring
with infinite residue field and / a ncetherian filtration on A, Proposition (3.7)
shows that the integer ^U(/, A;) coincides with the various extensions of the
analytic spread obtained in [1] except for ^.M(/, k).


Throughout this paper all rings are commutative and filtrations are decreas-
ing pregraduations. The /— adic filtration is the family (/"), denoted //, where
/ is an ideal of A and In — A for n < 0. A filtration / = (7n) is said to be


ncetherian if its generalized Rees ring 5R(A, /) — V^ InX
n is ncetherian.


1. GENERALIZED ANALYTIC INDEPENDENCE
DEFINITIONS 1.1. (1.1.1) Let A be a ring and (Gn)n€Zu{+oo} a family of
ideals of A. We say that (Gn) is a pregraduation of A if GQ — A, G^ = (0)
and GpGq C Gp+q for all p, q G Z.


(1.1.2) Let g = (Gn)nezu{+oo} be a pregraduation of a ring A, J an ideal
of A and k € W = N* U {+00} such that J + Gk ^ A. Elements ai, . . . ,ar


of G\ are said to be J— independent of order k with respect to g if for each
homogeneous polynomial F(X\, . . . ,Xr) of degree s with coefficients in A, the
relation F(ai, . . . ,ar) 6 JGs + G3+k implies that F has its coefficients in


PROPOSITION 1.2. Let A be a ring, g = (Gn)neZu{+oc} & pregraduation
of A and k E N* . Let J be an ideal of A such that J + Gk ^ A, ai, . . . , ar


elements which are J — independent of order k with respect to g and I the ideal
(ai, . . . ,a r). We have :


(i) // J contains Gk, then the elements a i , . . . ,ar are J —independent
with respect to g and to // = (/n).


(ii) // there exists an integer i such that a^ 6 J 4- Gk, then
Ip Q GPC J + Gk forp> 1.


(iii) // r > 2, then P C Gp C J + Gk forp> 1.


Proof. (i) Let x = F(ai, . . . ,a r) where F is an homogeneous polynomial of
degree s with coefficients in A. Suppose that J contains Gk-
[x = 0 (mod JGS) or x = 0 (mod JIS)} implies that x e JGS + Gs+k-
Hence F e ( J + Gfc)[^i, . . . , Xr}. Furthermore, J + Gk = J + Ik = J.
Therefore the elements a i , . . . ,ar are J-independent (of order +00) with
respect to g and to //.


(ii) If ai 6 J + Gk then for p > 1 and y 6 Gp, we have :
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ai , . . . , ar being J—independent of order k with respect to g, we have :
y € J + Gk- Therefore GpCJ + Gk and we have Ip C G? C Gp C J + Gfc.


Cni; If r > 2, for » ^ j € [1,... , r], let F(Xi,... ,Xr) = cnXj - HjXi.
Then F is homogeneous of degree 1 and F(a\,... , ar) = 0. So, a; G J + Gk-
The result follows by (ii).


PROPOSITION 1.3. Let A be a ring, g = (Gn) a pregraduation of A and
k 6 N*. Let J be an ideal of A such that J + Gk ^ A. Assume that (Gn+/c)n>o
is decreasing or that Gn+k C Gn for n > 1. Let a i , . . . ,ar be J—independent
elements of order k with respect to g. Then for p > 1 we have :


(i) // Gfc C J -f- Gpk, then a^ , . . . ,a£ are J—independent of order k with
respect to the pregraduation g^ = (Gpn).


(ii) // Gk C J + Gp, then a^ , . . . ,a£ are J—independent of order k with
respect to the pregraduation fcp = (Gp).


(iii) // Gfc C J + Gp
k, then a^, . . . ,0^ are J—independent of order k with


respect to the pregraduation gp = (G£).


(iv) In particular, if J D Gk, a f , . . . , a P are J—independent of order
k with respect to the pregraduations g^p\ gp and f c p -


Proof. The Proof follows from definitions of (1.1) and from the fact that,
under the hypotheses, for all n > 0 we have :


{ JG™ + Gp+ C JGpn + Gp(n+fc) C JGpn + Gpn+k


JGp
n + Gp


n+k C JGpn + Gp(n+fc) C JGpn + Gpn+k-


NOTATIONS 1.4. Let A be a ring, g - (Gn)nezu{-foo} a pregraduation of A
and k € N*. Let J be an ideal of A such that J + Gk i=- A. We put :
£j(g, k) — sup{r e N / 3 a i , . . . , ar e J, J-independent of order k with respect
to 5}, £(<?, fc) = SUP{£M(<?, fc) : A^ maximal over Gk}, and
sup( J) = sup {r € N /3 a i , . . . , ar 6 J, J - independent} .


REMARK 1.5. (i) If M is a maximal ideal of AandM^Gk, then ^(p, fc) =
0. Consequently, l(g, k) = sup {^A-I(<?, &) : .M € Max A} .


(ii) Assume that (Gn+fc)neN is decreasing or that Gn+k C Gn for all n > 1.
If J contains G&, then for all p and n e N* we have :


a) l j ( g , k ) <tj(g(p\k) < tj(Gp,k}<ij(Gn
p,k},


b) l j ( g , k ) < ij(g^\k} < tj(Gpn,k}. (See (1.3)-(iv))
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PROPOSITION 1.6. Under hypotheses and notations of (1-4), if P is a prime
ideal over J + Gk, we have :


(1.6.1) t j ( g , k ] <sup(J + Gfc) < ht(J + Gk) <dimAP = ht P.


(1.6.2) If J contains Gk, then


(i) t j ( g , k ) < tj(g] <ht J < dim A


(ii) Moreover, if A is a nostherian ring and k is such that (Gn+k)neN
is decreasing or such that Gn+fc C Gn for all n > I , then the sequence
ft ̂  Pj(Gp',k) is an increasing and eventually stationary sequence.


2. CRITERIA OF J-INDEPENDENCE


2.1.- Let k e N*, g = (Gn) and / = (/„) be two pregraduations of A such that
In Q Gn for all n. Let J be an ideal of A.


For each n, we put Kn — In n (JGn + Gn+k)] then we have : Knlm C Kn+m


for all n, m E Z. So, \] T~ *s a graded ring where (a + Kn}(b + Km) —


(ab + Kn+m) for all a 6 In and b £ /m. Let F = ̂  ̂ n^n and G = ̂  GnXn.
n n


Then L = V A'nXn = F n (u f c , J)G is a graded ideal of F where u = — with—/ _P£
n


7*1 r
the convention that u00 — 0 and we have : — ~ \ .


n
In particular, if / = g we have :


(^ , , (-1
(2.1.1)


G n (w f c , J)G Gn n


°(2.1.2) If Gn+fc C Gn for all n > 1, then


G+ ^ Gn


jG ' t/Gr


(2.1.4)


2.2.- Let R(A, 1} - N JnXn be the Rees ring of an ideal / C G\. We have :
n>0


(2.2.1, R(A<V ~r J"


(2.2.2)


H(A, I) n (u f c , J)G ^ In n (JGn + Gn+fc;


R(AJ) ^ " r
~R(Aj}nJG+ ~ ^ J " n J G n -
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where 5R(A, 7) = 7n Jf n is the generalized Rees ring of the ideal I.
n€Z


2.3.- Let J be an ideal of A such that J + Gk ^ -A, ai, . . . ,ar € (?i and
/ = (a i , . . . ,a r). Put Kn = In n (JGn + Gn+k) for n > 0 and Q j ( g , k ) the


rn
graded ring V^ — — . Let ti = di + -K"i for z = 1, . . . , r. We have :


^Let </?j(5) fc) be the graded morphism from — — —[Xi, . . . , Xr] to Qj(g, k)
J + Gk


A
such that <f>j(g,k}(Xi) = ij for each i and (pj(g,k)(a) = a for a 6 — — —.


J + Gfc


There exists an isomorphism t/'fc from Qj(5, fc) to — ̂ — ̂  — — — such that
, J j f 1 ^w , j j(_r


•0fc(ii) — Q-iX 4- -R(A, J) n (u , J}G and ipk(ct) = OL for a € ———.


/ N r R(AJ) A .
Let Ui = ipk(ti) for all i. Then _, , _.—-—r—-r-= — ———- u i , . . . ,u rI .


R(A, I) n (uk, J)G J + Gk
Put (pk = <pj(g, k) and 6k = ifck0 ¥>k- We have the following theorem :


THEOREM 2.4. The following statements are equivalent :


(i) a i , . . . , ar are J—independent of order k with respect to g;


A ' R(A 1}
(ii) 6k is an isomorphism of ——— [Xi,. . . , Xr] over


A
(iii) The elements t i , . . . ,tr are algebraically independent over ——-


(iv) T/ie elements u i , . . . ,w r o^e algebraically independent over
+ Gk


Proof. For all F = ^ Ai l f . . . ,irX{1 • • • Xl
r
r where Ai l f... ,ir € A, we put


» l H Hr = 3


(i) ^=^ (ii) The elements a i , . . . ,ar are J—independent of order k with
respect to g if and only if for all F G A[X!, . . . , Xr] homogeneous of degree s,







112 Diagana


F(ai, . . . ,a r) = 0 (mod JGS + Gs+k] implies that F has all of its coeffi-
cients in J -f Gk, i.e., F(ai, . , . ,a r) e Is ft (JGS + Gs+k) = Ks implies that
F e K0[Xi,^. ,Xr] this means that for all F e A[Xi, . . . , Xr], Vk(F] = 0
implies that F = 0, i.e., </?*. is an isomorphism and 9^ is an isomorphism.


(ii) ^^ (iv) ek(Xi) = Ul and, for G - ]T ailt... ,lrX{1 - - - X 1 / ,
»H ----- |-*r = S


0k(G) =


^/c being surjective, (ii) holds if and only if 6k is injective if and
only if for all G € A[Xi,.. . , X r ] t Ok(G) = 0 implies that G = 0 this


means that the elements Ui, . . . , wr are algebraically independent over .
J + Gk


(ii) <=$ (iH) (ii) holds if and only if ipk is an isomorphism. Replacing 6^
by (pk in the proof of ((ii) 4^ (iv)) and U{ by t j one obtains : (pk is an isomor-
phism if and only if (iii) holds.


3. REGULAR INDEPENDENCE AND ANALYTIC
SPREAD


DEFINITIONS 3.1. (3.1.1) Let A be a ring, k G N*", g = (Gn) a pregraduation
and J an ideal of A. We say that ai, . . . , ar are regular J— independent of order
k with respect to g if there exists p G N* with J -f Gpk / A such that ai , . . . , ar


are J~ independent of order k with respect to g^ — (Gpn)-


(3.1.2) The regular J- analytic spread of order k of g is the integer
£}(<?, fc) = sup{r € N such that there exist a i , . . . ,ar G J, regular
J— independent of order k with respect to g } .


(3.1.3) The regular analytic spread of order k of g is the integer
ta(gtk) =sup{^(3,fc) :M G Max A and M


REMARK 3.2. Let A be a ring and g = (Gn) a pregraduation of A. Then we
have :


(i) If the elements ai, . . . ,ar are J-independent of order k with respect
to g, then they are regular J— independent of order k with respect to g.
Consequently l j ( g , k) < £}(#, k}.


(ii) Assume that J contains Gik for all i > 1. If ai, . . . ,ar are regular
J— independent of order k with respect to g then they are J— independent of
order nk for n > 1 and of order +00; consequently,


a) if P is a prime ideal over J, then we have :
lj(9*k) < taj(g,k} < sup(J) < hi J) < dimAp
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b) if A is a noetherian ring, then £j(g, k} < oo.


(iii) ta(gik}=sup{ta
M(g,k):M£ Max A} .


(iv) If A is a noetherian semi-local ring, then ta(g,k] is finite and there
exists a maximal ideal M over Gk such that ta(g, k} = ^(g, k).


THEOREM 3.3. Let A be a ring, k £ W and g = (Gn) a pregraduation of A.
We assume that the sequence (Gn+k}n>o is decreasing or that Gn+k ^ Gn for
each n > 1. Let J be an ideal of A which contains Gk-


(i) We have tj(g(n\k] < tj(g(pn\ A:) < £$(g, k) /o rn ,peN*.


// A is noetherian, then we have :


(ii) There exists p e N* such that taj(g, k} = ij(g^n\k] for n 6 N*


(iii) Pj(g, k) = sup (lj(s(n},k) : n € N* }


(iv) Pj(g,k)


(v) The sequence n H-> ^j(g^n'\k) is an increasing and eventually
stationary sequence of limit


Proof. (i) For n > 1, if elements ai, . . . , ar are in J and are J— independent
of order k with respect to g^n\ then they are regular J-independent of order k
with respect to g. Hence taj(g, k} > r\ so, ij (g(n\k) < iaj(g, k).
Furthermore, from (1.5)-(ii) we have :


tj (9(n\k) < tj ([g(n)](P\k) = tj (g^\k) < £aj(g,k}, for all p > 1.


Hence we have (i).


Suppose that A is ncetherian. Then we have :


(il) If ai, . . . ,ar G J are J-independent of order k with respect to g^
with p > 1, we have from (1.2)-(ii) : J contains all Gn, n > 1 and from (3.2)-(ii),
taj(g,k) is finite.


Let r = ^}(<?, k}. There exists p > 1 and elements 61, . . . , br € J which are
J-independent of order k with respect to g^. Therefore iaj(g, k) <
Using (i) we have : g$(g, k} = tj (g(pn\k) for n > 1.


(iii) is a consequence of (i) and (ii) .


(iv) (i) and (iii) =» laj(g, k} = sup {ij(g^n\k} : n e N* }


< t a j ( g , k } .


: n € N* = taj
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(v) is a consequence of (i) and (ii).


Applying Theorem 3.3 to ncetherian filtrations we obtain the following result
which gives a characterization of the regular J—analytic spread of a ncetherian
filtration / = (7n) in terms of ij(In}.


COROLLARY 3.4. Let Abe a ncetherian ring, f = (In) a ncetherian filtration
on A and J an ideal of A over I\. Let k be an integer in N*. We assume that
m is a positive integer such that Imn = 1^ for all n € N. Then


(i) W , f e ) = ^ ( / m n > A : ) / 0 r n € N *


(ii) There exists p e N*, which is a multiple of m such that
t a j ( f , k ) = t j ( I p n , k ) for neW


(iii) t*j(f, k) = sup {O(/mn, k) : n € M* }


(iv) the sequence n t-> £j(/mni, k} is an increasing and eventually stationary
sequence of limit £}(/, k}


(v) the sequence n i—>• ij(In\, k} is eventually stationary of limit £}(/, k}.


COROLLARY 3.5. Let A be a ncetherian ring, f = (In] a ncetherian filtration
on A and m > 1 an integer such that Imn — /^ for n > 0. Let k £ N*.


(i) If M is a maximal ideal over ̂ , we have ia
M(f,k] = £jU(/)


(ii) *"(/,*) =£"(/).


Proof. (i) From the definition, ta
M (/, k) = sup {tM (I£, k) : n G N* }.


If J D /p, J/^ + /^+fc = JJ» and J + l£ = J. Therefore the elements of
IP are J-independent of order k with respect to //p if and only if they are
J—independent with respect to //p. Thus we have : ^M(^-I^) — ̂ M^m] f°r


n > l and PM(f, k} = sup {**,(&) : " e N*} = ̂ (/).


(^nj If fc 6 N* and ,M a maximal ideal over //,- then \// C At.
Taking the supremum we have (ii).


EXAMPLE 3.6. Here we prove that l ( g , k ) can be different from t a ( g , k ] even
for a ncetherian filtration of a local ring with infinite residue field.


Let (A, M} be a ncetherian local ring and / a proper ideal of A the analytic
spread of which is given by 7(1) = dim 2(In/-M!n) = 2.


n>0


(For instance it is the case if A is equal to the localized of K[Xi,X2, X^} at
( X i , A"2,X3), / the localized of ( X i , X 2 ) and X a field).
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If A/M is infinite, then by D. G. Northcott and D. Rees [3, §3, Theorem 3],
1(1) is equal to the analytic spread of /, i.e., 1(1) = 7(7) = 2. (See [1, §0] for
various interpretations of analytic spread) .
Thus, there exist 0.1,0.2 € 7 which are M— independent with respect to //.


a) Let g = (Gn) be such that Gn = A for n < 0, G4n = I2n for n > 1,
G4n+i = <34n+2 = 72n+2 and G4n+3 = 72n+3 for n > 0. One verifies that
g is a pregraduation of A and is not a filtration. For all a e G\ we have :


1 a4n+2 = aa4n+1 6 GiG4n+2 C MG4n+2 + G4n+2+k, for n > 1.
But 1 £ jM = .M + Gfc therefore £(5, jfe) = 0.


From Theorem 3.3, Corollary 3.4 and [1, (2.4)] we have :


sup (7(7n) : n € N* } = 7(J). Thus ta(g, k)^1^ t(g, k) = 0.


b) Let / = (7n) be a filtration such that 7n = A for n < 0, 72n = 7n for n > 1
and 72n-|-i = 7n+1 for n > 0. One verifies that / is a ncetherian filtration.


For A: 6 N7, a G GI and n > 1, we have : a2n+2 = aa2n+1 <E 7!72n+2.
Thus a2n+2 e A472n+2 + 72n+2+fc. As 1 $ M, we have : £(/, k) = 0.
Furthermore, £°(/, Jk) = £a(7, fe) = sup (t(In) : n G N*} = 7(7) = 2 / £(/, /c).


Okon defined in [4, (2.1.7)] the analytic spread of a filtration / by the integer :


7(/, 1) = sup < dim -— ' . : M. € Max A > where 3?(A, /) = 7 7nJ^n


[ (u,Al)3fe(A,/) J 
n̂^L


for / = (/„) and u = X~l. By (2.1.2), this means that


I V^ ^
7(/, 1) = sup ^ dim 2^ : A^ e Max A


PROPOSITION 3.7. Let (A,M) be a ncetherian local ring, f = (/„) a ncethe-
rian filtration on A and I an ideal of A. If A/M. is infinite then :


0) <(/,*) < /(/) and £(/,*) < f»( / , fc) = T(/) - 7(/,l) = 7At(/) - r M ( f )


(ii) /(I) = T(7) = 7(7,1) - IM(!) = r^(J)


mt/i 7 j(/)=dim-^^andr J(/)=trdeg7A
 B(A/)


where dim designates the Krull dimension and trdeg designates the transcen-
dence degree (See [2, §!]/


Proo/. ^ Let p > 1 be such that Ipn - If for n > 0. Then
r(/) = ^(7p)-sup{^):neN*}.


By Northcott and Rees [3, §3, Theorem 3], as A/M. is infinite, we have
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From Propositions (2.4) and (2.12) of [1], there exists q > 1 such that


7(/p
n) = 7(/P) - 7(W = lM(f] = 7(/, 1) = r M ( f ) .


With Corollary 3.5, Remark 3.2-(i) and Proposition l-2-(i) we have :
£a(f, k) = P(f) > *(/, k} and l(f, k] < i(f}.


(ii) If A/M. is infinite, then i(I] = j ( I ) and the conclusion follows from (i).
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INTRODUCTION


Let A = 0n€N An be a noetherian graded ring of finite Krull dimension where
AQ is an artinian ring and M = ®n€p,jMn be a graded yl-module of finite
type with Krull dimension d. The Hilbert function H(M, -) of M is de-
fined by H(M,n) = £Ao(Mn). The Hilbert-Theorem asserts that ff(M,-)
is a polynomial function of degree d — 1 when A is a homogeneous graded
ring. Here we are concerned with the case of a not necessarily homogeneous
graded ring A. We prove that the Hilbert function H(M,—) and the cumula-
tive Hilbert function H*(M, —) are quasi-polynomial functions and in addition
that H*(M,—} is a uniform quasi-polynomial function. Then it is possible to
define the multiplicity of a graded module of finite type by the asymptotic
formula e^(M) — linin-^oo ^?H*(M,n) as in the homogeneous case. Another
point of view is to consider the Hilbert series SHM(T] = ]T}neN #(M,n)Tn


of M. In the second section some well-known results concerning SHM(T} and
some arithmetic and geometric examples are given. In the last part, we give an
extension of the Hilbert-Samuel Theorem to good nitrations. In particular we
prove that if A is a noetherian semi local ring, M an A-module of finite type
with Krull dimension d and / = (/n) a noetherian filtration on A such that
\fl[ = r(A) the Jacobson ideal of A, then the function n ̂  ^(M//nM) is a
uniform quasi-polynomial function of degree d.
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1 HILBERT FUNCTIONS


Let A = 0n€N An be a noetherian graded ring of finite Krull dimension where
A0 is an artinian ring. Let M = ®n6N Mn be a graded A-module of finite type
with Krull dimension d.


Then we can define the following Hilbert functions


H(M, -) : N -> N, H*(M, -) : N ->• N


by


Jfc=0


We know that if A is a homogeneous graded ring, that is if A ~ AO[XI , £2, ..., xr]
and the degree of XL is 1 for all i, the Hilbert functions are polynomial with
degree respectively d — l and d. This is false if degree of X{ > 1 for some i.


DEFINITION 1 A quasi-polynomial P of degree d > —I and period p > 1 is
a sequence (P0,Pi, ...,Pp_i), Pi € Q[X] such that max(cPPi) = d. Then P is
called a uniform quasi-polynomial if all the Pi have the same degree and the
same leading coefficient. We write P(n) = Pi(n) if n 6 Z and n = i [p] for
some i = 0, 1, ...,p - 1


DEFINITION 2 A function f : N -4 N is said to be a quasi-polynomial function
of degree d and period p if there exists a quasi-polynomial P ~ (Po, PI, • • - , PP-i)
of degree d > — 1 and period p>l such that


/(n) = P(n) forn » 0


Then, we write : f ~ P. If in addition P is a uniform quasi-polynomial, f is
called a uniform quasi-polynomial function.


We have the following result which is a generalization of the classical Hilbert
Theorem. A proof is given in [6]. See also [1] and [2].


THEOREM 1 Let A be a noetherian graded ring of finite Krull dimension.
We assume that A = Ao[xi,X2, ...,xr], where each X{ is homogeneous of degree
d{ > 1 and that AQ is an artinian ring. Let M = @n^Mn be a graded A-module
of finite type with Krull dimension d. Let us put p = /cm(di,d2, ...,dr)- Then
the functions H(M, -) and #*(M, -) are quasi-polynomial functions of period
p and of degree d — l and d respectively. Moreover
(1) if H(M, -) ~ P, PO have degree d-l.
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(2) H*(M,—) is a uniform quasi-polynomial function.


Under the conditions of Theorem 1, we define the multiplicity of M by the
following asymptotic formula


eA(M] = lim ~H*(M,n)
n— XX) n


In the particular case where 0 ->• M' ->• M ->• M" -> 0 is an exact sequence of
graded A-modules with the same Krull dimension, we have


eA(M) = eA(M'} + eA(M")


The following example was suggested to me by L. Avramov during the Fez meet-
ing. It proves that the quasi-polynomial function H(M,—} is not necessarily a
uniform function, and that the Pi's do not have alternatively degree d— 1 or — 1
as we could expect.


Here if M — @n^Mn is a graded ring and d is an integer, M(d) is the graded
ring the graduation of which is defined by M(d}n = Mn+d-


EXAMPLE 1 Let A be the graded ring k[X, Y] where k is a field and where X
and Y have the same degree 2. We consider the graded A-module M = MI ©M2
where Ml = A(l] = ®n€NM1)n and M2 = A/(Y) = ©n€NM2,n. Then the
Krull dimension of M is 2 and we have


/O i f n = l [ 2 ] ,


So the numerical function H(M, — ) : n H> dimfcMn is a quasi-polynomial func-
tion of period 2 and degree 1, and if H(M, -) ~ P = (P0, PI) we have


The degree and the leading coefficient of P0 and PI are different. The multi-
plicity of M is 4"1 D


Here we give a geometric example. When P is a rational polytope, we are
interested in the numerical function which associates at each integer n the num-
ber of integral points belonging to the polytope nP. This function has been
intensively studied by E. Ehrhart [7].
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EXAMPLE 2 Let P be a rational polytope of dimension d in Es, that is a
polytope whose vertices have rational components . We consider for any integer
m € N, the cardinal Pm of the set rriP R Zs and we want to study the function
(p : n H-> Pn. We define


C = K+{(p, 1) : p <E P} and M = C n Zs+1


M is a monoid of finite type [3, Proposition 6.1.2 (b)]. So the ring A - M[M]
is a normal R-algebra of finite type generated by {X™' : i — 1,2,... ,.7} if
mi ,m2, . . . ,mj generate M and its Krull dimension is d + 1 [3, Chapter 6]. We
graduate A by setting d°m = xs+i for each m = (xi,x<z, ...,xs+i) € M. Then A
is a noetherian graded ring and we have


diniRAm = Pm as a vector space


Hence the function n i-> Pn is a quasi-polynomial function with degree the Krull
dimension KdimRjM] of E[M] minus 1 and period p = lcm(d°mi, d°m2, ...,d°mj).
Furthermore as M is a normal affine monoid, we know from a result proved by
Hochster [8, Theorem 1] that A is a Cohen- Macaulay ring. So if we assume that
A has a regular homogeneous sequence ( x i , X 2 , ...,£^+1) such that the degrees
of the x;'s are relatively prime integers, then we have


eA(A) =d\ (relvol(P))


where relvol('P) is the relative volume of P. Indeed, under the above hypothe-
ses, we know that </? is a uniform quasi-polynomial function (See the Corollary
of Proposition 4). So if D is a multiple of the period of </? such that DP is an in-
tegral polytope and if P — (Po,Pi, ...,PD-I] is the quasi-polynomial associated
with (f>, then the polynomial associated with the polynomial function n i-> VnD
is Q(X) = PQ(DX}. Hence the conclusion follows from [13, 4.6.30] and from
the definition of multiplicity D


APPLICATIONS It is well known that if (A, m) is a local noetherian ring,
I an ideal of A and M a A-module of finite type, the Bass functions


n H4 vl
A(InM) and n K-» i^(/nM//n+1M)


are polynomial functions.


Recall that for a module M of finite type on a local ring A with residual
field k, the i-th Bass number of M is defined to be


=dimkExti
A(k,M]


the dimension of the k- vector space Extl
A(k, M).


Instead of an adic filtration, we consider here a noetherian filtration / = (/„) on.
A. Its Rees ring is the graded noetherian ring #(/) = !Cn€N^^n- ^et us Put







Extension of the Hilbert-Samuel Theorem 121


#(/) = A[xi,X2, ...,xr] where Xi,x2 , . . . ,x7 . are homogeneous elements of R(f).
The degree of each Xj is di > 1 for i — 1,2,..., r. Then we have


PROPOSITION 1 The functions n H- v\(InM] and n •-> v\(InMIIn+iM) are
quasi-polynomial functions of period p — lcm(d\, d?,..., dr).


PROOF. Let A be the Rees ring of / and M = ©neN/nM. It follows from the
properties of noetherian nitrations (see [12]) that A is a noetherian graded ring
and that M is a finite graded A-module. Let us take a free finite resolution
(Ln) of the A-module A/971 :


(*) » Ln -* Ln_i ->• 1 LI -> L0 -»• -4/2K -> 0


This yields the complex of A-modules:


0-


By hypothesis each Ln is a finite free A-module, hence HoniA(Ln,'M.) ~ Mdn


where dn is the rank of Ln and Exi^(A/9Jl,M) is a A-module of finite type.
So it follows from Theorem 1 that the function n M- v^(InM] is a quasi-
polynomial function of period p. In the same way, to prove that the func-
tion n t-> i^(/nM//n+1M) is a quasi-polynomial function, we consider the
graded noetherian ring A = Gf(A) = ®n€N /n//n+i and the graded A-module
M - G f ( M ) = ©B€N/nAf//n+1M D


PROPOSITION 2 Let (A, OH) 6e a noetherian local ring, M an A-module
of finite type and f = (7n) a noetherian filtration on A. Then the functions
n i-)- depth(InM] and n i-» depth(InM/In+iM] are periodic functions of pe-
riod p = lcm(di , di , . . . , dr ) for large n .


PROOF. We know that for each A-module M of finite type the depth of
M is inf{t : vf(M) ^0}. We put Mn = JnM or InM/In+lM and d' =
KdimA. Then it follows from Proposition 1 that the function n •-> v^(Mn}
is a quasi-polynomial function. So we consider the quasi-polynomial Qi =
(Qi,QiQi,ii---,Qi,p-i] associated with the function n i — > vl


A(Mn] and for each
integer j we put Kj = {i : i < d' and Qitj ^ 0} and ij for the least integer of
Kj. Since depth(M) < d1 for each nonzero A-module of finite type, we have for
n > 0, depth(Mj+np) = +00 if Kj — 0 and depth(Mj+np) = ij otherwise D


2 HILBERT SERIES


Let A — 0 An be a graded noetherian ring of finite Krull dimension with A0


an artinian ring and M — 0 Mn a nonzero graded module of finite type and
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Krull dimension d. We know that H(M, -) ~ P where P is a quasi-polynomial
of period p and degree d — 1.


The Hilbert series of M is the formal series 5j?/A/(T) defined by


SHM(T) =
n£N


We recall that the valuation of a polynomial Q(T) = X!o a^1 or °f a series


5(T) = ^^° a;Tl is the least integer i such that ai / 0. The valuation of the
nul polynomial is +00.


We have the following results :


PROPOSITION 3 With the notations as above, we have
Q(T]


(1) SHM(T} is a rational function given by — -7 - with ai > 1 fornf=i(i-r t to
i = 1,2, ...,d, anrf i/ie period p of the quasi-polynomial associated with SHM(T]
belongs to {ai,a2l. . . ,<*<*}, Q(T) € 1(T] and Q(l] ^ 0.


^ u(Q(T)) = v(SHM(T)} = min{n e N : Mn ^ 0} where v is the valuation
of the polynomial Q(T) (resp. of the formal series


(3) the degree of the rational function SHM(T) is max{n € N : P(n) ^
H(M,n)} with the convention max(0) = — 1.


SKETCH OF PROOF. (1) holds by induction on d, by using the fact that a
numerical function is a quasi-polynomial function of degree d ^ 1 and period p if
and only if the numerical function A : n ->• f(n+p) — f(n) is a quasi-polynomial
function of degree d—l and period p. See another proof in [3, Proposition 4.3.3].
(2) Let Q = En^v(Q) 9nTn , then we have


(T) = (i + Y.b-T^( E a-Tn)=
t=l


so that av(SHM) — Qv(Q)-
(3) is proved by induction on d and from the following remarks:
(i) If / : N -> N is a quasi-polynomial function of period p and if / ~ P, then
A/ - AP = P(X+p) - P(X) and maxjn : /(n) ^ P(n)} = max{n : A/(n) ^
AP(n)}


(ii) ^
V n Tn - QV'i ( * 1 _ V^ 7i Tn_—L__7 UnJ. — j 1 (^ ^T^ J — / fn-t - ^-,-
/ -y


then
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- n i-» bn is a quasi-polynomial function. We set bn ~ B


- an = bn + bn-a + .... + &n-ma if n = ma + r with 0 $: r < a


— n »->• an is a quasi-polynomial function. If we put a;l ~ A we have


B(X + a) + B(X + 2a) + ....5(X + pa)


- a) 7^ Aadl_Q if c^ = max{n : 6n ^ B(n)}


AA(n) = Aan, for any n > di — aO


In the next propositions, we determine a sequence (o^) and a polynomial
Q(T] when M is a graded Cohen-Macaulay ring or when we know a minimal
free resolution of M.


PROPOSITION 4 Let Abe a noetherian graded ring where AQ is a local artinian
ring. Let M be a Cohen-Macaulay graded A-module of finite type and Krull
dimension d. Then there exist an M -regular sequence x — (xi,x2 , •..,£<*) where
each X{ is homogeneous of degree en > 1 and a polynomial Q(T) € Z[T] such
that


Furthermore, Q(T) = SHM/XM(T] and the coefficients of Q are nonnegative
integers.


PROOF. The case d = 0 is clear. The proof follows from an induction on d and
from the fact that if M is a Cohen-Macaulay module of Krull dimension d and
if a: is a homogeneous regular element of M, then M/xM is a Cohen-Macaulay
module of Krull dimension d — 1 CU


COROLLARY Let A be a noetherian graded ring where AQ is a local ar-
tinian ring and M ^ (0) a Cohen-Macaulay graded A-module of finite type
and Krull dimension d. We assume that there exist an M -regular sequence
x = (11,0:2, ...,£d) where each X{ is homogeneous of degree QJ > 1 and that the
integers oti are relatively prime. Then the Hilbert function of M is a uniform
quasi-polynomial function of period p = Hi=i Qi- Moreover,
(i) Q,(T) = (l-Tv}dSHM(T] e Z[T], Qi(l) ± 0 and Q^e2**/*) = 0 for
0 < k <p.
(ii) The multiplicity of M is given by
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PROOF, (i) We know from Proposition 4 that Q^T) = ̂ ~ '— where


Q(T) is a polynomial with positive coefficients. In particular Qi(l) / 0 since
1 is a root of multiplicity d of the polynomials (1 — Tp}d and Hi^iU ~ Tai).
Furthermore each complex number £& — e2lfc7r/p with 0 < k < p is a root
of (1 - Tp)d of multiplicity d and a root of the polynomial H*=l(l - Ta>) of
multiplicity < d since the integers ct{ are relatively prime. So (i) is proved and
it follows from [1, 3.2, Prop 6] that H(M, — ) is a uniform quasi-polynomial.
The leading coefficient of the quasi-polynomial associated with H(M, —) being


j fd- l ) ! ' We °btain (ii) O


PROPOSITION 5 Let A — k{x\,xi,...,xr\ be a noetherian graded ring over a
field k where the graduation is given by : d°Xi — cti > 1, for i = 1,2, ...,r and
let M be a graded A-module of finite type. Let


0 -> Ls ->• L s_i - > • • • - > • L0 ->• M -^ 0


be a minimal free graded resolution of M. Put LI = 0j6N(-4(-j))/3'4J where


&IA — 0 for each j € N, i = 1, 2, ...,r . Then we have


SHM(T) - > Y^—-——-—


PROOF. It is an easy consequence of the additive property of the length function
D


The following example shows that the Hilbert function of a graded ring A
need not be a uniform quasi-polynomial function even if A is a Cohen-Macaulay
ring.


EXAMPLE 3 Let A = k[Xl,X2,...,Xd] be the ring of polynomials graded by
d°Xi — Q > 1 for some integer a and i = 1,2,..., d. Then


SHA(T) =
(l-Ta)d


Furthermore, if H(A, -) ~ P, we have


(i) H(A,n) = P(n) fo rn e N


(ii) P0(T) - Q(J) and Pt(T) = 0 i f « ^ 0 [a] where Q(T) = (T+d
d~


l)
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In example 4 we compute the number of solutions of a diophantine equation.
We give a geometric interpretation of the leading coefficient of the uniform quasi-
polynomial associated with the numerical function n i—> tf{(zi, £2? • • - , %d) € ^d :


Q.ix\ + Q.-iX'i + ... + adXd < n} where on is a positive integer for i = 1,2,..., d.
Here $B is the cardinality of a finite set B.


EXAMPLE 4 Let (ai,02,. .• ,<*</) be a sequence of positive integers. Consider
the diophantine equation


/ C1\ i i i(j) '. 0:1X1 4- 02^2 ~r ••• + OidXd — n


with n e N. Let


Sn = {(xi,X2) •••,Xd] € Nd which satisfies (5)}


We are interested in the behaviour of the function (p : n H* |5n for large n. So,
we consider a field k and the graded ring A = k[Xi, X2,..., Xd] the graduation of
which is given by d°Xi — QJ for each i — 1,2,..., d. Then H(A, n) = dimkAn =
J|Sn. So (f> is a quasi-polynomial function of degree d — 1 and of period p =
lcm(ai, 0:21..-, Qd). The Hilbert series associated with A (-the generating function
of (S)) is


SHA(T) = H_Ta.,


Indeed,


SH(T) =
n>0


Moreover if H(^4, -) ~ P, we have $Sn = P(n) for all n 6 N. Similarly, the
number of solutions in Nd of


(5<) : aiXi + a2X2 + ... + adXd < n


is a uniform quasi-polynomial function of degree d and of period p given by
H*(A,n). Let Pi be the rational points defined by PQ — 0 and Pi — (xij}
with Xij •=• 8i,j/&i for all i,j — l ,2,.. . ,d where 5ij is the Kronecker symbol.
It follows from example 2 that H*(A,n] = Pn where P is the d-dimensional
rational polytope in Rd whose vertices are the points Po,P\, ...,Pd- Then, as


the volume v(P) of P is given by - 5 - = lim^oo H*^n\ v(P] is the
d\ ni=i a*


leading coefficient of the uniform quasi-polynomial associated with the function
n ' — >• U{(^ i>^2 , -,Zd) ^ Md : QiXi + Q2^2 + ... + adxd < n}.
If in addition the integers 0:1,0:2, -..,0^ are relatively prime, it follows from [1,
3.2, Proposition 6] that the function n n-» }|5n is a uniform quasi-polynomial


function. So its leading coefficient is d.v(P] — - -, - .
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For instance, by using a maple algorithm, we obtain with d ~ 2, a\ —
2, Q2 = 3 :


SHA(T) = i+r2+r3 + r4+r5 + 2T6+r7 + 2r8 + 2T9 + 2r10 + 2rn + ...


and the quasi-polynomial P associated with the function n *-t jj5n has degree 1
and period 6. P is given by


P4(T) =


REMARK Let / = (7n) be & noetherian filtration on a local noetherian ring
(A, 971) with residual field k. Let R(f] = A[x1(x2, ...,xr] be its Rees ring with
d°Xi — di. For each n € N, let n(In} be the cardinal of a minimal set of
generators of the ideal In. Then


(p : n H— > ju(/n) = dim*/n/9K/n


is a quasi-polynomial function of period p = lcm(di, ^2, -. . , d r)- Indeed fi(In) =
H ( G f ( A ) , n ) where Gf(A) is the graded ring ®n€N/n/^/n - R(f)/WR(f).
The degree d of </? is the Krull dimension of G/(A) minus 1. The integer d + 1
is the analytic spread of f and is one of the possible extension to filtrations of
the notion of analytic spread of an ideal introduced by Northcott and Rees [9].
For another generalizations, see [5], [10].


PROPOSITION 6 Let A = k[Xi,X2, ..., Xd] be the polynomial ring over a field
k graded by d°Xi = on > 1 for all i = 1,2, ...,d. Then the multiplicity of A is
given by


Moreover, if the integers 01,^2, ---iCtd are relatively prime, the Hilbert function
of A is a uniform quasi-polynomial function of degree d — l and period Hi=i ai-


Its leading coefficient is - -, - .
(d-l)!n?=i«i


PROOF. Use example 4 D
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3 EXTENSION OF THE HILBERT-SAMUEL THEOREM


DEFINITION 3 Let f - (/„) be a filtration on the ring A and $ = (Mn) a
filtration on the A-module M. We say that (/, $) is a good pair of filiations if
the following conditions hold:
(i) InMp C Mn+p, for all n,p > 0
(ii) Gf(A) = ®n>oln/ln+i ^ a noetherian graded ring of finite Krull dimension
(in) G$(M) = @n>QMn/Mn+i is a finite Gf (A)-module.


When A is a noetherian ring, an /-adic filtration $ = (Mn) of M gives a pair
(//, $) of good filtrations where // is the 7-adic filtration on A. More generally,
if / is a noetherian filtration on A, the notion of /-good filtration $ on M
introduced by Ratliff also gives a pair (/, $) of good filtrations. See [11].


THEOREM 2 Let f = (Jn) be a filtration on the noetherian ring A and
$ = (Mn) a filtration on the A-module M. Assume that (/, $) is a good
pair of filtrations and that ^(M/JiM) is finite. Then the numerical func-
tions (p : n i—> ^(Mn/Mn+i) and T/> : n i—> ^(M/Mn) are quasi-polynomial
functions respectively of degree KdimG$(M) — 1 and KdimG^(M). Further-
more, (i) ifGf(A) = A/Ii[zi,Z2, ...,zr] where each Zi is homogeneous of degree
di > 1, P — Icm(di,d2,...,dr) is a period for (f> and ijj. (ii) $ is a uniform
quasi-polynomial function.


PROOF. Since InM = InM0 C Mn and Supp(M//nM) = Supp(M//iM) C
Max(A), we have £^(M//nM) < oo for n 6 N and as Mn/Mn+i is a sub-
module of M/Mn+i, ^(Mn/Mn+1) is finite. We put K = AnnM and Jn =
(Jn 4- K)/K for all n. Then g — (Jn) is a filtration on B. We consider the
graded ring Gg(B) = 0n>0-V^n+i- Since /iM = J:M and tB(M/JiM) <
co, we have £3(8!J\) < oo hence BjJ\ is an artinian ring. Moreover as
($,/) is a pair of good filtrations, ($,<?) is also a pair of good filtrations, so
G$(M) = ®n>0 Mn/Mn+i is a graded Gp(jB)-module of finite type. Then it
follows from trie Hilbert Theorem that the functions (p = H(G9(M),-} and
V> = H*(Gg(M),—} are quasi-polynomial functions satisfying (i) and (ii) D


THEOREM 3 Let A be a noetherian semi-local ring, M an A-module of fi-
nite type with Krull dimension d and f = (/n) a noetherian filtration on A
such that \/77 — r(A) the Jacobson ideal of A. Then the function (p : n H>
^(M//nM) is a uniform quasi-polynomial function of degree d and of period
p = /cm(di, di,..., dr] if the Rees ring of f is generated over A by homogeneous
elements Xi ,x2 , ...,xr with d°Xi — di for i = 1,2, ...,r.


PROOF. (/, $) being a pair of good filtrations when / = (/„) is a noetherian
filtration on A with $ = (7nM), the proof is a consequence of Theorem 2 since


D
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In particular, we can define the /-multiplicity of M of respect a noetherian
nitration / = (/n) by


e f ( M ) = Urn —.£A(MIInM}


EXAMPLE 5 Let A be the ring of formal series k[[X!, X2j..., Xd}} over the field
k, I — (Xi,X<2, ...,Xd} and / = (7n) the filtration on A given by its Rees ring
R(f) - A[IXJX2,IX3, ...,IXS] for some integer s. Then the function


(f) : n H->


is a quasi-polynomial function of degree d and period 5. If <p ~ P — (/b,Pit • ••-,
Ps_i), we have


— — 1


Pi(X) = P0(X + 0, for t = 0,1,...,s - 1


1 „ ,
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On the Integral Closure of Going-Down Rings
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ABSTRACT


If R is an n—dimensional going-down ring (resp., an n-dimensional locally di-
vided ring), with 0 < n < °°, in which each zero-divisor is nilpotent and if P is a
prime ideal of R of height n - 1 such that P C J(R), then the integral closure of R in
RP is a going-down ring (resp., a locally divided ring). Consequently, the question
of whether the integral closure of a two-dimensional going-down domain R is a
going-down domain is reduced to the subcase in which R is a divided domain that
is integrally closed in Rp, where P is the unique height 1 prime ideal of R. The
question of whether the integral closure of a going-down domain is a going-down
domain is shown to be equivalent to the question of whether the integral closure
of a going-down ring (resp., locally divided ring) in which each zero-divisor is
nilpotent is a going-down ring (resp., locally divided ring).


1 INTRODUCTION


All rings considered are commutative with identity, typically nonzero. As in [5]
and [13], a (commutative) integral domain R is said to be a going-down domain
in case R C T satisfies the going-down property (dubbed GD, as in [16, p. 28])
for all integral domains T containing R. The most natural examples of going-down
domains are the integral domains of (Krull) dimension 1 and the Priifer domains.
As both of these classes are stable under the formation of integral closure (in the
quotient field), it seems natural to ask if the same holds for the class of going-down
domains. Such "ascent" questions have been of continuing interest (cf. [6, Corol-
lary 2.5, Proposition 3.1 and Theorem 3.3], [8, Theorem 3.2 and Corollary 3.4],
[18, Propositions 1 and 2]).


Our interest here is in finding equivalents of the question, (Q), of whether the
integral closure of a going-down domain R must be a going-down domain. (Note
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that (<2) remains open even for two-dimensional domains: cf. [6, Corollary 3.5].)
Using ideas that go back to [7], Corollary 2.2 reduces question (Q) to the subcase
in which R is a seminormal divided domain. (Recall that an integral domain D


is called a divided domain if PDp — P for each prime ideal P of D; and that D is
called a locally divided domain if D/v is a divided domain for each prime ideal N
of D. Any locally divided domain is a going-down domain [7, Remark 2.7 (b)];
while the converse holds for seminormal domains (cf. [7, Corollary 2.6]), it fails
in general ([7, Example 2.9], [4, Remark 2.3]). One of our main results, Theo-
rem 2.6, includes an "ascent" result for finite-dimensional "going-down domain"
(resp., "locally divided domain"). Its local case states that if R is an /z-dimensional
quasilocal going-down domain (resp., an n—dimensional divided domain), with
0 < n < <=*>, and if P is the unique prime ideal of R of height n - 1, then the inte-
gral closure of R in RP is a going-down domain (resp., a locally divided domain).
(Such an ideal P is uniquely determined since any going-down domain must be a
treed domain [5, Theorem 2.2].) As a consequence of Theorem 2.6, Corollary 2.7
reduces the question (Q} for integral domains R with dim(/?) < n, where n < °°,
to the subcase in which R is a divided domain (hence quasilocal) that is integrally
closed in a certain localization.


Theorem 2.6 is to be contrasted with [11, Example 3.1], which showed that a
finite-type (hence integral) overring of a two-dimensional divided (hence quasilo-
cal going-down domain) domain need not be a going-down domain. Although the
latter result showed that one cannot naively attack the question (Q) by using the
fact that the class of going-down domains is stable under direct limit [12, Corol-
lary 2.7], Theorem 2.6 gives reason to hope for additional positive "ascent" results
relative to naturally occurring subalgebras of the integral closure of a given going-
down domain.


For any ring A, let Z(A) (resp., nil (A)) denote the set of zero-divisors (resp.,
nilpotent elements) of A; and let tq(A) denote the total quotient ring of A. Recall
from [10] that a ring A is said to be a going-down ring if A/P is a going-down
domain for each prime ideal P of A. Any zero- or one-dimensional ring is a going-
down ring, as is any chained ring [10, Proposition 2.1 (c), (d)]. An integral domain
is a going-down ring if and only if it is a going-down domain. Generalizing the
case of domains, [10, Corollary 2.6] established that if a ring A satisfies Z(A) =
nil (A), then A is a going-down ring if and only if A C B satisfies GD for all over-


•gs#of A (that is, for all A -subalgebras B of tq(A)). Following [10], the study of
going-down rings (and of "locally divided rings") A satisfying Z(A) = nil(A) was
pursued in [2] and [3]. In fact, the present work is also couched in this generality,
as the formulations of Theorem 2.6 and Corollary 2.7 involve, not just going-down
domains and locally divided domains, but going-down rings and locally divided
rings A such that Z(A) — nil(A). (Background on divided rings and locally divided
rings from [1] and [2] is deferred to Section 2 in order to limit this Introduction to a
manageable size.) Our other main result, Theorem 2.4, establishes that the question
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(Q) is equivalent to the (ostensibly more general) question of whether the class of
going-down rings (resp., locally divided rings) A satisfy ing Z(A) — nil(A) is stable
under the formation of integral closure (in the ambient total quotient ring).


The proofs of Theorems 2.4 and 2.6 use a result characterizing when certain
pullbacks are going-down rings (resp., locally divided rings) [10, Proposition 2.2]
(resp., [2, Theorem 2.7]). For readers interested only in the domain-theoretic cases,
note that the special cases of these pullback results involving going-down domains
and locally divided domains appear in [9]. Appropriate background for what we
use on pullbacks can be found in [14]. Proposition 2.1 and Corollary 2.2 refer to
the seminormalization R+ of an integral domain R. Appropriate background on
seminormalization and seminormality can be found in [19].


In addition to the notation introduced above, if A is a ring, we let Spec(A) de-
note the set of prime ideals of A; Max (A) the set of maximal ideals of A; /(A) the
Jacobson radical of A; dim(A) the Krull dimension of A; ht(/>) = ht/i(P) the height
(in A) of a prime ideal P of A; and A' the integral closure of A (in tq(A)). Any
unexplained material is standard, as in [15], [16].


2 RESULTS


We begin with a result on integral domains that could have been published 25 years
ago. In fact, it was recently obtained as a corollary of work on arbitrary reduced
rings (possibly with nontrivial zero-divisors) [2, Theorem 3.4], but it seems appro-
priate to record the streamlined proof given below for the domain-theoretic case.


PROPOSITION 2.1. [2, Corollary 3.6] Let R be an integral domain. Then R is a
going-down domain if and only ifR+ is a locally divided domain.


Proof. Since R+ is a seminormal integral domain, it follows from the comments
concerning [7, Corollary 2.6] in the Introduction that R+ is a locally divided do-
main if and only if it is a going-down domain. Therefore, it suffices to show that R
is a going-down domain if and only if R+ is a going-down domain. This, in turn,
follows from [7, Lemma 2.3] since R C R+ is an integral extension such that the
canonical map Spec(/?+) -)-Spec(fl) is an injection (cf. [19, Lemma 2.2]). D


It has been observed that sharper "ascent" results for "going-down domain"
relative to integral closure are often available for integral domains that are locally
finite-dimensional (cf. [5, Proposition 2.7], [18, Proposition 3]). In this spirit, we
record in Corollary 2.2 (a) that the question (Q) can be considered for integral
domains of a fixed (Krull) dimension, a theme that we return to in Corollaries 2.7
and 2.8 in the context of bounded (Krull) dimension. Corollary 2.2 (b) reduces (<2)
to the case of a seminormal divided (hence, quasilocal) domain.


COROLLARY 2.2. (a)LetQ<n< °° Then the following conditions are equiva-
lent:
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(1) IfR is a going-down domain such thatdim(R) = n, then R' is a going-down
domain;


(2) If T is a seminormal locally divided domain such that dim(T) = n, then T'
is a going-down domain.


(b) The following conditions are equivalent:
(1) If R is a going-down domain, then R' is a going-down domain;
(2) If T is a seminormal divided domain, then T' is a going-down domain.


Proof, (a) Since any locally divided domain is a going-down domain, (1) =>• (2)
trivially. Conversely, suppose (2), and let R be as in (1). Put T := R+. As T is
integral over/?, dim(T') = dim(/?) = n (cf. [16, Theorem 48]). Also, by Proposition
2.1, T is a locally divided domain. Since T is seminormal, (2) ensures that T' is a
going-down domain. But T' — R', and so (1) follows.


(b) As above, (1) => (2) trivially. Conversely, suppose (2) and let R be as in
(1), once again putting T :— R+. As T' = /?', we may suppose that R = T, that is,
that R is a seminormal locally divided domain, by Proposition 2.1. Now, for each
M G Max(/?), RM inherits seminormality from R (cf. [19, Corollary 2.10]) and is
a divided domain. Hence, by (2), (RM)' is a going-down domain for each M G
Max(K). But (RM)' = R'R\M (cf. [15, Proposition 10.2]). It follows easily that/?' is
a going-down domain, n


In view of the extensive literature on "ascent" of the "going-down domain"
property, it seems natural to ask for "ascent" results on "going-down ring" (with
respect to integral extensions). In this regard, we show in Theorem 2.4 that for
going-down rings A such that Z(A) — nil(A), the question that is analogous to (Q)
is actually equivalent to (Q). In order to present similar results for the "locally
divided ring" concept at the same time, we pause first to review some background
on divided rings and locally divided rings from [1] and [2].


Let A be a ring. A prime ideal P of A is said to be (a) divided (prime ideal)
in A if P is comparable under inclusion with each ideal of A; if A is an integral
domain, this condition is equivalent to PAp = P. We say that A is a divided ring if
each prime ideal of A is divided in A; and that A is a locally divided ring if A/> is a
divided ring for each P G Spec(A). An integral domain is a divided (resp., locally
divided) ring if and only if it is a divided (resp., locally divided) domain. Divided
rings are the same as the quasilocal locally divided rings. Any locally divided ring
is a treed going-down ring; and any zero-dimensional ring is a locally divided ring.
The class of divided rings (resp., locally divided rings) is stable under the formation
of rings of fractions and factor rings.


We next isolate some facts that will be used in the proofs of Theorems 2.4 and
2.6.


LEMMA 2.3. (a) Let A be a ring. Then the following conditions are equivalent:
(1) A is a going-down ring (resp., locally divided ring);
(2) Ap is a going-down ring (resp., locally divided ring) for each P G Spec(A);
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(3) AM is a going-down ring (resp., locally divided ring) for each M G Max(A);
(b) Let AC B be an integral extension of rings. IfBA\M is a going-down ring


(resp., locally divided ring) for each M G Max(A], then B is a going-down ring
(resp., locally divided ring).


Proof, (a) The assertion for going-down rings (resp. locally divided rings) was
proved in [10, Proposition 2.1 (b)] (resp., [2, Proposition 2.1 (a), (c)]).


(b) By (a), it is enough to show that BN is a going-down ring (resp., divided
ring) for each N € Max (B). Let M :=NC\A. Then M 6 Max (A) by integrality
(more precisely, by the going-up property, as in [15, Corollary 11.6], [16, Theo-
rem 44]). By hypothesis, BA\M is a going-down ring (resp., locally divided ring).
As the class of going-down rings (resp., locally divided rings) is stable under lo-
calization [10, Proposition 2.1 (b)] (resp., [2, Proposition 2.1 (a)]), it follows that
BN = (BA\M)NBA\M is, indeed, a going-down ring (resp., locally divided ring), n


THEOREM 2.4. The following conditions are equivalent:
(1) If R is a going-down domain, then R' is a going-down domain;
(2) If R is a going-down domain, then R' is a locally divided domain;
(3) If R is a locally divided domain, then R' is a locally divided domain;
(4) If A is a quasilocal going-down ring such that Z(A] = nil(A], then A' is a


going-down ring;
(5) If A is a quasilocal going-down ring such that Z(A) = nil(A], then A' is a


locally divided ring;
(6) If A is a divided ring such that Z(A] = nil(A), then A1 is a locally divided


ring;
(7) If B is a going-down ring such that Z(B] — nil(B], then B' is a going-down


ring;
(8) IfB is a going-down ring such that Z(B) = nil(B], then B' is a locally divided


ring;
(9) If B is a locally divided ring such that Z(B) — nil(B), then B' is a locally


divided ring.


Proof. Note, as a special case of Proposition 2.1 (cf. also [17, Corollary 11], [7,
Corollary 2.8]) that an integrally closed integral domain is a going-down domain if
and only if it is a locally divided domain. Consequently, (1) <=>• (2). Moreover, the
implications divided domain => locally divided domain =>• going-down domain
and Corollary 2.2 (b) yield that (2) =* (3) => (1). Similarly, (6) => (1).


Next, since any divided ring is quasilocal, the implications divided ring => lo-
cally divided ring => going-down ring yield that (5) =$» (6), (4); and, for the same
reason, (8) => (9), (7). Moreover, it is trivial that (7) =» (4), (1); that (8) => (5), (2);
and that (9) => (6), (3). We turn next to the more substantial implications.


(2) =*• (5): Assume (2), and let A be as in (5). Since Z(A) = nil (A), A has a
unique minimal prime ideal, say PQ, and tq(A) = A/>0 [10, Proposition 2.3 (b)]. Put
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B := A' and N := PoAp0. Now, the hypotheses on A ensure that A + N is integral
over A [3, Theorem 2.1], whence (A + N)' = A' = B. It is easy to see that N E
Spec(5) and BN = APo. As dim(BN) = dim(APo) = htA(P0) = 0, [2, Corollary 2.2]
gives that B^ is a locally divided ring. Moreover, since the class of going-down
rings is stable under the formation of factor rings, the integral domain R := A/Po
is also a going-down ring, and hence a going-down domain. Therefore, by (2), R'
is a locally divided domain, and hence a locally divided ring. Notice that R' = B/N


by, for instance, applying [14, Corollary 1.5 (5)] to the pullback description


In particular, B/N is a locally divided ring. Accordingly, to show that B is a locally
divided ring (and thus complete the proof of (5)), it suffices, by [2, Theorem 2.7],
to observe that NBN = NAPo = N C B.


(4) =^> (7); (5) => (8): Assume (4) (resp., (5)), and let B be as in (7) (resp., (8)).
Consider T := tq(Z?) = BQO, where QQ is the unique minimal prime ideal of B [10,
Proposition 2.3 (b)]. By Lemma 2.3 (b), applied to the ring extension B C B', it is
enough to show that if M £ Max (5), thenE := (B')B\M is a going-down ring (resp.,
locally divided ring). Now, by [15, Proposition 10.2], E is the integral closure of
BM in TB\M- Note that BM is a going-down ring [10, Proposition 2.1 (b)] and an
overring of B [2, Proposition 2.5 (a)], whence Z(BM] = nil(fi^) by [2, Lemma
2.6]. In particular, tq(BM) = tq(5) = T. Also, B\MCB\QQ = B\Z(B), whence
each element of B \ M is a unit of T, and so TB\M — T. Thus, E is the integral clo-
sure of the quasilocal going-down ring BM in its total quotient ring, and we have
seen that Z(BM] = nil(BM}. Accordingly, by (4) (resp., (5)), applied to A := BM,
we conclude that E is a going-down ring (resp., locally divided ring), as desired. D


REMARK 2.5. (a) For each n, 1 < n < °°, a construction is given in [2, Example
3.10] of an n-dimensional quasilocal integrally closed going-down ring A which
is not a locally divided ring. The existence of this ring A does not answer question
(<2) in the negative (indeed, this question remains open), for A does not violate
condition (5) in the statement of Theorem 2.4. The point is that Z(A) / nil(A).
Unfortunately, it was erroneously claimed in [2, Remark 3.11] that Z(A) = nil (A),
the error occurring because of a miscalculation of Z(A). The authors of [2] wish to
express their regret for this error in [2, Remark 3.11].


(b) In view of (a), it is natural to ask what can be concluded about integrally
closed rings satisfying condition (5) in the statement of Theorem 2.4. One possible
answer to this question is given by the following result. If A is a quasilocal inte-
grally closed going-down ring such that PQ := Z(A) = nil (A), then PQ is a divided
prime ideal in A; that is, PoAp0 = PQ.


For a proof, let B := A -f PoA/>0. Thanks to [3, Theorem 2.1], the hypotheses en-
sure that B is integral over A. As A C B C APo = tq(A) [10, Proposition 2.3 (b)] and
A is integrally closed, B = A, whence P0Ap0 = PO^PO HA = P0. By [2, Proposition
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2.5 (c)], this means that PQ is a divided prime ideal in A, to complete the proof.


Unlike most of our other results (2.2, 2.4, 2.7, 2.8) which find equivalents to
the "ascent" question (<2) or its variants, Theorem 2.6 is itself an "ascent" result.
Its proof adapts techniques that have been used in the proofs of Lemma 2.3 and
Theorem 2.4.


THEOREM 2.6. Let n be a positive integer. Let A be a going-down ring (resp., a
locally divided ring) such that dim(A) = n and Z(A) = nil(A). Let P £ Spec(A)
be a prime ideal of A of height n-\ and suppose that P C J(A}. Then the integral
closure of A in Ap is a going-down ring (resp., a locally divided ring).


Proof. The proof will repeatedly use the fact that the class of going-down rings
(resp., locally divided rings) is stable under the formation of rings of fractions [10,
Proposition 2.1 (b)] (resp., [2, Proposition 2.1 (a)]). Let us begin with the case in
which A is quasilocal. For this case, we may adapt the proof that (2) =3> (5) in the
proof of Theorem 2.4, as in the following sketch. Let B denote the integral closure
of A in Ap, and put N := PAp. As before, A -f N is integral over A (since locally
divided ring => going-down ring). Then N € Spec (B) and BN — Ap is a going-
down ring (resp., a locally divided ring). As R := AfP is one-dimensional, so is
the integral domain R' — B/N, whence B/N is also a going-down ring (resp., a
locally divided ring). Since NB^ = NApQ = N C B, we have that N is comparable
under inclusion with each ideal of B. Hence, B is a going-down ring (resp., a locally
divided ring), by [10, Proposition 2.2] (resp., [2, Theorem 2.7]). This completes
the proof in case A is quasilocal.


We turn now to the general case. Its proof has some of the flavor of the proofs
that (4) => (7) and (5) =$• (8) in Theorem 2.4. Once again, let B denote the integral
closure of A in Ap. By Lemma 2.3 (b), it is enough to show that if M 6 Max(A),
then BA\M is a going-down ring (resp., locally divided ring). Observe that AM is
an overling of A and that Z(A^) = nil(A/v/) [2, Proposition 2.5 (a) and Lemma
2.6]. Moreover, AM is a quasilocal going-down ring (resp., a divided ring). Also,
since P C /(A) C M, we have that \&AM(PAM} — htA(P) = n - 1. Next, observe
via [15, Proposition 10.2] that BA\M is the integral closure of AM in (Ap)A\M. As
A \ M C A \ P C Ap/PAp, we see that (Ap)A\M = Ap = (AM}PAM- Accordingly, it
follows from the above local case (with AM playing the earlier role of A) that BA\M


is a going-down ring (resp., locally divided ring), as desired. D


In Corollary 2.7, we return to the type of theme that was addressed prior to the
statement of Corollary 2.2. In the spirit of Theorems 2.4 and 2.6, it is no harder
to move beyond integral domains and work in the context of rings A such that
Z(A) = nil (A). The impact of Corollary 2.7 is to reduce question (Q) in the finite-
dimensional case to the study of quasilocal going-down domains R for which the
conductor (R: R') is contained in the prime ideal of R that is adjacent to the maximal
ideal of R.
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COROLLARY 2.7. Let n be a positive integer. Then the following conditions are
equivalent:


(1) IfR is a going-down domain such thatdim(R] < n, then R' is a going-down
domain;


(2) If T is a divided domain such that 1 < dim(T] =m<n and ifT is integrally
closed in TQ, where Q is the unique prime ideal ofT of height m - 1, then T' is a
going-down domain;


(3) If A is a quasilocal going-down ring such that 1 < dim(A] = m<n, Z(A) =
nil (A), and A is integrally closed in Ap, where P is any prime ideal of A of height
m— I, then A' is a locally divided ring;


(4) If B is a quasilocal going-down ring such that 1 < dim(B] — m < n and
Z(B] = nil(B], then B' is a locally divided ring.


Proof. (1) => (4): As noted earlier, an integrally closed integral domain is a going-
down domain if and only if it is a locally divided domain. Thus, (1) is equivalent to
the following condition: "If/? is a going-down domain such that dim(/?) < «, then
R' is a locally divided domain." Therefore, to prove that (1) =$• (4), one need only
rework the proof that (2) => (5) in Theorem 2.4. Indeed, that proof carries over
(with appropriate changes in notation) after observing (in the notation of Theorem
2.4) that dim(A/P0) = dim(A) < n.


Next, note that the prime Q in condition (2) is uniquely determined, since each
divided domain is a quasilocal going-down domain and each going-down domain
is a treed domain. These facts also explain why the implications (4) => (3) =$• (2)
are trivial. It now suffices to prove that (2) =>• (1).


Assume (2), and let R be as in (1). To show that R' is a going-down domain
(equivalently, a locally divided domain), it is enough (cf. Lemma 2.3 (b)) to draw
the same conclusion about (R')R\M — (RM}' for each M E Max(/?). Since RM inher-
its the "going-down domain" property from R and dim(/?M) < dim(ft) < n, there is
no harm in replacing R with RM. In other words, without loss of generality (R,M)
is quasilocal. Since [7, Theorem 2.5] ensures that R has a divided unibranched
integral overring (necessarily of the same dimension and with the same integral
closure), there is now no harm in supposing that R is a divided domain. Put m : =
dim(/?). Without loss of generality, m > 0 (since the integral closure of a field is the
given field, and fields are trivially going-down domains). Let P denote the (unique)
prime ideal of R having height m — 1.


Let S denote the integral closure of R in Rp. By Theorem 2.6, S is a locally
divided domain, with dim(5) = dim(7?) — m< n. Since S' - R', it suffices to show
that S' is a going-down domain. Hence, by Lemma 2.3 (b), we need only show that
if N 6 Max(5), then T :— SN is such that T' ( = (S'}S\N] is a going-down domain.
We shall do this by showing that T is the type of ring considered in condition (2).


Of course, T is a divided domain, being a localization of a locally divided do-
main; and d := dim(r) < dim(S') = m < n. Moreover, d ̂  0 since S is not a field
(since m =£ 0). Accordingly, by (2), it suffices to show that if Q is the (unique) prime
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ideal of S of height d - 1 such that QCN, then T is integrally closed in TQT — SQ.
By integrality (actually, the going-up property), N n R = M. Therefore, since


R C S satisfies GD (because R is a going-down domain) and the prime ideals of S
that are contained in N are linearly ordered by inclusion (since S, being a locally
divided domain, is necessarily a treed domain), it follows from the incomparability
property of integral extensions [16, Theorem 44] that QnR = P. We claim that


Q = P-
Indeed, since R is a divided domain, P = PRp £ Spec(/?p). Applying the canoni-


cal map Spec (/?/>) -> Spec(S), we have that P = PHS e Spec (5). As R C S satisfies
incomparability, it follows that P is the only prime ideal / of 5" such that / n R — P.
In particular, Q = P, as claimed above. In addition, it now follows, by combin-
ing [15, Corollary 5.2] with the fact that R C S satisfies the going-up property, that
SR\P = SS\P ='• Sp. However, the containments R C S C RP easily lead to SK\P = Rp,
whence Rp = Sp.


We pause to note an alternate proof that Rp — Sp. Once again using the fact
that P — PRp, we see that S is the pullback of the inclusion map S/P ->• Rp/P and
the canonical projection map TI : Rp —> Rp/P. Applying [14, Proposition 1.9] to
the multiplicatively closed subset 5\ P of S, we see that Sp is the pullback of the
inclusion map tq(S/P) —> Rp/P and n. Of course, tq(S/P) = Rp/P since S/P is an
overring of R/P, and so the second proof of the equality Rp — Sp comes from the
categorical triviality that the pullback of an isomorphism is an isomorphism.


We now complete the proof that T is integrally closed in SQ. Since the definition
of S ensures that S is the integral closure of S in Rp, [15, Proposition 10.2] yields
that T — SN is the integral closure of T in (Rp}s\N- ^ therefore suffices to show that
(Rp)s\N — SQ- In fact> S\N C Rp\P, whence (Rp)s\N = Rp = SP = SQ, as desired.
D


In the spirit of Theorem 2.4, the interested reader may add to the list of equiva-
lent conditions in Corollary 2.7.


Note that, apart from the Jaffard case that was resolved in [6, Corollary 3.5],
question (Q) remains open for two-dimensional going-down domains. For this
reason, we next record the upshot of Corollary 2.7 in the two-dimensional case.


COROLLARY 2.8. The following conditions are equivalent:
(1) IfR is a going-down domain such that dim(R] — 2, then R' is a going-


down domain;
(2) IfT is a divided domain such thatdim(T] = 2 and ifT is integrally closed


in TQ, where Q is the (unique) height 1 prime ideal of T, then T' is a going-down
domain.


Proof. If an integral domain T satisfies dim(r) = 1, then T' is a one-dimensional
integral domain [16, Theorem 48], and hence a going-down domain. Accordingly,
the proof is immediate from the equivalence (1) <£> (2) in Corollary 2.7, withrc := 2.
D
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In closing, we speculate on some directions for further work on going-down
rings. Surely, one could obtain a result like Corollary 2.2 in the context of reduced
rings, rather than just for integral domains. It would be more interesting to study as-
cent (or descent) for going-down rings A that do not satisfy Z(A) = nil(A). Partial
work on other questions for such arbitrary going-down rings (and arbitrary locally
divided rings) appeared in [3], with particular success in the treed case. Keeping in


mind the recent work of Me Adam [18] on going-down domains, we believe that it
seems reasonable to expect an "ascent/descent" result for "going-down ring", anal-
ogous to that in [18, Propositions], when working within a suitable class of locally
finite-dimensional treed rings.
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ABSTRACT


Sufficient conditions are given for a (unital) homomorphism /: A -> B of (com-
mutative) rings to be a chain morphism, in the sense that a f : Spec (5) —> Spec (A)
permits the covering of chains of arbitrary cardinality. One such sufficient condi-
tion is that / satisfies lying-over, af be open in the flat (resp., Zariski) topology, and
that each reduced fiber of af be quasilocal (resp., an integral domain). Sufficient
conditions are given for / to have the generalized going-down property GGD (that
is, "going-down" predicated for chains of arbitrary cardinality). Typical of such
sufficient conditions are the following: / is a chain morphism and B is quasilo-
cal treed; / satisfies going-down and either the reduced fibers of af are integral
domains or A is a going-down ring. "Universally going-down" is equivalent to
"universally GGD"; in particular, if/ is flat, then / satisfies GGD. The universally
subtrusive homomorphisms are the same as the universally chain morphisms, and
these descend the GGD property.


1 INTRODUCTION


All rings considered below are commutative with identity, and all ring homomor-
phisms are unital. Adapting the notation in [10, p. 28], we let GU, GD, LO, and
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INC denote the going-up, going-down, lying-over, and incomparable properties,
respectively, for ring homomorphisms. As in [3], our interests here include the fol-
lowing strengthening of the LO property. A ring homomorphism /: A -» B is called
a chain morphism if the associated map a f : Spec(S) -> Spec(A), Q H> f~l (Q), per-
mits each chain (of arbitrary cardinality) of prime ideals of A to be "covered" by
some chain of prime ideals of B. Theorem 2.3 gives our main sufficient condi-
tions for a ring homomorphism / to be a chain morphism, namely, that / satisfy
GU (resp., GD) and LO, with reduced fibers that are quasilocal (resp., integral do-
mains). Theorem 2.8 is essentially a corollary giving sufficient conditions that are
couched topologically. (For background on the flat spectral topology, see [8], [4];
for background on the patch, or constructible, topology, see [8], [7].) Proposition
2.2 collects the sufficient conditions for chain morphisms that were established in
[3], most notably, that / be injective and integral. Theorem 3.26 presents a signifi-
cant generalization: any universally subtrusive / (in the sense of [14], for instance,
any pure or faithfully flat /) is universally a chain morphism. This result depends
on the heart of the paper, Section 3, which develops the theory of the GGD (gen-
eralized going-down) concept, the property that "going-down" behavior hold for
chains of arbitrary cardinality.


Proposition 3.1 states the sufficient condition for a ring homomorphism /: A —>
B to satisfy GGD that was obtained in [3]. Numerous other sufficient conditions
are given, including that / satisfy GD with reduced fibers that are integral domains
(Corollary 3.6); and that B be a quasilocal treed ring with / satisfying either GD
or both LO and GU (Corollary 3.4). Theorem 3.9 identifies a context for which
GGD and GD are equivalent, namely, where A is a going-down ring (in the sense
of [2]) in which each maximal ideal of A contains a unique minimal prime ideal of
A. A noteworthy upshot appears in Corollary 3.14: a weak Baer ring A is a going-
down ring if and only if A c-^ B satisfies GD for each evening B of A. Despite the
nomenclature, such an assertion fails if A is not a weak Baer ring [2, Examples 1
and 2, pp. 9-12]. Accordingly, since our present focus is on properties of homo-
morphisms, we intend to devote a subsequent paper to weak Baer going-down rings
and related themes.


As a companion for the characterization of universally chain morphisms in The-
orem 3.26, we also characterize the universally GGD ring homomorphisms (in
Theorem 3.16): they are precisely the universally going-down maps. In particular,
each flat ring homomorphism is (universally) GGD. Among other sufficient con-
ditions for a ring homomorphism / to satisfy GGD is that / satisfy GD and af
be injective (Corollary 3.21), in which case af is a topological immersion (relative
to the Zariski topology). Finally, we note a consequence of Theorem 3.26: each
universally subtrusive ring homomorphism descends the universally going-down
property.


We next describe notational conventions. Unless otherwise specified, maps of
the form af are considered relative to the Zariski topology. As usual, a typical
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closed set in that topology on Spec(A) is V(I) = {P G Spec(A) : P D /}, where /
is an ideal of A. We denote the closure of a set X in the Zariski topology by X,
with Xc denoting the closure of X in the patch topology. By a patch, we mean a
set that is closed in the patch topology. A ring A is treed if no maximal ideal of A
contains incomparable prime ideals of A. If A is a ring, then U(A] denotes the set
of units of A and tq(A) denotes the total quotient ring of A. By an averring of a
ring A, we mean any A-subalgebra of tq(A)\ or, more intuitively, any ring B such
that A C B C tq(A). Finally, C denotes proper containment, and |/| denotes the
cardinality of the set /.


Background is recalled as needed. Any unexplained material is standard, as in
[10], [7], [6].


Dobbs was supported in part by a University of Tennessee Faculty Development
Award and a Visiting Professorship funded by the Istituto Nazionale di Alta Matem-
atica. He thanks the Universita degli Studi di Roma Tre for the warm hospitality
accorded during his visit in October-November, 2000.


As this paper went to press (May, 2002), Kang-Oh have announced a preprint,
"Lifting Up a Tree of Prime Ideals to a Going-Up Extension," whose methods, we
have determined, can be extended to show that GGD and GD are equivalent for
ring homomorphisms A —>• B such that both A and B are locally irreducible. In
particular, this equivalence holds if A and B are each integral domains.


2 CHAIN MORPHISMS


Let A be a ring and X a subset of Spec(A). Following [15], we define *U(X) :=
U{P : P G X } and %.(X) := n{P : P <E X}. Observe that if X is a chain, then
<U(X),3(.(X) e Spec(A) [10, Theorem 9]. A chain X is called a local chain if X has
a (necessarily unique) maximal element. If X is a chain, then X U { U(X}} is a local
chain; in fact, a chain X is a local chain if and only if 'H(X) 6 X. By reworking the
proof of [15, Proposition 2.2], we see that each local chain is quasi-compact in the
Zariski topology.


We next introduce the key concepts of this section. Suppose that /: A —> B is a
ring homomorphism. Consider X = {P,: / 6 /}, a subset of Spec (A). (The notation
is generally taken so that P, ̂  Pj whenever / / j; as a result, |X| = |/|.) A subset
Y = {Qi '• i e /} of Spec(#) is said to cover (or to dominate) X if f~l(Qt) = P,
for each i 6 /. (By the notational convention, Qi ̂  Qj if i ̂  j, and so \Y\ = |/|.)
We say that / is a chain morphism if, for each chain X in Spec (A), there exists a
chain Y in Spec (B) such that Y covers X. As partial motivation for this definition,
we make two observations: each chain Y of Spec(B) has a subchain that covers the
chain {P: P = /~] (Q) for some Q € Y} of Spec(A); and, by focusing on singleton
chains, we see that any chain morphism satisfies LO.


Proposition 2.1 collects some easy but useful facts, and Proposition 2.2 gives
examples of chain morphisms that are essentially already known.
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PROPOSITION 2.1. Let f:A^Bbea ring homomorphism. Then:
(a) If a local chain Y in Spec(fi) covers a subset X 6>/Spec(A), then X is a local


chain.
(b) If a chain Y in Spec(/?) covers a local chain X in Spec (A), then Y is a local


chain and f-l(<U(Y)) = U(X}.
(c) Iff is a chain morphism andX is a local chain in Spec (A), then X is covered


by some local chain Y in Spec(fi) and f~~l (12(Y)) — 11(X).


Proof, (a) By the above observation, X is a chain. If P 6 X , there exists Q 6
Y such that f ~ l ( Q ) = P, whence P C f-l(<U(Y)) e X. It follows that <U(X) =
rl(U(Y}} € X, and so X is a local chain.


(b) Choose Q € Y such that f ~ l ( Q ) = 11(X). If Q C Q\ € Y, then f ~ l ( Q ) C
f~l(Q\), contradicting the fact that f ~ l ( Q ) = U(X] D f~l(Q\). Thus, <ll(Y) =
Q <E F, and so F is a local chain. Then f~l (11(Y)) = <U(X) by the proof of (a).


(c) Apply (b). D


PROPOSITION 2.2. (Dobbs [3]) Let f: A -» B be a ring homomorphism. Then f
is a chain morphism in each of the following four cases:


(i) f is injective and integral;
(ii) f satisfies LO and GU, and each chain in Spec (A) is well-ordered via inclu-


sion;
(Hi) f satisfies LO and GD, and each chain in Spec (A) is well-ordered via re-


verse inclusion;
(iv) A is Noetherian, and f satisfies LO and either GU or GD.


Proof, (i) was proved in [3, Remark(d)]; (ii) and (iii) follow from what was proved
in [3, Theorem] and [3, Remark(a)], respectively, as those proofs, although given
for injective /, carry over to the general case; and (iv) follows from (ii) and (iii),
since A Noetherian ensures that each chain in Spec (A) is finite (hence, well-ordered
with respect to both inclusion and reverse inclusion). D


As noted above, each chain morphism satisfies LO. Partial converses were given
in Proposition 2.2 (ii)-(iv). Before deriving additional partial converses (in Theo-
rems 2.3 and 2.8), we interpret topologically some conditions appearing in those re-
sults. Let /: A —> B be a ring homomorphism and let P e Spec(A). It is well known
that a f ~ l ( P ) , the so-called topological fiber ofP (with respect to /), is homeomor-
phic to Spec((Ap/PA/>) ®A B) in both the Zariski topology and the flat topology.
One calls (AP/PAP) ®AB = Bp/PBP the fiber off at P; its associated reduced ring,
Bp/^PBp, is called the reduced fiber (of f at P). It is easy to show, via Zorn's
Lemma and [10, Theorem 9], that each element of a f ~ l ( P ) is contained in some
maximal element of af~~l(P) and contains some minimal element of a f ~ l ( P } . It
follows that af~l(P] has a unique maximal (resp., unique minimal) element if and
only if the reduced fiber of / at P is a quasilocal ring (resp., an integral domain);
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that is (cf. [15, Lemme 2.5]), if and only if af~l (P) is irreducible in the flat (resp.,
Zariski) topology.


THEOREM 2.3. Let f: A — >• B be a ring homomorphism that satisfies at least one
of the following two conditions:


(i) f satisfies GU and each reduced fiber of f is quasilocal;
(ii) f satisfies GD and each reduced fiber of f is an integral domain.
Then:
(a) For each chain X C Im(a/), there exists a chain Y in Spec (B) such that Y


covers X.
(b) If, in addition, f satisfies LO, then f is a chain morphism.


Proof. It suffices to establish (a). Assume (i) (resp., (ii)). Consider any chain
X = {Pi : i E /}. By the above comments, we can choose Qi to be the unique maxi-
mal (resp., unique minimal) element of af~l (Pi). Evidently, Y := {<2i : * 6 /} covers
X. It remains only to verify that Y is a chain. In fact, if P, C P/, then if follows from
GU (resp., GD) and the maximality of Qj (resp., minimality of <2i) that <2, CQj. n


We pause to note additional topological interpretations for some conditions in
the statement of Theorem 2.3. Let /: A — > B be a ring homomorphism. Then af
is closed in the Zariski (resp., flat) topology if and only if / satisfies GU (resp.,
GD) [4, Proposition 2.7]. It now seems natural to ask for "open" analogues of
the "closed" assertions in Theorem 2.3. We provide such analogues in Theorem
2.8, which is really just a corollary of Theorem 2.3. In order to give an alternate
approach to Theorem 2.8, we first develop some topological results. We also take
advantage of this opportunity to introduce some deeper results on chains that will
be useful in Section 3.


PROPOSITION 2.4. Let A be a ring and let X be a subset o/Spec(A). Then:
(a) IfX is a chain, then its patch closure Xc is also a chain.
(b) X is a chain if and only if there exist a ring homomorphism A — )• V and a


chain Y in Spec(V) such that V is a valuation domain and Y covers X.
(c) X is a local chain if and only if there exists a ring homomorphism f: A -*V


and a local chain Y in Spec(V) such that V is a valuation domain, Y covers X, and


Proof, (b) The "if assertion is clear. Conversely, suppose that X is a chain. As
in the proof of [3, Remark(d)], there is no harm in replacing A with A/f^(X), and
so we may suppose that A is an integral domain. The lifting result of Kang-Oh [9,
Theorem] provides a valuation domain V containing A and a chain Y in Spec(V)
that covers X.


(a) Let X,V and A be as in the proof of (b). Let / be the composite A -»
A/^(X) t-> V; put Z := lm(af) C Spec(A). By definition of the patch (con-
structible) topology, Z is patch-closed; that is, Zc = Z. Moreover, Z is a chain
since V is quasilocal treed. As X C Z, we have Xc C Zc = Z. Then Xc, being a
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subset of a chain, is itself a chain.
(c) The "if assertion follows from Proposition 2.1 (a). The "only if assertion


follows by combining (b) with Proposition 2.1 (b). D


COROLLARY 2.5. Let A be a ring, X a chain in Spec(A), and P € Spec(A)
such that *H(X) C P. Then there exist a ring homomorphism f: A —> V, a chain
Y in Spec(V), and Q G Spec(V) such that V is a valuation domain, Y covers X,
f-l(Q)=P,and'U(Y)CQ.


Proof. Apply Proposition 2.4 (c) to the local chain X U {P}, to obtain a suitable
local chain Z in Spec(V). It suffices to take Q := W(Z); and Y := Z (resp., Z\{Q})
i fP(EX(resp. , P ^ X). D


PROPOSITION 2.6. Let A be a ring andX a chain in Spec(A). Then:
(a) IfX is a maximal chain in Spec (A), then X is stable under unions and inter-


sections and, moreover, X is a patch and a local chain.
(b) There exists a maximal chain X' in Spec (A) such that X C X'. For any such


X', there exist P £ Spec(A) and a minimal valuation overring W ofA/P such that
P C ^(X) and Im(Spec(W) -> Spec(A)) = X'.


(c) Let f: A —>• V be a ring homomorphism such that V is a valuation domain
and X C Im(a/). Then there exist P £ Spec(A) and a minimal valuation overring
W ofA/P such that X C Im(Spec(W) -» Spec (A)).


Proof, (a), (b): By the reasoning in [3, pp. 3888-3889], if X is any chain, then
X U IX(Z) : (}) ^ Z C X} is a chain. It follows that any maximal chain is stable
under intersections. By reasoning similarly with X ( j { l l ( Z } : (j> ^ Z C X}, we see
that any maximal chain is stable under unions. Of course, considering X U { 1 1 ( X ) }
shows that any maximal chain is a local chain.


It follows easily via Zorn's Lemma that each chain X is contained in a maximal
chain. Consider any maximal chain X' D X. By the proof of Proposition 2.4 (a),
there exists a valuation overring V of D := A/^(X') so that the composite ring
homomorphism g: A -» D «->• V satisfies X' C Im(ag). By Zorn's Lemma (cf. [6, p.
231]), V contains a minimal valuation overring W of D. If/denotes the composite
A -» D ̂  W, then lm(ag) C Im(a/) since Spec(V) C Spec(W) (cf. [6, Theorem
26.1]). However, Im(fl/) is a chain (since W is quasilocal treed), and so X' —
Im(a/) by the maximality of X'. Then X' is a patch, by the definition of the patch
(constructible) topology. Finally, note that P := %.(X') C ^(X).


(c) Observe that P := ker(/) £ Spec(A). Let k (resp., K) denote the quotient
field of A/P (resp., of V). Then the canonical ring inclusion A/P <-»• V extends to
an inclusion of fields, k c-> K. Since V r\k is a valuation overring of A/P, another
application of Zorn's Lemma produces a minimal valuation overring W of A/P
such that W C V n k. By hypothesis, X C Im(Spec(V nfc) -> Spec(A)). It remains
only to note that Spec(V n k) C Spec(W). D
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LEMMA 2.7. Let f: A —> B be a ring homomorphism such that af is open in the
flat topology and each reduced fiber of f is quasilocal. Then a subset X oflm(af)
is irreducible in the flat topology on Spec(A) if and only if af~l (X) is irreducible
in the flat topology on Spec(B).


Proof. By the above comments, af~l (P) is irreducible in the flat topology, for all
P e Spec(A). Hence, by [7, Proposition 2.1.14, p. 54], we need only verify that af
induces a map af~l (X) -> X that is continuous, surjective and open in the subspace
topology induced by the flat topology. Both "continuous" and "surjective" are clear.
As for "open", consider any (flat-)open set U in Spec (B), and observe that


af(unaf~l(x)) = af(u) nx.


Since the hypothesis ensures that a f ( U } is (flat-) open in Spec(A), the assertion
follows. D


THEOREM 2.8. Let f be a ring homomorphism that satisfies at least one of the
folio-wing two conditions:


(i) af is open in the flat topology and each reduced fiber off is quasilocal;
(ii) af is open in the Zariski topology and each reduced fiber off is an integral


domain.
Then:
(a) For every chain X C Im(a/), there exists a chain Y in Spec (B) such that Y


covers X.
(b) If, in addition, f satisfies LO, then f is a chain morphism.


Proof, (b) is an immediate consequence of (a). As for (a), if (ii) holds, the assertion
may be proved exactly as in Theorem 2.3 (ii), since Zariski-open af entails going-
down / [7]. A parallel proof is also available if (i) holds, since flat-open af entails
going-up / (that is, Zariski-closed /) [13, Remarque, p. 2252].


Alternate, more topological proofs are available for Theorem(s 2.3 and) 2.8. We
illustrate such methods with another proof for case (i). As in the earlier proof, it
suffices to show that if PI and P7 are distinct elements of a chain in Im(a/) and if
Qi (resp., QJ) is the maximal element in af~l(Pi) (resp., in a f ~ l ( P j ) ) , then Qi and
QJ are comparable under inclusion. As P, and Py are comparable and flat-closed
sets are stable under generization [4, Lemma 2.1], it follows that Z := {Pj,P/} is
irreducible in the flat topology (cf. also [15, Proposition 2.4]). Hence, by Lemma
2.7, Y := a f ~ l ( Z ) is also irreducible in the flat topology. As Y is a patch (being
the spectral image of BPJPiBpi x BPj/PjBPj), [15, Lemme 2.5] ensures that Y is
directed via inclusion. Thus, Qi and QJ are each contained in some prime Q 6 Y
such that a f ( Q ) € {P,,Py}. Without loss of generality, a f ( Q ) = P,, whence Q C Qt


by choice of Qt. Then Q,i = Q D QJ. D
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There are useful algebraic sufficient conditions for the "open" properties in the
statement of Theorem 2.8. For instance, if a ring homomorphism/ is integral
(resp., flat) and of finite presentation, then af is open in the flat (resp., Zariski)
topology, by [13, Proposition 6] (resp., [7, Corollaire 3.9.4(i), p. 254]). We close
the section by using this fact to give an application of Theorem 2.8.


COROLLARY 2.9. Let Pj,. . . ,Pw e 1[X\,...,Xn] be such that (Pi,...,Pm) is a
prime ideal in K[X\,... ,Xn] for any field K. Suppose that A is a ring and f: A —>•
B := A[X\,... , X n ] / ( P \ , . . . ,Pm) is such that af is open in the Zariski topology (for
instance, take f to be flat). Then each chain in Im(fl/) can be covered by a chain
in Spec(B).


Proof. The hypothesis ensures that each (reduced) fiber of / is an integral domain.
Apply Theorem 2.8 (a), using condition (ii). D


A concrete illustration of Corollary 2.9 is provided by n = 2,m — 1, PI — X\ —
X2.


3 GENERALIZED GOING-DOWN


We begin with the key definition of this paper. A ring homomorphism /: A —>
B is said to satisfy the generalized going-down property (GGD) if the following
holds: for each local chain X in Spec(A) and each Q 6 Spec(5) such that f~l (Q) =
1l(X}, there exists a local chain Y in Spec(5) such that U(Y] = Q and Y covers
X. Evidently, GGD =j» GD. We next record the only instance of GGD that has
appeared in the literature.


PROPOSITION 3.1. (Dobbs [3, proof of Remark (a)]). Let A be a ring such that
each chain in Spec (A) is well-ordered via reverse inclusion. Then a ring homomor-
phism f:A—>B satisfies GGD if (and only if) f satisfies GD.


In comparing Propositions 3.1 and 2.2 (iii), one suspects that the notions of
GGD and chain morphism are closely related. Proposition 3.2 states some evident
connections, with less evident connections in the subsequent results. Of course, the
two concepts are logically independent: if / is an injective integral ring homomor-
phism that does not satisfy GD, then / is a chain morphism that does not satisfy
GGD; and if S is a multiplicatively closed subset of a ring A such that S contains a
nonunit of A, then the canonical map A -> AS satisfies GGD but (as it fails to have
LO) is not a chain morphism.


PROPOSITION 3.2. Let f:A-*Bbea ring homomorphism. Then:
(a) Iff satisfies LO and GGD, then f is a chain morphism.
(b) Ifaf is injective and f is a chain morphism, then f satisfies GGD.


PROPOSITION 3.3. If Bis a quasilocal treed ring and f:A-*B is a chain mor-
phism, then f satisfies GGD.
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Proof. Consider a local chain X = {P, : i 6 /} in Spec(A) and Q e Spec(J5) such
that f ~ l ( Q ] = ^(X). Since / is a chain morphism, Proposition 2.1 (c) provides a
local chain Y = {Qt: i € /} in Spec(fl) that covers X, with f-l(<U(Y)) = «(X).
Choose (the unique) j <E / such that P, = £/(X). Then <27 = ^(7). If 07 = <2,
then Y is the desired local chain Z in Spec(fi) such that U(Z] = Q and Z covers
X. If QJ C <2, then Z := (Y\{Qj}) U {0} suffices. Since B is quasilocal treed,
there is only one remaining case, namely, Q C QJ. For this case, it suffices to take
Z:={G,-ne:ie/}. n


COROLLARY 3.4. Lef 5 fee a quasilocal treed ring. Let f: A-> B be a ring ho-
momorphism that satisfies either GD or both LO and GU. Then f satisfies GGD.


Proof. If P € Im(a/), then B quasilocal treed implies that af~l(P] has a unique
maximal element and a unique minimal element; that is, each reduced fiber of /
is a quasilocal integral domain. The conclusion therefore follows by combining
Theorem 2.3 and the proof of Proposition 3.3. D


By reworking the proof of Proposition 3.3, we next find two companion results.
Just as Corollary 3.4 issued from combining Proposition 3.3 with Theorem 2.3, one
can produce additional applications by combining part (a) or part (b) of Corollary
3.5 with Theorem 2.3. We leave such formulations to the reader.


COROLLARY 3.5. Let f: A —> B be a chain morphism that satisfies at least one
of the following two conditions:


(i) B is treed and each reduced fiber of f is quasilocal;
(ii) Each (Zariski-) irreducible component ofSpec(B) is a chain (via inclusion)


and each reduced fiber of f is an integral domain.
Then f satisfies GGD.


Proof. We proceed to rework the proof of Proposition 3.3. It suffices to verify
that QJ and Q are comparable via inclusion. In case (i), this follows since B is
treed and Qj,Q are each contained in (any maximal ideal of B that contains) the
unique maximal element of a f ~ l ( P j ) . An essentially "dual" proof is available if
(ii) holds. Indeed, <2/,<2 each contain the unique minimal element / of af~l(Pj).
Using Zorn's Lemma, choose a minimal prime ideal N of B such that N C 7 [10,
Theorem 10]. Then Qj,Q are each in the (Zariski-) irreducible set V(N), which is
a chain by hypothesis, whence QJ and Q are comparable. D


COROLLARY 3.6. Let f:A-+Bbea ring homomorphism such that each reduced
fiber of f is an integral domain and f satisfies GD. Then f satisfies GGD.


Proof. Once again, we rework the proof of Proposition 3.3. Even if / is not a
chain morphism, the requisite chain Y = {<2,} is provided by Theorem 2.3 (with
emphasis on its condition (ii)). By taking <2, to be the unique minimal element of
af~l (Pi], we are assured that QJ C Q, and so Z := (Y\{Qj}) U {Q} suffices. D
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REMARK 3.7. (a) Recall from [4, pp. 567-568] that there is a "weak going down"
concept that can be used to characterize the flat topology. In a different vein, we
can also use an ostensibly "weaker" property to characterize GGD. Indeed, it is
not difficult to show that a ring homomorphism /: A -» B satisfies GGD if and only
if the following holds: for each chain X in Spec(A), each P G Spec(A) such that
11(X) C P, and each Q G a f ~ { ( P ] , there exists a chain Y in Spec(#) such that
U(Y} C Q and Y covers X.


(b) On the other hand, a related property that is ostensibly "stronger" than GGD
may actually be stronger. For instance, consider the following property, say (*),
that a ring homomorphism /: A -> B can satisfy: for each chain X in Spec (A), with
P := U(X), and each Q G a f ~ l ( P ) , there exists a chain Y in Spec(5) such that
I^CY) — Q an(i Y covers X. It is straightforward to verify that property (*) implies
GGD. However, unlike the situation in (a), the converse is false. In other words,
GGD fails to imply property (*). To see this, take / to be an inclusion map A — > B,
where B is a valuation domain with prime spectrum 0 = <2o C Q\ C ... C QnC
••• C Q1 C <2, such that B/Q' is a K— algebra for some field K, and define A to be
the pullback B XB/Q, K. Put P := QC\ A (= Q1 n A). Then, by a standard gluing
argument, with X := Spec(A) \ {P}, one checks that / fails to satisfy property
(*), for the only chain Y in Spec(£) that covers X is Y - Spec(fi) \ {<2',<2}, with


Next, we collect some elementary but useful facts indicating that GGD behaves
rather similarly to known behavior of GD.


PROPOSITION 3.8. (a) Let f:A-*B and g:B-+C be ring homomorphisms. Iff
and g each satisfies GGD, so does go/. If g satisfies LO and go f satisfies GGD,
then f satisfies GGD.
(b) If f is a ring homomorphism, then the following seven conditions are equiva-
lent:


(1) f satisfies GGD;
(2) fs: AS -> BS := B®A AS satisfies GGD for each multiplicatively


closed subset S of A;
(3) fP: AP -> BP := B®AAP satisfies GGD for each P G Spec(A);
(4) AP ->• BQ satisfies GGD for each Q G Spec(5) and P := f~l (Q};
(5) A/I -^ B/IB satisfies GGD for each ideal I of A;
(6) A/P -> B/PB satisfies GGD for each minimal prime ideal P of A;
(7) freci satisfies GGD.


(c) Let ft: A,- — > BI (i = 1, . . . ,n) be finitely many ring homomorphisms. Then the
induced map A\ x • • • x An -» B\ x • • • x Bn satisfies GGD if and only if fi satisfies
GGD for each i. If A\ — . . . = An =: A, then the induced map A -> BI x • • • x Bn


satisfies GGD if and only if fi satisfies GGD for each i.


A principal theme of this section is that the classic sources of going-down ho-
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momorphisms (namely, going-down domains and flat maps) give rise to GGD be-
havior. We pursue this point somewhat more generally in Theorems 3.9 and 3.16
after giving some background material and applications.


Recall from [11 and [5] that an integral domain A is called a going-down domain
if A C B satisfies GD for each evening B of A. The most natural examples of
going-down domains are arbitrary valuation domains and the integral domains of
(Krull) dimension at most 1. As in [2], a ring A is called a going-down ring if
A/P is a going-down domain for each (equivalently, each minimal) prime ideal P
of A. Any integral domain is a going-down ring if and only if it is a going-down
domain [2, Remark (a), p. 4]; any ring of dimension at most 1 is a going-down
ring [2, Proposition 2.1 (c)]; a finite ring product AI x ••• x An is a going-down
ring if and only if each A, is a going-down ring [2, Proposition 2.1 (b)]; but there
exists a going-down ring A and an overring B of A such that A C B does not satisfy
GD [2, Example 1, p. 9]. Adapting terminology from [12], we say that a ring
homomorphism /: A —> B is a min morphism if f~l (Q) is a minimal prime ideal of
A for each minimal prime ideal Q of B. It is evident that if a ring homomorphism /
satisfies GD, then / is a min morphism. In the theory of Krull domains, an example
of min morphisms is proved by the classical condition of pas d'eclatement, PDE
(also known as no blowing up, NBU). Finally, recall that a ring A is said to be
locally irreducible if each maximal ideal of A contains a unique minimal prime
ideal of A.


THEOREM 3.9. Let A be a locally irreducible ring and a going-down ring and let
f: A —> B be a ring homomorphism. Then the following conditions are equivalent:


(1) f is a min morphism;
(2) f satisfies GD;
(3) f satisfies GGD.


Proof. By the above comments, (3) => (2) => (1). It remains to show that if
/ is a min morphism, X a local chain in Spec(A) and Q € Spec(Z?) such that
f~l(Q) = 1/(X), then there exists a local chain Y in Spec(B) such that <U(Y) = Q
and Y covers X. By [10, Theorem 10], Q contains some minimal prime ideal J of
B. Since / is a min morphism, I := J fl A is a minimal prime ideal of A. Of course,
/ C QC\A = 'H(X) and so, since A is locally irreducible, / is the only minimal prime
ideal of A that is contained in ^.(X). As each P € X contains a minimal prime ideal
of A, it follows that / C P, whence / C ^(X). There is no harm in replacing /
with A/7 c-> B/J. Hence, without loss of generality, A C B are integral domains
and A is a going-down domain (cf. [2, Proposition 2.1 (b) and Remark (a), p. 4]).
Choose a valuation overring (V,N) of B such that NHB = Q (cf. [10, Theorem
56]). Of course, V is quasilocal and treed. Moreover, A C V satisfies GD since A is
a going-down domain. Hence, by Corollary 3.4, there exists a local chain Z = {Qi}
in Spec(V) such that Z covers X. Then, by Proposition 2.1 (b), Y := {Qt-HB] has
the desired properties. D
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Recall that A C B need not satisfy GD when B is an overling of a going-down
ring A [2, Example 1, p. 9]. By avoiding one feature of that example, we have the
following pleasant consequence.


COROLLARY 3.10. If f: A —> B is an injective ring homomorphism such that A is
a going-down ring and B has a unique minimal prime ideal, then f satisfies GGD.


Proof. If P is a minimal prime ideal of A, then [10, Exercise 1, p. 41] ensures that
f~l (Q) — P f°r some prime ideal Q of B. By [10, Theorem 10], we can take Q to
be the unique minimal prime ideal <2o of B. Hence, P is uniquely determined as
f~l (<2o); that is, A has a unique minimal prime ideal and / is a min morphism. In
particular, A is locally irreducible. An application of Theorem 3.9 completes the
proof. D


COROLLARY 3.11. Let f: A —> B be a ring homomorphism such that A is a
going-down ring. Then f satisfies GGD if and only iff satisfies GD.


Proof. The "only if assertion is valid even without the hypothesis on A. Con-
versely, suppose that / satisfies GD. It follows that if P € Spec (A), then the induced
map g: A/P —> B/PB is a min morphism (by the proof of [10, Exercise 37, p. 44]).
As A/P is a going-down ring [2, Proposition 2.1 (b)], Theorem 3.9 yields that g
satisfies GGD. By Proposition 3.8 (b), so does /. D


Corollary 3.12 isolates the most important instance of Corollaries 3.10 and 3.11.
This result was actually established in the proof of Theorem 3.9.


COROLLARY 3.12. If A C B are integral domains and A is a going-down domain,
then A c-> B satisfies GGD.


Corollary 3.13 will present a more concrete application of Theorem 3.9 in the
context of rings with nontrivial zero-divisors. Recall that a ring A is called a weak
Baer ring if, for each a 6 A, the annihilator of A is generated by an idempotent;
that is, {b G A : ba = 0} — Ae for some e — e2 G A. Among many known charac-
terizations is the following: A is a weak Baer ring if and only if A is a (necessarily
reduced) locally irreducible ring such that tq(A] is von Neumann regular. An ex-
ample of a weak Baer ring that is a going-down ring but not an integral domain
is provided by any finite product AI x • • • x An where each A, is a weak Baer ring
and a going-down ring (for instance, a going-down domain) and n > 2; to see this,
r?call that the class of weak Baer rings (resp., going-down rings) is stable under
arbitrary (resp., finite) products [12, p. 28] (resp., [2, Proposition 2.1 (b)]).


COROLLARY 3.13. Let f: A -> B be a ring homomorphism such that A is a weak
Baer ring and a going-down ring. Then f satisfies GGD if and only if f is a min
morphism.


Proof. Apply Theorem 3.9. D
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COROLLARY 3.14. (a) If A is a ring and B is an overring of A, then A <->• B is a
min morphism.
(b) Let Abe a weak Baer ring. Then the following conditions are equivalent:


(1) A <-^- B satisfies GDfor each overring B of A;
(2)Ae-*B satisfies GGDfor each overring B of A;
(3) A is a going-down ring.


Proof, (a) Let B be an overring of A; that is, A C B C T := tq(A). Let P be a
minimal prime ideal of B. Then there exists a minimal prime ideal Q of T such that
Qf]B — P (by [10, Exercise 1, p. 41 and Theorem 10]). As T is a ring of fractions
of A, it follows that T is A-flat, so that A <->• T satisfies GD (cf. [10, Exercise 37, p.
44]), whence P f l A ^ g f l A i s a minimal prime ideal of A, as desired.


(b) Since weak Baer rings are locally irreducible, (a) combines with Theorem
3.9 to yield that (3) => (2). As (2) =$• (1) trivially, it remains only to prove that
(1) => (3). Suppose (1). By [2, Proposition 2.1 (b)], it suffices to establish that if
P G Spec(/?), then A/> is a going-down ring. The hypothesis on A ensures that A/> is
an integral domain, since A is reduced and locally irreducible. Therefore, by a char-
acterization of going-down domains (cf. [1], [5]), it is enough to show that Ap <-» E
satisfies GD for each overring E of A/>. Now, since T is von Neumann regular, [16,
Proposition 1.4(2)] gives an identification tq(Ap) = 7/>, whence E = Bp for some
suitable overring B of A. Then A/> c-> E inherits GD from A <—>• B, to complete the
proof. D


Recall from [1, Proposition 3.2] and [5, Theorem 1] that in order to determine
whether a given integral domain A is a going-down domain, it suffices to verify
that GD is satisfied by all inclusions A •—> V for which V is a valuation domain. In
this spirit, we next provide characterizations of the "universally chain morphism"
and "universally GGD" properties. Theorems 3.26 and 3.16 establish that these
properties are equivalent to "universally subtrusive" and "universally going-down,"
respectively.


PROPOSITION 3.15. Let f: A -» B be a ring homomorphism. Then the following
conditions are equivalent:


(1) f is universally GGD (resp., is a universally chain morphism), in the sense
that the induced map D —> D <8u B satisfies GGD (resp., is a chain morphism) for
all ring homomorphisms A —>• D;


(2) The induced map V —>• V <8>/\ B satisfies GGD (resp., is a chain morphism)
for all ring homomorphisms A —> V for which V is a valuation domain.


Proof. We treat the assertion about "universally GGD" first. Of course, (1) => (2)
trivially. Assume (2). It suffices to show that / satisfies GGD. (Indeed, given ring
homomorphisms A -» D ->• V, observe the canonical isomorphism V ®£> (D ®A


B} = V®AB.) Consider a local chain X in Spec (A) and Q e Spec(fl) such that
f~l(Q) = *U(X) ==: P. Our task is to produce a local chain Y in Spec (B) such
that 11(Y} = Q and Y covers X. By Proposition 2.4 (c), there exists a ring ho-
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momorphism g: A —>• V and a local chain W in Spec(V) such that V is a valuation
domain, W covers X, and g~! ( 'U(W)) = P. Put E := V <8>A 5. In the category of
affine schemes, we have Spec(E) = Spec(V) ><Spec(A) Spec(#)- Therefore, by a
property of pullbacks of schemes [7, Corollaire 3.2.7.1(1), p. 235], there exists / E
Spec(£) such that / lies over 11(W) (in Spec(V)) and J lies over Q (in Spec(fl)).
Moreover, by hypothesis, the induced map V —> E satisfies GGD. Therefore, there
exists a local chain Z in Spec(E) such that U(Z] = J and Z covers W. By applying
a (B —> V ®A #) to the elements of Z, we obtain the elements of a chain Y with the
desired properties. To prove the assertion about a "universally chain morphism,"
adapt the above proof, replacing the appeal to Proposition 2.4 (c) with a citation of
Proposition 2.4 (b). D


THEOREM 3.16. A ring homomorphism f: A —s> B is universally GGD if and only
iff is universally going-down.


Proof. As GGD =>• GD, the "only if assertion is immediate. For the converse, sup-
pose that / is universally going-down. Consider any ring homomorphism A -> V
for which V is a valuation domain. By the hypothesis on /, the induced map
h: V —> V ®A B satisfies GD. Since V is a going-down ring, it follows from Corollary
3.11 (also from Theorem 3.9) that h satisfies GGD. An application of Proposition
3.14 yields that / is universally GGD, as desired. D


As noted prior to Proposition 3.2, the structure map of any ring of fractions
A —>• AS satisfies GGD. We next obtain a substantial generalization of this fact.


COROLLARY 3.17. Each flat ring homomorphism satisfies (universally) GGD.


Proof. Each flat ring homomorphism is universally going-down (cf. [10, Exercise
37, p. 44]). Apply Theorem 3.16. D


Proposition 3.18 will present another class of ring homomorphisms satisfying
GGD. First, we adapt some terminology introduced in [11, p. 123]. A ring ho-
momorphism /: A —> B is called a prime morphism if the following condition is
satisfied: if f(a)b E PB where a E A,b E B and P E Spec(A), then either a E P or
b E PB; equivalently, if B/PB is a torsion-free /4/P-module for each P E Spec(A).
In general,


/ is a flat ring-homomorphism => / is a prime morphism => / satisfies GD


(cf. [11, Proposition 2], [10, Exercise 37, p. 44]). An interesting example is
provided by g: A -> A[T]/(pT] =: B, where p is a prime integer, A :— Z/p2Z and
T is an indeterminate. Indeed, g is not flat (since (/? + p2Z) <8> (T+pT] is a nonzero
element of the kernel of pA <S>A B —>• B), g is a prime morphism, and g satisfies GGD
by Theorem 3.9. Finally, recall from [7, p. 145] that a normal ring is, by definition,
a ring A such that Ap is an integrally closed integral domain for each P E Spec(A).
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PROPOSITION 3.18. If A is a normal ring and a prime morphism f:A^B is
integral, then f satisfies GGD.


Proof. By Proposition 3.8 (b), it suffices to show that if P is any minimal prime
ideal of A, then the induced map g: A/P -» B/PB satisfies GGD. Observe that A/P
is an integrally closed integral domain since A is a normal ring [7, p. 145]; B/PB is
a torsion-free A/P-module since / is a prime morphism; and g is integral. Accord-
ingly, by Seydi's generalization of the classical Going-down Theorem [19], g is
universally (Zariski-) open. It follows that g is universally going-down [7, Corol-
laire 3.9.4 (i), p. 254] and, hence, by Theorem 3.16, that g is (universally) GGD. D


We say that a ring homomorphism /: A —> B is prime-producing if, for each
P 6 Spec(A), either PB G Spec(B) or PB = B. Examples of prime-producing maps
/ include the structure maps of arbitrary rings of fractions A —> AS and the weak
content maps of Rush [17]. It is evident that if a prime-producing map / satisfies
LO, then / is a prime morphism and, hence, satisfies GD. A generalization of this
fact will be given in Proposition 3.19. First, it is convenient to say that a ring
homomorphism f:A-*B satisfies the CNI property (so dubbed because it is a sort
of "dual" of the INC property) if the following condition is satisfied: whenever
P C Q are prime ideals of A such that PB = QB ̂  B, then P = Q. It is clear that if
/ satisfies LO, then / satisfies CNI (for then f~l (pZ?) = p for each p e Spec(A)).


PROPOSITION 3.19. If a ring homomorphism f: A —> B is prime-producing and
satisfies CNI, then f satisfies GGD.


Proof. Consider a local chain X — {Pi: i € /} in Spec (A) and Q £ Spec (B) such
that f~l (Q) = £/(X) = Pj. We seek a local chain Y in Spec(£) such that <U(Y) = Q
and Y covers X. Now, for each i € /, we have PtB C PjB C Q c B. Hence,
PiB € Spec (B), since / is prime-producing. Moreover, the CNI property ensures
that PI coincides with Qt := f~l(PiB), since Pi C Q{ and PiB = QiB. It therefore
suffices to take Y := {PtB : i 6 /, i ̂  J] u {Q}- D


Proposition 3.2 (b) illustrated that GGD-theoretic consequences can ensue in
the presence of a ring homomorphism / for which af is injective. We next pur-
sue this theme by enhancing the set-theoretic restriction with a topological one.
Specifically, we say that a continuous function /: X ->• Y of topological spaces is
a topological immersion if the induced map X —> f(X) is a homeomorphism (that
is, injective and either open or closed). It is straightforward to verify that a con-
tinuous map /: X —> Y is a topological immersion if and only if / is injective and
f~l (/(Z)) = Z for each subset Z of X. Our main interest here concerns ring homo-
morphisms f:A-*B for which af: Spec (B) -» Spec (A) is a topological immersion
(relative to the Zariski topology); in such a case, we also call / a topological im-
mersion. There are many ring-theoretic characterizations of such /. A particularly
useful characterization is given next.
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PROPOSITION 3.20. Let f: A -> B be a ring homomorphism. Then:
(a) The following two conditions are equivalent:


( l ) t f Q i ana Q2 are prime ideals ofB such that f~~l(Q\) C f~l (Q2),
then Qi C Q2;


(2) f is a topological immersion.
(b) Suppose that the equivalent conditions in (a) hold and that a subset Y of


Spec(#) covers a subset X o/Spec(A). Then Y is a chain (resp., local chain) if and
only ifX is a chain (resp., local chain).


Proof, (a) (2) => (1): Consider Q\,Q2£ Spec(fl), with f~l(Q\) C f~l(Q2). Then,
by the definition of the Zariski topology and the above characterization of topolog-
ical immersions, we have


02 e arl(af(Q2)) c flrr/(Gi)) = Gi;


that is, (2i C02.
(1) => (2): Assume (1). If fl/(Qi) = af(Q2), then (1) yields that Q{ C Q2 and


Qi C Gi- Therefore, af is injective. It remains to prove that if F is a (Zariski -
) closed subset of Spec(fi), then G := af(F] is (Zariski-) closed in Im(a/). We
shall show, in fact, that G = Gfllm(a/). One conclusion is obvious. For the
reverse inclusion, consider P £ Gnim(a/); pick Q € Spec(#) such that f ~ l ( Q ) =


P. Now, observe that F is a patch (since Im(Spec(5//) —>• Spec (5)) = V(J) for
each ideal J of B), and hence so is its spectral image, G. Thus, G is the union of the
specializations of the points of G [7, Corollaire 7.3.2, p. 339]. In particular, p C P
for some p G G. Pick q e F such that f ~ l (q) = p. Using (1), we infer that q C Q,
whence Q £ F, since Zariski-closed sets are stable under specialization. Therefore,
p = af(Q] e


 af(F] = G, as desired.
(b) In view of Proposition 2.1 (a),(b), it remains only to show that if X —: {Pi}


is a chain, then so is Y =: {Qi}. As f ~ l ( Q i ) — Pi for each /, the conclusion follows
from condition (1) in (a). D


We next mention two families of examples of ring homomorphisms that in-
duce/are topological immersions; the verifications follow most readily by checking
condition (1) in Proposition 3.20. The first family consists of the flat epimorphisms
(that is, the flat maps A -> B such that the induced multiplication map B ®A B ->• B
is an isomorphism). In particular, the structure map of any ring of fractions A —> AS
is a topological immersion. The second family consists of the ring homomor-
phisms f:A->B with the following property: for each b 6 B, there exists a e A
and w e 11(B) such that b = f ( a } u . Besides rings of fractions, this second fam-
ily includes all surjective ring homomorphisms and, for each field k and analytic
indeterminate T, the inclusion map k[T] ^ k[[T]].


COROLLARY 3.21. Let f: A -> B be a ring homomorphism. Then the following
conditions are equivalent:


(I) af is injective and f satisfies GD;
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( 2 ) f is a topological immersion and satisfies GGD.


Proof. (2) => (1) trivially. Conversely, assume (1). One then readily verifies con-
dition (1) in Proposition 3.20, and so / is a topological immersion. Next, to verify
that / satisfies GGD, consider a local chain X = {/>•} in Spec(A) and Q G Spec(7?)
such that /~] (Q) = 11(X). For each i, take (2; to be the unique element of0/"1 (P,-).
It follows from (1) that P, C Pj entails Qi C Qj. Accordingly, Y :— {Qi} is a local
chain in Spec(B) such that ^(Y} = Q and Y covers X, as desired. D


COROLLARY 3.22. Let f: A -> B be a ring homomorphism such that af is a
topological immersion with closed image. Then the induced inclusion of rings
A/ker(/) M- B satisfies GGD.


Proof. Put 7 := ker(/). We begin with a fact that depends only on / being a
ring homomorphism, namely, that Im(a/) = V(7). (To fashion a proof, recall that
minimal prime ideals of a base ring are lain over from any ring extension [10,
Exercise 1, p. 41] and Zariski-closed sets are stable under specialization.) Under
the given assumptions, it follows that Im(a/) = V(I).


Our task is to show that if X is a local chain in Spec (A /I) and Q G Spec (7?) lies
over 'W(X), then there exists a local chain Y in Spec(7?) such that 1l(Y) — Q and
Y covers X. Of course, X induces a local chain Z in Spec (A) such that Z C V(I)
and Q lies over W(Z). We shall show that Y := a f ~ l ( Z ) has the asserted proper-
ties. Indeed, since af is a topological immersion, it follows via condition (1) in
Proposition 3.20 that Y is a chain. Moreover, Y is a local chain, with £/(F) = Q.
Now, a f ( Y ) = Znim(a/) = Zn V(7) = Z. Finally, Y covers X since Spec(fl) ->
Spec (A /I) is an injection. D


COROLLARY 3.23. Let f be a ring homomorphism. Then:
(a) If f is an injection and af is a topological immersion with closed image,


then f satisfies GGD.
(b) If f is an injection satisfying GU and af is an injection, then f satisfies


GGD.
(c) Suppose that for all Q G Spec(7?) and P :— f~l (Q}, the induced map Ap ->


BQ is an injection whose corresponding map Spec(7?<2) -> Spec(A/>) is a topologi-
cal immersion with closed image. Then f satisfies GGD.


Proof, (a) is immediate from Corollary 3.22; (b) admits a simple direct proof but
can also be obtained as a corollary of (a); to prove (c), combine (a) and Proposition
3.8 (b). D


For applications of the next result, it is useful to have examples of ring homo-
morphisms g: A ->• D that are universally topological immersions. Among these,
we mention flat epimorphic g, surjective g, and g such that ag is a universal home-
omorphism.
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COROLLARY 3.24. Let f: A — > B be a ring homomorphism such that af is injec-
tive and f satisfies GD. Let g: A — )• D be a ring homomorphism that is universally
a topological immersion. Then the induced ring homomorphism h: D — > D ®A B
satisfies GGD.


Proof. Put E :— D®A B. Our task is to show that if X is a local chain in Spec(D) and
Q e Spec(E) satisfies h~l (Q) = 1l(X), then there exists a local chain Y in Spec(E)
such that £/(K) = Q and Y covers X . As ag is injective, it follows from Proposition
2.1 (a),(b) that W := ag(X) is a local chain in Spec(A) such that g-l(<U(X)) =
1/(W). Now, since Corollary 3.21 ensures that / satisfies GGD, there exists a local
chain Z in Spec(£) such that f~l(<U(Z)} = <LL(W) and Z covers W. Next, since
X and Z have the same index set, we can use a result on pullbacks of schemes
[7, Corollaire 3.2.7.1(1), p. 235] to produce the individual elements of a subset
Y of Spec(E) such that Y covers X (relative to h) and F covers Z (relative to the
canonical ring homomorphism j: B — » E). As the hypothesis on g ensures that
j is a topological immersion, Proposition 3.20 (b) yields that Y is a local chain.
Finally, we shall show that <U(Y) = Q. By Proposition 2.1 (b), j-l(11(Y)) = 11(Z).
Therefore,


U(W) = g-l(U(X)) = g~\h-l(Q)) = a ( h o g ) ( Q ) = a ( j o f ) ( Q ) .


Since a ( j of) = afo aj is a composite of injections, U(Y) = Q. D


By analogy with the earlier definition of "chain morphism", we say that a ring
homomorphism /: A — > B is a 2-chain morphism (or, as in [14, p. 528], subtrusive)
if the following condition is satisfied: for all prime ideals P\ C PI of A, there exist
prime ideals Q\ C Q2 of B such that f~l (Qi) = PI for i= 1,2. It is easy to see that
any ring homomorphism / that satisfies LO and either GU or GD must be a 2-chain
morphism. As noted in [14, p. 538], examples of universally 2-chain morphisms
include the ring homomorphisms / that are pure; the / that satisfy LO and are
universally going-down; and the / that satisfy LO and are integral. For us, the most
important examples of universally 2-chain morphisms are special cases of the last
two classes just mentioned, namely, the faithfully flat ring homomorphisms and
(thanks to a result on pullbacks of schemes [7, Corollaire 3.2.7. l(i), p. 235] and the
Lying-over Theorem [10, Theorem 44]) the injective integral ring homomorphisms.


Before stating a useful characterization of universally 2-chain morphisms, we
recall the following definitions. If /: A — » B is a ring homomorphism, the torsion
ideal off is T(f) := {b E B : there exists a non-zero-divisor c E A such that cb = 0};
and / is called torsion-free if T(f) = 0.


PROPOSITION 3.25. (Picavet [14, Theoreme 37(a), p. 556 and Proposition 16,
p. 543]) Let f: A -> B be a ring homomorphism. Then the following conditions
are equivalent:
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(l)IfA—> V is a ring homomorphismfor which V is a valuation domain and
the induced map V —>• V ®A B =: E has torsion ideal T, then the induced ring
homomorphism V -» E/T is faithfully flat;


(2) f is a universally 2-chain morphism.


Observe that LO is a universal property (as can be seen via [7, Corollaire 3.2.7. l(i),
p. 235]); and, of course, so is "integral". Accordingly, the proof of our motivat-
ing result Proposition 2.2 (i) in [3, Remark (d)] actually establishes that any integral
ring homomorphism that satisfies LO (for instance, any injective integral map) must
be a universally chain morphism. We next present a substantial generalization of
this fact.


THEOREM 3.26. A ring homomorphism f: A —> B is a universally chain mor-
phism if and only iff is a universally 2-chain morphism.


Proof. Any chain morphism is a 2-chain morphism, and so the "only if assertion
is trivial. For the converse, it suffices to show that if / is a universally 2-chain
morphism, then / is a chain morphism. Our task is to show that if X is a chain in
Spec (A), then there exists a chain Y in Spec (B) such that Y covers X. By Proposi-
tion 2.4 (b), we find a valuation domain V and a ring homomorphism g: A -» V such
that some chain W in Spec(V) covers X. Put E := V <8>A B. By Proposition 3.25, the
induced ring homomorphism h:V -» E/T is faithfully flat, where T denotes the
torsion ideal of the canonical map V —> E. Accordingly, by Corollary 3.17, h satis-
fies GGD; and, being faithfully flat, h also satisfies LO. Therefore, by Proposition
3.2 (a), h is a chain morphism. In particular, some chain Z in Spec(£"/r) covers W.
If j denotes the composite B —>• E —> E/T, it follows from the fact that hog = jof
and the functoriality of Spec that Y := a j ( Z ) covers X, as desired. D


COROLLARY 3.27. Universally (2-) chain morphisms descend both GGD and
GD. More precisely: if f:A-*B is a ring homomorphism and g: A —> D is a
universally (2-) chain morphism such that the induced map h: D —> D®A B =: E
satisfies GGD (resp., GD), then f satisfies GGD (resp., GD).


Proof. We give a proof for the "GGD" assertion, as it carries over for the "GD" as-
sertion. Consider a local chain X in Spec(A) and Q e Spec(B) such that f~l(Q) =
U(X). Since g is a chain morphism, there exists a chain Z in Spec(D) such that Z
covers X. By Proposition 2.1 (b), Z is a local chain and g-l(U(Z)} = 11(X). As
£/(Z) and Q each lie over W(X), the oft-used fact about pullbacks of schemes [7,
Corollaire 3.2.7.1(1), p. 235] supplies J e Spec(£) such that J lies over U(Z) in
Spec(D) and J lies over Q in Spec (B). Since h satisfies GGD, there exists a local
chain W in Spec(E) such that 11(W) = J and W covers Z. If j denotes the canonical
ring homomorphism B ->• E, then the chain Y := aj(W) covers X. Moreover, by
Proposition 2.1 (b), Y is a local chain satisfying Q = j ~ l ( J ) = j~l


Therefore, / satisfies GGD. D







162 Dobbs et al.


COROLLARY 3.28. Universally (2-) chain morphisms descend universally going-
down (universally GGD).


Proof. It follows from Corollary 3.27 via standard tensor product identities that
any universally (2-) chain morphism descends universally GGD. An application of
Theorem 3.16 permits the "universally going-down" formulation. D


COROLLARY 3.29. Let f: A —> B be a ring homomorphism, and let a\,... an be
finitely many elements of A such that (a\,... ,an] = A. Then f satisfies GGD if
and only if the induced ring homomorphism /) : Aai —> Bai satisfies GGD for all
i= !,...,«.


Proof. The "only if assertion is immediate from Proposition 3.8 (b). For the
converse, assume that each ft satisfies GGD. By Proposition 3.8 (c), so does the
induced map Y[Aai —y Y[Bar Of course, Y[Bai — (T[A.ai) ®A#; and A —» O^a, is
faithfully flat, hence a universally 2-chain morphism. Hence, by Corollary 3.27, /
satisfies GGD. D


REMARK 3.30. In view of the diversity of contexts identified above which give
sufficient conditions for GGD, one might well ask if any traditional construction
can produce a ring A supporting a ring homomorphism f:A->B that satisfies GD
but not GGD. In this regard, one could consider A = C(X), the ring of continuous
real-valued functions defined on a topological space X. However, such A cannot
support / with the above properties. Indeed, any ring of the form C(X) is a real
closed ring, in the sense of Schwartz [18]. By [18, Propositions 1.4 and 1.5], it
follows that any real closed ring is a locally irreducible ring and a going-down ring.
Thus, if A is a real closed ring (for instance, a ring of the form C(X)) and a ring-
homomorphism /: A —> B satisfies GD, then each of Theorem 3.9, Corollary 3.10,
Corollary 3.11 implies that / satisfies GGD.
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The Class Group of the Composite Ring of a Pair of
Krull Domains and Applications
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1. INTRODUCTION


Let A C B be an extension of integral domains. Then R = A + XB[X] is called the
composite ring of the pair (A, B). This construction has been extensively studied by
several authors for its pliability in providing examples and counterexamples. The
class group of the composite ring A + XB[X] has been investigated in [4] and [5].


Let R be an integral domain. We recall from [7] that the class group of /?,
Cl(R), is the group of t-invertible fractional t-ideals of .R, under the ^-product
/ * J — ( H } t , modulo its subgroup of principal fractional ideals. For a Krull
domain R, Cl(R] is the usual divisor class group of R (cf. [9]); while for R a Priifer
domain, Cl(R) = Pic(R], the ideal class group of R. The interest of this concept
resides in the fact that divisibility properties of a domain R are often reflected in
group- theoretic properties of Cl(R}. For instance, if R is a Krull domain, then
Cl(R) — 0 if and only if R is factorial. If R is a Priifer domain, then Cl(R] = 0 if
and only if R is a Bezout domain. For more details on class groups, see [3].


This paper aims to give a full description of the class group of the composite ring
of a pair of Krull domains. A first key result is Proposition 2.3, where we show that
there is an exact sequence of canonical homomorphisms


0 -> Cl(A) -> Cl(R] -


where A — [m € t - Max(A) \ (mB}t ^ B}. As an immediate corollary of
this result, we extend [4, Theorem 4.4] to the case where B is a i-flat overring
of A. The main result of this paper, Theorem 2.8, shows that if (A, B} is a pair
of Krull domains satisfying (PDE), then there is an exact sequence of canonical
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homomorphisms


0 -> Cl(A) -> Cl(R) -> ®m^Zn/emZ -> 0.


As an application, we compute the class group of some well-known constructions


such as Cl(Z + XOK[X]}J where OK is the ring of algebraic integers of a number


field K, and Cl(Z + XZ['Jd][X}}, where d is an integer with d = 2, 3 (mod 4) square


free.


2. MAIN RESULTS


Let D be an integral domain with quotient field k. By an ideal of D we mean an


integral ideal of D. Let / be a nonzero fractional ideal of D; we denote by I"1 the


inverse of / and by Iv — (I~l)~l the ii-closure of /. We say that / is a divisorial or


•y-ideal if Iv = I and u-finite if / = Jv for some finitely generated fractional ideal


J of D. We define the t-closure of / by It = U{JV \ J C I finitely generated}.


We say that / is a t-ideal if It = I and that / is t-invertible if (II~l)t — D. For


more details about these notions, see [12, Sections 32 and 34]. The set T(D) of


t-invertible fractional t-ideals of D is a group under the t-product / * J — ( I J ) t ,


and the set P(D) of nonzero principal fractional ideals of D is a subgroup of T(D).


The class group of D is defined as the group Cl(D) — T(D}/P(D}. As usual,


t — Max(D] denotes the set of all t-maximal ideals of D.


To avoid unnecessary repetition, let us fix notation for the rest of the paper. Data


will consist of an extension of integral domains A C B, K the quotient field of B,


We say that A C B is a t-linked extension [2] if for any finitely generated ideal F


of A such that F"1 = A, (B : FB} = B. Any flat extension is t-linked. If B is a


generalized ring of fractions of A, then A C B is t-linked (cf. [14, Lemma 2.26]).


LEMMA 2.1 A C R is t-iinked if and only if A C B is t-linked.


Proof. Let F be a finitely generated ideal of A such that F"1 = A. By [4, Lemma


2.1], (FR}-1 = F-l + X(FB)-l[X}. Hence (FR}~1 = R if and only if (FB)-1 = B.


Therefore, A C R is blinked if and only if A C B is t-linked. 0


Assume that A C B is a t-linked extension. By Lemma 2.1 and [2, Theorem


2.2], the canonical homomorphism (p : Cl(A] -> Cl(R)t [H] H> {(HR}t] is well-
defined. Now let m e t — Max(A}\ we denote by Bm the quotient ring BA\m.


Then Rm = Am + XBm[X}. For m e t - Max (A), there is a canonical group


homomorphism Vm : Cl(R) -)• Cl(Rm), [I] M- [IRm] (cf. [6, Proposition 2.2]).


Let A = (m € t - Max(A) \ (mB}t / B} and A' = {m € t - Max(A) \ (mB)t =


B}. Then t - Max(A] = A U A'.


LEMMA 2.2 Assume B is integrally closed and let m G A'. Then the homomor-


phism tpm is the zero map.
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Proof. Let m € A' and set M = (mR)t. By [5, Lemma 2.8], M = m + XB[X\ and
M is a t-maximal ideal of R. Now let / = H + X J[X] be a t-invertible t-ideal of
/?, where J is a t-invertible t-ideal of B and H C J is a nonzero ideal of -A (cf. [4,
Corollary 2.4]). Then IT1 <£ M, and hence (LT1) n A £ m. So (irl}Rm = Rm.
Thus IRm is an invertible ideal of Rm. On the other hand, since B is integrally
closed, then Pic(Rm] = Pic(Am) = 0 (cf. [1, page 113]). Hence IRm is a principal
ideal of Rm. Therefore, ipm = 0. 0


The set of homomorphisms (^m)m€A induces a homomorphism ip : Cl(R) — >
Ylme/fi^Rm)- Inspired by work on integer- valued polynomials (cf. [8, Proposition
3.4]), we state the following key result.


PROPOSITION 2.3 Assume B is integrally closed and t-linked over A. Then the
following sequence is exact


0 -> Cl(A) Cl(R)
m€A


Proof. The injectivity of (p follows from [4, Lemma 3.8(2)]. Now let H be a t-
invertible t-ideal of A. Then HAm is principal for each m G A, and hence (HRm)t


is principal for each m G A. Thus Im.(p C Kerip. For the reverse inclusion, we
adapt the proof of [8, Proposition 3.4]. Let [/] G Keri/j. By [4, Corollary 2.4],
we may assume that / = H + XJ[X], where J is a t-invertible t-ideal of B and
H C J is a. nonzero ideal of A. Next we show that I — (HR}t. For this it suffices
to show that !RM = (HR}tRM for each t-maximal ideal M of R. If M n A = 0,
then IRM = (HR}tRM = RM. Suppose that M n A ^ 0. Since A C R is t-
linked, then (M D A)t ^ A (cf. [2, Proposition 2.1]). Let m be a maximal t-ideal
of A such that M n A C m. By using Lemma 2.2 and the fact that [J] € Kerijj,


we deduce that IRm — cnmRm for some am 6 H. Hence IRm = (HR}tRm- Thus
IRM = (HR}tRM, and hence / = (HR)t. Similarly, I~l = (H~lR)t. Now, we have
(HH~lR)t = (ir^t = R. Hence by [4, Lemma 3.8(2)], (HH~l}t = A. Therefore,
H is a £-invertible ideal of A. Thus [J] = (p([Ht]) (cf. [2, Theorem 2.1(6)]). Hence
Kerif} C Irrup. 0


Assume B is an overring of A. Recall that the extension A C B is i-flat [15] if and
only if for each ^-maximal ideal M of B, BM — AMC\A- Every t-flat overring B of
A is i-linked. Flatness implies i-flatness, but the converse does not hold in general
(cf. [15, Remark 2.12]). The class of t-flat overrings of a domain A constitutes a
large class of generalized rings of fractions of A. In particular, if A is Noetherian
or a Mori domain, then any generalized ring of fractions of A is a t-flat overring of
A. This follows from [11, Propositions 1.5 and 1.8] and [15, Proposition 2.5(v)].


We have the following corollary which recovers [4, Theorem 4.4].


COROLLARY 2.4 Assume that B is integrally closed and a t-flat overring of A.
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Proof. Let m e A. Since A C 5 is t-flat, then Am — Bm = BM for some t-


maximal ideal M of B such that M(~)A = m. Hence .Rm = BM^]- Now let / be a


t-invertible t-ideal of R. By [4, Corollary 2.4], we may assume that / = H + XJ[X],


where J is a t-invertible t-ideal of B and H C J is a nonzero ideal of A. Since BM


is integrally closed and IRm — IBM[X] is a t-invertible t-ideal of BM[X], then, by


[16, Lemme 2, section 3], IRm = JBM\X}. Hence IRm is a principal ideal (since J


is a t-invertible t-ideal of B). Thus ijjm([I\) = 0, and hence ip = 0. Therefore, (p is


an isomorphism. <0>


Let A C B be an extension of integral domains. Assume that A is a Mori


domain. Since in a Mori domain every nonzero ideal is contained in only finitely


many maximal t-ideals, then the image of the homomorphism ip is contained in the


direct sum of the C7(.Rm)'s, where m ranges over A. In this case, we can obtain


interesting results on the surjectivity of t/>. Before this we need the following lemma:


LEMMA 2.5 Assume that A and B are Mori domains. If J is a t-ideal of R of the


form H + XJ[X], where J is an ideal of B and H C J is a, nonzero ideal of A, then


J is a ^-finite D-ideal.


Proof. Since A and B are Mori domains, then Ht — Fv for some finitely generated


ideal F C H of A, and Jt — Gv for some finitely generated ideal G C J of B. We


may assume that F C G. Then /„ = (F + XG[X])V by [5, Lemma 2.2(ii)]. On the


other hand, as in the proof of [5, Proposition 2.6], there exists /' C F -f XG[-X"], a


finitely generated ideal of R, such that (F + XG[X])V = I'v. Hence I - Iv = I'v is


a ^-finite f-ideal. 0


A domain A is said to have t-dimension 1 (written t-dimA = 1) if each prime


t-ideal of A has height one. Krull domains have t-dimension 1.


THEOREM 2.6 Let A C B be a i-linked extension of Mori domains with t-dimA = 1


and B integrally closed. Then the following sequence is exact


0 -> Cl(A) Cl(R) ®m^Cl(Rm) -+ 0.


Proof. By Proposition 2.3, it suffices to show that ip is surjective. Let m 6 A


and let Jm be a oroper t-invertible t-ideal of Rm. By [4, Corollary 2.4], we may
assume that Im — Hm + X J m [ X ] , where Jm is a t-invertible t-ideal of Bm and


Hm C Jm is a nonzero ideal of Am. Set J — Jm n R. Then I is a t-ideal of R and


I = H + X J ( X ] , where H = Hm n A and J = Jm n B. By [5, Lemma 2.1] and


Lemma 2.5, /, (7/"1)* and (IT1}'1 are u-finite -u-ideals of -R. Hence (II'l}tRm -


(irlRm)t = (Imlm
l}t = Rm- We claim that (ir1^ = R- Suppose, on the


contrary, that (II~l)t C M for some t-maximal ideal M of R. Then H C M n A.


Since \///m — mAm (dimAm — 1), one can easily show that ^/H = m. Hence


m C M n A. On the other hand, since A C R is t-linked, then (M n A) t ^ A;
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so m = M D A (since t-dimA — 1). Hence (II~l)t H A C m, a contradiction
since (II~l}tRm = Rm- Hence / is a t-invertible t-ideal of R. Now let ([Jm])m in
the direct sum of Cl(Rm)'s, m e A. We may assume that each Im has the form
Hm + XJm[X], where Jm is a t-invertible t-ideal of Bm and Hm C Jm is a nonzero


ideal of Am. Set F = (flm^™ ^ -^))*> where m runs over the t-maximal ideals in A
such that /m is not principal. Then, it is easy to see that F is a t-invertible t-ideal
of R and ^([F]) = ([/m])m. Hence V> is surjective. 0


For an integral domain A, X^(A) will denote the set of height-one prime ideals
of A. Recall that an extension A C B of Krull domains is said to satisfy (PDE) if
for each Q e XW(B), we have ht(Q n A) < 1 (cf. [9, Chapter 2]).


We have the following corollary of Theorem 2.6:


COROLLARY 2.7 Let A C B be an extension of Krull domains satisfying (PDE).


Then the sequence 0 -» Cl(A] -^ Cl(R] ^ ®me\Cl(Rm] -> 0 is exact.


Proof. By [2, Proposition 2.1(3)], the extension of Krull domains A C B is t-linked
if and only if it satisfies (PDE). The corollary now follows from Theorem 2.6. <0>


We next give our main result of this paper.


THEOREM 2.8 Let A C B be an extension of Krull domains satisfying (PDE).
For each m G A, let (mB}t = (m^m^2 . . .m£ n) t , where n > 1 (which depends
on m), each o^ > 1, and m1,m2, . . . ,mn are distinct elements of X^(B}. Set
em = (QH, Q2, . . . , an). Then we have an exact sequence:


0 ->• Cl(A) -> Cl(R) -> ®meAZn/emZ -> 0.


Proof. By Corollary 2.7, it suffices to prove the theorem for A a rank-one discrete
valuation ring (DVR). Thus let m — pA (p prime element) be the maximal ideal of
A with (mB)t = (m^m^ . . . m"n) f, and set em = (0:1,0:2, . . . ,an). We must show
that Cl(R) = Zn/emZ. Since A is a DVR, then qf(A) C B or qf(A) H B = A. If
qf(A) C 5, then Cl(R) = Cl(A) = 0 (cf. [4, Theorem 4.7]) and we are done. Thus
we may assume qf(A) n B = A.


For i = 1,. . . ,n, set /; = pA + Xm.i[X]. By [5, Theorem 4.8], the Jt's are t-
invertible t-ideals of R. Note that the JVs are t-primes since /j = m,^] n jR.
We next show that Cl(R] is generated by the classes [/,] for i = l , . . . , n . Let
I be a t-invertible t-ideal of R. Then, by [5, Theorem 1.1 and Theorem 4.8],
/ = u(Jr\A + XJ[X]) for some u 6 qf(R) and some t-invertible t-ideal J of B such
that Jr\A ^ 0. Since B is a Krull domain and JnA ^ 0, then J = (m^ra]2 . . . m^n)t


for some integers 71,72, ••• ,7n- Thus / = u(I^ 1^ . . . I^n}t (cf. [5, Lemmas 2.1
and 4.6]). Hence [/] = £7^].
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Now let {ei, . . . , en} be the canonical free basis of Zn and consider the homomor-


phism n : Zn -> Cl(R] determined by ^ f a ) — [It]. By the previous paragraph, /j, is


surjective. Next we show that Ker(^) — emZ. Clearly, emZ C Ker(^). For the re-


verse inclusion, assume that X)7»U»] = 0 in Cl(R) for some integers 71,72, . . . ,7n-


Then (m^m^2 . . .m^ n ) t — cB for some c 6 q f ( A } . Hence there exists an inte-


ger r such that 7^ = ret; for each i = l , . . . , n . Thus Ker(^) C eTOZ. Hence


Zn/emZ. 0


We have the following immediate corollary of Theorem 2.8:


COROLLARY 2.9 If A is factorial, then C7(#) = ®meAZn/emZ.


Let A be a Dedekind domain with quotient field k and let K be a finite-dimensional


extension of k. Then the integral closure B of A in Jf is a Dedekind domain. One


of the most important examples is when A = Z is the ring of integers and K is a


number field; then B = OK is the ring of algebraic integers of K. We denote by


A the set of positive primes of Z which ramify in B. Then A is finite (cf. [13,


Theorem 7.3, chap. I]).


COROLLARY 2.10 Let K be a number field and OK the ring of algebraic integers


of K. Then Cl(Z + X O K [ X } ) ^ (®p^Zn/epZ] © (©Z).


Proof. Let p be a positive prime element of Z such that p £ A. Then pO/<- =


.mn for some pairwise distinct prime ideals mi,rri2, . - . , mn E


Hence ep = (1,1, . . . , ! ) and Zn/epZ — Zn~l . The conclusion now follows from


Corollary 2.9. 0


EXAMPLE 2.11 Let d be an integer with d = 2, 3 (mod 4) square free, and let A


be the set of positive prime divisors of 4d. ThenCl(Z + XZ[Vd\[X]) = (®AZ/2Z)0


(©Z). Indeed, for the quadratic field K = Q(Vd], the discriminant D — 4d. Then,


by [13, Theorem 7.3, chap. I], a prime number p e Z is ramified in OK — Z[\fd\ if and


only if p divides 4d Now let p <E A; then pZ[>/d] = P2 for some P e X^^Zfx/d])


(cf. [13, Exercise 3, p. 28]). Hence n — 1 and ep — 2.


The case d — -I of Example 2.11 was obtained in [4].


EXAMPLE 2.12 Let k be a perfect field and K a field containing k. Let Y be


an indeterminate over K. Then the extension k[Y] C K[Y] satisfies the hypotheses


of Corollary 2.9, and we have Cl(k[Y] + XK[Y][X]) £ ©Z. Indeed, let / be


an irreducible polynomial of k[Y]. Then / = u/f1 .../"" for some u € K and


some pairwise distinct monic irreducible polynomials /i, . . . , fn £ ^"[V"). Since fc is


perfect, then Ql = • • • = an = 1. Hence e/ = (1,1,...,!) and Zn/e/Z = Z""1.


Thus, by Corollary 2.9, Cl(k[Y] + XK[Y][X]) °* ©Z.
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REMARK 2.13 1) By [5, Corollary 4.15], we have the following exact sequence:


0 -> K*/Q*U(0K) -> Cl(Z + XOK[X}} -* Cl(0K) -> 0.


As an application of the above results, we can use this exact sequence to deduce
information on the size of the class number of the number field K. In particular,
let d > 0, d = 1,2 (mod4) square free, i.e., Z[\f^d] is Dedekind. Then Z[\f^d]
is factorial if and only if d = 1,2. Indeed, if d > 2, one can easily show that the
subgroup of elements of order 2 in Q(\^—d)*/Q* (note that in this case U(OK] =
{±1}) is cyclic of order 2, while it is of order > 4 in Cl(Z + XZ[^/^[X]) -
(®AZ/2Z)©(®Z) (since #A > 2). Hence Cl(OK] / 0. The factoriality in the two
cases d = 1,2 is well known.
2) Recall that if B is an integrally closed domain, then Cl(B[X]) = Cl(B] (d. [10,
Theorem 3.6], see also Corollary 2.4). The computation of Cl(B[X]) has not been
investigated for B not integrally closed and we don't know any example. From
Example 2.12 we get the following example: Let B = A: + JfA'fX] (notation of
Example 2.12) with k not algebraically closed in K (and hence B is not integrally
closed). In this case, Cl(B[Y}) — @Z (a free abelian group).
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Abstract
Denote by A' the integral closure of the ring A and by A* its complete integral
closure. Let D be a domain with quotient field K and E C K be a subset. We study
the integer-valued polynomial rings Int(E, D)',Int(£,.D)*, Int(£, D'),Int(£,.D*)
and the relations of their properties with the noetherianity of Int(£', D).


INTRODUCTION
Throughout, we denote by A' the integral closure of the ring A and by A* its
complete integral closure. If D is a domain with quotient field K, the integer-
valued polynomial ring over D is the domain Int(D) := {/ € K[X]\f(D) C D}.
Clearly D[X] C Int(D) C K(X\.


Since D is a homomorphic image of Int(D), if Int(D) is Noetherian, then also
D is Noetherian. On the contrary, when Int(D) ^ D\X\, the noetherianity of D
is scarcely a sufficient condition for Int(.D) to be Noetherian. For example, it is
well known that Int(Z) is not Noetherian, being a two-dimensional Priifer domain
[5, ch. VI]. As a matter of fact, if D is Noetherian and it is also one-dimensional
or integrally closed, then Int(J9) is Noetherian if and only if it is trivial, that is it
coincides with D[X] [5, Corollary VI.2.6]. More generally, if Int(D) is Noetherian,
then Int(Z)') = jD'pf] [5, Proposition VI.2.4 ] and this means that each height-one
prime of D' has infinite residue field [5, Corollary IV.4.10]. The converse holds if
the conductor of D' into D is not zero.


The aim of this paper is to study how the noetherianity of the ring Int(jE, D) :=
{/ 6 K[X];f(E) C D} of the integer-valued polynomials over a subset E of K is
related to the properties of Int(jE, D'), in particular in the case when E is a nonzero
fractional ideal of D.


To this extent, it is useful to consider the ring D[X/E] := HaeEUO) D [ a ~ l X ] .
This graded ring plays, with respect to lnt(E, D), the role of D[X] with respect
to Int(D). In fact, for example, when Int(D) = D[X], then Int(£,D) = D\X/E\
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[8, Lemma 4.5]. Another similarity of behaviour happens when the conductor of D'
into D is not zero. In this case, if Int(Z)) is Noetherian, then Int(D) is a pullback
of D'[X}\ in the same way, if lnt,(E, D} is Noetherian, then Int(£', D) is a pullback
of D'[X/E].


In Section 3, we use these facts to prove that if E is a fractional ideal of D
and either Int(D) or Int (£,£>) is Noetherian, then Int(£,D') = D'[X/E] (Proposi-
tion 3.9); thus extending the result for Int(D) in [5, Proposition VI.2.4 ] mentioned
above. We also prove that if Int(D) is Noetherian and the conductor of D' into
D is not zero, then lnt(E, D) is Noetherian if and only if D[X/E] is Noetherian
(Proposition 3.11). The hypothesis that Int(£>) is Noetherian is not too much re-
strictive. In fact, if D' has nonzero conductor into D and lnt(E,D) is Noetherian,
then Int(D) is necessarily Noetherian (Proposition 3.8).


Establishing whether in general the graded ring D[X/E] is Noetherian is an
open problem. We give an example, which can be easily generalized, of a do-
main D such that D[X/E] is Noetherian while Int(£', D} need not be Noetherian.
However we show that if D is a Krull domain, then D[X/E] is a Krull domain
(Proposition 3.12). It follows that if either lnt(D) or lnt(E,D) is Noetherian, then
D'[X/E] = Int(£, D') is always a Krull domain (Corollary 3.13).


In the first two sections of the paper, we study the complete integral closure of
Int(£', D). We recall that integer-valued polynomial rings have been used to put in
evidence the anomalous behavior of the complete integral closure. For instance, if
V is a complete rank one discrete valuation domain with finite residue field, then
Int(V r) is a completely integrally closed domain which is not the intersection of
rank one valuation domains and which has localizations which are not completely
integrally closed (see [5] pp. 130-131).


We show that the integral closure of Int(E, D} and its complete integral closure
do not have similar properties. Among other results, we prove for example that
when D is Noetherian or D" has nonzero conductor, then Int(.E,Z)*) = Int(j£, D)*
(Corollary 1.5 and Proposition 2.1), while it is known that an analogous result is
not true for the integral closure, even when both the hypotheses are satisfied. A
nice consequence of this equality is that if D is Noetherian, then Int(D)' = Int(D)*
(Corollary 1.6). But we give an example showing that, even when D is Noetherian
and has nonzero conductor, it can happen that Int(J?, D)' C Int(£', D}".


We thank the referee for his very careful reading of the manuscript and his
comments.


1 GENERAL FACTS, REMARKS AND
EXAMPLES


A nonzero element x £ A" is said to be almost integral over D if there is a nonzero
element d E D such that, dxl £ D, for i > 0. This is equivalent to saying that all
the powers of x belong to a finite D-module or that they generate a fractional ideal
of D. The complete integral closure of D in K, which we denote by D*, is the set of
the elements of K that are almost integral over D. It is not difficult to verify that
D* = U( - f : -Hi where / ranges among the fractional ideals of D. D is completely
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If an element is integral over D, then it is almost integral, and if D is Noetherian
the converse holds. Thus, if D' denotes the integral closure of D in A', one has
D C D' C D", and if D is Noetherian then D1 = D*. It is well known that D* is
always integrally closed, but many examples have been given to show that it might
not be completely integrally closed. However, D* is completely integrally closed
if the conductor (D : D*) is a nonzero ideal, that is if D" is contained in a finite
D-submodule of A' (see for example [1]).


We recall that a nonempty subset E of A" is a D-fractional subset if there exists
a nonzero element d G D such that dE C D. The fractional ideals of D are exactly
the D-fractional D-submodules of K.


If E is D-fractional, then Int(£,£)) contains the nonconstant polynomial dX
and so it is not trivial. Conversely, if lnt(E, D) ^ D, then it is known that E must
be a L>-fractional subset of the integral closure D' of D [5, Proposition 1.1.9]. It
follows that lnt(E, D'} ^ D' if and only if E is D'-fr action al.


We are mainly interested in the study of the complete integral closure of Int(£') D)
when E is a D-fractional subset of A", namely a fractional ideal of D. In this case
we might as well assume that E is contained in D. In fact, for any a E K \ (0),
f(X) G Int(a#,D) if and only if f ( a X ) G Int(£,D). Hence the isomorphism
of K[X] onto itself which maps f ( X ) to f ( a X ) induces an isomorphism between
Int(a£,D) and Int(£,D).


LEMMA 1.1. Let E be an infinite additive subgroup of K. If f ( X ) G K[X] \ (0)
and f(a) G D for almost all a 6 E (that is f(a) (£ D for at most finitely many
a 6 E) then / G Int(£, D).


Proof. Apply the same argument given in [5, Proposition 1.1.5] for E = D. D


PROPOSITION 1.2. Let E be an infinite additive subgroup of K, then


Int(£,D)* CInt(£,D*).


In particular
Int(D)* CInt(D,D*) .


Proof. Since K[X] is completely integrally closed, then Int(£T, D)* C A'pC]. Let
f(X) G K[X] be almost integral over Int(E, D). Then, for some g(X) G Int(E, D)\
{0} and all n > 0, g(X}f(X)n G Int(£, D). It follows that, for all a G E such that
9 (a) £ 0, g(a}f(a)n G D. Hence /(a) G D* for almost all a G D and, by applying
Lemma 1.1, f ( X ) G Int(£, D*). D


COROLLARY 1.3. Let E be an infinite additive subgroup of K. Then Int(£,D)
is completely integrally closed if and only if D is completely integrally closed.


In particular, Int(D) is completely integrally closed if and only if D is completely
integrally closed.


Proof. By Proposition 1.2, if D is completely integrally closed, then lni(E, D) is
completely integrally closed. Conversely, if Int(£', D) is completely integrally closed,
then D = Int(£', D) n K is completely integrally closed. D
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We recall that, for any D-fractional subset E of A" , a similar result holds for the
integral closure; namely, we have that


lnt(E,D}' Clni(E,D')


and in particular ln\,(E, D) is integrally closed if and only if D is integrally closed
[5, Proposition IV. 4.1].


Since for Noetherian domains the integral closure and the complete integral
closure coincide, then, if D is Noetherian, we have that D' — D* and D[X]' =
D'[X] = D*[X] = D[X]* . We now show that, in this case, we also have that
Int(D)' = Int(D)*, even though lnt(D] need not be Noetherian.


Recall that, if D is Noetherian, then, by [5, Theorem IV.4.7],


Int(D)' = In t (D I D
/ ) .


PROPOSITION 1.4. [5, Exercise IV. 24] Let D be a Noetherian domain and E
a, D- fractional subset of K . Then


lnt(E,D')CInt(E,D)*.


Proof. By [5, Lemma IV.4.2], for each / 6 Int(£, D'}, there exists a D-algebra R,
finitely generated as a D-module, such that D C R C D' and f(E) C R.


Since R is a finitely generated D-module, the conductor / := (D : R) is a nonzero
common ideal of D and R. Then lnt(E} D) and Int(£*, R) share the ideal J : —
Int(£, /) := (g(X) (E K[X]-g(E) C /}. It follows that


/ 6 Int(E, R) C ( J : J) C


and so Int(E, D') C lnt(E, D)' . D


COROLLARY 1.5. Let D be a Noetherian domain and E a D-fractional infinite
additive subgroup of K . Then


Proof. By Proposition 1.4, we have Int(E, D') C Int(£", D}* . The opposite inclusion
holds by Proposition 1.2, because D' — D* . CH


COROLLARY 1.6. If D is a Noetherian domain, then


Proof. By [5, Theorem IV.4.7] we have Int(D)' = Int(D, D') and, by Corollary 1.5,
D


If D is Noetherian and E is a proper infinite additive subgroup of A', the con-
tainement Int(£, D)' C lut(E,D)* may be proper (see Remark 1.8 (c) below).
However we now show that if E = aD is a nonzero principal fractional ideal of D,
then the equality holds.
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PROPOSITION 1.7. Let D be a Noetherian domain and let a 6 /v\(0). Then:


Int(a£>, D') = Int(a£>, D)* = Int(oD, D}'.


Proof. The automorphism of A ' [ X ] which maps /(A') to f ( a X ) induces an isomor-
phism between Int(aD,D') and Int(£>, D') and between lnt(aD,D) and Int(D).


We conclude because, by Corollary 1.6, Int(£>, D') = Int(D)* = lni(D)'. D


Remark 1.8.


(a) If D is not Noetherian, it may happen that Int(D)' ^ Int(D, D'). This is shown
by the following example, given in [5, Exercise IV.27].


Let Fq be the finite field with q elements and Wq its algebraic closure. Consider
the rank-one valuation domain V := F9[[i]] and the domain D := Wq -f tV; by [9] D
is local, one-dimensional and non-Noetherian. Moreover, the integral closure of D
is V. If / := ̂ f£, then / 6 mt(£>, V) but / 0 lnt(D)'.


(b) Since D C D*, it is obvious that Int(£>*) C Int(D,ir), but in general this
inclusion is strict. In fact, [5, Exercise IV.29] gives the following example of a
one-dimensional Noetherian domain such that lni(D) ^ Int(D') = Int(D*). Since
Int(D) C Int(D, D*), it follows that Int(D*) ^ Int(D,£>*).


Let k be a finite field, t an indeterminate over k and D : — k[iz,t3}. It is easy
to see that D is a one-dimensional Noetherian domain with integral closure k[t]. In
addition, if / = flaefc^ ~ a) ancl 9 = /3/*4> tlmn 9 e Int(-C)) but g £ Int(D').


(c) We recall that, if D is a one-dimensional Noetherian domain with finite residue
field, then Int(£, D}1 - Int(£, D') [5, Proposition IV.4.3]. But in general, if the
residue field of D is not finite, it may happen that Int(£',D)' ^ Int(E, D'). For
instance, if D := R + *C[[i]], then D' - C[[t}} and, setting m := tD', we have that
Int(m,jD) ' g Int(m,D') [5, Exercise IV.26]. We will illustrate in detail this fact in
the next section, using technics different from the ones used in [5].


The same example also shows that Corollary 1.6 is no longer true if Int(-D) is
replaced by Int(£,D). In fact Int(m, D') = Int(m, D)* by Proposition 1.5. Thus


Int(m, D}' g Int(m, D') = Int(m, D)*.


2 THE NONZERO CONDUCTOR CASE
We now turn to the case when D* has nonzero conductor / := (D: D*) := {x G
K\xD* C £)}, that is when D* is a fractional ideal of D. In this hypothesis, we
prove results similar to those obtained in Section 1 when D is Noetherian.


PROPOSITION 2.1. /// := (D: D*) ^ (0) and E is an infinite additive sub-
group of K, then


In particular
Int(£>)* =
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Proof. Since lnt(E, D) and lnt(E, D*) share the ideal J := lnt(E, /), we have that


Int(£,ZT) C (J: J) C Int(£, D)*.


The opposite inclusion follows from Proposition 1.2. D


We recall that, if / := (D: D*) ^ (0), then D* is completely integrally closed
[1] and so Int(£I, D)* = li\t(E, D*) is completely integrally closed by Corollary 1.3.


The inclusion Int(D) C Int(D,D*) is always verified, since D C D* . But, in
general, it is not true that Int(D) C Int(D*), even when D is Noetherian and
/ / (0), as we have seen in Remark 1.8(b).


COROLLARY 2.2. /// := (D : D") £ (0), then


Int(D) C Int(ZT) <=> Int(LT) = Int(D)*.


Proof. Assume that Int(D) C Int(D*). By Proposition 2.1, we have


Int(D) C Int(ZT) C lnt(D,D*) = Int(D)*.


Since Int(D*) is completely integrally closed, we conclude that Int(D*) = Int(D)*.
The converse is clear. D


COROLLARY 2.3. Assume that I := (D: D*} ^ (0) and consider the following
conditions:


(i) Int(D) C D*[X];


(Hi) Int(D*) = D*[X].


Then (i) <=> (ii) =>(iii).


Proof. We have D*[X] C Int(D*) C Int(D,D*) and Int(D) C Int(D,D*). Since
D* is completely integrally closed, -D*[A'] is completely integrally closed. Besides,
Int(D)* = Int(D, D*) by Proposition 2.1. Hence (i) =>(ii) =>(iii). That (ii) ==>(i)
is clear. D


Remark 2. 4-


(a) Substituting the complete integral closure with the integral closure, Proposi-
tion 2.1 is no longer true, even when D is Noetherian (see Remarks 1.8(a) and
(c))-


(b) If D is Noetherian, Proposition 2.1 and Corollary 2.2 remain true relaxing the
hypothesis that / ^ (0).


In fact, in this case, we have lnt(E,D)* = lnt(E,D') = Int(E,D*) by Proposi-
tion 1.5. In addition, Int(D)* - Int(D)' = Int(D,D') by Corollary 1.6 and so we
have


Int(D) C Int(D') <=> Int(D') = Int(D, D'),


which is (i) <=> (ii) of [5, Theorem IV. 4. 9].
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(c) The three conditions of Corollary 2.3 are all equivalent in the Noetherian case,
with no assumption on the conductor.


In fact, if D is Noetherian, (i) and (iii) are equivalent by [5, Corollary IV. 4. 10].
Hence, if (i) holds, Int(D) C Int(D') C D'[X] and so, by [5, Corollary IV.4.9],
lnt(D,D') = Int(D') - D'[X], which is condition (ii). We also note that the
implication (ii) ==>(iii) is always true.


However, in general it is possible to have / := (D : D*) ^ (0) and:


Int(D)* = Int(D,£>*) g Int(IT) = D*[X].


Hence, in Corollary 2.3, condition (iii) does not imply conditions (i) and (ii); in this
case, by Corollary 2.2, also Int(D) £ Int(D*).


For example, take D := Wq + tWq[[t]], where Wq is the algebraic closure of F? (see
Remark 1.8(a)). In this case, D* = D' = Wq[[t]] =: V and / = tV ^ (0). Hence
Int(D)* = Int(D, V] by Proposition 2.1. Moreover, denoting by do = 0, d\} . . . , dq-\


T~r ' ~ l ( X — d }
the elements of Wq and setting <p = l= ^ - — , by [7, Lemma 2.2], we have
Int(jD, V) = V[X][<f>]. But, since V is a one-dimensional, local, Noetherian domain
with infinite residue field, by [5, Corollary 1.3.15] we also have Int(V r) = V[X].
Hence


Int(D*) = Int(K) = V[X] g V[X][<f>] = Int(D, V) = Int(D, D*}.


If E is a subset of A", we set


a€£?\(0)


Since D[X] C Int(D), applying the automorphism of A' [A'] defined by f(X) •->
f ( a X ) , we have that D[a-1A"] C Int(aD,£)), for each nonzero element a € A.
Thus, if E is a D-module,


Int(£, D) = p| Int(aZ?, D) D p| D^X] = D[X/E]
a6£\(0)


and similarly, denoting by ED* (resp. ED1) the D* -module (resp. D'-module)
which is the extension of E to D* (resp. D'),


Int(£,£>') D l^Ejy.D') D D'[X/E\


and
Int(E,ir) D Int(J5D*, D*) D D*[X/E\.


If, in addition, Int(D) = D[X], then lni(E,D) = D[X/E] [8, Lemma 4.5].
The ring D[X/E] behaves with respect to lni(E, D) mostly like D[X] with re-


spect to Int(D). An example of this fact is given by the following result, which is
the analogue of Corollary 2.3.


PROPOSITION 2.5. Assume that either D is Noetherian or I := (D: D*) ^ (0)
and let E C K be a nonzero D-module. Consider the following conditions:


( i ) l n t ( E J D ) C D * [ X / E } ;
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(iii)


Then (i) <=>• (ii) =>(iii).


Proof. Since Int(£, D) C Int(£, D*), obviously (ii) =>(i).
(i) =>(ii). If D is Noetherian or / := (D: D*) / (0), then Iut(E,D*) =


Int (£",£))* by Corollary 1.5 or Proposition 2.1 respectively. From (i) it follows
that lnt(E,D) C D * [ a ~ l X ] , for each nonzero element a E E. Since ^"[a"1^]
is completely integrally closed, then Int(£, D)* C D*[a~lX} and Int(£, £>*) =
Int(E,L>)* C L>*[A'/£]. The opposite containment lnt(E,D") D £>*[A"/£] always
holds.


(ii) =>(iii). We have the inclusions: D*[X/E] C Int(ED*,D*) C Int(£,LT). If
Int(£,£>*) C D*[X/E], then Int(ED*, £>*) = D*[X/E]. D


Remark 2.6. In [14] it is shown that, if D is a domain and £ is a nonzero D-
module, then D[X/E] is a graded ring of the form 0n > 0EnXn , where EQ = D


and £"„ = flue£\(o) u~nD f°r " > 1- In particular, if E = aD, for some nonzero
a G A', then En — a~n D for all n > 0. We observe that {^rijn^o is a sequence of
D-modules such that E{Ej C Ei+j.
In P.L. Kiihne's Ph.D Thesis [12], there are considered graded rings of the type:


n>0


where MQ is a domain and M. :— {Mn}n>Q is a sequence of Mo-modules such that
MjMj C M,-+J. The author studies conditions on the sequence M. for which the
polynomial ring A"f [A'] is integrally closed, completely integrally closed, etc...
In particular she shows that if there exists an integer n such that Mk = Mn for
each k > n (i. e. the sequence is stationary), then:


is integrally closed if and only if Mn = MI, for each n > 1, MO is
integrally closed in M\ and M\ is integrally closed.


is completely integrally closed if and only if Mn — MQ, for each n > 0
and MO is completely integrally closed.


In our case, if we set M. := {En}n>Q, we get that D[X/E] is exactly the graded
ring M[X\. If Int(D) = D[X], we" also have that ln\,(E,D) = D[X/E] and we
know that lni(E, D) is integrally closed (respectively completely integrally closed)
if and only if D is integrally closed (respectively completely integrally closed) by
[5, Proposition IV. 4.1] (respectively Corollary 1.3). Thus, D[X/E] gives a natural
example of the fact that the two results above no longer hold if the sequence M. is
not assumed to be stationary.


We now describe in detail the example mentioned in Remark 1.8(c).
Let D := IR +<£[[<]]. Then D1 = C[[t}} and the conductor of D7 into D is m := W.


Since D and D' are one-dimensional local Noetherian domains with infinite residue
field, then Int(D) = D[X] and similarly Int(D') = D'[X] [5, Corollary 1.3.15].
Hence, via the isomorphism defined by f(X] H-> f(tX)> we have that Int(<D, D} =
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D[X/t] and Int(m,D') = Int(<D',D') = D'[X/t]. We also have that int(m,Z)) -
D[X/m] [8, Lemma 4.5].


On the other hand we now show that Int(m, D] = D + mD[X/t}. It is easy to
check that D+mD[X/t] C Int(m, D). For the opposite inclusion, since tD C m, then
Int(m, D} C Int(<D, D} = D(X/i\. Thus, Int(m, D) = D[X/m] is a graded ring such
that D + mD[X/t] C Int(m, D) C D[X/t]. Hence Int(m, D) = ®n>0 MnX


n , where
t~nm C Mn C t~nD. This means that Mn - t~nm or Mn = t~nD. Suppose that
Mn = <-"£>, for a certain n > 0 and choose a 6 D\m. Then i-'lcvA'n 6 Int(m, D).
Now, there exists z £ D' such that arn ^ D , because cv £ m = (Z): D'). But, since
tz 6 i£>' = m, then f~ na(i2) n = azn G D, which is a contradiction. Thus, for each
n > 1, Mn = rnm, Int(m, D) = D + mL>[A'/*] and Int(m, D)' = D' + mD'[X/t].


It follows that


Int(m, £>)' = D' + mD'[X/t] C D'[A'/i] = Int(m,D').


This example also shows that in general D[X/E] does not behave exactly like
the polynomial ring D[A']. For instance, while -D[A']' = D'[X], the containment
D[X/E]' C D'[X/E] may be proper. In fact we have seen that:


D[X/m]' = Int(m, D)' g Int(m, D'} = D'[X/t] - D'[X/m}.


3 STUDYING NOETHERIANITY THROUGH
FULLBACKS


The relationship between the noetherianity of Int(jD) and the properties of the
integral closure of D is given by the following proposition, which is obtained by
putting together [5, Corollary IV. 4. 10] and [5, Proposition VI. 2. 4].


PROPOSITION 3.1. Let D be a Noetherian domain and consider the following
conditions:


(i) Int(jD.) is Noetherian;


(ii) Int(£>) Ciy[X];


(iii) Int(D') = D'(X};


(iv) each height-one prime ideal of D' has infinite residue field.


Then (i) =>(ii) t=> (iii) <=> (iv). D


In general, conditions (i) and (ii) are not equivalent, as it is shown in [10].


PROPOSITION 3.2. [5, Remarks VI.2.5] Assume that D is Noetherian and I :=
(D: D') / (0). Then Int(D) is Noetherian if and only i f l n t ( D ) C D'[X] .


Proof. Assume that, Int(£>) C -D'[A]. Since D' is a finite-type D-module, then
D'[X] is Noetherian and finite over D[A"]. Hence D'[X] is finite over Int(D) and, by
Eakin-Nagata's Theorem, Int(D) is Noetherian. The converse follows from Propo-
sition 3.1. D
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Now we want to show that, in case / := (D: D'} / (0), Propositions 3.1 and
3.2 give a way to construct a Noetherian domain D with the property that lnt(D)
is either Noetherian and not trivial or not Noetherian.


We start by using pullback diagrams to prove that when D is Noetherian and
I :=(D: D') £ (0) then Int(D) is Noetherian if and only if Int(D') = D'[X}.


We recall that if A is a domain sharing an ideal / with its overring B, then A is
a pullback of B in the sense that the following diagram is commutative:


A )• A/I


B > B/I


where the vertical arrows are the natural inclusions and the horizontal arrows are


the natural projections.


The following well-known result establishes necessary and sufficient conditions
in order to have that A is a Noetherian domain:


PROPOSITION 3.3. [9, Proposition 1.8] With the notation above, A is Noethe-
rian if and only if B and A/I are Noetherian and B is a finite type A-algebra.
D


In our case, if I := (D: D') •£ (0), then / is a nonzero common ideal of D and
D' and we have a pullback diagram:


D >• D/I


D1 >• D'/I


Assume that Int(D) is Noetherian, then Int(D) C D'[X] C Int(D') [5, Proposi-
tion VI.2.4]. Since J := Int(D, /) = {/ e K[X]\f(D) C /} is a nonzero common
ideal of Int(D), D'[X] and Int(D'), we also have pullback diagrams as follows:


Int(D) >• Int(D)/J


I i
D'[X] > D'[X}/J


Int(D') > Int(D')/J


Thus, Int(D') is Noetherian and, since D' is noetherian and integrally closed,
then Int(D') = D'[X] [5, Proposition VI.2.6].


On the contrary, if Int(D') = D'(X], then Int(D, D'} = D'[X] by Corollary 2.3.
Since I[X] is a common ideal of D[X] and D'[X], we have the pullback diagrams:
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lnt(D)/I[X]


I
iy[X}fI[X}.


where D[X] is Noetherian. Whence Int(D) is Noetherian.


We also observe that, in the situation above, if D/I is finite, then Int(D) ^ D[X]
[5, Remark 1.3.13 (iii)]. In fact, let {do, . . ., c?9-i} be a set of representatives of
D modulo / and let x £ D' . Since / is contained in the ideal (D \D x ) , then
the polynomial f ( X ) = x Ilo<fc<9-i('Y ~ d*) is in Int(-°)- But f(x) $ Dix] if


xeD'\D.


The following result is a direct consequence of Proposition 3.1, Proposition 3.2
and the last observation.


COROLLARY 3.4. Let D be a Noetherian domain such that I :=(D: D') ^ (0)
and D/I is finite. If each height-one prime ideal of D' has infinite residue field,
then Int(D) is Noetherian and Ini.(D) ^ D[X}. Otherwise Int(ZD) is not Noetherian.


COROLLARY 3.5. Let D be a Noetherian domain such that I := (D: D') / (0),
D/I is finite and (D1 : 1} ^ D' . Then Int(D) is not Noetherian.


Proof. Since D' is a finitely generated D-module, then D' / 1 is also finite. Since D'
is a Krull domain and (D' : / ) /£) ' , then the divisorial closure of / is different from
D1 and so / is contained in a height-one prime of D' . For such a prime P, D1 / P
also is finite. Hence we conclude by applying Corollary 3.4. D


Remark 3.6. In the previous corollary, the hypothesis that / :— (D1 : I) ^ D' is
necessary. In fact the following example of a Noetherian domain D such that
/ := (D: D') ^ (0), D/I is finite, (D' : I) = D' , and Int(D) is Noetherian can
be found on page 8 of [10] (see also [5, Exercise VI. 15]).


Let k be a finite field, u,v two indeterminates over k and B = k[[utv]]. B is
a two-dimensional, Noetherian, integrally closed, local domain with maximal ideal
M — (UjV). Moreover, each height-one prime ideal of B has infinite residue field.
Consider the following pullback diagram:


D:=k


B >• B/M2


We have that D' =-Bt I := (D: D') = M2 and D/M2 = k is finite. Hence
Int(D) is Noetherian and not trivial by Corollary 3.4. However, since M has height
two, ( D ' : I ] = D'.
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In the rest of this section, we want to investigate the noetherianity of lnt(E,D)
when E is a nonzero fractional ideal of D. In this case Int(£", D) is not equal to D
as we have observed in Section 1. We note that if lnt(E, D} is Noetherian, then D
is Noetherian, being an homomorphic image of lni(E, D).


LEMMA 3.7. [5, Exercise VI. 13] Let E be a nonzero fractional ideal of D. If
ln\,(E,D) is Noetherian, then each height one prime ideal of D' has infinite residue
field.


Proof. If Int(E, D) is Noetherian, then D is Noetherian. Replacing Int(D) by
lnt(E,D) in the proof of [5, Proposition VI. 2. 4] and using [5, Excercise V.8] in-
stead of [5, Corollary V.2.4] we get that each height one prime ideal of D' has
infinite residue field. D


By using the last lemma, Propositions 3.1 and 3.2, we immediately have the
following proposition.


PROPOSITION 3.8. Assume that I := (D : D') ^ (0) and let E be a nonzero
fractional ideal of D. I f l n t ( E , D ) is Noetherian, thenlnt(D) is Noethenan.


The following result generalizes Proposition 3.1.


PROPOSITION 3.9. Let E be a nonzero fractional ideal of D and assume that
either lnt(D) or Int(£', D) is Noetherian. Then the two following equivalent condi-
tions hold:


(i) lnt(E,D) C D'[X/E};


(ii) Int(E,D') = D'[X/E] = Int(££',D')-


Proof. If either Int(D) or Int(£', D) is Noetherian, then each height one prime ideal
of D' has infinite residue field by Proposition 3.1 or Lemma 3.7 respectively. Hence
Int(D') = D'[X], again by Proposition 3.1, and so lnt(ED',D') = D'[X/E] by [8,
Lemma 4. 5]. To finish, conditions (i) and (ii) are equivalent by Proposition 2.5. D


If / is an ideal of D and E is a nonzero D-module, we set


I ( X / E } : = p| /[cr1*].
aeJB\(0)


It is easy to check that I[X/E] is an ideal of D[X/E}.


LEMMA 3.10. Suppose that I := (D: D'} £ (0) and let E be a nonzero D-
module. Then


C (D[X/E] :


Proof. If a e 7\(0), then aD' C D. Thus, aD'[a-lX] C D^X], for each a 6 E.
Hence aD'[X/E] C D[X/E\. D


PROPOSITION 3.11. Assume that I := (D: D'} ± (0), let E be a nonzero
fractional ideal of D and consider the following conditions:
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(i) Ini(E,D) is Noetherian;


(ii) D[X/E] is Noetherian;


(iii) D'[X/E] is Noetherian.


Then (i) =>(ii) •<=> (iii)- If in addition lni(D) is Noetherian, then (ii) =>(i)
and all the three conditions are equivalent.


Proof. By Lemma 3.10, D[X/E] and D'[X/E] share the nonzero ideal I ( X / E } .
Hence we have the following pullback diagram:


D[X/E] > D(X/E}/I[X/E]


I
D'(X/E] > D'[X/E]/I[X/E]


Since D' is a finitely generated /2-module, then D'[X/E] is a finitely generated
D[X/E]-modu\e. Whence (ii) <£=> (iii) (Proposition 3.3).


Now assume that lnt(E, D) is Noetherian. By Proposition 3.9, we have that
D[X/E] C lnt(E,D) C D'[X/E]. Hence lnt(E,D) and D'[X/E] also share the
nonzero ideal I[X/E] and we have the pullback diagrams:


D[X/E] > D[X/E}/I[X/E]


I
l n t ( E , D ) / I [ X / E ]


D'[X/E] - > D'[X/E]/I[X/E]


It follows that, if Int(£', D) is Noetherian, then also D'[X/E] is Noetherian, that is


On the other hand, if Int(£)) is Noetherian, again by Proposition 3.9, we have
the same pullbak diagrams as before. Hence, if D[X/E] is Noetherian, lnt(E, D} is
Noetherian. That is, in this case, (ii) =>(i). D


By the previous proposition, if E is a nonzero fractional ideal of D, / :=
(D: D') £ (0) and Int(D) is Noetherian, then Int(E, D) is Noetherian if and only
if D[X/E] is Noetherian. On the other hand, by using Proposition 3.8 we get that
when D[X/E] is Noetherian, then Int(£', D) is Noetherian if and only if Int(jD)
is Noetherian. In Remark 3.14 (c) below, we give an example where D[X/E] is
Noetherian but lnk(E, D) is not Noetherian.


We now prove that if D is a Krull domain, then D[X/E] is a Krull domain, for
every fractional ideal E of D. We recall that lnt(D) is Krull if and only if D is
Krull and Int(jD) = D[X] [7, Corollary 2.7]. In this case Int(£, D} = D[X/E}.


PROPOSITION 3.12. Let E be a fractional ideal o f D . If D is a Krull domain,
then D[X/E] is a Krull domain.
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Proof. Without loss of generality we can assume that E C D. We can represent
D as the intersection f] Dp, where p runs among the height-one prime ideals of
D, each domain Dp is a DVR and this intersection has finite character. Moreover,


Now, E is contained at most in finitely many height-one primes, say pi , • • • ,pn.
Then, if p ^ p, for i = 1, • • • ,77 . , we have EDp = Dp and DP[X/E] = DP[X].
Instead, for i = 1, • • • ,71, since Dpt is a DVR, we have EDpi — .t,-Dpi, for some
Xi e E, and £>P,[A7£] = £>P,[A/.i't] ^ DP,[A'].


The domain /? := r\P^Pl Pn Dp[X/E] = fWp, ... Pn ^pPO> is a generalized
ring of quotients of /}[A"j\ Since D[X] is Krull , then R is Krul l . For the same
reason, DPI[X/E] = Dpi[X] is Krull .


It follows that D[X/E] = RH (r\iDpt[X/Xi]) is a finite intersection of Krull
domains and then it is Krull . D


Recalling that the integral closure of a Noetherian domain is Krull and by using
Proposition 3.1 and Lemma 3.7, we immediately get the following corollary.


COROLLARY 3.13. If either lni(D) orlnt(£,£>) is Noetherian, thenln\.(E,D') =
D'[X/E] is Krull, for each fractional ideal E of D. D


Remark 3.14.


(a) To prove that In t (E,D) C D'[X/E] when Int(D) is Noetherian (Proposi-
tion 3.9), we can also proceed in the following way.


If Int(D) is Noetherian, then Int(D) C D'[X] (Proposition 3.1). Hence, by the
isomorphism f ( X ) »-» f ( a ~ l A) , we have that


Int(aD.D) C D ' [ a ~ l X ] ,


for all a £ A'\(0). It follows that


, D} = (~] Int(a£>, D) C p| D'fa'1 A] = D'[X/E}.
a£E\(0)


(b) In the hypotheses of Proposition 3.11, the study of the noetherianity of Int(£, D}
is reduced to investigating the noetherianity of the graded ring D[X/E]. Unfortu-
natly this fact does not simplify the problem. In fact, following the notation of
Remark 2.6, the characterization of the rings Ai[A] which are Noetherian is still
an open question.


Y. Haouat studied in his Ph.D Thesis [11], the noetherianity for graded rings of
the form:


n>0


where A := {An}n>o is an increasing sequence of rings. In this case, he showed
that A[X] is Noetherian if and only if AQ is Noetherian, the sequence {An}n>o is
stationary and every ring An is a finite-type Ao-module.


Later, P.L. Kiihne studied in [12] the Noetherian property for the rings jM[AT],
when the sequence of modules M ~ {Mn}n>o is stationary.
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We immediately see that the stationarity of the sequence M is not a necessary
condition for the noetherianity of .M[A"]. In fact, the domain D[a~lX] is Noetherian
if D is Noetherian, but it is generated by the strictly increasing sequence of D-
modules {a~nD} r i>o-


(c) In general we know that D[X/E] — ®n>0 EnX
n is Noetherian if and only if


£"0 = D is Noetherian and ®n>1 EnX
n is a finite type D-algebra.


This last condition is satisfied for example when E is a fractional ideal of D such
that the modules En become principal (generated by a power of the same element),
for all n » 0 and in addition E^Eh =• Eh+k, for h,k » 0. In fact, assume that
there exists N > 0 such that En = blnD and EhEk = Eh+k, for each nji.,k > N,
and let a/,i, • • • , Qhjh be the generators of Eh, for h = 1, • • • ,N. Then:


D[X/E] = D[anX, • • • , aijlX, a2lX
2, • • • , a2?2A'2 , ••• ,


aNlX
N,- • • , a t f j N X N , &''"+' XN+l, • • • , &'-Am],


for a certain in > N.


For instance, let k be a field and consider the domain D := k[[X3, X1, A'11]].
Then D is a one-dimensional, local, Noetherian, domain with maximal ideal M : —
(X3,X', X11}. The integral closure of D is V := k[[X]] and V has nonzero conduc-
tor / = A7/9 into D. Hence D is a particular example of a pullback domain of the
following type (see, for example, [3], [4]):


V » V/I


where V is a rank-one discrete valuation domain with maximal ideal m, / :— m r,
for some r > 0 and V and D have the same residue field.


Let us consider the ideal E := (A3, X7)D. Setting E(n) := {un;u £E\ (0)}D,
we have that En = H u e E X f o ) u~nD — (&'• E ( n ) } ; thus En is principal if and only if
E(n) is principal.


Now, if v is the value function of V, we have that v(D) — {0 ,3 ,6 ,7 ,9 —>•} (all
integers equal or bigger than 9 are in v(D}) and v(E) — {0, 3, 6, 7, 9,10,12 —>•}. We
observe that v ( E ( n ) ) = riv(E) + v(D) and, making some computations, it is easy
to check that, for each n > 3, v ( E ( n ) } = 3?i + v ( D ) . This means that v ( E ( n ) ) =
v(X3nD). By [13, Proposition 1], for all n, m > 3, we have that E(n) = X3nD and
E(n)E(m) = E(n + m).


More generally, it can be proved that if D is a pullback as above, then, for every
fractional ideal £", the modules En are principal of type znD, for some z G E and
n » 0. This fact will be illustrated in details in a forthcoming paper.


We note that if D is as before, the noetherianity of D[X/E] follows more easily
from Proposition 3.11. In fact, observing that EV — aV is principal in V, we get
that V[X/E] - lnt(aV, V] = V[X/a] is Noetherian. Thus we conclude that D[X/E]
also is Noetherian.


However, since D is a one-dimensional, local, Noetherian domain, then Int(D)
is Noetherian if and only if Int(D) = D[X] [5, Corollary VI.2.6] if and only if
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k = D/M is infinite [5, Corollary 1.3.15]. Hence, if k = D/M is finite, lut(E,D) is
not Noetherian by Proposition 3.8. On the other hand, if & — D/M is infinite, then
lnt,(E,D) = D[X/E] is Noetherian.


(d) Another proof of Corollary 3.13 can be obtained as follows.
Since lnt(D) or I n t ( E , D ' ) is Noetherian, D is Noetherian and lnt(E,D') =


D'[X/E] = lnt(ED'}D'} (Proposition 3.9). Assume that E = a^D + ••• + anD.
Then:


Int(££>', D'} = Int ( (J a,Z/, D') = f] Int(a;D', D')
i — 1, • • • , n i = 1, • • • , n


[6, Corollary 3.12], whence In t , (£ ,D' ) = 0, = !, • - ,n Int(a,- jD' , £>')•
Since Int(a , -£) ' ,£> ' ) = I n t ( D ' ) = £>'[A'j is a 'Kru l l domain (Proposition 3.1 or


Lemma 3.7), then In t ( / ? ,D ' ) is a finite intersection of Krul l domain and so it is
K r u l l .


(e) We recall that a Mori domain is a domain satisfying the ascending chain con-
dition on divisorial ideals; in particular Noetherian and Kru l l domains are Mori
domains. A recent general reference for Mori domains is [2].


If D is Mori, then D — HPef (D) ^p> wnei'e t>n(D) is the set of maximal divisorial
ideals of D, and this intersection has finite character [2, Theorem 3.3]. If D[X] is
Mori (for example if D is Noetherian or integrally closed [2, Theorem 6.1]) and E is
a fractional ideal of D such that EDP is principal for each p E tm(D) (for examp'e
if E is divisorial and f - inver t ib ie) , arguing exactly as in the proof of Proposition
3.12, we get that D[X/E] is Mori . In fact a generalized ring of quotients of a Mori
domain is Mori [2, Theorem 2.5] and a finite intersection of Mori domains is Mori
[2, Theorem 2.4].


Slightly modifying tha same proof, we also get that if Int(D) is Mori and EDP


is principal for each p G t m ( D ] , then Int (£,£>) is a Mori domain. (We recall that
if Int(D) is a Mori domain, then D is Mori [7, Proposition 2.6].) To see this, it is
enough to observe that lnt(E,D) = (~}p(,tm(D}lnt(EDp, Dp) [6, Lemma 3.4]. Now,


assuming E C D, if E £ p, we have EDP = Dp and lnt(EDp,Dp) - Int(Dp) =
lnt(D)p (the last equality follows from [7, Proposition 2.1]). Instead, if E C p, we
have EDp = xDP, for some x G E, and Int(EDp , Dp) = li\i(xDp,Dp) = Int(Dp) =
Int(D)p .


The domain R := C\E<jp lnt(EDp, Dp) = f lEtfp^K^)?' is ^01"i ^ a gener-
alized ring of quotients of a Mori domain and, for the same reason, if E C p,
we have that Int(EDp, Dp) = Int(D)p , is Mori. It follows that Int(£,D) = R n


lnt(EDp, Dp] is a finite intersection of Mori domains and then it is Mori.
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Abstract. This article explores nine zero divisor controlling
conditions, their impact on the domain-like behavior of rings
with zero divisors, their interrelations, and their applications
to the extension of domain properties to rings with zero divisors.


1. INTRODUCTION


Commutative algebraists often consider the following question: given a
property P that holds for a domain, how best can one extend P to rings with zero
divisors? The answer may sometimes depend completely on the particular
property. But more often, especially when P involves all the entities of a ring R,
where by entities we mean elements or ideals or finitely generated ideals, etc., one
may take one of the following three approaches:


a. Require that all entities of R satisfy P, and place no other restrictions on R.


b. Require that all regular entities of R satisfy P.


c. Require that all entities of R satisfy P, and place some conditions on R to
control the behavior of its zero divisors, that is, to make R share certain
characteristics of a domain.


Each of these approaches have been used for various properties P with
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certain degrees of success. Which approach one uses depends on personal taste,
and on the desired properties of the generalization. For example, if one wishes to
have some control and knowledge of the behavior of non regular entities of the
ring, one will try to avoid approach (b), which puts no restrictions on the non
regular entities of the ring. Approach (a) is not always feasible, as certain
conditions cannot be imposed on non regular entities without additional
hypotheses.


The aim of this article is to consider a large number of zero divisor
controlling conditions found in the literature. Some of these conditions were used
in generalizing a domain property to rings with zero divisors using approach (c);
other of these conditions have interesting and deep implications on the nature of
the ring itself and were investigated in their own right. In each case, we will
explore briefly the origin of the condition and its use for generalizations of domain
properties to a ring R with zero divisors. We will point out the impact of each
condition on sets of zero divisors, localizations by prime ideals, total ring of
quotients, or sets of minimal prime ideals of the ring, all of which determine the
closeness of the ring behavior to that of a domain. To the extent that it is possible,
we will point out the relations between the various conditions, and provide
examples and counterexamples


Throughout the paper, all rings are commutative with identity. We will
use the following notation and basic notions regarding a ring R:


Z(R) = {a e R j ax - 0 for some 0 * x e R} denotes the set of zero
divisors of R.


Nil(R) = {a e R a" = 0 for some positive integer n} denotes the set of
nilpotent elements of R.


Min(R) = (Pe spec R P is a minimal prime ideal of R} denotes the set of
minimal primes of R.


Q(R) denotes the total ring of quotients of R, that is, the localization of
R by the set of all its non zero divisors.


A non zero divisor of R will be called a regular element, and an ideal of
R which contains a regular element will be called a regular ideal.


The oldest and most extensively studied zero divisor controlling condition
is that which asks R to be a reduced ring, that is, a ring with no nonzero nilpotent
elements. The literature pertaining to the nature of reduced rings is too vast to
mention. For that reason, we will consider this condition only when it appears in
the context of the other zero divisor controlling conditions considered in this paper.
We will explore the following zero divisor controlling conditions on a ring R.
Several other, less used conditions will show up throughout the exposition.
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1. R is locally a domain.
2. Q(R) is a Von Neumann regular ring.
3. Min(R) is a compact subspace of Spec(R) in the Zariski topology.
4. R is a PP ring (sometimes called a weak Baer ring).
5. R is a ring with few zero divisors.
6. R is an additively regular ring.
7. R is a Marot ring.
8. Ris aZD ring.
9. Every zero divisor of R is nilpotent.


The interrelations between these nine properties makes it hard to separate
the exposition into independent sections. Nevertheless, for the sake of readability,
we divided the conditions into two groups. Section 2 considers conditions 1-4,
and Section 3 considers conditions 5 - 9 . Thus, Sections 2 and 3 explore the
conditions themselves and the relations between them. Section 4 is devoted to a
representative sample of applications of the zero divisor controlling conditions to
the extension of domain properties to rings with zero divisors. We cover briefly the
extended notions of valuation, Prufer and Krull rings; finite conductor, quasi-
coherent and G-GCD rings; and Going Down and related rings. Interested readers
are provided with a bibliography for further reading on each topic.


2. MIN(R) AND LOCALIZATIONS OF R


We first consider conditions under which a commutative ring R is locally
a domain.


THEOREM 2.1 [Gl], [Ml], [M2] Let Rbea ring. The following conditions are
equivalent:
1. RP is a domain for every prime ideal P ofR.
2. Rm is a domain for every maximal ideal m ofR.
3. Every principal ideal ofR is flat.
4. R is reduced and every prime ideal ofR contains a unique minimal prime


ideal.
5. R is reduced and every maximal ideal m ofR contains a unique minimal prime


ideal P.
In this case, P = {r e R\ there is au eR-m such that ur = 0} and


RP = Q(R J, the quotient field ofRm.


This theorem appears with somewhat different proofs in Matlis [M2], and
in Glaz [Gl]. (4) does not appear in either of these sources, but appears in [Ml],
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along with a few other of the conditions of this theorem, proved under the
restriction that Q(R) is Von Neumann regular. As this assumption is unnecessary,
we included (4) here. Rings satisfying that every principal ideal is flat are
sometimes called PF (or PIF) rings.


EXAMPLE 2.2 The following examples are taken from several sources: [E], [Gl],
[Ml], [M2], [Q1UQ2L and[VJ:


1. Coherent local rings satisfying that every principal ideal has finite projective
dimension are locally domains.


2. Coherent regular rings, that is, coherent rings satisfying that every finitely
generated ideal has finite projective dimension, are locally domains. In particular,
this class of rings includes all coherent rings R of finite weak global dimension. It
is worthwhile mentioning that the class of coherent rings of finite weak global
dimension includes the classical non Noetherian rings such as Von Neumann
regular, semihereditary, and hereditary rings. Von Neumann regular rings are
rings R satisfying that for every a e R, there is a b e R such that ab2 - a.
Equivalently, R is Von Neumann regular iff w.gl.dim R = 0. Such rings are
automatically coherent. Semihereditary rings are rings in which every finitely
generated ideal is projective. Equivalently, R is semihereditary iff R is coherent
and w.gl.dim R < 1 . Hereditary rings are rings with gl.dim R = 1 . They are
always coherent.


3. Rings of global dimension 2 are locally domains.


4. A ring R has w.gl.dim R < 1 iff RP is a valuation domain for every prime ideal
P of R. Therefore rings R with w.gl.dim R < 1 are always locally domains,
regardless of their coherence status.


We next consider the condition: Min(R) is compact in the induced Zariski
topology from Spec(R). If R is Noetherian or a domain Min(R) is finite and
therefore compact. In general Mm(R) does not have to inherit the compactness of
Spec(R). For a reduced ring one has a way of testing the minimality of a prime
ideal P.


PROPOSITION 2.3 Let R be a reduced ring, and let P be a prime ideal ofR.
Then P is a minimal prime ideal iff for all x eP, (0 : x)


As a consequence of this proposition for a reduced ring R, Min(R) is a
Hausdorff space in the induced Zariski topology, but it still might not inherit the
compactness of Spec(R).
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We exhibit a number of conditions under which Min(R) is indeed compact
when R is a reduced ring.


THEOREM 2.4 [Gl], [M2] Let Rbea reduced ring, and let S be a ring
extension ofR. Then:
1. If every prime ideal ofS contracts to a minimal prime ideal ofR, then Min(R)


is compact.
2. IfS is Von Neumann regular and flat over R, then every prime ideal ofS


contracts to a minimal prime ideal ofR. Hence, in this case, Min(R) is
compact.


COROLLARY 2.5 [Gl], [M2], [Ql] Let Rbea reduced ring with Q(R), the total
ring of quotients ofR, Von Neumann regular. Then Min(R) is compact.


EXAMPLE 2.6 Quentel [Ql] provides an example of a reduced ring with compact
minimal spectrum, but not Von Neumann regular total ring of quotients. The
version presented below is from [Gl]:


Let AT be a countable algebraically closed field, and let / be an infinite set.
Denote by K1 the set of all set maps from 7 to K. For a map/ e K1, let
suppf = {a el \f(a) * 0}, and let cosuppf= {a el \f(a) = 0}. AK subalgebra R
ofK1 is called a T algebra if it satisfies the following two conditions:
(i) R is countable and contains all the constant maps,
(ii) Every/£7? which is not constant satisfies cosuppf * (p.


The construction described in detail in [Gl], shows the existence of a T


IxNN


algebra W, W c K , and for every g e W there exist gj and g2 e Wsuch
that cosupp g = supp gj u suppg2. Such an algebra W is a reduced ring equal to
its own total ring of quotients, it has compact Mm (W), but it is not Von Neumann
regular.


Before presenting the exact connection between the compactness of
Min(R), the Von Neumann regularity of Q(R), and the locally domain property of
R, we will present several other conditions under which Min(R) is compact or
Q(R) is Von Neumann regular when R is a reduced ring.


THEOREM 2.7 [Gl], [M2], [O], [Ql] Let Rbea reduced ring. The following
conditions are equivalent:
1. Min(R) is compact.
2. For every element b e R, there exists a finitely generated ideal J c (0:b) such


that (0:bR + J) = 0.
3. IlRp, where P runs overMin(R), is a flat R module.
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4. E(R), the injective envelope ofR, is a flat R module.
5, M(R), the maxima! flat epimorphic extension ofR, is Von Neumann regular.


Theorem 2.7 collects a number of conditions, scattered throughout the
mentioned sources, under which Min(R) is compact for a reduced ring R. To
clarify the statements of this theorem, we remind the reader of the definitions of
E(R) and M(R) mentioned in (4) and (5).


Let R be a ring and let M be an R module. An R module E is called an
essential extension of M, if M c E , and for any nonzero submodule E' of E we
have E' n M * 0. Every R module admits an essential injective extension E(M),
which is unique up to isomorphism. This extension is called the injective
envelope of M. If E(M) is the injective envelope of M, there is no injective proper
submodule between M and E(M). Matlis [M2] approaches both the compactness
of Min(R) and the Von Neumann regularity of Q(R) via the exploration of E(R).


Let R be a ring. Denote by M(R), the maximal flat epimorphic extension
ofR, the unique (up to isomorphism) ring satisfying:
1. R c M(R), and M(R) is a flat epimorphism ofR.
2. If R c S and S is a flat epimorphism ofR, then S c M(R).
The approach to the compactness of Min(R) and to the Von Neumann regularity
of Q(R) via the investigation of M(R) is due to Quentel [Ql] and Olivier [0],
[01].


EXAMPLES 2.8 The above theorem guarantees that if R is a reduced coherent
ring, then Min(R) is compact.


The next theorem collects the conditions under which the total ring of
quotients of a reduced ring is Von Neumann regular.


THEOREM 2.9 [Gl], [H], [M2], [0], [Ql] Let R be a reduced ring. The
following conditions are equivalent:
1. O(R) is a Von Neumann regular ring.
2. If I is an ideal ofR contained in the union of the minimal prime ideals ofR,


then I is contained in one of them.
3. IfJ is a finitely generated ideal ofR, then there exists a b eJ and an a e (0:J)


such that a + h is a regular element ofR.
4. Ifb 6R, then there exists a e (0:b) such that (0: aR+bR) = 0.


6. Min(R) is compact and if a finitely generated ideal is contained in the union of
the minimal prime ideals ofR, then it is contained in one of them.


7. Min(R) is compact and each finitely generated ideal consisting entirely of zero
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divisors has a nonzero annihilator.


EXAMPLE 2.10 The above theorem guarantees that if R is a coherent regular
ring, then Q(R) is Von Neumann regular.


At this stage we are ready to present the main result connecting the zero
divisor controlling conditions presented in this section.


A ring R is called a PP ring (or a weak Baer ring) if every principal
ideal of R is projective.


THEOREM 2.11 [Gl] Let R be a ring. The following conditions are equivalent:
1. Min(R) is compact and every principal ideal ofR is flat.
2. R is a PP ring.
3. Q(R) is Von Neumann regular and every principal ideal ofR is flat.


The ideas for the proof of this theorem also appear in [Ql] and [V],
excellent sources, where some errors crept into the approach to this particular
result. A correct version appears in [Gl].


EXAMPLES 2.12 Two examples [Gl] show that the two conditions in (1), and
the two conditions in (3) of Theorem 2.11, are independent of each other.


1. [V] Let M be a countable direct sum of copies of Z/2Z with addition and
multiplication defined componentwise. Let R = Z © M and define
multiplication as follows: for m, n e M and a, b e Z
(a,m)(b,n) = (ab, an + bm + mn). Every principal ideal of R is flat, but Min(R) is
not compact.


2. [M2] Let R be a Noetherian, local, reduced ring which is not a domain. Then
Min(R) is compact (actually finite), and Q(R) is a finite direct sum of the domains
RP, where P runs over Min(R). Therefore Q(R) is Von Neumann regular, but R is
not a domain, so not every principal ideal ofR is flat.


PP rings appear in the literature in expected and unexpected places. From
Theorem 2.11, we know that such rings are locally domains and possess Von
Neumann regular total ring of quotients. Another way of looking at such a ring is
observing that a principal ideal aR is projective iff (0:a) is generated by an
idempotent. Hence PP rings have plenty of idempotents. In fact, every element
a e R can be expressed as a = a'e, where a' is a non zero divisor in R, and e is an
idempotent in R. Another useful property of PP rings is:
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THEOREM 2.13 [G3] Let R be a PP ring, and let I be a finitely generated flat
ideal ofR. Then I is protective.


There are many PP rings, for example, all coherent regular rings are such,
and in the application section, we will exhibit a class of not necessarily coherent
PP rings, namely G-GCD rings.


3. MAROT RINGS AND RELATED CONDITIONS


The notion of a ring with few zero divisors was introduced by Davis [D].
A maximal ideal of zero is an ideal (necessarily prime) maximal with respect to
not containing regular elements. The set of zero divisors of R, Z(R) = u P, as P
runs over all maximal ideals of zero of R. A ring R is said to have few zero
divisors if it has only finitely many maximal ideals of zero, equivalently, Z(R) is a
union of finitely many prime ideals.


Because of the one-to-one correspondence between the prime ideals of a
ring R which contain no regular elements and the prime ideals of Q(R), it is
evident that R has few zero divisors iff Q(R) is semilocal. It follows that if R has
few zero divisors, then any overring of R, that is, any ring between R and Q(R),
has few zero divisors. In particular, any overring of a Noetherian ring has few
zero divisors, providing a large family of examples of rings of this kind.


A ring R with total ring of quotients Q(R) is said to be additively regular
if for each z e Q(R), there exists a u e R such that z + u is a regular element in
Q(R). This condition appears first in [Ml], and is named in [GH].


PROPOSITION 3.1 [GH] Let Rbea ring. The following conditions are
equivalent:
1. Ris additively regular.
2. For each z e O(R) and each regular element b ofR, there exists a u e R such


that z + bu is a regular element ofO(R).
3. For each a e R and each regular element b ofR, there exists a u e R such that


a + ub is regular in R.


Additively regular rings have the following useful property:


THEOREM 3.2 [M3] Let R be an additively regular ring. Let I;, ...,!„ and 1 be
regular ideals ofR. Denote by Reg(I) the set of regular elements of I. Then
Reg(l) cu{Ii\ l<i<n} ifflcrufl, 1 < i < n}.
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THEOREM 3.3 [HI], [Ml] Let Rbea ring with total ring of quotients Q(R). If
Q(R)/Nil(Q(R)) is Von Neumann regular, then R is additively regular. In
particular, ifQ(R) is Von Neumann regular, then R is additively regular.


EXAMPLES 3.4


1. [PS] It follows from Theorem 3.3 that any ring whose total ring of quotients has
Krull dimension zero is additively regular.


2. [Ml] For any ring R, the polynomial ring in any number of variables is an
additively regular ring.


3. [GH] Let R = IIR^ for an arbitrary set {a}. Then R is an additively regular
ring iff R,, is an additively regular ring for every a.


A ring R is called a Marot ring if every regular ideal can be generated by
a set of regular elements. This property was defined by Marot [Ml].


THEOREM 3.5 [Ml] Let R be a ring with total ring of quotients Q(R). The
following conditions are equivalent:
1. Ris a Marot ring.
2. Any two-generated ideal (a, b) with b regular can be generated by a finite set


of regular elements.
3. Every regular fractional ideal ofR, that is, every regular R module contained


in Q(R), can be generated by a set of regular elements.


The next result connects the zero divisor controlling conditions exhibited,
so far, in this section.


THEOREM 3.6 [D], [H], [Ml] Let R be a ring. Consider the following
conditions:
1. R has few zero divisors.
2. R is an additively regular ring.
3. R is a Marot ring.
Then (I) =>(2) =>(3).


None of the implications of Theorem 3.6 is reversible, as the two
examples below show.
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EXAMPLE 3.7 [H] There are additively regular rings which do not have few zero
divisors.


Let {Ra} be an infinite family of rings with few zero divisors. The product
ring R = n Ra is an additively regular ring which is not a ring with few zero
divisors.


EXAMPLE 3.8 [H], [M3] There are Marot rings which are not additively regular.


The following example was constructed by Matsuda [M3]. Let k be a
finite field of characteristic p > 0. Let A be the subring of the polynomial ring
k[x], A = k[xp, xp+1, xp+2, ...]. Let (F0, F,, ... , Fn, G,, G2, ...} be a set of
irreducible polynomials in k[x] such that:
1. F0 = x, and F, = 1 + x.
2. deg Fj < 2p for all i.
3. deg Gj >2p for all j.
4. No two elements of the set are associated.
5. Each irreducible element of k f x j is associated with an element of the set.


Let Kj = k[x]/(Gj). Then K} is naturally an A module. Let M be the direct
sum of the modules KJ5 and let R = A a M be the trivial ring extension of A by
M (sometimes called the idealization of M in A [H]), that is, R is the set A e M
with addition defined componentwise and multiplication defined by
(a, m)(a', m') = (aa', am' + a'm) for all a, a' e A and m, m' e M. Then R is a
Marot ring for any p. For p = 2, for example, R is not an additively regular ring.


It is interesting to note that Matsuda's exploration of the additively
regular and Marot properties of trivial ring extensions also yielded an example of
a ring satisfying the condition of Theorem 3.2, but which is not additively regular.


EXAMPLE 3.9 [H], [Ml], [SP] In addition to Noetherian rings, domains, and all
additively regular rings, Marot rings can be generated in several other ways:


1. Any overring of a Marot ring is a Marot ring.


2 .R = R ! e . . . ® R n i s a Marot ring iffR; is a Marot ring for every i.


3. If every regular finitely generated ideal of a ring R is principal, then R is a
Marot ring.


We now present a few other properties of Marot rings which makes this
condition particularly useful when generalizing domain properties to rings with
zero divisors.
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An ideal P of a ring R is prime (respectively, primary) for its regular
elements if whenever a and b are regular elements of R such that ab e P, then
a e P or b e P (respectively, then a e P or bn e P for some positive integer n).


THEOREM 3.10 [H], [SP] Let R be a Marot ring. Then a regular ideal P ofR is
prime (respectively, primary) iffP is prime (respectively, primary) for its regular
elements.


If a ring contains zero divisors, one may define invertibility of nonzero
(fractional) ideals I of R, that is of R submodules of Q(R), in a way that resembles
the definition for the case R is a domain. Let I"1 = {x e Q(R) | xl c R} denote the
inverse of I. Then I is invertible if II" = R. The relation between invertibility,
projectivity, and the property of being locally principal of an ideal can be
summarized as follows:


PROPOSITION 3. II Let R be a ring and let I be an ideal ofR. Then:
1. If I is invertible, then 1 is projective.
2. If I is projective, then I is locally principal.
3. If I is a finitely generated regular ideal, then I is invertible iff I is projective,


iff I is locally principal. (In particular, ifR is a domain, 3 holds for every
nonzero finitely generated ideal I ofR.)


A (fractional) ideal I of R is divisorial if (I"1)"1 = I.
Let I be a regular (fractional) ideal of R satisfying that dl c R for some


regular element d e R. Then I c (I"1)"1 c n (Ra 1 1 c Ra) . Note that since I is
regular, the ideals Ra are necessarily regular. Hence, if I = n {Ra / 1 c Ra}, then
I is divisorial. If I is generated by regular elements, say I = S Raa, then
I"1 = n Ra,;1 . It follows that:


PROPOSITION 3.12 [AMI] Let Rbea ring. Then (T1)'1 - n {Ra Is Ra} for
every regular (fractional) ideal I ofR satisfying dl c: R for some regular element
d e R iff for every regular (fractional) ideal I ofR satisfying dl c Rfor some
regular element d e R, there exists a (fractional) ideal J generated by regular
elements and satisfying dJ cRfor some regular element d eR, such that


COROLLARY 3.13 [AMI] Let Rbea Marot ring, and let I be a regular
(fractional) ideal ofR satisfying dl cRfor some regular element d e R. Then I
satisfies (T1)'1 = n {Ra \ I cRa}.


D. D. Anderson and Markanda provide an example in [AMI] that shows
that if R is not a Marot ring, then the conclusion of Corollary 3.13 does not need
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to hold.


A related zero divisor controlling condition was defined by Evans [El]. A
ring R is called a ZD ring, if R/I is a ring with few zero divisors for every ideal I
of R. Examples of ZD rings abound. Below is a sample found in the literature.


EXAMPLES 3.14


1 .Noetherian rings are ZD rings.


2. [El] A ring is called Laskerian if every ideal is the intersection of a finite
number of primary ideals. Laskerian rings are ZD rings.


3. [El] Localizations of ZD rings are ZD rings.


4. [HO] A ring R is Noetherian iff the polynomial ring R[x] is a ZD ring.


It is interesting to note that if the power series ring R[[xJ] is a ZD ring, R
may not be Noetherian, but has Noetherian prime spectrum [GH].


We conclude this section with a different zero divisor controlling condition
defined by Dobbs [Dl]. Let R be a ring. In general, Nil(R) c Z(R). On one end of
the spectrum Nil(R) = 0, that is, R is reduced. The other extreme is to ask that
every zero divisor of R be nilpotent, that is Nil(R) = Z(R). This condition is
equivalent to 0 being a primary ideal of R.


Let R be a ring in which 0 is a primary ideal. Then R has a unique
minimal prime ideal P, and RP = Q(R), the total ring of quotients of R. On the
other hand, if R is a ring with a unique prime ideal, then 0 is a primary ideal of R.
This observation [Dl] lead to a number of examples of rings in which 0 is a
primary ideal.


EXAMPLES 3.15 [Dl] Examples of rings R satisfying Nil(R) = Z(R):


1. Artinian local rings.


2. Let A be a domain, and let a be a nonzero prime element of A. Then the ring
R = A/(a2) has 0 primary ideal.
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4. APPLICATIONS


In this section, we will exhibit applications of the zero divisor controlling
conditions discussed in Sections 2 and 3 to extension of domain properties to rings
with zero divisors. The literature in this direction is vast. The main scope of this
article is the exploration of the zero divisor controlling conditions themselves. We
therefore restrict ourselves to a representative sample of applications which we
describe without going into too many details.


4.1 Valuation Rings, Prufer Rings, and Krull Rings


Valuation rings with zero divisors were defined by Manis [M]. A
valuation is a map v from a ring K onto a totally ordered group G and a symbol
°°, such that for all x and y in K:
1. v(xy) = v(x) + v(y).
2. v(x + y) > min (v(x), v(y)}.
3. v(l) = 0andv(0) = ~.


The ring A = Av = (x e K | v(x) > 0}, together with the ideal
P = Pv = {x e K | v(x) > 0}, denoted (A, P), is called a valuation pair (of K). A is
called a valuation ring (of K). G is called the value group of A.


In the presence of the Marot property, valuation rings share some
properties of valuation domains:


PROPOSITION 4.1 [H], [PS] Let A be a Marot ring. Assume that A * Q(A).
Then the following conditions are equivalent:
1. A is a valuation ring.
2. For each regular element x e Q(A), either x eA or x'1 eA.
3. A has only one regular maximal ideal and each of its finitely generated


regular ideals is principal.


Let R be a ring with total ring of quotients Q(R). The ideal
C(R) = {x e R xQ(R) c R} is called the core of R. Note that C(R) can be
obtained as the intersection of all regular ideals of R, or as the intersection of all
regular principal ideals of R. A valuation ring (R, P) is said to be discrete if each
primary ideal Q of R such that C(R) c Q e P, is a power of its radical. A
valuation ring (R, P) has rank n if the rank of the value group G is n.


A few other pertinent results concerning valuation rings will appear as we
discuss generalizations of Prufer domains and Krull domains. For further results
regarding valuation theory in rings with zero divisors, see, for example, [D], [H],
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[G51,and[PSJ.


Next, we briefly examine a few possible generalization of the property "R
is a Prufer Domain" to rings with zero divisors. There are at least fourteen
different characterizations of Prufer domains (see [G] and [FHP]) which may be
generalized to rings with zero divisors; some of them may be generalized in several
ways. There is an extensive literature exploring all generalizations available to
date. We will bring up here three of the most popular generalizations. These
happen to coincide with the three types of approaches mentioned in the
introduction (to clarify this interpretation consider "all entities" to be "call finitely
generated ideals", and see Proposition 3.11). It is instructive to see the three
approaches "'in action", and see how some of the zero divisor controlling
conditions described in the previous sections bridge between the three
generalizations. In all the three cases, we will generalize the following
characterization of Prufer domains:


A domain D is a Prufer domain if every nonzero finitely generated ideal
of D is invertible.


Generalizing Prufer domains using approach (a): A ring R is called an
arithmetical ring if ever}' finitely generated ideal of R is locally principal.


This kind of generalization satisfies some, but not all, of the equivalent
conditions defining a Prufer domain.


PROPOSITION 4.2 [G5], [J] Let Rbea ring. The following conditions are
equivalent:
1. Ris an arithmetical ring.
2. The ideals ofRm are totally ordered by inclusion for each maximal ideal m.
3. The ideals of R form a distributive lattice, that is, for all ideals I, J and L ofR,


we have I + JnL - (I + J) n (I + L).
4. For all ideals I and J, and any finitely generated ideal L ofR, we have


((I + J):L)=(I:L) ± (J: L).


Other interesting Prufer-like properties of arithmetical rings may be found
m f j ] .


Generalizing Prufer domains using approach (b) A ring is called a
Prufer ring if every finitely generated regular ideal is invertible.


This definition is due to Griffin [G5], and he prefers this generalization of
a Prufer domain to other generalizations, as it seems to be the one whose relation
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with its total ring of quotients is similar to that of a Prufer domain to its field of
quotients. In [G5], Griffin exhibits 15 equivalent conditions to the property of
being a Prufer ring, among them the conditions in Proposition 4.2 restricted (at
least partially) to regular ideals. I find this generalization of a Prufer domain to be
somewhat unsatisfactory as the similarity with a Prufer domain breaks down on an
important point. A valuation ring need not be a Prufer ring [BL], [H].


A Prufer valuation pair is closer to what one would expect a valuation
pair to be, namely:


PROPOSITION 4.3 [H] Let Rbea ring, and let P be a prime ideal ofR. The
following conditions are equivalent:
1. (R, P) is a Prufer valuation pair.
2. R is a Prufer ring and P is the unique regular maximal ideal ofR.
3. R is a valuation ring and P is the unique regular maximal ideal ofR.


If we add the Marot condition to the definition of a Prufer ring, we
eliminate most difficulties.


THEOREM 4.4 [G5], [H] Let R be a Marot ring. Then R is a valuation ring iffR
is a Prufer valuation ring.


Griffin [G5] showed that an arithmetical ring can be obtained from a
Prufer ring R by imposing some zero divisor restricting conditions on Q(R).


PROPOSITION 4.5 [G5] A ring R is arithmetical iffR is a Prufer ring and Q(R)
satisfies that ideals ofQ(R)P are totally ordered by inclusion for all maximal
prime ideals of zero P in Q(R).


Additional information about Prufer rings can be found in, for example,
[H], [G5], [BL].


Generalizing Prufer domains using approach (c): R is a semihereditary
ring, that is, every finitely generated ideal ofR is projective.


Given that this condition implies, in particular, that principal ideals are
projective, the zero divisor controlling condition imposed with this generalization
is the PP condition. We will actually see that the zero divisor controlling condition
of this generalization can be viewed in a different way.
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THEOREM 4.6 [Gl], [G5J, [Ml] Let R be a ring. The following conditions are
equivalent:
1. R is semihereditary.
2. R is coherent and w.gl.dim R < 1.
3. Q(R) is Von Neumann regular and Rm is a valuation domain for every


maximal ideal m ofR.
4. R is a Prufer ring and Q(R) is Von Neumann regular.


A semihereditary ring R shares the following property with a Prufer
domain: RP is a valuation domain for all prime ideals P of R.


Marot's investigation [Ml] into the zero divisor controlling condition
"Q(R) is Von Neumann regular'' not only yielded the rich characterization of
semihereditary rings of Theorem 4.6 (3), but also added an equally useful and
interesting characterization of hereditary rings.


Theorem 4.7 [Gl], [Ml], [V] Let R be a ring. Then R is hereditary iffO(R) is
hereditary and any ideal ofR that is not contained in any minimal prime ideal of
R is protective.


Additional results about semihereditary rings and related homological
conditions can be found in [Gl ] and [V].


We next examine some aspects of the generalization of the concept of
being a Krull domain to rings with zero divisors. Let R be a ring and let Q(R) be
the total ring of quotients ofR. Assume R * Q(R). (This is a technical condition
making the statements of some theorems cleaner and the statements of other
theorems messier. Some authors prefer to make this distinction, other prefer not
to.) R is called a Krull ring if there exists a family {(Va, Pa) j a e 1} of discrete
rank one valuation pairs of Q(R) with associated valuations {va | a e 1} such that:
l.R = n {Va a el}.
2. va(a) = 0 for almost all a for each regular element a e Q(R), and each Pa is a
regular ideal of Va.


There are three definitions of a Krull ring with zero divisors in the
literature. Our definition is by Kennedy [K4], and was also adopted by Kang [K],
[Kl], [K2]. Another definition is by Huckaba [H]. Huckaba's definition is
identical with a Marot Krull ring in the Kennedy sense. The third definition is by
Portelli and Spangler [PS]. Portelli and Spangler's definition can be shown to be
equivalent to Huckaba's definition.


Perhaps here is the place to say that adding the Marot condition to the
definition of a Krull ring brings this generalization closer to sharing many of a
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Krull domain properties. For example, even the definition itself becomes smoother
as the notion of a rank 1 discrete valuation ring is more manageable: A Marot
valuation ring (V, P) with associated valuation v and value group G is a discrete
rank one valuation ring (respectively, v is a discrete rank one valuation) if G is
isomorphic to the group of integers. In this case, P is the unique regular prime
ideal of V and there exists a regular element x of P such that P = (x). Marot Krull
rings share many properties of Krull domains. [H] provides a particularly clear
and detailed exposition of these results. [K], [AM], and [AMI] take up the notion
of a UFD and extend it (in a number of ways) to rings with zero divisors. It is the
Marot property that allows for the conclusion of Corollary 3.13. As a
consequence, only under the additional assumption that a ring is both Marot and
Krull do the authors get a relation between factoriality properties and Krull ring
behavior reminiscent of the domain case. A good survey article on the extension of
the UFD notion to rings with zero divisors is [A].


It is possible to define Krull rings without resorting to valuation rings.


Recall that a ring R is completely integrally closed if, for 0 * a and u in
Q(R), aun e R for all n implies u e R.


Let I be a nonzero fractional ideal of R. It is defined to be S (V1)"1, where
I0 runs over the nonzero finitely generated R submodules contained in I. We say
that I is t invertible if(IY\ = R.


THEOREM 4.8 [H], [K2], [M4] The following conditions are equivalent for a
ring R:
1. R is a Krull ring.
2. [M4] R is completely integrally closed and satisfies the ascending chain


condition on divisorial ideals.
3. [K2] Every regular ideal ofR is t-invertible.
4. [K2] Every regular prime ideal ofR is t invertible.
5. [K2] Every regular prime ideal ofR contains a t invertible regular prime


ideal


All references mentioned above contain additional information on Krull
rings.


A related topic is the investigation into the behavior of the integral closure
of a ring with zero divisors. Tom Lucas and others have done fundamental work in
this direction. Interested readers are referred to [L] for a good survey and
additional references on this topic.
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4.2 Finite Conductor Rings and G-GCD Rings


The next application of the zero divisor controlling conditions described in
the previous sections involves the use of the PP condition in a recent generalization
by Glaz [G3], [G4] of finite conductor properties to rings with zero divisors.


Let R be a ring. R is a finite conductor ring if (a) n (b) and (0:c) are
finitely generated ideals of R for all elements a, b, and c of R. R is a quasi-
coherent ring if (a,) n ... n (aj and (0:c) are finitely generated for all elements
a,, ..., a,, and c of R.


This definition [G3J extends the notion of finite conductor and quasi-
coherence of domains by adding the zero divisor controlling condition: "(0;c) is a
finitely generated ideal for all c". Though this is a much weaker condition than the
PP condition, it does affect the domain-like behavior of some rings. For example:


PROPOSITION 4.9 [G3] Let R be a ring with weak global dimension one. The
following conditions are equivalent:
1. R is a semihereditary ring.
2. R is a coherent ring.
3. (0:c) is a finitely generated ideal ofR for every element c ofR.


With these definitions finite conductor and quasi-coherent rings accept
several equivalent domain-like characterizations [G3], [G4].


A particular case of a finite conductor ring is the recently defined G-GCD
ring. A G-GCD domain is defined by the condition that intersections of two
invertible ideals is an invertible ideal [AA]. Glaz [G3], [G4] generalized this
condition to rings with zero divisors as follows:


A ring R is called a G-GCD ring if the following two conditions hold:
1. Ris a PP ring.
2. The intersection of any two finitely generated flat ideals of R is a finitely
generated flat ideal of R.


At first glance, it seems that one may replace condition 2 by other, similar
conditions and obtain different generalizations of the G-GCD domain notion. But
in fact the PP condition is powerful enough to make all these generalizations
coincide:
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THEOREM 4.10 [G3], [G4] Let Rbea ring. The following conditions are
equivalent:
1. R is a G-GCD ring.
2. R is a PP ring and the intersection of any two principal (fractional) ideals of


R is a finitely generated flat (fractional) ideal ofR.
3. R is a PP ring and the intersection of any two finitely generated projective


ideals ofR is a finitely generated projective ideal ofR.
4. R is a PP ring and the intersection of two invertible ideals ofR is an invertible


ideal ofR.


G-GCD rings are reduced rings which are locally GCD domains, they are
integrally closed in their total ring of quotients, and they possess compact Min(R)
and Von Neumann regular total ring of quotients. Coherent regular rings are
G-GCD rings, but not all G-GCD rings are coherent [G3]. On the other hand, it
was through this definition that coherent-like and regularity-like properties of
polynomial rings over coherent rings were discovered. Namely:


THEOREM4.il [G3], [G4]
1. Let R be an integrally closed coherent domain. Then the polynomial ring R[x]


is a quasi-coherent domain.
2. Let R be a coherent regular ring. Then the polynomial ring R[x] is a G-GCD


ring.


For additional properties of finite conductor, quasi-coherent, and G-GCD
rings see [G3], [G4]. A different definition of a G-GCD ring, and a study of this
class of G-GCD rings, appear in Ali and Smith [AS].


4.3 Going Down and Related Rings


Another application of the zero divisor controlling conditions described in
the previous sections is the use of the condition Nil(R) = Z(R) for the extension of
several related domain conditions to rings with zero divisors.


A ring extension R c T satisfies Going Down (GD) if given prime ideals
P c P, in R, and Q] in T satisfying Q, n R = Pb there is a prime ideal Q in T such
that Q c Qj and Q n R = P. A domain R is called a Going Down domain in case
the extension R c T satisfies GD for each overring T ofR. Dobbs [Dl] extended
the Going Down notion to rings with zero divisors as follows: A ring R is a Going
Down ring if R/P is a Going Down domain for every prime ideal P of R.


Under the zero divisor controlling condition Nil(R) = Z(R), this notion
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becomes a natural generalization of the Going Down property for domains.


PROPOSITION 4.12 [Dl] Let R be a ring in which 0 is a primary ideal. Then R
is a Going Down ring iffR c T satisfies GD for each overring T ofR.


Examples are provided in [Dl] that show that the assumption
Nil(R) = Z(R) is necessary.


Two related notions in which the condition Nil(R) = Z(R) played a role
are the notions of divided and locally divided rings introduced in [B] and [BD]. A
ring R is a divided ring (respectively, a locally divided ring) if each prime ideal
is comparable under inclusion with each ideal of R (respectively, if RP is a divided
ring for every prime ideal P of R). Divided rings are Going Down rings, though
the converse is false even for domains [Dl]. David Anderson, Badawi and Dobbs
[BAD], [ABD] extended another domain notion to rings with zero divisors, namely
the PVD notion. PVDs were first defined by Hedstrom and Houston in [HH] as
those domains for which every prime ideal is strongly prime. In a domain D a
prime ideal P is strongly prime if xy e P, for x and y in the field of quotients of
D, implies x e P or y e P. This notion was extended to rings with zero divisors as
follows: Let R be a ring. A prime ideal P of R is said to be strongly prime if aP
and (b) are comparable for all a, b e R. A ring is called a pseudo valuation ring
(PVR) if each prime ideal is strongly prime. It is interesting to note that if (R, m)
is a local PVR, then Z(R) can be Nil(R), m, or any prime ideal properly in
between [ABD]. A detailed analysis of these rings can be found in [B], [BD],
[BAD], and [ABD].
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Abstract


We introduce the concept of weak module systems for commutative monoids.
This concept is a common generalization of the notion of a weak ideal system
as presented in the author's book "Ideal Systems" (M. Dekker, 1998) and the
notion of a module system as presented in the author's article "Localizing
Systems, Module Systems, and Semistar Operations" (J. Algebra 238, 2001).
With the aid of this concept, we first develop a purely multiplicative theory
of integral elements, valid for commutative monoids and rings without any
cancellation assumptions. Next, we generalize the Marot property (used in
the theory of rings with zero divisors) to monoids and shed new light on the
theory of Dedekind and Priifer monoids without cancellation.


1 INTRODUCTION AND NOTATIONS


We present the concept of a weak module system on a commutative monoid.
This concept is a final step in a series of generalizations of the concepts of
star and semistar operations in the theory of integral domains and that of
Lorenzen's r-systems and Aubert's x-systems in the theory of commutative
monoids. The basis of our considerations are the theory of ideal systems as
presented in [3] and the theory of module systems as presented in [4]. We
will, however, introduce all concepts from the very beginning, and only in
proofs or for motivations and examples we will refer the reader to the above-
mentioned sources. In section 2 and section 3 we present the formalism. In
section 4 we apply our concept to give a purely multiplicative theory of inte-
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gral elements, valid for (commutative) monoids and rings. It turns out that
the fundamental properties of integrality can be derived using an appropri-
ate weak module system. In section 5 we introduce the Marot property for
weak module systems to obtain a close connection between the ideal theory
of a monoid and that of the submonoid of its cancellative elements. Indeed,
the Marot property has its origin in the theory of rings with zero divisors,
where it serves for a similar purpose (see [5]). In the case of ideal systems,
we use this connection to obtain a characterization of Dedekind and Priifer
monoids.


Throughout this paper, a monoid D means a multiplicative commutative
semigroup containing a unit element 1 E D (such that la = a for all a £ D]
and a zero element 0 G D (such that Oa = 0 for all a € D). For any subsets
X, Y C D and n e N, we set


XY = {xy xeX,y£Y}, (X : Y) - (X :D Y) = {z e D \ zY C X ]


and


For a subset X C D and y e D, we set yX - {y}X and (X : y) = (X : {y}}.
A subset S C D is called multiplicatively closed .if 1 E 5 and 55 = 5. By a
submonoid of D we mean a multiplicatively closed subset PI C D such that
0 E H. For any subset X C D, we denote by [X] the smallest submonoid of
D containing X. An element a £ D is called cancellative or regular if, for
all b,c E D, ab — ac implies b ~ c. We denote by D* the (multiplicatively
closed) subset of all cancellative elements of D and by Dx the group of all
invertible elements of D. A monoid D is called cancellative if D* = D\{0},
and D is called a groupoid if Dx = D \ {0}.


Every ring D is (disregarding the additive structure) a monoid. Our main
reference for rings is [2].


For a set X, we denote Dy P(X) the power set of X and by Pf(X) the set
of all finite subsets of X .


Throughout this paper, let D be a monoid.


2 WEAK MODULE SYSTEMS: DEFINITION
AND ELEMENTARY PROPERTIES


DEFINITION 2.1. A weak module system on D is a map


f P(D) -
r : <


\ X »-» X
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such that the following properties are fulfilled for all X, Y e P(D) and c e D,


(Ml) XU{0}cXr.
(M2) X C Yr implies Xr C Yr.
(M3) c*rc(cX)r.


A weak module system r on D is called a weak ideal system on D if


(IS) {l}r = D.
Let r be a weak module system on D. An element c 6 D is called regular


for r, if


(cX}r — cXr for all subsets X C D .


We denote by Reg(r) the set of all regular elements for r. A weak module
system r is called a module system if Reg(r) = D, and it is called an ideal
system on D if it is a module system and a weak ideal system.


Let r be a weak module system on D. By an r -module we mean a subset
J C D satisfying Jr = J, and we denote by M.T = M.r(D] the set of all
r-modules. An r-module J is called r-finitely generated if J = Er for some
E € Pf(-D). We denote by Mr,f = Mr,t(D) the set of all r-finitely generated
r-modules. By an r-monoid we mean an r-module which is a submonoid
of D.


Observe that our concept of a module system coincides with that pre-
sented in [4] for cancellative monoids, and that our concept of a weak ideal
system coincides with that presented in [3]. We refer the reader to the ex-
amples discussed there. Before we present further examples, we gather the
most important elementary properties of weak module systems and develop
some related concepts. The properties listed in the following proposition will
be used freely in the sequel.


PROPOSITION 2.2. Let r be a weak module system on D, and let X,Y be
subsets of D.


2. X C Y implies Xr C Yr.


3. (Xr)r = Xr = (X \ (0})r - (X U {0})r. In particular, Xr is an
r-module.


4.
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5. For any family (XQ)a6/\ of subsets of D, we have


U (**)>•c (U x«] = (U ̂ 0 •>—• \ ̂  / r \ / r
a6A


6. The intersection of any family of' r-modules is again an r-module.


7. We have


JDX


and Xr is the smallest r-m,odule containing X.


8. (X : Y) C (Xr : Y} = (Xr : Y r ] , and if J is an r-module, then (J : Y)
is also an r-module.


9. D* U {0} C Reg(r); and for all a, 6 6 D, we have ob e Reg(r). //
a 6 D', b 6 D and ab e Reg(r), then b 6 Reg(r).


Proof. The proofs of 1. to 8. are literally the same a.s those for the corre-
sponding properties of weak ideal systems (see [3], Propositions 2.1, 2.3 and
2.4).


9. We clearly have {0,1} C Reg(r), and Reg(r) is multiplicatively closed.
Therefore it is sufficent to prove that, for all a € D' and b e D, ab 6 Reg(r)
implies b 6 Reg(r). If ab 6 Reg(r) and X C D, then (a6X)r D a(bX)r D
a6Xr — (a6J^)r. Therefore equality holds. Since a 6 D*, we obtain (6J^)r =
bXr, and consequently 6 e Reg(r). D


COROLLARY 2.3. Every weak module system on a groupoid is a module
system,.


Proof. Obvious by Proposition 2.2.9. D


DEFINITION 2.4. Let r be a weak module system on D. For /, J € Mr,
we call


/ v J = (JJ)r


the r-product of J and J. The composition -r is called r-multiplication .


COROLLARY 2.5. Let r be a weak module system on D.
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1. For any family (Xa}a£& of subsets of D and Y C D, we have


a€A


2. If H C D is a submonoid, then Hr is an r-monoid. In particular,
= -[0, l}r is the smallest r-monoid in D.


3. (A^f j ' r ) is a monoid with unit element {l}r and zero element {0}.
Mrj is a submonoid of M.T.


Proof. 1. is proved in precisely the same way as [3], Proposition 2.3, and 2.
and 3. are proved as [4], Corollary 1.4. D


DEFINITION 2.6. Let r be a weak module system on D and H C D a
submonoid. For X C D, we define


Xr[H] =


and we call r[H] : P(£>) ->• P(£>) the extension of r with H.


PROPOSITION 2.7. Let r be a weak module system on D and H C. D a
submonoid.


1. r[H] is a weak module sytem on D, r[H] = r[HT] and {!}>[//] = HT.


3. r[H] = r holds if and only if H C {l}r, and in this case Hr —


4- If r is a module system, then so is r(H\.


5. If H is an r-monoid, then r#7 the restriction of r[H] to P(H), is a
weak ideal system on H. In particular, if r is a module system, the r//
is an ideal system.


6. If HI, HI C D are submonoids, then r[HiHi] = r[Hi][H2].


Proof. The proofs of 1., 2. and 3. are literally the same as those of [4],
Proposition 1.6, and 4., 5. and 6. follow immediately from the definitions.


D
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EXAMPLES 2.8 (Remarks and Conventions). 1. Let r be a weak
module system on D and HcDa.ii r-monoid. We shall usually write
r[H or simply r instead of r// to denote the weak ideal system induced by
r on H . For weak ideal systems, we use the terminology introduced in [3j.
In particular, we denote by


Ir(H) - Mr[H] n P(ff) - {/ 6 Mr | / C H and IE = /}


the set of all r-ideals of H, by Zrtf(H) = Mr[H]j n P(H) the set of all r-
finitely generated r-ideals of H, by r-spec(U) the set of all prime r-ideals
and by r-max(/f ) the set of all r-maximal r-ideals of H .


In particular, if r is a weak ideal system on D, then D is the only r-
submonoid of D, and r[D\ — r.


2. The trivial module system s on D is defined by


Xs = X U {0} for X c D .


It is easily checked that s is indeed a module system. The s-monoids in D
are just the submonoids of D. If H C D is a submonoid, then the ideal
system s[H] coincides with the ideal system s(H] of ordinary semigroup
ideals introduced in [3], 2.2.


3. Let D be a ring. For X C D, we denote by Xd C D the additive group
generated by X. Then it is easily checked that d : P(D) — >• P(D) is a module
system on D, and we call it the additive system on D. The d- modules in D
are just the additive subgroups of D, and the d-monoids are the subrings of
D. In particular, {l}d is the prime ring of D. For any subring H C D, the
ideal system d[H] coincides with the ideal system d(H) of ordinary ring ideals
as considered in [3], 2.2. More generally, Mr[H\ consists of all W-submodules
of D.


4. Let D be a topological monoid. For X C D, we set XT — [X] (the
smallest closed submonoid of D containing X). Then r : P(D) -> P(D) is a
weak module system which (in general) is not a module system.


DEFINITION 2.9. Let q and r be weak module systems on D. We say that
q is finer than r, or r is coarser than g, and we write q < r, if .Mr C ,/Wq.


PROPOSITION 2.10. Let q and r be weak module systems on D, and let
H C D be a submonoid.


1. s < r < r[H] (where s is the trivial module system on D).


2. Ifq<r, thenq(H] <r[H}.
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3. Then the following assertions are equivalent:


(a) q <r.


(b) For all X C D, we have XqcXr.


(c) For all X C D, we have Xr = (Xq)r.


Proof. 1. and 2. follow immediately from the definitions, and the proof of
3. is literally the same as that for the corresponding statement concerning
weak ideal sytems (see [3], Proposition 5.1). D


DEFINITION 2.11. A weak module system r on D is called finitary if, for
all subsets X C D,


Xr = Er .


EXAMPLES 2.12. 1. The trivial module system s on D is finitary.


2. If D is a ring, then the additive system d on D is finitary.


3. Let r be a weak module system on D, and define T[ : P(D) — » P(D) by


Er.


Then T[ is a finitary weak module system on D, and if r is a module system
(a weak ideal system), then so is Tf . Moreover, M.rj = MT{,[ and for all
E G Pf we have ET = Err These assertions are proved as for finitary ideal
systems (see [3], Proposition 3.1).


PROPOSITION 2.13. Let r be a weak module system on D.


1. The following assertions are equivalent:


(a) r is finitary.


(b) For every subset X C D, we have


Xr C |J Er .


EePf(X)


(c) For every directed family (Xa}a£& of subsets of D, we have
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(d) The union of every directed family of r -modules is an r -module.


(e) For all X C D and J G Atr>f such that J C Xr, there exists some
such that J C Er.


2. Let r be fimtary, X C D and Xr G M.r,f- Then there exists some
E G P f(X) such that Er = Xr.


3. If r is finitary and H C D is a submonoid, then r[H] is also finitary.


4- For any finitary weak module system q on D, the following assertions
are equivalent:


(a) q < r.


(b) For all finite subsets E C D, we have Eq C Er.


(c) Mrj CMq.


Proof. 1., 2. and 3. are proved as for module systems or weak ideal systems
(see [3], Proposition 3.1 and [4], Proposition 2.3).


4. is proved as the corresponding statement for weak ideal systems (see
[3], Proposition 5.1). D


3 QUOTIENT MONOIDS
AND THEIR MODULE SYSTEMS


For a multiplicatively closed subset S C Dx and X C D, we set


Observe that 1 G S implies X C S~1X, and if X C D is a submonoid, then
so is S~1X .


Let H C D be a submonoid and S C Dx n H a multiplicatively closed
subset. Then S~1H is called the quotient monoid of H with respect to S.
The set


S = {z G H | zu G S for some u G H}


is called the saturation of S in H. It is easily seen that S C D* n H is
_ 1 _ _ _ i _


again a multiplicatively closed subset, S~1H — S H, ( S ~ 1 H } X = S S,
5 = (S~1H)X n 5, and if Si C Dx n H is another multiplicatively closed
subset, then S±1H — S~1H if and only if S = Si. D is called a total quo-
tient monoid of H if H* C Dx and D — H'~1H. Every monoid possesses a
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total quotient monoid, which is uniquely determined up to (canonical) iso-
morphisms. If D is cancellative, then its total quotient monoid is a groupoid
and will be called the quotient groupoid of D. The total quotient monoid
of a ring is its total quotient ring, disregarding the additive structure.


THEOREM 3.1 (Construction of weak module systems). Let H C D
be a submonoid and S C Dx D H a multiplicatively closed subset such that
D = S~1H. Let r : Pf(tf) -)• P(£>) be a map such that the conditions (Ml),
(M2) and (M3) of Definition 2.1 are satisfied for all X, Y <E Pf(#) and
all c E H . Assume moreover that (cX}T — cXr for all X G Pf(/0 and all
c £ S. Then there exists a unique finitary weak module system r on D such
that r | Pf(tf) = r. If E <E Pf(£>) and c e S is such that cE C H, then


and for an arbitrary subset X C D, we have


Xr= |J Er. (**)


Proof. If r is a finitary module system such that r Pf(#) = r, then (*) and
(**) hold, since 5 C Reg(f), and thus r is uniquely determined by r.


To prove existence, we first define r : Pf(-D) — > P(JD) as follows: If E £
P f(L>) and c <E S is such that cE C H, we set Ef = c~l(cE)T. Since
(cX)r = cXr for all c E S and X E Pf(#), this definition is independent of
the choice of c. Moreover, (Ml), (M2) and (M3) are satisfied for r and all
X, Y 6 Pf (D) and c 6 D. Now we define r : P(D) -> P(D) by


Then we have r Pf (D) = r and hence r | Pf (H) — r. Therefore it remains
to prove that r is a weak module system. This is done in essentially the
same way as in the proof of [3], Proposition 3.3. D


COROLLARY 3.2. Let H C D be a submonoid and S C Dx n H a multi-
plicatively closed subset such that D = S~1H.


1 . Let q and r be finitary weak module systems on D . Then q < r if and
only if Eq C Er for all E e Pf(#).


2. Let 3£ be the set of all finitary weak module systems r on D such that
{l}r = H , and let 2) be the set of all weak ideal systems TO on H such
that S C Reg(r0). Then
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is a bijective map.


Proof. Obvious by the Theorem. D


CONVENTION 3.3. Let H C D be a submonoid and 5 C Dx n H a
multiplicatively closed subset such that D = S"""1//. According to Corollary
3.2 we will henceforth not distinguish between finitary weak module systems
r on D such that {l}r = H and weak ideal systems TO on H such that


DEFINITION 3.4. Let r be a weak module system on D, H = {l}r and
S C Dx r\H a multiplicatively closed subset. Then the weak module system


is called the quotient system of r with respect to S.
If P e s-spec(ff), then H \ S is a multiplicatively closed subset of H. If,


moreover, H \ S C Dx , then we set


rP = (H\P)-lr and Xp = (H\P}~lX for every subset X C D .


We call rp the localization of r with respect to F, and for any subset X C D,
we call Xp the localization of X with respect to P.


PROPOSITION 3.5. Let r be a weak module system on D, H = {l}r and
S C Dx H H a multiplicatively closed subset.


1. For every r -monoid M C D, we have


S-l(r[M\) = (S~lr}[M} = (S'^S^M] = r[S~lM] .


2. For every subset X C D, we have


and if r is finitary, then even


S Xr = o Xr .


3. If r is finitary, then J G MT implies S~1J 6 M S - I T - ^n particular,
S~1H is an S~lr -monoid and hence an r -monoid.
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Proof. 1. This follows from Proposition 2.7.6, since S~1D = (S~1H)D.


2. By definition,


(c?—1 Y\ , — (( Q~l Y\( Q~^~ Jl\\ — f Q~l Y"/1\ \ — ( Q~l Y\\o -^ )S~ T — Vv1-' •"• /\*^ i) — V \ Jr) — \ )r '


If z G S~1Xr, then there exists some 5 G S such that sz G Xr C (S~lX}r,
1 1 „— — I / O — 1 ~\7~ \ / — 1 C1— 1 A/" N / O— 1 "\/" \and hence z G s (o Aj r = (s o Aj r = (o Aj r .
Let now r be finitary and E C A" a finite subset. Then there exists


some 5 G £ such that s£" C 5A~ C {l}rA" C A"r, hence sKr C Xr and
^r C s"1^ C S~lXr. Thus we obtain


t C~l V\ I I J? r- C~l V^O -Ajr — I ) •*-'r ^— "J yVr •


3. This follows immediately from 2. above. D


COROLLARY 3.6. Let r be a finitary weak module system on D, H = {l}r


and S C Dx D H a multiplicatively closed subset. Then the map


(Mr -> Ms-ir
L'\J ^ S~1J


is a surjective monoid homom,orphism (with respect to -T and -s-irj, i \
Ms-\r — id, and i(MT,i) = Ms-irj-


Proof. We use Proposition 3.5. If J 6 Mr, then S'~1J E M§-\T1 and if
J e A^.r)f, say J = Er for some E 6 Pf(jD), then S~1J = Es-ir 6 Ms-ir>f.
If / e Ais-V C -Mr, then / - Js-ir = S~llr = i(I). If /, J e Mr, then
S~l(I.rJ) = S-l(IJ)r - (S-^JJr = ((S-1/)^-^))^^ = 5-1/-S-lr


5-JJ. D


THEOREM 3.7. Let r be a finitary weak module system on D, H — {!}>>
H' C Dx and X C D. Then we have


Proof. By definition, we have Xr C (Xr)p = Xrp for all P e r-max(#).
Suppose now that z E Xrp for all P e r-max(ff). Then J = (Xr : z) n
If 6 Xr(H], and it is sufficient to prove that 1 G J. If 1 ^ J, then there
exists some P G r-max(JY) such that J C P (see [3], Theorem 6.4). Since
z G (Xr)p, there exists some s G .ff \ P such that sz G Xr and hence s G J,
a contradiction. D







224 Halter-Koch


4 CANCELLATION PROPERTIES
AND INTEGRAL ELEMENTS


PROPOSITION 4.1. Let r be a weak module system on D.


1. For J £ Mrj, the following assertions are equivalent:


(a) J € M*f.


(b) For all /, /' e Mr,[, J > /' C J > / implies I' C I.


(c) For all I 6 Mr,t and all c e D, cj C J -r I implies c € /.


(d) For all I £ Mr,t, we have (J -r I : J) C J.


2. IfJeM'rj, then (J : J) C {l}r.


Proof. 1. (a) => (b). If .7 Y 7' C J > 7, then J > / = ((J v /) U (J -r 7'))r =
J -r (/ U /Or and therefore / = (/ U I')T D I'.


(b) =4> (c). If cJ C J - r /, then {c}r -r J = (cJ)r C J -r /, and therefore
c € (c}r C /.


(c) ==$> (d). Obvious.


(d) =$> (a). Let /,/' e A^r>f be such that J>7 = J>/' and x e /'. Then
J.T £ J -r I' = J -T I implies x G (J -r / : J) C /. Thus we obtain /' C /, and
hence equality holds by symmetry.


2. Apply 1. (d) with / = {l}r. D


DEFINITION 4.2. A weak module system r on D is called finitely cancella-
tive if, for every J e Mr>[, J n D* 7^ 0 implies J € A'f.* f .


COROLLARY 4.3. Let r be a weak module system on D. Then r is finitely
cancellative if and only if ((EF}r : E] C Fr for all E,F € Pf(-D) such that
EHD* /0.


Proof. Obvious by condition (d) of Proposition 4.1.1. D


DEFINITION 4.4. Let r be a weak module system on D. Then we define a
map r : P(D) -> P(D) by


((XB)r:B),


and we call r the cancellative extension of r .
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REMARK 4.5. Let r be a weak module system on D and rf the finitary
weak module system defined in Example 2.12. Then we have r = ff , and
therefore it suffices to study r for weak module systems.


THEOREM 4.6. Let r be a finitary weak module system on D.


1. r is a finitary weak module system on D, and r <r. If r is a weak
ideal system, then so is r.


2. r is cancellative. If r' is another cancellative finitary weak module sys-
tem on D such that r < r', then r < r'. In particular, r is cancellative
if and only ifr = r, and r — r.


3. If H C D is a submonoid, then r[H] = r[H}. In particular, if S C
{l}r fl Dx is a m,ultiplicatively closed subset, then S~lr = S~lr.


Proof. 1. We check the properties (Ml), (M2), (M3) for all X,Y C D
and all c e D.


(Ml) is obvious.
(M2) Suppose that X C Y? and x £ XT- Then there exists some B G


Pf(D) such that B n £>' ^ 0 and xB C (XB)r. Since (XB)r C (YrB)r =
(YB)r, we obtain x 6 ((YB)r : B) C Y7.


(M3) We have


cXr = |J c((XB)r : B) C U (c(XB)r : B)


C
B6P f(D)


For any subsets X, B C D we have Xr C ((XJB)r : B), and therefore
Xr C XT. In particular, {l}r C (l}r- Hence r < f, and if r is a weak ideal
system, then so is r.


2. We use Corollary 4.3. If E,F 6 Pf(D) and E n £>' ^ 0, then


((EFB)r:EB)cFr,


since B n D* ^ 0 implies BE n Dm ^ 0.
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Let now r' be another cancellative finitary weak module system on D
such that r <r'. For X £ P f(D) we obtain


- - B ) C (J ( ( X B ) r / : B) C Xr, ,


again by Corollary 4.3, and hence r < r' by Proposition 2.13.


3. For X c D, we obtain


(J


and therefore r[#] = r[#). D


DEFINITION 4.7. Let r be a finitary weak module system on D, and let
H C M C D be submonoids. An element 2: € D is called r -integral over
H if ,T £ Hr- A subset JsT C D is called r -integral over H if X C H?-
Moreover,


is called the r- (integral) closure of H in M. H is called r- (integrally) dosed
m M , i f


REMARKS 4.8. 1. Let r be a finitary weak module system on D, H C D
a submonoid and x G D. Then x is r-integral over D if and only if


xE C (EH)r = Er[H] for some E £ Pf(£>) .


In particular, if D is a groupoid, r is a module system and H is an r-
monoid, then our notion of r-integralitiy coincides with that introduced in
[4], Definition 8.1.


2. Suppose that D is a groupoid and H C D is a submonoid such that
D is a quotient groupoid of H . Let r be an ideal system on H , viewed as a
finitary module system on D such that {l}r — H. Then an element x £ D
is r-integral over H if and only if there exists some J £ Xr^[(H} such that
x £ (J : J). In this case, notice that the notion of r-integrality coincides
with that introduced in [3], Ch. 14.


Before we prove the main results on r-integrality (Theorem 4.11) in order
to demonstrate the power of the module system approach, we investigate
the meaning of this concept in the case of the trivial module system s and
the additive system d on a ring.
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PROPOSITION 4.9. Let s be the trivial module system on D, H C D a
submonoid and x € D. Then x is s-integral over H if and only if there
exists some k E NO and I 6 N such that xk+l e xkH.


Proof. Suppose first that x is s-integral over H , and let E E Pf(D) be such
that E n D9 ^ 0 and xE C EH, say E = {&1? . . . , 6m}, where m e N and
61 E D9. Then there exists a map a : {!,... , m} -4 {!,... , m} and there
exist elements x\, . . . , xm E H such that


xbi = bfftyXi for all z e {1, . . . , m} ,


and consequently


n-l


xn&i = &an(i) J| oV'(i) for all n E N .
i/=0


Let k E NO and / E N be such that ak+l(l) = o~k(l) Setting j = a f c(l), we
then obtain


k+l-l k+l-l


Since 61 G D', we get xfc+i e xfc^T.
Let now k 6 N0 and Z 6 N be such that xfc+/ e xfcH. Setting E =


{1, i, .T2, . . . , xk+l~1} completes the proof. D


PROPOSITION 4.10. Let D be a ring and d the additive system, on D. Let
H C D be a subring and x E D. Then x is d-integral over H if and only if
x is integral over D in the usual sense.


Proof. We use [2], Theorem (9.3) and (9.2).
If x is integral over H in the usual sense, then the ring H[x] is a finitely


generated //-module, and therefore there exists some n 6 N such that H[x] =
H + Hx + . . . + Hxn = Ed(H], where E = (l,x, . . . ,xn} c D9. Since
xE C xH[x] C H[x] = Ed[H}i x ls d-integral over H.


If x is d-integral over H, then there exists some E 6 Pf(-D) such that
E n D9 ^ 0 and xE C Ed[H] • Hence E^u] 'IS a finitely generated faithful
//"[xj-module, and therefore x is integral over H in the usual sense. D


THEOREM 4.11. Let r be a finitary weak module system on D, and let
H C M C D be submonoids.


1. If M is an r -monoid, then H1 = cl^(H') is an r-monoid which is
r-closed in M.
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2. If M is r-integral over H and x is r-integral over M, then x is r-
integral over H.


3. If T C {l}r fl Dx is a multiplicatively closed subset, then


4- If M is an r-monoid and HQ = {l}r, then


P<Er-max(#Q)


Proof. 1. Since r < r, HF is an r-monoid, and therefore H' = HY fl M" is
also an r-monoid. Since fl"' C cl^(H') = H?r\M C H-nM = H1', equality
follows.


2. If M C //r and .T G MF, then x G (#r)r-


3. By Theorem 4.6.3 and Proposition 3.5.2, we obtain


~I M n r-1^ - T-^M n H7) = c\


4. Since cl^ = M H Hr is an r- monoid, Theorem 3.7 together with
Theorem 4.6.3 and Proposition 3.5.2 implies


f|


max(Ho) PGr-max(//0


Per-nriax(//o) P€r-max(f/0)


D


5 THE MAROT PROPERTY


DEFINITION 5.1. The submonoid D* = D' U {0} C £> is called the can-
cellative kernel of D. For a weak module system r on D, we define r* :


> * ) by


Xr* - Xr 0 D* for all X C D* ,


and we call r* the cancellative kernel of r. We further set


and we call the non-zero elements in M* the regular r -modules.
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PROPOSITION 5.2. Let r be a finitary weak module system on D. Then


1. r* is a weak module system on D*. If r is a module system or a weak
ideal system, then so is r* . If r is finitary, then so is r* .


2. M* C Mr is a submonoid, and


(M; -» M^
pr'\j K-> j n £>*


is a surjective map which is bijective if and only if (J fl D*)r = J for
all J eM;.


3. If pr is bijective, then pr is a monoid isomorphism. If moreover r is
finitary, then pr(M* n Mrj) = Mr*,t-


4- If S C Dx n {l}r is a multiplicatively closed subset, then (T-1r)* —
T~lr*.


Proof. 1. We must first check the properties (Ml), (M2), (M3) for all
X,Y C D* and all c < E D* .


(Ml) is obvious.
(M2) If X C Yr* = KrnD*, then Xr C Yr and therefore Xr* = Xrr\D* C


y r nD* = rr..
(M3) cXr. C cXr n D* D (cX)T n L>* = (cX)r*.
If r is a module system, X C £>*, 0 / c 6 D* and z 6 (cX)T* = cXrr\D*,


then z = cy for some y € Xr, and 2: G D* implies y e D*. Therefore it
follows that z € c(Xr n D*) = cXr. .


If r is an ideal system, then {l}r. = {l}r n D* = D n D* = D*.
If r is finitary and X C D*, then


xr, = XP n D* = (J £r n D* -


2. If J € M;, then (J n £>*)r. = ( J n D*)r n D* c Jr n D* = J 0 D*
implies J n D* e Air*. Hence pr is a map, as asserted, and it is injective if
and only if (J n D*)r = J for all J 6 M*.


If / 6 -Mr*> then / = Jr* = /r n D* — pr(/r), and Ir e -M*. Hence pr is
surjective.


3. Let pr be bijective. For /, J 6 .Mr we obtain, using 2., /or(J) -r*pr(J) =
((/nD*)(JnD*)) ni?* - (JnD*)r.r(jnD*)rnD* - (/> J)nD* = pr(/-r j ) .
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Moreover, suppose that r is finitary and J e M* r\ Mr,t- Since J =
(Jn D*)r, by Proposition 2.13.2, there exists a finite subset E C J fl D*
such that J = Er. Hence J H D* = ErH D* = Er*.


4. Observe that Dx n {l}r C {!)>«. For JC C £>*, we obtain A"(5-ir)* =
xs-ir n D* = (5'-1x)r n D* = (S-1*),.* = xs-ir..


5. Observe first that, for all subsets U,V C D*, (Ur- :D* V) = (Ur :
V)HD*. Indeed, if z € D*, then xV C D*, and therefore xV C Ur if and
only if xV C Ur*. Now we obtain, for X C -D*,


X^= |J ((XB) r. :D. B) = |J


D


DEFINITION 5.3. Let r be a weak module system on D. We say that r has
the Marot property if (J n D*)r — J for all J €E M* (that means, every
regular r-module is generated by its regular elements).


A ring D is called a Marot ring if d[D] has the Marot property.


PROPOSITION 5.4. Let q and r be weak module systems on D such that
q < f . If q has the Marot property, then r also has the Marot property.


Proof. I f J z M r C Mq, then ( J n D*)r = ((J n D*)q}r = (Jq)r = Jr- D


DEFINITION 5.5. Let Q be a total quotient monoid of D and r a finitary
ideal system on D (viewed as a finitary module system on Q such that


An r-ideal J € Ir(D) is called r-invertible, if there exists some J' £ Mr


such that J > J' = D.
D is called an r-Dedekir.d monoid if every regular r-ideal is r-invertible.
D is called an r-Priifer -monoid if every regular r-finitely generated


r-ideal is r-invertible.


THEOREM 5.6. Let Q be a total quotient monoid of D andr a finitary ideal
system on D (viewed as a finitary module system on Q such that (l}r = D)
satisfying the Marot property. Then D is an r-Priifer monoid (an r-Dedekind
monoid) if and only if D* is an r*-Priifer monoid (an r*-Dedekind monoid).


Proof. This follows from Proposition 5.2 after applying the isomorphism
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ABSTRACT. We present examples of Noetherian and non-Noetherian integral domains
which can be built inside power series rings. Given a power series ring R* over a
Noetherian integral domain R and given a subfield L of the total quotient ring of
R* with R C L, we construct subrings A and B of L such that B is a localization
of a nested union of polynomial rings over R and B C A := L n R*. We show
in certain cases that flatness of a related map on polynomial rings is equivalent to
the Noetherian property for B. Moreover if B is Noetherian, then B = A. We use
this construction to obtain for each positive integer n an explicit example of a 3-
dimensional quasilocal unique factorization domain B such that the maximal ideal of
B is 2-generated, B has precisely n prime ideals of height two, and each prime ideal
of B of height two is not finitely generated.


1. INTRODUCTION


This paper is a continuation of our study of a technique for constructing integral


domains by (1) intersecting a power series ring with a field to obtain an integral


domain A as in the abstract, and (2) approximating the domain A with a nested
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curity Agency for support for this research. In addition they are grateful for the hospitality and
cooperation of Michigan State, Nebraska and Purdue, where several work sessions on this research
were conducted.


233







234 Heinzer et al.


union of localized polynomial rings to obtain an integral domain B as in the abstract.


Classical examples such as those of Akizuki [A] and Nagata [N, pages 209-211] use


the second (nested union) description of this construction. It is possible to also


realize these classical examples as the intersection domains of the first description


[HRW6].


In this paper we observe that, in certain applications of this technique, flat-


ness of a map of associated polynomial rings implies the constructed domains are


Noetherian and that A = B. We also in the present paper apply this observation


to the construction of examples of both Noetherian and non-Noetherian integral


domains.


We begin by describing the technique.


1.1 General Setting


Let R be a commutative Noetherian integral domain. Let a be a nonzero nonunit


of R and let R* be the (a)-adic completion of R. Then R* is isomorphic to


R[[y]]/(y — a}, where y is an indeterminate; thus we consider R* as H[[a]], the "power


series ring" in a over R. The intersection domain (type 1 above) and the approxi-


mation domain (type 2) of the construction are inside R*. Let r i , . . . , r n € aR*


be algebraically independent over the fraction field K of R and let r_ abbrevi-


ate the list T i , . . . , r n . By Theorem 2.2, also known as [HRW1, Theorem 1.1 ],


AT_ := K(T\, ..., rn) n R* is simultaneously Noetherian and computable as a nested


union Bj_ of certain associated localized polynomial rings over R using r_ if and only


if the extension T :— R[r] := R[T\, . . . , r n ] r—> H* is flat.


In the case where ip : T <—>• H* is flat, so that the intersection domain AT_ is


Noetherian and computable, we construct new "insider" examples inside A-,_. We


choose elements / ] , . . . , /m of T, considered as polynomials in the rl with coefficients


in R and abbreviated by /. Assume that / i , . . . , /m are algebraically independent


over K- thus m < n. If 5 := R[f] := R[fi, - . . , /m] ̂  T = R[r] is flat, we observe in


Section 3 that the "insider ring" Af :- K ( f ) r \ R* is Noetherian and computable;


that is, Af is equal to an approximating union Bf of localized polynomial rings


constructed using the /^. Moreover, we can often identify conditions on the map </?
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which imply Bf and A/ are not Noetherian. Thus the "insider" examples A/ and


Bf are inside intersection domains AT known to be Noetherian; the new insider


is Noetherian if the associated extension S —> T of polynomial rings is flat. The


insider examples are examined in more detail in Section 3.


In Section 2 we give background and notation for the construction and


for flatness of polynomial extensions in greater generality: Suppose that x :=


(.TI, . . . , x n ) is a tuple of indeterminates over R and that / := (/i, • - • , /m) con-


sists of elements of the polynomial ring R[x] that are algebraically independent


over K. We consider flatness of the following map of polynomial rings.


(1.2) <p : S := R[f] ^ T := R[x}.


In Section 4 we continue the analysis of the flatness of (1.2) and the nonflat


locus. We discuss results of [P], [W] and others.


In Section 5 we present for each positive integer n an insider example B such


that:


(1) B is a 3-dimensional quasilocal unique factorization domain,


(2) B is not catenary,


(3) the maximal ideal of B is 2-generated,


(4) B has precisely n prime ideals of height two,


(5) Each prime ideal of B of height two is not finitely generated,


(6) For every non-maximal prime P of B the ring Bp is Noetherian.


2. BACKGROUND AND NOTATION


We begin this section by recalling some details for the approximation to the


intersection domain AT of (1.1).


2.1 Notation for approximations


Assume that R, K, a, n , . . . ,rn, r_ and Ar_ are as in General Setting 1.1. Then


the (a)-adic completion of R is R* = R[[x]]/(x - a) = R[[a]]. Write each Ti :=
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X^i bijdi, with the b^ e R. There are natural sequences {r7r}^0 of elements in


A, called the r th endpieces for the T,;, which "approximate" the r,, defined by:
oo


(2.1.1) For each i £ ( 1 , . . . , n } and r > 0, rtr := ]T (6 ? 7a7) /o r .
j=r+l


Now for each r, t/r :— R[rir,..., rnr] and £?r is C/r localized at the multi-


plicative system 1 4- aUr. Then define UL:=U^Ur and Br := U^JB,.. Thus UL


is a nested union of polynomial rings over R and BT_ is a nested union of localized


polynomial rings over R. The definition of the Ur (and hence also of Br and U^ and


BT) are independent of the representation of the r» as power series with coefficients


in R [HRW1, Proposition 2.3].


The following theorem is the basis for our construction of examples.


2.2 Theorem. [HRW1, Theorem 1.1 ] Let R be a Noetherian integral domain with


fraction field K. Let a be a nonzero nonunit of R. Let TI, . . . ,rn £ a/?[[a]] = aR*


be algebraically independent over K, abbreviated by r. Let UT_ and B-r be as in


(2.1). Then the following statements are equivalent:


(1) AL := K(r) n R* is Noetherian and A^ = B^.


(2) C/T is Noetherian.


(3) BT_ is Noetherian.


(4) R\r] -+ R*a is flat.


Since flatness is a local property, the following two propositions are immedi-


ate corollaries of [HRW5, Theorem 2.1]; see also [P, Theoreme 3.15].


2.3 Proposition. Let T be a Noetherian ring and suppose R C S are Noetherian


subrings of T. Assume that R —> T is flat with Cohen-Macaulay fibers and that


R —> 5 is flat with regular fibers. Then S —» T is flat if and only if, for each prime


ideal P of T, we have ht(P) > ht(P n S).


As a special case we have:


2.4 Proposition. Let R be a Noetherian ring and let .TI, . . . ,x n be indeterminates


over R. Assume that /i , . . . , fm e R[XI , . . . , xn] are algebraically independent over


R. Then


(1) (p : S := R [ f i , . ..Jm]^T:= R[XI,. ..,xn] is flat if and only if, for each


prime ideal P of T, we have ht(P) > ht(P n S).
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(2) For Q € SpecT, tpq : S —> TQ is flat if and only if for each prime ideal


P C Q of T, we have ht(P) > ht(P n S).


2.5 Definitions and Remarks


(1) The Jacobian ideal J of the extension (1.2) is the ideal generated by the m x m


minors of the m x n matrix J given below:


j •=


(2) For the extension (1.2), the nonflat locus of </? is the set F, where


J- :~ {Q G Spec(T) : the map </?Q : S — > TQ is not flat }.


For convenience, we also define the set Fm-m and the ideal F of T:


Fmin :— { minimal elements of F} and F := n{Q : Q € F}.


By [M2, Theorem 24.3], the set F is closed in the Zariski topology and hence


is equal to V(F), the set of primes of T that contain the ideal F. Thus the set Fm\n


is a finite set and consists precisely of the minimal primes of the ideal F.


Moreover, Proposition 2.4 implies Fmm C {Q G SpecT : htQ < ht(Q n S)}


and for every prime ideal P C Q E Fmin, htP > ht(P n S}.


(3) In general for a commutative ring T and a subring R, we say that elements


/i) • • • i /m G T are algebraically independent over R if, for indeterminates / i , . . . , tm


over R, the only polynomial G(t\, . . . ,tm) G R[ti, . . . ,tm] with G(/i, . . . ,/m) = 0


is the zero polynomial.


2.6 Example and Remarks


(1) Let k be a field, let x and y be indeterminates over k and set / — x, g — (x — l)y.


Then k[f,g] — > fc[x,y] is not flat.


Proof. For the prime ideal P := (x - 1) € Spec(fc[z,y]), we see that ht(P) = 1, but


ht(P n fc[/,p]) = 2; thus the extension is not flat by Proposition 2.4.
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(2) The Jacobian ideal J of / and g in (1) is given by:


\ 6r 6y /


(3) In this example the nonflat locus is equal to the set of prime ideals Q of


k[x,y] which contain the Jacobian ideal (x — l ) k [ x , y ] , thus J = F.


We record in Proposition 2.7 observations about flatness that follow from


well-known properties of the Jacobian.


2.7 Proposition. Let R be a Noetherian ring, let .TI, . . . ,.r,? be indeterminates


over R, arid let / i , . . . , / m £ ^?[.TI, . . . ,.rn] be algebraically independent over R.


Consider the embedding </? : S := 7?[/i, . . . , /,„.] c-^ T := 72 [.TI , . . . , .rn]. Let J


denote the Jacobian ideal of (p and let Q £ Spec T. Then


(1) Q does riot contain J if and only if </?Q : 5 — > TQ is essentially smooth.


(2) If Q does not contain J, then v?Q : ,9 -> TQ is flat. Thus J C F.


(3) -Fmin ^ {Q' e SpecT : .7 C Q' and ht(Q' n 5) > htQ'}.


Proof. For item 1, we observe that our definition of the Jacobian ideal J given in


(2.4) agrees with the description of the smooth locus of an extension given in [E],


[S, Section 4].


To see this, let 7/4, . . . , ?/,,„ be indeterminates over R[x\ , . . . , xn] and identify


m , ...
Rx^ . . . , ./:„ with


Since 7/.i . . . . . ?/ r n are algebraically independent, the ideal J generated by the minors


of J is the Jacobian ideal of the extension (1.2) by means of this identification. We


make this more explicit as follows.


Let C/i :— R[n.i, • • • , ? / m , ^ i , • • • , -T n ] and / = ({/, - Uj},-^...^)^. Consider


the following commutative diagram


S:=R[fi,...Jm]


Define as in [E], [S, Section 4]
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H = HTl/Sl := the radical of EA(pi, . . . , g a ) [ ( g i , . . . , & ) : I],


where the sum is taken over all s with 0 < s < ra, for all choices of s polynomials


g^...,gs from / = ({/i -MI , . . . , /m -«m})t/i, where A := A(0i, . . . ,#s) is the ideal


of T = TI generated by the s x s-minors of (fg- V and A = T if s = 0.


To establish (2.7.1), we show that H = rad(J). Since ut is a constant with


respect to ,r?, we have f^Hfil) = (|£-Y Thus J C #.
J \ a'Tj / \ OX3 J


For 0i, . . . ,gs E /, the s x s-minors of ( -^- ] are contained in the s x s-


minors of f ̂ - J . Thus it suffices to consider s polynomials gi, . . . ,gs from the


set {/i - M I , . . . , fm — um}. Now f i — HI, . . . , fm — um is a. regular sequence in


R[UI . . . U T , X I , . . . ,.rn]. Thus for s < m, [(^, . . . , g a ) : I] = (g^. . .,gs). Thus the


( „ , \
•Q^- \ generate H up to radical, and so H = rad( J).


Hence by [E] or [S, Theorem 4.1], TQ is essentially smooth over S if and only


if Q does not contain J .


Item 2 follows from item 1 because essentially smooth maps are flat. In view


of Proposition 2.4 and (2.5.2), item 3 follows from item 2. D


2.8 Remarks


(1) For (p as in (1.2), it would be interesting to identify the set .Fmin. In particular


we are interested in conditions for J = F and/or conditions for J C F.


(2) If char/? = 0, then the zero ideal is not in ^"min and so F ^ {0}.


(3) In view of (2.7.3), we can describe J-min exactly as


^"min = {Qe SpecT:JCQ,ht(QnS} > htQ and VP CQ,ht(P) >ht(PnS')}.


(4) By (2.8.3), every prime ideal Q of .Fmin contains two primes PI C P2 of S such


that Q is minimal above both PiT and P^T.


3. EXPLICIT CONSTRUCTIONS INSIDE SIMPLER EXTENSIONS


Using Theorem 2.2 and intersection domains inside the completion which are
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known to be Noetherian, we formulate a shortcut method for the construction of


"insider" examples.


3.1 General Method


Let R be a Noetherian integral domain. Let a be a nonzero nonunit of R and


let R* — jR[[.r]]/(.r — a) be the (a)-adic completion of R. Let r i , . . . , r n e aR*,


abbreviated by r , be algebraically independent over the fraction field K of R. As-


sume that the extension T := R[T\, . . . ,rn] <-» /?* is flat. Thus by Theorem 2.2,


D : — A-,_ — K(r\, . . . ,rn) n R* is Noetherian and computable as a nested union of


localized polynomial rings over R using the r's.


Let /i , . . . , /m be elements of T, abbreviated by / and considered as polyno-


mials in the r,; with coefficients in R. Assume that /i, • • • , /m are algebraically inde-


pendent over K; thus m < n. Let S :— R[f] °-> T = R[l]] put a. := ip o (p : S —> R*a.


That is, we have:


R C 5 :=


Using the /'s in place of the r's, we define the ring A := Af := K(.f ) n R*


and the approximation rings Ur, Br,U/ and B — jB/, as in (2.1). Let


F := n{P G Spec(T) | ̂ P : S -> TP is not flat }.


Thus, as in (2.5.2), the ideal F defines the nonflat locus of the map (p : 5 — > T. For


Q* ^ Spec(/2*), we consider whether the localized map <^Q*nr is flat:


(3.1.1) V'Q-nT : 5 — > TQ-HT


3.2 Theorem. With the notation of (3.1) we have


(1) For Q* e Spec^*), the map QQ. : S -» (R^Q* is flat if and only if the


map v?Q»nr in (3.1.1) is flat.


(2) The following are equivalent:


(i) A is Noetherian and A — B.
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(ii) B is Noetherian.


(iii) The map </?Q-nT m (3.1.1) is flat for every maximal Q* G


Spec(^).


(3) (pa : S —> Ta is flat if and only if FTa = Ta. Moreover, either of these


conditions implies B is Noetherian and B — A.


Proof. For item (1), we have Q.Q* = ^Q« o </?Q.nT : S —> Tg.nT —»'(J?*)Q.. Since


the map T/;Q. is faithfully flat, the composition QQ. is flat if and only if <PQT\T is flat


[Ml, page 27]. For item (2), the equivalence of (i) and (ii) is part of Theorem 2.2.


The equivalence of (ii) and (iii) follows from item (1) and Theorem 2.2. For the


equivalence of (iii) and (iv), we use FR* ^ R* <=> F C Q* n T, for some


Q* maximal in Spec(JR*)a) 4=> the map in (3.1.1) fails to be flat. Item (3)


follows from the definition of F and the fact that the nonflat locus of (p : S —»• T is


closed. D


To examine the map a : 5 —» R*a in more detail, we use the following


terminology.


3.3 Definition


For an extension of Noetherian rings (p : A' «—» B' and for d e N, we say that


(f> : A' <-» B', satisfies LF^ if for each P £ Spec(B') with ht(P) < d, the composite


map A' -> B' ->. B'p is flat.


3.4 Corollary. With the notation of (3.1), we have ht(F#*) > 1 <=> y : 5 -> R*a


satisfies LFi <^=> B — A.


Proof. The first equivalence follows from the definition of LFi and the second equiv-


alence from [HRW4,Theorem 5.5].


3.5 A more concrete situation


Let R := k[x, y\,..., ys], where A; is a field and x, yi,..., ys are indeterminates over


k with the yi abbreviated by y. Let R* = k[y][[x]], the (x)-adic completion of
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R. Let TI, . . . ,rn, abbreviated by r, be elements of .-rfc[[:r]] which are algebraically


independent over k ( x ) . Let D := AT_ := A;(x ,y , r ) n /?*. Let T = R[T\. Then


T —> #* is flat, £> is a nested union of localized polynomial rings obtained using


the Ti and D is a Noetherian regular local ring; moreover, if char k = 0, then D is


excellent [HRW3, Proposition 4.1].


We now use the procedure of (3.1) to construct examples inside D. Let


/ ! ? • • • ) /m? abbreviated by /, be elements of T considered as polynomials in


T i , . . . , r n with coefficients in R, that are algebraically independent over k(x,y).


We assume the constant terms in R = k [ x , y] of the /7; are zero. Let S :— R[f]. The


inclusion map S c—> T is an injective /^-algebra homomorphism, and m < n.


Let /I :— Q(5) n R* and let Z? be the nested union domain associated to


the /, as in (2.1). By Theorem 2.2, B is Noetherian and B — A if and only if the


map a : S —->• R*j. is flat. Furthermore, by Theorem 3.2, we can recover information


about flatness of a by considering the map </? : 5 —> T.


The following remark describes how the /, are chosen in several classical


examples:


3.6 Remark


With the notation of (3.5).


(1) Nagata's famous example [Nl], [N2, Example 7, page 209], [HRW6, Ex-


ample 3.1], may be described by taking n = s = m = l,yi = y,Tx = r,


and f i = f and localizing. Then R = k[x,y](Xty), T = fc[.T,y,r](a.iViT),


/ = (y + r)2, S = k [ x , y , f ] ( X t V t f ) and A - k(x,y, (y + r)2) n R*. The Noe-


therian property of B is implied by the flatness property of the map S —> Tx.


Thus B = A. In this case, T is actually a free 5-module with < l,y 4- r >


as a free basis.


(2) An example of Rotthaus [R1],[HRW6, Example 3.3], may be described by


taking n = s = 2, and m = 1 and localizing. Then R = fc[x,yi,y2](x,yi,j/2)»


T = R[Ti,T2}(m,Tl^), /! = (yi + n)(y2 + r2), 5 - /?[/i](mi/1) and A -


M a : » y i > y 2 , ( y i + T i ) ( y 2 + r2))n.R*. Since the map from ^[/^ -* -Rxfa,^] =


Tx is flat, the associated nested union domain B is Noetherian.
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(3) The following example is given in [HRW5, Section 4]. Let n = s = m, — 2,


let /! = (yi + n)2 and /2 = (y\ 4- ri)(y2 + T2). It is shown in [HRW5] for


this example that B C A and that both A and B are non-Noetherian.


The following lemma follows from [P, Proposition 2.1] in the case of one


indeterminate .T, so in the case where T — R[x}.


3.7 Lemma. Let R be a Noetherian ring, let .TI, . . . , xn be indeterminates over R,


and let T = R[x±, ... xn}. Suppose / e T — R is such that the constant term of / is


zero. Then the following are equivalent:


(1) R[f] -> T is flat.


(2) /?[/] -+ T is faithfully flat.


(3) For each maximal ideal q of R, we have qT D /?[/] = qR[f}-


(4) The coefficients of / generate the unit ideal of R.


Proof. (1) => (2): It suffices to show for P e Spec(fl[/]) that PT ^ T. Let


q = P n R and let k(q) denote the fraction field of R/q. Since fi[/] -* T is flat,


tensoring with k(q) gives injective maps


k(q} -> fc(g) ®fl /?[/] ~ k ( q ) [ f ] ^ k(q) ®R T ~ fc^)^!, . . . , .rn],


where /' is the image of / in k ( q ) [ x i , . . . ,xn]. The injectivity of (p implies /' has


positive total degree as a polynomial in k ( q ) [ x i , . . . , x n ] .


The image p' of P in k(q)[f] is either zero or a maximal ideal of k(q)[f'].


It suffices to show p ' k ( q } [ x i , . . . , xn] ^ k ( q ) [ x i , . . . ,xn]. Up' ~ 0, this is clear.


Otherwise p' is generated by a nonconstant polynomial h(f') and p'k(q)[x\,..., xn]


is generated by h ( f ' ( x , i , . . . , :rn)) which has total degree equal to deg(h) deg(f') > 0.


Thus (1) implies (2).


(2) ==> (3): This follows from Theorem 7.5 (ii) of [M2].


(3) =>• (4) : If the coefficients of / were contained in a maximal ideal q of


R, then / € qT n R[f], but / g qR[f}.


(4) ==> (1): Let v be another indeterminate and consider the commutative


diagram
R[v] > T(v]=R[xl,...,xn,v\
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where TT maps v —> / and TT' is the canonical quotient homomorphism. By [Ml,


Corollary 2, p. 152], (p is flat if the coefficients of f — v generate the unit ideal of R[v].


Moreover, the coefficients of / - v as a polynomial in .T!, ... ,xn with coefficients in


R[v] generate the unit ideal of R[v] if and only if the nonconstant coefficients of /


generate the unit ideal of R. D


We observe in Proposition 3.8 that one direction of (3.7) holds for more than


one polynomial: see also [P, Theorem 3.8] for a related result concerning flatness.


3.8 Proposition. Assume the notation of (3.7) except that / i , . . . , / m G T are


polynomials in .TI, . . . ,.rn with coefficients in R and ra > 1. If the inclusion map


(p : S = /?[ / i , . . . /m] —> T is flat, then the nonconstant coefficients of each of the fl


generate the unit ideal of R.


Proof. Since / i , . . . , / m are algebraically independent over Q(R) = K, for every


1 < i < in, the inclusion /?[/,] --* R [ f i , . . . Jm] is flat. If S —> T is flat, so is


the composition R[fi] —>• S = R [ f i , . . . , /„ ,] —> T and the statement follows from


Proposition 3.7. D


3.9 Theorem. Assume the notation of (3.1). If ra = 1, that is, there is only one


polynomial /i = /, then


(1) The map 5 —>• Ta is flat <=> the nonconstant coefficients of / generate the


unit ideal in /?,a,


(2) Either of the conditions in (1) implies the constructed ring A is Noetherian


and A = B.


(3) B is Noetherian and A = B <==> for every prime ideal Q* in R* with


o, # Q*, the nonconstant coefficients of / generate the unit ideal in Rq,


where q := Q* n R.


(4) If the nonconstant coefficients of f\ — / generate an ideal L of Ra of height


d, then the map S —> R^ satisfies LF^-i, but not LFd.


Proof. Item (1) follows from Lemma 3.7 for the ring Ra with .TI = TJ.


By Theorems 2.2 and 3.2, the first condition in item (1) implies item (2).


For item (3), suppose the nonconstant coefficients of / generate the unit ideal


of Rq. Then by Lemma 3.7, Rq[f] -+ Rqfa,... ,rn] is flat. Since H<,[n, . . . ,rn] -»
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R*Q. is flat, Rq[f] —» HQ, is also flat. For the other direction, suppose there exists


Q* G Spec/?* with a $ Q* such that the nonconstant coefficients of / are in qRq,


where q = Q* Pi R. If R[f] —> RQ* were flat, then, since qR*Q+ / R*Q*I we would


have qR*Qf n R[f] = qR[f}. This would imply / e 9fl£. n R[f], but / 0 qR[f], a


contradiction.


For item (4), if Q* e Spec(/?*) the map S —>• (.R^g* is not flat if and only


if L C Q*. By hypothesis there exists such a prime ideal of height d, but no such


prime ideal of height less than d.


3.10 Example


With the notation of (3.5), let m. — I and assume that n and s are each greater


than or equal to d. Then /i — / := y^r\ + • • • + ydTd gives an example where


S —> Tx satisfies LF^-i, but fails to satisfy LF</. For d > 2 this gives examples


where A = B, i.e., A is "limit-intersecting", but is not Noetherian.


The following is a related even simpler example: In the notation of (3.5), let


m = l,n = 1, and s = 2; that is, R — k[x,yi, y2](.T,?/1,?/2) and T € .rA:[[x]]. If /r =


/ = y\r + y2r2, then the constructed intersection domain A := R* n k,(x,yi,y2, /)


is not Noetherian. Thus we have a situation where B = A is not Noetherian. This


gives a simpler example of such behavior than the example given in Section 4 of


[HRW2].


In dimension two (the two variable case), Valabrega proved the following.


3.11 Proposition [V, Prop. 3]. For R = k [ x , y ] ( x ^ ) with completion R = k[[x,y]],


if L is a field between the fraction field of R and the fraction field F of k[y] [[.rj],


then A = L n R is a two-dimensional regular local domain with completion R.


Example 3.10 shows that the dimension three analog to Valabrega's result


fails. Withfl = k[x,yi,y2\(x,yi,y2) the field L = k(x,yl,y2J) is between k(x,yi,y2)


and the fraction field of k[yi, 7/2] [[-T]]5 but L D R = L n R* is not Noetherian.


3.12 Remark


With the notation of (3.1), it can happen that (f>a : S —» Ta is not flat, but a :
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S —» R* is flat. For example, using the notation of (3.5), let R :— A;[.r,?/], where A:


is a field and .r,y are indeterminates over k. Let a, r G .rA;[[.r]] be such that .r,o~, r


are algebraically independent over A:, let T := R[a,r}, and let S := R[a,crT]. Then


(px : S —•> Tr is not flat since aTr is a height-one prime such that aTr nS = (a, ar)S


has height 2. To see that /?* is flat over S, observe that dim .R* — 1 and if Q* €


Spec R*, then Q* n k [ x , a, ar] = (0). Therefore ht(Q* n 5) < 1.


4. FLATNESS OF MAPS OF POLYNOMIAL RINGS


4.1 Proposition. Let A: be a field, let .TJ , . . . , . r n be indeterminates over A;, and


let / i , . - . , / , 7 , € A;[.-TI , . . . , :rr?] be algebraically independent over k. Consider the


embedding (p : S := A : [ / i , . . . , fm] <^-» T := k[x\,..., ,rn] and let J denote the


Jacobian ideal of (p. Then


(1) ^min C {Q € SpecT : .7 C Q, htQ < m - 1 and ht Q < ht(Q n S)}.


(2) (p is flat <=> for every Q G Spec(T) such that ht(Q) < m - I and J C Q


we have ht(Q n 5) < ht(Q).


(3) If ht J > w, then (^ is flat.


Proof. For item 1, if ht(Q) > m, then ht(Q n S) < dirn(S') = m < ht(Q), so by


(2.3) 5 -v TQ is flat. Therefore Q g Fm-m. Item 1 now follows from (2.7.3).


The ( => ) direction of item 2 is clear [M2, Theorem 9.5]. For ( 4= ) of


item 2 and for item 3, it suffices to show Fm-in is empty and this holds by item 1. D


The following is an immediate corollary to (4.1).


4.2 Corollary. Let k be a field, let x\,...,xn be indeterminates over A: and let


f , g & k [ x i , . . . , :rn] be algebraically independent over k. Consider the embedding


(p : S := k[f,g] c—* T :— A:[.TI, . . . , xn] and let J be the associated Jacobian ideal.


Then


(1) -^min Q {minimal primes Q of J with ht(Q n 5) > htQ = 1 }.


(2) (p is flat <=3> for every height-one prime ideal Q e SpecT such that J C Q


we have ht(Q n 5) < 1.


(3) If ht(J) > 2, then </? is flat.
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In the case where k is algebraically closed, another argument can be used


for (4.2.2): Each height-one prime ideal Q £ SpecT has the form Q = h,T for


some element h £ T. If ht(F n S) - 2, then Q n 5 has the form (/ - a,g - 6)5,


where a,6 £ k. Thus / — a = f\h and g — b — g\h for some f\,g\ £ T. Now the


Jacobian ideal of /, g is the same as the Jacobian ideal of / — a, g — b and an easy


computation shows this has h as a factor. Thus Q contains the Jacobian ideal, and


so by assumption, ht(Q D S) < 1, a contradiction.


4.3 Examples


Let A: be a field of characteristic different from 2 and let x,y, z be indeterminates


over k.


(1) With / = x and g = xy2 — y, consider S := &[/, g] —> T := k[x, y}. Then


J = (2xy - l)T. Since ht((2xy - l)T H S) = 1, (p is flat. Hence J C F = T.


(2) With / = x and 0 = yz, consider S := k[f,g] ^ T := k [ x , y , z } . Then


J = (y, z)T. Since ht J > 2, (p is flat. Again J C F = T.


We are interested in extending Prop. 4.1 to the case of polynomial rings over


a Noetherian domain. In this connection we first consider behavior with respect to


prime ideals of R in a situation where the extension (1.2) is flat.


4.4 Proposition. Let R be a commutative ring, let .TI, . . . , xn be indeterminates


over R, and let /i,. . . , /m G R[XI, • • • , ^n] be algebraically independent over .R.


Consider the embedding (p : S := R [ f i , . . . , fm] •—» T : = j R [ x i , . . . , .Tn].


(1) If p £ Spec /? and </?PT : S —>• Tp^ is flat, then p5 = pT n 5 and the images


fi of the fi in T/pT S (/?/P)[.TI, . . . , :rn] are algebraically independent over


R/p.


(2) If (p is flat, then for each p £ Spec(J?) we have pS = pT n S and the images


fi of the fi in T/pT = (H/p)[.Ti,. . . , xn] are algebraically independent over


R/P-


Proof. Item 2 follows from item 1, so it suffices to prove item 1. Assume that


TpT is flat over S. Then pT ^ T and it follows from [M2, Theorem 9.5] that


pT D 5 = p5. If the fi were algebraically dependent over .R/p, then there exist







248 Heinzer et al.


indeterminates t\,. .. ,tm and a polynomial G € R[t\,..., tm] — pR[ti,..., tm] such


that G'(7T, - - . , 7m) e pT. This implies G ( f l , . . . , /,„) G pT n 5. But / i , . . . , /m


are algebraically independent over R and G(ti,...,tm) g pR[t\,..., tm] implies


G(f\, • • • , /m) 0 pS1 = pT1 n 5, a contradiction. D


4.5 Proposition. Let /? be a Noetherian integral domain, let x i , . . . , xr, be inde-


terminates over /£ and let / i , . . . , /m € - R f . r i , . . . , .rn] be algebraically independent


over R. Consider the embedding (f> : 5 :— R [ f \ , . . . , /m] c-> T := R[x\,..., .xn] and


let J denote the Jacobiaii ideal of </?. Then


(1) ^min C {Q € SpecT : J C Q, dim(T/Q) > 1 and ht(Q n S) > htQ}.


(2) cp is flat 4=> ht(Q H 5) < ht(Q) for every nonmaximal Q e Spec(T) with


J C Q .


(3) If dim R = d and ht J > d + m,, then (f> is flat.


Proof. For item 1, suppose Q € ^"min is a maximal ideal of T. Then ht Q < ht(QnS)


by (2.4.2). By localizing at R — (R C\ Q), we may assume that R is local with


maximal ideal Q D R '.— m. Since Q is maximal, T/Q is a field finitely generated


over R/m. By the Hilbert Nullstellensatz [M2, Theorem 5.3], T/Q is algebraic over


R/m and ht(Q) — ht(rn) + n. It follows that Q n S = P is maximal in S and


ht(P) = ht(rn) + m. But the algebraic independence hypothesis for the /; implies


rn < n. This is a contradiction. Therefore item 1 follows from (2.7.3).


The ( ==> ) direction of item 2 is clear. For ( <$= ) of item 2 and for item 3,


it suffices to show the set J-m[n is empty, and this follows from item 1. D


As an immediate corollary to (2.7) and (4.5), we have:


4.6 Corollary. Let R be a Noetherian integral domain, let xi,...,:xn be inde-


terminates over R and let / i , . . . , fm G R[x\,..., rrn] be algebraically independent


over R. Consider the embedding </? : S := R [ f i , - - - , f m ] c~> T :— R[xi,...,xn]


and let J be the associated Jacobian ideal. Then (p is flat if for every nonmaximal


Q 6 Spec(T) such that J C Q we have ht(Q n 5) < ht(Q).


Also as a corollary of (2.7) and (4.5) we have:


4.7 Corollary. Let R be a Noetherian ring, let .TI, . . . , x n be indeterminates over


R and let fi,..., fm e R[x\,..., xn] be algebraically independent over R. Consider
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the embedding (p : S :— R[f\, • . . , /m] •"-> T : = R[XI, . . . , zn], let J be the Jacobian


ideal of </? and let F be the (reduced) ideal which describes the nonflat locus of (p


as in (2.4.2). Then J C F and either F = T, that is, y? is flat, or dim(T/Q) > 1,


for all Q G Spec(T) which are minimal over F.


4.8 Proposition. Let R be a Noetherian integral domain containing a field of


characteristic zero. Let .TI, . . . , xn be indeterminates over R and let /i, . . . , /m G


/?[.TI, . . . ,.rn] be algebraically independent over R. Consider the embedding ip :


S :— /?[/i, . . . ,/m] °— > T : = jR[xi, . . . ,.Tn] and let J be the associated Jacobian


ideal. Then


(1) If p G Spectf and J C pT, then pT G -F, i.e., <ppT5 -* TpT is not flat.


(2) If the embedding (p : S <—> T is flat, then for every p e Spec(R) we have


J£PT.


Proof. Item 2 follows from item 1, so it suffices to prove item 1. Let p G Spec.R


with J C pT, and suppose (/?PT is flat. Let /, denote the image of /j in T/pT.


Consider


V? : S := (R/p)[Ti, • • • ,7m] - T := ( R / p ) ( x ^ . . .,*„].


By Proposition 4.4, /i, • • • , /m are algebraically independent over /? := -R/p.


Since the Jacobian ideal commutes with ho.momorphic images, the Jacobian ideal


of </? is zero. Thus for each Q G SpecT the map C^Q : S — >• TQ is not smooth. But


taking Q = (0) gives TQ which is a field separable over the fraction field of S and


hence </?Q is a smooth map. This contradiction completes the proof. D


5. EXAMPLES


5.1 Examples


For each positive integer n, we present an example of a 3-dimensional quasilocal


unique factorization domain B such that


(1) B is not catenary,
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(2) the maximal ideal of B is 2-generated,


(3) B has precisely n prime ideals of height two,


(4) Each prime ideal of B of height two is riot finitely generated,


(5) For every non-maximal prime P of B the ring Bp is Noetherian.


The notation for this construction is a localized version of the notation of


Section 3.5, with s = 1. Thus A; is a field, R = k [ x , y ] ( x ^ ) is a 2-dimensional


regular local ring and R* = k[y](y)[[x]] is the (.r)-adic completion of R. Let r —


IC^Li cixl G -T^:[[.'c]] be algebraically independent over k ( x ) . Let p, G R — xR be such


that piR* are n distinct prime ideals. For example, we could take p, — y — xl. Let


q = Pi • • - p n - We set / := qr and consider the injectix^e P-algebra homomorphism


S - R[f] -> R[r] = T.


Let B be the nested union domain associated to / as in (2.1). If rr —


X^7*Lr+i ^~ IS the '"' endpiece of r, then pr '.— qrr is the rth endpiece of /. For


each r E N, let Br — /?[/9r](x y Pi,). Then each Br is a 3-dimensional regular local


ring and B = IJ^ Br.


The map a : S —>• PL* is not flat since prR* is a height-one prime and


piR*x H S — (piif)S is of height two. By Theorem 2.2, B is not Noetherian. By


[HRW4, Theorem 4.5], B is a quasilocal unique factorization domain. Moreover,


by [HRW4, Theorem 4.4], for each t e N.x'B = x*R* n B and R/xlR = B/xfB =


R*/xfR*. It follows that the maximal ideal of B is (x,y}B. If P € Spec B is such


that P n R = (0), then because the field of fractions K ( f ) of B has transcendence


degree one over the field of fractions K of R, ht(P) < 1 and hence because B is a


UFD, P is principal.


Claim 1. Let / be an ideal of B and let t. 6 N. If ,rf e //?*, then x* e /.


Proof. There exist elements 6 1 , . . . ,6S e / such that /.R* = ( b i , . . . ,bs)R*. If


xf e /P* , there exist ar e Pt* such that


We have a,: = a, + .rf+1A,,, where az 6 J3 and Aj 6 PL*. Thus


x'[l -.r(6iAi 4- - • • +6SAS)] = a^ H ---- + as6s
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Since x* R* D B = xlB, 7 := 1 - x(b\\\ H ----- \-bs\s) e B. Moreover, 7 is invertible


in R* and hence also m B. It follows that x*' € I. D


To examine more closely the prime ideal structure of B, it is useful to consider


the inclusion map B <—* A := R* n K(f) and the map Spec A — » Spec.6.


5.2 Proposition. With the notation of Example 5.1 and ^4 = R* C\K(f), we have


(1) A is a two-dimensional regular local domain with maximal ideal m^ =


(x,y)A.


(2) mA is the unique prime of A lying over m^ = (x, y}B, the maximal ideal


of B.


(3) If P e SpecS is nonmaximal, then ht(PP*) < 1 and ht(PA) < 1. Thus


every nonmaximal prime of 5 is contained in a nonmaximal prime of A.


(4) If P e Spec B and xg £ P, then ht P < 1.


(5) If P e Spec B, ht P - 1 and P D Pt / 0, then P = (PHR}B.


Proof. By Proposition 3.11 (the result of Valabrega) A := R* n /f(/) is a two-


dimensional regular local domain having the same completion as R and R* . This


proves item 1. Since B/xB = A/xA = R*/xR*, iru = ( x , y } A is the unique prime


of A lying over m^ = (x, y}B. Thus item 2 holds and also item 3 if x G P. To


see (3), it remains to consider P e Specf? with x £ P. By Claim 1, for all t e N,


x' £ Pfi*. Thus ht(PR*) < 1. Since A <-* P* is faithfully flat, ht(PA) < 1.


For (4), we see by (3) that ht(PA) < 1. Let Q e Spec 4 be a height-one


prime ideal such that P C Q. Since .xr? ^ P, we have £?p = Sp^s = TqnT = AQ,


where S = R[f] and T = R[T]. Thus ht(P) < 1. For (5), if x £ P, then P = xB


and the statement is clear. Assume x $_ P. Since Bx is a localization of (Br)x, we


have (P n R)Br = P n Br for all r e N. Thus P = (P n R)B. D


We observe that the DVRs BXB and AXA are equal. Moreover, ^4 is the


nested union (J^i R[Tn](x,y,TTl) °f 3-dimensional regular local domains. Since ^4 is


a two-dimension regular local domain each nonmaximal prime of A is principal. If


pA is a height-one prime of A with pA £ {piA, . . .pnA}, then ApA = BpAr\B and


ht(p^4 n B) = 1. We observe in Claim 2 that piA C\ B has height two and is not


finitely generated.
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Claim 2. Let p, be one of the prime factors of q. Then p j B is prime in B. Moreover


(1) piB and Q1 := (p,. p\. p - 2 , . . . }B — prA fl B are the only primes of B lying


over p,R in /?,


(2) Q, is of height two and is not finitely generated.


Proof. We use that B — U^Li Br, where Br — R[pr](x,y,pr) is a 3-dimensional


regular local ring. For each r £ N, p,;5r is prime in Br. Hence pzB is a height-


one prime ideal of B, for i — 1 , . . . , n. Since pr — qrr, p,.A n £?r = (pr,pr}Br is


a height-two prime ideal of the 3-dimensional regular local domain Br. Therefore


Qi '•— (p?i />i i />2i • • • )B = Pi.A n B is a nested union of prime ideals of height two, so


ht(Q,) < 2. Since p^B is a nonzero prime ideal properly contained in Ql, ht(Q,;) = 2.


Moreover x $. (pr,pr)Br for each r, so x $ Q7. Hence for each r 6 N, pr+i &


(pi,pr}B and Qi is not finitely generated. D


Since .r ^ Qt and B [ l / x ] is a localization of the Noetherian domain Bn[l/x],


we see that BQ^ is Noetherian. Since the Qi are the only prime ideals of B of height


two and B is a UFD, Bp is Noetherian for every non-maximal prime P.


This completes the presentation of Examples 5.1. With regard to the bi-


ratiorial inclusion B c-^ A and the map Spec A —* Spec 5, we remark that the


following holds: Each Q, contains infinitely many height-one primes of B that are


the contraction of primes of A and infinitely many that are not. Among the primes


that are not contracted from A are the pxB. In the terminology of [ZS, page 325],


P is not lost in A if PA n B = P. Since p7A n B — QT properly contains p7B, pTB


is lost in A Since (x,y)B is the maximal ideal of B and (x,y)A is the maximal


ideal of A and B is integrally closed, a version of Zariski's Main Theorem [Pe], [Ev],


implies that A is not essentially finitely generated as a B-algebra.
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ABSTRACT


Dobbs, Fontana, and Picavet have recently proved a variety of results concerning
generalized going-down homomorphisms. In this paper, we provide many analo-
gous results for generalized going-up homomorphisms.


1 INTRODUCTION


All rings considered below are commutative with identity, and all ring homomor-
phisms are unital. Adapting the notation in [9, p. 28], we let GU, GD, LO, and
INC denote the going-up, going-down, lying-over, and incomparable properties,
respectively, for ring homomorphisms. As well, suppose that /: A —» B is a ring
homomorphism. Consider X = (P, : i G /}, a subset of Spec (A). (The notation is
generally taken so that Pi ̂  Pj whenever i ̂  y; as a result, \X\ = |/|.) A subset
y - [Qi ' i e /} of Spec (B) is said to cover (or to dominate) X if f~l (Qi) = />• for
each i e /. (By the notational convention, Qi ^ Qj if i ̂  j, and so \Y\ — |/|.) As in
[4], we say that / is a chain morphism if, for each chain X in Spec(A), there exists a
chain Y in Spec (B) such that Y covers X. Furthermore, as in [4], a chain X is called
a local chain if X has a (necessarily unique) maximal element, namely 11(X), and
a ring homomorphism /: A —>• B is said to satisfy the generalized going-down prop-
erty (GGD) if the following holds: for each local chain X in Spec (A) and each
Q e Spec(5) such that f ~ l ( Q ) = £/(*), there exists a local chain Y in Spec(£)
such that 11(Y) = Q and Y covers X. Finally, as in [4], let a f : Spec (5) -> Spec (A)
be the associated map that takes Q to f~l (Q).


During the past 25 years, the notion of rings A C B satisfying GD has attracted
considerable attention. Recently, in [4], Dobbs, Fontana, and Picavet have consid-
ered the question of when a ring homomorphism /: A —> B satisfies GGD. In this
paper, we consider the question of when a ring homomorphism /: A —^ # satisfies
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the analogous generalized going-up property (GGU).
The work presented below is a portion of the author's dissertation work cur-


rently in progress under the direction of Dr. David E. Dobbs at the University of
Tennessee, Knoxville. The author would like to thank Dr. Dobbs for his guidance
and, most of all, his patience.


As this paper went to press (May, 2002), Kang-Oh have announced a preprint
whose methods, we have determined, can be extended to show that GGU and GU
are equivalent for arbitrary ring homomorphisms. Accordingly, in this late revision,
we have deleted the statements and proofs of special cases given in our earlier
draft for the implication GU => GGU. Nevertheless, we have retained the GGU
formulations of our earlier draft, to best convey the intended spirit and the role of
chain morphisms.


2 GENERALIZED GOING-UP


Let A be a ring and X a subset of Spec (A). Following [11], we define ^.(X) :=
n{P : P e X}. Observe that if X is a chain, then ^(X) G Spec(A) [9, Theorem 9].
A chain X is called a rooted chain if X has a (necessarily unique) minimal element.
If X is a chain, then X U {^(X)} is a rooted chain; in fact, a chain X is a rooted
chain if and only if !^(X) <E X.


We begin with a result whose statement and proof are dual to those of [4, Propo-
sition 2.1].


PROPOSITION 2.1. Let f: A-^Bbea ring homomorphism. Then:
(a) If a rooted chain Y in Spec(5) covers a subset X o/Spec(A), then X is a


rooted chain.
(b) If a chain Y in Spec(Z?) covers a rooted chain X in Spec(A), then Y is a


rooted chain and f ~ } (^(X)) = ^(X).
(c) If f is a chain morphism and X is a rooted chain in Spec(A), then X is


covered by some rooted chain Y in Spec(Z?) and f ~ l ( j ^ ( Y } } = ^(X).


Proof, (a) By the above observation, X is a chain. If P G X, there exists Q G Y such
that /-' (Q) = P* whence P D f ~ l (^{Y}). It follows that ^.(X) = f~l (%.(¥)} 6 X,
and so X is a rooted chain.


(b) Choose Q G Y such that f ~ l ( Q ) = ^(X). lfQ{cQeY, then f ~ l ( Q i ) C
rl(Q], contradicting the fact that f ~ l ( Q ] = ^(X) C f ~ l ( Q } ) . Thus, ^(Y) ~
Q e Y, and so Y is a rooted chain. Then /"' (^(K)) = ^(X) by the proof of (a).


(c) Apply (b). D


The next proposition provides for the lifting of chains of prime ideals in a ring
to a chain of prime ideals in a valuation domain. Its statement and proof are dual to
those of [4, Proposition 2.4].


PROPOSITION 2.2. Let A be a ring and let X be a subset of Spec (A). Then:
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(a) [4, Proposition 2.4 (a)] IfX is a chain, then its patch closure Xc is also a
chain.


(b) [4, Proposition 2.4 (b)J X is a chain if and only if there exists a ring homo-
morphism A — >• V and a chain Y in Spec(V) such that V is a valuation domain and
Y covers X.


(c) X is a rooted chain if and only if there exists a ring homomorphism f: A — > V
and a rooted chain Y in Spec(V) such that V is a valuation domain, Y covers X,


Proof, (c) The "if assertion follows from Proposition 2.1 (a). The "only if asser-
tion follows by combining (b) with Proposition 2.1 (b). D


COROLLARY 2.3. Let A be a ring, X a chain in Spec(A), and P E Spec(A) such
that ^.(X) I) P- Then there exists a ring homomorphism f: A — >• V, a chain Y
in Spec(V), and Q E Spec(V) such that V is a valuation domain, Y covers X,


Proof. We dualize the proof of [4, Corollary 2.5]. Apply Proposition 2.2 (c) to the
rooted chain X U {P}, to obtain a suitable rooted chain Z in Spec(V). It suffices to
take Q = ^(Z)\ and Y = Z (resp., Z\{0}) if P 6 X (resp., P $ X). D


We refer the reader to [4] for further results on chain morphisms and coverings.
We now proceed to the key definition of this paper. A ring homomorphism


/: A — > B is said to satisfy the generalized going-up property (GGU) if the follow-
ing holds: for each rooted chain X in Spec (A) and each Q E Spec (B) such that
f ~ l ( Q ) - ^(X), there exists a rooted chain Y in Spec(5) such that ^(Y) — Q and
Y covers X. In their preprint, Kang-Oh have identified that, for extensions of com-
mutative rings, what we are calling the GGU-property is equivalent to what they
have called the SCLO-property. It is straightforward to verify that this equivalence
holds for arbitrary ring homomorphisms. Evidently, GGU => GU. For historical
reasons, we now record an instance where the reverse implication was shown to be
true.


PROPOSITION 2.4. [3, Theorem] Let A be a ring such that each chain in Spec (A)
is well-ordered via inclusion. Then a ring homomorphism f: A — > B satisfies GGU
if (and only if) f satisfies GU.


Of course, the two concepts of "GGU" and "chain morphism" are logically
independent: if R is a ring of non-zero (Krull) dimension and P is not a minimal
prime of/?, then the canonical projection R -» R/P is not a chain morphism but does
satisfy GGU; if R is a ring of non-zero (Krull) dimension and jc is an indeterminate
over R, then [9, Exercise 3, p. 41] gives that the canonical injection R <-» R[x]
is a chain morphism that does not satisfy GU and, hence, does not satisfy GGU.
Nevertheless, we do have the following connection between "GGU" and "chain
morphism" which dualizes [4, Proposition 3.2].
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PROPOSITION 2.5. Let f: A -> B be a ring homomorphism. Then:
(a) If f satisfies LO and CGU, then f is a chain morphism.
(b) Ifaf is infective and f is a chain morphism, then f satisfies GGU.


Let/: A -> #be a ring homomorphism and let P G Spec (A). It is well known that
"/ ' (^)' ^e so-called topological fiber of P (with respect to f ) , is homeomorphic
to Spec((Ap/PA/>) ®A B) in both the Zariski topology and the flat topology. One
calls (Ap/PAp) ®A B = Bp/PBp the fiber of f at P; its associated reduced ring,
BPI \fPBp, is called the reduced fiber (off at P) as noted in [4]. It is easy to show,
via Zorn's Lemma and [9, Theorem 9], that each element of a f ~ l (P) is contained in
some maximal element ofaf~](P] and contains some minimal element o f a f ~ l (P).
It follows that a f ~ ] ( P ) has a unique maximal (resp., unique minimal) element if
and only if the reduced fiber of/ at P is a quasilocal ring (resp., an integral domain);
that is (cf. [11, Lemme 2.5)), if and only \ f a f ~ l ( P ) is irreducible in the flat (resp.,
Zariski) topology.


The next result, which dualizes [4, Proposition 3.3], introduces a useful argu-
ment.


PROPOSITION 2.6. IfB is a quasilocal treed ring and f: A —)• B is a chain mor-
phism, then f satisfies GGU.


Proof. Consider a rooted chain X — {P, : i G /} in Spec(A) and Q £ Spec(fi) such
that f ~ l ( Q ) = ^(X). Since / is a chain morphism, Proposition 2.1 (c) provides a
rooted chain Y = {Qj : / £ /} in Spec(#) that covers X, with f~l(^(Y}) = R(X).
Choose (the unique) / e / such that P, = ^.(X). Then Qj = %.(Y}. If Qj = Q, then
Y is the desired rooted chain Z in Spec(5) such that ^(Z) = Q and Z covers X.
If Q C Qj, then Z := (Y\{Qj}} U {Q} suffices. Since B is quasilocal treed, there
is only one remaining case, namely, Qj C Q. For this case, it also suffices to take
Z:=(n{fi;})U{Q}. D


We next infer a dual of [4, Corollary 3.41.


COROLLARY 2.7. Let B be a quasilocal treed ring. Let f: A -> B be a ring ho-
momorphism that satisfies both LO and GD. Then f satisfies GGU.


Proof. If P E Im(fl/), then B quasilocal treed implies that a f ' ~ l ( P ) has a unique
maximal element and a unique minimal element; that is, each reduced fiber of / is
a quasi local integral domain. The conclusion therefore follows by combining [4,
Theorem 2.3] and the proof of Proposition 2.6. D


By reworking the proof of Proposition 2.6, we next find a companion result; this
is the dual of [4, Corollary 3.5].


COROLLARY 2.8. Let f: A —> B be a chain morphism that satisfies at least one
of the following two conditions:


(i) B is treed and each reduced fiber of f is quasilocal;
(ii) Each (Zariski-) irreducible component ofSpec(B] is a chain (via inclusion)
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and each reduced fiber of f is an integral domain.
Then f satisfies GGU.


Proof. We proceed to rework the proof of Proposition 2.6. It suffices to verify
that QJ and Q are comparable via inclusion. In case (i), this follows since B is
treed and QJ, Q are each contained in (any maximal ideal of B that contains) the
unique maximal element of a/~1(P7). An essentially "dual" proof is available if
(ii) holds. Indeed, <2y,Q each contain the unique minimal element / of af~l(Pj}-
Using Zorn's Lemma, choose a minimal prime ideal N of B such that N C I [9,
Theorem 10]. Then <2;, Q


 are eacn in the (Zariski-) irreducible set V(N), which is
a chain by hypothesis, whence QJ and Q are comparable. D


In [4, Remark 3.7], Dobbs, Fontana, and Picavet showed that it is possible to
characterize GGD in terms of chains that are not necessarily local chains. We next
note that there is an analogous characterization of GGU in terms of chains that
are not necessarily rooted chains. Indeed, it is easy to see that a ring homomor-
phism/: A —> B satisfies GGU if and only if the following holds: for each chain X
in Spec(A), each P <E Spec(A) such that P C ^(X), and each Q e a f ~ l ( P ] , there
exists a chain Y in Spec(#) such that Q C 3(.(Y) and Y covers X.


We next collect some useful facts about the GGU property which are dual to
those in [4, Proposition 3.8].


PROPOSITION 2.9. (a) Let f:A-*B and g:B^C be ring homomorphisms. Iff
and g each satisfies GGU, so does go f. If g satisfies LO and go f satisfies GGU,
then f satisfies GGU.
(b) If f is a ring homomorphism, then the following seven conditions are equiva-
lent:


(1) f satisfies GGU;
(2) f s : AS —> BS := B^^As satisfies GGU for each multiplicatively


closed subset S of A;
(3) fP: AP ->• BP :=B®AAP satisfies GGU for each P <E Spec(A);
(4) AP -> BQ satisfies GGU for each Q e Spec(5) and P := f~l(Q);
(5) A/1 ->• B/IB satisfies GGU for each ideal I of A;
(6) A/P —>• B/PB satisfies GGU for each minimal prime ideal P of A;
(7) freft satisfies GGU.


(c) Let f[i AI -»/? , -( /— !,...,«) be finitely many ring homomorphisms. Then the
induced map A\ x • • • x An —>• B\ x • • • x Bn satisfies GGU if and only if fi satisfies
GGU for each i. If A\ = ... =An =: A, then the induced map A —> B\ x • • • x Bn


satisfies GGU if and only if fi satisfies GGU for each i.


Recall from [1] and [6] that an integral domain A is called a going-down domain
if A C B satisfies GD for each overring B of A. The most natural examples of going-
down domains are arbitrary valuation domains and the integral domains of (Krull)
dimension at most 1. As in [2], a ring A is called a going-down ring if A/P is
a going-down domain for each (equivalently, each minimal) prime ideal P of A.
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Any integral domain is a going-down ring if and only if it is a going-down domain
[2, Remark (a), p. 4]; any ring of dimension at most 1 is a going-down ring [2,
Proposition 2.1 (c)j; a finite ring product A\ x • • • x An is a going-down ring if and
only if each Aj is a going-down ring [2, Proposition 2.1 (b)]; but there exists a
going-down ring A and an overling B of A such that A C B does not satisfy GD
[2, Example 1, p. 9J. We wil l say that a ring homomorphism/: A —> B is a max
morphism i f / ' (Q) is a maximal ideal of A for each maximal prime ideal Q of B. It
is evident that if a ring homomorphism / satisfies GU, then / is a max morphism.
As in [5], we call a ring a pm-ring if every prime ideal is contained in a unique
maximal ideal (for example, any quasilocal ring is a pm-ring). We then have the
following analogue of [4, Theorem 3.9].


THEOREM 2.10. Let A be a pm-ring ring and a going-down ring and let f: A —>
B be a ring homomorphism. Then the following conditions are equivalent:


(1) f is a max morphism;
(2) /satisfies GU;
(3) f satisfies GGU.


Proof. By the above comments, (3) =$> (2) =>• (1). It remains to show that if
/ is a max morphism, X a rooted chain in Spec(A) and Q E Spec(#) such that
/"'(£>) = Q ( X ) , then there exists a rooted chain Y in Spec(#) such that ^(F) = Q
and Y covers X. There is no harm in replacing A with A/^(X), B with B/Q, and
/ with A/^(X) <—> B/Q. Hence, without loss of generality, A C B are integral do-
mains and A is a quasilocal going- down domain. Now, take M to be a maximal
ideal of B such that M n A is the maximal ideal of A. Choose a valuation evening
(V,yV) of B such that NnB = M (cf. [7, Theorem 19.6]). Of course, V is quasilo-
cal and treed. Moreover, A C V satisfies GD since A is a going-down domain. As
well, since A CV satisfies GD and every prime ideal of A survives in V, A C V
satisfies LO. Hence, by Corollary 2.7, A C V satisfies GGU. Thus, there exists a
rooted chain Z = {Qt} in Spec(V) such that Z covers X and 3^(Z) — {0}. Then, by
Proposition 2.1 (b), Y := {Q/HB} has the desired properties. D


Proposition 2.5 (b) illustrated that GGU-theoretic consequences can ensue in
the presence of a ring homomorphism / for which af is injective. We next pur-
sue this theme by enhancing the set-theoretic restriction with a topological one.
Specifically, as in [4], we say that a continuous function /: X —> Y of topological
spaces is a topological immersion if the induced map X —> f(X) is a homeomor-
phism (that is, injective and either open or closed). It is straightforward to verify
that a continuous map /: X — > Y is a topological immersion if and only if / is in-
jective and /'"! ( f ( Z ) } = Z for each subset Z of X. Our main interest here concerns
ring homomorphisms /: A —> B for which a f : Spec(Z?) —> Spec (A) is a topological
immersion (relative to the Zariski topology); in such a case, we also call / a topo-
logical immersion. There are many ring-theoretic characterizations of such /. A
particularly useful characterization is given next.
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PROPOSITION 2.1 1. Let f: A ->> B be a ring homomorphism. Then:
(a) [4, Proposition 3.20] The following two conditions are equivalent:


(1) IfQi and Q^ are prime ideals ofB such that f~~l(Q\ ) C f ~ l ( Q . 2 ) ,
then Ql C Q2;


(2) f is a topological immersion.
(b) Suppose that the equivalent conditions in (a) hold and that a subset Y of


Spec(B) covers a subset X o/Spec(A). Then Y is a chain (resp., rooted chain) if
and only ifX is a chain (resp., rooted chain).


Proof, (b) In view of Proposition 2.1 (a), (b), it remains only to show that if
X =: {Pi} is a chain in Spec(A), then so is Y =: {Qi} where Y is a subset of Spec(5)
that covers X . As f~l(Qi) = PI for each i, the conclusion follows from condition
(1) in Proposition 2. 1 1 (a). D


We next mention a family of examples of ring homomorphisms that were noted
in [4] to induce topological immersions; the verifications follow most readily by
checking condition (1) in Proposition 2.11. The family consists of the flat epi-
morphisms (that is, the flat maps A -> B such that the induced multiplication map
B ®A B — >• B is an isomorphism). In particular, the structure map of any ring of
fractions A — >• AS is a topological immersion.


The next result is the dual of [4, Corollary 3.21].


COROLLARY 2.12. Let f : A ̂  B be a ring homomorphism. Then the following
conditions are equivalent:


(1) af is injective and f satisfies GU;
(2) f is a topological immersion and satisfies GGU.


Proof. (2) => (1) trivially. Conversely, assume (1). One then readily verifies con-
dition (1) in Proposition 2.11, and so / is a topological immersion. Next, to verify
that / satisfies GGU, consider a rooted chain X = {P,} in Spec(A) and Q E Spec(Z?)
such that f~l (Q) - Q(X). For each /, take Qf to be the unique element of af~l (Pi).
It follows from (1) that P, C Pj entails Qi C Qj. Accordingly, Y := {Qi} is a rooted
chain in Spec (B) such that 3^(Y) ~ Q and Y covers X, as desired. D


The next result is the dual of [4, Corollary 3.22].


COROLLARY 2.13. Let f: A — >• B be a ring homomorphism such that af is a
topological immersion with closed image. Then the induced inclusion of rings
A/ker(/) --> B satisfies GGU.


Proof. Put / :— ker(/). We begin with a fact that depends only on / being a ring
homomorphism, namely, that Im(a/) = V(I). (To fashion a proof, recall that min-
imal prime ideals of a base ring are lain over from any ring extension [9, Exercise
1, p. 41] and Zariski-closed sets are stable under specialization.) Under the given
assumptions, it follows that lm(af) — V(I).


Our task is to show that if X is a rooted chain in Spec (A/7) and Q E Spec(TJ)
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lies over ^(X), then there exists a rooted chain Y in Spec(B) such that ^(Y) = Q
and Y covers X. Of course, X induces a rooted chain Z in Spec (A) such that
Z C V(I) and Q lies over ^(Z). We shall show that Y := a f ~ l ( Z ) has the as-
serted properties. Indeed, since af is a topological immersion, it follows via con-
dition (1) in Proposition 2.1 1 that Y is a chain. Moreover, Y is a rooted chain, with
^(F) = Q. Now, a f ( Y ) = Znlm( f l/) = ZD V(7) = Z. Finally, Y covers X since
Spec (B) — > Spec(A/7) is an injection, n


Next, we have the dual of [4, Corollary 3.23].


COROLLARY 2. 14. Let f be a ring homomorphism. Then:
(a) If f is an injection and "/ is a topological immersion with closed image,


then f satisfies GGU.
(b) Suppose that for all Q G Spec(fi) and P := f~~l(Q), the induced map Ap — >


BQ is an injection whose corresponding map Spec(Z?g) — > Spec (A P] is a topologi-
cal immersion with closed image. Then f satisfies GGU.


Proof, (a) is immediate from Corollary 2.13; to prove (b), combine (a) and Propo-
sition 2.9 (b). D


The next result is the dual of [4, Corollary 3.24]. For applications of Corol-
lary 2.20, it is useful to have examples of ring homomorphisms g: A — > D that are
universally topological immersions. Among these, we mention flat epimorphic g,
surjective g, and g such that ag is a universal homeomorphism.


COROLLARY 2.15. Let f: A ~> B be a ring homomorphism such that af is injec-
tive and f satisfies GU. Let g: A — > D be a ring homomorphism that is universally
a topological immersion. Then the induced ring homomorphism h: D — > D <S>A B
satisfies GGU.


Proof. Put E := D @A B. Our task is to show that if X is a rooted chain in Spec(D)
and Q G Spec(E) satisfies h~} (Q} — ̂ (X), then there exists a rooted chain Y in
Spec(E) such that 1^(Y} = Q and Y covers X. As ag is injective, it follows from
Proposition 2.1 (a), (b) that W :— ag(X) is a rooted chain in Spec (A) such that
g~ !(X(X)) = ^(W). Now, since Corollary 2.12 ensures that / satisfies GGU,
there exists a rooted chain Z in Spec(Z?) such that f ~ l ( 3 ^ ( Z ) ) = ̂ (W] and Z covers
W. Next, since X and Z have the same index set, we can use a result on pullbacks
of schemes [8, Corollaire 3.2.7.1(i), p. 235] to produce the individual elements of a
subset Y of Spec(E) such that Y covers X (relative to /?) and Y covers Z (relative to
the canonical ring homomorphism j : B — >• £). As the hypothesis on g ensures that
j is a topological immersion, Proposition 2.11 (b) yields that Y is a rooted chain.
Finally, we shall show that ^(Y) = Q. By Proposition 2.1 (b), j~l


Therefore,


= a(hog}(Q] = a(jof)(Q).
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Since a ( j of) — afo aj is a composite of injections, ^(Y) — Q. D


By analogy with the definition of "chain morphism", we say, as in [4], that a ring
homomorphism /: A — > B is a 2-chain morphism (or, as in [10, p. 528], subtrusive)
if the following condition is satisfied: for all prime ideals P\ C ^2 of A, there exist
prime ideals Q\ CQ2ofB such that f~l (Qt) = Pf for i = 1,2. It is easy to see that
any ring homomorphism / that satisfies LO and either GU or GD must be a 2-chain
morphism. As noted in [10, p. 538], examples of universally 2-chain morphisms
include the ring homomorphisms / that are pure; the / that satisfy LO and are
universally going-down; and the / that satisfy LO and are integral. For us, the most
important examples of universally 2-chain morphisms are special cases of the last
two classes just mentioned, namely, the faithfully flat ring homomorphisms and
(thanks to a result on pullbacks of schemes [8, Corollaire 3.2.7.1(i), p. 235] and the
Lying-over Theorem [9, Theorem 44]) the injective integral ring homomorphisms.


Before stating a useful characterization of universally 2-chain morphisms, we
recall the following definitions. If /: A -» B is a ring homomorphism, the torsion
ideal off is T(f) := {b (E B : there exists a non-zero-divisor c E A such that cb = 0};
and / is called torsion-free if T(f) — 0.


PROPOSITION 2. 16. (Picavet [10, Theoreme 37(a), p. 556 and Proposition 16,
p. 543]) Let f: A — > B be a ring homomorphism. Then the following conditions
are equivalent:


(l)IfA-^V is a ring homomorphism for which V is a valuation domain and
the induced map V — >• V 0^ B =: E has torsion ideal T, then the induced ring
homomorphism V — >• E/T is faithfully flat;


(2) f is a universally 2-chain morphism.


Observe that LO is a universal property (as can be seen via [8, Corollaire 3.2.7. l(i),
p. 235]); and, of course, so is "integral". Accordingly, [3, Remark (d)] actually es-
tablishes that any integral ring homomorphism that satisfies LO (for instance, any
injective integral map) must be a universally chain morphism. We next record a
substantial generalization of this fact.


THEOREM 2. 17. [4, Theorem 3.26] A ring homomorphism f: A — > B is a univer-
sally chain morphism if and only if f is a universally 2-chain morphism.


We next infer the duals of [4, Corollary 3. 27 -Corollary 3.29].


COROLLARY 2.18. Universally (2-) chain morphisms descend both GGU and
GU. More precisely: if f: A — >• B is a ring homomorphism and g: A — > D is a
universally (2-) chain morphism such that the induced map h: D — > D(8>/\Z? =: E
satisfies GGU (resp., GU), then f satisfies GGU (resp., GU).


Proof. We give a proof for the "GGU" assertion, as it carries over for the "GU" as-
sertion. Consider a rooted chain X in Spec (A) and Q £ Spec (B) such that f~l (Q) =
^(X). Since g is a chain morphism, there exists a chain Z in Spec(D) such that Z
covers X. By Proposition 2.1 (b), Z is a rooted chain and g~l (^(Z)) = ^(X). As
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and Q each lie over ^.(X), the oft-used fact about pullbacks of schemes [8,
Corollaire 3.2.7.1(1), p. 235] supplies J e Spec(E) such that J lies over ^(Z) in
Spec(D) and J lies over Q in Spec(5). Since h satisfies GGU, there exists a rooted
chain W in Spec(£) such that ^(W) — J and W covers Z. If 7 denotes the canon-
ical ring homomorphism B — > E, then the chain K := a7(W) covers X. Moreover,
by Proposition 2.1 (b), Y is a rooted chain satisfying Q = ^"'(J) = 7


. Therefore, / satisfies GGU. O


COROLLARY 2. 19. Universally (2-) chain morphisms descend universally going-
up (universally GGU).


Proof. It follows from Corollary 2.18 via- standard tensor product identities that
any universally (2-) chain morphism descends universally GGU. D


COROLLARY 2.20. Let f: A -» B be a ring homomorphism, and let a\ , . . . an be
finitely many elements of A such that ( a i , . . . ,<7 , , ) = A. Then f satisfies GGU if
and only if the induced ring homomorphism fi : Aaj — > Bai satisfies GGU for all
i = !, . . . ,«.


Proof. The "only if assertion is immediate from Proposition 2.9 (b). For the
converse, assume that each /) satisfies GGU. By Proposition 2.9 (c), so does the
induced map \\Aaj -» l\Bar Of course, l\Bai = (TlAai) ®A B; and A ->• T[Aai is
faithfully flat, hence a universally 2-chain morphism. Hence, by Corollary 2.18, /
satisfies GGU. D
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0. INTRODUCTION


We introduce here a notion of closure for ideals (parameter tight closure) in arbitrary


Noetherian rings, including rings of mixed characteristic, that we hope will have properties


parallel to those enjoyed by tight closure in characteristic p. We are not able to prove that


the definition proposed here has all the properties that tight closure does: this remains an


open question. But we can show that it agrees with tight closure in prime characteristic


p > 0, that it is, in general, contained in the solid closure introduced in [Ho8] and [Ho9]


(which is known to be "too large"), and it appears very likely that in many cases it is


smaller than solid closure: cf. Discussion (3.6) and Theorem (3.7). We also show that,


quite generally, including in mixed characteristic, it captures elements of a domain which


are in the expansion of an ideal to an integral extension (sse Theorem (2.5)), and that,


in equal characteristic 0, it has so-called "colon-capturing" properties analogous to those


of tight closure (see Theorem (3.2)). The case of complete local domains suffices for


applications, and so, for simplicity, we often restrict to that case in the sequel.


In fact, closure operations of the kind we have in mind are determined by their behavior


over complete local domains. We describe briefly how the definition goes in that case.


The underlying idea is to define a notion of "parameter-like" sequence in an algebra, not


necessarily Noetherian, over a complete local domain R. The definition is made in terms of


The author was supported in part by a grant from the National Science Foundation.
Version of November 18, 2001.


267







268 Hochster


annihilation properties of certain local cohomology modules. See (2.2) for details. It is, in


fact, the case that a system of parameters of a complete local domain R is parameter-like.


We next define the notion of a "parameter-preserving" algebra S over the complete local


domain R: an J2-algebra S is parameter-preserving if and only if every system of parameters


in R is parameter-like in S. We then define the parameter tight closure fi of / C R to be


the smallest ideal J of R containing / such that for every parameter preserving-algebra S


over R, the contraction of JS to R is J.


If R is a complete local domain, it turns out that a parameter-preserving algebra is


solid, which makes the new closure a priori contained in the solid closure defined in [Ho9].


In §3 we show that the solid algebra Roberts uses in [Ro6] to prove that the solid closure


of an ideal in a regular ring of equal characteristic zero can be strictly larger than the


ideal is not parameter-preserving. Thus, it appears to be possible that the parameter tight


closure of any ideal in a regular ring is equal to the ideal, although we cannot prove this.


Moreover, we do not know whether parameter tight closure agrees with any of the equal


characteristic zero notions of tight closure introduced in [HH10]: but we can show that it


contains the largest of them, the big equational tight closure defined there. See Theorem


(3.3).


We shall show that this parameter tight closure has many of the properties that we


want a tight closure theory to have. However, we do not know whether every ideal of a


regular ring is parameter tightly closed, neither in equal characteristic zero nor in mixed


characteristic. If the mixed characteristic case could be established, the direct summand


conjecture would follow.


Of course, we were led to study the notion of parameter-like sequences because of


the possibility of settling many long-standing open questions in mixed characteristic (cf.


[Hol,7], [PS1,2], [Rol-5,7], [Ho2,3,5,6], [Dul,2], [DHM], [EvG], and [Rang]) via the con-


struction of a suitable analogue of tight closure theory. However, we feel that parameter-


like sequences are worthy of study in their own right even without the potential for this


application: their behavior appears to be subtle even in finitely generated algebras over a


complete local domain.


Other notions, defined quite differently, that generalize tight closure have been explored
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in [Heitl-3] and [HoV]: these are related to ideas from [Sm] and [HH5]. In particular, in


a tremendous breakthrough, [HeitS] resolves the direct summand conjecture in dimension


3. In [Holl] a main result of [HeitS] is used to prove the existence (in a weakly functorial


sense) of big Cohen-Macaulay algebras in dimension 3, even in mixed characteristic.


1. TIGHT CLOSURE IN POSITIVE CHARACTERISTIC


For the theory of tight closure in characteristic p we refer the reader to [Ho8], [HH1-4,


6-12], [Hu], [Sm], and [Bru]. The equal characteristic zero theory is described in [Ho9] and


[HolO], and developed in complete detail in [HH10].


For the moment we shall be working over a Noetherian ring R of positive prime char-


acteristic p. In this situation we shall always let e denote an element of the nonnegative


integers N, and write q as an abbreviation for pe. Thus "for all sufficient large g" means


"for all sufficiently large integers q of the form pe," and so forth.


Recall that a module M over a local ring (R, m, K) is a balanced big Cohen-Macaulay


module (cf. [Sh]) for R if M / mM and every system of parameters for R is a regular


sequence on M. If M is also an R-algebra it is called a big Cohen-Macaulay algebra for R


(i.e., in the context of algebras we shall always assume "balanced" but we omit the word).


We also recall that if R is a domain then an E-module M is called solid if there exists


a nonzero jR-linear map from M to R, i.e., Hom^(M, R) ^ 0. If (R, M, K) is a complete


local domain of dimension d then it turns out that M is solid if and only if H^(M} ^ 0.


An /2-algebra is called solid if it is solid when considered as an 72-module.


In order to explain, in part, why we are led to consider the notion of parameter tight


closure we first consider four characterizations of tight closure in the characteristic p > 0


case. For simplicity, we consider only the case of ideals, and when it simplifies matters,


we assume that the Noetherian ring R of prime characteristic p > 0 is a complete local


domain. The first characterization given below is actually the definition of tight closure in


positive characteristic. The characterizations (2)and (3) below are consequences of Theo-


rems (11.1) and (8.6b), respectively, of [Ho9]. The characterization (4) is a consequence of
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Theorem (8.17) of [HH4] and the results of [Mo] on Hilbert-Kunz multiplicities. See also


the discussion in [Ho8], p. 179.


(1.1) Characterizations of of tight closure. Let R be a Noetherian ring of prime


characteristic p > 0. Let u 6 R and let / C R be an ideal. Let /* denote the tight closure


of / .


(1) (Definition) u e /* precisely if there exists c not in any minimal prime of R such


that cuq € 1^ for all nonnegative integers e, where /^ is the ideal generated by all


q th powers of elements of /. (When R is a domain, the condition on c is simply


that it not be 0.)


(2) Let R. be a complete local domain, u € /* if and only if u G IS n R for some big


Cohen-Macaulay R- algebra S.


(3) Let R be a complete local domain, u 6 /* if and only if u € IS n R for some solid


/2-algebra S.


(4) Let R be a complete local domain. Assume also that / is m-primary. With J —
t(R/j(pel}


I + uR, we have that u e /* if and only if lim r e1 = 1. (Here, "f indicates


length.)
e->oo


We present these characterizations because every characterization of tight closure in


prime characteristic p > 0 gives a potential method for generalizing the theory to mixed


characteristic. We want to discuss briefly the difficulties that arise from using these char-


acterizations to help motivate the definitions of the next section.


We first note that an analogue of (1) can be defined in equal characteristic zero by


reduction to characteristic p. This idea gives a very good extension of tight closure theory


to the equal characteristic zero case (cf. [Ho8], [Ho 10], [HH10]), but this definition does


not seem to lead to any highly useful notion in mixed characteristic.


Condition (2) might lead to a notion that is a good notion in all characteristics, but at


this time this idea does little good in mixed characteristic, because big Cohen-Macaulay


algebras are not known to exist in mixed characteristic.


Condition (3) leads to a notion that is explored in the author's paper [Ho9], but an


example [Ro6] of Paul Roberts shows that solid closure is too big in equal characteristic
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zero (ideals in regular rings of dimension 3 are not always solidly closed). The situation in


mixed characteristic is unresolved, but there it is difficult to prove anything and Roberts'


example is discouraging. Solid closure does give some information, but not enough to


settle, for example, the direct summand conjecture. For further information about this


and related conjectures, we refer the the reader to [Hoi,7], [PS1,2], [Rol-5,7], [Ho2,3,5,6],


[Dul,2], [DHM], [EvG]/and [Rang].


In connection with all of these conditions, we note that if R is essentially of finite type


over a field or even over an excellent local ring, and has prime characteristic p > 0, then


u 6 /* if and only if the image of u is in (ID)* (working over D) for every complete local


domain D to which R maps.1 Thus, under mild conditions on the ring, tight closure theory


in prime characteristic p > 0 is determined by its behavior for complete local domains.


Condition (4) merits some further comment. Note that in a complete local domain


(R,m), the tight closure of / is the intersection of the tight closures of the m-primary


ideals containing /, and so tight closure is determined by its behavior on m-primary ideals.


The intriguing condition (4) can be rephrased slightly as follows: for m-primary ideals


/ C J in a complete local domain (/?, m) of prime characteristic p, J € /* if and only


if / and J have the same Hilbert-Kunz multiplicity. (It is known that, with d = dim^?,


l(R/I^) = j ( q d ) + O(qd~l), where 7, the Hilbert-Kunz multiplicity, is a positive real


constant (conjectured, but not known, to be rational) and the term O(qd~l) is bounded


in absolute value by a constant times qd~l.) Cf. [Mo] for the basic theory, and see [HaMo]


for some surprising examples. This exciting tie-in between tight closure and Hilbert-Kunz


multiplicities has not, so far, led to any possible extensions of tight closure theory to mixed


characteristic.


We want to come back to the conditions (2) and (3). Evidently, if one has a class


of /^-algebras contained in the solid /^-algebras and containing the big Cohen-Macaulay


^-algebras, one can use it to define a notion of closure that will agree with tight closure


in prime characteristic p > 0 and may give a good notion in equal characteristic 0 and


in mixed characteristic. In the next section we define a class of algebras, the parameter-


may use [HH7], Prop. (6.23) and Thm. (6.24) to show "only if. To prove "if one may use that
the rings considered have completely stable test elements. One can reduce to looking at the completions
of their local rings and then the quotients of those by minimal primes by [HH4], Prop. (6.25).
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preserving algebras, and prove that it lies between the class of big Cohen-Macaulay algebras


and the class of solid algebras: it is not obvious that parameter-preserving algebras are


solid, but that is the content of Theorem (2.7). We shall show in the sequel that this


class of algebras gives a notion with many of the properties we want, and, so far as we


know, it may have all of the properties that we want. In §3 we show that the algebra that


Roberts uses in [Ro6] to show that solid closure is too big (in the sense that not every ideal


of a regular ring is solidly closed) is not parameter-preserving. Thus, there is no known


"obstruction" to prevent this notion from being a good one in equal characteristic 0 and


in mixed characteristic. But whether it has all the properties one would like remains an


open question.


2. PARAMETER-LIKE SEQUENCES AND


PARAMETER-PRESERVING ALGEBRAS


As discussed earlier, we want to explore here the possibility of denning a closure opera-


tion that is provably useful in all characteristics along the following lines: we first define a


property, parameter-preservation^ of algebras that is stronger than being solid but weaker


than being a big Cohen-Macaulay algebra. We then define u to be immediately in the


parameter tight closure of / if u € ISC\R for some algebra 5 having the specified property.


We then take the parameter tight closure fi of / to be the smallest ideal of R containing I


that is closed under immediate parameter tight closure. We can do something similar for


modules. The detailed definition is given in (2.2).


Although we are primarily interested in complete local domains, it will be convenient


to allow complete local rings of pure dimension as well: recall that R has pure dimension


d if (0) has no embedded prime ideals, and for every minimal prime P of /?, the dimension


of R/P is d. This is equivalent to the statement that every nonzero submodule of R has


dimension d. Likewise, we say that an jR-module has pure dimension d if it and all of its


nonzero submodules have dimension d.
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Much of the sequel depends on the facts (b) and (c) about local cohomology in the


following:


(2.1) Lemma. Let R be a complete local ring of pure dimension d. Then:


(a) Given any system of parameters xi, . . . , x^ for R, R is module-finite over a complete


local ring A C R such that xi, . . . , x<^ G A and A is either regular (A can always


be chosen to be regular in the equal characteristic case), or A is a hypersurface in a


complete regular local ring.


(b) For i ^ d, the module H^R] is annihilated by an ideal of height at least 2 in R. (The


unit ideal has height +00, and so the condition is satisfied if the local cohomology


module vanishes.)


(c) Let M be any R-module, not necessarily Noetherian. Let ''SCR denote the annihilator


ofHd
m(M}. Then if Hd


m(M] ± 0, dimR/<B = d.


Proof, (a) This is quite standard if R. contains a field: it has a coefficient field K and


one may choose D = K"[[XI, . . . , x^]]. In the mixed characteristic case, choose a coefficient


ring B for R. This means that B C R with m# C m = m^, that B/mrj —> R/m is


an isomorphism, and that for some mixed characteristic discrete valuation ring V with


residual characteristic p such that my = pV, either B = V or B — V/(pt). Choose


a map 0 of V[[X]] = V[[-X"i, . . . ,Xd}} to R so that the Xi map to the x^, the given


system of parameters for R. Then image A of V[[X]] in R has pure dimension d, since


R D A is module-finite, and so Ker</> C V[pf]] is a pure height one ideal of the unique


factorization domain V[[X]]. But then Ker0 = (/) is principal, and R is module-finite


over A = V[[X]]/(f) as required.


(b) Choose A as in part (a). Then, by local duality over the Gorenstein ring A, the


Matlis dual of Hl
m(R] is Extjf l(R, A), 0 < i < d - 1, and so it suffices to see that the


Ext has an annihilator of height two or more in A: this ideal will expand to an ideal of


height two or more in R. Therefore it suffices to see that for every height one prime Q of


A, Exfr^ (Rq, AQ) — 0 for j = d - i ^ 0. But since AQ is a one-dimensional Gorenstein


ring, the Matlis dual of the localized Ext is HQ~^ (fig), which is 0 if j > 1, or j < 0,


clearly, and vanishes when j — 1 because RQ is of pure dimensional one over AQ, and this
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implies that it is Cohen-Macaulay.


(c) If dirnJ?/Q3 < d, then 03 contains an element x\ that is part of a system of pa-


rameters. Hence, we can choose A C R as in part (a) such that x\ € A. Since R


is module-finite over A, the maximal ideal of A expands to an m-primary ideal of R.


Thus, if we think of M is an A-module, the local cohomology does not change, and


we still have that H^A(M} ^ 0 but that this module is killed by the parameter x\.


We may therefore assume that R = A is a hypersurface. Let E = ER(K] = H^(R).


Then H^(M] = M ®R E is nonzero and killed by xv. But Hom^(_, E) is faith-


fully exact, and so we get that Hom/^(//Tf1(M), E) = Hom/j(M <8># E, E) is nonzero


and killed by xi, and by the adjointness of tensor and Horn this may be identified with


Hoirift(M, HomFi.(E, E)] = Hom^(M, /?.), since R is complete. Since the Horn is nonzero


and killed by xi , there exists a nonzero map M —> R. that is killed by x±. But this means


that the image of the map is an ideal of R, killed by xi , and xi is not a zerodivisor in R.


This is a contradiction. D


If R is a local ring and J is any ideal of R, we define Junmx to be the intersection of the


primary components of J corresponding to minimal primes Q of J such that dimR/Q =


dim R. (We have restricted this definition to the local case to avoid difficulties that arise


from rings having maximal ideals with differing heights.) Note that if R is any local ring


of dimension d, then /?/(0)unmx has pure dimension d. la fact, (0)unmx is the largest ideal


I of R such that the dimension of / as an .R-module is smaller than d: it consists of all


elements of u 6 R such that dinijRu < d.


(2.2) Definitions: parameter-like sequences, parameter-preserving algebras,


and parameter tight closure. Although we are primarily interested in complete lo-


cal domains, it will be convenient to allow complete local rings of pure dimension d as well


in certain definitions. Thus, let R be a, complete local ring of pure dimension d and let


S be an /^-algebra. Let xi, . . . , x^ be a system of parameters for R. Let TO = To(S) be


the quotient of 5 by the ideal of all elements that have an annihilator of positive height


in R, and, recursively, if Tt = Tl(S) has been defined for i < d let TJ+I be the quotient of


Tl/(xl+iTl] by the ideal of all elements u such dimRu < d~(i + l ) . (Note that Ru € Ti+i)
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is killed by (zi, . . . , Zj+i) and that dim.R/(xi, . . . , Xj+i) = d - (i + 1).) If we need to


make explicit the dependence of Ti(S) on the choices of R and x — x\\ ... , x^ we shall


write T^(X] 5), but we shall usually omit either or both of R, x.


Call a system of parameters x\, . . . ,Xd parameter-like in S if Td ^ 0, and for all i,


0 < i < d - 1, the height of the annihilator 21; of H^-l"i(Ti) in R is at least i + 2. We


note again that we are making the usual convention that the height of the unit ideal is


+00, and so the condition is satisfied whenever H^~1~l(Ti) vanishes. Since R was assumed


to have pure dimension, it is equivalent to assert that for every i, 0 < i < d — 1, either


Hd-l-l(Ti] =-0, or else dim.R/21, <d-i-2.


Call 5 a parameter-preserving R-algebra if every system of parameters rci, . . . , x^ of R


is parameter-like in S.


Given N C M, finitely generated 7?-modules, define u 6 M to be in the immediate


parameter tight closure of N in M if there exists a parameter-preserving .ft-algebra S such


that 1 ® u is in the image of S ®R N in 5 ®/j M (\i M = R and JV = / is an ideal, this


just says that the image of u in S is in I S ) . Define the first parameter tight closure of N


in M to be the submodule of M generated by the elements in the immediate tight closure


of TV. The first parameter tight closure will be a submodule of M containing ./V. Iterating


this process, we obtain an ascending chain of submodules of M that must stabilize. We


define the stable submodule in this chain to be the parameter tight closure of ./V in M, and


denote it JVJ^ or simply N^. When N is an ideal of R, M is understood to be R unless


otherwise specified.


Alternatively, N^ is the smallest submodule of M containing N that has the property


that for any element it € M and any parameter preserving-algebra S over R, if 1 eg) u is in


the image of S ®R N^ in S ®R M, then u e N*.


The definition of parameter-like is rather technical. The results that follow will help


explain why it was chosen. The key points that will be established are:


(1) A system of parameters in a complete local domain is parameter-like, and module-


finite extensions of complete local domains are parameter-preserving. (Cf. (2.3).)


(2) A big Cohen-Macaulay algebra over R is parameter-preserving. (Cf. (2.6).)


(3) A parameter-preserving algebra is solid. (Cf. (2.7).)
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(4) The algebra that is used in [Ro6] to show that not every ideal in a regular ring is


solidly closed in equal characteristic 0 is not parameter-preserving. (Cf. (3.6) and


(3.7).)


These conditions imply many good properties for this closure operation, the majority


of which are discussed in §3. We now proceed to the proofs.


(2.3) Theorem. If R is a complete local domain then every sequence of elements that is


part of a system of parameters is parameter-like in R and in every module-finite exten-


sion domain of S of R. Hence, every module-finite extension domain of R is parameter-


preserving, including, of course, R itself.


Proof. Fix part of a system of parameters in R: it will also be a system of parameters for


S. One sees by induction on i that Tj is a local ring module-finite over R/(x\, ... , x z ) ,


that T-i has pure dimension d — i, using the remark following Fact (2.1), and that it is a


quotient of S by a proper ideal. Thus, all the 7'?; are nonzero. The fact that the annihilators


of the local coliornology modules are as stated now follows from Lemma (2.1b). D


We next observe:


(2.4) Lemma. Let (R, m) be a complete local ring of pure dimension d, and let S be an


R-algebra. Let x — xi , . . . , x^ be a system, of parameters in R. Let RI = 7^ (x; R) (cf.


Definition (2.2)), and T\ = 7lR(x; S } . Then:


(a) RQ = R and for every i < d, Ri is a homomorphic image of R/(x\, . .. , X i ) R that has


pure dimension d — i. Moreover, Si is an R% module. Let y3 be the image of Xj in Ri


for i + 1 < j < d. Then for i < j < d, T^l(yl+\, . . . , yd\ Sr] = Sj. Thus, Xi , . . . , x<j


is parameter-like in S if and only if Hd~~l(To) has an annihilator of height at least


two in R, and the images o /X2, . . . , Xd are parameter-like m T\ over R±.


(b) // 5' is flat over S, then for 1 < i < d, Ti(S') = S' ®s Ti(S], and, for all j,


H^(Ti(S')) - s/ ®s H^T^S}). Thus, i f x i , ... ,xd is parameter-like in S, then it


is parameter-like in S' if and only if S' ®sT^ ^ 0. In particular, if S' is faithfully flat


over S, and xi, . . . , x^ is parameter-like in S then it is parameter-like in S1. Likewise,


if S' = W~lS, where W is a multiplicative system in S, then for all i, 0 < i < d, for
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a l l j , we have that Ti(W~lS} * W~lTi, that H^T^W ~l S}) =* W-^Hjn(Ti}) and,


i/xi, . . . ,Xd is parameter-like in S, then it is parameter-like in W~1S if and only if


(c) //xi, . . . ,Xd is parameter-like in S and Q is any prime in the support ojT^ SQ is


parameter-preserving. Thus, in testing immediate parameter tight closure it suffices


to consider quasilocal R-algebras (S,Q) over R such that m maps into Q.


Proof, (a) RQ = R since R is assumed to have pure dimension, and it is clear that Ri is a


homomorphic image of R/(XI, . . . , £j) , and that Ti is a module over R/(XI, . . . , x^) . The


statement that Ri has pure dimension d - i is immediate by induction on i.


Let u G R/(XI, . . . , x,;) be such that RIL has dimension < d — i in R/(x\, . . . , xz).


If v € Ti then the cyclic module Ruv is a homomorphic image of Ru, and so also has


dimension < d — i. It follows that uv is killed in T;, and so u kills Ti. Thus, Ti is an


JRi-module. Once we know this, we have at once from the definitions that for i < j < d,


7~_'i(yi+i, • • • , yd', Si) = Sj, and the final statement in part (a) is then clear.


For part (b), first note that this holds when i = 0. The ideal of S' that we must kill to


form 7o(S') is the union of the annihilators in S' of the positive height ideals of R. For


any such ideal /, the annihilate!1 of I in S' is the expansion of its annihilator from S, and


so the union is the expansion of the union of the annihilators in S. We may then proceed


by induction on i. Killing £j+i times the algebra commutes with tensoring with 5" over


S, and the next step is like the formation of TO, but working with Si/Xi+\Si and Ri+\


instead of S and R. The statement that local cohomology commutes with tensoring with


S" over S is obvious from the Cech complex method of defining local cohomology, and the


final statement follows at once.


Part (c) is implied at once by part (b). D


(2.5) Theorem. If R is a complete local domain, I is an ideal of R, and S is a module-


finite extension of R then IS n R C fi . Hence, if I = fi for every ideal of R, then R is a


direct summand of every module-finite extension.


Proof. We can replace 5" by a quotient by a minimal prime of S disjoint from the domain


R, and then the first statement is immediate from (2.3) and the definition of parameter
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tight closure. The second statement then follows from the main result of [Ho4]. D


(2.6) Theorem. If S is a balanced big Cohen-Macaulay algebra for R then S is parameter-


preserving.


Proof. Note that 5o = 5, since any height one (or more) ideal of R will contain an element


that is part of a system of parameters, and so the annihilator is 0. By a trivial induction on


i, we have Tz — S/(x\, ... , x T ) S , 1 < i < d, which is a big Cohen-Macaulay algebra over


R{. The Cohen-Macaulay condition on Si implies that it has depth d - i on the maximal


ideal of m, and so all the H^S-i] = 0 for j < d — i, and, in particular, for j — d— I — i. D


(2.7) Theorem. If R is a complete local dom,ain and S is a parameter-preserving R-


algebra, then S is a solid R-algebra. In fact, if dimR = d, xi, . . . ,Xd is a system of


parameters for R, and the Tj are as in Definition (2.2), then we have that for all i,


0 < i < d, Hd~l(Ti) ^ 0. (In particular, this holds when i = 0, which yields the fact that


S itself is solid.)


Proof. We use reverse induction on i to show that all the H^~'l(Tl} ^ 0, i = d, d— 1, . . . , 0.


When i — d we have that Tj is a nonzero module killed by x\, . . . , Xd and, hence, by a power


of m. Thus, H^(Td) '£ 0. Now suppose that we have shown that a certain H^l(Ti] ^ 0,


1 5: i < d. We must show that H^1"l(Tl^i} / 0. Now x = xl is a nonzerodivisor on T;_i


by the construction for T;_i, and so we have a short exact sequence


(*) o -» T,_! A T;_I -> ri_i/xri_i ~> o.


Also, we have a short exact sequence 0 -> J -> T^i/xT^i --> Ti -> 0 where / is an ideal


of Ti-i/xTi-i consisting of elements that are killed by an ideal of positive height in Ri.


This means that every finitely generated /?.;-submodule of / has dimension < d — i as


an /^-module. We can conclude that H^l(I] = H^l+l(I] = 0, and so, from the long


exact sequence for local cohomology, Hd~l(Tl^i/xTl^i) ~ Hd~l(Ti) ^ 0, by the induction


hypothesis.


On the other hand, the short exact sequence (*) displayed above yields a long exact


sequence of local cohomology modules part of which is
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We assume that the last term is 0, and get a contradiction. If the last term is zero, we


have a surjection:


Since H^pi-i/xTi-d ^ 0, we know that H^'fa-i) / 0. By Definition (2.2), since


xi, . . . , Xd is parameter-like in S, if 21 is the annihilator of H^l(Ti-\) in R, we have that


dimfl/2l < d - ( i - l ) - 2 = d - l - i . But 21 annihilates H^ft-i/xTi-i) as well, and


so if <B is the annihilator of H^-^T^i/xT^i) we have that /?/Q5 < d - 1 - i. If we think


of Ti-i/xTi-i as a module over Ri (which has pure dimension d — i} we see that we have


a contradiction, by Lemma (2.1c). D


3. THE NEW CLOSURE OPERATION


(3.1) Theorem. For a complete local domain R of prime characteristic p > 0, parameter


tight closure is the same as the tight closure.


Proof. Let TV C M be finitely generated .R-modules. To show that N^ C M*, it suffices to


show that if u £ M is in the immediate parameter tight closure of N in M, then u 6 M*.


This is immediate from the Theorem (8.6) of [Ho9j: since any parameter-preserving algebra


is solid, by Theorem (2.7), one has that u is in the solid closure of N in M, and then by


it is in N*, by [Ho9, Thm. (8.6)].


The converse follows from Theorem (11.1) of [Ho9]: if u is in TV*, then there exists a


big Cohen-Macaulay .R-algebra S such that 1 <g> u is in the image of S ®R N in S ®R M,


and S is parameter-preserving by Theorem (2.6). D


(3.2) Theorem. Let R be a complete local domain of equal characteristic, or a complete


local domain of mixed characteristic and dimension at most three.


(a) (Colon capturing property) Let x\, ... ,Xd be a system of parameters for R. Then for


I < i < d — I , if I = ( x i , ... , X i } R , then I : X{+\ C ft.
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(b) (Analogue of phantom acyclicity) Let G. denote a finite complex of finitely generated


free modules over R that satisfies the standard conditions on rank and height.2 Then


for each i > I , the module of cycles Zi € Gi is in the parameter tight closure in Gi of


the module of boundaries B{ .


Proof. Of course, in the prime characteristic p > 0 case both parts follow from the fact


that parameter tight closure agrees with tight closure, for which the statements in this


theorem are standard.


However, the proof that we give for equal characteristic 0 also handles the positive


characteristic case. By the main results of [HH5] (for characteristic p > 0), [HH9] (for


equal characteristic 0), and [Ho 11] (for mixed characteristic and dimension at most 3),


R has a big Cohen-Macaulay algebra S. In 5, £1, . . . ,Xd is a regular sequences and so


I '-R £;.t C / -.5 z;+i C IS. Part (b) follows similarly, because when we apply S ®R _, the


complex S ®R Gu becomes acyclic over S. D


(3.3) Theorem. Let N C M be finitely generated modules over a complete local domain


R of equal characteristic 0. Then N^ D N*E(^, the big equational tight closure of N in the


sense of [HH10J.


Proof. Theorem (11.4) of [Ho9] shows that for any element u of JV*E(^ there is a big


Cohen-Macaulay algebra 5 for R such 1 ® u is in the image of 5 <8># N in S ®R M. D


(3.4) Theorem. Let R be a complete local domain of dimension at most two. Let N C M


be finitely generated R-modules. Then N^ is the same as the solid closure of N in M , and


u € N^ if and only if there is a big Cohen-Macaulay algebra S for R such that 1 <8> u is in


the image of S ®R N in S ®R M.


Proof. By Proposition (12.3) and Theorem (12.5) of [Ho9], in the dimension two case, an


algebra over R is solid if and only if it can be mapped further to a big Cohen-Macaulay


algebra. The parameter tight closure is always contained in the solid closure because


parameter-preserving algebras are solid. In dimension two, the converse holds because any


2This means that the sum of the determinantal ranks of the maps to and from Gi is the rank of Gi,
and that the ideal generated by the rank size minors of a matrix of the map Gi -> C?i_i has height > i.
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solid algebra can be mapped further to a big Cohen-Macaulay algebra, and big Cohen-


Macaulay algebras are parameter-preserving. D


(3.5) Corollary. Over a complete regular local ring of dimension at most two, every


submodule of every finitely generated module is parameter tightly closed.


Proof. It suffices to check that the immediate parameter tight closure of a submodule is


equal to the submodule. But an element is in it if and only if it gets into the expanded


submodule after tensoring with a big Cohen-Macaulay algebra, by Theorem (3.4). But a


big Cohen-Macaulay algebra over a regular ring is faithfully fiat over the regular ring (cf.


the parenthetical argument in 6.7 on p. 77 of [HH5]). D


(3.6) Discussion. Let R = K[[XI, x2, £3]], where K is the field of rational numbers or any


other field of characteristic 0, and let S — R[y\,y-2i y3\/(F), where F = x\x\x\ — '^^_l yjX*.


Then S is solid by a result of Paul Roberts [Ro6]: this shows that the ideal (x^, xij, xjj)


is not solidly closed in K[[XI, x2, x3]]. As an indication that parameter tight closure is


likely to behave better than solid closure in equal characteristic 0, we want to prove that


X!,X2,£3 is not a parameter-like sequence in S (which is an example of what is called


a forcing algebra in [Ho9]). The following result handles a much larger class of forcing


algebras, showing that none of them is parameter-preserving. We restrict attention to


dimension > 3, since we already know that every ideal is parameter tightly closed in


complete regular domains of dimension at most 2.


(3.7) Theorem. Let (V, x\V] be a complete discrete valuation ring with residue class


field K (which may or may not be of equal characteristic), and let R = V[[x2, . . . , x^]],


d > 3, so that R is a complete regular local domain of dimension d with regular system


of parameters xi, . . . , x^. Let S = R[yi, . . . ,yd]/(F) where y j_ , . . . , y^ are indeterminates


over R and


for some fixed integer t > 1. Then S is not parameter-preserving over R. Specifically,


Xi, ... ,Xd is not parameter-like in S: in fact, Tj-2 = S/(xi, ... ,Xd-2}S is such that


H^l(Td^2) is not killed by an ideal of height two or more in Rd-2 ~ K[[xd-i,Xd}].
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Proof. Killing an initial segment of xi, . . . , xd_2 in S produces a domain, from which it


follows that Ti = S/(xi, . . . , xJS for 0 < d - 2, and


which is a polynomial ring in y l f . . . , yd-2 over B - K[[xd-i, xd]][yd-i, yd]/(G), where G =


Hd-i^d-i + yd^d- The definition of parameter-like for zi, . . . ,xd requires that H^n(Td-.z)


be 0 or else be killed by a height two ideal of Rd-i — K[[xd-i, xd]]. Since H^Td-2) may


be identified as the polynomials in 7/1, . . . , yd-2 over H^(B}, it suffices to see that this fails


for H^(B}. Let u = xt
d_l and v = -zj, so that B - K [ [ x d - i , x d ] ] [ y d - i t y d ] / ( y d - i u - y d v ) .


Since J^[[zd_i,£d]][yd-i,yd] is a finitely-generated free module over /<T[[iz, uJ I fyd- i jyd] , we


have that B is module-finite and free over C - K[[u,v,]][yd-i,yd]/(yd-iu - ydv). Then


and so it will certainly suffice to show that H } v ^ ( C ) is a faithful C-module: if it were


annihilated by an ideal of Rd-2 primary to the maximal ideal, it would be annihilated by


an ideal of C primary to the maximal ideal.


Let A = K[[u, v}}, and let z be an indeterminate over A. Then the A-algebra surjection


A[[u, v]}[yd-i,yd\ -* A[uz,vz] sending yd-i to vz and yd to uz is easily seen to have


(yd-iu — ydv) as its kernel, so that


C = A[uz, vz} = A ® (u, v) Az © (u, u)2Az2 ® • • • ,


the Rees ring, where the direct sum is over A. Let Q = (u, i»)A, the maximal ideal of A.


Thus,


j=0


From the short exact sequence 0 -> Q3 ; -> A -> A/QJ -> 0 and the corresponding long


exact sequence for HQ ( _ ) , we have an exact sequence


Since A has depth 2 on Q, tfg(A) - H^(A) = 0, and so


Thus, H^ v)(C) S 0°^0 A/QJ', so that the annihilator is C f).,- QJ = (0), as required. D
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4. A GALOIS CONJECTURE


In [Rang] ideas involving the interaction of group cohomology for Galois groups and


local cohomology, as well techniques from number theory, are used to prove certain cases


of the direct summand conjecture. The question that we mention here is related to the


ideas of [Rang] but a bit different, and can be presented in a reasonably elementary way.


An affirmative answer would be sufficient to prove the direct summand conjecture. The


conjecture is true both in equal characteristic p > 0 and in equal characteristic 0, although


the reasons why it is true in those two cases are completely different.


Let V be a complete discrete valuation ring, which may be either equal characteristic


or mixed characteristic. In the mixed characteristic case assume that the residual char-


acteristic p is the generator of the maximal ideal. In either case, denote the generator


of the maximal ideal by x = x\. Let A — V[[x2, • • • i xd\] be a formal power series ring


over V. If D is any domain we denote by D"*" an absolute integral closure of D, i.e., the


integral closure of D an algebraic closure of its fraction field (cf. [Ar]). D+ is unique up to


non-unique isomorphism. Let T denote the fraction field of A, and then the fraction field


of A+ is an algebraic closure of T, which we denote T, although the notation F+ would


also be appropriate. We shall write G for the group of ^"-automorphisms of J", which also
s-i


acts on A+. Note that A+ = A when T has characteristic zero, which includes the case


where A has equal characteristic zero and the case where A has mixed characteristic.


We shall write E for H^(A), the highest (in fact, the only) nonzero local cohomology


module of A with support in m = 771,4, since it is also an injective hull EA(K) for the


residue field K = A/m of A over A. We write Mv for HomA(M, E}. If (C, n,L) is


any complete local ring, we shall call a C-module W small if Ec(L), the injective hull


of L — C/n over C, cannot be injected into W. Note that if Ec(L] is a submodule of


W, then it is actually a direct summand of W, since Ec(L] is an injective module. The


condition that a module be small is not a strong restriction.


The result of [Ho7, Thm. (6.1)] implies that in order to prove the direct summand
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conjecture, it suffices to show that the modules H^(A+) are not zero. Now x = x\ is a


regular parameter in A, and we have a short exact sequence 0 ->• A+ A A+ -4 A+/xA+ -»


0. If we contradict the direct summand conjecture and assume that H^(A~I~) = 0, part of


the corresponding long exact sequence for local cohomology gives:


H ( A ) -> H(A/xA) -* 0 .


This implies an isomorphism HJ£l(A+/xA+) ^ H^l(A+)/xH^-l(A+). The regular


ring A/xA injects into A+/xA+ (because A is normal, the principal ideal xA is con-


tracted from A+). If A provides a counterexample to the direct summand conjecture


of smallest dimension (or if A has mixed characteristic, provides a counterexample, and


x — p), then A/xA is a direct summand of A+/xA+ as an (A/xA)-modu\e, and it fol-


lows that H^l(A/xA) injects into H%~l(A+ /xA+). Evidently, since G acts on A+,


since m is contained in the ring of invariants of this action, and since x is an invari-


ant, G acts on H^l(A+)/xH^l(A+), and it is clear that HJ^l(A/xA) injects into


We therefore will have a contradiction that establishes the direct summand conjecture


if we can prove the following:


(4.1) Galois Conjecture. Let (A,m,K) be a complete regular local ring of dimension


d with fraction field J- , let G be the automorphism group of the algebraic closure J- over
*~*


J - , and let x be a regular parameter in A. Then (H"^l~
1(A+)/x//^l~


1(j4+)) is a small


(A /x A] -module.


(4.2) Theorem. The Galois Conjecture (4-1) holds if dim A < 2 or if A contains a field.


In fact, in all of these cases (H^l(A+}/xH^l(A+}}G = 0.


Proof. The explanation when A contains a field is quite different depending on whether


the field has characteristic 0 or positive characteristic. In the first case, it turns out that G


(~* C*
is an exact functor here, so that what we have is (H^l(A+ )/xH^l(A+ )) , and since


A+G = A, this is H^l(A)/xHfc~l(A), and H^l(A) = 0. In the positive characteristic


case we know from the main result of [HH5] that A+ is a big Cohen-Macaulay algebra,


so that H^l(A+] = 0, and the result follows again. The same argument shows that the


conjecture is true when A has dimension at most two. D
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From the discussion above, we have the following:


(4.3) Theorem. If the Galois Conjecture is true whenever A is a formal power series ring


V[[x"2, . . . , Xd}] over a complete discrete valuation domain (V,pV> K) of mixed character-


istic and residual characteristic p > 0, then the direct summand conjecture is true. D


5. QUESTIONS


Of course, many open questions remain. We mention some of the most important among


these.


Question 1. In a complete regular local ring containing the rationals, is every ideal pa-


rameter tightly closed?


Question 2. In an arbitrary complete regular ring, is every ideal parameter tightly closed?


An affirmative answer to this question would yield the direct summand conjecture in


the general case.


Question 3. Over a complete local domain of equal characteristic 0, does parameter tight


closure agree with big equational tight closure?


Of course, an affirmative answer to Question 3 would yield an affirmative answer for


Question 1, since it is known that every ideal of an equicharacteristic zero regular ring is


tightly closed if one uses big equational tight closure as the operation.


Note that Theorem (3.3) shows that the parameter tight closure contains the big equa-


tional tight closure: it is the converse that is problematic.


Question 4. Do colon-capturing and an analogue of phantom acyclicity hold for parameter


tight closure in mixed characteristic local domains?
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Question 5. Can one characterize parameter-preserving finitely generated algebras over


a complete local domain or parameter-preserving complete local extensions of a complete


local domain in a simpler way?


Even when S is restricted in this way, the problem does not seem easy. Evidently,


questions about parameter tight closure are abundant.
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0 INTRODUCTION


Let M and /V be non-zero finitely generated modules over a local (Noetherian) ring
(R, m) . Assume that Torf (M, N) = 0 lor / » 0, and let q = qR (M, N) be the largest
integer / for which Torf (M, N) ^ 0. For the case q = 0, Auslander [2, Theorem 1 .2]
found a useful formula relating the depths of M, N and R. In view of the Auslander-
Buchsbaum formula [4, Theorem 1.3.3] Auslander's theorem goes as follows:


depth(M) + depth(N) - depth (/?) = depth (Mcg^N)


provided M has finite projective dimension and q(M,N) = 0.


For larger values of q, Auslander proved the following result (still assuming that M
has finite projective dimension):


depth(M) +depth(/V) -depth(/?) = depth (Torg(M,W)) -q, (2)


provided dtp\h(rYo(M,N)) < 1.
The past decade has seen a renewed interest in these formulas. The authors


showed in [7] that (1) holds for complete intersections, even without the assumption
that M have finite projective dimension. Indeed, there seem to be many situations
where homological properties of a module hold if either (a) the module has finite
projective dimension or (b) the ring is a complete interesection. This phenomenon
led Avramov, Gasharov and Peeva [3] to investigate a condition (see §1 for the


lrThe research of both authors was partially supported by the National Science Foundation.
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definition) called "finite complete intersection dimension" (finite CI dimension for
short), a condition that generalizes both (a) and (b). In [1, Theorem 2.5] Araya and
Yoshino obtained formulas (1) and (2) in this general context. They also showed
by example that (2) can fail if TorJ(M, W) has depth 2. Jorgensen [9, Theorem 2.2]
showed, assuming M has finite CI dimension, that min{depth(Mp) +depth(A/


p) -
depth(JRp) p £ Spec(JR)} = -q; and Theorem 3 of [5] shows that the minimum
value —q is achieved precisely at those primes p for which depth(TorJ(M,N)p) = 0.
In particular, one has


depth(M) + depth(W) - depth(fl) > -q, (3)


if M has finite CI dimension. Choi and lyengar [5] raised the interesting question
of whether there is always some value / between 0 and q such that


depth(M) + depth(W) - depth(/?) = depth(Torf (Af, W)) - ;. (4)


They gave examples showing that this too can fail.
In this paper we describe a "game" whose goal is to prove (4) and to identify


the "winning" subscript /. This approach indicates rather clearly the obstruction to
winning the game, that is, the reason formula (4) can fail.


To state our main theorem we adopt some notation. Throughout this paper R
is a local ring with maximal ideal m. Our convention is that local rings are al-
ways Noetherian. Let M and N be finitely generated non-zero ^-modules, and put
qR(M,N) = max{/ | Toif (M,N) ^ 0). (This invariant is denoted by fd(M,N) in
[5].) For each / e Z we put di(M,N) = depth(Torf (M,N)). (We define the depth
of the zero module to be «>. Thus rff- = oo if / > q or / < 0.) Finally, we let


DR(M,N] = depth(M) +depth(/V) - depth(fl).


Our main result is Theorem 2.4, reproduced here for convenience:


MAIN THEOREM 0.1. Lei M and N be non-zero finitely generated modules over
a local ring R. Assume M has finite CI dimension and <jf/{(M,N) < °o. Put m —
m(M, N} = min{dj -i\i £Z] and j = j ( M , N ) — max{? | d( - i — m}. Assume


di-i>m + 2fori>j. (t)


ThenD(M,N) = m.


The definition of j forces


dj-i > m+ 1 for / > /'.


The assumption of the theorem is simply that the next possible value for di - i,
namely dj - j + 1 = m + 1, is not attained. Theorem 2.4 recovers the earlier results
mentioned above. For example, suppose that the depth of the last non-zero Tor is 0
or 1. Then dq - q is either -q or 1 - q, while all other di - i are > 1 - q. Theorem
2.4 immediately gives that D(M,N] — dq - q in this case (which recovers formula
(2) above).
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1 PRELIMINARIES


We recall the following definition from [3]:


DEFINITION 1.1. A finitely generated module M over a local ring R has finite CI
dimension provided there exist a local ring (5,n), a regular sequence (*i, . . .,*c)
in n, and a flat local homomorphism R ->• R1 := S/(x\ , . . . , jcc) such that pd5(Af <g>#
R') < oo.


We will need the following result, proved by Auslander [2, Proposition 1.1] in
the case of finite projective dimension:


PROPOSITION 1.2. Let M and N be non-zero finitely generated modules over a
local ring (jR,m). Assume M has finite CI dimension and that q = qn(M^N] < «>.
7/depth/V = 0 then dq(M,N) = 0.


Proof. With the notation of (1.1), we may assume that R — R'. For 0 < j < c, put
Sj = S/(x{ , . . . , xc.j) (so that SQ = R and Sc = 5"), and put lfj = Torf'(M, N). For
i > 1 and 0 < / < c — 1 , there is an exact sequence


ifii ->Tf^ -+T}J+[ ->TjJ. (1.2.1)


(See, for example, [7, (2.1)].) We see that


and that T - J = Q for all / > <:/ + ./. Since M has finite projective dimension over 51,
Auslander's result [2, Proposition 1.1] T^+c has depth 0. By (1.2.2), then, T^° also
has depth 0, as desired. D


DEFINITION 1 .3. Let M be a finitely generated module over a local ring (/?,m).
An element x G m is general with respect to M, provided x is a non-zerodivisor on
M/H^M).


LEMMA 1.4. Let M be a finitely generated module over a local ring (/?,m), and
let x G m be general with respect to M.


(1) AnnJv/(,x) has finite length.
(2) //depth(M) = 0, then depth(M/^M) = 0.


Proof. If z £ Annji/ (jc), then xz = 0, and since jc is general this forces z E H^(M).
Thus AnnM(x) C H^(M), and (1) follows. Suppose now that M has depth 0. Then
AnnA/(jc) ^ 0, and Ann^ (x) has finite length by part (1). By [8, Lemma 6.2],
depth(M/a-M) = 0. D
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2 THE TOR GAME


The idea of the Tor Game is to choose a general element x, replace NbyN:= N/xN,
and compute the depths of the new modules Torf (M, N). Repeating this procedure,
we eventually decrease dq to 0 or 1 , at which point we can invoke formula (2) in the
introduction. Then, with a little luck, we can backtrack and identify the winning
index j for which D(M,N) = dj(M,N) ~ j. The next theorem gives the recipe for
computing the new depths, except for one annoying siutation — when di = 2 and
d/_ i = 0. In a Tor Game where this situation never occurs at any stage, we win.


RULES OF THE TOR GAME 2.1. Let M and N be non-zero finitely generated
modules over a local ring R. Assume that q(M,N) < «>, and define di = di(M,N)
as above. Assume that N has positive depth, and let x £ m be general with respect
to N and with respect to each Torf (M, N} , 0 < / < q(M, N) . Let N = N/xN and put
di — depth(Torf (M, N} } . In the following rules, we declare the zero module to have
depth oo and apply the usual rules of arithmetic involving oo, e.g., oo - 1 — oo. Also,
we take Torf (M, N) = 0 if / < 0.


(Rl) If di > 0 and d,-. { > 0, then d, • = d, •- 1.
(R2)If 4 = 0 then ̂  = 0.
(R3) If di ^ 2 and d^ t = 0, then rf- = 0.
(R4) If di < oo then df < oo.


Proof. We put N = N/xN, and tensor the short exact sequence Q-+N ^*N ->N — >•
0 with M. The resulting long exact sequence provides, for each / 6 Z, a short exact
sequence


For ease of notation, we rewrite this exact sequence as


If dt-\ > 0, then W = Q. Therefore U**V, and di = depth(C7). If also rf,- > 0,
then depth ((/) = dj-\, since x is a non-zerodivisor on Torf (M,N) (even if d-t — oo).
This proves (Rl).


To prove (R2), suppose di = 0. Then depth(£7) = 0 by Lemma 1.4. Since V
contains (7, di = depth (V) — 0.


For (R3) we assume that d^\ = 0 and J, > 0. Since x is general, W has finite
length by (1) of Lemma 1 .4. Also, W ̂  0 because d^\ = 0. Therefore depth(W) =
0. Since depth(V) = di > 0, the "Depth Lemma" [6, Lemma 1.1] implies that
depth(£/) = 1. Now d\ > 0 by (R2), and since x is general x is a non-zero divisor
on Torf (M,N) . Therefore dt=l + depth (£/) = 2, as desired.


Finally, we note that if di < oo then U ̂  0 by Nakayama's Lemma. Therefore
V ^ 0 and we have (R4). D







The Tor Game 293


Before stating the main theorem, we show how to use the Tor Game to prove an
inequality obtained by Choi and lyengar.


PROPOSITION 2.2. [5, Remark 7] Let M and N be non-zero finitely generated
modules over a local ring R. Assume that M has finite CI dimension and that
qn(M,N) < «>. Then D(M,N) > m := min{rf,- - i \ i e Z}.


Proof. If depth(W) = 0, then dq = 0 by Proposition 1.2. Therefore m = -q, which
equals D(M,N) by fonnula (2) (proved by Araya and Yoshino [1] in the present
context). We assume now that depth(W) > 0 and proceed by induction on depth(TV) .
We play the Tor Game, noting that D(M,N) = D(M,N) - 1. It will suffice to show
that di - i > m - 1 for each i, for then we will have by induction that D(MtN) >
m — 1 .


If d/_ i > 0, then di >d{-\ (by (Rl ) and (R2)), and d{ - i > d, •- i - 1 > m - 1 .
If, on the other hand, d,_ i = 0, then di - i > - i = d^ \ - (i - 1 ) - 1 > m -I. D


Note that inequality (3) in the introduction follows easily from (2.2). In fact, we
get the following fact, proved by Choi and lyengar:


PROPOSITION 2.3. [5, Theorem 3] Let M and N be non-zero finitely gener-
ated modules over a local ring R. Assume M has finite CI dimension and q \—
qn(M,N) < oo. Then D(M,N) > -q, with equality if and only ifdq =. 0.


Proof. If dq = 0 we have equality by formula (2), as observed in the proof of
(2.2). Assume now that dq > 0, and let dj - j — m := min{d,: - / | i £ Z}. Then
D(M, N) > dj - j by (2.2). If j - q, then D(M, N)>dq-q> -q\ and if ./ < q then
D(M,W) > -j > -q. D


Now we come to our main theorem, which gives a sufficient condition for win-
ning the Tor Game.


MAIN THEOREM 2.4. Let M and N be non-zero finitely generated modules over
a local ring R. Assume M has finite CI dimension and qn(M,N] < oo. Put m =
m(M,N) — mm{di - i \ i £ Z} and j = j ( M , N ) = max{t \di-i = m}. Assume


ThenD(M,N) = m.


The proof will be deferred to Section 5 of the paper. As we shall see in Example
3.2, (t) is not a necessary condition for winning the Tor Game. It is, however, both
necessary and sufficient if we play strictly by the rules (see §5).


An immediate corollary is worth stating separately.


COROLLARY 2.5. Let M and N be non-zero finitely generated modules over a
local ring R. Assume M has finite CI dimension and <?#(M,N) < oo. put m =
m(M, N) = mm{di -i i 6 Z} Suppose that m-dq- q. Then D(M, N) = m.
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Proof. This follows immediately from Theorem 2.4 since the main condition
needed in that theorem is vacuously satisfied. D


3 EXAMPLES


Here we give some examples to indicate some of the possibilities that can occur in
the Tor Game,


EXAMPLE 3.1 . A losing Tor Game. Let R = k[[XJ, U, V]], where k is a field,
andputf = XY-UV. Let M = (X ,£/)/(/) and N = (F,V)/(/). Both M and TV
have depth 3 (cf. [7, Example 4.1]), whence D(M,N) = 2. As modules over #/(/),
both M and N are free on the punctured spectrum of R / ( f ) (cf. [8, Example 1 .8]). If
d.Q were positive, M®^N would satisfy Serre's condition (Si) as an R/(f] -module
and therefore be torsion-free as an R/(f] -module. But then M 0#/V, which requires
4 generators, would be isomorphic to the ideal product (jc, w)(y, v) in R / ( f ) . But
(*, u] (y, v) = (xy,xv, uy, uv) — (xy,xv, try), contradiction. Thus d0 = 0.


To compute d\, we choose an exact sequence 0 — >• F — >• G — > M — >• 0, with F
and G free /^-modules. Tensoring this with /V, we get an exact sequence


0 -4Torf (M,/V) -> F®RN-> G®RN -+M®RN -> 0.


Since the two middle terms have depth 3 and M cB)/? N has depth 0, it follows from
the Depth Lemma that d\ = 2.


To summarize, we have q = 1, D(M,/V) = 2,d0 = 0 and d\ — 2. Since neither
C!Q nor d\ - 1 is equal to D(M,N), we lose the Tor Game.


EXAMPLE 3.2. A more general losing Tor Game. Let R be a Cohen -Macau lay
ring of dimension d and let p be a height-one prime ideal of R. Assume that R/p
is not Cohen-Macaulay, and set its depth equal to s. Choose a non-zerodivisor
a E p and write p= (a : b] , where b is also a non-zerodivisor. Set M — R/Ra and
N - R/Rb. Observe that


D(M, N) = (d-l} + (d-l)-d = d-2,


and both M and N have projective dimension 1 . We compute the depths do and d\ ,
Since Torf (Af, N) = p / ( a ) , the short exact sequence


0 -» p / ( a ) -» R/(a) ->• fl/p ->• 0,


together with the fact that depth(#/p) = s < d - I = depth(/?/(a)), shows that
^! = s -f 1 . Likewise, since TorJJ (M, N) = R/ (a,b) , the short exact sequence


Q-+R/P-* R/(a) -* R/(a,b) -+ 0


proves that dQ = s - 1 . Hence the minimum value of d\ - 1 and d$ - 0 is s - 1 which
is not equal to d - 2 = D(M,N}. This example shows very clearly that in general
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there is no chance of proving a relationship between D(M,N) and the values di - i.
The gap of 2 between d\ and do is fatal. Our main result in some sense shows that
this is only way the Tor Game fails.


EXAMPLE 3.3. Cheating in the Tor Game. Let R = k[[X, Y,Z]} and put / =
XY + Z2. Let M = N = (X,Z)/(/). As in the first example, it is helpful to view
M as an ideal of the hypersurface R / ( f ) . Certainly Meg)/?// has non-zero torsion
as an /?/(/)-module (since it needs four generators and the ideal (x,z)2 of R / ( f )
needs only 3). As shown in [7, Example 4.2], M is a reflexive R/(f]-module and
therefore has depth 2. Therefore DR(M,N] = I and q(M,N) < I . Since R / ( f ) is an
isolated singularity M is free on the punctured spectrum of/?/(/), and it follows,
essentially as in Example 4.1, that rf0 = 0 and d\ = 2. We see that m(M}N) — 0,
j ( M , N ) = 0, but (f) fails because d\ - 1 = m+ 1. In a sense we have won the Tor
Game, since D(M,N) = d\-l, but we have not followed the rules, and the answer
is not the one "D(M,N) = m(M,N)" given by the theorem. In the next section we
will describe a slightly modified game that keeps the player from having to think
and prevents "accidental" wins like this.


EXAMPLE 3.4. Fluctuating depths. One might hope that in general the di are
monotone, as a kind of strong rigidity of Tor. However, this is not the case as the
following example (pointed out to us by Bernd Ulrich) shows. Let R be a regular
local ring of dimension d and / a perfect height two ideal. Assume that / is not
generated by a regular sequence. Set M = N = R/I. Then TorJ^Af, W) = R/I has
depth d-2. The module Torf (M,/V) £ I / I 2 , and this module has depth d-3 (see
[10]). A resolution of R/I is given by


0 ->• R"~l ->#"->#-> R/I -> 0.


Tensoring with R f l shows that the following is exact:


0 -» Tor? (R / I ,R / I } -» (R/[)n-} -> (R/I)'1 -> I/I2 -> 0.


This proves that Tor?(/?//,/?//) is Cohen-Macaulay having depth d-2, strictly
greater than depth(Torf (/?//,/?//)), which in turn is strictly less than the depth of
TorJ(/?//, R/I). Hence the depths fluctuate. In this case, however, the conditions of
Theorem 2.4 are met and we win the Tor game: D(R/I, R/I) = (d - 2) + (d - 2) -
d = d-4. Then (d0 - 0, d\ - 1, d2 - 2) = (d - 2, d - 4, d - 4). Since the minimum
value occurs at the last non-zero Tor, we automatically win according to Corollary
2.5.


EXAMPLE 3.5. Another losing game. We refer to [5, Prop. 11, Example
12] which constructs a losing Tor game over a regular local ring. Specifically, they
construct two cyclic modules M and N over a regular local ring of dimension 5 such
that^(Af,N) = 1 , D ( M , N ) = 2,d0 = Qand^ = 2. Hence{rf0-0,flfi-1} = {0,1}
and D(M,N) is not in this set.
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4 THE VIRTUAL TOR GAME


In order to expand the market for our game, we have developed a version that is
much easier to play. It requires very little skill, and there is no strategy whatsoever.
You just follow the rules and hope for the best.


In the Virtual Tor Game, Player I chooses a sequence d0, • • • ,dq, where each
di is either a non-negative integer, the symbol °°, or the symbol * (indicating an
"unknown" depth). It is required that dQ G {0,1,2,...} and dq ^ oo. Player I un-
derstands that dj = oo if i < 0. Values of rf,- for i > q are irrelevant. The symbol * is
incomparable with integers and with °o. Thus, if we hypothesize, for example, that
di > 0, it is assumed that dj =£ *.


If dq G {0,*}, the game is over (see below). Otherwise Player II computes
the sequence c /o , . . . ,dq according to the Riles (which we shall describe shortly),
and, if the game is not over, repeats the process on the new sequence (computing
</o, • • • }dq) and so on. A consequence of the Rules is that at each stage one has
d_i = oo, and Player I can simply be assured of this at the outset.


The rules of the Virtual Tor Game are the same as in the actual Tor Game,
except that we have introduced the symbol * to deal with the undecided case di = 2,
di_\ = 0. Also, we allow some of the original data to include unknown entries.


The rules of the Virtual Tor Game are the following:
(VR1) If di > 0 and d^\ > 0, then di = d,- - 1.
( V R 2 ) I f 4 < 1 then 4 = 0.
(VR3) If di > 2 and <//-i = 0, then dj = 0.
(VR4) If d/ = * then </; = *.
(VR5) If di = 2 and of,-. t = 0, then di = *.
(VR6) If di > 2 and </,-_ i = *, then di = *.
Player II wins if, after a finite sequence of iterations, dq becomes 0. Player II


loses if he eventually gets df/ = *. It is easy to see that Player II either wins or loses.
(Of course, Player I is expected to make an interesting choice of the orginal d,-, so
that neither a win nor a loss is obvious from the start!)


We will give some examples of winning and losing Virtual Tor Games. In def-
erence to Macaulay 2, we will list the di in the order d§ d\ ... dq. This list appears
in the second line of each display, the first line (in bold) being just the indices
Ql ... q. The third line will be dQ d\ ... dq, the result of one move of Virtual Tor
Game, and so on.
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EXAMPLE 4.1. An inauspicious beginning, but we win in the end.


i : 0 1 2 3 4 5 6
df : 0 2 3 5 4 7 9
di : 0 * 2 4 3 6 8
di : 0 * * 3 2 5 7


0 * * * 1 4 6
0 * * * 0 3 5
0 * * * 0 0 4
0 * * * 0 0 0


Here we get stars right from the start, and they move ominously to the right, but
eventually they are blocked by O's. In this example we have m = 0 and j — 4. Note
that condition (t) is satisfied.


EXAMPLE 4.2. A promising beginning with a devastating finale.


0
2
1
0
0
0
0
0
0
0


1
4
3
2
*
*
*
*
*
*


2
4
3
2
1
0
0
0
0
0


3
7
6
5
4
3
0
0
0
0


4
8
7
6
5
4
3
0
0
0


5
10
9
8
7
6
5
4
0
0


6
9
8
7
6
5
4
3
2
*


7
11
10
9
8
7
6
5
4
3


0 * 0 0 0 0 * *


Here stars crop up early but are quickly blocked. Trouble lies ahead, however, and
the culprit is d^: Note that m = 2 and j = 2; condition (t) fails, since d^ - 6 = m-\-1.


The configuration d,:+ \ = d, + 2 will often, but not always, lead to a losing Virtual
Tor Game. In fact, one can lose the virtual game even when this configuration is
not present at the outset.


EXAMPLE 4.3. Another losing Tor Game.


i : 0 1 2 3 4 5
di : 1 1 4 4 5 6
dt : 0 0 3 3 4 5
di : 0 0 0 2 3 4


0 0 0 * 2 3
0 0 0 * * 2
0 0 0 * * *
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5 PROOF OF THE MAIN THEOREM


In this section we will show that condition (t) of (1.4), slightly modified to allow
some unknown depths in the original data, is necessary and sufficient for winning
the Virtual Tor Game. The Main Theorem will follow as a special case.


NOTATION AND ASSUMPTIONS 5.1. Suppose that we are given a list dQ,...,dq,
with each d-, e {0,1, 2 , . . . , <»,*}. We assume always that dQ is an integer, that
dq / oo, and that rf,- = °° if /' < 0 or i > q. We put b — sup{z | di — *}. (If *
does not occur among the d[ we put b — -«>.) Let m — inf{of, -i i > b} and
j = sup{/' > b di~i = m}. (Note that m - j = °° if b - q\ otherwise m, ; < oo.)
Assuming that dq $_ {0,*}, we compute t/o,. . . ,^ according to the rules of the
Virtual Tor Game in Section 4. Note that we still have d0 E {0, 1 , 2, . . . }, dq / «>,
and J/ = oo if / < 0 or / > q. (Informally, q — q,} We define b, m and j in the obvious
way. We consider the following condition, which amounts to (t) in the case where
there are no stars (b= — oo):


(a) di - /' > m -\- 2 for each / > .;',


(b) dq ? *, and («


Part (b) guarantees that j and dj are finite, and (c) ensures that j is far enough to
the right of the Last star (if there are any).


THEOREM 5.2. Assume d^ i {0,*}.
( 1) Condition ($) holds for the dj if and only if($) holds for the d[.
(2) If($) holds and dj > 0, then J= j, dj = dj - I and m = m - 1.
(3) If('\.) holds and dj — 0, then j = j+l, dj+\ = 0 and m = m - 1.


Proof. Suppose first that dj > 0. We claim that if (c) of (t) holds for d0) . . . }dq,
then j — /', m = m - 1, and both (b) and (c) hold for JQ, • • • ,dq. To see this, let
'• > ./ -dj+l. Since j - dj > b, we have d; - i > dj - j, whence rf,- > dj - j + i >
dj - j 4- (j - dj + 1) = 1 . We have shown that d( > 1 for all / > / -dj+l, and it
follows that


di = di-l for all /' > ./ - dj + 2. (5.2.1)


From (5.2.1) and (VR2) we see that dj = ./-!. To complete the proof of the
claim, we just need to verify that d; - i > dj - j for each i > b. Let i > b. Then
i > b (by VR6)), and hence df - i > dj - j. If dt - i < dj - j (= dj - j - 1) then
di < dj - 2, which forces d,-_i = 0. Therefore /' - 1 > b, and we have di-i> -i =
d,-_i - (/ - 1) - 1 > dj - j - I = dj - j. This proves the claim. Assertion (2) and
the "only if part of (1) in the case dj > 0 follow easily.


Still assuming dj > 0, suppose now that ($) fails for the d;. If (c) holds for
the di, then (a) must fail. By the claim in the paragraph above, (a) fails also for
Jo, • • • ,dq. Assume now that (c) fails, that is, j - dj < b. Then, for each i > b we
have di - i > dj - j > -b, whence d,- > /' - b > 1 . In particular, db+i > 2, and now
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(VR6) implies that d~&+i = *. Moreover, d,- = d,- - I for each i > b + 1, and we see
that b = b+l and / = ;'. Now j - dj = j - dj + 1 < b + 1 = b, and (t) fails for
do,.. . ,d9 .


This completes the proof in the case dj > 0. Assume now that dj — 0. Then
(c) is automatically satisfied for do,...,dq (and (b) is part of the hypotheses of the
theorem). If / > j we have d,- - i > dj - j = -j. Therefore


di > 2 for each i > j. (5.2.2)


If dj+i > 3, then, by (5.2.2), dj+\ = 0 and dj - d,: - 1 for each i > j+ 1. As-
sertions (1) and (3) now follow easily. Therefore we assume that dj+\ = 2, in
which case ($) fails for do,. . . ,d9 . To complete the proof, we need only verify
that (|) fails for do,.. . ,dg . We may assume that dq ^ *. Since dj+i = * by
(VR5), we have ; + 1 < b < J < q. Noting that dj = dj-l by (5.2.2), we have
b + dj > j -f 1 4- d; - 1 = j + ./+ d; - / > ./ + /+ dj - j = J. This shows that (c)
fails for do, . . . , dqt and the proof is complete. D


COROLLARY 5.3. Given the initial data d0, . . . , dq e {0, 1 , 2, . . . , °°,*}, wM d0 G
Z and df/ / oo, vve win the Virtual Tor Game if and only if($) is true.


Proof. The rules of the Virtual Tor Game dictate that if d,- / *, then either di < dt-
or di = *. Thus, after a finite number of iterations of the Tor Game, dq becomes
either 0 or *. By (1) of (5.1), this happens precisely when (£) is, respectively, is not
true. D


Proof of the Main Theorem (2.4) Put b = -oo, so that ( t) and (t) say the same
thing. We play the Tor Game until dq drops to 0. By (1.2), N has positive depth
at the beginning of each play; therefore D(M,N) drops by 1 at each stage. But
also m drops by 1 at each stage, by (2) and (3) of (5.2). Since the Theorem is true
when dq = Q (by formula (2) of the introduction — proved in the context of finite CI
dimension by Araya and Yoshino [1]), it must be true in general. D
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0. Introduction


All rings considered in this paper are commutative with identity elements


and all modules are unital. For a nonnegative integer n, an jR-module E


is n-presented if there is an exact sequence Fn -» Fn-\ -» ... —>• FQ —>


E -> 0 in which each Fi is a finitely generated free jR-module (In [1], such


E is said to have an n-presentation). In particular, "0-presented" means


finitely generated and "1-presented" means finitely presented. Also, pd,RE


will denote the projective dimension of E as an .R-module.


In 1994, Costa [2] introduced a doubly filtered set of classes of rings throw-


ing a brighter light on the structures of non-Noetherian rings. Namely, for


nonnegative integers n and d, a ring R is an (n, cQ-ring if every n-presented
/^-module has projective dimension at most d. The Noetherianness deflates


the (n, d)-property to the notion of regular ring. However, outside Noethe-


rian settings, the richness of this classification resides in its ability to unify


classic concepts such as von Neumann regular, hereditary/Dedekind, and


semi-hereditary/Prufer rings. Costa was motivated by the sake of a deeper


understanding of what makes a Priifer domain Priifer. In this context, he


asked "what happens if we assume only that every finitely presented (instead


of generated) sub-module of a finitely generated free module is projective?"


It turned out that a non-Priifer domain having this property exists, i.e., (In
the (n, of)-jargon) a (2, l)-domain which is not a (1, l)-domain. This gave


rise to the theory of (n, d)-rings. Throughout, we assume familiarity with


n-presentation, coherence, and basics of the (n, d)-theory as in [1, 2, 3, 6, 7,


8, 10].


Costa's paper [2] concludes with a number of open problems and conjec-


tures, including the existence of (n, d)-rings, specifically whether: "There are


examples of (n, d)-rings which are neither (n, d - 1)-rings nor (n — 1, d)-rings,


for all nonnegative integers n and d". Some limitations are immediate; for


instance, there are no (n, 0)-domains which are not fields. Also, for d = 0 or


n = 0 the conjecture reduces to "(n, 0)-ring not (n-1,0)-ring" or "(0, d)-ring


not (0,d — l)-ring", respectively.


Let's summarize the current situation. So far, solely the cases n < 2 and d


arbitrary were gradually solved in [2], [3], and [14]. These partial results were







Trivial Extensions of Local Rings and a Conjecture of Costa 303


obtained using various pullbacks. For obvious reasons, these were no longer
useful for the specific case d — 0. Therefore, in [14], the author appealed to
trivial extensions of fields k by infinite-dimensional k-vector spaces, and hence
constructed a (2,0)-ring (also called 2-von Neumann regular ring) which is
not a (l,0)-ring (i.e., not von Neumann regular). This encouraged further
work for other trivial extension contexts.


Let -A be a ring and E an A-module. The trivial ring extension of A by E


is the ring R — A oc E whose underlying group is A x E with multiplication
given by (a, e)(a /,e /) = (aa',ae' + a'e). An ideal J of R has the form J =


I oc E'} where I is an ideal of A and E' is an A-submodule of E such that
IE C E'. Considerable work, part of it summarized in Glaz's book [10] and


Huckaba's book [11], has been concerned with trivial ring extensions. These
have proven to be useful in solving many open problems and conjectures for
various contexts in (commutative and non-commutative) ring theory. See for
instance [4, 5, 9, 12, 13, 15, 16, 17].


Costa's conjecture is still elusively outstanding. A complete solution (i.e.,
for all nonnegative integers n and d) would very likely appeal to new tech-
niques and constructions. Our aim in this paper is much more modest. We
shall resolve the case "n = 3 and d arbitrary". For this purpose, Section 1
investigates the transfer of the (n, d)-property to trivial extensions of local
(not necessarily Noetherian) rings by their residue fields. A surprising re-
sult establishes such a transfer and hence enables us to construct a class of


(3, c£)-rings which are neither (3, d — l)-rings nor (2, d)-rings, for d arbitrary.
Section 2 is merely an attempt to show that Theorem 1.1 and hence Example
1.3 are the best results one can get out of trivial extensions of local rings by
their residue fields.


1. Result and Example


This section develops a result on the transfer of the (n, d)-property for a
particular context of trivial ring extensions, namely, those issued from local
(not necessarily Noetherian) rings by their residue fields. This will enable
us to construct a class of (3, d)-rings which are neither (3,d — l)-rings nor
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(2,d)-rings, for d arbitrary.


The next theorem not only serves as a prelude to the contructiori of ex-
amples, but also contributes to the study of the homological algebra of trivial
ring extensions.


Theorem 1.1. Let (A, M) be a local ring and let R = A oc A/M be the


trivial ring extension of A by A/M. Then
1} R is a (3,0)-nn<7 provided M is not finitely generated.


2) R is not a (2, d) -ring, for each integer d > 0, provided M contains a
regular element.


The proof of this theorem requires the next preliminary.


Lemma 1.2. Let A be a ring, I a proper ideal of A, and R the trivial ring
extension of A by A/I . Then pdR(I oc A/ 1) and hence pdR(Q oc A/ 1) are


infinite.


Proof. Consider the exact sequence of jR-modules


0 -> / ex A/ 1 -> R -> R/(I oc A/ 1) -> 0


We claim that R/(I oc A/ 1) is not projective. Deny. Then the sequence
splits. Hence, I oc A/ 1 is generated by an idempotent element (a, e] =


(a, e)(a, e) = (a2,0). So / oc A/ 1 = R(a,Q) = Aa oc 0, the desired contradic-
tion (since A/ 1 / 0). It follows from the above sequence that


pdR(R/(I oc A/ 1)) = 1 + PdR(I a A/ 1). (1)


Let (xi)tgA be a set of generators of / and let R be a free .R-module.
Consider the exact sequence of H-modules


0 -+ Ker(u) -» #(A) e R ̂  I oc A/ 1 -> 0


where


i ,e i)(x i ,0) + (a0,e0)(0,l) =
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since Xi G / for each i G A. Hence,


• Ker(u) = (Uot (A//)(A)) 0 (/ oc A/ 1)


where U = {(aj)ieA € A^/ V a i £ i = 0}- Therefore, we have the isomor-


phism of tf-modules / oc A/7 ̂  (R^/(U oc (A/7)(A))) © (R/(I oc A/7)). It
follows that


pdR(R/(I oc A / I } ) < pdR(I oc A/I). (2)


Clearly, (1) and (2) force pdft(I oc A//) to be infinite.
Now the exact sequence of .R-modules


0 -> I oc A/ 1 -> R A 0 oc A/ 1 -> 0,


where v ( a t e ) = (a, e)(0, 1) = (0, a), easily yields pdn(Q oc A//) = oo, com-
pleting the proof of Lemma 1.2. 0


Proof of Theorem 1.1. 1) Suppose M is not finitely generated. Let
HQ(/ 0) be a 3-presented .R-module and let (zi)i=ii...>n be a minimal set of
generators of J^o (for some positive integer n). Consider the exact sequence
of H-modules


0 -> Hi := Ker(u0) -> Rn ^ HQ -> 0
n


where ito( (^1)1=1,...^) — 2^triZi' Throughout this proof we identify Rn with
i=i


An oc (A/M)n. Our aim is to prove that HI = 0. Deny. By the above exact
sequence, HI is a 2-presented .R-module. Let (xt,j/t)t=i r . .>m be a minimal
set of generators of HI (for some positive integer m). The minimality of
(zt)t=i,...,n implies that HI C Mn oc (A/M)n, whence x» e Mn (and ̂  G
(A/M)n) for « = 1, . . . , m. Consider the exact sequence of ^-modules


0 -> H2 := /JTer(ui) -> ^m HI -> 0


m m


where ui((ai,ei)i) = ^(ai,ei)(ii,y») - ^(aiii,ai3/i), since ij e Mn for
i=l i=l


771


eachi. Then, H2 = U oc (A/M)m, where U = {(£^=1,...,™ G ATn/^]aixi =
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•c—••>
0 and y (Liyi = 0}. By the above exact sequence, H^ is a finitely presented


i=l
(hence generated) ^-module, so that (via [11, Theorem 25.1]) U is a finitely


generated A-module. Further, the minimality of (a:i,yi)i:=i,...,m yields U C


Mm. Let (ti)i-it,,.tp be a set of generators of U and let (/i)i=p+ij...,p+m be
a basis of the (A /M)- vector space (A/M)™. Consider the exact sequence of


R-modules


0 -* #3 := Ker(u2) ->• Rp+m ^ H2 -» 0


where


p p+m p p+m


i=p-fl i=l i=p-fl


since ti G Mm for each i = 1, . . . ,p and (/j)j is a basis of the (A/M)-vector


space (A/M)171. It follows that #3 ^ (V oc (>1/M)P) 0 (Mm oc
p


where V = {(ai)i=i,...,p G Ap/2.°'iti = 0}. By the above sequence, #3
t=i


is a finitely generated -R-module. Hence M oc A/M is a finitely generated


ideal of H, so M is a finitely generated ideal of A by [11, Theorem 25.1], the


desired contradiction.


Consequently, HI = 0, forcing HQ to be a free ^-module. Therefore, every


3-presented /^-module is projective (i.e., R is a (3,0)-ring).


2) Assume that M contains a regular element m. We must show that R


is not a (2, d)-ring, for each integer d > 0. Let J = fi(m, 0) and consider the


exact sequence of /^-modules


0 -»• Ker(v) -> R A J -> 0


where u(a,e) = (a,e)(ra,0) = (am, 0). Clearly, Ker(v) - 0 oc (A/M) =
J?(0, 1), since m is a regular element. Therefore, Ker(v) is a finitely generated


ideal of R and hence J is a finitely presented ideal of R. On the other hand,


pdn(Ker(v)) — pdn(Q oc A/M) = oo by Lemma 1.2, sopd#(J) = oo. Finally,


the exact sequence


0 -» J -» fl -* E J -> 0
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yields a 2-presented R-module, namely R/ J, with infinite projective dimen-
sion (i.e., R is not a (2,d)-ring, for each d > 0), completing the proof. 0


We are now able to construct a class of (3, d)-rings which are neither
(3,d — l)-rings nor (2,d)-rings, for d arbitrary. In order to do this, we first
recall from [14] an interesting result establishing the transfer of the (n, d)-
property to finite direct sums.


Theorem 1.3 ([14, Theorem 2.4]). A finite direct sum 01<i<n A± is an
(n,d}-ring if and only if so is each Ai. <C>


Example 1.4. Let d be a nonnegative integer and B a Noetherian ring


of global dimension d. Let (Ao,M) be a nondiscrete valuation domain and
let A = AQ oc (AQ/M) be the trivial ring extension of AQ by AQ/M. Let
R = A x B be the direct product of A and B. Then Ris a. (3,d)-ring which
is neither a (3,d - l)-ring nor a (2,d)-ring, for d arbitrary (The case d — 0


reduces to "(3,0)-ring not (2,0)-ring").
Indeed, by Theorem 1.1, A is a (3,0)-ring (also called 3-Von Neumann


regular ring) which is not a (2, d')-ring for each nonnegative integer d'. More-
over, R is a (3, d)-ring by [14, Theorem (2.4)] since both A and B are (3, d}-
rings (by gnomonic theorems of Costa [2]). Further, R is not a (2,d)-ring by


[14, Theorem (2.4)] (since A is not a (2,d)-ring). Finally, we claim that R


is not a (3, d — l)-ring. Deny. Then B is a (3, d! - l)-ring by [14, Theorem


(2.4)]. Hence, by [2, Theorem 2.4] B is a (0, d- l)-ring since B is Noetherian
(i.e., 0-coherent). So that gldim(B) < d— 1, the desired contradiction. <C>


2. Discussion


This section consists of a brief discussion of the scopes and limits of our
findings. This merely is an attempt to show that Theorem 1.1 and hence
Example 1.3 are the best results one can get out of trivial extensions of local
rings by their residue fields.


Remark 2.1. In Theorem 1.1, the (n, d)-property holds for a trivial ring
extension of a local ring (A, M) by its residue field sans any (n, cQ-hypothesis
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on the basic ring A. This is the first surprise. The second one resides in
the narrow scope revealed by this (strong) result, namely n = 3 and d == 0.
Thus, the two assertions of Theorem 1.1, put together with Costa's gnomonic
theorems, restrict the scope of a possible example to n = 3 and d arbitrary.


Furthermore, since in Theorem 1.1 the upshot is controlled solely by re-
strictions on M, the next two examples clearly illustrate its failure in case
one denies these restrictions, namely, "M is not finitely generated" and "M
contains a regular element", respectively.


Example 2.2. Let K be a field and let A = K[[X}} = K + M, where
M — XA. We claim that the trivial ring extension R of A by A/M(= K) is


not an (n, <i)-ring, for any integers n,d > 0.


Let's first show that R is Noetherian. Let J = I oc E be a proper ideal
of R, where / is a proper ideal of A and E is a submodule of the simple A-


module A/M (i.e., E = 0 or E — A/M). Since A is a Noetherian valuation
ring, / = Aa for some a G M. Let / G A such that (a, /) G J. Without loss


of generality, suppose J ^ J?(a,/). Let (c, c/) E J\ jR(a, /), where c, g G -A,
and let c = Aa, for some A G A Then (0,# - A/) = (c, #) — (a , / ) (A,0) £
J \ .R(a,/), so that we may assume c = 0 and g 7^ 0, i.e., g is invertible
in A. It follows that (0,1) = (Q,g)(g~\Q) G J (hence E = A/M) and
(a,6) - (a,/) - (O^GT1/^) G J. Consequently, J - (a,6).R + (0,1)H,
whence J is finitely generated, as desired.


Now, by Lemma 1.2, pd/j(0 oc A/M) = pdfi.R(0,1) = oo, whence
gldim(R) = oo; then an application of [2, Theorem 1.3(ix)] completes the
proof. 0


Example 2.3. Let K be a field and E be a K-vector space with infinite rank.


Let A = K oc E be the trivial ring extension of K by E. The ring A is a local
(2,0)-ring by [14, Theorem 3.4]. Clearly, its maximal ideal M = 0 a E is


not finitely generated and consists entirely of zero-divisors since (0, e)M — 0,
for each e G E. Let R = A oc (A/M) be the trivial ring extension of A by
A/M(= K). Then R is a (2,0)-ring (and hence Theorem 1.1(2) fails because
of the gnomonic property).
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Indeed, let H be a 2-presented .R-module and let (x\, . . . , xn) be a minimal
set of generators of H . Our aim is to show that H is a projective .R-module.
Consider the exact sequence of .R-modules


0 -» Ker(u) -> Rn A H ->• 0


n


where ^(rj)^^...^) = 2~\Tixi' So, Ker(u) is a finitely presented .R-module
1=1


with Ker(u) = U oc E', where [7 is a submodule of An and E' is a .fif- vector
subspace of Kn, We claim that Ker(u] = 0. Deny. The minimality of
(z l 3 . . . , z n ) yields


Ker(u) = U oc E' C (M oc A/M)Rn = (M oc A/M)n


since .R is local with maximal ideal M oc A/M. Let (yi,/i)i=i,...)P be a
minimal set of generators of Ker(u], where yi £ Mn and /; € Kn. Consider
the exact sequence of jR-modules


0 -» Ker(v) -» -Rp ^er(w)(= C7 oc E') -> 0


p P P
where v((oi, et)i=i>... ip) = (a^eiX^,/;) = ( a j y ^ G i / i ) . Here too


the minimality of (yi,/i)i=i,...)p yields /Cer(i;) C (M oc A/M}P\ whence,
p


Ker(v) = V oc (A/M)", where V = {(ai)i=i,...,P G A V a i y . = 0}(C Mp).
t=i


By the above exact sequence, Ker(v) is a finitely generated JR-module, so
that V is a finitely generated A- module [11, Theorem 25.1]. Now, by the
exact sequence


where ^((^1)1=1,...^) = JGi2/i) ^ is a finitely presented A-module (since U
t=i


is generated by (yi)i=i,...)p). Further, U is an A-submodule of An and A is a
(2, 0)-ring, then U is projective. In addition, A is local, it follows that U is a
finitely generated free A-module. On the other hand, U C Mn — (0 oc E)n ,
so (0, e)U = 0 for each e € E, the desired contradiction (since U has a basis).


0
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ABSTRACT


This paper aims at computing the /-dimension for two classes of integral domains,
namely, v-coherent domains (of the form D + M) and power series rings over
certain integral domains. As an application, we obtain the following: If A is
an ;i-dimensional Priifer domain which satisfies the SF'T-property, or a PVD is-
sued from an /i-dimensional discrete valuation domain, then /-dim(A[[X]]) = /-
dim(A) = dim(A).


1 INTRODUCTION


All rings considered below are integral domains and, unless otherwise specified,
are assumed to be finite-dimensional. Throughout, dim(A) will denote the Krull
dimension of an integral domain A and qf(A) its quotient field. For the convenience
of the reader, we review some terminology related to the v— and t—operations. Let
A be an integral domain with quotient field K and / be a nonzero fractional ideal of
A. We denote (A : /) = {it e K/ul C A] by 7~ l and ( /~ ' )~ 1 by /„. We say that / is
divisorial (or a v-ideal) if lv = I. The divisorial ideal / is v-finite if / = Jv for some
finitely generated fractional ideal J of A. Also, we define lt — (J{JV J is a finitely
generated subideal of /}. The ideal / is called a /-ideal if 7, = /. For more details
about these notions, see [11].


By analogy with known results on the prime ideal structure, significant work has
been concerned with the structure of prime t -ideals (also called t -primes), see [12],
[2], [14], [13], and [7]. Noteworthy is the fact that every /-ideal is contained in a
maximal /-ideal (which is necessarily a prime ideal). Also any prime ideal minimal
over a /-ideal is a /-prime, and hence so is any height-one prime ideal. Finally, recall
that the /-dimension of an integral domain A, denoted /-dim(A), is the supremum
of the lengths of chains of/-primes of A (For the purpose of this definition, the zero
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ideal is considered as a f-prime, though it is not); we also define the f-height of a
prime P to be the supremum of the lengths of the chains of f-primes contained in
P. Recall, at this point, that (nontrivial) Krull domains have f-dimension one. We
shall use r-Spec(A) to denote the set off-primes of A and Spec4" (A) to denote the
set of nonzero prime ideals of A.


A domain A is v-coherent if the intersection of any two v-finite ideals is v-finite.
The class of v-coherent domains naturally arose as a general context for the validity
of Nagata's theorem for the class group (originally stated for Krull domains)(Cf.
[9]). Its interest also resides in its ability to unify large classes of domains such
as those of Mori domains, quasi-coherent domains, and PVMDs (Cf. [17]). In
[10], Gabelli and Houston have investigated the transfer of v-coherence to D + M
domains. In the second section of this paper, we use their result and other previous
investigations on this classical pullback to establish a satisfactory analogue to a well
known result on the Krull dimension, Theorem 2.4.(1), stating that: "if/? = D-\-M
is a v-coherent domain issued from T = K + M such that qf(D) = K and M is


a t-ideal ofT, then t-dim(R) = max {r-htr(M) -H-dim(D) , r-dim(r)}". As an
application, one may compute, via this theorem, the /-dimension for large families
of integral domains (See Example 2.7 and Corollary 2.9).


On the other hand, in [7], Dobbs and Houston studied the f-spectrum of power
series rings over an integral domain A. They developed several results enlightening
the interplay between the f-prime ideal structures of A and A[[X]]. Their work
provided a natural starting point to the problem of expressing /-dim(A[[A r]]) in terms
of numerical invariants of A such as r-dim(A). The third section of this paper is
devoted to this problem. Here, our main result, Theorem 3.3, asserts that "if A is
an integral domain (which is not a field) such that dim(A[[X}}} = dim(A) + 1 and
f-Spec (A) = Spec"1"(A), then r-dim(A[[X]]) — f-dim(A)". This allows us to resolve
entirely the problem for the class of Priifer domains satisfying the STT-property
and for the class of PVDs issued from discrete valuation rings as well.


All along, corollaries and examples illustrate the scopes or the limits of our main
results.


2 THE CLASS OF v-COHERENT DOMAINS


This section examines the f-prime structure for (some classes of) v-coherent do-
mains. We place however more emphasis on those of the form R — D -f M issued
from T — K + M. We aim at expressing r-dim(/?) in terms of numerical invariants
such as /-dim(D) and t-dim(T). This may allow one to determine the f-dimension
for large families of integral domains.


According to [8], a domain A is v-coherent if the intersection of each pair of
v-finite ideals is v-finite, or equivalently, if/"1 is v-finite for each finitely generated
ideal / of A. Note, for convenience, that v-coherence coincides with the property P*
introduced in [17], where it was shown that the class of v-coherent domains prop-
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erly contains the union of the classes of Mori domains, quasi-coherent domains,
and PVMDs.


Let's recall the following result which we will be using frequently in the sequel.


LEMMA 2.1. Let A C B be an extension of integral domains such that qf(A) =
qf(£). Then


• If A <-» B is fiat, then for each t-ideal I of B, in A is a t-ideal of A.


• If A is v-coherent and S is a multiplicand ely closed subset of A, then for each
t-prime P of A such thatPC\S = 0, P(S~1A) is a t-prime ofS~lA.


Proof. For the first assertion, see [8, Proposition 0.7]. For the second assertion, see
[17, Lemme2.3]. D


For v-coherent domains, Lemma 2.1 reduces the study of the /-dimension to the
local case. Specifically, we have:


PROPOSITION 2.2. Let A be a v-coherent domain. Then


/-dim(A) = sup {/-dim(A/>) / P e /-Spec(A)}.


Next, we examine the /-primes for some particular classes of v-coherent do-
mains. Notice first that Krull domains have /-dimension equal to 1, since the Krull
hypothesis deflates the notion of prime /-ideal to that of height-one prime ideal.


COROLLARY 2.3. Let A be a PVMD. Then


/-dim(A) = sup {dim(A/>) / P G /-Spec(A)}.


Moreover, if A is a Priifer domain, then /-dim(A) = dim(A).


Proof. Since a PVMD is v-coherent, the first statement follows immediately from
Proposition 2.2. The "moreover" assertion is straightforward. D


It turns out from the above preliminaries that a v-coherent domain may have
arbitrary /-dimension. We now turn our attention to v-coherent domains issued
from the classical D + M constructions. Below, Theorem 2.4.(1) is a satisfactory
analogue of a well-known result on the Krull dimension due to Brewer and Rutter
[5, Corollary 9].


THEOREM 2.4. Let T be a v-coherent domain of the form K + M, where K is a
field and M is a maximal ideal of T. Let R — D -\- M, where D is a v-coherent
subring of K.


1) Assume qf(D) = K and M is a t-ideal ofT. Then


t-dim(R) = max {/-htr(M) + /-dim(D), /-dim(r)}.
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2) Assume dim(T] < 2, qf(D) C K, and either M is not a t-ideal ideal ofT or it
is a v- finite ideal ofT. Then


t-dim(R) - dim(r) +/-dim(D).


Proof. 1) First, recall that (under the above assumptions) R is v-coherent [10, The-
orem 3.4]. Note that, without any hypothesis on T and D, for each nonzero ideal /
of £>, / -4- M = IR and so (/ + M)V = (IR)V = IVR = IV + M. Hence (/ + M), = I, + M
[2]. Therefore, for each nonzero prime ideal P of Z), P is a t -prime of D if and only
if P + M is a r -prime of R.


Let 5 := D\ {0}. Then T = S~1R. Let n — f-rur(M) and choose a strictly
increasing saturated chain


<2, C...CQn=M


of /-primes of T contained in M. Consider any strictly increasing chain


P i C . . . C P v


of r -primes of D. Then


Q\ n/? c ... c Q,,_i n/? c M c PI +M c ... c P, + M,


is a chain off-primes of/? by Lemma 2.1. It follows that


f-dim(fl) > r-htr(M) + r-dim(D).


On the other hand, since /? ^-> T is flat, every chain off-primes of T contracts into
a chain off-primes of/?, hence f-dim(/?) > f-dim('T).


Conversely, consider a maximal chain of f-primes of R


P i C P 2 C . . . C P , (C)


There are two cases:
- P,.nD = (0). Since R is v-coherent and T = S~1R, then


PiT CP 2 TC. . .CP ,T


is a chain of t -primes of T.
- P, HD ^ (0). Let ift be minimal, 1 < ia < r, such that Pia nD ^ (0). Then, for
each / > if),


where pt 6 Spec(D). We have P/,,_i C M. Indeed, let x e Pt-(1-i C P/0 = p,w +M.
Then x = a + (3, where a e p/o and |3 e M. Suppose that a ^ 0. Then


hence 1 e p,o, (since a"1 € T), contradiction. Thus, a = 0 and so P,o_i C M. The
maximally of the chain (C) yields that P,o_i = M. Thus,
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r = (i0-l) + (r-i0 + l)< /-htr (M) + r-dim(D) .


2) Set TI =k + M, where k = qf(D). Then, by [10, Theorem 3.5], T\ is v-
coherent. Moreover, M is a /-ideal of T\. It follows that R is v-coherent and by


(1),


t-dim(R) =max {Mit


Since M is a /-ideal of 7j and dim (71 ) = n < 2, we have


/-ht7- , (A/)=/-dim(7i)=/z.


Hence, /-dim(fl) = ;z + /-dim(D). D


Next, we present two examples which illustrate the fact that the two hypotheses
in Theorem 2.4.(1) cannot be deleted. Precisely, in Example 2.5, the maximal ideal
M is not a /-ideal of 7\ qf(£>) = A", and hence R is not v-coherent. In Example 2.6,
/? is v-coherent, but M is not a /-ideal of T and qf (D) 7^ A!".


EXAMPLE 2.5. Let T = Q[[XJ]\ = ®+(X,Y)Q[[X,Y]\ be the power series ring
in two indeterminates over Q and R = Z + M, where M— (X ,Y)Q[[X ,Y}}. Since T
is a Krull domain, M is not a /-ideal of T. So R is not v-coherent [10, Theorem 3.4].
However M is a /-ideal of R and ht/?(Af) = 2. Necessarily, M contains a height-one
/-prime. Moreover, for each nonzero prime ideal p of Z, p + M is a /-prime of /?.
Thus, there is a chain QcMcp + Mof /-primes of R, and since dim(/?) = 3, we
have


t-dim(R) = 3 ̂  max (/-htr(M) -M-dim(Z) , /-dim(r)} = 2.


EXAMPLE 2.6. Let T = Q(>/2)[X,r] = Q(v/2) + (X,r)Q(\/2)[X,y] be the poly-
nomials ring in two indeterminates over Q(\/2) and put /? = Q + M, where M =
(X,r)Q(v /2)[X,r]. Since r is a Krull domain, f-dim(T) = 1. Further, R is v-
coherent (since Noetherian) and M is a height-two maximal /-ideal of R. Therefore,


/-dim(fl) = 2 ̂  max {/-htr(M) + /-dim(Q) , /-dim(r)} = 1.


Corollary 2.3 asserts that /-dim(A) = dim(/\), for any Priifer domain A. The
following example displays, via Theorem 2.4. ( 1), other families of integral domains
satisfying the same property.


EXAMPLE 2.7. Consider D = Q 4- KC[[FJ], where Q is the integral closure of Q
in C, and let K be the quotient field of D. Let n > 1 be an integer, T = K + M be
a Priifer domain with maximal ideal M such that htj(M) = dim(r) = n - 1, and
R = D + M. Clearly, dim(jR) = n. On the other hand, D is a v-coherent domain of
/-dimension 1, (Actually, D is a Mori domain which in not a PVMD). Moreover, M
is a /-ideal of T, hence R is v-coherent [10, Theorem 3.4]. Finally, Theorem 2.4.(1)
yields that r-dim(fl) = /-htr(M) + /-dim(D) =n = dim(/?).
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In contrast with Krull domains and Priifer domains, PVMDs may have arbitrary
/-dimensions. The following example illustrates, via Theorem 2.4, this fact.


EXAMPLE 2.8. Let T = Q(X)[[K]] and R = Z[X] + 7Q(X)[[r]]. Then R is a
PVMD (by [2, Theorem 4.1]) satisfying 1 < t-dim(R) < dim(R). More precisely,
f-dim(/?) = 2 (by Theorem 2.4) while dim(fl) = 3 (by [5, Corollary 9]).


We close this section with a satisfactory analogue of a well-known result on the
famous construction T = D + XK(X] of D. Costa, J.L. Mott, and M. Zafrullah (Cf.
[6, Corollary 2.10]).


COROLLARY 2.9. Let K be afield, D a suhring of K such that qf(D) = k C K,
andR = D + XK[X]. Then


t-dim(R) = l+t-dim(D}.


Proof. T — K[X] is a v-coherent domain and M = XK[X] is a principal ideal of T,
hence v-finite. Thus, R — D + M is v-coherent if and only if D is v-coherent. In case
D is v-coherent, Theorem 2.4.(2) yields t-d\m(R) ~ 1 + r-dim(D). Even if D is not
v-coherent, however, this equality holds. To see this, note that M is a r-prime ideal
of/? (ht/?(M) = 1), and, for each prime ideal p of D, p is a r-prime of D if and only
if p + M is a r-prime of /?, (see the proof of Theorem 2.4.). It follows that we have
t-d\m(R) = l+r -d im(D) . D


3 POWER SERIES RINGS OVER INTEGRAL DOMAINS


First, it is convenient to recall from [3] that a ring A is an SFT-ring if, for each ideal
/ of A , there is a finitely generated ideal J C / and an integer k > 1 such that;c* e J,
for each x e /. A well-known result [3, Theorem 1] is that if A is not an SFT-ring,
thendim(A[[X]])=°o.


In [7], it is proved that for an integral domain A, if / is an ideal of A, then
(/A[[X]])r C //[[X]]. Hence, for each r-prime p of A, p[[X}] contains a r-prime which
contracts into p'm A. Precisely,


PROPOSITION 3.1. [7, Corollary 2.6]. //A is an SFT-ring and p is a t-prime of
A, then p[[X}\ is a t-prime ofA([X}}. In particular, r-dim(A[[X]]) > r-dim(A).


Moreover, it is also noted in [7] that the inequality in the previous Proposition
can be strict [7, Example 4.2]. However, there are several contexts in which the
inequality reduces to equality. In contrast with the Krull dimension case, the next
example displays a non-SfT-ring A such that r-dim(A[[X]]) = r-dim(A) = 1.


EXAMPLE 3.2. Let k be a field and KI, K2, - • - , ^ - be infinitely many inde-
terminates over k. It is known that A = ^[{^}]li] = U"=i^[^h"-i^/i] IS a Krull
domain (actually, a UFD). We claim that A is not an SFr-ring. Indeed, suppose that
M — (Y\ ,Y2, ...,Yn,...) is an SFT-ideal of A. Then, there exists a finitely generated
ideal J — (f\, ...,/i)A of A and an integer P > 1 such that / C M and g$ e J, for
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each g 6 M. Since /) G A, for each i— 1,2, ...,5, then there exists an integer n0 > 1
such that fi <= *[/!,. ..,y,J, for each / < s. Let J0 = (fi,...,fs)k[Yi,...,Yno] be the
ideal of k\Y\ , ..., Y,l(l] generated by the polynomials f-L and consider a prime ideal p
such thatyo C p C k[Yi,...,Yna}. SetP = p[Yno+i,Yna+2,...]= p^Y^^]. Then
P is a prime ideal of A containing J. Let g £ M. Then g^ € 7 = (/i, . . . , f s ) A C P,
hence gP £ P, whence g 6 P. It follows that M C P, and hence P = M (since A/
is maximal), the desired contradiction (since P is an extended prime). Now, A is a
Krull domain and so is Ap]], hence ?-dim(A[[X]]) = f-dim(A) = 1.


THEOREM 3.3. Let A be an integral domain which is an S FT- ring (and which is
not a field). Then


1) r-dim(A) < r-dim(Ap)]) < dim(Ap)]) - 1.


2) 7/dim(Ap]]) = dim(A) + 1 andf-Spec(A) = Spec+(A), then


= r-dim(A).


Proof. 1) First, observe that if p is a nonzero prime /-ideal of A, then P = p +
XAp]] is not a r-ideal of A[[X]]. Indeed, for each nonzero element a e p, we have
(a,X)~] =a-[A[[X}]nX-lA[[X}}. Let g e (a,X)~]. Then g = a~lh\ = X~lh2,
where h\, hi e A[[X]]. By an easy order argument on the series Xh\ — ali2, we get
X divides h2, whence g <E A[[X}}. It follows that (a,X)~{ = A[[X]}. In particular,
every maximal ideal M of A[[X]j is of the form M = m + XA[[X]j, where m is a
maximal ideal of A, and hence is not a f-ideal of A[[X]]. Thus, f-dim(A[[X]]) <
dim(A[[X]j) — 1. Finally, since A is an SFT-ring, Proposition 3.1 completes the
proof of (1).


2) Follows from (1) and [3, Theorem 1]. D


COROLLARY 3.4. Let n > 1 and A be an n-dimensional Priifer domain with the
SFT-property. Then


Proof. Follows from [4, Theorem 3.8], Corollary 2.3, and Theorem 3.3. D


REMARK 3.5. Corollary 3.4 recovers [7, Proposition 4.1] which deals with dis-
crete valuation domains. As for (finite-dimensional) nondiscrete valuation domains
V, Kang and Park proved, in [15, Theorem 3.8], that r-dim(V[[X]]) = «,.


COROLLARY 3.6. Let n > 1 and R be a PVD issued from an n-dimensional dis-
crete valuation domain. Then


t-dim(R[[X}}) = r-dim(fl) = n.
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Proof. Let V be the discrete valuation domain associated to R and M its maxi-
mal ideal. Let k = R/M and K = V/M. Then R = cp"1^) is the pullback of the
canonical surjection cp : V —> K. It follows by [1, Proposition 2.3] that R is an
SFT-rmg and dim(/?p]]) = dim(R) + 1 (see also [16, Theoremes 2.4 and 3.9]).
On the other hand, for each prime ideal p of R, pRp is a /-prime of Rp (since pRp


is the divided maximal ideal, pRp = pVp, hence divisorial). Moreover, the flat-
ness of the extension R <-» Rp, yields p — pRp n /? is a prime /-ideal of /?. Thus,
r-Spec(/?} = Spec+(/?). Theorem 3.3 completes the proof. D


It is worth noticing that Theorem 3.3 may allow one to determine the /-dimension
of power series rings A[[X]} for large families of integral domains A, beyond those
issued from Corollaries 3.4 and 3.6. The next example illustrates this fact.


EXAMPLE 3.7. Let/7 >l,V = K-\-M be a discrete valuation domain of rank/i — 1,
and D be any one-dimensional Noetherian domain such that qf(D) — K. Then R =
D + M is an SFT-nng and dim(fl[[X]]) = dim(Vp]]) + dim(D[[X]]) - 1 = n + 1 =
dim(tf) + 1 (Cf. [16]). Further, t-dim(R) = /-htv(M) 4-/-dim(D) = n = dim(R) by
Theorem 2.4. Moreover, for every nonzero prime ideal P of R, we have: If P C M,
then P is a /-prime of V = S"'/?, where S = D\ (0). Thus P is a /-prime of /? by
Lemma 2.1. If M C P, then P n D ̂  (0) and P = (P n D) + M is a /-prime of /?,
since PflD is a height-one prime ideal of D. It follows that /-Spec(/?) — Spzc+(R).
By Theorem 3.3, t-dim(R[{X}}} = t-dim(R) = n.
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On Some Annihilator Conditions Over
Commutative Rings
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ABSTRACT. It is proved that if a commutative ring R has finite Goldie dimension


then T ( R ] , the total ring of quotient of /?, is semilocal. It is also shown that a ring R is


CS if and only if Ann I + AnnJ — R for any ideals / and J such that / D J = 0 ( H ) . As


a consequence, we characterize completely CS rings. A ring is pseudo-PIF if it satisfies


Property (H) for any principal ideals I and J. Several examples are given and completely


pseudo-PIF rings are characterized as arithmetical rings. Finally, we prove that if R is


pseudo-PIF with ace on annihilators, then T(R) is quasi-Frobenius, extending known


results on the subject.


I . INTRODUCTION


All rings considered are commutative with unity. A ring R. is called Kasch if
every proper ideal of R has nonzero annihilator. Rings R having semilocal Kasch
total ring of quotient T(R) were studied by Faith in [9]. This work was motivated
by the following result stated by Faith [9, Theorem 4.3]: If R is semiGoldie (i.e. no
infinite direct sum of nonzero ideals imbeds in R) and zip (i.e. every faithful ideal
of R contains a finitely generated fai thful ideal) then T(R) is semilocal and Kasch.
One may ask whether this is true if we drop the zip condition. We prove that the
semilocality ofT(R) is still preserved (Proposition 1) but T(R) is not always Kasch
(see example after Theorem 16). However T(R) enjoys an annihilator property close
to the Kasch property: Every finitely generated proper ideal ofT(R) has a nonzero
annihilator. As an application, we show that if R is semiGoldie and if F is a free
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H i i i u d u l c . t hen any two m a x i m a l l i nea r ly independent subsets of /'" have the same


c a r d i n a l i t y (Corollary 2). Rings w i t h K r u l l dimension (in the sense of Gabriel and


Rentschler , see1 [1 1] ) form an interesting class of semiGoldie rings. We prove that if


R has K r u l l dimension then 7'(/?) is semilocal Kasch (Proposition 3). We use this


to give another proof of a result of A r m e n d a r i z and Park (Corollary 4). In Section


3 CS rings are considered. We give a new characterization of CS rings involving


annih i la tors (Theorem ( i ) . As an application, we characterize completely CS rings


(r ings R such t h a t R/1 is ( 'S for every ideal / of 7?). A theorem on decomposition of


CS rings is also given (Theorem 8). In Section 4 pseuclo-PIF rings are introduced as


generalizations of CS rings. We see t h a t arithmetical rings characterize completely


pseudo-PIF rings (Theorem 15). We also show that if /? is pseuclo-PIF and has ace


on annihilators then T(R) is quasi-Frobemus (Theorem 19). Several applications


are given inc luding those which ex tend known sufficient conditions that a ring be


quasi-Frobenius.


Throughout, for a ring R, 7 ' ( /7) w i l l denote the total r ing of quotient of R. and


Max(R) the set, of maximal ideals of R. If A/ is an /?-module, let AnnM = {a £


R/ aM = 0} and if / is an ideal of /?, let AnnMI = {x 6 M/ Ix = 0}. If AT is an


essential submodule of A/ , we write N Cess M.


2. SEMIGOLDIE RINGS


A ring R has finite (Goldie) dimension if R contains no infinite direct sums of


nonzero ideals. In this case, the injective hull E(R] of R is a finite direct sum E(R) —


E ( l < i ) <$ • • - ® E(Un) of indecomposable injective modules E ( U i ] , the injective hull


of uniform ideals f / i : i ~ ! , . . . , « . By the Krull Schmidt theorem n is a unique


integer called (Goldie) dimension of R and denoted by diniR. Any uniform ring,


e.g. an integral domain, has dimension 1, as has any chain (^valuation) ring. A


ring is semiGoldie if it has finite dimension. A ring R is finitely embedded if it has


a finite essential socle; equivalent]}', E(R.) = E(S\) &...<$ E(Sn) for some minimal


ideals ,S';, i = 1, . . . , n.


If M is an /?-module then Z ( M ) denotes the set of zero divisors of M; that is,


Z (M) = {a 6 R./ ax - 0 for some 0 ̂  x £ M}. In general Z (M) is not always an


ideal of R. When Z ( M ] is an ideal, then it is prime. It is not difficult to see that if


M and ,V are /^-modules then Z(M) = Z ( E ( M } ) and Z(M®N) = Z(M}\JZ(N).


A ring R is said to be McCoy (see [9]) or "sondable" (see [19]) provided that every


finitely generated faithful ideal contains a regular element. This is equivalent to


the statement that every finitely generated proper ideal of T(R) has a nonzero


annihilator. Picavet G. shows that any semiGoldie ring is McCoy [19, Theorerne


6.21]. Using the ideas of Picavet we show that any semiGoldie ring has a semilocal


total ring of quotient. The following remark is the key to our result: If R is any


commutative ring and if [/ is a uniform /^-module then Z ( U ] is a prime ideal.
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Indeed, let a and b be two elements of Z(U] . So Annua -^ 0 and Annub ^ 0.
Since U is uniform, 0 ̂  AnnjjanAnnub C Annu(a-\-b}. So a + 6 G Z(U). Therefore
Z(U) is an ideal of R and consequently it is prime. A ring R is called semilocal if
Max(R] is finite and, in this case, the number of its maximal ideals is denoted by
| Max(R) \.


PROPOSITION 1. If R is a semiGoldie ring, then R is McCoy, T(R) is semilocal
and we have | Max(T(R)) \< dimR.


Proof. First we suppose that T(R) = R. Let E(R) = E(Ui) 0 ... 0 E(Un) for
some uniform ideals t / i , . . . , Un (dimR = n ) . So Z(R) = Z(U\] U . . . U Z(Un) and,
as noted above, each Z ( U i ) is a prime ideal. If / — a\R -f . . . + amR is a finitely


generated ideal contained in Z(R), then / C Z(Uj) for some j G {! , . . . , n}. As


a,k G Z(Uj) we have Annu^k / 0 for all k G {! , . . . , m}. Since Uj is uniform,
n™=i Annujdk ^ 0. Take a nonzero element t from this intersection, then tl = 0
and hence /? is McCoy. Now we proceed to show that R = T(R) is semilocal and
| Max(R) \< dimR. Let Bt = Z(Ui) so that Z(R) = B\ U . . . U Bn. We show that
the maximal ideals of R are exactly the maximal elements of {B\,..., Bn}. Let M


be a maximal ideal of R. Since T(R) = R, M C 2(fl) = BI U . . . U Bn and so
M. C $j for some j G {1,. . . , n}. Therefore A4 = j$y by the maximality of .A/f. Now
let #/ be a maximal element of [B\, . . . , Bn} and M. a maximal ideal of R such that
BI C. M. We have A^ C Z(7^), and so At C .̂ for some k G {1, . . . , n}. Therefore
^/ C 5/c and hence BI = Bk = M. So R is semilocal and Max(R] \< dimR. To


complete the proof of Proposition 1 we use the following observations: (1) A ring
R is McCoy if and only if T(R) is McCoy; (2) A ring R is semiGoldie if and only if
T(R) is semiGoldie and, in this case, dimR = dimT(R). 0


Let R be a ring. Following Lazarus [15], we say that an /^-module M satisfies
Property (P) if any two maximal linearly independent subsets of M have the same
cardinality. If R is noetherian or if R is finitely embedded, then every free R-


module has Property (P) (see [2, p. 136]). With the help of Proposition 1 we
obtain a common generalization of these two results.


COROLLARY 2. If .R is semiGoldie then every free E-module has Property (P).


Proof. To prove that every free /^-module has Property (P ) , it is sufficent to show
that T(R] is weakly semi-Steinitz [2, Corollary 1]. Since T(R] is semilocal by
Proposition 1, T(R.) is Hermite [13, Theorem 3.7]. Also every finitely generated
proper ideal of T(R) has nonzero annihilate! since R is McCoy. The later two
properties o f T ( R ) guarantee that it is weakly semi-Steinitz [16, Theorem 2.2]. 0


A ring R is called Kasch if every simple module embeds in R: equivalently,
Annj\4 ^ 0 for every maximal ideal M. of R. Examples of rings R such that T(R)


is semilocal Kasch include rings with ascending chain condition on annihilators
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PROPOSITION '•>. If R is a r ing w i t h K r u l l dimension (in the sense of ( i a b r i e l and
Rentschlei1, see [ I I ] ) t hen 7'(/i) is semilocal Kaseh.


Proof. From [ 1 1 , Proposition 1.4], R is a seiniCJoklie ring; therefore there exist


some un i fo rm ideals l'\ (>n such t h a t /:'(/?) = f'"(U\) fi' • • • li> E(L^n). For each


i G { ] , . . . , / ! . } , we may find an ideal Q ^ U' C U, such that Z(U{) = AnnUj [11,


Theorem 8.3]. Since (Jt is uniform, Z(xiR) = Z ( U - ) = Z ( l ' i ) for every 0 ^ XL € U'.


We have Annx, C Z ( d ' i R ) = AnnU< and Annin C Annx;, so 2 ( 1 ' , } = Z(U}) =


Ann.Xi. If Z ( R ) — 2 ( 1 !
{ } U . . . U Z(Un } = Annx} U . . . U Annxn contains an ideal /,


then / C AHIU-J for some j G {1 , n j , which leads to ,v.jl = 0 . Therefore T(R)


is Kasch. The semi locnh ty of 7 ' (7?) comes from Proposition 1 . <^>


A ring R is called pseudo--Frobcnius (PF) if every f a i t h f u l /^-module is a gen-


erator; equivalent ly. R is self -inject ive and Kasch. If R is a self- injective ring with


Krul l dimension t h e n 7 (R) = R is Kasch by the preceding proposition. So we get


the following result.


COROLLARY -1. [ 1 . Proposition 10] If ft is self- inject ive with Krull dimension then


/? is PF.


3. CS RINGS


A ring R is called Baer if Arm I is a direct sumrnand of R for every ideal /. A


ring is said to be reduced if it has no nonzero nilpotent elements. A characterization


of Baer rings is given in t h e following proposition.


PROPOSITION 5. The following are equivalent for a ring R:


(1) Ris Baer.


(2) The condition / J = 0 implies that Ann I + AnnJ = R. for any ideals / and J of


R.


Proof. (1) => ( 2 ) . Let / and J be ideals o f / ? such that IJ = 0. This condition
implies that AiniAnnI C AnnJ. But. Ann I t$ Ann Ann 1 = R since Annf is a,
surnmand of R. Therefore Ann I + AnnJ = R.


(2) r=> ( 1 ) . First we show that R is reduced. To see this, suppose that there exist


0 ^ a G R and an integer rn > 2 minimal with respect to am = 0. By hypothesis


R = Anna + Anna"1"1 = Annam~l. This implies that am~l = 0, a contradiction.


Let / be an ideal of R. Since I Ann I — 0 then AnnI -f AnnArinl = R and, since R


is reduced, we have also AnnI D Ann Ann I = 0. So Ann! 0 AnnAnnI — R. 0
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For convenience, we call a ring R pseudo-Baer if AnnI + AnnJ = R for every


ideals / and J such that / fl J — 0. Clearly every Baer ring is pseudo-Baer as is


any uniform ring. Here are some other examples.


EXAMPLES. (1) A ring R is called Ikeda-Nakayama (IN) if for any ideals / and J


of R we have Ann(I Pi J) = AnnI + AnnJ . These rings were recently investigated


by Camillo, Nicholson and Yousif in [4]. Clearly every IN ring is pseudo-Baer.


(2) A ring R is called FPF if every finitely generated faithful /^-module generates


the .R-modules. Every FPF ring is pseudo-Baer. For if / and J are ideals of R


such that / n J = 0, then R/I <$ R/J is a finitely generated faithful /^-module and


so it generates the /^-modules. Therefore its trace ideal Ann! + AnnJ is R.


A ring R is called CS if every ideal of R is essential in a direct summand of R.


Every self-injective ring is CS. It turns out that commutative CS rings are exactly


pseudo-Baer rings.


THEOREM 6. A commutative ring R is CS if and only if AnnI + AnnJ = R for


every ideals / and J such that / fi J = 0.


Proof. Assume that R is pseudo-Baer. In [4, Theorem 3] it is shown that if R is IN


then R is CS. But we remark that the proof of this result still works only assuming


that R is pseudo-Baer. Conversely, let R be a CS ring and let / and J be ideals of


R such that lr\J = Q. Then !CessRe and JCessRf where e and / are idempoterits


of R. Therefore eR C\ fR = 0. As Anne = (1 - e)R and Annf = (1 - f)R and


also (1 — e)/ + (! — /) = 1, we have Anne + Annf = R. But Anne C AnnI and


Annf C AnnJ, so AnnI + AnnJ = R. (^


REMARKS (1) Call (a not necessarily commutative ring) R right pseudo-Baer if


/ ( / ) + / (J) = R (1(1) is the left annihilator of /) for any right ideals / and J of R


such that / H J = 0. Every right pseudo-Baer ring is right CS (the proof is the


same as the proof of Theorem 3 of [4]) but the converse is not always true. Let
F F 1 , n. , ni , . , , „„ _ , [ 0 0 ] " f 0 1


-ft = n n I then -ft ls left and right CS. Take x — „ . and y = .
[ U r J L ^ J I U 1


r F F i
then xRr]yR = Q but l ( x ) + l(y) C / R (see [4, p. 1005]).


(2) Camillo, Nicholson and Yousif have given an example of a commutative local


and uniform ring which is not a IN ring [4, Example 6]. We deduce that a CS ring


is not always IN.


As a consequence of Theorem 6 we obtain one of Faith's results.


COROLLARY 7. ([7]) A commutative FPF ring is CS.


For a reduced ring R, the condition IJ — 0 is equivalent to / n J — 0, for every


ideals / and J of R. We conclude that if R is reduced then R is CS if and only if
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Pivof. Firs t we c la im t h a t /C ( ' " " . - ! nnAnnl for every idea) / o f / ? . Indeed, let J


be an ideal contaj i ied in Ann Ann I such that / n J = 0. Then AnnI + Ann,] — R


(Theorem ( ) ) . Moreover Ann! C AnnJ (J C Ann Ami I], so AnnJ — R proving


t h a t ,/ = 0. Now, let, Ar = n i l ( R ) , the nilraclical of R, and let. K be an ideal


maximal wi th respect to A* D ,'V = 0. Let L = AmiK. Since (A" fl L}~ = 0, then


A'nL C I\C\N = 0. so AnnK + AmiL = L + AnuL - R (Theorem 6). The condition


K n L = 0 also implies t ha t L n AnnL = L fi ,4/m,4/mA" = 0 as KCes*AnnAnnK.


Hence R = R\ x /f., whore /? , = , 4 n / ) / , and R-> = /,. As Ar n K = 0, we have


A' C AnnK = R'2. so nil(R.2) = A' and /? i is reduced. Also, it is not difficult to
see t h a t R] is also CS and so it is Haer as i t is noted just before this theorem. If


/ is any ideal of R-, and if / ^ 0. then (/\ + /) n N ^ 0. So if 0 ^ x = b + y with


,r G Ar, 6 6 A", y 6 /. t hen b = j- - /y e A' 0 L = 0. So 0 ^ i- = y G A' n /. Hence


A' = nil(R.2) is essential in / ? ; _ > . (>


many cyclic R --modules has a canonica l form, i .e . M c± Rf I\ -^ • • • (i> R/ In where


/! C 72 C • • • C /„ ^ R. If .4 and ^ are ideals of a ring #, let (.4 : S) = {a G


R / aB C A]. A r ing /? is CF if and only if for every ideals ,4 and B of R we have


(Ar\B : A) + (AiAB : B) = R [21, Corollary 1.6]. We see that CF rings characterize


completely CS rings as the following theorem shows.


THEOREM 9. The following are equivalent for a commutative ring R:


(1) R/Iis CS for every ideal / of R.


(2) R is CF.


(3) R is a f ini te direct product of valuation rings, h-local Priifer domains and torch
rings.


Proof. (2) <^> (3) . See Theorem 3.12 of [21].


(1) => (2 ) . We have (A/A n B} n (B/A H B) = 0 for every ideals A and B of R.


Therefore .4?),??(.4/,4 n B) + Ann(B/A C\ B) = R/A n B since R/A n 5 is a CS ring


(Theorem 6) . Thus (.4 n # : .4) + (.4 n B : 3} = R and consequently R is a CF ring
[21, Corollary 1 .0] .


(2) = > ( ! ) . Let / be an ideal of R. It is not difficult to see that R' = R/1 is also


a. CF ring. Let A and B are ideals of R' such that AnB = 0. By [21, Corollary 1.6]


we have (AnB : A) + (,4 n B : B) = Rf . So Ann A + AnnB - R' and therefore R'


is CS (Theorem 6). 0
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4. PSEUDO-PIF RINGS


In this section we are interested in a weaker condition than the condition on
annihilators satisfied by CS rings (Theorem 6).


PROPOSITION 10. The following are equivalent for a commutative ring fl:
( f ) Every principal ideal of R is flat.
(2) RM is a domain for every maximal ideal M of R.
(3) If 06 = 0 then Anna -f- Annb — R, for every elements a and 6 of R.


Proof. (I) & (2) is proved in [10, Theorem 4.2.2] and (2) •£> (3) is by [12, Exercicc
33 p. 65].


When these equivalent conditions hold, R is called PIF (principal ideals are flat).
Any PP ring (principal ideals are projective) is PIF. The preceding proposition
suggests the following definition.


DEFINITION 11. A ring 7? is called pseudo-PIF if Anna + Annb = R for every
elements a and b of R such that a.R fl bR = 0.


EXAMPLES. (1) If fl is PIF then fl is pseudo-PIF; and if R is reduced, then these
two conditions are equivalent.


(2) If fl is CS then fl is pseudo-PIF (Theorem 6).


(3) A ring fl is said to be FP2F if every finitely presented faithful fl-module
generates the category of fl-modules. Let a and b be elements of such a ring fl,
satisfying af l f l6f l = 0. Then the fl-module R/aR.<$R./bR. is finitely presented and
faithful, so it generates the fl-modules. Therefore its trace ideal Anna + Annb is
fl. Consequently every FP2F ring is pseudo-PIF.


(4) If RM is pseudo-PIF for all M G Afax(R) then fl is pseudo-PIF. Indeed,
let a and 6 be elements of fl such that afl Pi bR — 0. If Anna + Annb ^ R
then Anna + Annb is contained in a maximal ideal .Vf. Since RM is pseudo-PIF,
aflvvt Pi bR.M 7^ 0, a contradiction. We deduce that every arithmetical ring fl ( i .e .
RM is a valuation ring for al l M. G Max(R)) is pseudo-PIF.


A ring fl is called principally injective (p-injective) if every homomorphism
Q : afl —> fl, a G fl, extends to fl; equivalently, Ann Anna = aR for every a G fl.
Clearly every self-injective ring is p-injective as is any Von Neumann regular ring.


LEMMA 12. If fl is p-injective then for every elements a and b of fl we have:


(Ann(aR n 6fl))2 C Anna + Annb C Ann (afl H 6fl)


In particular \jAnn(aR. n 6fl) — \/Anna -f- Annb.
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Proof. The inclusion Anna -f- Annb C Ann(a.R H bR) is true in any r ing.
Let ft and 7 bo two elements of Ann(aR. H b R ) . If o is an element of R such


that (a + 6)a = (). UHMI no 6 aR H 6/7 and lience /3aa = (). Therefore the R-


homomorphism / from (a -f 6)/{ to /? such t h a t /((« + 6 )0) = ,/ioa is well defined.
Since R is p - i n j e c t i v e , t he re ex i s t s c E /i" such tha t . /(.?') — r.r for every ,c £ /?. So
;3a = c(a + /•>) and hence (,J — r)c; = cb E a/? H 6/7, whence 7'(/3 — c)o — ")r6 = 0.
Thus ('j. J — 7c) E A n / i n and "/r E Annb and ( ' \ /^ — -jr) + -)r = 7;^ E -4?2.»o + Annb.


As ;̂  and 7 were a r b i t r a r y . (Aini(n I{ C\ bR.))~ C . l / ; / ; a + Annb. <)


COROLLARY 13. Every p injective r ing is pseudo--PIF.


A ring R is ca l led i n i n i n j e c t i v e if every /"i-Tiomomorphism from a simple ideal


to R extends to /?; equiva len t ly, Ann Anna = aR for every a E R such that aR is
simple. Every p in j ec t ive r i ng is minin jec t ive . A ring R. is said to have a square-
free socle if the socle of R. con ta ins no more than one copy of each simple R-


module. A commutat ive ring is mininjective if and only if it has a square-free
socle [18, Corollary 2.El] . We remark that a ring R is mininjective if and only if
Anna + Annb = R for every s imple ideals aR and bR such that a.R.C\bR = 0 (see


[18, p. 460]).


LEMMA 14. If R is pseudo PIE then R is mininject ive.


THEOREM 15. Let R be a r ing. The following conditions are equivalent:
(1) R/I is pseudo PIE for every ideal / of R.


(2) T ( R / I ] is pseudo- PIE for every ideal / of R.
(3) R/I is mininjective for every ideal 1 of R.


(4) T ( R / I ) is mininject ive for every ideal / of R.


(5) R/I is FP-F for every ideal I of R.


(6) T ( R / I ) is FP~F for every ideal / of R.


(7) R is ari thmetical.


Proof. By Lemma 14 (1) =^> (3) . By [18, Theorem 2.12] (3) <^ (7) and by [6,


Corollary 5E] (5) <=> (7) .
If R is arithmetical then R/I is arithmetical for every ideal / of R. So we have


the implication (7) => (1). Thus (1) •«• (3) <=> (5) & (7).
The proof of (4) => (7) is the same as the proof of Theorem 1 of [5].
If .ft is a FP2F ring then T(R) is FP2F. Indeed, let M be a finitely presented


faithful T(R}- module. If


t^L\
W


T(R}n -4 Tl.R)'71 —> M —)• 0


is a presentation of A/, let A/' be an /^-module such that


Rn ̂  Rm —+ M' —)• 0
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Then M' is a finitely presented faithful R-module such that S~l M' = M (where
5 = R - Z(R)). Since R is FP2F, R is a generator of Mod-/?; so M' ^ R ® L.
Therefore M = T(R) ® S~1L and hence M generates Mod-/?. So (5) => (6). Thus
(7) & (5) =» (6) => (2) => (4) => (7). This completes the proof. 0


REMARKS. (1) If R[X] is pseudo-PIF then R is pseudo-PIF. Assume that R[X] is
pseudo-PIF and let a and b be elements of R such that aRnbR = 0. Then we have
aR[X] CibR[X] = 0. Hence Annfl[;qa + Ann^jfe = R[X]. If /(X) 6 ^nn^a
and g(X) <E ^Inn^r*^ such that f ( X ) + g(X) = 1, then /(O) + #(0) = 1 and
a/(0) = bg(0) = 0. Therefore Ann^a + Anriftb — R. If R is a ring which is not
pseudo-PIF (see [14, Example p. 352]), then R[X] is mininjective [14, Remark 1.1]
but R[X] is not pseudo-PIF.


(2) If a ring R is pseudo-PIF so is T(R), but the converse is not true in general. To
find a counter example, first we recall that a ring R is PP if and only if R is PIF


and T(R) is Von Neumann regular [10, p. 121]. Let R be a ring such that T(R)


is Von Neumann regular and R is not PP (see [10, p. 122]). Obviously T(R) is
pseudo-PIF. But, since R is not PIF and R is reduced, R is not pseudo-PIF.


Turning to semiGoldie rings, we have:


THEOREM 16. Let R be a pseudo-PIF ring such that T(R) = R. Then:


(1) R is semiGoldie if and only if R is a semilocal ring and, in this case, we have
| Max(R) \= dimR.


(2) R is finitely embedded if and only if R is semilocal Kasch.


Proof. (I) Proposition 1 implies that R is semilocal whenever it is semiGoldie.


Conversely, assume that R is a semilocal ring and that | Max(R) \= n, say


Max(R) = {Ai i , . . . , Mn}- Suppose that a i , . . . , a n + i are elements of R such
that a\R ® . . . 0 an+iR is direct. We have Anna\ / /?, so Anna\ is contained in


a maximal ideal M\ (after relabeling the Mi). Since Anna\ + Anna^ — R, we
have Anna-2 is contained in a maximal ideal different from .Mi, say Anna-2 C Mi


(after relabeling the Mi). We continue this process to get, Anndi C MI for
1 < i < n. But Annan+i C Mt for some t — l , . . . , n , contrary to the claim
that Annat + Annan+i — R (since R is pseudo-PIF). This proof also shows that
dimR <\ Max(R) \. But | Max(R) \< dimR by Proposition 1. So we have the
equality.


(2) By [9, Corollary 1.1] if R is a finitely embedded ring then T(R) is semilocal
Kasch. Conversely, assume that R is semilocal Kasch. By (1) R is semiGoldie,
say E(R) = E(U\] ® . . . ® E(Un] where (7Z are uniform ideals (dimR — n). The
maximal ideals of R are among £(£/,•), i = 1,. . . , n (see the proof of Proposition
1). By (1) | Max(R) \= dimR, so Max(R) = {Z(Ui),..., Z(Un}}. Let i be an
element of {1, . . , n}. As R is Kasch, we have Z(Ui) = Annxi where 0 ̂  X{ 6 R.


We have R/Annxi c->- R, so E(RfAnnxi) is an indecomposable direct summand
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of E(R}. Therefore, by the Azumaya theorem, E ( R / A i r n X i ] = E(Uj) for some


j G { ! , . . . , n). So Z(E(R/Annxi)) = Z ( E ( U j ) ) and hence Annxt = Z ( U j ) , thus
/ — j. Therefore E(R) = E(R/Annx\] ® . . . 0 E(R/Annxn} where R/Annxi are


simple R--modules. This means that R is finitely embedded. 0


Let K be a field and R = K[A'i, A'2, . . .] such that A? = 0 and A'~ = AVi for


all 7i > 2. Then R is local and uni form such that T ( R ] = R. So R is pseudo-PIF


and | Max(R) = ditnR = 1.. However /i is not Kasch (see [22, page 635]).


A result of Nicholson and Yousif [17, Corollary 3.2] asserts that if R is a com-


mutative p-injective ring with K r u l l dimension then R has an essential socle. Here


is a gene ra l i za t ion of th i s r e su l t .


COROLLARY 17. Let R be a pseudo-PIF r ing such that T(R) = R. If R has Krull


dimension then R is finitely embedded.


COROLLARY 18. A ring R is perfect and arithmetical if and only i f /? is principal


and ar t inian.


Proof. Assume that R, is perfect and arithmetical. Let / be an ideal of R. By


Theorem 15, R/1 is pseudo-PIF . Since R is perfect, R/1 is perfect and hence R/1


is semilocal Kasch. Therefore R/I is f ini tely embedded (Theorem 16). As / is


arbitrary R. is ar t inian [23, Proposition 2*]. From the fact that R is arithmetical


and semilocal we have R is Bezout, i .e. every finitely generated ideal is principal


(see for example [3. Proposition 3.8]). But R. is ar t inian, so it is noctherian; hence


R is principal. The converse is clear. 0


Now we come to a fundamental fact about pseudo-PIF rings:


THEOREM 19. Let R be a pseudo-PIF ring such that T(R] = R. Then R satisfies


ace on annihilators if and only if R is QF.


Proof. If R. satisfies ace on annihi la tors , then T(R.) = R. is semilocal Kasch [9,


Corollary 3.7]. So R is finitely embedded by Theorem 16. But R is also mininjective


(Lemma 14), hence R is QF [8, Corollary 2]. The converse is clear. <)


COROLLARY 20. [20, Corollary 1]. If R is p-injective with ace on annihilators


then R is QF.


Proof. R is pseudo-PIF by Corollary 13. Since AnnAnna — aR for every a £ R,


T(R) = R. So Theorem 19 applies. 0


COROLLARY 21. If R is FP2F with ace on annihilators then T(R) is QF.
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Proof. R is pseudo-PIF and so is T(R). Also, the ace on annihilators is inherited
by T(R). Now use Theorem 19. 0
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Summary: We show that if A is a domain obtained by a certain rather general
type of pullback from Priifer and Bezout domains, then it satisfies the following
property: for every n > 0, all finitely generated projective A [ X i , . . . , Xn]-modules
are extended from A. We construct a wide class of domains of Krull dimension one
and arbitrary valuative dimension that satisfy the above property.


1 INTRODUCTION


D. Quillen and A. Suslin have independently proved Serre's conjecture: if A
is a Dedekind domain, then A satisfies the following property (see [7] or [5]):


For every n > 0, all finitely generated


projective A[X\,..., -X"n]-modules are extended from A.


^Partially supported by a grant from the group ALGA-PRONEX/MCT
^ The research was done while the first named author was visiting Florida State Uni-


versity.
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Y. Lequain and A. Simis have given a dimension-free generalization of Quillen-
Suslin's result, showing that if A is a Priifer domain of arbitrary dimension,
then A satisfies Property (1) (see [6]).


In the context of domains of Krull dimension one, the junction of results
of Schanuel, Gilmer-Heitmann and Brewer-Costa gives the following theorem
(see [1] and [3]), the second part of which is a generalization of Quillen-
Suslin's result:


"Let A be a domain of Krull dimension one.


(a) If A satisfies Property (1), then A is (2,3)-closed;


(b) Conversely, if A is (2,3)-closed and if A has valuative dimension one,
then A satisfies Property (1)".


In the proof of (b), Serre's theorem is an important ingredient used to
reduce the study of the finitely generated projective A[X]-modules to the
study of the invertible ideals of A[X]. If the valuative dimension of A is > 2,
this reduction is not possible anymore and nothing is known about whether
A may, or may not, satisfy Property (1).


In this paper, we do not call on Serre's theorem. In our main result
(Theorem 3), we show that if A is a domain obtained by a rather general
type of pullback from domains that satisfy Property (1), then A itself sat-
isfies Property (1). When coupled with Lequain-Simis' result on Priifer and
Bezout domains, this allows us to fill in part the gap existing in the theory
of domains of Krull dimension one: in Example 10, we construct a wide class
of (necessarily (2, 3)-closed) domains of Krull dimension one and arbitrary
valuative dimension (even infinite) that satisfy Property (1). We are lead to
make the conjecture that every (2, 3)-closed domain of Krull dimension one
satisfies Property (1).


2 NOTATIONS AND DEFINITIONS


If A is a ring, P(A) will stand for the set of finitely generated projective
A-modules.


If A •—> B is an extension of rings and if M is a B-module, then M is
extended from A if there exists an A-module N such that M ~ N <8> B. Ob-


A
serve that if there exists a retraction (p: B —> A (i.e., a ring homomorphism
(p such that (f> o i — MA], and if such an A-module exists, then it is unique,
up to isomorphism, and equal to M (g> A. If furthermore M is finitely gen-


B
erated and projective (respectively, free), then N is also finitely generated
and projective (respectively, free).
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We shall often use the symbol X_ to denote the set of indeterminates
[X\,..., Xn} where n is an integer > 0 that will be specified in the context.
If A is a ring, the notation A[X] will therefore stand for the polynomial ring
j4[-X"i, • . . , Xn]. If n — 0, X_ will stand for the empty set and A[X] for the
ring A.


3 PROJECTIVE MODULES OVER R ( X l , . . . , Xn],
R A FULLBACK


In this section, we are working in the following framework:


• B is a ring of the type B = L 0 / where L is a subring of B and / is
an ideal of B.


• R is a subring of B of the type R = D 0 / where D is a subring of L.


As an example of such a situation, we can give: B = C[Y] — C0yC[y],


D = z, R = z e yc[y]l


The objective of the section is to study, for two given integers n > 0,
r > 1 and a set of indeterminates X_ :— {A"i,... ,Xn}, the relation between
the following two properties:


1) Every P 6 P(R[X]) of rank r is extended from R.


2) Every Q e P(D[X]) of rank r is extended from D.


The following diagram might help to keep track of our modules:


D
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Of course, we also have the natural retractions from R to D, B[X] to £?,
R[X] to R, R[X] to £>[*], D[X] to £> and #[*] to D.


THEOREM 1. Lei R be a ring of the type R = D®/, where D is a subring of R
and I an ideal of R. Let n > 0, r > 1 be two integers and X_ — [X\, . . . , Xn}
some indeterm/inates.


(a) // every P E P(R[X_]) of rank r is extended from R, then every Q E
P(D[X_}} of rank r is extended from D.


(b) // every P E P(R[X]) of rank r is free, then every Q E P(D[X]) of
rank r is free.


(c) If R satisfies Property (1), then D satisfies Property (1).


We first establish a result valid for any (not necessarily projective) mod-
ule:


LEMMA 2. Let R,D,I,n,X_ be as in Theorem 1. Let M be an R[X]-module.


(a) The following statements are equivalent:


(i) There exist an R-module N\ and a D[X]-module N2 such that
M ~ Ni®R[X] and M ~ 7V~2 <8> R[X] (i.e., M is extended from


R D[X]


both R and D[X]).


(ii) There exists a D -module NQ such that M ~ A^0 <S> R\X] (i-e., M
D


is extended from D).


(b) When (i)-(ii) are satisfied, then NQ,NI,NI are uniquely determined
up to an isomorphism, and


, NQ~M <g> D


_ D.
D D R D[X]


In particular, both N\ and N2 are extended from D.


PROOF, (a) (ii) => (i). Let NO be a L>-module such that M ~ NQ ® R[X].


It is clear that, taking NI := NQ ® R and ]V2 := NO (8> D[X], one has
D D


and M~ N2 ®
D\X]
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(i) => (ii). Let NI be an R-module and N% a D[2£]-module such that


Ni®R\X]~M~N2 ® R\X]. (2)
R D(X_\


Observe that the following diagram, where (p\ and tpz are the natural retrac-
tions, is commutative:


(**)


D C ^ D[X]


Then, we have:


M ~ N2 <g> R[X] by (2)
D[X]


~ ( -/V*2 ® -ft[2Cl <S> -^Kl ) ® #[20 because </?2 is a retraction
V D[X] R(X] J D[x]


X] by (2)


(g) D <2> I^[2C] ® ^[^j because the diagram (**) is commutative
fi D D\X]


m with JV0 := NI ® P.
D R


(b) Since there exist retractions R[X] -> D, R[X] -> H, H[X] -> D[X],
then NQ,NI,NZ are uniquely determined up to isomorphisms, and NQ ~
M <g> D N ~ M ® R ~ N®R N2 ~ M <g)


Finally, since there exist retractions R — > D, D[X] — > D, then A^i <g) D ~


N-NI ® D. D


PROOF OF THEOREM 1. (a) Let Q e ^(D[^.j) of rank r. The
module P := Q ® -Rf^.1 is projective of rank r, hence is extended from R


D[X]
by hypothesis. Furthermore, by definition itself, P is extended from R[X].
Thus, by Lemma 2(b), Q is extended from D.


(b) Let Q e P(D\X\) of rank r. The MXl-module P := Q ® 12LX1


is projective of rank r, hence is free by hypothesis. Since there exists a
retraction R[X] -» D[X], then Q ~ P ® D[X] and Q is free. D
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(c) Is a consequence of (a).


Next, we establish a kind of converse for Theorem 1.


THEOREM 3. Let B be a ring of the type B = L®I where L is a subring of B
and I an ideal of B . Let R be a subring of B of the type R — D © / where D
is a subring of L. Let n > 0 and r > 1 be two integers, X_ := [X\, . . . , Xn}
some indeterminates and suppose that every M G P(B[X]} of rank r is free.


(a) // every Q 6 P(D[X]} of rank r is extended from D, then every P e
P(R[X_}} of rank r is extended from D (hence also from R).


(b) // every Q G P(D[X]) of rank r is free, then every P 6 P(R[X_]) of
rank r is free.


(c) R satisfies Property (1) if and only if D satisfies Property (1).


Theorem 3 will be obtained as a consequence of the following lemma.


LEMMA 4. Let B,L,I,R,D,n,X. be as in Theorem 3. Let P 6 P(R[X])
such that P <8> B[X_] is free.


(a) If P eg) D[X] is extended from D , then P is extended from D (hence
R[X]


also from R).


(b) If P ® D(X] is free, then P is free.
R[X]


PROOF, (a) Let m i , . . . , m t e P <g> B[X] be a BDfl-basis of P <g> B[X]-
R\x.} R\K}


Then,


P <g> BIX] = (L[2L]mi 0 • • • © L\X]mt) 0 (I[X]m\ ® • • • 0 I[X]mt} (3)


® 1B[X] (4)
R[x] [~l


I[X_]mi © • • • 0 I[X]mt C P <g> 1 B [ X ] C P <g> B[X]. (5)
R\X] l-J R(x]


^From (3) and (5), we obtain


P <8> 1B\X] = G® (I[X.]mi 0 • • • © I[X]mt) (6)


where
G = (L\X]mi © • • • © L[X_}mt) n (P <g> lBm). (7)


R[X]
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Note that G is a D[2C]-module. We claim that


G ~ P <g> D\
R(X]


Indeed, on one hand, by (6) and (4) we have


G ~ P <g> D\X]. (8)
R(X]


(9)
R\X] -


and, on the other hand, we clearly have


P ® Dm~P/HX]P. (10)


Then, since P is a projective .R[2C]-module and since R[2Q (—> B[X_] is an
injective map of .R[X]-modules, the right hand sides of (9) and (10) are
isomorphic D[2£]- modules; this proves (8).


Since G ~ P <8> D[X], then G is a finitely generated projective D[X]-
R[X]


module. By hypothesis P <S> D[X] is extended from D\ let GQ be a D-
R(*\


module such that
G~GQ®D[X]. (11)


Since there exists a retraction D[X] — > D, then


Go ^ G ® D (12)
D[X]


and, since G is a finitely generated projective D[X]-module, then GO is a
finitely generated projective D-module.


Note that L[X] is not an jR[2C]-module, and hence P ® L[X] does not
R(X]


make sense. However, B\X] is an MX]-module, hence P <8> B\X] makes


/ \
sense, and we can consider the subset P ® l^xi L[X], or more generally


V R(X_] J
the subsets HC where H is any additive subgroup of P <g) IB[X] and ^ anY


subring of -B[X]. We claim that


P ® B\X] = (P ® ls[x] J L. (13)


Indeed,


P <S>
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Now, we claim that


Go <8> I[X] ~ GI = I[X]mi 0 • • • 0 I[X\mt. (14)
D


Indeed, since GO is a finitely generated projective D-module and since I[X] °->
B[X] is an injective map of D-modules, then the canonical map G$®I[X] — >


G0 ® B[X] is injective. Hence G0 <g> I[X] ^ (Go <8> lB\x])I[X] = (Go ®
D D D D


[X_]I. Since GO is a finitely generated projective -D-module and since
D[X] •— > -B[X] is an injective map of D-modules, then the canonical map
GQ®D[X] ->• G0®B[X] is injective, hence GQ®D[X] ~ (GQ® lB[x}}D[X_}.


We therefore obtain that G 0 ® I [ X ] ~ (G0®D[X})I ~ G/, which is the first
D D


part of (14).
Now, we want to prove the second part of (14). By (3), (13) and (6), we


have


• • • + L\X]mt) 0 (I\X]rm + ••• + I(X}mL}


hence


L[X]mt} 0 (I\X]rm + •••
= GL + (/[2Qmi + • • • + /K]^)- (15)


Furthermore, by (7), we know that G C L[JC]mi + •• • + L[X_]mt, hence
GL C L[X]mi H ----- h L[X]mt. Together with (15), this implies that GL =
£[2C]™i + • • • + L[X]mt and therefore that GI = GL/ = (L[X]mi + • • • +
L[X]mt)I = I[X]mi + ---- h J[X]mt. This terminates the proof of (14).


Finally, we have
P~G0®R[X\. (16)


D


Indeed,


GO ® /ztaa = ^0 ® (^Kl 0 /Kl) - (Go ® £>[2C1) e (Go ® /[2C]


- G 0 (/[X]mi + • • • + I\X}mt) by (11) and (14)


= P ® 1BX by (6)


~ P since P


Thus, P is extended from D.


(b) By (12) and (8) we have G0 ^ (P ® D[X]} ® D. Thus G0 is free


if P ® -Df^j is free. In that case, G is also free since P ~ GO <8> -R[.X] by
D


(16). D
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PROOF OF THEOREM 3. (a) and (b) are consequences of Lemma 4.
(c) Is a consequence of (a) and Theorem 1. D


4 APPLICATIONS


If D is & domain that satisfies Property (1), then it is clear that D[Y] also
satisfies Property (1). We shall need the converse:


PROPOSITION 5. Let D be a domain, m > 0 and n > I two integers,
Y_ :— {YI, . . . , Ym} and X_ := {X\, . . . ,Xn} some indeterminates .


(a) // every P G P(D[Y^, X]} of rank r is extended from D\Y], then every
Q G P(D[X]} of rank r is extended from D.


(b) D satisfies Property (1) if (and only if) D[Y\ satisfies Property (1).


(c) If M is a D[Y^,X]-module, then M is extended from D if (and only if)
M is extended from both D[Y] and D[Xj.


(d) // every P G P(D[Y_,X]} of rank r is extended from D[Y], then every
such P is extended from D .


PROOF. Let R := D\Y], I := Y.D[Y]. Evidently, we have R = D © /.
(a) By hypothesis, every P G P(R[X]} of rank r is extended from R.


Then, by Theorem l(a), every Q G P(D[X]} of rank r is extended from D.
(b) Is a consequence of (a).
(c) Apply Lemma 2 (a).
(d) Let PQ G P(D[Y_,X] of rank r. We want to show that PQ is extended


from D. We proceed by induction on m = the number of Y{'s. If m = 0,
there is nothing to do. Thus, we can suppose m > 1.


If m = 1, let Y = Y\. By hypothesis, PQ is extended from -D[Y]; thus
there exists QQ G P(D[Y]} (necessarily of rank r) such that PQ ~ QQ ®


D(Y]
D[Y,X]. We will show that Qo is extended from D.


Let P' be any element of P(D[Y,X]) of rank r. If </?: D[Y,X] -> D[Y,X]
is the D-isomorphism defined by tp(Y] = X\, (p(X\] — Y and (p(X{] = X{
for i > 2, then there exists P G P(D[Y,X_\) of rank r such that P' ~
P ® fD[Y>X]. By hypothesis, there exists N G P(D[Y]) of rank r such


that P ~ N <g> D[Y,X]. Then, setting <// := the restriction of (p to D[Y],
D(Y]


we have


D[Y,X}}
I


£>[y]


D[Y] I D[Y,X]


D[X,Y]
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since the following diagram commutes:


D[Y] —> D\Y,X]
^'•1 4- v


D{Xl] —» D[Y,X]


(here, the horizontal arrows are the natural embeddings). Thus, P' is ex-
tended from D[Xi] (from the D[Xi]-module N ® v'D[Xi]), hence a fortiori


D(Y]
from D[X_}.


Thus, every P' eP(D[Y,X]} of rank r is extended from D[X]. Then, by
(a), every Q' £ T^DJV]) of rank r is extended from D. In particular, QQ is
extended from Z) as we wanted, and this finishes the proof for m = I .


Now, suppose that m > 2. By the case m = 1 applied to the domain
-D[Y2, • • • ) " ^ m ] > ^0 is extended from D[y2, • • • , ^mj- By the case m — 1 ap-
plied to the domain -DjYi], PQ is extended from ^[^i], hence a fortiori from
D[yi,X]. Being extended from both D[F2, • • • , Yn] and from D[Yi,X], then
by Lemma 2(a), PQ is extended from D. D


REMARK 6. 1) Let D be a domain and X,Y two indeterminates. Let
P € PppC^]), with P extended from D(Y\. In view of Proposition 5(d),
one could ask whether P is necessarily extended from D. The answer is
negative: indeed, if A: is a field, T an indeterminate and D := /c[T2,T3], then
Schanuel has shown that J := (T2,1 + TY)D[X,Y] is a projective D[X,Y}-
ideal that is clearly extended from D[Y], but that is not extended from D[X]
(see [1, p.209]); then, of course, J is not extended from D either.


2) When m — n, Part (d) of Proposition 5 could be obtained as a conse-
quence of Part (a). But, when m ^ n, it requires a proof.


Theorem 3 allows us to give a big class of domains that satisfy Property
(1). Before doing that, we recall some definitions.


DEFINITIONS. A domain D is a Priifer domain if Dp is a valuation domain
for every prime ideal p or, equivalently, if every finitely generated ideal of D
is invertible. The domain D is a Bezout domain if every finitely generated
ideal of D is principal.


A domain D with quotient field K and integral closure D is (2,3)-dosed
if it satisfies the following property:


C e K, f e D, (3 e D =» £ e D.


An extension D c—>• A of domains is geometrically unibranched if for every
prime ideal p of D, there exists a unique prime ideal p' of A lying over p and
the residue fields of Dp and Ap/ are equal. The domain D is seminormal if
it satisfies the following property:
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A domain, D C A C D, D <-^ A geometrically unibranched => D — A.


It is known that a domain D is (2, 3)-closed if and only if D is seminormal
(see [1, Theorem 1 p. 209]).


COROLLARY 7. Let E C F be an extension of rings with F a Bezout do-
main. Let u > 0; v > 0, r > 0, n > 0 be integers and Z := {Z\, . . . , Zu},
T:= {Ti,...,Tv}, y := {yi,...,yr} ; X_:= {Xi,...,Xn} some finite sets of
indeterminates. Let R := E[Z] + (Y_)F\Z.,T,Y]. Then,


(a) R satisfies Property (1) if and only if E satisfies Property (1).


(b) R satisfies Property (1) if E is a Priifer domain.


(c) In case E is a domain of Krull dimension one and valuative dimension
one, R satisfies Property (1) if and only if E is (2,3)-dosed.


(d) For every integer n > 0, every P 6 P(R[X]} is free if E is a Bezout
domain.


PROOF, (a) Set L := F[Z,T], / := (Y)F[Z_,T,Y], B := F\Z.,T,Y], D : =
E[Z]. Evidently, we have D C L, R = D ® I, B = L® I. If R satisfies
Property (1), then by Theorem l(a), E[Z] satisfies Property (1) and by
Proposition 5(b), E satisfies Property (1).


Now, we look at the converse. Since F is a Bezout domain, then by [6,
Theorem b, p. 166], for any integer n > 0, every M <E P(F[Z.,T,Y.,X]) is
free. Since E satisfies Property (1), then clearly so does E[Z]. Hence, by
Theorem 3(a), R satisfies Property (1).


(b) If E is a Priifer domain, then by [6, Theorem b, p. 166], E satisfies
Property (1) and, by (a), R satisfies Property (1).


(c) If E is a domain of Krull dimension one and valuative dimension one,
then by [4, (25.13) p. 354] the integral closure of E is a Priifer domain and
by [1, Theorem 2 and Theorem 1], E satisfies Property (1) if and only if
E is (2,3)-closed. Then, by (a), R satisfies Property (1) if and only if E is
(2,3)-closed.


(d) If E is a Bezout domain, then by [6, Theorem b, p. 166], for any
integer n > 0, every Q G P(E\Z_,X]) is free. Thus, by Theorem 3(b), every
P G P(R[X]) is free. D


Wanting some specific examples out of Corollary 7, we can give the fol-
lowing:


EXAMPLE 8. Let w,u,r ,n ,Z,T,H,^be as in Corollary 7. Then,
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(a) Ri := 1[Z_] + (y)Q[Z,T,yj is a domain such that, for every n > 0,
every P £P(Ri(X_\) is free.


(b) R2 := Z[el27r/23][Z] + (y)Q(el27r/23)[Z, T, Y] satisfies Property (1) but
possesses some projective ideals that are not free. Indeed, Z[et2rr/23] is
a Dedekind domain (hence a Priifer domain) that is not a PID, hence
that is not a Bezout domain.


We now turn our attention to domains of Krull dimension one. Before
that, we observe that in this context of relating Property (1) with (2,3)-
closeness of a domain A, we can restrict ourselves to the study of the quasi-
local domains (i.e., domains that have only one maximal ideal). Indeed, if
A is a domain that satisfies Property (1), then AM satisfies Property (1)
for every maximal ideal Jv( by [9, Proposition 2 p. 54]; conversely, if AM
satisfies Property (1) for every maximal ideal .M, then A satisfies Property
(1) by Quillen's localization theorem [7, Theorem 1, p. 169]. Also, A is
(2,3)-closed if and only if AM is (2,3)-closed for every maximal ideal .M.


PROPOSITION 9. Let (A,M) C (B,M) be two quasi-local domains that
admit a field of representatives and that have the same maximal ideal M.. If
B satisfies Property (1), then A satisfies Property (1).


PROOF. Let k be a field of representatives for A and L a field of represen-
tatives for B. We have B — L ® M and A — k © M. Let n > 0 be any
integer and X := {X\,..., Xn} a set of indeterminates. By hypothesis, every
M €. P(B[X]} is extended from B\ since B is quasi-local, this implies that
every M e P(B[X]) is free. Since k is a field, then by Quillen-Suslin's result,
every Q e P(k[X\) is free. Thus, by Theorem 3(b), every P e P(A\X\) is
free (equivalently is extended from A}. Thus A satisfies Property (1). D


We now exhibit some quasi-local domains of Krull dimension one and
arbitrary valuative dimension, that satisfy Property (1).


EXAMPLE 10. Let r be an integer > 0 or r — co. let L\k be a field
extension of transcendance degree equal to r. Let B be any quasi-local
Bezout domain of Krull dimension one and of the type B ~ L 0 M., where
M is an ideal (for example, B = L[Y](Y) and M = YL\Y}(Y), or B = L[[Y}]
and M = yL[[y]]), and let A = k ® M.


The domain A has Krull dimension one and valuative dimension equal
to r. Furthermore, B satisfies Property (1) by [6, Theorem b, p. 166]. Thus,
A satisfies Property (1) by Proposition 9.


Note that A is (2,3)-closed and that it is integrally closed if and only if
k is algebraically closed in L.


We are lead to make the following conjecture:
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CONJECTURE A: Let A be a quasi-local domain of Krull dimension one.
Then, A satisfies Property (1) if (and only if) A is (2,3)-closed.


In view of Proposition 9, we make the following weaker preliminary con-
jecture:


CONJECTURE B: Let A be a (2,3)-closed domain of Krull dimension one.
Suppose that the integral closure A of A satisfies Property (1). Then, A
satisfies Property (1).


REMARK 11. If A is a Priifer domain with quotient field K, then every ring
B between A and K is a Priifer domain and therefore satisfies Property (1).
In view of this result, one could ask the following question: if A is a domain
that satisfies Property (1) and if B is any ring between A and its quotient
field, does B satisfy Property (1)?


It is easy to see that the answer is negative, even if A is a one-dimensional
noetherian local domain. Indeed, let A; be a field, Y an indeterminate, A
the one-dimensional local ring k + Y(Y + l}k[Y}(Y)\j(Y+i) and B the ring
j4[y~2,y~3]. The integral closure A of A, which is the ring k[Y]^Y}\j(Y+i)^
is a Bezout domain. Furthermore, it is easy to see that there is no local ring
between A and A other than A, hence A is seminormal. Then, A satisfies
Property (1) by [1, Theorem 3 p. 213]. On the other hand, the overring B
is not (2,3)-closed and therefore does not satisfy Property (1).


If A is a Priifer domain and Y is an indeterminate, then by [6, Theorem b,
p. 166], we know that A[Y] satisfies Property (1). One may ask whether any
ring B between A[Y] and its quotient field satisfies Property (1). Once again,
the answer is negative. Indeed, if m is a nonzero nonunit element of A and M.
is a maximal ideal of A that contains m, then B :— AM[Y, y2/m2,y3/ra3]
is an overring that is not (2, 3)-closed, hence that does not satisfy Property
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INTRODUCTION.


We start with an example. Let p, represent Lebesgue measure on the
interval [—1,1] and let B denote the corresponding set of Lebesgue mea-
surable subsets of [—1,1]. Let A denote the subset of B consisting of those
Lebesgue measurable subsets of [—1,1] which are symmetric with the origin;
i.e., Y e B is in A if for each x € [-1,1], x £ Y if and only if —x € Y.
Now any real valued function whose domain is symmetric with respect to
the origin can be written uniquely as a sum of an even function and an
odd function, one simply uses the functions fe(x) = (f(x] -f /(—a:))/2 and
fo(z) = (/(x) — /(—x))/2. If / is integrable on [—1,1], then we have that
fY f dp, = fy fe dn since the integral of an odd (integrable) function is zero
on any measurable set which is symmetric with the origin. In such a case,
fe is said to be the "conditional expectation of / with respect to .A". We
will revisit this example in the second section.


The notion of conditional expectation is valid for any pair of comparable
complete sigma-fmite sigma-algebras on a measurable space X. Given X
and two distinct comparable complete sigma-fmite sigma-algebras A C B
with regard to some sigma-finite measure ^ on X. Then for each p > I
including p — oo and each function / 6 LP(X, B, jx), there is a unique (up to
differing on sets of measure zero) A-measurable function £(/) e I^(X, A, p.]
such that for each Y G A with p,(Y) < oo, Jy f dp, = fy £(/) dfj, [see for
example [1, page 916]]. While the conditional expectation can be defined
for any integrable function, we shall restrict to those functions which are
essentially bounded on X; i.e., those measurable functions / for which there
exists a real number r such that the measure of the set {x G X | |/(x)| > r}
is zero. The primary reason for doing so here is that the set of essentially
bounded functions forms a commutative ring with identity—in our case, the
rings L°°(X.,B,IJ,) and I/°°(X, A, //). Moreover, i f / is essentially bounded
and #-measurable, then £(/) is essentially bounded (and, of course, A-
measurable). Thus £( ) is a function from the ring L°°(X, #, fj,} to the ring
I/°°(X, A, n}. Note that if/i(X) = oo, such functions need not be integrable,
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but the conditional expectation still exists. For a B-measurable set Z, we
let Xz denote its corresponding characteristic function. The function £ has
several very nice properties. Here are several that we will explore in a more
general setting later.


(A) For each / <E L°°(X, #,JLI) and each g E L°°(X,.4,^), not only is
£(g)=gbut£(gf)=9E(f).


(B) If f ( x ) > 0 for all x E X (up to the usual "set of measure zero"
restriction), then £(/)(&) > 0 for all x,


(C) For each B measurable set Z, the support of £ ( X z ) contains Z.
(D) Let Z denote the support of /. If f(x] > 0 for each x E Z, then £(/)


is positive on its support. Moreover, £(/) and £(Xz] have the same
support.


(E) If € ( f X Y ) = 0 for each Y E B, then / - 0.
(F) If Y E B contains the support of / and £ ( f ) X Y = 0, then £(/) = 0.


In terms of measurable sets we have the following.


(G) For each set Y E B, there are unique sets Y& and Y# in A such that
(i) y# C Y C y#, (ii) if Z E .A is such that Z C 7, then Z C y#, and
(hi) if W E A is such that Y C W, then y# C W.


(H) For each y E #, y^1 is the support of £(Ay) and Y# is the complement
of the support of £(1 — XY).


The set Y# is the intersection of all sets in A that contain Y and the set
y# is the union of all sets in A that are contained in Y. A good reference
for the topic is the book by M.M. Rao, [7]. In particular, see [7, Chapter 7]
for statements and proofs matching up with the properties listed above.


From here on we drop the reference to X and \JL and simply write L°°(B}
and L°°(.A) in place of L°°(X, B,n) and L°°(X, A,n).


One of the nice ring theoretic properties of the ring I/0 0(B) is that its
total quotient ring is von Neumann regular. Another is that each finitely
generated ideal of L°°(B) is principal. Suppose I = (/,<?) is a two-generated
ideal. Set h(x] = m a x { \ f ( x } \ ^ \ g ( x ) \ } . Since f , g E L°°(jS), so is h. Let
y = {x G X | \f(x)\ > \g(x}\}. Then h - s g n ( f } X Y f + sgn(g}(l-XY}g E /.
We also have that h divides both / and g. For those x for which h(x] is not
zero, we have h(x) > \f(x)\ and h(x) > \g(x)\ so that -1 < f ( x ) / h ( x ) < 1
and —1 < g ( x } / h ( x ] < 1. So in this case, (f/h)(x) — f ( x } / h ( x ) and
(g/h}(x] = g ( x } / h ( x } . As h(x) — 0 implies both f(x] and g(x] are zero,
we can simply declare (f /h)(x] = (g/h}(x] — 0 when h(x] — 0. Thus both
/ / h and g/h denote elements of L°°(^) and I = (h}. Note that h(x) > 0
for each x.


Now let R C S be a pair of reduced rings with the same identity such that
the total quotient rings, T(R) C T(S), are von Neumann regular. Further
assume that R contains each idempotent of T(R) and that S contains each
idempotent of T(S). Denote the set of idempotents of R by ER and of S by
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ES- We say that an jR-module homomorphism 8 : S -» R is a conditional
ring expectation on S if £ satisfies the following:


(I) £(r) = r for each r G R (equivalently, £(1) = 1).
(II) For s 6 £, £(se) = 0 for each e G ES implies s = 0.


(Ill) For / G ES, £(/) = 0 if and only if / - 0.


What we want to see is how many of the properties of conditional expec-
tation for the rings of L°° functions carry over to this general ring theoretic
setting.


First note that since both T(R) and T(S) are von Neumann regular and
we have required that R and S contain all possible idempotents we have
that for each r G R (s G 5), there is an idempotent e G ER (f G ES) and
a regular element t G R (v G S) such that r = re = te (s — sf = vf). For
e, we use the fact that T(R) (T(S)) is von Neumann regular to produce an
element a G T(R) (b G T ( S ) ) such that r2a = r (s2b = s). Then e = ra
(f = sb) is idempotent with r(l — e) = 0 (s(l — /) = 0) and £ = r + (1 — e)
(u = 5 + (1 — /)) is a regular element for which r = te (s = vf). We will
refer to e (f) as the support idempotent of r (s).


Examples exist to show that properties (II) and (III) of a conditional ring
expectation are independent [4, Remark 2.1 (b) and (d)]. In particular, note
that because of condition (II), we cannot have a conditional ring expectation
from S = R[X] to R since the only idempotent elements of R[X] are the
idempotents of R [see for example [2]]. We of course have the rather trivial R-
module homomorphism from R[X] to R that simply maps each polynomial
to its constant term and therefore does satisfy (I) and (III).


CONDITIONAL RING EXPECTATIONS.


Our first theorem involves just the idempotents. It matches up with
properties (G) and (H) above. It appeared first in [4]. We provide a proof
to introduce some of the techniques that will be used later.


THEOREM 1. Let / G Es. Then there exist unique idempotents f* and
/# in ER such that


(i) M = /#, /#/ = I
(ii) If g G ER and fg = /, then f#g = f#


(iii) If h G ER and fh = /i, then f#h — h


PROOF. Let g G ER be such that €(f)g = £(/) and £(/)(! - g) = 0.
Since 1 — g is in #, £(/)(! — g) = 0 implies £(/(! — g)) = 0. As a product
of idempotents is idempotent, we have /(I — g) = 0 by property (III) of
a conditional ring expectation. Hence / = f g . Now let /# G ER be the
idempotent for which £(/) = f^t for some regular element t G R. Obviously,
£(/)/# = £(/). Hence //# = /. We also have gf#t = f#t. As t is regular
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For /# we apply what we have so far to 1 — / and obtain the idempotent
(1 - /)# for which (i _ / ) ( !_/)# = 1 - / and (1 - f ) # e = (1 - /)# for each
idempotent e e ER such that (1 - f)e = (1 - /). Set /# = 1 - (1 - /)#.
From (l- /)( l- /)# = I-/ we first get (l-/)#-/(l-/)# = I-/- Then
by rearranging we get / - /(I - /)# = !-(!- /)# and thus //# = /#. To
complete the proof let h £ ./?# be such that f h = h. Then we have h(l—f) —
0 in which case (1 - h}(\ - /) = 1 - /. But then (1 - /)#(! -h) = (l- /)#
which implies that h(l — /)# — 0 and therefore /i/# = /i.


The uniqueness of /# and /# is taken care of by conditions (ii) and (iii).
If e 6 .E/2 is such that ef = f and for each g e ER with g/ = / we have
eg = e. Then we simply apply condition (ii) to e with g — /# to have
/#e = /# and then to /# with g = e to have /#e = e. A similar proof
shows that /# is unique. 4


Note that for idempotents e and /, we can set e < / if ef = e. With
this notion (i)-(iii) in Theorem 1 match up with the subset properties in
the I/00 setting. Also note that once we know we have a conditional ring
expectation from S to R, the idempotents /# and /# are independent of the
expectation (assuming there is more than one). Essentially /# is the unique
largest idempotent of R that is less than or equal to / and /^ is the unique
smallest idempotent of R that is greater than or equal to /. Moreover, if
£' : S — > R is a conditional ring expectation on 5, then £'(/) = f ^ £ ' ( f ) and
r — (1 — /# )+£ ' ( / ) is a regular element of ,R. We will give an example of
how to construct various conditional ring expectations for a particular pair
of rings R C S [see the remarks after Examples 10 and 11].


Our next theorem corresponds to property (F) in the L°° setting. The-
orem 1 required only properties (I) and (III) of a conditional (ring) ex-
pectation and our assumption that R and S are saturated with respect to
idempotents. The same can be said about Theorem 2.


THEOREM 2. For s G S and / <E.£5, if sf = s and £(s)f = 0, then
£(s )=0 .


PROOF Obviously, if / 6 ER and sf = s, then £(5) = £(sf) = £ ( s ) f .
Thus we may assume / is not in R. We also have s/# = s since //# = /.
Hence £(s) = £(s)/#. Consider £(£(s)/). Since £(s) e H, we have 0 =
£(£(s)f) = £(s)£(/) = £ ( s ) f # v for some regular element v £ S. Hence


Our next result is specific to the L°° functions, we have not been able to
find a 'natural way to extend it to the general setting. The basic notions
expressed go back at least to S.-T. Moy, [6], where they are developed for
L1 functions on a probability space.


THEOREM 3. Let R = L°°(A) C S = L°°(#) with A C B complete
sigma-finite sigma-algebras and let /, g G 5.
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(1) If g(x) > f(x) > 0 for each x G X, then g divides / and £(g) divides
£(/)•


(2) If g(x) > 0 on its support and g divides /, then £(g) divides £(f).


PROOF. That g divides / is essentially what makes each finitely generated
ideal of S (and of R) principal. As we did above, simply set s(x) = f(x]/g(x)
whenever g(x] ^ 0 and set s(x] = 0 when g(x) = 0. Then for each a;,
0 < s(x) < 1. Hence s € S and we have / = sg.


Since £ is an .R-module homomorphism, £(g — /) = £(g] — £(/). As
9(x) > l(x) > 0, £(g)(x) > 0 and £(f)(x) > 0 and €(g)(x) - £(f)(x) =
£(9 ~ f)(x) > 0- Thus we have £(g)(x) > £(f)(x) > 0. As in S, this is
enough to guarantee that £(g] divides £(/) as elements of R.


Now assume g divides / and g(x) > 0 on it support, Y. Obviously, the
support of / must be contained in the support of g and we may assume /
is not the zero function. We first consider the case where f(x] > 0 on Y,
so it is positive on some set of positive measure. Write / = sg for some
s E S. We may assume the support of s is contained in y, in which case
/ and s have the same support. Let 6 = ||s||oo- Then ||/||oo = ll s<?lloo <
||s||oo|M|oo = &l|p||oo- Consider the function f / b . Since 6 is a constant
||//&||oo = H/Hoo/fr < Nice- Hence f/b e S. Now 6 > s(x) > 0 for all
x. Hence f ( x ) / b < f(x)/s(x) = g(x] whenever s(x] is not zero. Thus
0 < f ( x ) / b < g(x) for all x. By (1), g divides f/b and £(g) divides £(f/b).
As b is a positive constant, we have £(f/b) = £(f)/b. Write £(f)/b = r£(g)
for some r £ R. Then we have £(/) = br£(g] with br E R since b is a
constant.


For arbitrary /, simply note that we can split / into its positive and
negative parts, /+ and /"" respectively. Let W denote the support of /+


and let Z denote the support of /~. Then /"*" = Xwf and /~ = %zf- So g
divides both /+ and /". From above we have that £(g) divides both £(/+)
and £(-f-) = -£(/"). It follows that €(g) divides £(f) = £ ( f + ) + £ ( f ~ ) 4


An easy corollary to Theorem 3 is the following result about principal
ideals in the L°° setting. In general it is not known under what circumstances
this result can be extended to conditional ring expectations. Later we give
an example to show that the image of a principal ideal need not be principal.


COROLLARY 4. Let R = L°°(,4) C S = L°°(B) with A C B complete
sigma-finite sigma-algebras. If I is a principal ideal of 5, then there is an
element be I such that bS -I and £(I) = £(b)R.


PROOF. Let 6 e I be such that bS = I. Then sgn(b) is in S and
we have sgn(b)b(x) > 0 for each x. Obviously (5pn(6))26 = 6. Hence
sgn(b)bS = bS = I. Thus we may assume b(x) > 0 for each x. By Theorem
3, each element / G / is such that £(b) divides £(f). Hence, we have
£(/) = S(b}R.+







354 Lucas


LOCALIZING SETS AND IDEMPOTENTS.


We revisit out original example of a conditional expectation. Recall the
setting: fj, represents Lebesgue measure on the interval [—1,1], B is the
corresponding set of Lebesgue measurable subsets of [—1,1] and A is the
subset of B consisting of those Lebesgue measurable subsets of [—1,1] which
are symmetric with the origin. For / G L°°(B), £(/) = fe-> the even part
of /. Consider the set Y = [0,1]. For each / G L°°(A), if we know the
value of f(x) for each x G [0,1], then we know it for each x G [—1,1]
since each function in L°°(A) is even. Moreover, ignoring the value of /(O)
(which is perfectly okay since finite sets have measure zero), we know how
to build a ^-measurable function g to get an (essentially) odd function for
which g(x) — f(x] when x > 0 and g(x) = —f(x] when x < 0. Thus for
each h G L°°(jB), with h(x) = 0 for each x G [—1,0], there is a function
/ G L°°(A] for which f ( x ) — h(x) for each x G [0,1] and there is a function
j G L°°(B) with j ( x ) — h(x] for each x G [0,1] and j ( x ) = —h(—x] for each
x G [—1,0). Hence when we consider the product of an arbitrary function r
in L°°(B} with the characteristic function for the set [0,1], it is impossible
to tell whether r is in L°°(A) or in the kernel of £, or in neither. In this
setting the set [0,1] is referred to as a "localizing set" for the pair A and #,
or is simply said to "localize" A [3, page 112]. This example is due to A.
Lambert and B. Weinstock [5], a similar one can be found in [1].


More generally we have the following for a comparable pair of complete
sigma-finite sigma-algebras A C #, a nonempty subset Y in B is said to
be a localizing set for the pair A and B if for each set Z G B, there is a
set W G A such that Y f } Z = Y f ] W [3, page 112]. Obviously, one may
restrict the definition to only considering subsets of Y and simply say that
Y is a localizing set if for each Z C Y there is a set W G A such that
Z = Y P) W. In [3]. Lambert gives several ways of characterizing when a set
is a localizing set, several of these were later generalized in [1]. We collect
some of those characterizations in the next theorem, and give a further
generalization to the L°° case for spaces of infinite measure. Note that all
five of the statements in Theorem 5 are known to be equivalent for spaces
of finite measure (see [3] and [1]).


THEOREM 5. Let R = L°°(A) C S = L°°(B) with A C B complete
sigma-finite sigma-algebras and let Y be a nonempty member of B. Then
the following are equivalent.


(1) Y is a localizing set for A and B.
(2) For each Z C Y, Z* f}Y = Z.
(3) Each subset Z G B of Y with positive measure is a localizing set for A


and£.
(4) For each function / G S for which fXY = /, £(f)Xy = f £ ( X y ) .
(5) XYS = XYR.
(6) For each / G S there is a function g G R such that / X y — gXY.
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PROOF. The equivalence of (1) through (3) is due to Lambert [3, Propo-
sition 1.4]. Lambert also proved that Y is a localizing set if and only if for
each function / E |J #*(#), £(f)Xy = f £ ( X Y ) . Obviously, (5) and (6)


l<p<oo


are equivalent. Also (6) implies (1) since for each set Y E #, XZXY — 9%Y
for some g E R implies that the support of g must intersect Y in the set
Z f ] Y . Corollary 1.6 of [1] establishes that (1) implies (6) in the (somewhat)
restricted case that / E S is also integrable on the set Y.


[(1) -4 (4)] Assume Y is a localizing set for A and B and let / E S be such
that fXy = /; i.e., / E XYS. By Theorem 3, £(XY) divides £(/). Thus we
may write £(/) — r8(XY] — 8(rXy] f°r some r E R. Let Z be the support
of/. Then Z* is the support of 8 ( X Z ) , £ ( f ) X z # = £(fxz#] = £(f) (since
Z C Z#) and AV^# = Xz (since Y" is a localizing set). It follows that
£(/) = rZ(XY)Xz# = r8(XYXz#] = r£(Xz) = 8(rXz). Thus £(f)XY =
r£(;tz)AV = rXz8(XY). It suffices to show that rXz = f.


We at least have 8(f — rXz) = 0. By property (C) of a conditional
expectation, we can show equality of / and rXz by simply showing that
for each characteristic function Xw with W E B, £((f — rXz}X\^) = 0.
Of course, as the support (if any) of / — rXz is contained in Z, we need
only show this for those W which are subsets of Z. So let W E B be a
subset of Z and consider £((/ — rXz)Xy/}- By (3), Z is also a localizing
set so we have fX\y = fZXw# = f Xw# and rXzXw — rXzXw#. Hence
8((f-rXz)Xw) = Z(5Xw#-rXzXw#) = Z(f-rXz)Xw# = 0 as desired.
Therefore £(f)XY = f £ ( X Y ) .


To complete the proof we show that (4) implies (6).


[(4) -> (6) (& (5))] Assume the statement in (4) holds and let / G S. Since
we only need fXY = gXY for some g G R, we may assume fXY = /, Thus
we have £(f)XY = f £ ( X Y ) . By Theorem 3, we also have £(/) = r£:(^y) for
some r E .R. Since the support of £(/) is contained in Y#, £(/)<


:fy# = £(/).
Moreover, without loss of generality we may assume rXY# = r, and therefore
r(l - AV#) = 0. Let t = (1 - ^y#) + £(XY). This is a regular element of R
and we have £(/) = rt. Moreover, f £ ( X Y ) - ft. Thus £(/)/t = r G # and
rXY = />


Returning to the interval [—1,1] it is easy to see that any set W of positive
measure which has the property that x G W implies — x is not in W (for
x 7^ 0, of course) will be a localizing set. There are fairly simple examples
of pairs A C B which have no localizing sets. One such example is to let
B denote the (two-dimensional) Lebesgue measurable subsets of the unit
square [0,1] x [0,1] and let A denote the sets of the form A x [0,1] for (one-
dimensional) Lebesgue measurable subsets A of [0,1]. In this case, Y& is the
set consisting of the union of the "vertical stripes" { ( x , y ) | 0 < y < l } where
x is such that the set [z E [0,1] | (x, z) E Y} has positive (one-dimensional)
Lebesgue measure [see [1, Example 2.1]].
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The name "localizing set" turns out to be linked to the ring theoretic
notion of localization. We will define it in terms of idempotents in such a
way to match up with the set theoretic definition in terms of intersections
given above in the measure theoretic setting. Specifically, we say that a
nonzero idempotent / E ES localizes R and S if for each idempotent g E E$
there is an idempotent e E ER such that gf = ef. As above, it suffices to
restrict to those idempotents g E ES for which gf = g (so g < /).


We need to set a little notation before we give a ring theoretic character-
ization of localizing idempotents.


For an idempotent / E ES, let t = (1 - /#) + £(/), the "canonical"
regular element of R for which £(/) = tf#. Set F = { l , t ,£ 2 , . . . } and
form the rings Rp and Sp- Now define a map £/• : f S p —>• fRp by setting
£ f ( s / t n ) = f£(s)/tn+l [for n > 0].


THEOREM 6. For / 6 ES, the map £/ is an R-module homomorphism
such that £j = £/. Moreover, £ f ( s / t n ) = 0 if and only if £(s) = 0.


PROOF. Let s/tn and u/tm be elements of /S> and let a and b be
elements of R. That £f is well defined follows from the fact that t is a
regular element of R. [So, in particular, £ f ( s t k / t n ) — f£(stk)/tn+l —
ftk£(s}/tn+l = f£(s)/tn-k+l = £f(s/tn-k} for 0 < k < n] Consider
£f((as/tn}-i-(bu/t'm)). Without loss of generality we may assume 0 < n < m.
Thus (as/tn} + (bu/tm) = (astm~n + bu)/tm and we have £f((as/tn) +
(bu/tm))=Sf((astm-n + bu}/tm} = f£(astm-n + bu}/tm+l = (fatn-m£(s) +
fb£(u))/tm+l=fa£f(s/tn) + fb£f(b/tm}. Hence £f is an .R-module homo-
morphism.


To see that E2
f = Ef, start with £ 2


f ( s / t n ) = 8 f ( £ f ( s / t n ) ) . Now, by the
definition of £/, wehave£/(£/(a/tn)) = £ f ( f £ ( s } / t n + l } = f 8 ( f £ ( s } ) / t n + 2 =
/£(5)£(/)/r+2 - f£(s}/tn+l since t = (!-/*)+£(/) and £(/)(!-/#) = 0.
Thus £j = £f.


For the final conclusion simply recall that one of the properties of a con-
ditional ring expectation is that if an element v G S is such that ev — v and
e£(v] = 0 for some idempotent e E ES, then £(v) — O.f


For each idempotent g E -Es, let Jg — {x E ker(£}\xg — 0} and Ig =
{x E ker(£}\£(xg) — 0}. Obviously, if x E Jg implies x E /5. For localizing
idempotents we can say even more. Many of these statements are analogous
to statements in the L°° and/or Lp setting [in particular, see [1]], but several
appear here for the first time.


THEOREM 7. Let JR, 5, £, /, F and £/ be as above. Then the following
are equivalent:


(1) / localizes R and S.
(2) For each g E Es, gf = g implies g = g*f.
(3) For each g € Es, gf = g implies £(0) = ##£(/)-
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(4) For each g G Es, gf = g implies £(g)£(f) =
(5) J^f = (0)
(6) Jf = If


(7) For each pair 5, it G fS, £(s)u — s£(u).
(8) For each s G fS, £(s)/ = s£(f).
(9) For each pair of elements s,u G /5, £(su)£(f) = £(s)£(u).


(10) For each 5 G /S, £(s)2 = £(s2)£(f).
(11) For each 5 G /S and each integer n > 2, £(s)n = £(sn)£(f)n-1.
(12) For each integer n > 1 and each product ]~[si of n elements of /5,


n *(*) = £(n*) wr-1-
(13) For each integer n > 0 and each s G fS, s£(s)n = f£(sn+l)£(f)n-\


with £(f)° = /#.
(14) /SF - /flF.
(15) £/ injective.
(16) For each x G /S>, £/(z)/ = &£/(/)•
(17) The map a : f^Rp ->• /•$> defined by a(/#r) = /r is surjective


(moreover, it is a ring isomorphism)


PROOF. With 17 statements, the scheme for the proof is a bit compli-
cated. Basically what we will do is show (1) through (4) are equivalent,
establish a large loop of successive implications (4) -> (3) — > (5) — > (6) — >•
(7) -» (8) -> (9) ->• (12) -» (11) -»• (10) -> (4) (not quite in this order,
for example, we actually show (5) <— (6) and (5) — >• (7)), two small loops
of implications (8) -> (13) ->• (3) -4 (8) and (8) -> (14) ->• (15) ->• (5) ->•
(8) (the latter implication in each small loop by way of the large loop), and
two simple equivalences (8) «— (16) and (15) <— (17). In some instances an
equivalence will be verified rather than only an implication in one direction.


A few of the implications are obvious. In particular (7) implies (8), (12)
implies (11), (11) implies (10), (10) implies (4), and (9) implies (10). All
but (9) directly implies (10) will be used in our proof.


[ ( ! )«— (2)] Let g e ES. Obviously, gf = ef for some idempotent e E ER
if and only if (gf)f — ef. Hence the statement in (1) is equivalent to the
statement that for each idempotent g G fS there is an idempotent e G ER
such that g = ef. Thus we have (2) implies (1). For the reverse implication
we simply make use of Theorem 1. Write g = ef for some idempotent
e G ER. Then g = ef = efg = eg. Thus we must have eg& = g#. The
result now follows from the fact that gg^ — g.


[(2) -> (3) -> (4) -»• (3) -> (2)] If g = g#f for each g < /, then we also
have £(g] = £(g^f) = g^(f)* So (2) implies (3). Now multiply both sides
of this equation by g to g£(g) = gg^£(f) and apply £ to both sides. As
£(g) and £(f) are in R and gg# = g , we obtain £(g)2 — £(g)£(f). So (3)
implies (4). In this equation we may replace £(g] by rg# for some regular
element r G R to obtain rg#£(g] = rg&£(f). As r is regular we may cancel
it from both sides to have £(g) = g^£(g) — <?*£(/). Hence (4) implies
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(3). Finally we start with the equation £(g) — g ^ £ ( f ) and consider the
idempotent e = g#f - g. Now £(e) = £(g*f - g) = g*£(f] ~ £(g) = 0 and
therefore e = 0 by condition (III) of a conditional ring expectation.


[(3) —>• (5)] Assume g = g#f for each idempotent g < f and let s G Ji_/.
Thus £(s) = 0 and s(l — /) = 0, so s — s f . Since s = sf it suffices to
show that £(gs) = 0 for each idempotent g < f . For such an idempotent
g we have sg = sfg# = sg#. Hence £(sg) = g#£(s) = 0 since g# is in R.
Therefore s = 0 by condition (II) of a conditional ring expectation.


[(5) <— (6)] First note that Jg C Ig for each idempotent g G ES- If
Ji_/ = 0 and 5 G //, we have £(s) = 0 and £(sf) = 0. As s/(l - /) - 0, sf
must be in Ji_/. But then sf = 0 which implies 5 G J/. On the other hand,
if If — Jf and u G Ji-f we have £(u) = 0 and u(l — /) = 0. But the latter
implies that u = u/ and we have u G //. Hence n = u/ = 0 as desired.


[(5) —>• (7)] Assume Ji_/ = (0) and let s,u G fS. Consider the element
£(s}u — s£(u}. This is obviously an element of f S and therefore it is anni-
hilated by (1 — /). But since £(a£(b)} — £(a}£(b] for each pair a, b G S1, we
also have that £(£(s}u — s£(u)} = 0. Hence £(s)u — s£(u] is in J±_f and
therefore £(s}u = s£(u).


[(8) -> (9)] Assume that E(s)f = s£(f) for each s G /S and let s,u G /S.
Then we have £(s)f — s£(f). Now simply multiply both sides by u and
apply £ to get £(,s)£(u) = £(su)£(f) since £(£(s)w) = £(s)£(u) and uf = u.


[(9) ->• (12)] Assume £(su}£(f] = £(s}£(u) for each pair s,u G /S. By
way of induction assume that the statement in (12) holds for all products
of m elements of f S when 2 < m < n — 1 and let si, 52, • • • sn G fS be n
not necessarily distinct elements of fS. We have £(si(s2S3 • • • sn))£(/) =
^(si)^(52s3 • • • sn). Replace £(s2s3 • • • sn) by ^(s2)<^(53) • • • £(sn)£(f}n~''2


to obtain the desired equality £(siS2 • • • sn}£(f}n~~l = £(si}£(s<2) • • • £(sn).
Combined with the "obvious" implications given above, this completes the
"large" loop.


[(8) -» (13)] Let s G fS and assume £(u)f = u£(f). for each u G fS.
First we show s£(u) — f £ ( s u ) for each u G fS. We have £(u)f = u£(f)
and £(su)f = su£(f). Multiply both sides of the former by s and note that
sf — s so we have s£(u) = s£(u)f = su£(f) — £ ( s u } f . This takes care
of the case n — 1. We complete the proof using induction on n. Assume
the result holds for each positive integer m < n. Then for m = n — 1 we
have s£(s}n~l = /£(sn)£(/)n~2. Applying £ to both sides yields £(s)H =
£(sn)£(f)n~l. Now multiply both sides by s and apply the general rule
above that s£(u) — f £ ( s u ) with u = sn to obtain the desired equality
s£(s)n = s€(sn)€(f)n-1 = f£(sn+l}£(f)n~l.


[(13) —>• (3)&(4)] Assume that for each positive integer n and each element
s G /S, s£(s)n - /^s71-*-1)^/)"-1 (with £(/)° = /*). Let g G /S be
idempotent. Then we have </£(</) = f £ ( g 2 ) = f£(g}- Now either apply £
and rewrite to obtain the equation in statement (4) or do as in the proof
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of (4) implies (3) and replace E(g] by rg& for some regular element r 6 -R,
then cancel r which leaves us with g — gg# = fg^. This is enough to close
the first small loop.


[(8) ->• (14)] Assume £(u)f — u£(f) for each u E fS and let s/tn be an
element of f S f . Since £(/) = £/#, we have £ ( s ) f / t - sf* = s//# = sf =
s. Thus s/tn = £(s)f/tn+1 E fRF-


[(14) -> (15 )] Assume fSF = fRp- Then for each s/tn E /S> there is an
element r £ R and a nonnegative integer m such that s/tn — rf /tm. As ele-
ments of R factor out off/, we have £/(s/tn) = £ f ( r f / t m ) = rf£(f)/tm+l =
rftf*/tm+l = rff#/tm = rf/tm = s/tn, in other words £/ is the identity
function and so it is (trivially) injective.


[(15) 4- (5)] Iff / is injective and s E Ji-/. Then £ (5) = 0 and s(l -/) =
0, so s = s f . But this implies f/(s) = 0 and therefore 5 = 0. On the other
hand, if «/i_/ = (0) and s/tn E fSF is in the kernel of £/. Then we have
s(l — /) = 0 and £ (s) = 0 which together imply 5 = 0. We now have the
second small loop closed, so all that are left are the equivalences.


[(8 ) -» (16)] Assume €(u)f = u£(f] for each u E fS and let x = s/tn


be an element of fSF. Then £(s)f = s£(f) and therefore £(s)f/tn+l =
s£(f}/tn+l = sf£(f)/tn+l. The left hand side of this equation is £/(x)f
and the right hand side is


[(16) ->• (8)] Assume £/(x)f = x£f(f) for each x E fSF and let 5 E fS.
Then we have £/(s)f = sf/(/), or in terms of values of f, f £ ( s ) / t = s £ ( f ) / t .
As £ is a regular element of 7?, we have £(s)f = s£(f).


[(15) •<— (17)] First note that no matter whether / is a localizing idem-
potent or not, a is simply the function from f^RF into /SV that is defined
by multiplication by /. Thus the image of o; is simply fRF and a is a
ring homomorphism from the ring f^Rp (whose identity element is /#)
onto the ring fRF (whose idsntity is /). Hence a is surjective if and only
if fSF = f R p - Moreover, no matter whether a is surjective or not, it is
always injective for if a(/#u) = 0 for some u — r/tn E R, then rf — 0. But
then we have 0 = £(ff] = r£(f) — r/#t. As t is a regular element of H,


Recall from above that principal ideals in the L°° setting get mapped
to principal ideals. Thus we have £(XY)L°°(A) = £(XYL°°(B)} for each
Y E B. Prom this we see that £(XYL°°(B}}2 = £(XY)£(XYL°°(B)} no
matter whether Y is a localizing set for A and B or not. In the general setting
we do no know whether £(f)R = £(fS) for each idempotent / E ES, but it
is the case that £(fS)2 is equal to £(f)£(fS) if / is a localizing idempotent
for R and S. This most easily follows from statement (9) in Theorem 7 using
the fact that £(fS}2 is generated by the elements of the form £(s)£(u) for
pairs of elements s, u E fS.
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As /# is defined independently from any particular conditional ring ex-
pectation from S to R, all that is needed is the existence of at least one
such map 8 to have all of the conditions above pertaining to £ hold for each
conditional ring expectation from S to R.


COROLLARY 8. For / £ £"5, if there is exists a conditional expectation
8 : S -> R such that £(s)f = s£(f) for all s = sf G 51, then £'(s)/ = s£'(f)
for all conditional expectations £' : S —> R.


COROLLARY 9. For a nonzero idempotent / <E Es, fS = fR if and only
if £(fS) = £(f}R arid / is a localizing idempotent for the pair R C S.


PROOF. Obviously, if fS = fR, then we have fSF = fRp and £(fS) =
£(fR) = £(f)R. On the other hand, if £(fS) = £(f)R and / is a localizing
idempotent, then for each s E f S we have £(s)f = s£(f) and £(s) — £(f)r
for some r E R. Simply replace £(s) by £(f)r to obtain s£(f) = r£(f). We
may substitute t/# for £(f) (with t = (1 — /#) + £(/) and then cancel the
ts since to have s/# = r/*. As s = sf and //# — /, r/# = r/ and we
have s = r/. 4


EXAMPLES.


For the L°° setting, if a localizing set exists for A and B, then maximal
localizing sets exist. Essentially this is due to the fact that the union of a
countable ascending chain of localizing sets turns out to be a localizing set
which is in B.


Our first two examples are based on comparable pairs of subrings of the
rings Q — Y[ Qn and T = Y[ Rn where Qn — W1 and Rn is the diagonal
set of Qn. Elements will be represented in the form q — (91,92? 93? • • • )
with qn - (qn,i,qnj2,---,<ln,n) € Qn for each n. Define £ : S -» R by
£(s) = r where rnj = ]T sn>z/n for each n and 1 < j < n. In both examples,
principal ideals get mapped to principal ideals. Each localizing idempotent
is dominated by a maximal localizing idempotent in the first while in the
second there are no maximal localizing idempotents at all.


EXAMPLE 10. Let Q = [] Qn and T = fl Rn where Qn = W1 and Rn is
the diagonal set of Qn. Finally let S and R be the bounded sequences in Q
and T, respectively. Then


(a) Localizing idempotents exist, and each is dominated by a maximal
localizing idempotent.


(b) If / is a localizing idempotent, then f S = fR.
(c) For each principal ideal I of S there is a generator s such that £(!} =


£(s)R.


PROOF. Since £ is the composite of the simple averaging function from
each Qn to the corresponding Rn, it will satisfy the properties of a condi-
tional ring expectation. Moreover, if snj- > 0 for each pair (n, j), then the







Rings, Conditional Expectations, and Localization 361


same is true for £(s)n>j. If, in addition, some smii is positive for some fixed,
but arbitrary, pair (m,«), then £(s}m^ > 0 for each pair (m,fc).


Let / = (/i, /2, /s,...) G 5 be an idempotent. The corresponding idem-
potent /# is simply the idempotent of R where the nth component (/^)n


is (1,1,..., 1) if some fn^ is nonzero and is (0 ,0 , . . . , 0) if each fnj is zero.
Suppose some fn has more than one component that is not zero, say it has
k + 1(> 1) nonzero components. Without loss of generality we may assume
/n, 1 = 1. Consider the element sn = (—1, l//c, l / / c , . . . , l//c)/n G Qn and
let s = (si, $2> • • • ) be such that sm = (0 ,0 , . . . , 0) for each m ^ n. Obvi-
ously, 5(1 — /) = 0 and £(s) = 0 but 5 ̂  0. Thus for / to be a localizing
idempotent it must be that at most one component of each /n is nonzero.
Due to the structure of g& for each idempotent g G 5, it is easy to see that
9 — 9^f f°r each 9 ^ / when / has this form. If no /„ is (0 ,0 , . . . ,0),
then / is a maximal localizing idempotent. Otherwise, simply replace each
fn = (0 ,0 ,0 . . . , 0) with (1,0,0. . . , 0) and leave the other components of /
alone to find a maximal localizing idempotent that dominates /.


Now assume we have a localizing idempotent / and let s G fS with r =
£ ( s } . Let fn,kn be the nonzero component of fn (if fn has one). Then sn^n


can be nonzero but sn>t — 0 for i ^ kn. No matter whether sn^n is nonzero
or not, rn = (snjkn/n,... ,sn,fcn/n) = (sn >*n , . . . , s n > / fc j ( l /n , . . . ,1/n) . It
follows that 8(s) = r'€(f) where r'n = (sn) f cn ,sn) f cn , . . . ,sn,fcj- Since s G 5,
the sequence {sn^n} is bounded and therefore r1 is in R. Hence £(fS) =
£ ( f ) R . Moreover, we have fS — fR.


Let sS be a principal ideal of S and let e be the support idempotent of
s (i.e., es = s and s + (1 — e) is a regular element of S). As with real
valued functions, we may split each element of 5 into its zero part and its
positive and negative parts. Split e into e+ and e~ where e*k = I if and
only if 5n>jfc > 0 and e~ fc = 1 if and only if sn>fc < 0. Obviously, e+s — e~s
has all components nonnegative and generates sS. Thus we may assume
that 5n>A: is nonnegative for each pair (n, k}. Let b £ sS and let b+ be the
positive part of 6 and b~ denote the negative part of o. Both b+ and b~
are multiples of s since b is, thus it suffices to simply show that if bn^ > 0
for each pair (n, &), then £(s) divides £(b}. Write 6 = as and let a' denote
the supremum of the set {an>fc n > 0,1 < k < n}. We must have eb = 6,
so the support idempotent / of 6 is such that ef = f . Hence, / is the
support idempotent of a. Let c = a'(l, (1,1), (1,1,1),. . .) . Then c is a unit
of both S and R. Moreover we have 0 < bn^/a' < bn^/an^ = sHtk for
each pair (n, k} where bn>k is not zero and, of course, bn^/d' = 0 whenever
bn,fc — 0, but then an^ — 0 as well. Consider the element b/c. Since c
is a unit of 5, b/c is not only an element of S, but it is in sS as well.
Moreover, for each pair (n, A;), 0 < (b/c}n^ < sn^. Thus £(s — b/c)n>k >
0 for each pair (n,k). Hence £(s)H:k > £(&/c)n,fc > 0- It follows that
whenever £(s)n)fc is positive, we have 0 < £(b/c)n^ < £(s)n^ < I and when
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£(s)n,k — 0 then so is £(b/c)n^. For fixed n, £(s)nik and £(b/c)n^ are
independent of k. Thus we may define an element r € R by setting rn =
(£(6/c) n ) i /£(s) n ) i , . . . , £(&/c)n,i/£(s)n,i) whenever £(b/c)n^ is not zero and
setting rn = ( 0 , 0 , . . . , 0) otherwise. Obviously £(b/c) = r£(s). As c is a unit
of /£, cr is in ./? and we have £"(6) = cr£(s). Therefore £(sS) = £(s)R.+


EXAMPLE 11. Let Q ~ Y\ Qn and T = U Rn where Qn = Rn and Rn is
the diagonal set of Qn. Finally let Sc and Rc be the bounded sequences in
Q and T, respectively, which are eventually constant. Then


(a) Localizing idempotents exist, but no maximal localizing idempotents
exist.


(b) If / is a localizing idempotent, then fS = fR.
(c) For each principal ideal I of S there is a generator 5 such that 8(1} =


£(s}R.


PROOF. The proofs for (b) and (c) are the same as those given for the
corresponding statements in Example 10.


Let / = (/i,/25 • • • ) be an idempotent of S. Then there is a positive
integer m such that either /„ = (!,!,..., 1) for each n > m or /n(0,0, . . . , 0)
for each n > m. If / is of the latter form, it is a localizing idempotent
if and only if each /^ for k < m has at most one nonzero component.
Otherwise, / is not a localizing idempotent. It is easiest to see this by
considering an idempotent g where gm+2 = (1,1,0,0, . . . , 0) where m is such
that fn = ( 1 , 1 , . . . , 1) for each n > m. Then (<?#)m+2 = (1,1,1, . . . , 1) and
therefore (fg^}rn+2 ^ 9m+2- Hence by statement (2) of Theorem 7 such an
idempotent / cannot a localizing idempotent.4


To obtain a different conditional ring expectation £' for the rings above,
simply take for each n > 1, some fixed set of n positive rational numbers
an,i5 & n , 2 5 . . . anjT1 with sum an;i + an^ + • • • -f- an,n — 1 (with at least one
aH}k not 1/n] and then set £'(s] — r where each rn^ is the sum an,isn,i +
an,2-Sn,2 H ^ an,nSn,n for each pair (n, k).


In our last example we show that principal ideals need not be mapped to
principal ideals by conditional ring expectations. In this particular example
the image of a principal idempotent ideal will be principal and generated by
the image of the idempotent. Thus by Corollary 9, an idempotent / of S is
localizing if and only if fS — fR.


EXAMPLE 12. Let Q = []Qn and T - l\Tn where for each n > 1,
Qn = R[x]n and Tn is the diagonal set of Qn. Let R and S be the sequences
in T and Q, respectively, which are bounded by the size of the coefficients.
Write the elements of Q in the form q = (gi,<?2, • • • ) where in this case
qn = (gn )i ,qn )2,.. - ,<?n,n) is an n-tuple of polynomials. Define a function
£ : S —> R as in Examples 10 and 11, by simply averaging the components
of each sn in s = (s\, S 2 , . . . ) to obtain £ ( s ) = r where rn = Y^ snjk/n-


(1) £ is a conditional ring expectation.
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(2) For each idempotent /, £(fS) = £(f)R.
(3) There are principal ideals sS for which £(sS) is principal but cannot


be generated by the image of a generator of sS and there are principal
ideals qS for which £(qS) is not principal.


PROOF. As above, it is a simple exercise to show that £ is a conditional
ring expectation.


For statement (2), let / = ( / i , / 2 , - - - ) be an idempotent of 5 and let
s e fS. As above we denote £(/) as tf* where £ = (!-/#) + £(/).
Let r = £(s) and let e& = (ei,62, • • • ) denote the support idempotent for
r. Note that e& < f & . Of course, we need only consider the nonzero en,
each of which is simply the n-tuple (1,1,...,!). For such an en, rn is the n-
tuple all of whose components are ]T} sn^jn and tn = (kn/n, kn/n,..., kn/n]
where kn is the number of 1's that appear in the n-tuple for /„. Thus the
components of rn/tn are simply Y^sn,k/kn- As kn > 1, the coefficients of
^2 sn,k/kn are bounded by the same universal bound as on s. Thus t divides
r in R. As /#e# = e* we have £(s) = ( r / t ) t f # <E £(fS).


It is actually quite easy to give an example of a principal ideal of sS
whose image in R while principal, is not generated by the image of a gen-
erator of sS. Let s = (0,(z,z2), (0 ,0 ,0) , . . . ) . Then £(sS) = (0,((z +
z2)/2, (2H-z2)/2), (0 ,0 ,0) , . . . ) . But we also have a = (0, (0, z2), (0 ,0 ,0 ) , . . . )
and b = (0, (z,0), ( 0 , 0 ,0 ) , . . . ) in sS. For these two elements we have
£(a] = (0, (z2/2, rr2/2), (0 ,0 ,0 ) , . . . ) and €(b) = (0, (rc/2, x/2), (0 ,0 ,0 ) , . . . ) .
An arbitrary element of sS has the form u = (0, (xp, x2^), (0 ,0 ,0) , . . . ) with
£(u) = (0, ((xp + x2q)/2,(xp + z2g)/2), ( 0 , 0 , 0 ) , . . . ) . With this we have
E(u) = (0, (rc/2, ar/2), (0 ,0 ,0 ) , . . . )((0, (p + xq,p + xq), (0 ,0 ,0 ) , . . . ) E £(b)R.
Hence £(sS) is principal, but the only generators of sS are the elements of
the form (0, (mx, no:2), ( 0 , 0 ,0 ) , . . . ) where both m and n are nonzero real
numbers. The image of such an element will always involve both x and x"2


so it cannot divide £(b}.


Now let q = (q\,q2, <?3, • • • ) where qi = 1, q2 = (I + x,x2/4) and qn —
(l + x,x2/n2,0, . . . , 0 ) f o r n > 3. Thus a = (1, (l + z,0), (l + x , 0 , 0 ) , . . . ) and
6 = (1, (0, z2/4), (0, z 2 /9 ,0) , . . . ) are in g5, but c = (1, (0, x2), (0, z 2 , 0 ) , . . . )
is not in qS. Let r = £(a] and v = £(b}. Then rn = ((I + rr)/n, (1 +
z)/n, . . . , (!-(- a:)/n) and vn = (o;2/n3,a:2/n3,...) for each n > 2. By way
of contradiction assume p = (^1,^2, • • • ) generates £(qS}. Since the gcd of
1 + x and x2 is 1, each pn is of the form (dn ,<in , . . . ,dn) for some (posi-
tive) constant dn. For p to be in R the sup of {|dn]} must be finite. Let
hn and kn be polynomials for which hn(l + x}/n + knx


2/n3 = dn. Then
/i — (/i1} (/i2,0), (^3 ,0 ,0) , . . . ) and k = (fci, (0, /c2), ( 0 , / C 3 , 0 ) , . . . ) are such
that £(hq + kq) = p. We will show that either at least one of h and k
is not in 5, or p does not divide at least one of £(a] or £(b}. It is clear
that (1 + x ) ( l — x) + n2(rr2/n2) = 1, so we have [(1 + x)/n](dn - dnx) +
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dnn2(z2/n3) = dn. Since the gcd of 1 4- x and x2 is 1, any other combina-
tion of 1 -f- x and x2/n2 that yields dn must be of a form [(1 4- x)/n](dn —
dn£4- yn(x2/n2)) + (dnn2 — yn(l + x))(2;2/n3) for some polynomial yn. Write
yn = yn,o + J/n.i^ H ^ 2/n,inz ln- To have both dn - dnz 4- yn(x


2/n2) and
dnn — yn(l 4- 2;) as the entries of an element of J?, we must have a sin-
gle uniform upper bound for all of the sets {dn,yn$/n2,... ,yn,zn/^2} and
{dnn


2 — yn?o, J/n,Oi 2/n,ii • • • > 2/n,in }• Thus all we need is a single uniform bound
for the set {dnn


2, y n j o , . . . ,yn,in}- On the other hand, it is easy to see that
£(a) factors uniquely as (d\, di, c f o , . . . )(n/di, r^/d^,...) where the compo-
nents of rn/dn are (1 4- x}/ndn when n > 2. Thus there must be a uniform
upper bound for {l/ndn}. For £(6) we have the unique factorization as
(^1,^2, • • • ) ( v i / d i , V 2 / d 2 , . . . ) where the components of wn/^n are x2/n3dn.
Obviously, any bound that works for {l/ndn} will work for {l/n3dn}. As
we are free to choose any yn provided (yi ,y2 5 • • • ) is in /?, we may concen-
trate on the dns. What we must have is a single uniform bound for the sets
(dn,dnn2, l/ndn}. This is impossible for if M > n2dn and M > l/ndn, then
M > n2dn > n2/nM — n/M for each positive integer n. Thus the ideal
£(qS] is not principal. ^


QUESTIONS AND OPEN PROBLEMS.


We end with a question and a series of open problems. All are based on
a conditional ring expectation £ : S -4 R.


Qi: If / G Es localizes R, is fS = fRl


Q.2'. Characterize those pairs of rings R C S for which each localizing idem-
potent of S is dominated by a maximal localizing idempotent (assuming
localizing idempotents exist for the pair R C S}.


Qf. Characterize those pairs of rings # C S for which each increasing
sequence of localizing idempotents is dominated by a maximal localizing
idempotent (again assuming localizing idempotents exist for the pair R C
S}.


Q±: Characterize those pairs of rings R C S for which £(sS] is a principal
ideal of R for each 5 G S.


Qs1. Characterize those pairs of rings R C S for which not only is £(sS)
principal for each 5 G 5", but can be generated by an element of the form
£(b] where bS = sS.


Qs: Characterize those pairs of rings R C S for which each principal idem-
potent ideal of S is "well-preserved" by the map £; i.e., £(eS) = £(e)R for
each e G ES-


Qj: Characterize those pairs of rings R C S with conditional ring expecta-
tion £ which have the property that each nonzero principal ideal of S can
be generated by an element s for which £(se) = 0 implies se = 0.







Rings, Conditional Expectations, and Localization 365


Qs: Characterize those pairs of rings R C S with conditional ring expec-
tation 8 for which 8 can be extended to a conditional ring expectation
€':T(S)->T(R).


With regard to Qs, consider the rings R = R and Q — Y[Rn where each
Rn = R. Both R and Q are von Neumann regular. Let S C Q be the set
of bounded sequences in Q and let ]T) an = 1 be a convergent series where
each an is positive. Define 8 : S —t R by 8(s) — X)-snan. Since the sequence
{sn} is bounded, the series is absolutely convergent. Moreover, if sn > 0 for
each n, then 8(s] > 0 with equality if and only if each sn is zero. There is
no way to extend 8 to an jR-module homomorphism from Q to T(R] = R.
Note that R can be embedded in Q as the diagonal set.
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Errata: "Fullbacks and Coherent-Like Properties'
[In: Lect. Notes Pure Appl. Math., Dekker, 205 (1999) 437-459]


ABDESLAM MIMOUNI Department of Mathematics, Faculty of Sciences "Dhar
Al-Mehraz", University of Fez, Fez, Morocco


In Theorem 4, Corollary 6, and Corollary 7, we add the hypothesis Z(T/I)HD - (0),
but without any changes in the proofs . However, in Proposition 8 (old Corollary
8), we give a new proof in which the hypothesis Z ( T / I ] fl D = (0) is not needed.


THEOREM 4. For the diagram (A), assume that Z(T/I} r\D = (0):
1) If T/I <£. qf(D), then / = J~l for some finitely generated fractional ideal J of
R with J C T, so I is a. v-ideal of R.


2) If T/I C qf(D), then / = P is a prime ideal of T and x(P) = ?/(#)• If P is not
a v-ideal of R, then (T : P} - P~l - (P : P), P is a prime ideal of (T : P) and for
each overring B of R, P is not a maximal ideal of B.


COROLLARY 6. For the diagram (A), assume that Z(T/I) n D = (0). If 7? is a
v-domain, then I — P is a prime ideal of T and x(P) ~ Qf(D).


COROLLARY 7. For the diagram (A^, assume that Z(V/I) n D = (0). Then
R is a v-domain if and only if D is a v-domain, I = P is a prime ideal of T and


X(P) = Qf(D}.


PROPOSITION 8. For the diagram (A^, Risa PVMD (resp., Priifer), if and only
if D is a PVMD (resp., Priifer), / = P is a prime ideal of V and x(P) —


Proof. =£•). Assume that R is a PVMD. By Theorem 1, J is a divisorial ideal of
R. If / is t-maximal, by [10, Proposition 2.1], 7 is t-invertible. So R C V C (/ :
/) C ( ( I I ~ l ) t : (U~l)t) = R, absurd. By [10, Proposition 1.2], / is a prime ideal of
( / : / ) , and therefore a prime ideal of V. Now, it suffices to consider the diagram
where / — IV j is a maximal ideal of Vj and conclude by [9, Theorem 4.13].
•£=) Follows from [9, Theorem 4.13].
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1. INTRODUCTION


The focus of this paper is the structure of ultraproclucts of commutative rings,
and in particular, ultraproducts of integral domains. Ultraproducts of certain
classes of integral domains, such as orders in algebraic number fields, have been
well-studied but often from a model-theoretic point of view. The model-theoretic
view is a natural one to take given the importance of the ultraproduct construc-
tion in the theory of elementary models. In particular, the Keisler-Shelah Theorem
states that two models have the property that any sentence in first-order logic satis-
fied by one is satisfied by the other if and only if these two models have isomorphic
ultrapowers. In this same vein is the Ax-Kochen-Ershov Theorem, which implies
that two henselian valuation domains have isomorphic ultrapowers if and only if
their value groups and residue fields have isomorphic ultrapowers. Hence an under-
standing of arbitrary ultrapowers of a given class of commutative rings leads to a
better understanding of tne first order theory of the class of rings.


Our goal in this paper is to give some new examples of how one can construct
interesting rings using ultraproducts, then focus on the ring-theoretic properties of
the ultraproducts of integral domains. Section 2 contains some simple observations
regarding first order properties of commutative integral domains. In Section 3, we
analyze the n-generator property and coherency and use this analysis to construct a
GCD domain that is not coherent, the existence of which was an open question until
recently. In Section 4, we turn to some of the main structural results of the paper.
These focus, for example, on the prime spectrum of an ultraproduct of integral
domains and the representation of an ultraproduct of domains as an intersection of
its localizations.


An ultraproduct of commutative rings is a certain homomorphic image of a carte-
sian product of these same rings. The elements of the ultraproduct can be inter-
preted as equivalence classes of elements of the cartesian product with respect to
an "ultrafilter," a maximal filter on the index set of the product.


Let J be a set and T be a collection of subsets of Z. Then T is a filter on X if
(a) for all A, B € 7, A n B € T, and (b) for all A 6 T, if A C B C I, then BtT.
A filter T is an ultrafilter on 1 if for all A C 1, either A G T or T\A € T. It is not
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hard to see that if an ultrafilter J- contains a finite set, then it contains a singleton
set, say {i}, and i is an element of every element of T. In this case we say F is a
principal ultrafilter.


Let {Ri}i£.x be a collection of commutative rings for some index set 1.. If V is
an ultrafilter on J, then we write R* = Ylv Ri for the ultraproduct of the R^s with
respect to the ultrafilter V. An element of [7p Ri is an equivalence class of elements
of Yliei ̂  defined by:


(ri]i&T ~ ( s )iei <=£• {i G Z : 7"i = Si} G D.


If (ri)i6j is an element of the equivalence class x G fjp Ri, then we write x — (ri)-p.
If there is a ring R such that R.L — R for all i e T, then R° := R* is the ultrapower
of R with respect to V. If for each i, S, is a subset of Rit then we write (S;)z3 for
the subset of R* consisting of elements of the form (SI)-D, s.^ G Sl.


If TJ is a principal ultrafilter, say {i} G T>, then it is not hard to see that R* = R^.
Thus we are only interested in the case where T is an infinite set and D is a non-
principal ultrafilter. (Note the standing hypotheses below.)


Although we will not touch on the following articles, we reference them here
because they are relevant to the topics in the present paper. The article [16] contains
an interesting application of ultraproducts to the construction of non-Noetherian
Priifer domains having specified Picard group. In [22], ultraproducts are used to
construct a quasilocal commutative ring R such that every regular ideal of R is
stable and 7? is one-dimensional but not Noetherian. The articles [11] and [12]
deal with infinite products of commutative rings and show how ultrafilters arise
naturally in the consideration of prime spectra of such rings. These articles are
especially relevant to some of the issues in Sections 4-6 of the present paper, where
the rather unwieldly behavior of prime spectra and Krull dimension are considered.
In particular, R. Gilmer and W. Heinzer give an example in [12] of an infinite
product R of zero-dimensional local rings such that for every d > 0, there is a
homomorphic image of R of Krull dimension d.


Standing hypotheses. Throughout this paper, [Ri}i£i is a collection of com-
mutative rings indexed by an infinite set X, and T) is a non-principal ultrafilter.
The total quotient ring of each Rl is denoted by Fj. The total quotient ring of R*
is denoted by F*, and we identify F* and Y[-rj Fi •


2. BASIC PROPERTIES


We refer frequently to "first order" properties in the language £ = {+, •, 0,1} of
commutative rings. Roughly speaking, these properties involve quantifications only
over elements (rather than, say, ideals) of commutative rings. For a more formal
treatment, see [3, Section 1.3]. Our use of model theory is very modest here, but
the notion of a first order sentence or formula will be helpful in proving our results
since one of the most fundamental properties of ultraproducts is that they preserve
first order properties of their constituent parts. This is part of the content of the
following theorem. We say that a property P holds for T>-many i if the set of all i
such that R{ satisifies P is an element of V.
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LOS'S THEOREM. [3] Let <f> be a sentence in the language of commutative rings.
Then R* satisfies $ if and only if, for D-many i, Ri satisfies <fi.


It follows from Los's Theorem that R* is an integral domain if and only if Ri is
an integral domain for D-many i. This is because the theory of integral domains
consists of finitely many axioms, all of which can easily be expressed in the first
order language of rings with identity. (See [3], for example.) Similarly, R* is a field
if and only if Ri is a field for D-many i. We will make use of both of these facts
without further reference.


An ideal I of a commutative ring R is definable in R if there exists a first order
formula (j)(x, y\ , 3/2 > • • • , 2/n) in the language of commutative rings and r\ , . . . , rn € R
such that


r 6 / <=$> 0(r, ri, . . . ,rn) is true in R.


A finitely generated ideal / and its dual I~l are definable, as is the maximal ideal
of any quasilocal ring. For example, if I := (ri ,r2, . . . , rn) is a finitely generated
ideal of R, then / is defined by the formula


since r € / if and only if 0(r, TI, r2, . . . , rn) is true in R.
An ideal / of R* is induced if / = (/i)p for ideals Ii of Ri, i G 1. Lemma 2.1


records some useful facts about the algebra of induced ideals. Recall that an ideal
/ of a commutative ring is n-generated if / can be generated by n elements.


LEMMA 2.1 Suppose I := (h}v, J '•= (Ji)v and K := (Ki}x> are induced ideals of
R*.


(i) / C J if and only if L-L C Ji for D-many i.
(ii) / is a prime (maximal) ideal if and only if 7j is a prime (maximal) ideal of


Ri for D-many i.
(\ii) There exists n > 0 such that I is an n-generated ideal if and only if Ii is an


n-generated ideal for D-many i.
(iv) / n J = K if and only if Ii n Ji = Ki for T>-many i.


Moreover, if R* is a domain, then:


(v) / is an invertible ideal of R* if and only if there exists n > 0 such that Ii is
an n-generated invertible ideal of Ri for D-many i.


(vi) I is a divisorial ideal of R* if and only if Ii is a divisorial ideal of Ri for
D-many i.


Proof. Statement (i) is a direct application of the relevant definitions. To prove
statement (ii), observe that R* /I = Ylv Ri/Ii. Thus / is a prime ideal of R* if and
only if Ri/Ii is a domain for D-many i; if and only if Ii is a prime ideal of D-many i.
A similar argument shows / is maximal if and only if Ii is a maximal ideal of Ri for
D-many i. For statement (iii), observe that / is n-generated if and only if / = (I/Op
for some n-generated ideals Lj of Ri. Thus if / is n-generated, by (i), Li — Ii for D-
many i. The converse is clear. Statement (iv) asserts /n J = (Ii fi JX)-D, and this is
easily verified by direct application of definitions. Now suppose R* is a domain. In
order to prove (v) , note that if Ii is an n-generated invertible ideal of Ri for "D-many
z, then /t/"1 = Ri for D-many i. Since Ii is n-generated for D-many z, it follows
that (IiI~l)-D = (/i)i)(/~1)xi. Thus (Ii)x> is an invertible ideal of R*. The converse
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follows from (i) and the easily verified fact that if L := (^t)p is an induced ideal of
R*, then L~l = (L"1)^. Statement (vi) also from from this observation. G


The following properties are all more or less well-known, so we give only cursory
proofs using Los's Theorem and Lemma 2.1. Recall that an integral domain R is a
Priifer domain if every finitely generated ideal is invertible, and that R is a Bezout
domain if every finitely generated ideal is principal.


PROPOSITION 2.2 R* is a commutative ring that satisfies the following state-
ments.


(i) R* is quasilocal if and only if Ri is quasilocal for T>-many i.
(ii) R* is a valuation domain if and only if Ri is a valuation domain for V-many


i.
(iii) R* is a Priifer (Bezout) domain if and only if R- is a Priifer (resp. Bezout)


domain for D-many i.
(iv) R* is an integrally closed domain if and only if Ri is an integrally closed


domain for T>-many i.


Proof. By Los's Theorem, it is enough to show each assumed property is a first order
property in the language of rings. For (i) , use the characterization of a quasilocal
ring as a ring in which the non-units are closed under addition. For statement (ii),
encode the statement that valuation domains are characterized by the property that
given any two elements, one divides the other. To prove the Priifer case of (iii) ,
recall that a domain is Priifer if and only if every ideal generated by 2 elements is
invertible [10]. By Lemma 2.1, the statement every ideal generated by two elements
is invertible is a first order sentence in the language of commutative rings. Hence the
Priifer case of (iii) follows from Los's Theorem. The proof of the Bezout case of (iii)
is similar. For statement (iv), observe first that a domain R is integrally closed if
and only if for all n > 0, R satisfies the sentence 0n that asserts that if a, b 6 R and
/(a, 6) = 0 for some degree n form /(x, y) := xn + rn^ix


n~ly + • • • + rQyn 6 R[x, y],
then b divides a in R. Thus (iv) is an application of Los's Theorem.


D


In the article [13], R. Gilmer, W. Heinzer and M. Roitman construct a quasilocal
domain R with maximal M such that M cannot be generated by finitely many
elements but M2 can be generated by 3 elements. They obtain such examples in
every dimension greater than two and show that the maximal ideal in their exam-
ples has maximum possible height in the ring [13, Example 3.2]. By their results, a
one-dimensional example is impossible: They show that an integral domain is Noe-
therian if and only if every prime ideal has some power that is finitely generated
[13, Theorem 1.17]. Thus a one dimensional quasilocal domain whose maximal ideal
has a finitely generated power is Noetherian.


They also raise the problem of whether an even more extreme example can be
obtained, that of a quasilocal domain with non-finitely generated maximal ideal
whose square is 2-generated. By a result of J. Sally in [25], such a ring cannot exist:
If the square of a maximal ideal in a quasilocal domain is 2-generated, then every
power of the maximal ideal, including the first power, must be 2-generated. Thus
the number 3 is optimal.


To conclude this section, we give another approach to examples of non-finitely
generated prime ideals whose squares are finitely generated.
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PROPOSITION 2.3 Suppose I = N, and for each i e N, P; is a prime idea/ o
Suppose there exists k > 0 suc/i i/iai:


(i) /or V-many i, Pi can be generated by no fewer than i generators, and
(ii) for'D-manyi, P? can be generated by k elements of the formpiqi, withpi,qi €


Pi-
Then R* is a commutative ring with non-finitely generated prime ideal (Pi)v whose
square is k- generated.


Proof. By Lemma 2.1, P := (Pi)v is a prime ideal that is not finitely generated.
Also by Lemma 2.1, (Pf)p is ^-generated. Clearly, P2 C (P?)p. Also, (f?)x? is
generated by k elements of the form (p;gi)x>, where Pi,qi e Pi for D-many i. Thus


^P2, and the claim follows. D


Sally's method for constructing quasilocal domains such that the squares of the
prime ideals are 3-generated is as follows. Let J be an ideal of some quasilocal
domain A and let y be an indeterminate. Set B = A[[y3,y4, Jy5}} and let P =
(y3, y4, Jy5). Then B/P = A and P is a prime ideal of B that cannot be generated
by fewer than the minimal number of generators of J while P2 = (yG ,y ? ,y8) is
3-generated. By varying the choice of A one may vary the Krull dimension of the
ring B. In this way one can construct a collection of local domains {Ri : i € N} with
prime ideals {Pj : i e N} such that the Pi satisify the hypotheses of Proposition
2.3.


In [13], the question is posed of whether an integrally closed quasilocal domain
can have a non-finitely generated maximal ideal whose square is 3-generated, and
it is shown that the answer is yes if one omits the requirement that the domain be
integrally closed. In light of this result and Proposition 2.3, we ask: Does there exist
a collection of quasilocal domains {Ri}.^ such that for each i > 0, the maximal
ideal Mi of Ri is finitely generated but not i-generated and M? is 3-generated?
By Propositions 2.2 and 2.3, an affirmative answer to this question yields another
example of a quasilocal domain with non-finitely generated maximal ideal whose
square is 3-generated. An affirmative answer to the integrally closed version of this
question yields an affirmative answer to the question in [13].


3. COHERENCY AND THE n-GENERATOR PROPERTY


In this section we examine coherency for ultraproducts. Recall that a commu-
tative ring R has the n-generator property if every finitely generated ideal of R is
n-generated.


PROPOSITION 3.1 The following statements hold for R*.


(i) R* is quasilocal with n-generated maximal ideal if and only if, for T>-many i,
Ri is quasilocal with n-generated maximal ideal.


(ii) R* has the n-generator property if and only if Ri has the n-generator property
for D-many i.


(iii) Let n,m > 0. Intersections of pairs of m-generated ideals of R* are n-
generated if and only if for X>-many i, intersections of m-generated ideals
of Ri are n-generated.
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Proof, (i) By Proposition 2.2, R* is quasilocal if and only if the set A of elements
i € T such that Ri is quasilocal is an element of V. Let T/> be the sentence that
asserts that there exist x i , X 2 , . . . ,xn such that for each non-unit y there exist
2/1 ,2 /2 , • • • ,S/n such that


!/ = y\X\ + yiX-2 H f- J/n^n-


Then by Los's Theorem, R satisfies -0 if and only if there is a set B G 22 such that
/?,; satisfies ^ for all i £ 13. Thus (i) follows from the fact that since T> is a filter,
AnBev.


(ii) To prove a ring has the ?i-generator property it is enough to show that every
(n+l)-generated ideal can be generated by n elements. This is a first order property,
so Los's Theorem yields (ii).


(iii) It is not hard to see that given n.ra > 0, the property that the intersection
of all pairs of m-generated ideals is n-generated can be encoded into a first order
sentence. Hence Los's Theorem implies (iii).


n
A commutative ring R, is coherent if for all n > 0, every non-zero homomorphism


Rn —> R has a finitely generated kernel. A commutative ring R is uniformly coherent
if there exists a map 0 : N —-> N such that for all n > 0 and non-zero homomorphisms
/ : Rn —>• R, the kernel of / can be generated by 4>(n) elements. The map 0 is
the uniformity map for R. Examples of uniformly coherent domains include local
(Noetherian) domains of Krull dimension less than 3 and, more generally, domains
of global dimension less than 3 for which every finitely generated projective module
is free. By contrast, a Noetherian domain of Krull dimension greater than 2 is
coherent but not uniformly coherent. See {15, Section 6.1] for a discussion of these
results.


There is a more intrinsic characterization of coherency when no zero-divisors
are present: An integral domain R is coherent if and only if intersections of pairs
of finitely generated ideals are finitely generated [15, Theorem 2.3.2], Lemma 3.2
contains an analogous statement for uniformly coherent domains. The lemma is
probably well-known, but for lack of a reference we include a proof.


LEMMA 3.2 An integral domain R is uniformly coherent if and only if there exists
a function 0 : N —> N such that for alln > 0, the intersection of any two n-generated
ideals of R can be generated by (j)(n] elements.


Proof. Suppose ^ is a uniformity map for R. Let / and J be n-generated ideals of
R. There is an K-submodule K of Rn © Rn that yields the commutative diagram:


0 > K > Rn © Rn > I + J > 0


By assumption, K can be generated by t/>(2n) elements. Since / is surjective, In J
can be generated by 7/>(2n) elements. Thus if < / > : N —> N is defined by $(n) := t/>(2n)
for all n > 0, then 0 is the desired mapping.


Conversely, suppose that there exists a map 0 : N —*• N such that for all n > 0, the
intersection of any two n-generated ideals of R can be generated by </>(n) elements.
We shall construct a uniformity map T/J : N —» N for R by induction on n G N. Fix
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n > 1, and suppose that for all k < n, there exists a number ?/>(fc) such that every
homomorphism / : Rk —> R has a kernel that can be generated by tp(k) elements.
Let / be an n-generated ideal of R, and let J be an ideal of R that can be generated
by n - 1 elements and such that Ra + J = /. There is a commutative diagram:


0 > K » R®Rn~l > / > 0


Ra®J > I f 0


By the induction hypothesis, the kernel of g can be generated by i^(n — 1) elements.
Since Ker / is isomorphic to Ker g and Ra fl J can, by assumption, be generated
by 0(n — 1) elements, it follows that K can be generated by tjj(n — 1) + <j)(n — 1)
elements. Thus we define t/>(n) := rjj(n — 1) + </>(n — 1) for all n e N and conclude
the mapping ip is a uniformity map for R. D


For most of this article we deal with a generic non-principal ultrafilter V on an
infinite set T. However, in Theorem 3.3 and later in Propositions 3.7 and 6.2, we
place an additional restriction on our ultrafilter V. If AC is a cardinal number, then
a filter T on J is K-complete if C\Q G T whenever Q C T and \Q\ < K. A filter-
is countably incomplete if it is not w+-complete. Observe that J- is a countably
incomplete ultrafilter if and only if there exists a collection {Ak '• k > 0} of subsets
of J such that Ufcxj-Afc G f but Ak & f for all k > 0. Thus (and this is the
relevance of countable incompleteness in our context) an ultrafilter T is countably
incomplete if and only if there exists a function v : X —> N such that for all k > 0,
{i : v(i] > k} £ T. Notice that \iT is a countably infinite set, then every ultrafilter
on X is countably incomplete.


THEOREM 3.3 Suppose R is a commutative ring and Ri = R for T>-many i. IfD
is countably incomplete, then the following statements are equivalent.


(1) R is a uniformly coherent domain.
(2) R* is a uniformly coherent domain.
(3) R* is a coherent domain.


Proof. To prove (1) => (2), suppose that R is a uniformly coherent domain. By
Lemma 3.2, there exists a function </> : N —» N such that for all n > 0, the intersection
of any two n-generated ideals of R is 0(n)-generated. By Lemma 3.1, the intersection
of any two n-generated ideals of R* is also 0(n)-generated. Hence R* is uniformly
coherent. It is clear that (2) => (3), so it remains to show (3) =>• (1). Suppose R* is
a coherent domain but that R is not uniformly coherent. Then there exists n > 0
such that for all k > 0, there exists a pair of n-generated ideals J^ and J^ such
that //,- D Jfc cannot be generated by k elements. Define A := {i G T : Ri = R}.
Since T> is countably incomplete, there exists a function v : X —> N such that for all
k > 0, {i G 1. : v(i] > k} € V. For each i G *4, define U{ := J^) and Vi :— J^^y
If i e T\A, set Ui = R and Vi = R. Then (t/»)x> and (K)p are n-generated
ideals of jR*. However, by Lemma 2.1, the ideal (t/i)p ("1 (Vi}x> = (Ui n Vi)x» of R*
cannot be finitely generated, contradicting (3). Therefore, R\s& uniformly coherent
domain. D
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As a corollary, we obtain a result about uniformly coherent domains that does
not refer to ultraproducts in its formulation. M. Roitman shows in [23, Theorem
1.8] that if R is a coherent domain and P is a prime ideal having some power that
is finitely generated, then P is finitely generated. Corollary 3.4 shows that when
R is uniformly coherent, one can assert something stronger. This corollary can be
proved using an extension of an argument like that of Roitman in the proof of [23,
Theorem 1.8], but we include here an alternate proof via ultraproducts.


COROLLARY 3.4 If R is a uniformly coherent domain, then for all k > 0, there
exists a function 0/c : N —•> N such that whenever P is a finitely generated prime
ideal of R and Pk is an n-generated ideal of R for some n > Q, then P can be
generated by 4>k(n) elements.


Proof. Suppose R is a uniformly coherent domain. Define X — N and set Ri — R
for all i G T. Then by Theorem 3.3, R* is coherent. Suppose there exists £, A; > 0
such that for each n > 0, there exists a prime ideal Pn with the property that Pn


cannot be generated by n elements but P% can be generated by t elements. Define
P := (Pn)v


 and observe Pk can be generated by i elements but P is not finitely
generated. This contradicts [23, Theorem 1.8], which states that prime ideals of
coherent domains having a finitely generated power are finitely generated. Hence
for each k > 0, there exists a map </>& as in the statement of the theorem. D


An integral domain R is a finite conductor domain if the intersection of any two
principal ideals is finitely generated. Every coherent domain is a finite conductor
domain, but whether the converse is true remained an open question until recently,
when S. Glaz gave the first examples of finite conductor domains that are not
coherent [14]. Later we show that non-coherent finite conductor domains arise
naturally in the context of ultraproducts of Noetherian rings. First, in Example
3.5, we observe that an ultraproduct of coherent domains need not be coherent. In
fact, ultraproducts of one dimensional local (Noetherian) domains do not have to
be coherent, nor even finite conductor domains. Examples are easy to come by.


EXAMPLE 3.5 Let T = N. For each i > 0, let Ki be a degree i algebraic extension of
Q. Set Ri = Q + XKi[X], where X is an indeterminate. Then R* is an ultraproduct
of Noetherian (hence coherent) domains that is not a finite conductor domain.


Proof. For each i > 0, the maximal ideal Mi — XKi[X] of Ri cannot be generated
by fewer than i elements. Also, M~l / Ri and it follows that Mi is a divisorial ideal
of Ri. Since Mi is a maximal ideal of Ri, Mi is the intersection of two principal
fractional ideals, one of which can be chosen to be Rl. Write Mi — RiHR^Xi for some
Xi in the quotient field of Ri. Then the maximal ideal M := (Mi)rj of R* = flp Ri
is the intersection of two principal fractional ideals, R* Pi R*(XI}TJ- If -R* is a finite
conductor domain, then M is finitely generated and by Proposition 3.1, there exists
n > 0 such that Mi is n-generated for D-many i. Since V contains the cofinite sets
and Mi is n-generated for only finitely many i, this is a contradiction. D


More generally, if each Ri, i € N, is a quasilocal domain that has a divisorial
maximal ideal that cannot be generated by less than i elements, then our argument
shows that the ring R* is not a finite conductor domain.
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Examination of this example shows that coherency is violated because as i — > oo,
the number of generators of Mi grows without bound. Thus to preserve coherency,
one needs some kind of boundedness condition such as the existence of a uniformity
map as in Theorem 3.3. The n-generator property also suffices:


PROPOSITION 3.6 R* is a coherent domain with the n-generator property if and
only if Ri is a coherent domain with the n-generator property for V-many i.


Proof. Apply Lemma 2.1 and Proposition 3.1. D


We turn now to the problem of generating examples of finite conductor domains
that are not coherent. The basic idea behind our construction is that height two
prime ideals in K"[[x, y, z]], K a field, have arbitrarily large generating sets. The non-
analytic version of this assertion is classical and is due to Macaulay. As discussed in
[25, p. 58], Macaulay's primes do not remain prime under completion, so, since we
wish to work in the setting of local rings, we appeal instead to Moh's construction of
large primes in JC[[x,y, z]]. Sally shows that this construction implies the existence
of large primes in any three dimensional regular local ring that contains a coefficient
field [25, pp. 61-62]. Thus if R is a regular local ring of dimension greater than two
that contains a coefficient field, then R has arbitrarily large primes of height two
since R can be localized at a height three prime ideal to form a three dimensional
regular local ring that contains a coefficient field.


PROPOSITION 3.7 Let R be a regular local domain of Krull dimension greater than
two that contains a coefficient field. Let X be an infinite set and T> be a countably
incomplete non-principal ultrafilter on Z. Then R* — Yl^> R is a non-coherent finite
conductor domain. In particular, R* is a GCD domain with elements a, 6, c £ R*
such that (a) fl (6, c) is not finitely generated.


Proof. Since T> is countably incomplete, there exists a function v : X — » N such
that for all k > 0, {i e 1 : i/(i) > k} € V. For each i 6 J, let Pi be a height two
prime ideal of R that cannot be generated by fewer than v(i) elements. For each
i, let (ai,bi) be a regular sequence in R that is contained in Pi. Choose c» 6 R
such that PI = ((a»,6i) :R CT). Then CiPi = Rct D (aj,6i). Set a = (a.j)p,6 = (&i)z>,
and c = (ci)x>. Define P := (Pl)c. Then cP = R*cK(R*a + R*b] but if P is m-
generated, then Lemma 2.1 implies Pj is m-generated for D-many i, a contradiction.
Thus P is not finitely generated and PL* is not coherent. By Lemma 2.1 and Los's
Theorem, PL* is a GCD, since regular local rings are UFD's. D


COROLLARY 3.8 Let R be a regular local domain of Krull dimension greater
than two that contains a coefficient field. Then R is elementarily equivalent (see [3,
Section 1.3]) to a non-coherent GCD domain.


Proof. This follows from Proposition 3.7 and Los's Theorem. D
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4. MAXIMAL IDEALS OF R*


We turn now to the description of maximal ideals of R*. The easiest case is when
R* has finitely many maximal ideals. If R* has infinitely many maximal ideals, then
the situation is considerably more complicated.


PROPOSITION 4.1 R* has precisely n many maximal ideals if and only if RI has
precisely n many maximal ideals for D-many i.


Proof. Observe that the Jacobson radical of a ring is easily seen to be definable (in
the sense of Section 2) by the formula <p(x) that asserts 1 — x is a unit, so one may
construct a first order sentence that asserts a ring modulo its Jacobson radical is a
product of 'n-many fields, namely there exist, modulo the set of all x such that 1—x
is a unit, orthogonal idempotents e\,... ,en such that for all x, xei ^ 0 implies xei
has a multiplicative inverse. The claim now follows from Los's Theorem. D


We will see in Theorem 4.7 that if R* has infinitely many maximal ideals, then
R* has infinitely many non-induced maximal ideals, but first we use the terminology
of G. Cherlin to note there is a one-to-one correspondence between maximal ideals
of R* and ultrafilters on the set of induced maximal ideals of R* [4]. The following
notation will be helpful. If R* is a domain and J is an induced ideal of R*, then
we define Sj to be the set of all induced maximal ideals of R* that contain J. For
convenience, we write Sr for 5fl*r, where r G R*. If K is an ideal of R*, then £(K]
is the filter generated by the set {Sj : J C K, where J is an induced ideal of H*}.
Note that the set £(K) is closed under finite intersections, since if Sj^ 5j2 G 8(K},
then Sjt n 5j2 = 5,/l+j2 6 £(K}. Thus to every induced ideal is associated a filter
on the set of induced maximal ideals. Conversely, if £ is a filter on the set of induced
maximal ideals of R*, then we define M(£) ~ {r € R* : Sr e £}. Since £ is a filter,
M(£) is an ideal of R*.


Following Cherlin, we say that an ultrafilter on the set of induced maximal ideals
of R* is bounded if it contains an element of the form Sj for some finitely generated
ideal J of R*. The following lemma, the proof of which extends directly from
Cherlin's context, gives a general description of the maximal ideals of R*.


PROPOSITION 4.2 There is a one-to-one correspondence between maximal ideals
of R* and bounded ultrafilters on the set of induced maximal ideals of R* given by


M H-» £(M)


and
£ ̂  M(£}.


The principal ultrafilters correspond to induced maximal ideals, and vice versa.


Proof. If M is a maximal ideal, then M C M(£(M)) C R, so M = Af(£(M)).
Similarly, if £ is a bounded ultrafilter, then £ C £(M(£)). Hence £ = £(M(£)),
since £ and £(M(£)) are proper ultrafilters. The last assertion is clear. D


In the terminology of [2], Proposition 4.2 states that if R* has infinitely many
maximal ideals, then every maximal ideal of R* is a "limit" of the induced maximal
ideals with respect to an ultrafilter on the set of induced maximal ideals.
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We now indicate a second, more constructive method for exhibiting maximal
ideals of R*. Let J be the set of induced ideals J = (Ji)p of R* such that for
25-many i, Jj = Ri or Jj is the intersection of at most finitely many maximal ideals
of Ri. We view J as a partially ordered set under reverse inclusion, namely, if
J, K G J, then we write J < K if K C J. Notice that R* G J and R* < J for all
J €. J. We define the following operations on J":


• J V K := J H
• J A K :=
• J\.ftT := (Li)-D, where Li is the intersection of the maximal ideals of Ri that


contain Ji but not Ki (Li = Ri if this intersection is empty).


These notions are well-defined since T> is an ultrafilter. We conclude that (J7, V, A)
is a complemented distributive lattice with least element R* . Thus, if J G J , then
the set B(J] := {K G J : K < J } is a Boolean algebra since this set has a greatest
element, namely J. Therefore, every proper filter on B(J) extends to an ultrafilter
[17, p. 76, Corollary 3]. We show that for each J G J7, these ultrafilters on B(J]
are in one-to-one correspondence with the maximal ideals of R* that contain J. If
J G J and £ is an ultrafilter on #(J), we define Mj(£) := £)/<-e£ K. If M is a
maximal ideal of R* that contains J, then £.j(M] := {K G J : J C /C C M}.


THEOREM 4.3 Let J G J . There is a bijective mapping between the set of ultra-
filters £ on B(J) and the maximal ideals M of R* that contain J given by


and


Moreover, the non-principal ultrafilters on B(J) correspond precisely to the non-
induced maximal ideals of R* that contain J.


Proof. Let £ be an ultrafilter on B(J] and suppose r := (r^-p G R*\Mj(£). For
each i, let Ki = VJi + Ri^i, with the convention that Ki = Ri if Jj + Riri = R^.
Then K := (Kjv G B(J), and by assumption K £ £. Thus L := J\K G £.
However, if L := (Li)p, then Li + Riri = Ri for D-many i, so R*r + Mj(£) = R*,
and it follows that Mj(£) is a maximal ideal of R*. Conversely, suppose M is
a maximal ideal of R* that contains J. Clearly, £ := £j(M) is a filter on B(J)
with respect to the ordering <, so £ extends to an ultrafilter £'. We show that
M = Mj(£'}. If K € B(J)\£, then K + M = R*t since M is a maximal ideal of
R*. Suppose r := (ri}-D G M. Then J + Rr is contained in L :=
and L G S(J). Thus L C M and L G £ C r, so r G L C M j ( £ ' ) . It follows that
M C Afj(£'), so, since M is a maximal ideal of R*, M = Mj(£'}. Thus £ = £'.
The last assertion of the theorem is now an easy consequence of the definition of
B(J). H


The construction of non-induced maximal ideals in Theorem 4.3, when applied
to the case where Ri = TL for D-many i, can be translated into the terminology of
[19], where a similar theorem is proved for infinite products of Z.


LEMMA 4.4 For each i G /, let Ai be a collection of ideals of Ri and let Ki =
. Then (Ki}D = n{J : J = (Ji)D with J{ G Ai}.
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Proof. Set J = n{J : J = (Jt)D with J{ € Ai}. Clearly (Ki)D Q J, so what must
be shown is that J C (Ki)D. Let (rj/p € .ft* such that (r^o £ (Ki}D. Then the
set [i e / : Ti 6 -?Q} 0 D. Hence, since .D is an ultrafilter, {2 e / : n ^ J^} e D. In
particular, for D-many i, there exists an ideal Li of /^ with Ll e ^4i but r^ ^ L^.
Then (r-i)D 0 (JQD, so (r t)D 0 ./• Therefore, J C (^)D. d


LEMMA 4.5 If R* has infinitely many maximal ideals, then R* has infinitely many
induced maximal ideals.


Proof. Suppose R* has infinitely many maximal ideals but only finitely many in-
duced maximal ideals. Then there exists a non-induced maximal ideal N of R* and
we may choose r 6 N such that r is not contained in any induced maximal ideals.
However, this is impossible since r := (r j )x>, for some r\ £ Rl, and r must thus be
contained in an induced maximal ideal of R*. D


LEMMA 4.6 If R* has infinitely many maximal ideals, there exists a non-zero ideal
J G J that is contained in infinitely many induced maximal ideals of R*.


Proof. For each A: > 0, define A^ := {i & T : R,. has at least k many maximal
ideals}. Then by Proposition 4.1 and the assumption that R* has infinitely many
maximal ideals, each A^ G T> and A^+i C A^ for all k > 0. Define B^ '•— Ak\Ak+\
for each k > 0. For each i 6 £?/c, let J7; be the intersection of k maximal ideals
that contain 7,:. Then for each k > 0, {'i e I : R-JJi has at least k maximal
ideals} = Ak G D- It follows from Proposition 4.1 that J := («/i)p is contained in
infinitely many maximal ideals of R* (apply the proposition to R*/ J = Ylv Ri/Ji)
and that J e J. D


THEOREM 4.7 I// is an induced ideal of R* that is contained in infinitely many
maximal ideals of R*, then I is contained in at least 22 many non-induced maximal
ideals of R*.


Proof. Since / is contained in infinitely many maximal ideals, Lemma 4.6 (applied
to R*fl = Y(T> Ri/Ii) guarantees there exists J € J such that I C J and J is
contained in infinitely many maximal ideals of R*. By Lemma 4.5, J is contained
in infinitely many induced maximal ideals of R*. It follows that B(J) is an infinite
set. If the set of induced maximal ideals containing J has cardinality a then the
cardinality (3 of B(J) is at most 2Q. The elements of B(J] correspond to the principal
ultrafilters on B(J), and by [5, Corollary 7.4], there are at least 22 ultrafilters on
B(J}. Thus there are at least 22 many non-principal ultrafilters on B(J) and the
claim follows. D


COROLLARY 4.8 Every maximal ideal of R* is an induced ideal if and only if R*
has finitely many maximal ideals.


Proof. If R* has finitely many maximal ideals and N is a a maximal ideal of R*,
then there exists r G ./V such that N is the only maximal ideal of R* containing r.
However, r is contained in an induced maximal ideal of R*, and this forces TV to
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be induced. Conversely, suppose every maximal ideal of R* is induced but that R*
has infinitely many maximal ideals. Then by Lemma 4.5, R* has infinitely many
induced maximal ideals. Since R* has infinitely many maximal ideals, it follows
from Lemma 4.6 that there is an ideal J € J such that R*/J has infinitely many
maximal ideals. By Theorem 4.7, there are infinitely many non-induced maximal
ideals, contrary to assumption. Thus R* has finitely many maximal ideals. D


A commutative ring R has finite character if every non-zero element of R is con-
tained in at most finitely many maximal ideals of R. For example, one-dimensional
Noetherian domains have finite character, so the introduction of the finite charac-
ter property in our context is relevant to the study of Peano rings. Note however
that an ultraproduct of finite character rings need not have finite character, as is
evidenced by the case Ri = Z for all i 6 N. (The element r := (r,;)p, where for each
i > 0, Ti is the product of the first i primes, is contained in infinitely many induced
maximal ideals of R*. This follows from Proposition 4.1 applied to R*/R*r.) Our
strongest result regarding the description of maximal ideals of R* is obtained under
the finite character assumption:


THEOREM 4.9 If Ri has finite character for T)-many i, then every maximal ideal
of R* is of the form Afy(£) for some J G J and ultrafilter £ on B(J}.


Proof. Let M be a maximal ideal of R*, and let / := (/i)r> be the largest induced
ideal of R* contained in N (such an ideal exists by Zorn's Lemma). For each i,
define Jt to be the intersection of the maximal ideals of Ri that contain /;. Then by
Lemma 4.4, J := ( J»)D is the intersection of the induced maximal ideals that contain
/. If J £ N, then J + fl*(s»)x> = R" for some (s7;)c € N. Thus, for P-many i,
Ji + Rsi = Ri and s» is not contained in any maximal ideal containing /i. By design,
Ji is contained in every maximal ideal of Ri that contains 7j, so Ii + RiSi = Ri for
"D-many i. Thus R* — I + R*(si}v C N, a contradiction that implies J C N. This
forces I = J. Since Ri has finite character for "D-many i, / € J. Now £/(M) is an
ultrafilter on 5(7), so by Theorem 4.3, M = M/(£/(M)). D


5. REPRESENTATIONS OF R*


We now study representations of R* as intersections of localizations of R" at
induced maximal ideals. The first proposition indicates a sense in which the non-
induced maximal ideals are superfluous in such representations. Theorem 5.3 then
characterizes when this representation is unique. This uniqueness of representation
is an attractive property that one finds, for example, in studies of rings of continuous
functions and nonstandard models of orders in algebraic number fields.


PROPOSITION 5.1 If R* is an integral domain, then R* = nM#M> where M


ranges over the set of all induced maximal ideals of R* .


Proof. It is easy to see that an element q of the quotient field of a domain R is in
RM for some maximal ideal M of R if and only if R n Rq~l $ M. Thus to prove
the proposition, it suffices to show every proper ideal of the form R* n R*q, q e F*,
of R* is contained in some induced maximal ideal of R*. Let q := (<?i)p E F* be
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such that R* n R*q C /T (recall that F* is the quotient field of R*). Then for
D-many z, /2j n RiQi C Rt, so for each such i, there is a maximal ideal Mj such that
Hi C\ FUqi C Afj. If for some i G J, flj n #z<?; = #;, then set Af» = Ri. It follows
from Lemma 2.1 that /?* n /?*(? C (Mj)xj and (Mj)p is a maximal ideal of R* . D


We are interested in when the representation in Proposition 5.1 is unique. If
R is an integral domain and A is a set of maximal ideals of R such that R =
r\M£ARivi but for any maximal ideal N in A, R^ r\MeA\{N}RM, then we say the
representation of R as an intersection of the RM, M G A, is irredundant. Condition
(#) provides the strongest form of an irredundant representation:


An integral domain R satisfies (#) if and only if for every subset A of
maximal ideals of R, R — ̂ M^A^-M implies A is the set of all maximal
ideals of R.


Thus if R satisfies (#), every localization of R at a maximal ideal is essential in
the representation of R as the intersection of its localizations.


If R is a domain and / is an ideal of R, then the J -radical of / is the intersection
of all maximal ideals of R that contain /. It can be shown that if A is a collection
of maximal ideals of R, then a representation of R as an intersection of the RM,
M G A, is irredundant if and only if each maximal ideal M G A is the J- radical of
a divisorial ideal (see [21, Proposition 2.2], for example).


LEMMA 5.2 If R* is a domain, then M is the J -radical of a divisorial ideal of R*
if and only if M = (M,;)p for maximal ideals Mi of Ri such that for T>-many i, Mi
is the J -radical of a divisorial ideal o


Proof. Suppose M is the J-radical of a divisorial ideal of R* . Then M is the J-
radical of an ideal of the form R* n-R*(<ft)x>, where q := (qi]-D G F*. For each i G J,
set Ki = Ri n RiQi. Now Lemma 2.1 implies that for D-many i, Ki C Mi for some
maximal ideal Ml of Ri. Let B be the set of all i such that Mi is not the J-radical
of Ki. If B G £>, then for each i in B, Ri/Ki is not a quasilocal ring. Thus, since
by Lemma 2.1(iv) K := (Ki)v — R* H R*q, it follows from Proposition 4.1 that
R* /K has at least two maximal ideals, contrary to assumption. Thus M* is the
J-radical of Ri n RiQi for P-many i and (Mi)x> is the J-radical of K in R* . This
forces M — (Mj)p.


Conversely, suppose A is the set of all i G T such that Mi is the J-radical of a
divisorial ideal of Ri and that A & V. Then there exists for each i G A, qi G -Fi
such that the J-radical of Ri n .Ri^ is Mj. If i ^ .A, set & = 1. Define q = (qi)x>
and set K = R* n R*q. Then /<" C (Mj)p. If H*/X has more than one maximal
ideal, then there exist a,b £ R* such that a + K and b + K are non-units in R* /K
but a + b + K is a unit in R* /K. Write a = (aj)-D,6 = (&I)D, and J-C = (Ki}-p.
Then for D-many i, a^ + Ki and 6j -f Ai are non-units but 0.1 + bi + Ki is a unit of
Ri/Ki. Hence, for P-many i, Ri/Ki has at least two maximal ideals, contrary to
assumption. We conclude (Mi)x> is the only maximal ideal of R* that contains K.


D


THEOREM 5.3 // R* is a domain, the representation R* = r\MR*M, where M
ranges over all induced maximal ideals of R, is irredundant if and only if Ri satisfies


for "D-many i.
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Proof. If Ri satisfies (#•} for "D-many i, then for P-many i, each maximal ideal
of Ri is the J-radical of a divisorial ideal. Hence by Lemma 5.2, each induced
maximal ideal of R* is the J-radical of a divisorial ideal, and the representation R* —
HM-^M) where M ranges over the induced maximal ideals of R*, is irredundant.
Conversely, suppose the representation HM^M, M an induced maximal ideal of R*,
is irredundant but that T> does not contain the set of elements i G T such that Ri
satisfies (#). Then for X?-many i, each Ri has a maximal ideal M, such that M,
is not the J-radical of a divisorial ideal of R*. Hence, by Lemma 5.2, M = (Mj)p
is not the J-radical of a divisorial ideal of R*. Since fljv^M-ftjv 2 -^M) where N
ranges over the induced maximal ideals of R" distinct from M, there is an element
Q '•- (Qi}v €• F such that J := R* fl R*q C M but J £ N for all induced maximal
ideals N ^ M. By assumption there exists for P-many i, a maximal ideal Ni ^ Mi
of Ri such that J{ C JV^nMi. Thus, if AT := (/V t)x>, J C NCI M, and since TV 7^ M,
this contradicts the choice of J. Hence 7?i satisfies (#) for D-many i. D


COROLLARY 5.4 R* satisfies (#) if and only if there exists n > 0 such that for
D-many i, Ri has precisely n many maximal ideals.


Proof. If R* satisfies (#), then every maximal ideal of R* is the J-radical of a
divisorial ideal and by Lemma 5.2 is induced by maximal ideals of the Ri. By
Corollary 4.6, this means R* has finitely many maximal ideals and the claim follows
from Proposition 4.1. The converse is a consequence of Proposition 4.1 and the fact
that domains with only finitely many maximal ideals satisify (#). D


6. NON-MAXIMAL PRIME IDEALS OF R*


In the present section we examine the non-maximal prime ideals of R* . We first
show that in some important cases (e.g. I = N) R* has infinite Krull dimension,
then we characterize when every non-zero prime ideal of R* is contained in a unique
maximal ideal of R* .


LEMMA 6.1 If R is an integral domain and there exists a non-unit r 6 R such
that 0 7^ n/oo/frk, then R has Krull dimension at least two.


Proof. Let M be a maximal ideal of R containing r. By localizing R at M , we may
assume that R is quasilocal. If R is one-dimensional, then the radical of Rr is M.
Moreover, if 0 7^ s G rifc>o-Rrfc, then the radical of Rs is also M. But this implies
there exists n > 0 such that rn £ Rs C r\k>oRrk, a contradiction that forces the
Krull dimension of R to be at least two. D


In Proposition 6.2, we use the notion of countable incompleteness from Section
3.


PROPOSITION 6.2 If R* is a domain that is not a field and T> is a countably in-
complete ultrafilter, then each non-zero prime ideal of R* has infinite height. Con-
sequently, R* is not Noetherian when D is countably incomplete.
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Proof. Let r : — (rj)p G R* be a non-unit. Since T> is countably incomplete, there
exists a function n : I —> N such that for all k > 0, {i : n(i] > k} e V. Set


5 = (rz
n(z))x). Then for all k > 0, ^s 6 R*. Hence 0 ^ s e nfc>0#*rfc. Let


P be a prime ideal of R*. Then by Lemma 6.1, R*P has a nonzero non-maximal
prime ideal, say PI. Localizing R*p at PI and applying Lemma 6.1 again implies PI
contains a non-zero non-maximal prime ideal P<2 of R*P. Continuing in this manner,
we conclude that P has infinite height. D


The referee has shown us an interesting connection between "fragmented" do-
mains and the property of ultraproducts that the intersection of powers of a principal
ideal is non-zero. An integral domain R is fragmented if for every nonunit r £ R,
there is a nonunit s € R such that r € nn>oPtSn. An integral domain R that is
fragmented has infinite Krull dimension [7]; compare to Lemma 6.1 and Proposition
6.2.


In the important example of Peano rings, those ultrapowers of orders in algebraic
number fields, the ultraproduct has what we shall follow [6, 8] and term PM: each
non-zero non-maximal prime ideal is contained in a unique maximal ideal. This
is a familiar phenomenon in the prime spectra of rings of continuous functions of
various sorts (e.g. the ring of entire functions [9, Theorem 8.1.11], the ring of
continuous integer-valued functions [1], and N. Schwartz's real closed rings [26]).
We characterize when this property arises in the ultraproduct construction. Our
approach is to use the somewhat surprising fact that this ostensibly second order
property of prime ideals can be encoded into first order language. This gives a
general approach to some results in the study of the aforementioned Peano rings.
That Peano rings are PM domains has been proved previously using model-theoretic
and topological methods [4, 19]. However, these proofs rely heavily on properties
of Dedekind domains. Theorem 6.6 offers a more transparent explanation of these
results. If R is a domain, max(/?) denotes the space of maximal ideals of R, where
the closed sets of max(/2) are those sets V C max(Pb) such that there exists an ideal
/ of R with the property that the set of maximal ideals containing / is precisely V.


LEMMA 6.3 Let R be an integral domain with quotient field F. If V\ and Vi are
disjoint closed subsets of max(R], Si := R\\JM&VI M and 82 '•= /?\Uyvev2 N, then
R-SiRs-2 = F if and only if P £ \JNeV^N for every non-zero prime ideal P of R
such that P C


Proof. The proof is a simple modification of an argument of Matlis in [20, Theorem
20]. Observe that RS^S? = F it and only if (Rs^s? = F\ if and only if every
non-zero prime ideal of RSI meets S2; if and only if every non-zero prime ideal of
PL that does not meet Si must meet S2. Observe that a non-zero prime ideal P of
R does not meet Si if and only if P C \JM&ViM. On the other hand, if P meets
S2, then P <£. (JNev2N. The claim now follows. D


LEMMA 6.4 Let R be an integral domain and suppose {Ma} is a collection of
maximal ideals of R. If M is a maximal ideal of R and M C \JaMa, then HQMQ C
M.


Proof. It M C UaMQ, then M + HQMa C UQMa and the claim follows. D
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LEMMA 6.5 An integral domain R is a PM domain if and only if for each closed
subset V of max(R] and non-zero prime ideal P of R such that P C U^^yN, it
must be that M C Uw^yN for all maximal ideals M of R that contain P.


Proof. Suppose R is a PM domain. Let V be a closed subset of max(Pc) and P
be a non-zero prime ideal of R such that P C A := Uw^yN. By Zorn's Lemma,
there exists a largest ideal J containing P such that J C A. If K := H^^yN, then
J + K C A; hence K C J. Thus K C M, where M is the unique maximal ideal of
R containing P, and since K is closed, M G V. In particular, M C. A, proving the
claim. The converse is clear. D


THEOREM 6.6 Let R be an integral domain. Then R is a PM domain if and only
if for all non-units x,y, z £ R such that Rx -f Ry = R, there exists x',y' G R such
that Rx + Rx' = R, Ry + Ry' = R and x'y' G Rz.


Proof. Suppose R is a PM domain. Let x, y, z be nonunits in R such that Rx+Ry =
R. Let I/i be the set of maximal ideals of R containing x and V-2 be the set of maximal
ideals of R containing y. By assumption, V\ and Vi are disjoint. For i — 1, 2, define
Ai = UMevi^W and Si = R\A{. Using Lemma 6.3, we show first that RS^S^ = F.
Let P be a prime ideal of R such that P C A\, and let M be a maximal ideal of
R that contains P. Then by our assumption on R and Lemma 6.5, M C A\. If
M C A2, then by Lemma 6.4, r\^^y^N — ̂ - But ^2 is a closed subset of max(Pc),
so this forces M G K2. Similarly, since M C AI, M G Vi. But'Vj. and V-2 are
disjoint subsets of max(Pc), so M £ A2. Furthermore, P £ A2, since by Lemma
6.5 this would force M C A2. Thus by Lemma 6.3, RslRsy = F. Hence \ = p-^
for some r € PC, x' e Si and t/ € 52. In particular, rz = x'y', Hy -f .Ry' = R, and
/fcc + PCX' = R.


Conversely, to prove the stated property implies PC is a PM domain, we will use
the characterization of PM domains in Lemma 6.5. Let M be a maximal ideal of
R and V be a closed subset of max(Pc) not containing M. Define J := flA//€vM.
Suppose M <£ A := U j v c i / W . We show that RMRs = F, where 5 = R\A. Lemma
6.3 then substantiates the claim. Let 0 ^ z E PL, x 6 M\A and y G J\M (recall
that M $ V). Then Rx -{- Ry = R, so by assumption, there exist x',y',iy G PC
such that PCX + PCX' = R, Ry + Ry' = R and x'y' = wz. Thus i = ^^. Since
Rx + Rx' = R, x1 0 M. Similarly, y' £ A since y is contained in every maximal ideal
of PC contained in V. Thus ^ G RM^S ^ -f • The choice of z was arbitrary, so it
follows that F C RMR$. Hence RwRs = F. It follows that PC is a PM domain. D


COROLLARY 6.7 PC* has the property that each non-zero prime ideal of PC* is
contained in a unique maximal ideal of R* if and only if for T>-many i, Ri has the
property that each non-zero prime ideal of fij is contained in a unique maximal ideal


Proof. Apply Theorem 6.6 and Los's Theorem. D
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ABSTRACT


It is well known that a spectrum is not sufficient to recover a ring. To clarify
the situation, we are aiming to show that some subsets of a spectrum are
solutions to universal problems. Namely, if X C Spec(A) where A is a ring,
then X is called geometric if there is a ring morphism A —>• A with spectral
image contained in X and universal for this property. The similar problem
has always a solution in the category of locally ringed spaces. We examine
when points are geometric. We show that when A is locally Noetherian or
an almost multiplication ring, then a prime ideal P is geometric if and only
if P is a minimal prime ideal. Geometric points are characterized for Priifer
domains. An arbitrary geometric subset is stable under formal generizations
and a solution is an epimorphism focussing on X. The geometric property
is local on the spectrum, universal and is descended by algebraically pure
morphisms. Moreover, local morphisms induced by completions are isomor-
phisms. We give a complete characterization of geometric subsets which are
either closed or quasi-compact and stable under generizations. The akin
problem of quasi-geometric subsets is examined.


0 INTRODUCTION AND NOTATION


As most Algebraic Geometry textbooks explain, a spectrum is not sufficient
to recover a ring. For instance, all fields have homeomorphic spectra. Thus
to remedy, Algebraic Geometry uses sheaves. Our notation and definitions
are those of N. Bourbaki and E.G.A. of A. Grothendieck and J. Dieudonne.
In this paper, we are aiming to show that some subsets of spectra determine
ring morphisms. More precisely, let A be a ring and X C Spec(A). We say
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that X is geometric if there exists a ring morphism 6 : A —> A such that,
firstly a<5(Spec(A)) c X and secondly, each ring morphism / . A —> B such
that a/(Spec(J3)) C X can be factored uniquely through 8. Hence 6 is a
solution of a universal problem. We call it the geometric problem associated
to X and 6 is called a solution. It turns out that in this case a<5(Spec(A)) = X
so that X determines a ring morphism within an isomorphism. A variant of
this problem is gotten when one restricts to the category of reduced rings, in
which case we consider quasi-geometric subsets. Obviously, if X is geometric
with solution A —» A, then X is quasi-geometric with solution A —>• Ared-


As above recalled, sheaves are the right tool to use in this kind of pro-
blem. So in Section 1, the problem is studied inside the category of ringed
spaces and the category of locally ringed spaces. Let (Y,F) be a ringed
(respectively, locally ringed) space and X a subset of Y. Then consider
the induced ringed space (resp. locally ringed space) (X,J-\x )• We show
that (X,F\x ) —> (Y,J-} is a monomorphism of the considered categories.
Moreover, each morphism (//, 0} : (Z, Q] —> (F, F] of the category, such that
IL(Z) C X, can be factored through (X.^x ) —>• (Y^)- Thus the geometric
problem associated to X has always a solution in these categories. This is not
really surprising. But things are going wrong when we consider the category
of schemes. If (Y,Oy) is a scheme and X C Y, then unless (X,Oy\x ) be
a scheme, the geometric problem associated to X need not have a solution.
Indeed, in Section 3 and 4 we consider geometric problems in the category of
affine schemes (equivalently, the category of commutative rings). A subset of
a spectrum has a solution in this category, namely is geometric, if and only if
it has a solution in the category of schemes and we show that most of time, a
point is not geometric. We give conditions for a subscheme to be geometric
and we show that the spectral image of a flat epimorphism is geometric.
Section 1 ends with some considerations about a functor from the category
of ringed spaces to the category of locally ringed spaces and solutions to a
geometric problem. J. Malgoire and C. Voisin introduced this functor [15].


In Section 2, we introduce some materials and present some results used in
the next sections. They have their own interest. Indeed, they give factoriza-
tion properties of ring morphisms, linked to the subsets of a spectrum. Let
A be a ring and X C Spec(A). Denote by (Spec(A), A) the associated affine
scheme. In view of Section 1, it is clear that the ring of sections A(X) on X
of the affine scheme has a prominent part since an arbitrary ring morphism
/ : A -> B such that °/(Spec(J5)) C X can be factored A ->• A(X) -> B.
Unfortunately, in general neither the factorization is unique nor the spec-
tral image of A —» A(X) is contained in X. Actually X9 is contained in
this image. If X is a patch, we give an estimate of this image and recall a
calculation given by M. Raynaud of A(X9} as a direct limit. Then we give
expressions of A(X] in some cases. For instance, if A is an integral domain,
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A(X] = n [Ap ; P 6 X]. Then we consider the Gabriel's localization as-
sociated to X. Let / : A —> B be a ring morphism with spectral image
X. The set F of all ideals I of A such that X C D(/) is a site and / be-
longs to T if and only if IB = B. We show that there is a factorization
A -»• A? = A(Xg] -> A(X) -> B. Next we consider the ring A(F) intro-
duced by C. Nastasescu and N. Popescu. An element b 6 B belongs to A(F}
if and only if A \A b 6 J-. There is a factorization A —> AJF —>• ^(J1-") —>• 5.
If A is an integral domain, then A? — -A(X) while Ay = A(J^} if / is flat or
injective. The main interest of A(J-") is that a factorization A —> A(F] —> D
for a ring morphism A —> D is unique as soon as the spectral image of
A —» D is contained in X. Next, the ring A^) is contained in the domi-
niom of / (see 0.2 below). We give a generalization of an unpublished result
of D. Ferrand. If / : A —>• B is a flat morphism and X = Im(a/), then
A(X) — A(F) — DOUIA(B). We showed that a quasi-compact subset X of
Spec(A), stable under generizations, is the spectral image of an explicit flat
morphism [21]. Thus A(X) can be calculated for an arbitrary quasi-compact
and stable under generizations subset. Ferrand's result deals with a quasi-
compact open subset. Other factorization results in the same vein are given.


Section 3 gives elementary properties of geometric subsets. A geometric
subset X of Spec(A) is a patch (see 0.1 below) and is stable under formal
generizations that is, if P belongs to X then the spectral image of A —> Ap
is contained in X (here, Ap denotes the PAp-adic completion of Ap}. A
particular attention is paid to geometric points. A minimal prime ideal P of
A is geometric with solution A —> Ap. The converse is true if PAp is finitely
generated or A is an almost multiplication ring. Now if V is a valuation
domain with an idempotent maximal ideal M, then M is geometric with
solution A —> A/M. Solutions in these examples are epimorphisms. This is
a general fact (see Section 4). But one of them is flat while the other is not.
We show that \7nnP(n) = P if P is geometric. The converse is true if A is
a Priifer domain. We show also that Min(A) is geometric if A is a reduced
ring and Min(A) is compact, a solution being the maximal flat epimorphic
extension.


In Section 4, we give a key result. If X C Spec(A) is geometric with
solution A —» A(X) and / : A —» B is a ring morphism, then a f ~ l ( X ] is
geometric with solution B —> B§t)AA(X). It follows that a solution A —>
A(X) associated to a geometric subset is an epimorphism. A characterization
of geometric subsets using strict morphisms is deduced. We show also that
an intersection of geometric subsets is a geometric subset. Moreover, the
property of being a geometric subset is local on the spectrum that is to say
X is geometric if and only if J£nD(/i) , . . . , X r \ D ( f n ) are geometric whenever
Spec(^l) = D(/i) U • • • UD(/n). We do not know whether X(~]P9 is geometric
for each P <E Spec(A) involves X is geometric. This is linked to the descent
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of the geometric property by pure morphisms. We are only able to show that
algebraic purity descends the geometric property. A solution A —> A(X)
associated to a geometric subset X verifies akin properties of flat epimorphism
as follows. The canonical morphism Ap —•» A(X)g is an isomorphism for
each Q € Spec(A(X)) lying over P in A and such that Pg c X (for a flat
epimorphism, we only need P 6 X ) . There is a similar result with respect to


factor rings. Moreover, Ap —» A(X)g is an isomorphism. Hence, a solution
of a geometric problem is a formally flat epimorphism. Unfortunately, we do
not know of any converse. Nevertheless, we are in position to prove a main
result. If X is a patch stable under generizations, then X is geometric if
and only if X is the spectral image of a flat epimorphism A —> B. This last
morphism is then a solution which identifies with A —> A ( X ) . We deduce
from this result that if A is a, locally Noetherian ring, then X is geometric
if and only if X is the spectral image of a flat epimorphism. Moreover, a
quasi-compact open subset is geometric if and only if it is affine. We also
characterize geometric closed subsets. Let X = V(7) be a closed subset of
Spec(A), then X is geometric if and only if / C \/J implies / C J for each
ideal J of A. This last property is verified by pure ideals. Ideals verifying
this property are idempotent. Conversely, an idempotent ideal / of a Priifer
domain A defines a geometric subset V(/). The end of the section is dedicated
to quasi-geometric subsets. Similar results are gotten. But there are more
examples. For instance, a closed subset is quasi-geometric as well as an
arbitrary point of the spectrum. We show that a pre-flat morphism has a
quasi-geometric spectral image.


We give below some recalls and results used in the paper. Rings are as-
sumed to be commutative (with unit).


0.1. The patch topology (in French, topologie constructible) on the spectrum
of a ring A is a compact topology on Spec(yl) finer than the Zariski topology
[10], [8]. Its closed sets (patches or proconstructible subsets) are the subsets
a/(Spec(B)) where / : A —> B is a ring morphism. If X is a subset of Spec(A)
and P £ Spec(A), then P belongs to the patch closure Xc of X if and only if
X n V(J) n D(a) / 0 for every finitely generated ideal / of A and a € A such
that P e V(J) n D(a). The generization of a subset Z G Spec(A) is denoted
by Z9, its specialization by Zs and its Zariski closure by Z. If Z is a patch,
then Z — Zs. Let / : A —> B be a ring morphism with spectral image X,
then X = V(Ker(/)) which gives n [P ; P e X] = ^Ker(/).


0.2. In this paper, a ring epimorphism is an epimorphism of the category
of commutative rings with units. For general results on epimorphisms, the
reader is referred to the Samuel's Seminar on epimorphism 1967-1968 [28].
The dominiom Dom^(jB) of a ring morphism is the set of all b 6 B such
that 6 (g) 1 = ! ® 6 i n 5 0 4 j B . Then / is an epimorphism if and only if
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DomA(B) = B or also, if and only if .B®A(B/f(A)) = 0. We give here
some new results used in Section 4.


Let g : A —> B be a ring epimorphism and Q 6 Spec(£?) lying over P in
A. Therefore, there is a ring epimorphism / : R = Ap —> BQ = S. We set
M = PAP and N = QAQ.


• (a) We claim that MS = TV.


Indeed, R/M —* S/MS is a ring epimorphism and R/M is a field. It
follows from [13, IV. 1.3] that R/M —>• S/MS is an isomorphism because
S/MS / 0. Hence, MS is a maximal ideal contained in N.


Now consider the M-adic topology on R and the N-adic topology on S and
let R and 5 be the associated completions. There is a local ring morphism
R —> 5 and we can consider that S is the MS'-adic completion of S.


• (b) We claim that R —>• S is a formal ring epimorphism, that is to


say u — v for every commutative diagram R —> S H^T of the category of


commutative topological Hausdorff rings.


Indeed, R —»• S is an epimorphism and the image of S in S is everywhere
dense.


• (c) It seems that in general, R —» S is not an epimorphism. What
follows aims to examine the situation. Set / = DnMn and J = nnN


n, the
induced ring morphism R/I —> S/ J is an epimorphism and we can replace
/ by this morphism. The tensor product topology of the ./V-adic topologies
on 5 (QR S is for instance defined in [8, 0.7.7]. Let n be an arbitrary integer,
then the image of Nn <g)fl S and S®RNn in S ®RS are Afn(S®RS )
because MnS — Nn. Therefore, the tensor product topology is the M-adic
topology. Denote by V : S&)RS —> S the canonical ring morphism. Since /
is an epimorphism, V is an isomorphism so that the tensor product topology
is Hausdorff. Since the ./V-adic topology on 5 is also the M-adic topology,


there is an isomorphism S &)R S —» S. But S &)R S is canonically isomorphic


to the completion of S &)R S. If the tensor product topology on S ®RS is


Hausdorff, then the composite S§Z)RS —» S($QRS —> S is injective. In this


case, jR —> S is an epimorphism.


0.3. We recall some well known facts about pure ring morphisms and strict
monomorphisms.


• (a) There is a general categorical definition of strict monomorphisms.
In the category of commutative rings with units, an injective ring morphism
/ : A —-> B is strict if and only if A = Dcm^B). Therefore, an arbitrary
ring morphism A —> B can be factored A —> Dom^JB) —> B where the last
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morphism is strict. A strict ring epimorphism is an isomorphism. Lot


A » B


C > D


be a pullback diagram. If C —>• D is strict, so is A —> B.
• (b) A pure morphism is a universally injective ring morphism f : A —* B.


A pure morphism is spectrally surjective and strict. Pure morphisms descend
many properties (see [19]).


0.4. Let / : A —>• B and g : A —> C be ring morphisms. Then the cano-
nical map Spec(.B04C) —* Spec(jB) xSpec(A) Spec(C) is surjective and the
spectral image of A -> £(g)4 C is a/(Spec(B)) n ac/(Spec(C)) [8, Section 3].


1 THE CATEGORY OF RINGED SPACES


In this section, we intend to show that the geometric problem has a solu-
tion in the category of ringed spaces. For the reader's convenience, we begin
by recalling some basic facts which can be found in [8, 0.3]. They are also
summarized in [9]. We denote by (X,J-') or F a sheaf of commutative rings
(a ringed space) on a topological space X and by Homx (F , Q ) the set of
all morphisms of ringed spaces T — > Q on X. When ijj : X —>• Y is a con-
tinuous map, the direct image ringed space (F, ifj+ (JF ) ) of (X, J-) is defined
by 1/j* (F ) (V) = F (^rl(V] ) for any open set V C Y. Obviously, ̂  is a
functor and (</? o ijj )^ = <p+ o ifj^.


Now a morphism of ringed spaces (X,^) -+ (Y,Q} is a pair (V ;,$) where
•0 : X — > Y is a continuous map and 9 : Q — > V;* (^ ) ig a morphism of


sheaves on Y. The composite (X, .F) — : — >• (F, £) — : — >• (Z.H] is given by
(0 o -0,^(0) o cr).


The category of ringed spaces is denoted by RS.
Let •*/> : X — > y be a continuous map between topological spaces and (y, ̂ )


a ringed space. The inverse image ringed space il}~1 (Q ) of Q on X is the
sheaf associated to the presheaf Q[iJ.'} on X defined by U H- >• lim £/(^)


- >V'D'</-(^)
where Or is any open subset of X and the limit is taken over all open sets
V D ib(U}. When X is a subspace of Y and j : X —* Y is the canonical
injection, we get the induced ringed space Q x ~ j ~ l ( G ) on X.


There is a functorial isomorphism v >— > t;1' with respect to ringed spaces


Homx (^/'"1(^)^ ) - Horny
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Its inverse is denoted by u >—>• tA For each morphism of ringed spaces
w e Homx (F\,J--2 ), we have (wov)^ = ip*(w] ovb. We will have to consider


PQ — (Id^-i(g) ) : Q —> V7* (V ;~1(£/) ) inducing a morphism of ringed spaces
(ip,pg] '• (X,il>~l(g} ) —> (F, (7). Moreover, the following relation holds


V° = 1/J*(v) O pg ( J )


PROPOSITION 1.1. Let (V, £?) &e a ringed space and X C Y a subspace.
Denote by j : X —> Y the canonical continuous injective map.


(1) There is a monomorphism of ringed spaces ( j , p g ) '• (X,Q\x ) ~*


(2) A morphism of ringed spaces (//, 9} : (Z, 7i) — -> (y, (/) suc/i
//(Z) C X can fee factored by a unique morphism of ringed spaces


Proof. We first show that (j, pg ) : (X, Q\x ) ^^ (X-, G] ls a monomorphism
of the category of ringed spaces. Assume that there is a commutative diagram


Since a\ = a<2, we set a — ot\. Then from j* (^i ) o pg — j+ (9^ ) o pg,
we deduce that 9\ = ^ by ( J ), so that 6>i = 6>2 in view of ( f ). There-
fore, (X, Q\x ) — >• (Y, Q) is a monomorphism. Now consider a morphism of
ringed space (^, 0} : (Z, 7i} — > ("K, ^) such that n(Z) C X. Denote by a
the continuous restriction of ^ to X so that // = j o a. Then 9 is nothing
but Q — > j^ (o!*(7i) ). Thanks to the functorial isomorphism ( f ), there is
a morphism of ringed spaces 9$ : j~l(Q] — > a+(7-t) providing a morphism


(a,0» ) : (Z,H) -> (X,^|X ). As above we get j* (0» ) o pc = (0» )b = 0.
Thus the proof is complete. D


The monomorphism exhibited in 1.1,(1) is a solution of a universal pro-
blem. We call it a solution in the category of ringed spaces of the geometric
problem associated to X. The same definition is valid for subcategories of


RS-


Recall that for a ringed space F on X and x 6 X , the stalk J-"x of F is the
ring lim ^(U) where the limit is taken over all open subsets U 3 x. Let


- >U3x
( X , J-") be a ringed space and ip : X — > Y a continuous map. There is a ring
morphism tjjx : (^*(^r) ) ^ x —> 3~x for every x 6 X [8, 0.3.4.4].


(*) When ip induces a homeomorphism X — » ijj(X), the ring morphism '
is an isomorphism [8, 0.3.4.5]. This property holds for a subspace X of Y.
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Now if (il'.O] : (X.F) —>• (y, (?) is a morphism of ringed spaces, there is a
stalk ring morphism (?,;,(.r) —> J^r which can be factored for x ^ X,


->TX.


(**) Hence, for a ringed space (y, (?) and a continuous map y : X —•> y,


there is a stalk ring isomorphism 'ipx o (pg }^,fx\ '• (/0O) ~^ (V-'^H^) )- f°r


xe X [8, 0.3.7.2].
Notice that G[ip] —> i^~l (G ) induces an isomorphism (?[i/>]x —>• V;~1 (^ )x


for every x G X.
A locally ringed space is a ringed space, the stalks of which are local rings,


while a morphism of locally ringed spaces is a morphism of ringed spaces with
local stalk ring morphisms. The category of locally ringed spaces is denoted
by LRS.


When (y, (?) is a locally ringed space and X is a subspace of Y, the above
results show that (X,G\x ) ~* (Y:Q) is a rnonomorphism of LRS with bijec-
tive stalk ring morphisms.


Although LRS is not a full subcategory of RS, the previous result holds in
LRS.


PROPOSITION 1.2. Let (Y, (?) be a locally ringed space and X C Y a subspace.
Denote by j : X —>• Y the canonical continuous injective map.


(1) ( j , p g ) '• (X,G\x ) ~* (Y-iG} is a rnonomorphism of locally ringed
spaces.


(2) A morphism of locally ringed spaces (//, 0) : (Z, Ti,) —> (y, (?) such that
/i(Z) C X can be factored by a unique morphism of locally ringed


spaces (Z,H)-* (X,G\X )•


Proof. We denote by a : Z —>• X the restriction of /x and j : X —>• Y is the
canonical injection. There is a factorization (Z,J-} —* (X,G\x} ~^ (XiG] by


1.1. For z 6 Z, there are ring morphisms Gj(Q ( z ) ) —> (G\x )a t \~* 3~z where


the composite is local. As the first morphism is an isomorphism by (**), the
second is local. Therefore, (Z,?} —-» (X,G\x] is a morphism of locally ringed
spaces as well as the rnonomorphism (X,G\x] ~^ (Y,G}- D


COROLLARY 1.3. Let (Y,OY) be a scheme and X C Y. Assume that X
equipped with the induced ringed space is a scheme, for instance an open
subset ofY. Then X —>• Y is aflat monom,orphism of schemes and a solution
to the geometric problem associated to X in the category of schemes.


We give a converse in the category of affine schemes. If A is a ring, the


associated affine scheme is denoted by ISpec(A),A
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PROPOSITION 1.4. Let f : A — •» B be aflat epimorphism of rings with spectral
image X. Then the morphism of ringed spaces (Spec(S), J3) — » (X,A\x) is
an isomorphism of locally ringed spaces. Hence (X,A\x] is an affine scheme
and (Spec(5), I?) —>• (Spec(A),A) is a solution to the geometric problem
associated to X in the category of schemes.


Proof. By [13, IV.2.2], the restriction a : Spec(5) -» X of af is a home-
omorphism and Ap — > BQ is an isomorphism for every prime ideal Q of B
lying over P in A [27]. We set j : X — >• Spec(A) for the canonical injection
so that af = jo a. Since a/(Spec(£?)) = X, there is a composite morphism
of ringed spaces (Spec(B),B) — > (X, (A)|x) — * (Spec(A), A) providing us a
factorization


for Q 6 Spec(J3), where the first and the last morphisms are isomorphisms
by (**) and (*). Therefore, ((A)\x)a(Q) —* (a*(B))a(Q) is an isomorphism.
It follows that (A)|x — > a*(B) is an isomorphism because a is surjective. D


For the two following results, we use [8, 1.4.1]. A subscheme X of a scheme
Y is locally closed in X. But in general, there is only a surjective morphism of
ringed spaces u> : (Oy \x — •> Ox- Moreover, there is a morphism of schemes


jx — (j?a;b) : X — > Y which is a monomorphism in LRS. Then [8, 1.4.1.6]
can be rephrased as follows.


PROPOSITION 1.5. Let X be a subscheme of a scheme Y. Then a morphism
of schemes f : Z — » Y such that f(Z] C X can be factored Z —+ X —* Y if and
only if Oyj(z) ~+ Oz,z can be factored OYj(z) — >• Oxj(z) ~* ®Z,z for every
z 6 Z or equivalently, Ker (Oyj(z) — * @xj(z) ) C Ker (Oyj(z) — >• @z,z ) •


PROPOSITION 1.6. Let X be a subscheme of a scheme Y andU = (Y\X)\JX
the largest open subset of Y , containing X and such that X = U H X . Let
T be the quasi- coherent ideal of J- = (Oy )i[/ defining the closed subscheme
(X, Ox ) of (£7, J- ). Assume that Xx = 0 for every x G X .


(1) 1 is locally trivial whence a flat J- -module such that I = I2 .
(2) X — > Y is a solution to the geometric problem associated to X in the


category of schemes.


Proof. We get 1Z — Tz for every z 6 U \ X because X is the support of
T IT. Hence T is locally trivial. Let / : Z — > Y be a morphism of schemes


such that f ( Z ) C X =~XnU. By 1.3 there is a factorization Z -^ U -U Y
and g(Z} C X . Thus we can assume that X is a closed subscheme of Y. In
this case, Oy,x —> Ox,x for x £ X can be identified to Oy,x — ̂  OyjX/Ix and
is therefore injective. Thus we can use 1.5 to conclude. D
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EXAMPLE 1.7. Let X be a totally disconnected compact topological space
and K a field. Let A be the ring of locally constant functions from X to K.
This ring is absolutely flat. Let x e X be a non-isolated point. Consider the
maximal ideal M of all / G A such that /(a) = 0. Then the morphism of
schemes Spec(A/M) —>• Spec(A) is such that the stalk morphisms for every
x £ X are bijective [8, 1.4.2.3]. Therefore, the geometric problem associated
to {M} has a solution in the category of schemes. Notice that {M} is not
open.


To end this section we give some considerations about ringed space spectra,
introduced in [15]. The following result summarizes the main properties.


PROPOSITION 1.8. Let (Z, H) be a ringed space.


(1) There is a morphism of ringed spaces (p,p) : (Z' ,11,'} —> (Z, 7i) where
(Z',7^') is a locally ringed space.


(2) For every morphism of ringed spaces (/,/) : (Y,G) —>• (Z, 7i) where
(y, Q} is a locally ringed space, there is a unique factorization


(Y,£) -> (Z',H') -* ( Z , H ) o f ( Y , g ) -» (Z,H)
where (Y,G} —> (Z',7i') is a morphism of locally ringed spaces.


The locally ringed space (Z',7i;) is called the spectrum of (Z, H).


If (Z, H) is a locally ringed space, there is a factorization (Z, 7i) —> (Z', H'} —>
(Z, H) where the first morphism lies in LRS.


We get a covariant functor F : RS -> LRS defined by F(X, T} = (X1', JT')
and such that for every morphism of ringed spaces (/,/) : (X^F} —* (Y,(j)
there is a commutative diagram:


LEMMA 1.9. Let ( Z , H ) be a ringed space and (p,p) : (Z1 ,H'} -* (Z,H) the
ringed space jnorphism associated to the spectrum of (Z, 7Y). Then (Z1', W) —^
(Z, 7i) zs an epimorphism uf the category of ringed spaces and a monomor-
phisrn with respect to the subcategory LRS.


Proof. In view of [15, 1.3], the continuous map p : Z' —+ Z is surjective
and proper and p : 7i —» p+ (H1 ) is an isomorphism. Therefore, tp*(H] —>
ip* (p* (H' ) ) is an isomorphism for every continuous map (p : Z —> X, be-
cause (+ is a functor. D
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PROPOSITION 1.10. Let (Y,G) be a ringed space and X C Y. Set T = G\x-
Let (j',o-'} = (jipg)' '• ( X ' , J - ' } —* ( Y ' , G f ) be the associated morphism
of locally ringed spaces. Then a solution to the geometric problem associ-
ated to j'(X') in the category LRS is given by the monomorphism (j,pgY '•
(*',.F')->(y',0').
Proof. Denote by ( q q ) : (X',F) -> (X,F) and by (p,p) : (Y',G') -> (Y,G)
the canonical morphisms. Consider a morphism (//,#) : (Z,H] —» (Y',G')
of LRS such that //(Z) C j f ( X ' ) . Because q is surjective, we get p(//(Z)) C
j ( X ] = X. Therefore, there is a unique morphism (Z,H) —> ( X ^ f ) of RS
factorizing (Z,7-i) —> (Y,G)- By the universal property of (X',.77'), there
is a unique morphism of locally ringed spaces (i/, r] : (Z, 7i) —* (X'^J-f)
factorizing (Z^H} —> (X, J?7). Then the morphisms of locally ringed spaces
(j', <j') o (i/, r) and (//, 0) are equal in view of 1.9, because they are equalized
by ( p , p ) . It is easy to prove that the factorization is unique. D


2 RINGS OF SECTIONS AND GABRIEL'S LOCALIZATION


In the next sections, we consider solutions in the category of commutative
rings of geometric problems associated to subsets of a spectrum. These sub-
sets are necessarily patches. In this section we intend to exhibit unique
factorizations linked to the subsets of a spectrum. But they do not give in
general solutions to geometric problems. Nevertheless, the material of this
section will be used in the next section and the gotten results have their own
interest.


In the following, we consider a ring A and a subset X of Spec(A).
There is a monomorphism of locally ringed spaces with bijective stalk


morphisms ( j , p g ) : (X,A\X) —»• (Spec(A),A). We set A(X) = A\X(X),


Hence there is a ring morphism fx : A —» A(X). When X = D(7) is an open
subset, A(X) is nothing but the ring of sections over D(J). If / is an ideal
of A, the spectral image of A —> A(D(I}} is denoted by W(7). We denote by
QO the familly of all quasi-compact open subsets V of Spec(A) (such that
V = D(7) where 7 is a finitely generated ideal of A).


LEMMA 2.1. Let A be a ring and X C Spec(A).


(1) ^Clm(° /x )cn[W(7) ; XcD(7 ) ]= Im( a / ^ )•
(2) If X is a patch, then X9 = nJD(J) ; X C D(7), D(7) 6 QO } is a


patch and A(X9} = lim A(V) where the limit is taken over allr v ' -—>VDX ^ '
open subsets V D X in QO.


(3) For each ring morphism g : B —> C such that ag(Spec(£?)) C X, there
is a factorization A —> A(X) —> B.
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Proof. The statement (2) follows from [27, 2.1 and 2.3]. We show (1). In
view of (**) in Section 1. there is a factorization A — > A ( X ) — > Ap for every
P G X . The first inclusion of (1) follows. Moreover, denoting by j : X — »
Spec(A) the canonical map. A\x is the sheaf associated to the presheaf A[j]


(see Section 1). Hence there is a factorization A —> lim A(V] — > A(X]
. . . , — >VDX ^ '


where the limit is taken over all open sets V D X. The second inclusion
follows from [EGA, 1.3.4.10] while the equality is a consequence of (2). Now
(3) is a consequence of 1.2. D


Next we examine the case of an integral domain A with quotient field K.
In that case A(D(I)) = n [ AP ; P e D(/) ] c K for an ideal I of A. If k
belongs to K, we denote by I ( k ) its denominator ideal A \A k. If P is a prime
ideal of A, then P e D (/(&)) is equivalent to k <E Ap.


LEMMA 2.2. Let A be an integral domain and X C Spec(A). Then A(X) is
equal to n [ AP ; P e X ] so that A(X) = A(X9) = {k € K / X C D(/(fc))}.


Proof. Denoting by j : X — » Spec(A) the canonical map, we show that the
presheaf T — A[j] is a sheaf. Let W ~ X Pi U be an open subset of X where


U is an open subset of Spec(A), then T(X n U) = U \ A(V) • V D W ] by


Section 1. Clearly A(V} is contained in P — n [Ap ; P £ X r\U ] and so is
F(W). Now let k E B with denominator ideal /. If P belongs to X n U,
we get P e D(/) so that W C D(J). Moreover, Q 6 D(/) implies fc 6 AQ.
In short, A; belongs to B. Therefore, F(W] — ft [Ap ; P G W }. Since rings
of sections J-(W] are contained in K, it is easy to show that J7 is a sheaf.
Indeed, if U = UTt/? is an open covering, then F(X r\U) = C\i J^ (X f~]Ul ).
It follows that A(X] = n [ Ap : P £ X }. To complete the proof, it is enough
to observe that X C D(7) is equivalent to X9 C D(/). D


We introduce a relevant ring associated to a patch X. Its definition
generalizes the above expression of A ( X } .


For a general theory of localizations with respect to Gabriel topologies
(called here sites), we refer the reader to the Stenstrom's book [29]. Let
/ : A — >• B be a ring rnorphism and T the set of all ideals I of A such that
B = IB. Then T is a site on A. We consider the subring A(J-} of all elements
b G B for which there is some / in T such that f(I}b C f ( A ) [16, Section
4]. For b € -B, we denote by A \A b the ideal of all elements a G A such that
f(a)b <E f ( A ) . Thus 6 belongs to A(JF) if and only if A \A b e T because a site
is stable under overideals. If M is an A-module, then FM is the submodule
of all x e M such that 0 :A x € .F. We denote as usual by Ajr the localization
of A with respect to J-, that is to say Af — lim Hom^ (/, A/ FA ). When


/ t-'
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M is an A-module, the localization Mjr of M with respect to J7 is defined in
a similar way. If we consider the sheaf M, we set M(X) = M\x(X}.


LEMMA 2.3. Let f : A — >• B be a ring morphism, J- the associated site,
X C Spec(A) such that Im ( a f ) C X and I an ideal of A.


(1) X C D(7) implies IB = B.
(2) If X = lm(af ), then X C D(7) is equivalent to B = IB.


Therefore, when X — Im(a/ ), an ideal I of A belongs to T if and only if
X C D(I) and a prime ideal P of A belongs to X9 if and only if P £ J-.


Proof. Obvious. D


Let A be a ring, X C Spec (A) and define T to be the set of all ideals in
A such that X C D(7). Then J- is a site. R. Bkouche proved the following
facts [3, unpublished]. For every A- module M, there is an injective mor-


phism £(M) : M?7 "*• M(X] (defining a functorial monomorphism £) such
that M -»• M(X) = M -» Mjr -> M(X). Moreover, M(X) -> M(X)f is
an isomorphism. A subset X of Spec(yl) is called agreeable if C is an iso-
morphism. If X is quasi-compact and stable under generizations, then X is
agreeable.


A prime ideal P of a ring A is called flabby if A — > Ap is surjective.
Let N(P) be the kernel of A — » ^4p where P is an arbitrary prime ideal,
then ~P9 = V(N(P)). Thus when P is flabby, P9 is closed, JV(P) is a pure
ideal and A/P is a local ring. A ring A is called flabby if every maximal
ideal is flabby. For instance, a local ring is flabby and a ring of continuous
numerical functions C(E, R) is flabby. When A is flabby, an arbitrary subset
X of Max( A) is agreeable [3] .


LEMMA 2.4. Let f : A — > B be a ring morphism, F the associated site and
X = lm(af).


(1) Ayr = A(X9) and there is a factorization A -> A(X9) -> A(X) -* B
where A(X9) — >• A(X) is injective.


(2) I[X C Max(4), eac/i P e X is flabby and n [P ; P 6 X] = 0, tfien
A(X») -> A(X) is frijective [2, 2.6.1].


(3) There is a factorization A — > Ajr — •* A(^*) — >• B so that J-A C Ker(/).


Proof. (1) is a consequence of the above Bkouche's results and 2.1 since X is
a patch. We prove (3). Consider the factorization A — > f(A) — > B which gives
a factorization A? -> f(A)f -> 5jr. Set (? = /(JT) = {/B / / e JT} = {B}
so that BF = Bg = B. In view of [16, 4.1], we have f(A)r = A(F). To
complete the proof, observe that FA — Ker (A — > Ajr ). n


Under some hypotheses, the rings appearing in the above factorizations
identify.
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LEMMA 2.5. Let f : A — > B be a ring morphism, J- the associated site and
X = l m ( a f ) .


(1) If A is an integral domain, then A^ = A(X).
(2) If FA - Ker(/) ; then A? = A(F}. This is the case when A -> B is


flat or injective.


Proof. If A is an integral domain, use [16, 2.3] and 2.3 and observe that
P G X9 is equivalent to P <£ F. Assume that A — » B is flat. We have
J-A — Ker(/). Indeed, J- 'A C Ker(/) is always true. Conversely, assume that
/(a) = 0; then we have (0 : a)B — 0 : f(a)B — B by flatness so that a G T A.
Assume that J- 'A = Ker(/), so that A/ J-A = f(A). To complete the proof,
by using the definition of the localization with respect to T , it is enough to
observe that F(A/FA) = 0. D


The dominiom Dom^B} of a ring morphism f : A —> B is defined in 0.2.


PROPOSITION 2.6. Let f : A — >• B be a ring morphism, J- the associated site
andX = Im(a/ ).


(1) A(F) is the set of all b G B such that X C D (A :A b ).
(2) There is a factorization A -^ A(J-) — > Dom^(5) —> B so that X C


(3) C — » C(^)A A(JT) z^ surjective for every ring morphism g : A — > C
such that Im (ag ) C X .


(4) /fX is stable under generizations, afji defines a bisection a(j,~1 (X ) — >•
X.


(5) If A -+ A(}-) _ >D is a commutative diagram such that the spectral


image of g — u o ̂  — v o /i is contained in X , then u — v.


Proof. (1) is a consequence of 2.3. We show (2). Let 6 G A(J-} and / G T
such that f ( I ) b C /(A). From 7(6 ® 1 - 1 <g> 6) and IB = B,we deduce that
6 (8) 1 = 106. The hypotheses of (3) being granted, consider z — ̂  c^ 0 6^ G
C (^)A A(JT). Since T is stable under products, there is some / G J- such that
f(I)bk G f ( A ) for each fe. Thanks to 2.3,(1), we have 1C = C. Pick some
cij G / and 7^ G C such that 1 = Y^9 ( a j ) 7j arid set / (a.,- ) 6^ = / (o!j,fe )•
We get (g(a.j ) (g) 1 ) 2 = (1 0 / (a,- ) ) z = ̂  cfc(8)/ (a^k ) = ^<8>1 where 8j G
C. It follows easily that z = c <8> 1. In short, (7 — > C0A A(Jr) is surjective.
To prove (4), consider P G X and .R G Spec(B) lying over P and over
Q G Spec (A(.F) ). If / belongs to T, then IA(T} <£ Q follows from / £ P by
2.3. Thus Q is lying over P and belongs to n/6Jr D (IA(F) ) = >-1 (X ).
Now take Qi and (^2 in a/i-1 (X ) lying over P in A. Let 6 G Qi, there is
some / G F such that f ( I ) b C /(A) H Qi = n(A) n Qi - //(P) C C?2- As Q2


does riot contain //(/) by 2.3, we get Q\ C Q2- It follows that Qi = Q^. To
end, assume that the hypotheses of (5) hold and let b G A(jF). There is some
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/ € JF such that /(/)& C f ( A ) . Then for a e /, we get u(fi(a)b) = v(n(a)b)
so that g(a)(u(b) — v(b)) — 0. Thanks to 2.3,(1), we have ID = D from which
it follows that u(b) = v(b). D


We present now a generalization of an unpublished Ferrand's result which
asserts that A(D(/)) is a dominiom for a quasi-compact open subset D(/).


THEOREM 2.7. Let f : A — > B be a flat ring morphism, T the associated
site and X = Im (af ), then A(J-} — Dom^(J5). It follows then that A(X) =
Doiru(.B).


Proof. In view of 2.6, A(F) C DoniA(-B) holds. Now consider the canonical
morphism <p : B/f(A) —> B/f(A) 0^ B. Then Lazard and Huet proved that
DomA(B)/f(A) = Ker(^) [14, 2.2]. For b € DomA(£), define a morphism of
A- modules u : A — » B / f ( A ) by u(a) = f(a)b where x is the class of x 6 B in
B/f(A). Its kernel is A \A b. Now consider v = U&IB : B —> B / f ( A ) (g)A B.
For c 6 J5, we get v(c) = u(l) ® c = 6(8) c = 0 because b 6 Dom/i (•£?)• Since /
is flat, (A :̂  b)B — B follows and 6 belongs to A(T}. Then use 2.4,(1) and
2.5, (2), observing that X = X9. D


REMARK 2.8.


(1) Let / = (ai, . . . , an ) be a finitely generated ideal of A. The canonical
morphism ^/ = A — > A [X\, . . . , Xn ] / (a^Xi -\ ----- h anXn - 1 ) =
BI is a flat morphism such that a^/(Spec(5/ ) ) = D(7). Then
Ferrand's result is A(D(I)} — Dom^ (Bi ). Moreover, Dom^S/) — *
J5/ is an injective flat ring morphism (use [13, IV. 3.1]).


(2) Now if X C Spec(A) is quasi-compact and stable under generiza-
tions, X is the intersection of all D(7) where / is a finitely gene-
rated ideal such that X C D(J). Set BX = ^^Bj where / varies
in the preceding set of ideals and consider ipx '• A — >• BX, then


(3) We can use an alternative morphism. Let X be a subset of Spec(A).
The following results may be found in [21]. Consider the subset EX
of all p(t) 6 A [t } such that X C D(C(p(t))) where C(p(t)) is the
content ideal of p(t). Then EX is a multiplicative subset of Spec(A).
Let (f>x '• A — > A [t }-£x = X(A) be the canonical flat morphism. The
intersection of all quasi-compact open subsets of Spec(A) containing
X is a(/2x(Spec(X(A))) [21]. Therefore, if X is quasi-compact and
stable under generizations, then A(X) = DoniA(X(A)).


(4) We recall now some notation introduced in [23, Section 1]. Let A be a
ring and X C Spec(A). The size of X is U(X) = U [P ; P e X] and
its radical is K ( X ) = fl [ P ; € X]. We denote by Sx the subset of
all elements a E A such that X C D(a). Then Sx is a multiplicative
subset of A and we set AX = ASX ; clearly, AX = Axg . The ring AX is
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called the localization of A at X (obviously, A^p} = Ap). Denote by
Xu the set of all prime ideals P of A such that P C U(X) and by ux :
A —> AX the canonical rnorphism. Then Xu = aux (Spec (Ax ) ) is
a patch stable under generizations. Now let / : A —> B be a ring
morphism such that °/(Spec(£)) C X9. Since each element of f ( S x )
is a unit in B, we get a factorization A —> AX —» -B of /.


We will need the following result.


PROPOSITION 2.9. Let f : A —> B be a ring morphism,, J7 the associated site
and X — Im(a/ ). Then f is called pre-flat (or immersing) if one of the
following equivalent statements holds [18] and [16].


(1) Ap —> Bp is surjective for every P G X (resp. P € X9).
(2) A(F) = B.
(3) A/Ker(/) —* B is a flat epimorphism.


Proof. For (1) <& (2) see [16, 3.4 and 4.2] and for (I) & (3) see [18, II.4]. D


A pre-flat morphism is an epimorphism. A flat epimorphism is pre-flat
and a pre-flat injective morphism is a flat epimorphism [16, Section 3].


The next result could be used in Section 4 but we prefer to work with
different methods. It is related to the preceding results.


PROPOSITION 2.10. Let f : A —> B be a ring morphism, F the associ-
ated site and X = Im(a/ ). Let g : A —» C be a ring morphism such that
ag(Spec(C)) C X. Then there is a unique factorization A —> C = A —»
AF-+C.


Proof. First observe that C? — CQ where Q — g(J-) — {C}. From Cg = C
we deduce that the factorization exists. Denote by j : A —* A? the canonical
morphism and assume that there are two ring morphisms it, v : A^ —> C such
that uoj — g = voj. Now let q be in Ajr, there is some / E J- such that
j ( I ) q C j ( A ) . It follows that g(I)(u(q) - v(q)) = 0. From 1C = C we deduce
that u(q) = v(q). Therefore the factorization is unique. D


3 THE CATEGORY OF RINGS


DEFINITION 3.1. Let A be a ring and X C Spec(A). Then X is called a
geometric subset of Spec(A) if the following statements hold.


(1) There is a ring morphism 6 : A-+ A (A") such that a<5(Spec(A(X))) C
X.


(2) For every ring morphism / : A —> B such that a/(Spec(B)) C X,
there is a unique ring morphism g : A(X) —>• B such that / = g o 6.


In that case 6 is called a solution of the geometric (universal) problem asso-
ciated to X.
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Clearly, the subset Spec (A) has a solution A — >• A(X) = A.


The hypotheses of 2.10 being granted, X is geometric if the spectral image
Y of A — » A? is contained in X. Actually, Gabriel's localization theory shows
that prime ideals P £ JF belong to Y. Thanks to 2.3, we get that X9 C Y.
Therefore, the above condition says that X is quasi-compact and stable under
generizations. We will give a complete answer for such subsets.


LEMMA 3. 2. Let A be a ring and X a geometric subset o/Spec(A). Then we
have a<5(Spec(A(X))) = X so that X is a patch.


Proof. It is enough to show that X C a<5(Spec(A(X))). Let P e X, there is
a ring morphism A — > k(P) providing a factorization A — » A(X) — >• k(P). D


We say that a ring morphism / : A — > B focuses on a subset X of Spec(A) if
a/(Spec(£)) = X and that / focuses on a prime ideal P of A if a/(Spec(5)) =
{P}. Trivial examples are the ring morphisms A — > Ap/PnAp = kn(P) for
each integer n > 0.


REMARK 3.3. If a ring morphism / : A — >• B focuses on X C Spec(A), then


(1) A/Ker(/) = U(X) since a/(Spec(B)) - V(Ker(/)) by 0.1.
(2) There is a factorization A -» AI+K(X) -+ B of f. Indeed, f(R,(X)) C


Nil (B) forces each element of 1 + 'R-(X) to be a unit in B.


LEMMA 3.4. Let f : A — > B be a ring morphism and X a patch ofSpec(A).
If f focuses on X then B —> BX — B §QA AX is an isomorphism.


Proof. There is a ring morphism 0X : A -> JIM-P); p € x\ = p(x)
which focuses on X because X is a patch [17, Lemme 6]. Hence, there is a
factorization A — >• AX —+ P(x) by 2. 8, (4) from which we deduce a factoriza-
tion B -> Bx -> P(X) ®A B. By 0.4, B -> P(X) ® A B is surjective on the
spectrum and so is B — >• BX • This last morphism is therefore a faithfully flat
epimorphism whence an isomorphism [13, I V.I. 2]. D


COROLLARY 3.5. Let f : A —> B be a ring morphism and P G Spec(A).
Then f focuses on P if and only if B — > Bp is an isomorphism and PB C
Nil(.B). In particular, if f is an epimorphism focusing on P, then Spec(B) =
{PB} and -Bred is isomorphic to k(P).


Proof. One implication is given by 3.4 and 3.3. The reverse implication
is obvious. Assume in addition that / is an epimorphism, then k(P) — >
Bp/PBp = B/ PB is an isomorphism so that PBp is a maximal ideal. D


We pause to examine when a prime ideal P of A is geometric (i. e.
X — {P} is geometric). A minimal prime ideal P is geometric, a solu-
tion being A —> Ap. To see this, use 2. 8, (4) and observe that A — > Ap is a
flat epimorphism.
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For informations on almost multiplication rings, the reader is referred to
the book of Larsen and McCarthy [11].


PROPOSITION 3.6. Let A be a ring and P a prime ideal of A. Then P is
geometric if and only if P is a minimal prime ideal when one of the following
conditions holds:


(1) PAp is a finitely generated ideal of Ap (for instance, if A is locally
Noethenan).


(2) A is an almost multiplication ring.


Proof. Assume that P is geometric with a solution 8 : A —> A. Thanks to
2.8,(4), there is a factorization A —> Ap —>• A where the last morphism g
focuses on PAp = Q. In view of 3.3, we get Q — -\/Ker(^). If Q is finitely
generated, there is some integer n such that Qn C Ker(p). Now assume that
A is an almost multiplication ring. We have P — \/Ker(<5) since 8 focuses on
P. Let N(P) be the kernel of A -> AP. If N(P) is not a prime ideal, then
by [11, 9.25], P is a minimal prime ideal. If N(P] — P, then Ap is a field so
that P is a minimal prime ideal. If N(P) is a prime ideal and N(P] ^ P,
then thanks to [11, 9.26], Ker(<5) = Pn for some integer n > 0 and Ap is a
discrete rank one valuation ring. It follows that Qn C Ker(g). Therefore,
we are reduced to consider that in both cases Qn C Ker(g) and Q is finitely
generated. If so, there is a factorization A —> kn(P) —> A of 8. By definition,
there is a factorization A —> A —•> kn+i(P). Since A —» kn+i(P) is an
epimorphism, the composite morphism kn+i(P) —> kn(P) —> A —>• kn+i(P) is
the identity. It follows that kn+i(P) —» kn(P) is injective so that Qn = Qn+1.
Now Q = 0 by Nakayama's lemma because Q is finitely generated. Hence P
is a minimal prime ideal. D


REMARK 3.7. Let I7 be a valuation domain with maximal ideal M such that
M2 — M. Then M is geometric, a solution being V —>• V/M. Indeed, let
/ : V —*• B be a ring morphism focussing on M. By 3.3,(1), M = >/Ker(/).
Then by [7, 17.1], there is some integer n such that Mn C Ker(/) unless
Ker(/) = V in which case B = 0. It follows that M = Ker(/) for every ring
morphism / : V —> B focussing on M.


We will see in Section 4 that a solution A —->• A(X) associated to a geome-
tric subset X is an epimorphism. It follows from 3.5 that when P is geometric,
Spec(A(P)) = (PA(P)} and that A(P)red is isomorphic to k(P).


Observe that 3.6 provides us examples of solutions which are flat epimor-
phisms while in 3.7, the solution V —» V/M is a non-flat epimorphism because
if not, V(M) = {M} is stable under generizations.


Geometric subsets are almost stable under generizations. To see this,
we need a definition. If P is a prime ideal of A, we can consider the ring
morphism 7/> : A —> Ap —> Ap where Ap is the separated completion of Ap
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with respect to the PAp-adic topology. Setting P?9 = a7p(Spec(Ap)), we
have Pf9 C P9 .


DEFINITION 3.8. Let X be a subset of Spec(A). We say that X is stable
under formal generizations if P?9 C X for each P 6 X.


If X is stable under generizations, then X is stable under formal generiza-
tions. The converse is true when A is locally Noetherian. Indeed, Ap — » Ap
is faithfully flat since Ap is Noetherian.


PROPOSITION 3.9. Let X be a geometric subset 0/Spec(A), then X is stable
under formal generizations. Therefore, X is stable under generizations when
A is locally Noetherian.


Proof. Recall that Ap — » Ap identifies to Ap — > limkn(P). Now let P e X,


we have a factorization A — > A(Jf) -^ kn(P). Then {un}n is an inverse
system of ring morphisms because 6 is an epimorphism (see 4.2). Therefore,
there exists a factorization A — > A(X) — »• Ap. D


COROLLARY 3.10. Let P be a prime ideal of a ring A.


(1) If P is geometric, then \/nn PnAp = PAp (equivalently, y nnP(n) =
_


(2) // \/nn P
nAp = PAp and A is a Priifer domain, then P is geometric


with solution A — > Ap -> Ap/ (~]n PnAp .


It follows that a prime ideal P of a Priifer domain is geometric if and only
if PAp is idempotent. In this case, a solution is given by A —> k(P).


Proof. Since nn P
nAp = Ker(Ap — > Ap), a minimal prime ideal Q of


(
___ ___ ̂  V
Ap 1. Assume that P is geometric. From


P/s = {P}, we deduce that Q — PAp. Thus (1) is proved. If the hypotheses
of (2) hold, let / : A — > B be a ring morphism focussing on P. We know
that there is a factorization A — •> Ap — >• B by 2. 8, (4) so that g focuses on
PAp. By 0.1, A/Ker(g) = PAp. Since Ap is a valuation ring, there is some
integer n such that PnAP C Ker(#) [7, 17.1). Setting / = nn P


nAP, we get
/ C Ker(g). Therefore, g can be factored Ap — > Ap/7 — > B. In short, there is
a factorization A — > Ap/I —* B where the first morphism is an epimorphism
with spectral image {P} because \fl = PAp. To complete the proof, use
[1, 2.7] which asserts that / = \fl. D


REMARK 3.11. Let P be a prime ideal of a ring A with total quotient ring
T and N(P) = Ker(A — »• Ap). Denote by T the total quotient ring of
A/N(P). Then A -> A/7V(P) may be continued to a ring morphism T — »• T
and Ap may be considered as an overring of A/N(P). Assume that P is
quasi-invertible, that is P < PP~1. By reworking the proof of [4, Theorem],







406 Picavet


we find that PAp is invertible so that this ideal is finitely generated and
0 = r\nP


nAp is a prime ideal by [4, Lemma]. Therefore, a quasi-invertible
prime ideal P is geometric if and only if P is a minimal prime ideal.


PROPOSITION 3.12. Let A be a reduced ring such that Min(A) is compact.
Then Min(A) is geometric with solution m : A —> M(A), the maximal flat
epimorphic extension of A.


Proof. Thanks to [17, II,Proposition 7], Min(A) is compact if and only if
M(A) is absolutely flat where A —> M(A] is the maximal flat epimorphic
extension of A (see for instance [13, IV.3]). In this case m focuses on Min(A).
Now let / : A —>• B be a ring morphism such that a/(Spec(B)) C Min(A).
Then the canonical morphism B —> B^AM(A) is a spectrally surjective
flat epimorphism by 0.4, whence an isomorphism because a faithfully flat
epimorphism is an isomorphism [13, IV. 1.2]. EH


4 PROPERTIES OF GEOMETRIC SUBSETS


The first proposition is a key result.


PROPOSITION 4.1. Let X C Spec(A) be a geometric subset. Let f : A -> B
be a ring morphism and Y — a f ~ 1 ( X ) . Then Y is geometric and a solution
is given by B -» A(Y) = £®


Proof. Let g : B — > C be a ring morphism such that ag(Spec(C)) C Y.
It follows that a(g o /)(Spec(C)) C X . Then there is a unique morphism
h : A(X) — >• C such that h o 6 = g o f . By the universal property of tensor
products, B — * C can be factored by B0 4 A(X) — > C. Moreover, the
spectral image of 5(g)A A(X) in Spec(A) is a/(Spec(5))na<5(Spec(A(^))) C
X by 0.4 so that the spectral image of B <^A A(X) in Spec(£?) is contained
in Y . The proof of uniqueness is straightforward. D


REMARK. Let X C Spec(A) be a geometric subset. Let / : A — >• B be an
epimorphism factoring 6 and let g : B — *• A(J5sT). Then g : B —* A(X) is
a solution for the geometric subset a f ~ l ( X } . This can be shown by using
the definition of a geometric subset. This result is also a consequence of 4.1.
Indeed, there is a factorization A(X) — » B(g)AA(A') -> A(X) where the
first morphism is a pure epimorphism whence an isomorphism (see 0.3).


PROPOSITION 4. 2. The following conditions are equivalent for X C Spec(A):


(1) X is geometric.
(2) There exists an epimorphism 6 : A —* A such that


(a) a<5(Spec(A)) = X.
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(b) For each ring morphism h : A —> B such that a/?,(Spec(J3)) C
X, there is a commutative diagram of ring morphisms


A > A


B > C


where B —> C is strict (respectively pure, B is a retract of C).


Therefore, 6 : A —> A(X) is an epimorphism when X is geometric. In this
case, let A —->• 5 —»• A(X) 6e a factorization, then S —» A(X) zs surjective
whenever the image of Spec(5) —> Spec(A) is contained in X (for instance,
when S —> ApC) zs spectrally surjective).


Proof. Assume that (1) holds. Then A —> ApQ — A is an epimorphism.
To see this, take / = 6 in 4.1, so that Y = Spec(ApQ) by 3.2. Then in view
of 4.1, ApO -> ApO <g)A APQ provides us a solution for Spec(A(X)). The
remark following 3.1 shows that this last morphism is an isomorphism. Thus
6 is an epimorphism [13, IV. 1.0], such that a<5(Spec(A)) = X . To show (b),
let h : A —> B be as in (b). There is a factorization A —>• A —> B and Id# can
be factored B —» B ®A A —> B. Hence it is enough to take C = B(QA A.
Therefore (2) is proved. Conversely, assume that the hypotheses of (2) hold
and let h : A —>• B be a ring morphism such that ah(Spec(B)) C X. There
is a commutative diagram as in (b). Set 5 = A Xc B, then S —> A is strict
by 0.3 and an epimorphism whence an isomorphism. It follows that A —> B
can be factored through 6 and (1) is proved. To complete the proof, assume
that 6 is factored by a ring morphism / : A —> S such that a f ( S p e c ( S ) ) C X.
Denote by g the ring morphism S —» B so that g o / = 6. Then / can be
factored / = h o g o / where h : A —» C is a ring morphism. It follows that
goho6 = gof = 6. Since 6 is an epimorphism, g o h = Id^ so that # is
surjective. D


When A" is a geometric subset of Spec(yl), the monomorphism of affine


( " ^~~^ \ ( ~ \
Spec(ApO), A(A") J -> (Spec(A),A j = F is a solution of


the geometric problem associated to X in the category of schemes. Indeed,
first observe that this morphism is obviously a solution in the category of
affine schemes. Then consider a morphism of schemes / : Z —> Y such
that f ( Z ] C X. The affine open subsets of Z are a base of the topology of
the underlying set of Z. Let V C U be affine open subsets of Z, defining
morphisms of schemes V —> U —>• Z. Then U —> Y and V —>• Y being
morphisms of affine schemes can be factored U —•> A —+ Y and V —> A —»• Y".
Since A —> Y" is a monomorphism, we get a factorization V^ —>• C7 —* A.
Thanks to [24, 2.12,(3)], there is a morphism of schemes Z —>• A such that
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E / - > Z - » A - > y = t / - > Z - > Y f o r each affine open subset U. Then the
uniqueness asserted in [24. 2.12,(3)] implies that Z — > Y = Z - - > A - » Y .


( "" \
A", A|x ) —> Y. But the first rnor-


phism may not be an isomorphism for if not. Ap —>• A(A)p is an isomorphism
for each P £ X by Section 1 (**), that is A —•> A(X) is a flat epimorphism
[13, IV.2.4]. This denies 3.7.


Anyway, there is a factorization A —> A(X] —> A(A) (see 2.1). Unlike to
the locally ringed space case, there are two obstructions for fx '• A —> A(X)
to be a solution of the geometric problem associated to X: its spectral image
contains X9 and fx may not be an epimorphism. By 2.1, A is geometric
when fx is an epimorphism and Im(a/x ) = A. In this case, A is a patch
stable under generizations. We will give a complete answer for such subsets
A.


REMARK 4.3. If A C Spec(A) is a patch, the family of all epimorphisms
/ : A —» B such that Im(a/ ) C A has a final object. Indeed, Let t :
A —» T(A) be the ring morphism of A into its associated universal absolutely
flat ring. Then t is an epimorphism, at is a homeomorphism for the Zariski
topology on Spec(T(.A)) and the patch topology on Spec(^4) (see Olivier's
paper [17]). Thus F = at~l(X] is a Zariski closed set V(/) where / is a radical
ideal. Then 0 : A —» T(A)/I = E is an epimorphism with an absolutely
flat range such that Im (aO ) = A. Let / : A —> B be an epimorphism
such that Im(a/ ) C A. Then E —» E^AB is a flat epimorphism. Now
if Q is a prime ideal of E lying above P E A , there is some prime ideal
R in B lying over P. By 0.4, there is a prime ideal S in E<^AB lying
over Q. Hence E —>£"(££) 4 12 is a faithfully flat epimorphism whence an
isomorphism [13, IV. 1.2]. Therefore, there is a factorization A —> B —*• E. If
A is geometric, the above family has an initial object.


PROPOSITION 4.4. Let {Xl}i&1 be a family of geometric subsets of Spec (A)
admitting a solution A —* A(A^). Then X = n i(E/ A7. is a geometric subset
with solution A —> (££)ie/ A(A^).


Proof. Let / : A -> B such that a/(Spec(£)) C A C Az for every i e /.
There is a unique factorization A —>• A(Aj) —>• 5. Thus we get a unique
factorization A —•» (££)l€/A(A;) —> B. Moreover, the spectral image of
<g)ie/ A(AZ) in Spec(A) is A [8, 1.3.4.10]. D


Therefore, for an arbitrary subset A of Spec(A), there is a smallest geo-
metric subset A' containing X. It follows from 2.8,(4) and 4.7 below that
X' cXu.


LEMMA 4.5. Let X C Y be geometric subsets o/Spec(A). There is a facto-
rization A —> A(F) -* A(A).
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Proof. Obvious. D


REMARK 4.6. The previous result 4.4 can be refined. Let X be a patch in
Spec(A), we proved that X is the intersection of a family {Xi]i^I where
7 is an ordered set, each Xi is constructible and Xj C X{ when i < j
[20, I.2,Lemme 4]. Assume that each Xi is geometric. For i < j, there
is a ring morphism 6jti : ApQ) —>• A(X,). Since each A —» A(JQ) is an
epimorphism, we get a direct system of A-algebras (<5j,i, A(Xi)} with limit an
epimorphism 6 : A —» A, focussing on X [8, 1.3.4.10]. Then a ring morphism
/ : A —» B such that a/(Spec(J3)) C X can be factored uniquely A —> A —> J5
because each A —> A(Xj) is an epimorphism. Therefore, X is geometric with
solution 5. We do not know whether an arbitrary geometric subset can be
gotten in this way.


PROPOSITION 4.7. Let f : A -» B be a flat epimorphism with spectral
image X. Then X is geometric, A —» B is a solution which identifies
with A —»• A(X). In particular, if S is a multiplicative subset of A, then
X = H [D(s) ; s € 5"] is geometric with solution A —» AS-


Proof. Let g : A —> C be a ring morphism such that a^(Spec(C)) C X.
Then h : C —» C($t)AB is a flat epimorphism. Moreover, ah is surjective
because Spec(C(QAB ) —> Spec(£?) xSpec(A) Spec(C) is surjective by 0.4.
Thus h is a faithfully flat epimorphism, whence an isomorphism [13, IV. 1.2].
The factorization is unique because A —»• B is an epimorphism. Then A —> B
identifies with A -> A(X) by 1.4. D


Let X be a geometric subset of Spec(A) and f € A. Then Xj — X fl D(/)
is geometric by 4.6 and 4.7, a solution being given by A —> A(X)/. We
intend to show a converse. To this end, consider the following situation.
Let {Mi} be a finite family of A-modules where i = 1, . . . , n and {M{j j}}
another family of yl-modules for i,j — 1,. . . ,n, together with morphisms
of yl-modules f i j : Mi —> M^^} and fjti : Mj —> M^jy. Denote by pi :
M — rife=i -^fc ~^ Mi the canonical surjection and by K the set of all
( x i , . . . ,xn) € M such that f i , j ( x i ) = fj^(xj) for each {i,j}. Then /sT is
the kernel of the morphism of A-modules / : M —> Yl{i -\ ^{i,j} defined
by /(zi , . . . ,xn) = (fij opi(xi,... ,xn) -/^ OPJ^X!, . . . ,arn) ). Now if P
is a flat A-module, then K &)A P is the kernel associated to the A-moduies
Mi (£)A P, M{ij} (QA P and the morphisms /jj <8> P. When the modules are
A-algebras, so is A".


PROPOSITION 4.8. The geometric property on a subset is local on the spec-
trum. In other words, let X be a subset of Spec(A) and f\,... , fn 6 A
generating the ideal A. Then X is geometric if and only if X^ , . . . , Xfn are
geometric.
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Proof. Assume that each X^ is geometric and let K be the associated ker-
nel. We set AJ = A (X/. ) and A{ijy = A (X^/j ). The pievious results
show that there are A-algebras morphisms fifj : At —» A{io-}. Let g : A -^ B
be a ring morphism such that °g(Spec(B)) C X, then agl (Spec (B/. ) ) C
Xjz holds for <?,t : A —>• B f ^ . Hence, there exist morphisms of A-algebras
AJ —» J3/t and A^j} —» ^/^ such that the following diagrams are commu-
tative:


because each A —> Aj is an epimorphism. Observe that B is the kernel as-
sociated to the families {B^} , {£?/;/.} because B is a sheaf and the ideal
generated by g(/ i ) , . . . , p(/n) is 5. It follows that there is a unique fac-
torization A —> K — > B. It remains to show that <5 : A — » /if focuses on
X. Tensoring the exact sequence K — » f| Af — > f3A{jj} by the flat mod-
ule Afc provides us an exact sequence K^ —> Yli (^i )/ ~^ Yli j (^1 )/ /
because (Ai )7 = A (X n D(/i) n D (/_,-) ) = (Aj )/r Now the images of


/ i , . . . , /n generate AI. Because AI is a sheaf, Kfl = AI follows. But
K — > Yl-Kfi ls faithfully flat whence spectrally surjective. It follows that
X = (J Xfi -


Take n = 2 in the above result. Then K is nothing but the pullback
associated to the ring morphisms AI — >• AI^ and A2 — >• Ai ,2-


In view of the preceding result, it may be asked whether pure morphisms
descend geometric subsets, that is, if / : A — •> B is pure and X C Spec(A)
such that a f ~ l ( X ) is geometric, then X is geometric. This is true if a f ~ 1 ( X ]
is the spectral image of a flat epimorphism (hence geometric by 4.7) [22, 4.8].
We do not know the answer for an arbitrary pure morphism, but for alge-
braically pure morphisms introduced by D. Popescu [26], the result is valid.
Algebraic purity is defined in the same way as purity, linear relations being
replaced by polynomial relations.


PROPOSITION 4.9. Let f : A — >• B be a ring morphism focussing on X in
Spec(A) and (f> : A — > A' an algebraically pure morphism. If a(f>~l(X) is
geometric with solution A' — > A' (££)^ B, then X is geometric with solution
/ : A-^B.


Proof. By definition, A' —> A' $$A C is factored by A' —> A' 0^ B. Hence
A — -> C is factored by A — > B [25, 1.17]. Then the uniqueness of the facto-
rization follows from purity. D
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Let X be a geometric subset of Spec(A) and / : A — > B a ring mor-
phism such that a/(Spec(jB)) C X. We deduce from 4.1 and 3.1 that
B — > B®AA(X) is an isomorphism because a f ~ l ( X ) = Spec(5). Thus
we get the following result.


PROPOSITION 4. 10. Let X C Spec(A) be a geometric subset and P E Spec(A).


(1) Ap — > A(X)p is an isomorphism if and only if P9 C X .
(2) A/P — >• ApQ/PApQ is an isomorphism if and only if Ps C X.


But we can prove a more precise result.


THEOREM4.il. Let X be a geometric subset o/Spec(A) and Q E Spec(A(X))
lying over P in A.


(1) Ap — > A(X )Q 25 an isomorphism provided P9 C X.
(2) A/P — > Apf)/Q 25 an isomorphism provided Ps C X .


(3) Ap — >• A(X)g zs an isomorphism.


Proof. There is a commutative diagram


Assume that P9 C X. There is a ring epimorphism ra : ApQ — > Ap such
that (p = m o 8. Then e o m o 6 — ̂  o ^ implies -0 = £ o m because ^ is
an epimorphism. Now let b € A(X) \ Q, then m(6) E PAp implies ^(6) E


which is absurd. Thus m can be factored A(X) — > A(X)g ^> Ap.
Hence we get no£om = noi^ = mso that n o £ — Id because m is an
epimorphism. Therefore, £ is a pure epimorphism whence an isomorphism.
The proof of (2) is analogous. Indeed, considering the injective ring morphism
e : A/P —> A(X)/Q, we get that Ker(m) = Q from which we deduce the
factorization A(X) — >• A(A")/Q — »• A/P. Next we show (3). We give some
notation for the following canonical morphisms: ap : A —* Ap, CP : Ap — >


Ap, dp = CP o aP (similarly for Q), 6' : Ap -»• A(A")g, 6 : AP -»• A(X)g.
Thanks to 3.9, the ring morphism dp : A -+ Ap can be factored dp = p o 8
where </? : J5 — > Ap is a ring morphism. From 6 o ( p o 6 = 6odp = dq o 8,
we get 6 o (p = dQ because £ is an epimorphism. Now let a be in A(X) \ Q
and assume that </?(s) is not a unit. It follows that <f>(s) E P so that rfg(s) =
^(</?(s)) E Q and s belongs to Q. This is absurd. Therefore, there is a ring
morphism ^ ' A(X)g — >• Ap providing us a factorization <£> = ^OO.Q. We get
i^ o 8' o ap = ?/J o Q;Q o8 = (po8 = cpo ap. Thus ift o 8' = CP follows because
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ap is an epimorphism. This implies that 0 (QA(X)g ) = 0 (PBQ } C P by


0.2, (a). Therefore. </' induces a ring morphism p : A(^)Q — > -4/> such that
'(/;. Now we have p 060 dp — pocQofi' oap = 1^06' oap = 7/;oago<5 =


9? o <5 = cp o Qp from which we deduce p o 8 o cp = cp = Id^ o cp because
ap is an epimorphism. Since the image of cp is everywhere dense, we get
p o 6 — Id^ . Therefore, e = 8 o p is an idempotent endomorphism of BQ,


so that e2 = Id^ o e. Since p is surjective and 6 is a formal epimorphism


by 0.2,(b), e is a formal epimorphism. It follows that e is the identity of BQ
and 6 is an isomorphism. D


The previous result shows that a ring morphism which is a solution of a
geometric problem is not so far from being a flat epimorphism. Statement
(3) says that 8 is a formally flat epimorphism. It would be interesting to
know whether (3) has a converse.


THEOREM 4.12. Let X C Spec(^4) be a patch stable under- generizations.
Then X is geometric if and only if there is a flat ring epimorphism f : A — > B
such that a/(Spec(B)) = X, or also if and only if (X,A\x} is an affine


scheme. In that case, A —» A(X] is a solution and A(X] = DomA(X '(A)) .


Proof. Assume that X is geometric and a patch stable under generizations.
Then A — >• A(X) is an epimorphism and is flat thanks to 4.11. To complete
the proof, use 4.7 and 2. 8, (3). D


REMARK. We can get part of 4.12 as follows. Let / : A — >• B be a ring
morphism and X C Spec (A). Assume that / is an isomorphism along X,
that is Ap — > Bp is an isomorphism for every P G X. Let g : A — •> C
such that ay(Spec(C)) C X and Q e Spec(C) lying over P e X. There is a
cocartesian square


AP - > BP


It follows that CQ —> (C §QA B}Q is an isomorphism for each Q G Spec(B)
and so is C —> C($Z)AB. Therefore, there is a factorization A —> B —->
C'. Now if in addition a/(Spec(5)) C X, then / is a flat epimorphism by
[13, IV.2.4,(iii)].


COROLLARY 4.13. Let A be a locally Noethenan ring and X C Spec(A).
Then X is geometric if and only if there is a flat ring epimorphism f : A —> B
such that a f ( S p e c ( B ) ) = X.


Proof. Use 3.9. D
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EXAMPLE 4.14. We use Ferrand's thesis [6, 5.4 & 5.5]. Let A be a one-
dimensional Noetherian integral domain and {(Bi,Pi)}ieI a family of local
subrings of the quotient field K of A. Set B — fl te/ Bi, Ni — B fl Pt,
Mi = An Pi and assume that Ml ^ M3 for i ̂  j. Then the ring B = nie/ B%


is a one-dimensional Noetherian integral domain, Max(JB) = {Nr}i£l and
£?i = BJV, = -Bjvf*- Now take a subset X of Max(A). The ring B associated
to the family {AM}MeX


 is A(X) = A(X9) by 2.2. We get that Im(/x) =
X U {0} = X9 is proconstructible and stable under generizations. Therefore,
A —> A(X9} is a solution of the geometric problem associated to X9 if and
only if this morphism is flat (indeed, fx flat implies fx is an epimorphism
by [13, IV.3.2] applied to the factorization A -> B —> K).


EXAMPLE 4.15. Let I be an ideal of a ring A. Then X = V(I)9 is geometric.
To see this, observe that X = Spec (A\+i ) [12, 3.1] and that A —> A\+i is a
flat epimorphism.


We use the notation of Section 2, in particular 2.8,(1). Some parts of 4.16
are well known. Moreover, Proposition 4.16 is related to Theorem 2.4 of the
paper by M. Fontana and N. Popescu "Universal property of the Kaplansky
ideal transform and affineness of open subsets" J. Pure Appl. Algebra (to
appear) where the authors characterize, with different techniques, when an
open subspace of the prime spectrum of an integral domain is geometric.


PROPOSITION 4.16. Let A be a ring and I — ( a i , . . . ,an ) a finitely generated
ideal of A. The following statements are equivalent:


(1) A —>• A(D(7)) is an epimorphism and W(7) = D(/).
(2) A —> A(D(I)) is a flat epimorphism.
(3) D(7) is an affine open subset o/Spec(A).
(4) D(7) is geometric.


If one of the preceding statements holds, then A —> Dom (Bj ) is of finite
presentation.


Proof. Assume that A —>• Dom^ (Bj ) = A(D(/)) is an epimorphism and
W(7) — D(/). In this case Dom A (Bj } —* BI has a surjective spectral
map because the spectral map of an epimorphism is injective. Therefore,
Dom^ (Si ) —-> BI is faithfully flat by 2.8,(1), from which it follows that
A —+ Dom^ (BI ) is flat of finite presentation. Assume that A —> Dom^ (Bj )
is a flat epimorphism. The spectral image of A —> Dom^ (£?/ ) is D(7) by
the same argumentation as above. It follows from 1.4 that D(7) is an affine
open subset. Now if D(7) is an affine open subset, the morphism of schemes


f D(7), A|D(/) ) —> (Spec(A), A) is an open immersion so that A —> A(D(I)}


is a flat epimorphism of finite presentation. D


Next we characterize geometric closed subsets. Let X be a closed subset







414 Picavet


of Spcc(yl). then X defines many structures of subschemes of (Spec(A), A j


depending on the representation X = V(7) where / is an ideal of A.


THEOREM 4.17. Let X = V(7) be a dosed subset ofSpec(A). The following
conditions are equivalent:


(1) X is geometric.
(2) If f : A -+ B is a ring morphism such that a/(Spec(B)) C X, then


IB = 0.
(3) 7 is contained in each ideal J of A such that I C ^/J.


If one of the preceding conditions holds, a solution is given by A —> A/1.


Proof. Assume that X is geometric and let / : A —-> B be a ring morphism
such that af(Spec(B)) C X. Let Q € Spec(B) lying over P in A. Thanks
to 1.5, we get IP C Ker(Ap —» BQ) so that (IB}q = 0. It follows that
IB — 0. Assume that (2) holds, then clearly V(/) is geometric with solution
A —>• A/I, Assuming again that (2) holds, let J be an ideal such that
7 C \fl so that V(J) c V(7). It follows that I(A/J) = 0 and then 7 C J.
Hence (3) is proved. If (3) holds, let / : A —» B be a ring morphism such
that a/(Spec(£)) C X. It follows that V(Ker(/)) C V(7) by 0.1 so that
7 C Ker(/). Therefore, there is a factorization A —>• A/1 —> B and (1) is
proved. D


REMARKS 4.18. We give some informations on ideals verifying (3).


(1) A pure ideal 7 (such that A —» A/1 is flat) verifies (3). Recall that
7 is pure if and only if for each a e 7 there is some 6 6 7 such that
a — ba. Now if 7 c \/J where J is an ideal, for each a, 6 E 7 such
that ab = a, there is some integer n > 0 such that bn G J. It follows
that a, = abn <G J and we get I C J. We recover a special case of 4.12.


(2) An ideal 7 verifying (3) is idempotent, because 7 C v72. Conversely,
an idempotent ideal of a Priifer domain verifies (3). Indeed, let J be
an ideal such that 7 C \/J and P a prime ideal of A. Then from
IAp C ^/JAp, we get 7AP = (7AP)n C JAP for some integer n > 0
because Ap is a valuation ring [7, 17.1] so that I C J.


(3) We recover 3.7 where we considered a valuation ring V with an idem-
potent maximal ideal M. This example shows that an ideal verifying
(3) is not necessarily pure.


Now we intend to give some results about geometric problems with respect
to reduced rings. In the category of reduced rings, things are somewhat easier.


DEFINITION 4.19. Let A be a ring and X C Spec(A). Then X is called a
quasi-geometric subset of Spec(A) if the following statements hold:


(1) There is a ring morphism u : A —> tl(X) such that au(Spec(fJ(X))) C
X and £ l ( X ) is reduced.
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(2) For every ring morphism / : A — > B where B is reduced and such that
a/(Spec(jB)) C X, there is a unique ring morphism g : £l(X) — > B
such that / — g o u.


When (1) and (2) hold, we say that a; is a solution of the quasi-geometric
(universal) problem associated to X. In this case, °u;(Spec(Q(X))) — X
shows that X is a patch (let P be in X, there is a ring morphism A — > k(P)
giving a factorization A — > fJ(X) — >• k(P)).


Clearly, the subset Spec(A) has a solution A


Obviously, if X C Spec(yl) is geometric, then X is quasi-geometric. A
solution is given by A — > A(X)red-


Recall that a ring morphism / : A — > B is called radicial if / is uni-
versally spectrally injective [8, 1.3.7.2]. An equivalent condition is £?red — >
(B(QAB}red is an isomorphism. Mimicking the proofs of 4.1, 4.2 and 4.4,
we get the following results:


(1) If X is quasi-geometric, then A — •» Q(X) is radicial.
(2) If X is quasi-geometric and / : A — > B is a ring morphism, then


a f ~ l ( X ) is quasi-geometric.
(3) If {Xi}iel is a family of quasi-geometric subsets, then so is H^/ Xi.


To show the last property, it is enough to use two well known facts. Firstly,
a direct limit of reduced rings is a reduced ring and secondly, the spectrum
of a direct limit of rings is homeomorphic to the inverse limit of the spectra.


EXAMPLE 4.20. Consider a ring A and an ideal / of A. Let f : A -+ B
be a ring morphism such that a/(Spec(B)) C V(/) and B is reduced. Since
the Zariski closure of a/(Spec(B)) is V(Ker(/)) by 0.1, we get a unique
factorization A — > A/\/7 — >• B. Therefore, V(7) is quasi-geometric.


For the next result, we use the notation and results of Section 2.


THEOREM 4.21. Let f : A -> B be a ring morphism and X = Im (af ). For
every ring morphism g : A — » C such that Im (ag ) C X , there is a unique
factorization A — > A(J-) — » Cred. Moreover, if f is pre-flat then A(J-} = B
and X is quasi- geometric.


Proof. We can assume that C is reduced. In view of 2. 6, (3), there is a
surjection v : C — > C^AA(Jr). Its spectral map is surjective. Indeed, let
Q 6 Spec(C) lying over P € X. By 2. 6, (2), there is a prime ideal R in
Spec(A(J:) ) lying over P. By 0.4, there is a prime ideal of C^AA(J::}
lying over Q. Therefore, Ker(^) is contained in Nil(C) — 0. Hence the
factorization is proved. Its uniqueness follows from 2. 6, (5). If A — >• B is
pre-flat, then A^) = B by [16, 4.2] and X is quasi-geometric with solution
A -» BTed. D
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EXAMPLE 4.22. Let X be a subset of Spec(A). Then consider the ring
morphism A -» Ax ®A A/K(X) with spectral image Y = Xu H ~X. This
rnorphisrn is pre-flat by 2.9, its kernel being 7l(X). It follows that Y is quasi-
geometric. Indeed, a ring morphism / : A —> B with reduced range and
verifying a/(Spec(£)) C X is such that U(X) C Ker(/) by 0.1. It follows
that A -> B can be factored A -> A/U(X} -> B and A -> Ax ^ B by
2.8,(4). Hence an arbitrary prime ideal is quasi-geometric.


Recall that a ring A is a going-down ring if A/P is a going-down domain for
each P E Spec(A). Morevover, a going-down domain is an integral domain
A such that A —» B has going-down for each overring B of A.


EXAMPLE 4.23. Let A be a going-down ring and X a maximal chain of
Spec(A). Then X is quasi-geometric with solution A —•> (Ax ®^ AfR,(X] )red.


In view of [5, 2.6], a maximal chain of prime ideals is stable under unions
and intersections. Therefore, U(X] and H(X} belong to X. The spectral
image of A -» Ax ®A A/K(X) is Y = Xu n V(ft(X)). Now let P be in y
so that U(X) C P C W(X). There is a valuation overring V of A - A/U(X)
such that the spectral image of A —>• F is X — (P/K(X) ; P 6 X} [5]. Since
A is a going-down domain, A —> V is going-down and hence P belongs to X.
Therefore, Y = X and X is quasi-geometric by 4.22.


EXAMPLE 4.24. Let / : A -+ 5 be a pre-flat morphism, X = Im(a/) and /
an ideal of A such that X C D(7). From .Y C D(7) follows B/IB = 0. Let the
ring morphism g : A —> B x A// — C. If P E X, then Ap —> Cp identifies to
Ap —> 5p since P ^ V(7) and hence is surjective. Now Ap —>• Cp identifies
to Ap -> (A_/I)P for P e V(7). Indeed, BP - 0 for if not, XnP-9 ^ 0 implies
P € Xs = 1 (see 0.1) which is absurd. Since Y = lm(ag) = X U V(7), we
see that A —> C is pre-flat and y is quasi-geometric.


REFERENCES
1. J. T. Arnold arid R. Gilmer, Idempotent ideals and union of nets of Prufer


domains, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), 131-145.
2. R. Bkouche. Couples spectraux et faisceaux associes. Applications aux


anneaux de fonctions, Bull. Soc. Math. France 98 (1970), 253-295.
3. R. Bkouche, Parties agreables d'un spectre d'anneau, geometrie pure et


mollesse. Unpublished.
4. H. S. Butts, Quasi-invertible prime ideals, Proc. Amer. Math. Soc 16


(1965), 291-292.
5. D. E. Dobbs, M. Font ana and G. Picavet, Generalized going-down homo-


morphisms of commutative rings, Submitted to publication (2001).
6. D. Ferrand, Monomorphismes et morphismes absolument plats, Bull. Soc.


Math. France 100 (1972), 97-128.
7. R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972.







Geometric Subsets of a Spectrum 417


8. A. Grothendieck and J. Dieudonne, Elements de Geometric. Algebrique,
Spinger Verlag, Berlin, 1971.


9. R. Hartshorne, Algebraic Geometry, Springer Verlag, Berlin, 1977.
10. M. Hochster, Prime ideal structure in commutative rings, Trans. Amer.


Math. Soc. 142 (1969), 43-60.
11. M. D. Larsen and P. J. McCarthy, Multiplicative theory of ideals, Aca-


demic Press, New York, London, 1971.
12. D. Lazard, Disconnexites des spectres d'ajineaux et de preschemas, Bull.


Soc. Math. France 95 (1967), 95 -108.
13. D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969).


81-128.
14. D. Lazard and P. Huet, Dominions des anneaux commutatifs, Bull. Sc.


Math. 94, Serie 2 (1970), 193-199.
15. J. Malgoire and C. Voisin, Spectre d'un espace annele et dualite de Stone


generahsee, C. R. Acad. Sc. Paris 289 - Serie A (1979), 449-451.
16. C. Nastasescu and N. Popescu, On the localization ring of a ring, J. Al-


gebra 15 (1970), 41-56.
17. J. P. Olivier, Anneaux absoluments plats et epimorphismes a buts reduits,


Seminaire Samuel sur les epimorphismes, Secretariat Mathematique, Paris,
1967-1968, pp. Section 6.


18. J. P. Olivier, Morphismes immergeants de Ann, Universite des Sciences
et Techniques du Languedoc, Montpellier 106 (1971).


19. J. P. Olivier, Descente de quelques proprietes elementaires par morphismes
purs, An. Acad. Brasil. Cienc. 45 (1973), 2-33.


20. G. Picavet, Submersion et descente, J. Algebra 103 (1985), 527-591.
21. G. Picavet, Proprietes et applications de la notion de contenu, Comm.


Algebra 13 (1985), 2231-2265.
22. G. Picavet, Purete, rigidite et morphismes entiers, Trans. Amer. Math.


Soc 323 (1991), 283-313.
23. G. Picavet, Parties sondables d'un spectre et profondeur, Boll. U.M.I.


8-B (1994), 677-730.
24. G. Picavet, Seminormal or t-closed schemes and Rees rings, Algebra and


Representation theory 1 (1998), 255-309.
25. G. Picavet, Algebraically flat or protective morphisms, Submitted to pu-


blication.
26. D. Popescu, Algebraically pure morphisms, Rev. Roum. Math. Pures et


Appl. 24 (1979), 947-977.
27. M. Raynaud, Un critere d'effectivite de descente, Seminaire Samuel sur


les epimorphismes, Secretariat Mathematique, Paris, 1967-1968 Sec. 5.
28. Seminaire Samuel sur les epimorphismes, Secretariat Mathematique, Paris,


1967-1968.
29. B. Stenstrom, Rings of Quotients, Springer Verlag, Berlin, 1975.











Trigonometric Polynomial Rings


GABRIEL PICAVET and MARTINE PICAVET-L'HERMITTE
Laboratoire de Mathematiques Pures, Universite de Clermont II,
63177 Aubiere Cedex, France
Gabriel.Picavet@math.univ-bpclermont.fr
Martine.Picavet@math.univ-bpclermont.fr


ABSTRACT


Let T (resp. T'} be the ring of real (resp. complex) trigonometric polyno-
mials. Then T' is a Euclidean domain while T is a half-factorial Dedekind
domain. We characterize irreducible elements of T, the behavior of maximal
ideals of T with respect to irreducible elements of T and the correspondence
between maximal ideals of T and T'. Moreover, we consider the embedding
of T into the ring of continuous numerical functions C(R) and give the link
between prime ideals of T and C(R). As a by-product, we find that T can
be equipped with total orders associated to ultrafilters on the field of real
numbers.


1 INTRODUCTION


The theory of factorization in polynomial rings has been investigated for a
long time and a lot of properties can be found in the literature.


In 1927, J.F. Ritt obtained the following theorem for factorization of ex-
ponential polynomials [5, Theorem].


THEOREM 1.1 [J.F. Ritt]. J/l + aieaiX + - • •+ane
a"1 is divisible by


• • • + bre@rX with no b equal to zero, then every (3 is a linear combination of
ai, . . . ,an with rational coefficients.


When the a/e are of the form im, with m G Z, we obtain trigonometric
polynomials. In this paper, we are interested in factorization properties of


419
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the two following sets of trigonometric polynomials:


f n 1
T' = < V(afc cos kx + bk sin kx) n e N, a f c , 6fe 6 C \\ z—j^ I


and


T = <^ N f a / c cos /ex -f bk sin /ex) n £ N, a^, 6^ 6 R >
.fc=o J


Indeed, sin x = (1 — cosx)(l + cosx) shows that two different nonassociated
irreducible factorizations of the same element may appear.


In the following, we denote by cos kx and sin kx the two functions
x H-> cos/ex and x i—> sin/ex (defined over R). It is well known that for
each n G N*, we get cosnx as a polynomial in cosx with degree n and
sinnx as the product of sinx by a polynomial in cosx with degree n — I .
Conversely, linearization formulas show that any product cosn x sinp x can


5
be written as \j(afccos/cx + b^sin/cx), q € N, a fc ,6 fc e Q. It follows that


T — R[cosx,sinx] and T' = C[cosx,sinxj.
We first recall some needed definitions.


(1) An integral domain is called atomic if each nonzero nonunit is a finite
product of irreducible elements (atoms).
(2) An integral domain R is said to be a half-factorial domain (HFD) if
R is atomic and whenever xi • • • xm = y\ • • • yn with x^, yj 6 R irreducible,
then ra = n (Zaks [8]).


If the first ring T', studied in section 2, is a Euclidean domain (isomorphic
to C[X]x), the second T is in fact a half-factorial Dedekind domain where
irreducible elements are trigonometric polynomials of degree one. Section 3
is devoted to T, where we consider the behavior of maximal ideals of T with
respect to irreducible elements, and the correspondence of maximal ideals
between T and T'.


In section 4, we consider T as a subring of rings of continuous numerical
functions C(R) and C([0, 2?r]), with emphasis on the correspondence between
maximal ideals. As a by-product, we get that T can be equipped with total
orders inducing the usual total order on R. Each ultrafilter on R gives such
a total order.


n


Let z = V ( a f c coskx + 6^ sin/ex), n G N, a^, b^ € C, be an element of T'.


n


We denote by z the element V^(&fc coskx + b^ sin/ex), where a denotes the


conjugate of a € C.
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n


Notice that an element z = y (a^ cos kx + b^ sin kx] of T or T' determines


uniquely the elements a/t and bk thanks to the theory of Fourier's series.
For a ring R we denote by U(R) the group of units of R.


2 ON THE STRUCTURE OF C [cos z, sin*]


Relations cos x — -—:y— and sin x = -—^|— show that an arbitrary ele-
ment z € T' = C[cosx,sinx] is of the following form


z = e~inxP(elx), n 6 N, where P(X) E C[X] and deg(P) = 2n (*)


Conversely, in view of elx — cosx+isinx, an element of the form e~mxP(e iX),
n € N, P(X) e C[X] is in T'. So there is an isomorphism / : C[X]X -> T'
through the substitution morphism X *-> elx. The following theorem results


THEOREM 2.1. T' = C[cosx,sinx] is a Euclidean domain with quotient field
K' = C(cosx)[sinx]. The irreducible elements ofT' are, up to units, trigono-
metric polynomials of the form cos x + i sin x — a, a 6 C*.


Notice that each element z of C[X]x can be be written uniquely XkP(X)
where k 6 Z, P(X) 6 C[X] and P(0) ̂  0. It is well known that the algorithm
(f> defining the Euclidean domain C[X]x is given by (f>(z) — deg(P) with the
previous notation (see for instance [6, Proposition 7]).


The following corollary provides us a generalization of Ritt's factorization
theorem.


n


COROLLARY 2.2. Let z = ^(akcoskx + bksmkx), n E N*, ak,bk 6 C
fc=o


with (on,6n) 7^ (0,0). Let d be a common divisor of the integers k such that
(a /c ,&fc) ^ (0,0). Then z has a unique factorization


2n


z = A(cos nx — i sin nx) TT (cos dx + i sin dx — otj)
3=1


where A, otj 6 C*.


Proof. Setting y = dx, we have
•n
~d


cos k'y + bdk> sin k'y) = e~^yP(eiy)
k'=0


where P(X} € C[X] and deg(P) = 2^ thanks to (*). Use now the factoriality
of C[cos ?/, sin y] with its irreducible elements cos y + i sin y — a, a 6 C*. D
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3 ON THE STRUCTURE OF Rfcosx ,sin x]


(a) R[cos x, sin x] IS HALF-FACTORIAL


T = R[cosx,sinx] is isomorphic to R[X, Y]/(X2 + Y2 - 1) through the sub-
stitution morphism g : R[X,Y] — >• T denned by g(X] = cosx, g(Y) — sinx.


THEOREM 3.1. R[cosx,sinx] is a Dedekmd half-factorial domain.


Proof. R. Fossum showed that the class group of R[X,Y}/(X2 + Y2 - 1) is
isomorphic to Z/2Z [3, Proposition 11.8].


Since R[X,y]/(X2+y2-l) = R [ X ] [ Y ] / ( Y 2 - ( l - X 2 ) ) with R[X] factorial
and 1— X2 square-free, R[Ar, Y]/(X2jrY2 — 1) is a one-dirnensional Noetherian
integrally closed integral domain [3, Lemma 11.1]. Therefore, T is a Dedekind
domain, and so a Krull domain with class group isomorphic to Z/2Z. Thus
T is half-factorial by Zaks [8, Theorem 1.4]. D


REMARKS. (1) T is a free R [cosx] -module with basis {l.sinx} and T' is a
free T- module with basis {l,i}.


(2) R[cosx] is a Euclidean domain because isomorphic to R[X]. It follows
that the half-factorial domain T is wedged in between the two Euclidean
domains R[cosx] and C [cosx, sin x].


(3) The quotient field of R[cosx,sinx] is K — R(cosx)[sinx] and the
quotient field of C [cosx, sin x] is K' — C(cosx)[sinx].


PROPOSITION 3.2. C [cosx, sin x] is the integral closure of R [cosx, sin x] in
the quotient field K' of T' .


Proof. K' = C(cosx)[sinx] is the quadratic extension K[i] where K —
R(cosx)[sinx] and any element of K' integral over T is in T' . The reverse
inclusion is obvious. D


REMARK. We saw that T' = C [cosx, sin x] is a Euclidean domain with
algorithm (p given by <^(z) — deg(P) where P(X) e C[X] is such that
z = f[XkP(X)} with k e 1 and P(0) / 0, for any z e T' \ {0}.


Rfcosx] is a Euclidean domain with the degree of a polynomial in cosx as
algorithm. The restriction of <p to Rfcosx] does not give the degree but twice
the degree.


V,where


0. Then P(cosx) =


Q(X) = 2 - n a f c (X2 + i (2X)n- and Q(0) - 2~nan ^ 0. It follows
fc=0


that (^[P(cosx)] = 2n = 2deg(P).
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(b) IRREDUCIBLE ELEMENTS OF R[cos x, sin x]


P


DEFINITION 3.3. Let P - ak cosk x + M bj cos-7 x sinx, a fc, 6-,- € R.


The degree of P is defined by <5(P) = supjfc, j + 1 a^, bj ^ 0} if P ^ 0 and
6(P) = -oo if P = 0.


This definition makes sense because the family (cosfc x,smxcosk x} is a
basis of T over R.


This implies the following formula 6(PQ) = 6(P) + 6(Q] for any P, Q 6 T.
In particular, trigonometric polynomials of degree one are irreducible and
R* =U(T).


THEOREM 3.4. The irreducible elements o/R[cosx,sinx] are of the form


acosx'+ bsiux + c, (a ,6 ,c )eR 3 , (a, 6 )^ (0 ,0 )


Proof. The first part of the proof is given above by degree considerations.
Let z e T with o(z) = k > 0. Then z is not a unit and z € T'. By the


2k


relation (*) of Section 2, we can write z = Xe~lkx ]^J(eia: + %•), A,GJ 6 C*.


2fc 2fc


But z e T implies z = z, so that z2 = zz — A A JT(e'x + a.j) T\(e~lx + o~),


with AA 6 R+. Moreover, for a e C*, we have


(elx + a) (e~lx + a) = 1 + aa + 2(a cos x + /? sin x)


where a = a + i/3, (a,/?) 6 R2\{(0, 0)} since a / 0. So we get z2 = z\ • • • z>2k,
where the Zj are irreducible elements of T of degree 1 .


In particular, if z is irreducible, we get 2 = 26(z) since T is an HFD, so
that 6(z) = 1. D


n


COROLLARY 3.5. Let P = (afccosfcx + 6fcsinfc:r), n € N*, a fe,6 fc € R


(an,6n) 7^ (0?0)- -^ei d be a common divisor of the integers k such
that (afc,6fc) 7^ (0,0). Then P is a product of n/d elements of the form
acosdx + bsindx + c where (a, 6, c) G R3, (a, 6) ̂  (0,0).


Proof. The same as the proof of Corollary 2.2. D
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COROLLARY 3.6. For any nonzero nonunit z £ R[cosx, sirix], there exists a
unique factorization, up to order and associates, of the form z°* = uz\ • • • zn,
where u (E R^, the z3 are irreducible elements of the form


a0 cosx + bj sinx + 1 + -(a] + b 2 ) , (a3,b3] e R2 \ {(0,0)}


and n = 26 (z).


Proof. Existence of such a factorization follows from the proof of the previ-
ous theorem. As 6(zj) = 1, we get n = 26 (z).
Consider two factorizations z2 = uz\ • • • zn~ u'z{ • • • z'n (*), with u, u' G R+,
Zj = dj cos x + bj sin x + 1 + \ (a2 -f fr2),


z'j = a'- cos x + 6^ sin x + 1 + ^ (a^ + b'j ) ,


(a,, &.,-), (a'j.b'j) e R2 \ {(0,0)}. Set Cj = \(a.j + ib,) and dj = ±(a^- + ^).
n n


Equality (*) in T' implies u ^ + Cj-Xe""*^) = u
;


which is equivalent to u ̂ \(X + Cj)(l + X c j ) = u' f[(X + c'j)(l + Xc'j).
j=i j=i


Since C[X] is factorial, we get that for any j G { ! , • • • ,^}, there exists
j' €{!,. . . , n} such that Cj = c'j, or 1 — Cjc'^, = 0.
• Cj = c'3, gives Zj — z'.,.


,i , / 4a9-, so that at = -— / r» / ^ — \ — 1 CT a i t ,- Cjdj, = 0 gives Cj, = (Cj) ! = ̂  = 2\^+b^,


and b'-, = 2
 J , 2 . It follows that z'-, ~ 5"J,5 cosx H—TTTZ sinx H 3l02 J . Ataj ' j aj ' j aj j aj j


last, we obtain z'- — -r-rW which implies that 2,- and 2' are associated. The3 aj+b] f J 3


uniqueness is gotten. D


REMARK. We recover here a result of S.T. Chapman and U. Krause con-
cerning Cale monoids. Recall that a monoid M is a Cale monoid with basis
Q if for every nonunit x E M there exists a positive integer n such that xn


factors uniquely up to order and units as elements from Q C M \ U(M).
Then, [2, Theorem 3.9], a Krull monoid M is a Cale monoid if and only if the
divisor class group of M is a torsion group. In our situation we consider the
multiplicative monoid of all nonzero elements of T, which is a Cale monoid.
The following corollary gives the basis of the Cale monoid T \ {0}.


COROLLARY3.7. R[cosx,sinx]\{0} is a Cale monoid with basis the elements
of the form a cosx + 6 sinx -f 1 4- ^(a2 4- fr2), a, b 6 R, a2 4- b2 > 4.


Proof. Corollary 3.6 shows that the square of a nonzero nonunit has a unique
factorization into irreducibles of the form a cosx -f b sinx + 1 + ^(a2 + b2)
with (a, 6) 6 R2 \ {(0,0)}, up to order and units.
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Consider two associated elements z — acosx + b sin x + 1 + |(&2 + 62) and


zf = a'cosx + b'smx + l + \(a'2 + b'2), a, 6, a', b' e R, a2 + 62, a'2 + b'2 > 4
so that z' = cz where c 6 E*.


It follows that a' - ca, 6' - c6 and 1 + |(a'2 + b'2) = c[l + \(a2 + b2)}.


This relation implies |(c— l)(a2 + 62) = c—l so that c = 1 or c = a2+b$ • But


in this case a' + b' = a$
l?bi < 4, a contradiction, except when a2 + b2 = 4


where we recover c = 1. D


REMARK. As M. Zafrullah told us at the Fez Conference (2001), T is also an
almost Bezout domain (resp. almost GCD-domain): for £, z £E T \ {0}, there
exists n € N* with (tn ,zn) (resp. ( tn)n(zn)) principal. Indeed, T is a Priifer
domain with torsion class group and every nonzero ideal of T is divisorial [1,
Theorem 4.7].


(c) MAXIMAL IDEALS OF R[cos x, sin x\


Since R[cos x, sin x] is a Dedekind domain with class number 2 (Theorem 3.1),
any maximal ideal is either a principal ideal or of order 2. Moreover, if M and
M' are of order 2, we get that M2 and MM' are principal ideals generated by
irreducible elements [7, Proposition 1 and Corollary]. Conversely, if z G T is
irreducible, three cases may occur: (z) is a maximal ideal, (z) = M2, where
M is a maximal ideal, (z) = MM', where M and M' are distinct maximal
ideals.


Irreducible elements are given by Theorem 3.4. We are going to study the
primary decomposition of (z) for an irreducible z E T.


THEOREM 3.8. Let z = a cos x+b sin x+c e R[cos x, sin x] with (a, 6) ̂  (0,0).
Then


(1) (z) is a maximal ideal if and only if c2 > a2 + b2.
(2) (z} is the square of a maximal ideal if and only if c2 = a2 + b2.
(3) (z} is the product of two maximal ideals if and only if c2 < a2 + b2.


Proof. Since (a, 6) ^ (0,0), we get a2 + b2 > 0. Set a' = Q
 fe2 and


b' = / £,, i • Then z is associated to z' = a' cosx + fr'sinrr + k, where
Vtt +O


Q r\


k = , ,f n . Moreover, a' +6' = 1 implies that there exists a e R such
Va^+o'2


that a' — sin a and b' = cos a, which gives z' = sin(x + a) + fe. So we are led
to study the principal ideal generated by sin(x + a) + k.


Define the substitution morphism h : T —> T by /i(cosx) = cos(x + a) and
h(sinx) = sin(rr -f a), which is an isomorphism.
Then h((smx + /c)) = (sin(x + a) + A;) and it follows that the primary de-
compositions of (sin(x + a) + fc) and (sin x + fc) are of the same form.


Now define the substitution morphism g' : R[X] —> T by g'(X) = cosx.
Let t = sinx + /c, fe e R. We are going to calculate g'~l
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Let P(X) E R[X}. We have
P(X) 6 g'~\(t}} & there exist Q(X),R(X) E R[X] such that


P(cosx) = (sinx + k)[Q(cosx) -f sin xR(cosx)]


— [kQ(cosx) + (1 — cos2 x}R(cosx)] + sinx[Q(cosx) 4- kR(cosx)]


kQ(cosx) + (1 — cos2 x)R(cosx) = P(cosx)


Q(cosx) + kR(cosx) =0


kQ(X) + (l~X2)R(X] =P(X)
Q(X) + kR(X) = 0


so that P(X) = (1 - k2 - X 2 ) R ( X ) . Moreover,
g'(l - k2 - X2) = 1 -k2 -cos2 a: = sin2 x - k2 = (sinx - k) (sinx + fc) € (t).
It results that g ' ~ l ( ( t ) ) = (1 - /c2 - X2)R[X]. This gives the following
commutative diagram:


R[X] 9' > r


- X2)


where g' is injective. But gf' is surjective since sinx = — k in T/(t) so that


P(cosx)+sinxg(cosx) -


Then T / ( t ) ~ K[A"]/(1 - Jfc2 - X2) allows a dicussion with respect to (t).
(a) (£) is a maximal ideal <^> 1 — k2 — X2 is irreducible in R[X] <4> k2 > 1.
(b) (t) is the square of a maximal ideal 4=> (1 — k2 — X2) is the square of a
maximal ideal 4=> 1 — k2 — X2 is a square 4=> k2 = 1.
(c) (i) is the product of two distinct maximal ideals <£=> k2 < 1. D


Now we are able to characterize the maximal ideals of R[cosx,sinx] by
means of their generators.


COROLLARY 3.9. Let M be a maximal ideal of T = R [cos x, sinx].
(1) // M is a principal ideal, there exist a,k E R, k > 1 such that


M = (sin(x + a) -{- k) and T /M is isomorphic to C.
(2) // M is not a principal ideal, there exists a G R such that


M = (sin(x + a) + l,cos(x + c*))7 M
2 = (sin(z + a) + l) and R -» T/M


is an isomorphism.
Conversely, such ideals are maximal ideals in R[cosx,sinxj.


Proof. (1) The form of principal maximal ideals is deduced from Theorem
3.8 (1). If k < 0, it is enough to take a + TT instead of a.
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(2) Assume that M is not a principal ideal. Since the class group of T
is isomorphic to Z/2Z, M2 is a principal ideal generated by an irreducible
element by [7] quoted above and of the form t = sin(x + a) + 1. Indeed, M2


is generated by an element of the form sin(x + a) + k, k G R where k2 — 1
by Theorem 3.8 (2) (if k = — 1, take a + TT instead of a).
But sin(rr+a) + l 6 M implies cos2(rr+a) = [l-sin(:r+a)][l+sin(a;+a)] <E M
and so cos(rc + a) E M. Hence we have / = (sin(rr + a) + 1, cos(rr + a)) C M.
The substitution morphism h : T —+ T defined by h(cos rr) = cos(rr + a) and
/i(sinrr) — sin(rr + a) gives the isomorphism T/I ~ R, and / is a maximal
ideal. Therefore, M = (sin(rr + a) -f-1, cos(rc + a)). D


REMARK. This last result allows us to confirm a remark of S.T. Chapman
and U. Krause concerning Gale monoids [2, Introduction]. The elements
occuring in the basis of the Gale monoid R[cosrr,sinx] \ {0} are primary
elements (generating a primary principal ideal). Corollary 3.7 said that these
elements are of the form


z = acosx + bsmx + 1 + -(a2 + 62), (a, b) <E R2, a2 + b2 > 4


But [1 + \(a2 + b2)}2 - (a2 + b2) = [1 _ I(a2 + 62)]2 > 0 gives that z is a
primary element (see Theorem 3.8,(1),(2)).


It follows from Theorem 3.8 that the principal ideal generated by an ele-
ment a cos x + b sin x + c of T with (a, 6) ̂  (0,0) and such that c2 < a2 + b2 is
the product of two distinct maximal nonprincipal ideals. We intend to deter-
mine these maximal ideals and conversely, to find a generator for a product
of two distinct maximal nonprincipal ideals.


PROPOSITION 3.10. Product of two nonprincipal maximal ideals ofT.


(1) // M=(sin(rr + a) + 1, cos(rc + a)), M' = (sm(x + /?)+!, cos(rc + /?))
with a ^ /3 (mod 2yr) are two maximal non principal ideals of T,
then MM' is a principal ideal generated by the irreducible element
sin(2±£) cosrr + cos(^) sinrr + cos(^).


(2) Conversely, let z = a cosrr + 6 sin re + c, a, 6, c 6 R be an irreducible
element of R [cos re, sin x] such that c2 < a2 + b2.


Then (z) is the product of two distinct maximal nonprincipal ideals
M = (sin(z + a) + l,cos(a; + a)) and M' = (siu(x + (3) + l,cos(rr + /?))
such that there exists some 9 6 R satisfying
sin0= . ° , cos<9= . } ^, cos(0-/3) = , 9


C ^ and a = 20-6.
va2-\-b2 va-^+o^ ' \ja2-\~b2


Proof. (1) Under the hypotheses of (1) we get MM' — (z) where z =
cwithc2 < a2 + 62 by Theorem 3.8 and M2M'2 = (z}2. But
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M2 and M' are also principal ideals generated by the irreducible elements
s'm(x + o) + 1 arid sin(x + 3} + 1 by Corollary 3.9. It follows that


which gives, after identification and up to a common factor of a, 6, c in R*,
the following system:


( b2 - a2 = cos(a + 0}


lab = s'm(a -f /3)


lac = sin a -f sin (3


2bc — cos a -f cos /3


?2 + c2 = 1 4- cos a cos /?


with solution, up to the sign, a — sin ^y^, 6 = cos ̂ y^, c = cos ̂ -y^.
(2) Conversely, let z — a cosx + 6sinx + c be such that c2 < a2 + 62. Since
a2 + 62 > 0, set a' - ̂ =p, 6' = ̂ =p and c' - y=p-


Then z' = a' cosx+6' sinx+c' generates the same principal ideal (z) — (z'}
with \c' < 1. It follows that there exist 9 E M. such that a' = sin#, b' = cos9
and /3^^ (mod TT] such that c' — cos(^ — /3). Set a = 2^ — /3 which implies
a^f3 (mod 27r). After identification, the previous calculation leads to


(sin(x + a) + 1) (sin(x + 0) + 1) = (a' cos x + 6' sin x + c')2


Moreover, M = (sin(xH-a) + l,cos(x+o;)) and M' = (sin(x+/?) + l,cos(x+/5))
are two different maximal ideals such that MM' = (z). D


Now, we are going to look at the correspondence between maximal ideals
of T — R[cosx,sinx] and T' — C[cosx,sinx].


PROPOSITION 3.11. Let M be a maximal ideal of T.


(1) // M is a principal ideal, then M is of the form (pcosx + gsinx + r)
with 4r = 4 + p2 -f q2, r / 2 and T'M is the product of two distinct
maximal ideals M' and M" of T' with M' = (cosx + «sinx + a],
M" — (cosx + isinx + a~l) and 2a = p + iq.


(2) // M is a nonprincipal ideal, there exists a such that M is of the
form (sin(x -f a) -f 1, cos(x + a)) and T'M — (cosx + isinx + a) is a
maximal ideal of T', where a = ie~la.


Let M' — (cos x + i sin x + a), a G C*, be a maximal ideal in T'. Then M' n T
is a principal ideal if and only if \a\ j^ 1. When M' n T is a principal ideal,
the other maximal ideal M" lying over M' n T is (cosx + zsinx + a"1).


Proof. Let M be a maximal ideal of T. Then T'M = [iLi Mf% where the


M( are maximal ideals of T' and £"=1 ejl = 2 (*), with fr = \T'/M[ : T/M]
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thanks to Proposition 3.2 and [9, Corollary p. 287]. For each maximal ideal
M' of T', we have T'/M' ~ C.
(1) If M is a principal ideal of T, then M is generated by an irreducible
element z of the form p cos x + q sin x + r with (p, g) 7^ (0,0) and r2 > p2 + q2


by Theorem 3.8. But in this case z = Ae^x(elx - a)(e*x - /5), A,a , /3 e C*
with a ^ (3 since p2 + g2 — r2 ^ 0. It follows that z belongs to two distinct
maximal ideals of T' and n — 2, Ci = fi — 1 for i = 1,2 by (*).
(2) If M is a nonprincipal ideal, there exists a such that M is of the form
M = (sin(x + a) + 1, cos(x + a)).


In this case, T/M ~ R, so that [T'/M/ : T/M] = 1 for any maximal ideal
M[ lying over M. It follows that fi = 2 and (*) gives n = ei — 1.


Consider in T" the maximal ideal M' = (z} where z — cos a; + zsinx + a,
a e C* and set M = M'OT. Assume that M is not a principal ideal, then M
is of the form M = (sin(x + a] + 1, cos (re + a)), a <E R and 6^+°) + i 6 M'
gives a = ze~ ia, which implies |a| = 1.


Conversely, let a E C be such that a = 1. There exists a £ R such that


a — ie ia. Then t = e " 2i ' z2 — sin(x + a) + 1 is an irreducible element of T
and generates the square of the maximal ideal M = M' n T of T (Theorem
3.8). Thus M is not a principal ideal.


Let M' = (cosx + ismx + a), a e C* be a maximal ideal in T' such that
a\ 7^ 1. Then M — M'nT is a principal ideal. Let M" be the other maximal


ideal of T' lying over M. Set z = cosx+ismx-\-a. Then t = zz is a generator
of M. But z = cosx — isiux -\- a = ae~tx(cosx + ismx + a"1) ^ M' since
a"1 7^ a. It follows that cosx + isiux + a~l generates M". Moreover, we
saw in the proof of Theorem 3.4 that zz = 1 + aa + 2(a cos x + (3 sin x), where
a — a + i(3. Set p = 2o;, q = 2/3 and r = 1 + aa — 1 + |(p2 + g2) so that
pcosx + gsinx + r generates M. Since M is a maximal ideal in T, we get
r2 > p2 + g2 = 4r - 4 and r ̂  2. D


REMARK. We can observe that no maximal ideal M of T is ramified in T'
(such that T'M = M'2, M' a maximal ideal of T").


In fact, we have the two following situations of maximal ideals of T' lying
over a maximal ideal M of T


M nonprincipal —» M' — (cosx + isiux + a), a 6 C*, |a| = 1


/" M' = (cos x -\- i sin x + a)
M principal a € C*, |a| ^ 1


\ M" = (cosx + ismx + a"1)


Here are some examples of factorizations.


EXAMPLE 1. Consider the equality sin2 x = (1 — cosx)(l + cosx) (*). We
have two maximal ideals M\ — (1 — cosx, sin x) and M^ = (!-(- cos x, sin x).
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The three irreducible elements sinx, 1 — cosx and 1 + COST occuring in (*)
generate the following products M\M<2:M^ and M|.


EXAMPLE 2. Consider the three following nonassociated irreducible facto-
rizations of cos 2x


cos2x = (\/2cosx — l)(\/2cosx + 1)


= (cos x — sin x) (cos x -f sin x)


= (1 + V /2sinx)(l - v^sinx)


All these irreducible elements generate a product of two distinct maximal
ideals among the four following:


, , / , . / TT\ / T T \ \
MI = I 1 + sin I x + - ) , cos I x + - ) )


\ V 4 / \ 4 / /
^ /-, • / 7r\ / ^^M2 = ( 1 + sm x - - , cos x - -


V V 4/ V 4 / /


•M3 = I 1 + sin I x + — ) , cos I x + — -


, •M 4 =r 1 -f sm x -- , cos x
V V 4 /


such that
(\/2cosx - 1) = M2M4, (v^cosx + 1) = MiM3, (cosx - sinx) = MI M4,
(cosx + sinx) = M2M3, (1 + \/2sinx) = MtM2, (1 - \/2sinx) = M3M4


providing (cos2x) = MiM^M^M^.


EXAMPLE 3. Let n 6 N*. We are going to calculate the number of distinct
nonassociated irreducible factorizations of sinnx. Considering first unique
factorization in T", we get


• -inx


sinnx = — (e2 m i-l)


2n


2 n• — inx
e ~ e 2«


(elx + l}(elx - 1) TT (e2ix - 2eix cos ̂  + 1 )
A A \ XT? /\ £*l t /r, i \ /


on-! . nTTV= 2 sin x I I cos x — cos
V


It follows that we have in T the following product of ideals
n~^ / oz- \


(sinnx) = (sinx) TT ( cosx — cos— — )
2n >
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But, for /c — 1, . . . , n — 1, we have


(COST — cos^^) —


(1 - cos (x + te) ,sin (* + i=)) (1 - cos (x - *=) ,sin (2; - £))
and (sin a;) = (1 -f cos x, sin a:) (1 — cos x, sin x) so that (sinnx) is the product
of 2n distinct nonprincipal maximal ideals.


By Proposition 3.10, the number of distinct nonassociated irreducible fac-
torizations is the number of different ways of getting pairs of these maximal
ideals. Hence, sinnx has (In — 1) x (2n — 3) x • • • x 3 x 1 = -^y distinct
nonassociated irreducible factorizations.


4 PROPERTIES RELATED TO RINGS OF CONTINUOUS
NUMERICAL FUNCTIONS


Clearly, T is a subring of three rings of continuous numerical functions, that
is C = C(R), T> = C([0,27T]) and V = C([0,2?r[). We use results which may be
found in the book of L. Gillman and M. Jerison [4]. Such rings have a property
which is contrary to Dedekind domains properties, namely P2 — P for each
prime ideal [4, 2B]. If X is a completely regular topological space as R, [0, 2?r]
and [0,2vr[, a class of maximal ideals in C(X) is given by all the fixed maximal
ideals. A fixed maximal ideal is of the form Mx = {/ 6 C(X} f ( x ] — 0}
where x G X and then R —» C(X}/MX is an isomorphism [4, 4.6]. Moreover,
x ^ y implies Mx ^ My. We denote by Max^(C(.X)) the set of all fixed
maximal ideals oiC(X}. When X is compact, each maximal ideal of C(X) is
fixed [4, 4.9].


PROPOSITION 4.1. Let M be a maximal ideal ofT.


(1) // M is principal of the form (sin(x + a) + fc) where k > 1, there is
no prime ideal in C (resp. in T>) lying over M.


(2) If M is a nonprincipal ideal of the form (sin(x + at) + 1, cos(x + a));


a fixed maximal ideal in C lying over M is of the form Mu, where
u = ^r ~ a + 2/C7T, fc 6 Z. Moreover, Ma,xF(C) -> Spec(T) and
Max(!D) —>• Spec(T) are surjections onto the set of all nonprincipal
maximal ideals ofT and Maxp^D') —> Spec(T) ^zve5 a bijection onto
the set of all nonprincipal maximal ideals ofT.


Proof. If M is principal and generated by p — sin(x + a) + k where k > 1,
then p is a unit in C and in P. Now assume that M is nonprincipal and
generated by p = siu(x + a) + 1 and q — cos(x + a). Then p and q belongs
to Mu where u = ^j- — a so that Mu is lying over M. To complete the proof,
observe that an arbirary element u 6 R can be written u — ~- — a. D
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PROPOSITION 4.2. Let N be a minimal prime ideal ofC, V or T>'. Then N
is lying over 0 in T. It follows that T is a totally ordered ring inducing on R
the usual total order.


Proof. Assume that N is lying over a maximal ideal M of T. Then by
Proposition 4.1, M is generated by p = sin(x -f- a) + 1 and q = cos(x + a).
Thus there is some f $ N such that f q = 0 because the rings are reduced and
TV is minimal. It follows that f = 0 because / is continuous, a contradiction.
Therefore. N is lying over 0. Now recall that an arbitrary factor integral
domain A of C or T> is totally ordered [4, 5.5] and R —>• A is an order-
preserving ring morphism. To complete the proof, it is enough to consider
the composite of injective ring morphisms R —> T —> A. D


For / e C, we denote by Z(/) the zero-set of /, that is the set of all x e R
such that f(x] = 0.


REMARK 4.3. The ring C can be considered as a subring of the absolutely
flat ring R = Rx. Therefore, for each minimal prime ideal N of C there
is a minimal prime ideal M of R lying over N. Now the minimal prime
ideals (equivalently, maximal ideals) of R are well known. For each mi-
nimal prime ideal M of R there is a unique ultrafilter J- on R such that
M = {/ e R | Z(/) € f}. By [4, 5.2], an element / € C/N verifies / > 0 if
and only if there is some g > 0 in C such that / — g G N. Therefore, for a
given minimal prime ideal N of C lying over 0 in T, there is some ultrafilter
T defining a total ordering > on T as follows. An element t € T is > 0 if
there is some / > 0 in C such that Z(£ — /) 6 T. The same proof works for
T). Notice that J- is necessarily a free ultrafilter (an ultrafilter which is not
the set of all subsets containing a fixed element of R). Deny, in that case
there is some u G R such that N — Mu, contradicting Proposition 4.1. The
total order on T associated to the minimal prime ideal N of C can also be
described in the following way. An element t € T is > 0 if and only if there
is some / > 0 in C and some s e C \ N such that s(t — /) = 0. Now there
is a natural question, since we have associated a total ordering on T to each
minimal prime ideal of C. It may be asked whether these total orders on T
are equal. We do not know the answer but we conjecture that the answer
is negative. Indeed, let A be a totally ordered commutative ring, then A[X]
can be equipped with two total orders. Let p(X] ^ 0 be a polynomial with
coefficients a; e A, then a first total order is defined by p(X} > 0 if and only
if an > 0 where n is the degree of p ( X ) . A second total order is defined by
p(X] > 0 if and only if an_fc > 0 where n — k is the valuation of p ( X } . Now


ifcosxl.
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The First Mayr-Meyer Ideal
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Mexico 88003-8001, USA. E-mail: iswanson@nmsu.edu.


Summary. This paper gives a complete primary decomposition of the
first, that is, the smallest, Mayr-Meyer ideal, its radical, and the inter-
section of its minimal components. The particular membership problem
which makes the Mayr-Meyer ideals' complexity doubly exponential in
the number of variables is here examined also for the radical and the
intersection of the minimal components. It is proved that for the first
Mayr-Meyer ideal the complexity of this membership problem is the
same as for its radical. This problem was motivated by a question of
Bayer, Huneke and Stillman.


Crete Hermann proved in [H] that for any ideal / in an ?i-dimensional polynomial


ring over the field of rational numbers, if / is generated by polynomials / i , . . . , / / t of


degree at most d, then it is possible to write / = ^7"i/i) where each TI has degree at


most deg/ + (kd}^-'^. Mayr and Meyer in [MM] found ideals J(n, d) for which a doubly


exponential bound in n is indeed achieved. Bayer and Stillman [BS] showed that for these


same ideals also any minimal generating set of syzygies has elements of degree which is


doubly exponential in n. Koh [K] modified the original ideal to obtain homogeneous quadric


ideals with doubly exponential degrees of syzygies and ideal membership coefficients.


Bayer, Huneke and Stillman have raised questions about the structure of these Mayr-


Meyer ideals: is the doubly exponential behavior due to the number of minimal primes, to


the number of associated primes, or to the structure of one of them? This paper, together


with [S], is an attempt at answering these questions. More precisely, the Mayr-Meyer ideal


J ( n , d ] is an ideal in a polynomial ring in lOn + 2 variables whose generators have degree


at most d + 2. This paper analyzes the case n — 1 and shows that in this base case the


embedded components do not play a role.


Theorem 1 of this paper gives a complete primary decomposition of J(l,d), after


which the intersection of the minimal components and the radical come as easy corollaries.


The last proposition shows that the complexity of the particular membership problem from
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[MM, BS, K] for the radical of J(l ,d) is the same as the complexity of the membership


problem for J( l , r f) . Thus at least for the case n — 1, neither the embedded components


nor the non-reducedness play a role in the complexity.


In a developing paper "Primary decomposition of the Mayr- Meyer ideal" [S], partial


primary decompositions are determined for the Mayr-Meyer ideals J(n, d) for all n > 2,


d > 1. Under the assumption that the characteristic of the field does not divide d, for


n > 2, the number of minimal primes is exactly nd2 + 20, and the number of embedded


primes likewise depends on n and d. However, a precise number of embedded components


is not known. The case n — 1 is very different from the case n > 2. For example, under the


same assumption on the characteristic of the field, the number of minimal primes of the first


Mayr-Meyer ideal is d + 4, and there is exactly one embedded prime. For understanding


the asymptotic behavior of the Mayr-Meyer ideals J(n,d), the case n — 1 may not seem


interesting, however, it is a basis of the induction arguments for the behavior of the other


J(n,d). Furthermore, the case n = 1 is computationally and notationally more accessible.


All results of this paper were verified for specific low values of d on Macaulay2.


Acknowledgement. This research was done during 2000/01 at University of Kansas,


supported by the NSF-POWRE grant. I thank Craig Huneke for introducing me to the


Mayr-Meyer ideals, for all the conversations about them, and for his enthusiasm for this


project. I also thank the NSF for partial support on DMS-9970566.


The first Mayr-Meyer ideal J(l,d) is defined as follows. Let K be & field, and d a


positive integer. In case the characteristic of K is a positive prime p, write d — d'i, where


i is a power of p, and d' and p are relatively prime integers. In case the characteristic


of K is zero, let d' = d, i — 1. For notational simplicity we assume that K contains all


the jth roots of unity. Let s, /, si, /1; GI, . . . , c4, 61, . . . , 64 be indeterminates over K, and


R = K[s, /, si, /i, GI, . . . , £4, 61, . . . , 64]. Note that R has dimension 12. The Mayr-Meyer


ideal for n = 1 is the ideal in R with the generators as follows:


J = ./(i, d) = (Sl - Sci, A - sc4) + (a (s - fb«) \i = 1,2,3,4)


sc2, /C4 - sc3, s (c3 - c2) , / (c2&i - c3b4) , fc2 (b2 - 63)) •


THEOREM 1: A minimal primary decomposition of J = «/(l,d) is as follows:


J = (Si - SCt,/i - SC4 ,Ci,C2 ,C3 ,C4)
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j I (si — sci, /i — sc4,c4 — Ci,c3 — c2,ci — c261,s — /61,6i — 64,62 — 63,61 — 0:62)
a


n (si — sci, /i — sc4, s, /)


n (si — sci, /i — sc4, s , G I , c2, c4,63,64)


n (si - sci,/i - sc4,s,ci,c4,63,62 -63,026! - c364)


n (si — sci,/i — 5c4,s2,/2,c4(s — /64),c3(s — /63),sc3 — /C4,c3,c4,


GI — c4, c2 — c3, 62 — 63,61 — 64) ,


where the a vary over the ^th roots of unity in K.


It is easy to verify that J = J(l,rf) is contained in the intersection, and that all but


the last ideal on the right-hand side of the equality are primary. The following lemma


proves that the last ideal is primary as well:


LEMMA 2: The last ideal in the intersection in Theorem 1 is primary.


Proof: Here is a simple fact: let X i , . . . , xn be variables over a ring A, S = A[XI, . . . ,xn],


and / an ideal in A. Then / is primary (respectively, prime) if and only if for any


/i) • • • > fn £ A, IS + (x\ — / i , . . . , xn — fn)S is a primary (respectively, prime) ideal in S.


By this fact it suffices to prove that the ideal


L = (s2,/2,c4(s - /64),c3(s- /63),sc3 - /c4,C3,c2)


is primary. Note that \/L = (s,/,03,c4) is a prime ideal. It suffices to prove that the set


of associated primes of L is {\/L}. It is an easy fact that for any x G R,


. fR\ . ( R \ . ( R
Ass — C Ass U Ass


\LJ \L-.x) \L + (:


In particular, when x = /, L +• (/) — (s2, /, sc4, sc3, c§, c%) is clearly primary to \/L. Thus


it suffices to prove that L : / is primary to \/L.


We fix the monomial lexicographic ordering s > / > c4 > c3 > 64 > 63. Clearly L : /


contains (s2, /, c4-c3&3, sc3, c\}. If r G L : /, then the leading term of r times / is contained


in the ideal of leading terms of L, namely in (s2, /2, sc4, sc3, €3, c|, /c4), so that the leading


term of r lies in (s2, /, c4, sc3, Cg). This proves that L : f = (s2, /, c4 - c363, sc3, c3). This


ideal is clearly primary to \/L, which proves the lemma. •
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We next prove that the intersection of ideals in Theorem 1 equals J = ,7(1, d). Note


that it suffices to prove the shortened equality:


c4 - G!, c3 - c2, ci - c26j, 5 - /&?, bi - 64, 62 - 63, &! - c*6£


n (5,01,02,04,63,64)


n (s, ci, c4, 63, b2 - 63,


n (s2, /2, c4(s - /64), c3(s - 763), sc3 - /c4, c
2, c2, ci - c4, c2 - 03 , 62 - 63> 61 - 64)


= (^ (s ~ fbf) , /ci - sc2, /c4 - sc3, s (c3 - c2) , / (c26i - c364) , /c2 (62 - 63)) .


The intersection of the first two rows equals:


(01,02,03,04)0 (c4 -ci,c3 -c2,ci -c26f,s- /&i,&i -64,62 - 63,6? -6?)


= (c4 -ci,c3 -c2,ci -cX) +(01,02,03,04) • (s - /6?,&i -64,62 -63,6{ - 62)


= J+ (c4 -ci,c3 -c2,ci -c2&J) +c2 • (61 -64,62 - 63, 6f - 63) •


This intersected with the third row, namely with (s,/), equals


J + ( s>/) (C4 - ci,c3 - c2, ci - c26?) +c2(s,/) (61 - 64,6a - 63, 6f - 6?) •


Modulo J,


fiCl = /ci&J = sc2b
d


l =


= f c b b - - - - - / c 3 6 6 6 = sc36 = /C4& = sc4)


so that S(GI - c4) € J. Also it is clear that /(ci - c4),s(c3 - c2),s(cx - c2bf) € J, that


sc2 € J + (/c2), and that /c2(62 — 63) € J. Thus the intersection of the ideals in the first


three rows of Theorem 1 simplifies to J + / (c3 - c2, ci — c26f) + /c2 (61 - &4, 6f - 62).


Furthermore, /c2(&i - 64) 6 (/(c3 - c2)) + J and modulo J, /(ci - c26f) = c2(s - /6f) =


/c2(&2 — 6f), so that finally the intersection of the first three rows simplifies to
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We intersect this with the (shortened) ideal in the fourth row of Theorem 1, namely with


(s,ci, £2,04,63,64) , to get


J + (/C2(&1 - 62)) + (/(C3 - C2)) O (5, Cl, C2, C4, b<*, 64)


= J+ (/C2(6? - 6j)) + /(C3 - C2) • («, Ci, C2, C4, 6j, 64)


= J 4- (/c2(6? - 63)) + /(c3 - ca) • (c2,&J, 64).


As modulo J, /(c3-c2)64 = /c2(&i-&4), and /(c3-c2)&3 = fcsb^-fc^b* = sc3-sc2 = 0,


the intersection of the first four rows simplifies to


J + fa (6?-6^,03-c2 ,61 -64).


Next we intersect this with the ideal in the fifth row (of Theorem 1) namely with (s, Ci, c4,63,62 —


63,c26! - c364), to get:


J -I- (fcz (6? - 63, C3 - c2,61 - 64)) n (s, GI, c4, 6^, 62-63 , c26i - c364)


= J + fc-i ((6f - 63,03 -C2A -64) n (5,01,04,6^,62 -63,026! -c364))


= J + fc-2 ((c26i - c364) + (6'J - 63,03 - c2,6i - 64)n(s1c1,c4,63,62 -63))


= J + fc2 ((036! - c364) + (6? - 63*, c3 - c2,6L - 64) - (s, ci,c4,6^,62 - 63))


= J + fc2 (bi - b%, c3 - c2,61 - 64) • (s, ci, c4, bj) .


As modulo J,


sc2(6i - 64) = /c36^(61 - 64) = /6^(c3 - c2)6i = (sc3 - /6^c2)6i = s(c3 - c2)6! = 0,


5/C2(6? - 6^) = /2Ci6? - 52C2 = S/Ci - 5/Ci = 0,


/Ci = /c4,


the intersection of the ideals in the first five rows simplifies to


J + /c2 (6? - b$, c3 - c2,61 - 64) - (ci, 6g)


= J + sc-i (6? - 6^, c3 - c2,61 - 64)


= J + sc2 (6? - 63*).


Finally we intersect this intersection of the ideals in the first five rows in the statement of


Theorem 1 with the (shortened) last ideal there, namely with L = (s2, /2, c4(s —/6^), 03(5 —


/63), sc3 - /c4, c§, cj, ci - c4, c2 - c3,62 - 63,61 - 64), to get:


J + sc2 (6? - &2) n L.
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It is easy to see that L : sc2 contains \fL. As sci is not in L, then L : sc2 = \/Z, so that


the intersection of all the ideals in Theorem 1 equals


J+sc2 (6 - b L : sc2 (6 - b = J + sc2 & - &


= J + 5C2 (6f - &2) \/L


= J + SC2 (6{ - 62) («i /i cli C2, C3, C4, 62 - 63, 6l - 64)


It has been proved that s/c2 (6f - 63) € J, and similarly sc| (&f - 63) € J. This proves


that the intersection of all the listed ideals in Theorem 1 does equal J. •


In order to finish the proof of Theorem 1, it remains to prove that none of the listed


components is redundant. The last component is primary to a non-minimal prime, whereas


there are no inclusion relations among the rest of the primes. Thus the first d' + 4 listed


components belong to minimal primes and are not redundant. With this it suffices to prove


that J has an embedded prime:


LEMMA 3: When n = 1, 04(5 — fb^) is in every minimal component but not in J . Thus


there exists an embedded component.


Proof: It has been established that c4(s — fb^) is in every minimal component. Suppose


that c4(s - /&£) is in J. Then


4


c4(s - fb$) = ̂ nci (s - /&?) + r5(M - sc2) + r6(/c4 - sc3) + r7s (c3 - c2)
1=1


+ r8f (c26i - c364) + r9/c2 (62 - 63) ,


for some elements r, in the ring. By the homogeneity of all elements in the two sets


of variables {s,/} and {c1,c2,c3,c4}, without loss of generality each r» is an element of


i|i = 1,2,3,4]. Therefore the coefficients of the /Ci, sci yield the following equations:


sc4 : 1 = r4,


/c4 : -bi = -r,bi + re, so r6 - bj - bj,


f c 3 : 0 = r3&3 + rg&4, so r3 = r64,rg = — rb% for some re /? ,


sc3 : 0 = fcj - &£ - r3 - r7, so r7 = b^ - b^ - rfe4,
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sc2 : 0 = r2 - 6 + &


r5, so r5 = 0,


4 3 4, so r2 = - 63 - r&4,


/C2: 0 = - r 2 6 - r 6 1


After expanding r2 in the last equation, 0 = — (64 — 63 — r64)&2 - rb$bi -f rg (&2 - 63), so


that 6263 € (61, 64, 62 — 63), which is a contradiction. •


As one embedded component has been established, this prove j the Theorem. Thus in


the case n — 1, the Mayr-Meyer ideal J(l, d) has d' + 4 minimal primes and one embedded


one, and these associated prime ideals are as follows (a varies over the d' th roots of unity):


associated prime ideal


(51


(*1


(sl


(sl


(sl


(51


-SCi,


- SCi,


-5Cl,


- SCi,


-5Ci,


-5C1;


/I


/I


/I


/I


/I


/I


- SC4,


- sc4,


— SC4,


- SC4,


- SC4,


- SC4,


Cl,C2 ,C3 ,C4)


c4 — GI, c3 — c2, GI — c261, s — /&! ,61 — 64, 62 — 63, &i — o:62J


5,/)


s,c1,c2,c4,63,64)


S ,c1 ,c4 ,62 ,fa3 ,c261-c364)


5, /, GI, c2, c3, c4, 62 — 63, 61 — 64)


height


6


9


4


8


8


10


The proof of the Theorem also explicitly computes the intersection of the first five


rows of the primary decomposition, so that:


PROPOSITION 4: The intersection of all the minimal components of J(l,d) equals


Furthermore, it is straightforward to compute the radical of J(l,d):


PROPOSITION 5: The radical o/J(l,d) equals J(l,d') + /&3(c3 - c2,c2(6?' - #f)).


Proof: It is straightforward to compute the radical of each component. Note that as in


the previous proof it suffices to compute the shortened intersection:


(Cl,C2,C3,C4)
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(c4 - ci, c3 - c2, ci - c26f, s - /6j, 61 - 64, 62 - 63, 61 - a62)


,/)


n (s, 01,02,04,63,64)


n (s, ci, 04, 62 , 63, 0261 - c364)


= (cj (s - fbi) , /ci - sc2, /c4 - sc3, s (c3 - c2) , / (c26i - c364))


+ (/c2 (62 - 63) ,/63(c3 - c2),/&3c2(&f - &?)) -


As in the proof of the Theorem, the intersection of the first three rows equals J(l,d'} +


f / (c 3 — c2),/c2(6f — 62 ) ] . Intersection with the ideal in the fourth row, namely with


(s, G!, c2, c4, 63, 64), equals


J(l,d')+(/c2(6f -6^')) +(/(c3-c2))n(5,c1 ) C 2 , 04,63,64)


= /(l,d')+ (/C2(6f -6f)) + ( / (C3-C 2 ) ) . (s 1 C l l C2,C 4 , 63,64)


= J(l.d') + (/c2(6f - 6{')) 4- (/(c3 - c2)) - (C2j 63, 64).


When this is intersected with the ideal in the fifth row, namely with (s, ci, c4) 62, k3,


c364), the resulting radical of J(l,d) equals


3 -c2),/64(c3 -c2)J n(s,c1,c4,62,63,c261 - c364)


- 62 ,c3 - 02,^! - 64J n(s jci,c4,62,63,c2fei -


= J(l,d') + (/63(c3 - c2)) 4- /c2 ((fef - 6f ,03 - c2,6! - 64) • (5,0^04, 62, 63))


and by previous computations this simplifies to


J(M') + (/63(c3 - c2)) + /c263 (bf - 6f ,c3 - c2,&! - 64)


Mayr and Meyer [MM] observed that whenever the element s(c4 - GI) of J(l,d) is


expressed as an jR-linear combination of the given generators of J(l, d), at least one of the


coefficients has degree at least d. In fact, as the proposition below proves, the degree of
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at least one of the coefficients is at least Id — 1, and this lower bound is achieved. (See


also the proof of Theorem showing that sc4 = sci modulo J(l, d).) Mayr and Meyer also


showed the analogues for n > 1, with degrees of the coefficients depending on n - 1 doubly


exponentially.


Bayer, Huneke and Stillman questioned how much this doubly exponential growth


depends on the existence of embedded primes of J(n,d), or on the structure of the com-


ponents. The proposition below shows that at least for n — 1, the facts that J ( l , d ) has


an embedded prime and that the minimal components are not radical, do not seem to be


crucial for this property:


PROPOSITION 6: Let I be any ideal between J ( l , d ) and its radical. Then whenever the


element s(c4 — c\) is expressed as an R-linear combination of the minimal generators of I


which include all the given generators of J ( l , d } , at least one of the coefficients has degree


at least Id — 1.


Proof: All the cases can be deduced from the case of / being the radical of J(l,d). To


simplify the notation it suffices to replace d by d'} so that / = J(l, d] + /&3(c3 - c2, c2(6f -


. Write


4


s(c4 - ci) = ^f'iCi (s - fbf) + rs(/ci - sc2) + r6(/c4 - sc3) + r7s (c3 - c2)
t=i


+ t'sf (c2&i - c3&4) + r9/c2 (62 ~ 63) + r10/63(c3 - c2)


for some elements TJ in the ring. Note that each of the explicit elements of/ is homogeneous


in the two sets of variables {s, /} and (GI, c2, c3, c4}. Thus it suffices to prove that in degrees


1 in each of the two sets of variables, one of the coefficients has degree at least Id — 1.


So without loss of generality each r^ is an element of K[bi\i = 1,2,3,4]. Therefore the


coefficients of the sc^, f c i yield


sc4 : 1 = r4,


/c4 : 0 = -r46f -f- r6, so r6 = bf ,


sci : - 1 = ri,


/Cl : Q = -ri&{ + r5, so r5 = -&{,


sc2 : 0 = r2 4- &i - r7, so r7 = r2 + b±,
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fcz : 0 = ~r2b
d


2 + rgfc! + r9 (62 - 63) - r1063


sc3 : 0 = r 3 -6 j + r7, so r3 = & £ - & ] [ - r2,


/c3 : 0 = ~r363 - r864 + r1063.


The last equation implies that rg = Tg&s, so that the equations for the coefficients of /c3


and fc-2 can be rewritten as


rio - rgftj-1 + r864 - (bd - />{)&*- 1 - r26f 1 + rg&4,


0 = -r2b
d + r^3&i + r9 (62 - 63) - (bd - 6f)&* + r26^ - r8M3 + rn63(&? - bd),


- bd) + rj63(6i - 64) + r9(b, - 63) - (&j - 6?


If rg <E (62 - & 3 , & i - & 2 ) - Then (64 ~ fei)63 e (fc2 ~ &3,6i - & z ) » which is a contradiction.


Thus r'8 has a multiple of b^"1^"^1 as a summand, so rg has degree at least 2d - 2, so


that rg has degree at least 2d— 1. In fact, by setting all the free variables ri,r\\ to zero,


the maximum degree of the coefficients r^ is 2d — 1. •


Note that in the proof above it is possible to have both r10 = TU = 0 and the degrees


of the Ti still at most 2d — 1, with Id — 1 attained on some r;. (Lemma 2.3 of [BS]


erroneously claims that the degree of some rr is at least 2d.}
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ABSTRACT: Since the circulation, in 1974, of the first draft of "The construction D +
X D s [ X ] , J. Algebra 53 (1978), 423-439" a number of variations of this construction have
appeared. Some of these arc: The generalized D + M construction, the A 4- (X)B[X\
construction, with A' a single variable or a set of variables, and the D + I construction
(with / not necessarily prime). These constructions have proved their worth not only
in providing numerous examples and counter examples in commutative ring theory, but
also in providing statements that often turn out to be forerunners of results on general
pullbacks. The aim of this paper will be to discuss these constructions and the remarkable
uses they have been put to. I will concentrate more on the A + XB[X] construction, its
basic properties and examples arising from it.


INTRODUCTION


Let A be a subring of an integral domain £?, and let A' be an indeterminate over
B. The set {f(X) € B[X] : /(O) € A} is a ring denoted by A + XB[X\. This
article is an attempt at a survey of the polynomial ring constructions of the form
A 4- XB[X] that have come into vogue in recent years. The article consists of a
slightly modified version of the talk that I gave at the Fez Conference held in the
year 2001 and a number of appendices or supplements. In the talk, I briefly surveyed
the history of the A 4- XB[X] construction and the various constructions that seem
to have risen from similar considerations. The talk is the first part of the article.
In the appendices, I study topics that are either essential to the understanding of
the A 4- XB[X] construction or are ones that give rise to examples that, in my
opinion, are useful. In the first appendix, which is part 2, I study the prime ideal
structure of A + XB[X] construction. Then in part 3, I indicate how the study
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of Spec(A + X B [ X \ ) led to the construction of various examples and in part 4, I
indicate how useful examples can be constructed from the D+XDs[X] construction.
Part 5 is a wish list, i.e.. I briefly go over topics that I hoped to write on but could
not because that will make the article a bit too long. The necessary terminology is
explained where needed, and any terminology that has not been explained can be
found either in Gilmer [1] and/or Kaplansky [2].


PART 1 (THE TALK)


Let D be an integral domain with quotient field F and let K be a field extension
of F. We know a great deal about D[X] and almost everything about K[X], where
X is an indeterminate over K. About rings between D[X] and K\X] we have just
begun to learn. Let us call the rings between D[X] and K[X] the intermediate rings.
At present we can split these rings into two main types: (1) Intermediate rings that
are composite, i.e. are of the form A + XB[X\ = {ao 4- X]™=1 Q-iX1 \ ao G A and
ttj E B} where D C A C B C K are ring extensions, and (2) the intermediate rings
that are not of the form A + XB[X].


The only, very, well known rings of the latter kind are the rings of integer-valued
polynomials. These rings are very well known and the best I can do is refer the
readers to the wonderful book by Cahen and Chabert [3]. There are other less well
known though equally important examples, of such rings due to Eakin and Heinzer
[4]. Indeed rings that are not of the form A + XB[X] have a composite cover
as indicated by D.D. Anderson, D.F. Anderson and myself in [5]. This composite
cover, very often, determines some of the properties of these rings.


If you have not got the drift yet, then let me tell you, I intend to spend more
time on the composites, i.e., rings of the form A + XB[X}. My reasons for choosing
this course of action are the following:


(a) The composites, over the past few years, have provided directly constructible
examples of rings which were once very hard to construct.


(b) The composites have given rise to new notions and new constructions which
make it easier to bring in new concepts and study them.


(c) The composites are pullbacks and it has become customary to prove a state-
ment for a special kind of a composite, then for a general composite, and then for
a general pullback. Consequently the appreciation of pullbacks has increased.


My plan is essentially to give a brief description of what it (i.e. the A + XB[X]
construction ) is, then brag about what it does, and then indicate several of the
variants of this construction that have appeared recently. Recently, Tom Lucas [6]
has written a survey on examples of pullbacks using the A + XB(X] construction.
I will try not to repeat those examples and will cover the material that Tom left
out because of space restrictions.


Basic properties of the intermediate rings.


Given a ring R between D[X] and K[X], we can split R into two parts as follows:
MR = {f(x) € R | /(O) = 0} and SR = [f(X] e R \ /(O) ^ 0}. (Let SR(Q) =
{/(O) '• / £ SR}-) Of these MR is a prime ideal and SR is a multiplicative set with
the property that 5fi(0) U {0} = {/(O) | f ( x ) € R} = RQ. Now RQ is a subring
of K} though RQ may or may not be a subring of /?, but there are some direct
observations that can be made:
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(i) The map TT : P. — > RQ defined by TT(/) — /(O) is a ring epimorphism with
kerTr = MR. Thus R0 ~ R/MR.


(ii) Every unit of R is a unit of RQ, but the converse may not hold. (Qpf] C
R = Q[X]\\/2X + \/3] C Tl[X], where Q is the rationals and U is the reals. Clearly


(iii) If HO C .R then .R = /?o + MR. Using the fact that if B is a ring I an
ideal of B and A a subring of B then A + I is a subring of B, we can construct
for each subring A of Rn RQ a subring A + A/# of .R. Now as R 3 ^[^j, we have
A"A[.X"] C MR, and so A 4- A/R contains D[X], whenever A contains D.


(iv) If it so happens that RQ C R and MR — XR\[X] for some /?o-subalgebra
RI of K, then we have R = RQ + X R \ [ X } a ring of the form A + XB[X\. Indeed,
MR = XRi[X] for some RI if and only if £"=1 aiX


i e 7?, implies azyY e 7?, for all i
such that 1 < i < n. In this case, R\ — (a aJf £ /?} [5].


(v) Now we have seen that RQ ~ R/MR. For some of us it is grounds enough to set
up, for each subring R' of RQ, the following diagram of canonical homomorphisms:


S = K-l(R'} <-> R
I U •


In the usual terminology S is called a pullback. Indeed, if R' C /?, then 5' =
7?' + A/R. Thus the composites A + XB[X] are pullbacks. Yet, while the pullback
would give you TT~I(RQ) = R, the composites will go a step further. By [5, Cor.
2.4] associated with an intermediate ring R, there is a unique composite 5 = RQ -f
X S \ [ X ] , where S\ is a subring of K generated by U/GR^/ an<^ A/ is the D-
submodule of K generated by the coefficients of /. Let us call this unique composite
the composite cover of R.


Now, what is so special about the composite cover of an intermediate ring 7??
For one thing, R is integral over D[X] if and only if the composite cover of R is
integral over D[X] ([5, Prop. 2.6]). On its own, A + XB[X] is integrally closed if
and only if B is integrally closed and A is integrally closed in B.


(vi) The name composite fits because A-\-XB[X] is the composite of A and B[X]
over the ideal XB{X}. Mott and Schexnayder's paper [7] gives a good description
of composites of several kinds.


Special types of composites.


Enough of the basic properties. Let us now see the different types of composites.
The current wave of study of composites started with the circulation of an earlier
version of my paper with Costa and Mott [8]. The construction to be studied was
given in the title, "The construction D + XDs[X}" , where D is an integral domain
of your choice, 5 a multiplicative set in D and X an indeterminate. The immediate
special case: the then well known D + XK[X], where K is the quotient field of D,
which I was using to produce examples of GCD domains each proper principal ideal
of which has finitely many minimal primes. I called these GCD domains the unique
representation domains (URD's). Indeed, if D is a URD, then so is D 4- XK[X}.
At Paul Cohn's suggestion I started looking into D^ = D 4- X D s [ X } . It turned
out that D + XDs(X] is a GCD domain if and only if D is a GCD domain and for
each d 6 D, GCD(d,X) exists [8]. It turned out also that if D^ is a GCD domain
then D^ is a URD iff D is [9]. Of interest in a GCD domain D are the PF-primes,
say the primes P such that Dp is a valuation domain. The PF dimension of a GCD
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domain can be defined in the same way as the Kruil dimension or the valuative
dimension of a domain is defined. Sheldon [10] had studied the PF primes and had
conjectured that a GCD domain D with PF-dim(D) = Krull-dim(D) should be
Bezout (f.g. ideals are principal).


Next, as D^s^ is a polynomial ring construction, it was natural to ask ques-
tions about Krul l -d im(D^ s ^) with reference to Krull-dim(Z)); it meant a study of
Spec(D(5)). I found out that if P is a prime ideal of D^S) with P n S ^ 0, then
P = P n D + X D S [ X ] , and if F n S = $, then P = PDS[X] H Dlsl


Adding a little bit here and a l i t t le bit there, my paper was complete. When I
was writing my thesis, Paul (Cohn) told me to send whatever I produced to Robert
Gilmer, who was and of course is a leading expert, in Multiplicative Ideal Theory.
So, out of habit. I mailed a copy to Robert who had indeed been very kind to me.
This way I got in contact with Joe Mott and Doug Costa who had done some similar
things. Between us, we added results including results such as: If D is Noetherian,
then D^ is a coherent ring; D + XK[X] is a PVMD if and only if D is a PVMD.
Now this needs a little bit of introduction. A function * on the set F(D) of nonzero
fractional ideals is said to be a star operation if for all a G K\{0},A. B G F ( D ] ,
we have (1) (a)* = (a), (a A)* ^ a A* (2) A C A* and A C D => A* C B* and
(3) (A*Y — A*. If * is a star operation, we can also define ^multiplication as
Ax*B = (ADY = (A'BY = (A* /?* )* . An ideal A G F ( D ) is a *-ideal if A = .4*.
The operation defined, on F ( D ] , by A —> Av — (A"""1)"1 is called the v-operation,
and the one defined by AL — \JFV, where F ranges over nonzero finitely generated
subicleals of A, is called the t-operation. Now D is a PVMD if for all finitely
generated A G F ( D } . A is t-invcrtible, i.e., ( A A ~ } ) t . - D.


The message of [S], like any other construction involving two rings, was: see
how, and under what conditions, some properties of D get transferred to D^s\
This brought up the question: If D is a PVMD, for what S should D(5) be a
PVMD? That meant knowing all the maximal t-ideals of D^. An integral ideal P
that is maximal w.r. t . being a t-ideal is a prime ideal, and Griffin [11] had shown
that D is a PVMD if and only if for each maximal t-ideal P of D, Dp is a valuation
domain. The main hurdle was that the prime ideals of D^ that are disjoint with
S are contractions of prime ideals of Ds[X}. To see how this problem could be
resolved, I decided to study the D + XDs[X] construction from GCD domains {12}.
(A GCD domain is a PVMD.) It did not give me what I wanted, but it brought
simple examples of locally GCD domains that were not GCD, and the fact that if
P is a prime t-ideal of D then PDp may not be a t-ideal of Dp. I also discovered
that if D is GCD, then D^ is GCD if and only if S is a splitting set, i.e., each
d G D\{0} is expressible as d = sdi, where s G S and ( d i ) n ( t ) = (tdi] for all t G S.
This rediscovery of the splitting sets of [7] led not only to a lot of activity from the
factorization point of view, but also to the ultimate solution of my problem. The
solution turned out to be: If D is a PVMD, D^ is a PVMD if and only if S is
a t-splitting set of D. Now, a saturated multiplicative set is a t-splitting set if for
every element d G D\{0} we have (d} = (AB}t, where A and B are integral t-ideals
such that A n S y= 0 and B fl (t) = Bt for all t £ S. This result has appeared in a
paper of mine with the Anderson brothers [13].
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Apparently the contents of [8] had started taking effect before it was published.
Brewer and Rutter[14] came up with the idea: if R = k + M, where k is a field,
then for every subring D of k you have a subring D -f- M of R. They called it the
generalized D + M construction, generalized because it generalized -the celebrated
D + M construction, greatly popularized by Gilmer, which required R — k + M to
be a valuation domain. Using this construction they were able to recover all that
was proved about D -f XK(X] in [8], here K = qf(D] and, on top of that, their
construction allowed results on subrings of fc[[^"]], where k is a field. While this was
happening, Malik and Mott [15] had come up with their study of strong S-clomains.
D is a S(eidenberg) domain if for each height one prime P of -D, PD[X] is of height
one, and D is strong S if for each prime P, D/P is an S-domain. They showed that
the D + XK[X] construction is a strong S-ring if and only if D is; yet they pointed
out that if D[X] is strong S, it is not necessary that (D + M)[X] should be strong
S. Now, [14] had encouraged me to go general. I wrote up a piece on the overrings
of D + XL[X], where L is an extension of the quotient field of D. Then Costa and
Mott gave it the language of generalized D + M, and we had another paper [16].
(Later Joe and I [17] showed that if D is a Noetherian Hilbert domain and L is an
extension of the quotient field of D, then D + XL[X] is a non-Noetherian Hilbert
domain whose maximal ideals are finitely generated. Constructing such a domain
by conventional means was quite difficult , as shown by Gilmer and Heinzer [18].)


The beauty of the D + XDs[X] construction seems to lie in the fact that it is
so close to well known examples of pullbacks and composites, yet so open to rein-
terpretation and so easy to work with. Marco Fontana wrote a longish article in
Italian [19] and sent a copy to me in Libya. (Marco tells me that those were his sem-
inar notes.) He had treated all the constructions and composites that I have talked
about above with reference to [7], including D^s\ showing how the spectral space of
a pullback can be shown to be connected with the spectral spaces of the constituents
of the pullback. I think that Marco's interest in the D + XDs[X] construction had
a profound effect on the development of polynomial ring constructions.


In tlying to get some examples in a completely different context, I had found out
that if k C K is an extension of fields and if X is an indeterminate over K, then
k + XK[X] satisfies ACC on principal ideals [20]. When, in 1986, I went to Lyon,
(Prance) I gave, among other talks, a talk on an earlier version of [5]. There I met
several young men, Salah-Eddine Kabbaj included, who were eager to learn and
ready to experiment with new ideas and techniques. From these young men issued
forth a barrage of papers containing all sorts of variations of A -f XB(X] construc-
tion. Strong S-domains and Jaffard domains were in vogue. Jaffard domains are
domains D such that valuative dim(D) — Krull dim(jD) (symbolically (dimv(D] =
K-dim(D)). Anderson, Bouvier, Dobbs, Fontana and Kabbaj wrote papers, [21]
and [22]. [21], using various pullbacks to construct examples, and [22] showing that
if D is Jaffard, then so is D + X D s [ X } . Then Fontana and Kabbaj [23] studied the
Krull and valuative dimensions of D + (Xi,X2 , . . , Xn)Ds[Xi,X2,.., Xn) = L>(S 'n).
It turned out that dimv(D^s^} = dimv(D) + n, and that D is a Jaffard domain
if and only if so is £)(S'n). Next, they prove that £>(S'n) is a strong 5 ring if and
only if both D and Ds[Xi,X2,.., Xn] are. To top it all, they showed that D[X]
is an S-domain for any D. Later, Fontana, Izelgue, and Kabbaj [24] studied the
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Krull and valuative dimensions of the A + XB(X] construction and showed that the
results are different, especially when the quotient field of B is a proper extension of
the quotient field of A. Recently, Anderson and Nour-el-Abidine [25] have studied
the A + XB[X] and A + XD[[X]] constructions from GCD domains.


Current trends.


The sole purpose of studying the D + XDs{X] construction was to get examples
of domains that did not satisfy ACC on principal ideals. But we could not ignore
the possibility of ACGP holding for an intermediate ring. In [5], we came up with:
Let R be an intermediate ring, then P. has ACCP if and only if any ascending chain
of principal ideals generated by polynomials of /?,, of the same degree, terminates.
As a demonstration of this, we proved a proposition for D[X] C R C K[X], where
K is the quotient field of D. Of course we thrashed the case of A + XB[X] for A
and B fields, but Barucci. Izelgue, and Kabbaj [26] came up with the somewhat
remarkable discovery that if A is a field then A + XB[X] has ACCP no matter what
kind of integral domain B is. (I recall having written a good review of this paper
but, apparently, what I sent was hard to understand, for reasons I am trying to
explain to myself. Possibly some part of the review got deleted!) This remarkable
short note had some other gems that started off a lot of activity in the study of
factorization properties of A + XB{X] and A + XJ3[[X]] constructions. The names to
mention in this connection are Nathalie Gonzalez [27] and [28] [29] , David Anderson
and Nour-el-Abidine [30], Dmnitrescu, Radu, Salihi and Shah [31].


Let T(D) denote the set of t-invertible t-ideals of D. Then T(D) is a group under
t-product and when we quotient it by its subgroup P(D) of principal fractional ideals
we get what I call the t-class group C l i ( D ) = T ( D ) / P ( D ) . This class group was
introduced by Bouvier in [32]. Anderson and Ryckaert [33] studied the t-class group
of the generalized D + M construction. The fact that CLt(D -f XK[X\) ~ Clt(D)
came to the fore in a strange way in a paper of mine with Bouvier [34]. Then as
the Fontana factor grew, a lot of the above questions were, considered for pullbacks.
Font ana and Gabelli's [35], and independently of them Khalis and Nour El-Abidine
[36], considered the t-class group of a pullback. Yet the class group of A + XB[X]
has also been studied by Anderson, El-Baghdadi and Kabba j [37]. In [37] the main
question studied is: Under what conditions is Clt(A + XB[X'\) ~ Clt(A). The same
authors go on to study other forms of the t-class group of A + XB[X}\ a good source
for their work is El-Baghdadi's thesis [38]. Coming back to the pullbacks, the hot
questions these days are something like: when is a pullback...? For example, see
Houston, Kabbaj, Lucas, and Mimouni, [39]. Also, see coherent-like conditions in
pullbacks as in [40].


PART 2 (KRULL DIMENSION OF A+XB[X])


Being honest to goodness polynomial ring constructions, A -f XB[X] domains
qualify for a comparative study of their Krull dimensions with the Krull dimensions
of A, A[X] and B[X\. Of course, so do the general pullbacks, but in the case of
the A + XB[X] construction, we can get a somewhat better picture. This picture
becomes clearer for some special cases of this construction. Now Fontana, Izelgue,
and Kabbaj [41], [24] (one of these two is a translation of the other) and [42] took
good care of this need both for speakers of English and French. In the following, I
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will try to give an idea of what they produced in this connection for readers who
are interested, but not too interested.


Let us start with the observation that for each prime ideal P of R = A + X B [ X ] ,
either X & P or X $ P. Clearly if X G P, then XR C P, and so X2B[X} CXRC
P. But as X2B[X] = ( X B [ X \ ) 2 , we have XB[X\ C P. This means that all the
prime ideals that contain X are of the form p+XB[X], where p is a prime ideal of A.
Now the prime ideals Q that do not contain X are hidden in places that may be hard
to reach. Let us fix some notation to make the task a little lighter. Let £ —{P G
Spec(R] : X G P} and M ={P G Spec(R) : X $ P}. Then C ={p + XB[X] :
p G Spec(A)}. Now let / = sup{htR(P) : P G C} - sup{htR(p + XB[X] : p G
Spec(A)} = sup{htA(P) + h t R ( X B [ X ] : P G £) = dim(A) + /itR(XS[X]). Next,
let m be the supremum of lengths of chains in M. Then, if 5 = {Xn : where n G N},
there is a one-to-one order-preserving correspondence between the primes in M. and
the primes in Rs = (A+X 5 [X])s - B[X]S = B[X, X'1}; so m - dim(B[X, X-1}}.
Now it has been established that dim(B\X, X"1} = dim(B[X]}, see for instance
[21, Proposition 1.14]. Thus m = dim(B[X}}. Since both these sets of primes
come from Spec(R), we have dim(R.) > max{l,m} = max{dim(A] -f h t n ( X B [ X ] ) ,
dim(B\X}}}. Let us record this for future reference as an observation.


OBSERVATION 2.0. Let R = A + XB[X], where A C B is an extension of domains
and X is an indeterminate over B. Then dim(R) > max{c/i77i(yl) + //


Now we must find out the answers to the obvious questions. That is, what is
lit n(X B[X}}1 , is there an upper bound for dirn(R)1?, etc. Besides, even though the
sets £ and M are disjoint, some members of M may be contained in some members
of £. Since the Krull dimension is nothing but the supremum of lengths of chains of
prime ideals, we may have to consider the case when, after taking the longest chain
in £, we are faced with the possibility that there is a sizeable chain of prime ideals
of R contained in XB[X], and obviously each of those prime ideals is coming from
M.. So let us find out what kind of prime ideals of R will be contained in XB[X].


LEMMA 2.1. Let R = A + XB[X], where A C B is an extension of domains and
X is an indeterminate over B. If P is a prime ideal of R such that P ^ X B [ X ] ,
then the following hold.


(1) no power of X is contained in P.
(2) X~1PHA = (0). (Consequently, if there is a nonzero prime ideal P g X B [ X ] ,


then X~1PC\A = (0)).
(3) X~1P does not contain a polynomial f ( X ) such that /(O) G A\{0}.
(4) X-1P is a prime ideal of B[X].


Proof. (1) Since P is a prime, any power of X in P means X G P. But then
XR C P, which means that X2B[X] C P. But as we have already observed,
X 2 B [ X ) = (XB{X}}2 we have XB[X] C P, and a contradiction. (2) Clearly X~1P
is an ideal of B[X}. Suppose on the contrary that X~1P n A = a ^ (0). Then
X~1P D a[X]. Select f ( X ) G a[X] such that /(O) ^ 0. Now f ( X ) G A[X\ CA +
XB[X\, X G A + X B [ X } J ( X ) i P because f ( X ) i XB[X] and X £ P by (1). Yet
Xf(X] G P, because Xa[X] C P, contradicting the primality of P. (3) The proof
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of (2) can be modified to take care of this. (4) Let f(X)g(X] G X~1P where f , g G
B[X}. Then Xf(X}g(X} G P, and hence X2f(X)g(X) = X f(X)(Xg(X}) G P,
which forces A/(A) e P or A'ty(A') G P. That is, / (A) G A^P or ,g(A) € A^P.


LEMMA 2.2. Given that ,4, B, X and PC are as in Lemma 2.1. If p is a prime ideal
of B such that p D A — (0) then Ap[A] is a prime ideal of P., contained in XB[X\.


Proof. It is enough to note that p[X] C\(A + XB(X\] = {/(A) G p[X] : /(O) - 0
and every coefficient of / comes from [Xy(X] : g(X) G p[A'|} Ap[Aj. That Xp[X]
is a prime ideal of R follows from the fact that it is a contraction of a prime ideal.


LEMMA 2.3. Let A C B be an extension of domains, let X be an indeterminate
over B, and let R - A -f AB[A'j. Next let P be an ideal of B that is maximal w.r.t.
the property that PD A = (0). Then P is a prime ideal such that for any prime
ideal Q strictly containing P[A], either A" G Q or there is a polynomial / G Q such
that /(O) 6 A. Consequently, if P has the above stated property, there is no prime
ideal strictly between XB\X\ and P[A] n R = AP[A'j.


Proof. Note that A\{0} is a multiplicative!)' closed set in B. So, P being maximal
w.r.t. PnA = (0) means P is maximal w.r . t . being disjoint from A\(0) . This makes
P a prime ideal. Next, suppose that Q is a prime ideal such that P[A] ^ Q and
A ^ Q. Then there is a polynomial /(A) 6 Q\P(Aj such that no coefficient of /
is in P. Since A" £ Q, we can arrange /(A") so that /(O) / 0. But then, due to the
maximality of P w.r.t . disjointness from v4\(0), we have r/(0)-fp G A for some r G B
and p G P. Next note that as P n A = (0), we have P[A] n R = AP[A] C XB\X\.
Now if there were a prime ideal H strictly between AB(A] and AP[A], then by
(1) of Lemma 2.1, Xn i H for any n. Yet, as H C XB[X], every element of H is
of the form h = Ary(A) where g(X) € B [ X \ . Let h = Xg(X] e F\AP[Aj. Then
f)(X] £ A'-1J7\P[A]. This means that X~1H g P[A] and as A £ A"1// by the
first part there is / (A) e A"1// such that /(O) G A\{0}. But this contradicts
(3) of Lemma 2.1. Hence there is no prime ideal H strictly between XB(X] and


Before we go any fur ther , a word about dim(B[X}}. Let C : Pn ^ Pn-i 2 ••• 2
-Pi 2 (0) be a chain of prime ideals in B(X}. Jaffard [^3] calls C a special chain
if Pl G C implies (Pl n P)[A] G C. In [43], it was shown that drm(B[A]) can
be realized as the length of a special chain. Let B be finite dimensional and let C
described above be a chain that realizes dim(B[X}). Then Pn ^ (Pn n B)[X]. For
if pn = (pn n B)\X], then Pn+1 = (Pn, A) = (Pn n B) + X B [ X \ , and so there is a
longer (special) chain of prime ideals in B[X], a contradiction. Next we note that
(PnnB)[A] — Pn-\- For if not then, say (Pnr\B}[X\ = Pn-i because C is a special
chain, which gives PnnS D Pn^iHB D Pn_,nB = Pnr\B. This forces three distinct
prime ideals of B[X] to contract to the same prime ideal of B, which is impossible.
Finally we note that Pn n B must be a maximal ideal of B, because if not, then
say a prime ideal Q 2 (-Pn H B), and then Q[X] 2 (Pn H B)[A] = Pn_i and we end
up, again, with a longer chain Q + XB[X] 2 Q[A] 2 Pn-i • • • • (A reader who is
seriously interested in dimension theory of polynomial rings may want to read [1,
p. 366] and chase the references given there.) Now, having made these notes, we can
make the following statement.
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OBSERVATION 2.4. For an integral domain B, dim(B[X}) = l+max{htB[X](P[X])
P E Spec(B}} = 1 4- maa;{/it£[x](P[X]) : P ranges over maximal ideals of B}.


LEMMA 2.5. Let R = A + A^pC], where A is a field. Then dim(R) = dim(B(X\]
and so dim(R) = 1 if and only if B is a field.


Proof. In this case, C ={XB[X}} and so / = 1 and M = {P E Spec(R) :X (£ P},
and as before m = dim(B[A']) = 1 + m a x { h t B [ X } ( P [ X ] ) '• P e Spec(£)}. Now for
each P E Spec(B),PO A = (0), and so ^5[yY] properly contains ATP[AT] for each
P € Spec(B). Thus /tf f l(Afi[A]) > 1 + max{h.tB[x}(P[X\) : P E Spec(B}} =
dim(B[X\). On the other hand, each prime ideal properly contained in XB[X]
corresponds to a prime ideal properly contained in some member of Spec(B[X}) by
Lemma 2.3. Thus h t R ( X B [ X } } < dim(B[X\).


Now we are in a position to find out the height of XB[X] in R.


LEMMA 2.6. (Cf. Lemma 1.3 of [24].) Let A, B, X, and R be as in Lemma 2.1 and
let S = A* = A\{0}. Then h t R ( X B [ X } } = I + max{htB(p[X}) : p E Spec(B) such
that pn A = (0)} = dim(Bs[X}) < dim(B[X\}.


Proof. Indeed, if for every nonzero prime ideal p of B we have p D A ^ (0),
then qf(A] = q f ( B ) , and so htR(XB[X\] < dim(A 4- XB[X])S = dim(K[X]} = 1
because X B [ X } n A = 0. Now as h t R ( X B [ X } ) > 1, we have htR(XB[X\) = 1. This
establishes the lemma for the case when {p E Spec(B)\{(Q)} : pC\A = 0} = </>. Now
suppose that {p E Spec(B)\{(Q)} : pD A = 0} ̂  0. Then, as XB[X}nA = (0), we
have h t R ( X B [ X } ) = htRA.(XBs\X\} = d i m ( B s [ X ] ) because Rs - As + A-5S[X]
meets the requirements of Lemma 2.5. The inequality is self evident.


Now let us take a chain of prime ideals C = Pn ^ Pn-i 2 ••• 2 Pr 2 Pr-i 2
• •• 2 PI 2 PO = (0) in A + A'5[Ar], and let us use our trick of spotting X. UX does
not belong to any of the Pz, then all the Pj are in M, and so n < rn — dim(B[X\}.
If X belongs to some, but not all of the P£, then we reason as follows. If X 6 Pr,
then Pz = (^ H A) + XB[X] for all i such that r < i < n. Now if Pr = XB[X], the
largest value that n — r can take corresponds to the longest chain of prime ideals
in A. So n - r < dim(A). That is, n < dirn(A) + r. But, by Lemma 2.6, r <
dim(B[X\). So we have dim(R) < dim A + dim(B[X}. Next, according to Lemma
2.6, hi.R(XB\X}} — dim(Bs\X}}. Combining this information writh Observations 0,
we have that dim(R) > max{dim(A] + dim(B s[X\) , dim(B\X\}} This completes
the proof of the following theorem.


THEOREM 2.7. Let A C B be an extension of domains, X an indeterminate over
B and let R = A + XB[X\. Then max{dim(A] + dim(Bs[X}}, dim(B\X])} <
dim(R) < dimA + dim(B[X\).


Now the usual questions. Can these bounds be attained? How do these observa-
tions link up with earlier work? First of all, note that if dim(Bs[X]} = dim(B[X]},
then the inequalities are replaced by equalities, that is dim(R) — dimA+dim(B[X]}.
What are the circumstances under which this can happen? Of course one possibility
is when qf(A) C B. That is, if S is a field or B is a <?/(A)-algebra. It would be
interesting to know if there is an example of a domain B, where qf(A) £ B, and still
dim(R) — dimA + dim(B[X}}. It may be noted however that qf(A) C B if and only
if for each P E Spec(B], Pn A = (0). Now for the one-ended (lower) limits. Let A
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be a one-dimensional domain such that dini(A\X\) — 3. Then R = A -f
gets the lower limit and understandably misses the upper limit. All we need
now is an example of R --- A + XB\X\ such that max{dim(A} + dim(B s \ X } } ,
d'im(B[X})} < dim (Ft] < dimA + dim(B[X}}. Such an example was constructed in
[24, Example 3.1]. I will mention the example below and what it does, and let an
interested reader look for proofs in [24].


a field, and let X, X} . X2, X3l X.i be indeterminates
+ X4K(Xl}X2, X3)[X4J(.Y4) , B = K^X^ +


X3K(Xi,X2)[X3](X:s) + AVv"(A"i, AV A3)[A4](.Y4), R = A + XB[X], and S = A*.
Then max{dim(A] + d i m ( B s [ X } } , dim(B[X})} < dim(R) < dim A + dim(B[X]).
In the illustration of this example, it is also shown that in this case dim(R) >
dim(A[X ). This is important to know because in [8, Theorem 2.6] it was shown
that if S is a multiplicative set in A such that B = As and R = A + X A s [ X ] ,
then dim(As[X}} < dim(R) < dim(A[X}}. So, this example also serves to show
that there was a need for the study of Kruil dimension of A + XB(X\, and that
the general A + X B[X] construction can behave differently from the A + X As[X]
construction.


I do not know if it has occurred to anyone, but I feel that the inequalities ap-
pearing in Theorem 2.7 can be used as a forcing tool, to draw conclusions about
A -f X B ' ( X \ constructions having certain properties. However, the construction be-
ing too general, the forcing that I suggest may have very limited scope. For instance,
Theorem 2.7 provides the following estimates for A + X As[X] : rnax{dim(A] + 1,
d i m ( A s [ X } } } < dim(R) < dimA + d i m ( A s [ X } ) , and the upper bound may turn out
to be somewhat higher than the corresponding inequalities given in (8, Corollary 2.9]
which says max {din i( A) + 1, d i n i ( A s [ X } ) } < dim(R) <S- dim A + dim(As[X}}.
Here S — dim (A] represents the maximum length of the chain of prime ideals
Pn 2 Pn-i 2 ..... 2 PI = P such thai. Pi n 5 ^ 0.


I must record here the fact that a study of the Krull dimension, nearly on the
same lines as [24], has been carried out by Cahen [44] and Ayache [45] for the A + /
construction. Indeed, the first application of their work is A -f XB[X], though it is
more useful in the situation when A + I is a subring of K[X\, .., Xn}. (Rings of this
kind were studied by Visweswaran [46].) Moreover, the general study of subrings
of the form D + I of a domain R. has been carried out in [47]. The study of Krull
dimension or of chains of prime ideals has also gone on in some other directions in
Dobbs and Khalis's joint work [48]. In this paper, they also have a construction of
the form A + X A S [ [ X \ } .


PART 3 (CONSTRUCTING INTERESTING EXAMPLES 1)


It is good to have a proof that something exists, but if there is a simple example
to support a claim, we would do well to use it. An example at hand may well pave
the way to better understanding. After this "philosophical" statement, I should
come up with some really interesting constructions. I hope to do just that, but I
have to let some excess material from the previous part flow in.


Let us talk a little about the valuative dimension of R = A + XB[X}. Recall that
if A is an integral domain, then the supremum of dim(V] for all valuation overlings







Rings Between D[X] and K[X] 455


V of A is called the valuative dimension of A and is denoted by dimv(A). The notion
of the valuative dimension was introduced by Jaffard in [49]. However, Gilmer [1] has
given a good basic treatment to this topic, and the following remarks can be traced
back to [1, Section 30]. Indeed, for an integral domain A, dim(A] < dimv(A). Now
what is so important about the valuative dimension is the result that dimv(A[X\] =
dimv(A) 4-1. Following [21], we may call an integral domain A a Jaffard domain if
dimv(A) = dim(A}. Pulling out two of the several equivalent conditions of Theorem
30.9 of [1], we have that dimv(A) = n is the same as dim(A[Xi, X^, , . , X n ] ) = In.
So, Noetherian domains and Prtifer domains are Jaffard domains, along with a
host of other examples of Jaffard domains mentioned in [21]. Coming back to the
business at hand, we have the following result, in connection with the A 4- XB[X]
construction, to report from [24]. Here, let us recall that if A C B is an extension of
domains, then the degree of transcendence of qf(B] over qf(A) is called the degree
of transcendence of B over A, denoted by tr.deg(B/A).


THEOREM 3.1. dimv(A + X B [ X \ ] = dimv(A) 4- tr.deg(B/A) + 1.


Now if you are interested in the proof, look up [24]. However, I would be more
interested in a proof that is based on the observation that every valuation overling
of R = A + XB[X] is the ring of a valuation on qf(R) that is an extension of a
valuation on qf(A}.


Now let us see what Theorem 3.1 has to offer. Indeed, if B is algebraic over A,
then tr.deg(B/A) = 0. So, if B is algebraic over A, in particular if B is an overring
of A, then dimv(A + XB[X}} = dirnv(A) + 1. This obviously takes care of the case
when B is a quotient ring of A. Now what is the use?


COROLLARY 3.2. Suppose that A is a Jaffard domain. Then dimv(A + XB[X}) =
dim(A) + tr.deg(B/A) 4- 1.


Thus i f t r . d e y ( L / K ) = oo, where L is a field extension of A', then R = K-\-XL[X]
is a one-dimensional domain whose valuative dimension is infinite. There is a wealth
of results on valuative dimensions of pullbacks and generalized D + M constructions
in [21]. One may wonder about the need to write [24] if pullbacks are so perfect.
My response, as usual, is that A 4- XB[X] constructions, crude though they may
look, do provide valuable information which may be hard to glean from pullbacks.


Recall that an integral domain A is an S-domain (S for Seidenberg) if for each
height-one prime ideal P of A we have that P[X] is a height-one prime ideal of A[X}.
Let us also recall from Kaplansky [2], who is responsible for this terminology, that A
is a strong S-ring if A/P is an S-domain for each prime ideal P of A. Clearly if A is
a strong S-ring, then so are the homomorphic images of A. The terminology, whose
motivation can in part be traced back to Seidenberg [50, Theorem 3], seemed to
provide a useful tool for recognizing integral domains that behaved like Noetherian
domains in that they satisfied dim(A[X}) = dim(A) + 1.


THEOREM 3.3. ([2, Theorem 39]). Let A be a strong S-ring, let X be an inde-
terminate over A, and let P be a prime ideal of A. Then htA[x](P[X\) — htA(P).
Moreover, if Q is a prime ideal of A[X] such that Q n A = P and Q D P[X], then
htA[X](Q)=htA(P) + l.
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Then in a later section, he shows that a valuation ring is a strong S-ring [2,
Theorem 68}. Now this is where Malik and Mott [15] picked up the strand and
started pulling, of course in a multiplicative sort of way. Their results were of the
type:


PROPOSITION 3.4. ([15, 2.1 and 2.2]) A domain A is an S-domam if and only if
AT is an S-domain for each multiplicative set T, if and only if AM is an S-domain
for each maximal ideal j\l.


On the strong S-property, they proved, likewise, the following statement.


PROPOSITION 3.5. ([15, 2.3,2.4]) . A r ing A is a strong S-ring if and only if AT


is a strong S-ring for each mul t ip l ica t ive set T, if and only if AKI is a strong S-ring
for each maximal ideal I \ I .


Now, coupling Proposition 3.5 with Kaplansky's Theorem 68 mentioned above,
and adding some more work they stated the following result.


PROPOSITION 3.6 ([15, 2.5]). A Prufer domain is a strong S-domain.


Using their criteria, they came up with the following scheme.


PROPOSITION 3.7. ([15. 3.1. 3.2]) For A an S-domain (a strong S-domain), A[X]
is an S-domain (resp., a strong S-domain) if and only if Ap[X] is an S-domain
(resp., a strong S-domain) for each prime ideal P of R. (Here X denotes a finite
set of indeterinmates.)


There were several other interesting statements in section 3 of [15]. All this
culminated in a beaut i ful result and that can be stated as follows.


THEOREM 3.8. ([15,3.5]) Let A be a Prufer domain and let X = {X1 ;X2 , ..,Xn}
be a finite set of indeterininates over A. Then A[X} is a strong S-domain.


Next, using Kaplansky's Theorem 39 (Theorem 3.3 here) it is easy to observe
that a strong S-domain is a Jaft'ard domain. This observation was made in [15],
along with an example of a Jaffard domain that is not a strong S-ring [15, 3.11].
It appears that no one has tried to find a minimal set of conditions under which a
Jaffard domain should be a strong S-domain. The paper ([15]) goes on to display
other goodies, but I must leave the rest for the interested readers and hasten to
answer the question that has by now started popping up in every reader's mind,
"Where is the A -f XB[X}7" Let me take you to Salah Kabbaj's earlier work. He
picked up where [15] had left off. I found in an earlier version of his thesis the
following statement which stayed as it was in the final version ([51, Theoreme 0.8,
Chap. II]). Let A be an S-domain. Then A[X\, X?,.., Xn} is an S-domain for all
n > 1. Looked like a pretty result, it was a considerable improvement on [15. 3.1]
(which is a part of Proposition 3.7 here), so I started playing with it. The first thing
that came to my mind was, "Where is he using the fact that A is an S-domain?"
The answer came out, "Only at one place, and that could be avoided." I made the
suggestion, in my report on his thesis, indicating how his proof can be modified to
prove the following statement.
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THEOREM 3.9. If A is an integral domain and X an indeterminate over A, then
A[X] is an S-domain.


Now, for some reason, this suggestion was not taken and I was hopping mad, (I
so wanted Kabbaj to have this result!). I was working on [5] and I mentioned the
result to Dan. He agreed to include the result, but at a price, as usual, he would
write his own proof. He did give a pretty proof though. Possibly simultaneously,
Kabbaj and Fontana [23] did prove Theorem 3.9 and many more interesting results.
Now my trouble is that I like both very much. For this reason, I have decided to
give a proof that has the flavor of both.


LEMMA 3.10. ([5]) For an integral domain A the following statements are equiva-
lent.


(1) A is an S-domain.
(2) For each height-one prime ideal P of A, Ap is an S-domain.
(3) For each height-one prime ideal P of A, Ap (the integral closure of Ap) is a


Pr iifer domain.


Proof. (!)=> (2) by Proposition 3.4 above. (2)=» (3) By (2), AP(X] is two-
dimensional and by [1, 30.14], Ap is Pr iifer. (3)=> (1). Suppose that for each
height-one prime ideal P, Ap is one-dimensional Pr iifer. Then Ap[.Y] — /ip[.Y] is
two-dimensional, which requires that Ap[A'] is two dimensional, which means that
PAP[X] = P(A\X])(A\P) is of height one. This indeed means that PA[X] = P[X]
is of height one. Now recall that P is any height-one prime ideal of A.


This lemma provides a neat characterization of S-doniains. Now before we start
proving the theorem, let me digress a little. Call A a stably strong S-domain if


, .., X7l] is a strong S-domain for all n > 1. (A being a homomorphic image of
, .., X n ] , stably strong S implies strong S.) So, a Pr iifer domain, by Theorem 3.8


above, is a (stably) strong S-domain. Of the various equivalences on one-dimensional
domains in [21, Theorem 1.10], we recall that for a one-dimensional domain A the
properties: (a) S-domain, (b) strong S-domain, and (c) stably strong S-domain, are
all equivalent.


Proof of Theorem 3.9. By Lemma 3.10, all we need. is to show that A[X]p is
an S-domain for each height-one prime P of A[X}. There are two possibilities: (i)
P n A = (0), (ii) P n A = p ^ (0). In the first case, it is well known that (A[X])P


is a valuation domain and hence an S-domain. In the second case, P = p[X], where
p is of height one. Now PA[X}p = pA\X]p\x\ is of height one. But A[X]p[x) =
Ap(X) — (Ap[X])pAii\x]- So pAp[Ar] is of height one. Whence the one dimensional
Ap is an S-domain. But then, by the remarks prior to the proof, Ap is a stably strong
S-domain. This means that AP[A] is an S-domain. But then so is every quotient
ring of AP[X] by Proposition 3.4 above. Whence AP(X) = A[X]p[x] = A[X}P is an
S-domain, and this completes the proof.


An immediate corollary is the following statement.


COROLLARY 3.11. ([5, 3.3]) D + XDS[X] is an S-domain for every multiplicative
set 5 of D.
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As already mentioned in part 1, in [23] the authors study a construction defined


and show that D is an S-domain. Now the question is, what form Theorem 3.9
will take for R = A -f XD{X}1 The answer comes from [42]. Yet before we quote
from [42], let us see what we can do with what we have established so far. The
following statement can be regarded as a corollary to Lemma 3.10 and Theorem
3.9.


PROPOSITION 3.12. Let ACS be an extension of domains such that B is a
subring of the quotient field of A. Then R = A + X B[X] is an S-domain.


Proof. We show that Rp is an S-domain for each height-one prime P of R. Note
that htR(XB[X\} - 1 and that RXB\X\ = (A + X B { X } ) X B [ X ] = ( K [ X ] ) X K [ X ] is a
valuation domain, and hence is an S-domain. For height-one primes P ^ X B [ X ] ,
let S ^ {Xn : n > 1} and note that /?/> = (Rs)r,- = B [ X , X ~ } P,. But then RP


is a quotient ring of B(X] which is an S-domain, and we know that every quotient
ring of an S-domain is again an S-domain (Proposition 3.4).


Now comes the promised result.


PROPOSITION 3.13. ([42, Theorem 1.1]) R = A + X B[X] is an S-domain if and
only if htft(XB[X}) > I or B is algebraic over A.


What is the use of this? For one thing, it takes care of Corollary 3.11 and
Proposition 3.12. Moreover, you can construct composite examples of S-domains
and non S-domains with interesting properties. For instance, using Proposition
3.13, if Z, Q and 72. represent the integers, rationals, and reals, respectively then
Z+X7l{X\ is not an S-domain, while Z + XQ(i)[X] is an S-domain. Of course,
these are just two very simple examples.


In [42], the reader can find a wealth of examples on strong S-domains. For this
survey, we select a number of results that could intrigue the reader enough to want
to prove some direct results in this direction. Let us recall first that the extension
of domains A C B is said to be incomparable (INC) if two distinct primes P,Q of B
contract to the same prime p of A, then P and Q are incomparable. ([2, Sectionl-G]
is a good source for a study of INC and related notions.) For example, A C A[X],
where X is an indeterminate, does not have INC because (0) C (X) both contract
to (0) in A. So if A C B is incomparable, then every nonzero prime of B contracts
to a nonzero prime of A. Next, A C B is said to be residually algebraic if for each
prime P of B, we have B/P algebraic over A/ '(P n A). For this notion the reader
may look up [52] .


THEOREM 3.14. ([42, Theoreme 1.7]) Let A C B be an extension of domains.
Then the following are equivalent:


(1) R = A + XB[X] is a strong S-domain and A C B is an incomparable
extension.


(2) A and B[X] are strong S-domains and A C B is a residually algebraic exten-
sion.
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As a direct consequence of the above equivalence, we have the following state-
ment.


COROLLARY 3.15. Let D be an integral domain, S a multiplicative set of D and
let K be a field containing D as a subring. Then the following hold.


(1) D + XK[X\ is a strong S-domain if and only if D is strong S-domain and K
is algebraic over the quotient field of D.


(2) D + XDs[X] is a strong S-domain if and only if D and Ds[X] are strong
S-domains.


Now this little corollary gives us a host of examples of strong S-domains, including
ones that have terrible and totally unaccommodating properties elsewhere and ones
that serve as examples of beautiful new notions. I would mention only two here.


EXAMPLE 3.16. Let D be a Priifer domain and let 5 be a multiplicative set of D.
Then D^ = D + XDS[X\ is a strong S-domain.


In fact, D^ is a stably strong S-domain, i.e., for any set {Yi,Y2,..,Ym} of
indeterminates D(s)[Yi,Y<2,..,Ym] is a strong S-domain. The main reason is that,
by Theorem 3.8, D[X] and Ds[X] are both strong S-domains for any set X of
indeterminates and Ds[X] — (D[X])s-


Now D^ is Priifer if and only if S — D* [S], so Example 3.16 affords an example
of a non Priifer domain that is a strong S-domain. For reasons of organization, I
will not go too deep into this example and will refer to it later.


EXAMPLE 3.17. Let K C L be an extension of fields. Then R= K + XL(X] is
one-dimensional and according to [21], R is an S-domain 4=> R is a strong S-domain
<=> R the integral closure is a Priifer domain <=> R is a stably strong S-domain. Now
R is Priifer if and only if L is algebraic over K. Next, let K be of characteristic
p ^ 0 and let L be a purely inseparable extension of K such that L1' C K . (See [2,
Theorem 100] for an example with p — 2.) Then, apart from being a stably strong
S-domain, R — K + XL[X] has the added property that for each pair f , y e R
we have f p , g p <E K[X], which is a PID, and so (fp,gp)K[X] = hK[X}. Now as
K[X]R = R, we have (fp,cf}R = hR. From this it also follows that fpRngpR is
principal.


This example is Example 2.13 of [53]. Let me use this example to introduce an
interesting set of concepts.


An integral domain D is called an almost GCD domain (AGCD domain) if for
each pair x, y e D there is a natural number n = n(x, y] such that xnD fl ynD
is principal. (Indeed, if for all x,y € D we have n(x,y] — 1, we get a GCD
domain.) Apart from the above example, there are other well known examples,
such as almost factorial domains of Storch. These are Krull domains with torsion
divisor class group (see, for instance, Possum [54]). (The reader can look up [54]
to check that an integral domain D is Krull if for each height-one prime P, Dp
is a discrete rank one valuation domain, and D is a locally finite intersection of
localizations at height-one primes.) For other examples of AGCD domains, that use
the A -\-XB\X] construction, the reader may consult [55] when it appears. Next, D
is called an almost Bezout domain if for each pair x, y 6 D there is a natural number
n = n(x,y) such that xnD + ynD is principal. Example 3.17 above may serve as
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an example again. For more examples of almost Bezout domains, you may consult
[56]. Now, the integral closure of an almost Bezout domain is a Priifer domain with
torsion ideal class group [56, Corollary 4.8]. Indeed, as we already know from [21]
that a one-dimensional almost Bezout domain is stably strong S-domain, but the
general case of almost Bezout domains is not quite clear.


Now, coming back to our task at hand, a ring A is called a Hilbert ring if every
prime ideal of A is expressible as an intersection of maximal ideals containing it.
So, a one-dimensional domain A is a Hilbert ring if and only if there is a set {Ma}
of maximal ideals of A such that (0) — nMQ. Now, because everything in a Hilbert
ring seems to be in terms of maximal ideals, it is fair to ask if Cohen's criterion for
a Noetherian ring (R is Noetherian if and only if every prime ideal of R is finitely
generated) can be relaxed for Hilbert rings to: A Hilbert ring A is Noetherian if
and only if every maximal ideal of A is finitely generated? A.V. Geramita asked
Robert Gilmer and/or William Heinzer this question and they came up with a
non-Noetherian example of a Hilbert domain whose maximal ideals are all finitely
generated [18]. Later. Joe Mott and I [17] came up with the following theorem.


THEOREM 3.18. Let D be a Hilbert domain and let L be a field containing D.
Then D + XL[X] is a Hilbert domain.


The proof is straight-forward and short, and if D is a Hilbert PID with quotient
field L then D + XL[X] is a two dimensional Bezout domain, with each maximal
ideal principal. This example is uncannily similar to the one constructed in [18].
Obviously, taking any Noetherian Hilbert domain for D in Theorem 3.18, you can
construct a Hilbert domain whose maximal ideals are finitely generated and which is
not Noetherian. Theorem 3.IS also pre-empts the obvious question about a Hilbert
domain being an S-domain. The answer of course is, "Not in general". (Strangely,
[18] is still on my recommended reading list because of its useful auxiliary results.)
In [5], we proved something in a slightly different direction. The result can be stated
as follows.


THEOREM 3.19. Let D be an integral domain and S a multiplicative set of D such
that each prime P of D that intersects 5, intersects S in detail, that is for each
nonzero prime Q C P, Q n S ^ 0. Then R = D + X D S [ X ] is a Hilbert domain if
and only if both D and DS are Hilbert domains.


It is remarkable that unruly Hilbert domains of [17] did not seem to have as
much effect as Theorem 3.19 had. There was a renewed interest in Hilbert domains
and out came a paper by Anderson. Dobbs, and Fontana [57] on Hilbert rings
arising as pullbacks. In this paper, they discuss as applications the events of D -f
(X\,.., Xn)Ds[Xi, . . X n ] , A + XB(X\, and D + M constructions being Hilbert. In
particular, it was shown in [57] that, A + XB[X] is a Hilbert domain if and only
if A and B are Hilbert domains. This includes Theorems 3.18 and 3.19 above. It
appears that someone else was interested in showing when A + XB[X] is a Hilbert
domain. On reading this survey Lahoucine Izelgue sent me some of his old work on
this topic. I have decided to include it here because it is simple and it is efficient.
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Resume
Nous appliquons une forme constructive de principes local-global en algebre commu-


tative pour decrypter, cachees dans des theoremes d'algebre abstraite, des constructions
de matrices inversibles dans des anneaux de polynomes. Ceci nous donne une nouvelle
preuve constructive de la conjecture de Serre (theoreme de Quillen-Suslin) et une preuve
constructive du theoreme de stabilite de Suslin.


Abstract
Wa apply a constructive form of local-global principles in commutative algebra in order


to decipher some constructions of invertible polynomial matrices hidden in theorems of
abstract algebra. This leads us to a new constructive proof of Serre's conjecture (Quillen-
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Introduction


Nous nous situons dans la philosophic dcvcloppee dans Ics articles [4, 5, 17, 18, 19, 20,
21, 22, 23]. II s'agit de debusquer un content! constructif cache dans des preuves abstraites de
theoremes concrets.


La methode generale consiste a remplacer certains objets abstraits ideaux qui n'existent
qu'en vertu du principe du tiers exclu et de 1'axiomedu choix, par des specifications incomplet.es
de ces merries objets.


Dans cet article nous nous allaquons a la methode abstraite qui utilise des principes du type
local-global. Un resultat est demontre vrai apres localisation en n'importe quel ideal premier.
On deduit ensuite qu'il est vrai globalement par un argument adequat.


Notre but n'est en aucun cas de donner des algorithmes performarits, mais de montrer qu'il
n'y a pas de miracle en mathematiques : si tine preuve abstraite donne un resultat concret,
le calcul concret du resultat doit d'une maniere oti d'une autre etre cache dans la preuve
abstraite (sauf a croire en la realite de 1'Univers Cantorien cense ofhciellement justifier la preuve
abstraite).


Ou encore pour le dire atitrement. Nos preuves explicites out ceci de particulier qu'elles
sont obtenues par un simple decryptage des arguments contenus dans une preuve abstraite. Par
contre ces algorithmes sont a priori peu efficaces. Us n'ont pas pour but de reposer la machine,
mais de reposer le coricepteur d'algorithmes. Et surtout d'annoncer une bonne nouvelle : les
methodes abstraites en algebre sont, en fait, construct!ves.


Nous pensons engager ainsi un debut de realisation du programme de Hilbert pour ce qui
concerne les rnethodes de 1'algebre abstraite.


Dans son esprit, notre methode est a rapprocher de celle de Kreisel lorsqu'il "deroule"
(unwind) des preuves classiques pour en faire des preuves constructives usans introduire de
nouvelles idccs" (cf. la description du programme de Kreisel par Fcferman dans [7]). Mais nous
utilisons des moyens purement algebriques, relativement elementaires, tandis que Kreisel met
en oeuvre une artillerie metamathematiqtie assez impressionnante (cf. [6]).


Dans la section 1 nous expliquons la rnachinerie de relecture constructive grace a laquelle
nous remplacons "la localisation en tons les ideaux premiers" par des localisations en des mo-
noTdes convenables, decrits explicitement en termes finis a partir d'une lecture attentive de la
preuve abstraite. En pratique les ideaux premiers "purement ideaux" qui iriterviennent dans
la preuve abstraite sont remplaces par certaines specifications incompletes d'ideaux premiers,
qui suffisent a faire fonctionner la preuve, et qui la font fonctiomier de maniere constructive.
Notre procfkle de relecture automatique transforme la preuve du theoreme local en celle d'un
theoreme que nous appelons quasi-global.


Quant a la preuve que la version quasi-globale implique la version globale, elle est en general
deja dans la litterature classique, sous la forme d'un lemme de propagation (pas toujours enonce
sous forme d'un lemme separe), qui est au coeur de la preuve du principe local-global concret
abstrait correspondant. Nous preferons quant a nous enoncer le lemme de propagation sous
forme d'un principe local-global concret, car cette terminologie nous parait plus paiiante.


Dans les sections 2 et 3 nous donrions deux exemples de theoremes celebres pour lesquels nous
appliquons cette methode. Le theoreme de Quillen-Suslin (conjecture de Serre) et le theoreme
de stabilite de Suslin. Dans les deux cas nous nous limitons au cas des corps (il y a des versions
plus generales que nous ne traitons pas ici).


Pour ces theoremes (dans le cas des corps) d'autres preuves constructives basees sur des
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idees differentes sont deja connues.


Tous les anneaux consideres sont commutatifs unitaires. Soit A un tel anneau. Un vecteur
/ = e( / i , . . . , fn) de A"xl est dit unimodulaire lorsque 1'ideal Z(/i,.. . , /„) contient 1. On dit
encore que les elements /i,... ,/n de A sont comaximaux. Nous notons Rad(A) le radical (de
Jacobson) de A, c.-a-d. I'ensemble des x tels que 1 + xA C Ax (le groupe des unites de A).
Nous notons Mn(A) 1'anneau des matrices carrees d'ordre n a coefficients dans A, SLn(A) le
groupe des matrices de determinant 1, En(A) le sous-groupe du precedent engendre par les
matrices elementaires.


La section 2 decrypte une preuve "a la Quillen" du theoreme de Quillen-Suslin.
Rappelons le theoreme suivant du a Horrocks (cf. [10]).


Theoreme de Horrocks local
Soit un entier n > 3, A un anneau local et f ( X ) — t ( f i ( X ) , . . . , fn(X}} un vecteur unimodu-
laire dans A[X]nXl , avec f i unitaire, alors il existe une matrice H(X) £ En(A[JY"]) telle que
H ( X ) f ( X ) = ' (1 ,0 , . . . ,0 ) .


Ce theoreme possede une preuve constructive lorsque 1'anneau local verifie expliciternerit
1'axiome suivant :


" Vx € A x € Ax V x G Rad(A) ",


(en mathematiques constructives, cet axiome signifie que 1'anneau est local et que son corps
residue! est discret, cf. [24]).


Nous rappelons cette preuve dans la section 2.1 (nous 1'avons extraite d'une preuve un peu
moins explicite dans [14]). Nous nous interessons ensuite a une version situee a mi-chemin entre
la version locale et la version globale.


Theoreme de Horrocks quasi-global
Soit un entier n > 3, A un anneau et f ( X ) — l ( f i ( X ) , . . . , fn(X)} un vecteur unimodulaire
dans A[X]nxl, avec fi unitaire, alors il existe des elements comaximaux a l 5 . . . , a( G A et pour
chaque i = 1, . . . ,£ une. matrice H,(X) € En(A[l/a t]LY]) telle que Hl(X)f(X) = ' (1,0, . . . ,0).


Nous montrons dans la section 2.1 que la preuve constructive du theoreme quasi-global
est cachee dans la preuve (constructive) du theoreme local. Nous appliquons pour ce faire la
machinerie decrite a la section 1.


Dans la section 2.2, nous etablissons un principe local-global concret qui est la version
constructive d'un principe local-global abstrait de Quillen.


Dans la section 2.3, nous deduisons des resultats precedents la version globale du theoreme
de Horrocks puis la conjecture de Serre.


Theoreme de Horrocks global
Soit un entier n > 3, A un anneau integre et f ( X ) = l ( f i ( X ) , . . . , fn(X)) un vecteur unimo-
dulaire dans A[X]nx1,, avec fi unitaire, alors il existe une matrice H 6 SLa(A[X]) telle que
H(X)f(X) = /(O).


La conjecture de Serre dont nous donnons ici une nouvelle preuve constructive, a etc resolue
independamment par D. Quillen et A. Suslin en 1976 [26, 27]. L'expose classique de leurs
travaux est le livre de Lam [13]. On peut egalemerit citer le livre de Kunz [12] et celui de
Gupta ct Murthy [9]. D'autres solutions constructives, parfois relativement efficaces, ont etc
proposees notamment dans [1, 2, 3, 8, 15, 16, 25]. Aucune cependant ne decoule comme la notre
du decryptage automatique d'une preuve abstraite.
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Dans la section 3 nous examinons la preuve du theoreme de stabilite de Suslin dans le
cas des corps, telle qu'elle est donnee dans [9] en s'appuyant sur une methode locale-globale.
Pareillement, nous la decryptions en une preuve constructive selon la methode exposee dans
la section 1. Le seul veritable argument non constructif dans [9] est 1'utilisation du lemme 3.6
page 46. Ce lemme est de nature locale mais il est ensuite utilise dans un argument de type
local-global. C'est le lemme suivant. dans lequel ( ) desigrie le symbole de Mermicke.


Lemme 20 (local) Soit A un anneau local el f , g G A[A'] avec f unitaire et af + bg = 1. Alors,
on a


>' = ,.
Autrement dit la rnatrice


" / 3 0
-b a 0


^ 0 0 1


est dans E3(A[A']).


Notre machinerie de relecture automatique de la preuve locale donne le lemme quasi-global
suivant :


Lemme 21 (quasi-global) Soit A un anneau et f , g G A[X] avec f unitaire et af + bg = 1.
Alors, il exist c dcs elements comaxtmaux SL tels que dans chaquc localise A[l/5,-] on ait I'cgalitc
des symboles de Me.nnicke suivant c


/ f\ /f(f]\\


Et cette version quasi-globale permet de rernplacer 1'utilisation abstraite du lemme local par
une construction explicite pour aboutir a la version constructive du theoreme global suivant,
qui est la clef du theoreme de stabilite de Suslin.


Theoreme 24 (version globale du lemme 20)
Soit A un anneau et /, g € A[A'] avec f unitaire et af + bg = 1. Alors on a I'egalite des
symboles de Menmcke smvante


'f\ ___


~ \g(0),


1 Le principe de la methode


Nous donnons ici quclques explications sur le fonctionnement du decryptement constructif
des preuves classiques utilisant un principe local-global en algebre commutative.


1.1 Du local au quasi-global


L'argument de localisation classique fonctionne comme suit. Lorsque 1'anneau est local une
certaine propriete P est verifiee en vertu d'une preuve assez concrete. Lorsque 1'anneau n'est
pas local, la memo propriete est encore vraie (d'un point de vue classique non constructif) car
il suffit de la verifier localcment.


Nous examinons avec un peu d'attention la premiere preuve. Nous voyons alors apparaitre
certains calculs qui sont faisables en vertu du principe suivant :
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Vz e A z € Ax V z € Rad(A),


Principe qui est applique a des elements x provenant de la preuve elle-meme. Dans le cas
d'un anneau non necessairement local, nous repetons la meme preuve, en remplacant chaque
disjonction "x est une unite ou x est dans le radical", par la consideration des deux anneaux
Br et Bi+rB, ou B est la localisation "courante" de 1'anneau A de depart, a 1'endroit de la
preuve ou on se trouve. Lorsque la preuve initiale est ainsi deployee, on a construit a la fin un
certain nombre, fini parce que la preuve est finie, de localises AS, , pour lesquels la propriete est
vraie. En outre les ouverts de Zariski Us, correspondants recouvrent Spec(A) et cela implique
que la propriete P est vraie avec A, cette fois-ci de maniere entierement explicite.


Notons que cette methode consiste pour 1'essentiel a mettre a plat les calculs qui sont
impliques par la mise en oeuvre de la methode de 1'evaluation dynamique donnee dans [17].


Dans la suite, lorsqu'on parle d'un monoi'de dans un anneau, on entend toujours une partie
contenant 1 et stable pour la multiplication. Un monoi'de S d'un anneau A est dit sature
lorsqu'on a 1'implication


Vs,t£ A (st&S =» s € S).


On note AS le localise S~1A de A en S. Si S est engendre par s € A, on note As ou A[1/5J
le localise, qui est isomorphe a A[T]/(sT — 1). Si on sature un monoi'de, on ne change pas la
localisation. Deux monoides sont dits equivalents s'ils ont meme sature.


Definition 1


(1) Des monoides Si,..., Sn de I'anneau A sont dits comaximaux si un ideal de A qui coupe
chacun des S\ contient toujours I , autrement dit si on a :


n


Vsi 6 Si •• • Vsn e Sn 3di,..., an € A ^ a,-s,- = 1.
»=i


(2) On dit que les monoides 5*i , . . . , Sn de 1'anneau A recouvrent le monoi'de S si S est contenu
dans les St et si un ideal de A qui coupe chacun des Si coupe toujours S, autrement dit
si on a :


n


Vsi € Si • • • Vsn 6 Sn 3 a l 5 . . . , an 6 A 2__, aisi G $•
i-l


En algebre classique (avec 1'axiome de 1'ideal premier) cela revient a dire dans le premier
cas que les ouverts de Zariski Us, recouvrent Spec(A) et dans le deuxieme cas que les ouverts
de Zariski Us, recouvrent 1'ouvert Us- Du point de vue constructif, Spec(A) est un espace
topologique connu via ses ouverts Us mais dont les points sont souvent difficilement accessibles.


Un recouvrcment de rccouvrcmcnts est un recouvrement (calculs immediats) :


Lemme 2 (associativite et transitivite des recouvrements)


(1) (associativite) Si les monoi'des Si,...,Sn de I'anneau A recouvreni le monoi'de S et si
chaque St est reconvert par des monoi'des 5 V , i , . . . , Se,mt, alors les Sgj recouvrent S.


(2) (transitivite) Soit S un monoi'de de I'anneau A et Si,..., Sn des monoides comaximaux
de 1'anneau AS- Pour I — l , . . . , n soil V( le monoi'de de A forme par les numerateurs
des elements dc Sf. Alors les monoides V i , . . . , Vn recouvrent S
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Definition et notation 3 Soient 1 et V deux parties de A. Nous noterons A4(U] le mono'ide
engendre par U, XA(/) ou Z(7) I'ideal engendre par I et <S(/; U) le mono'ide J\A(U) + X(7).
Si I = { a i , . . . , a f c } et U = {uj, . . . , u/>}, on. no£e respec.tivement M ( U ] , X(7) ef S ( I ; U ) par


II est clair que si u est egal au produit t/i • • • ii/<. les monoides <S(ai, . . . , a^; u l 5 . . . , U() et
«S(ai, . . . , ajt; u) sont equivalents.


Notez que lorsqu'on localise en S — <5(7;?7) , les elements de U deviennent inversibles et
ceux de / se retrouvent dans le radical de AS.


Notre sentiment est que la. "bonne categoric" serait celle dont les objets sont les couples
(A, 1) ou A est un anneau commutatif et I un ideal contenu dans le radical de A, et les fleches
de ( A , / ) vers (A',/ ') sont les homomorphismes / : A — >• A' tels que / ( / ) C /'. On retrouve
les anneaux usuels en prenant / = 0 et les annea.nx locaux (avec la notion de morphisme local)
en prena,nt 7 egal a I'ideal maximal. Pour "localiser" un objet (A, 7) dans cette categorie, on
utilise un mono'ide U et un ideal J de rnaniere a former le nouvel objet (As(ji;t7), Ji A$(j, ;[/)),
ou Ji ~ I + J.


Le lemme fondamental suivant recupere la inise constructivement lorsqu'on relit avec un
anneau arbitraire une preuve donnee dans le cas d'un anneau local.


Lemme 4 Soit U et I des parties de / 'anneau A et a G A, alors les monoides <5(7;£7, a) et
S(l,a\U) recouvrent le monoid e S ( I \ U ) .


Preuve Pour x G <S(7; U.a] et y € <S(7,a; U} on doit trouver une combinaison lineaire x\x +
yiy € 5(7; U) ( x i , y i G A). On ecrit x = u^ak + ji, y = ("2 + J2) - (az) avec ui,ui € M(U),
ji-J-2 G ^(7), 2 G A. L'identite classiquc cfc — c/'1' = (c — d) x • - - donne un y2 G A tel que


D


On en deduit le principe general cle decryptage suivant. qui pcrmet d'obtenir automatique-
ment une version quasi-globale d'un theoreme a partir de. sa version locale.


Principe general 5 Lorsqu'on relit une preuve cxplicile, donnee pour le cas ou I'anneau A
est local, avec un anneau A arbitraire, que Von considcre au depart comme A = A,s(o;i) ct qu'a
chaque disjonction (pour un element a qui se presente au cours du calcul dans le cas local)


a G Ax V a G Rad(A),


on rempla,ce I'anneau uen coursr As(;.m pa.r les deux a,nneaux A.s(i-,u,a) e-t ^-S(I,a;U) (dans chacun
desquels le calcul pent se poursuivre), on obtient a la fin de la relecture, une famille finie
d'anneaux A^/ .jj ) auec les monoides $(Ij', Uj) comaximaux et Ij, Uj finis.


On notera que si b = a/(u + ?') avec u G M(U) et i G ^(7) et si la disjonction porte sur
"6 G Ax V 6 G Rad(A)". alors i l f'aut considerer les localises As(f;U,a) ^ -^S(r,a-,u)-


Les exemples suivants sont frequents et resultent immediatement des lemmes 2 et 4, sauf le
premier qui se fait par un petit calcul simple.


Exemples 6 Soit A un anneau, U et 7 des parties de A, S ~ <5(/; U}.


(1) Soient s i , . . . , sn G A des elements comaxiinaux (c'est-a-dire tels que 1.(s\,..., sn) = A).
Alors les monoides ,5', = -M(s,) sont comaximaux.
Plus generalement, si t\,... . tn G A sont des elements comaximaux dans AS, les monoides
<S(7; (/, t%] recouvrent le mono'ide 5.
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(2) Soient s i , . . . , sn G A. Les monoi'des 5*i = <S(0; si), S2 — <S(si; £2), $3 = S(si, 52; 53), ...,
Sn — < S ( s i , . . . , sn_i; sn) et S'n+i = < S ( s i , . . . , sn; 1) sont comaximaux.
Plus generalement, les monoi'des V\ = S(I;U,si), V2 = <$(/,.s^ £/, s2), Vs =
<S(/,s1,32;C/,53), . . . , Vn = S( / ,Si , . . . , s n_i ; (7 ,s n ) et K+i = 5(7,5,, . . . ,sn; [/) recou-
vrent le mono'ide 5*.


(3) Si 5, 5i, . . . , Sn C A sont des monoi'des comaximaux et si b = a/(u + 0 G A§ alors
S(I', [/, a) ,<S(/ ,a; [/), 5"i , . . . , 5"n E A sont comaximaux.


1.2 Du quasi-global au global


Differentes variantes du principe local-global abstrait en algebre commutative ont leur con-
trepartie concrete dans laquelle la localisation en tout ideal premier est remplacee par la local-
isation en une famille finie de monoi'des comaximaux.


Autrement dit, dans ces versions "concretes" on affirme que certaines proprietes passent du
quasi-global au global.


Citons par exemple les resultats suivants, qui sont souvent utiles pour terminer notre travail
de relecture constructive.


Principe local-global concret 7 Soient S\,...,Sn des monoi'des comaximaux de A et soit
a, b € A. Alors on a les equivalences suivantes :


(1) Recollement concret des egalites :


a = b dans A <£=>• Vi €{! , . . . ,n} a/I — 6/1 dans A^


(2) Recollement concret des non diviseurs de zero :


a est non diviseur de zero dans A <£==>
Vi G (1,. . . ,n} o/l est non diviseur de zero dans AS,


(3) Recollement concret des inversibles :


a est inversible dans A <$=>
Vz G {!,..., n} a / I est inversible dans AS,


(4) Recollement concret des solutions de systemes lineaires : soit B une matrice G Am x p et
C un vecteur colonne G A m x l .


Le systeme lineaire BX = C admet une solution dans Apxl ^=>
Vt G {1,..., n} le systeme lineaire BX — C admet une solution dans A^xl


(5) Recollement concret de facteurs directs : soit M un sous module de type fini d'un module
de presentation finie N.


M est facteur direct dans N ^=^
Vz G {1,..., n} MS, est facteur direct dans N$,


Principe local-global concret 8 (recollement concret de proprietes de finitude pour les
modules) Soient S\,...Sn des monoi'des comaximaux de A et soit M un A-module. Alors
on a les equivalences suivantes :


(1) M est de type fini si et seulement si chacun des MS, est un Ast-module de type fini.


(2) M est de presentation finie si et seulement si chacun des MS, est un AS,-module de
presentation finie.


(3) M est plat si et seulement si chacun des MS, est un AS,-module plat.
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(4) M est projectif de type fini si et seulement. si chacun des MS, est un AS,-'module projectif
de type fini.


(5) M est projectif de rang k si et seulement si chacun des MS, est un AS,-module projectif
de rang k.


(6) M est coherent si et seulement si chacun des MS, est un As-module coherent.


(7) M est noetherien si et seulement si chacun des MS, est un AS,-module noetherien.


On trouve rarement ces principes enonces sous cette forme dans la litlerature classique
usuelle. Citons cependant le petit livre d'algebre commutative de Knight [11] : le lemme 3.2.3
signale que 1'anneau produit J~Ii-i A[l/s-,] es^ une extension fidelement plate de A lorsque les
Si sont comaximaux. Un certain nombre de proprietes des extensions fidelement plates sont par
ailleurs demontrees. Mis ensemble ces resultats couvrent a peu pres les principes local-global
concrets 7 et 8.


Dans le style de Quillen, on voit en general enonce le principe corresponclant sous la forme
abstralte (on localise en tous les ideaux premiers). Mais la preuve fait souvent intervenir un
lemme crucial qui a exactement la signification du principe local-global concret correspondant.
Par exemple on pourrait enoncer le principe local-global concret 8 sous la forme suivante ua la
Quillen".


Lemme 9 (lemme de propagation pour certaines proprietes de finitude pour les modules)
Soil. M un A-rnodule. Les parties Ik suivantes de A sont des ideaux.


(1) /! = { 8 € A


(2) h = { * e A


(3) /3 = {* e A
(4) /4 = {* e A
(5) /5 = {5 e A
(6) /6 = { s € A


(7) 77 = { s e A


Ms est un As-module de type fini }.


Ms est un As-module de presentation finie. }.


Ms est un. As-module plat }.


MS est un As-module projectif de type fini }.


Ms cst un As-module projectif de rang k }.


MS est un As-rnodule coherent }.


Ms est un As-module noetherien }.


Remarque 10 De maniere generale soit une propriete P qui reste vraie apres localisation en
un monoi'de. Alors la version principe local-global concret pour des elements comaximaux :


- pour tout anneau A, si P est vraie apres localisation en des elements comaximaux de A,
alors clle est vraie dans A,


et la version lemme de propagation :


- Fensemble Ip = { .s G A : P est vraie dans A., }. est un ideal de A,


sont equivalentes. D'une part la version lemme de propagation implique clairement la premiere.
Dans 1'autre sens, si s,sr G Ip et t — s + s' alors s/1 et .s'/l sont des elements comaximaux
de At et P est vraie dans (At)., ~ (A.,)* ~ Ast et (A/).,/ ~ (A.,/)/ ~ A.,^ done par le principe
local-global concret vraie dans At.
Notons aussi qu'cn general on a pour tout monoi'de S Timplication suivante


- P vraie dans AS => P vraie dans As pour un s G 5,


ce qui donne Inequivalence du principe local-global concret. pour les elements comaximaux et
du principe local-global concret pour les monoi'des comaximaux. Ceci nous est en general indis-
pensable car notre systeme de relecture (principe general 5) produit nalurellement une version
quasi-globale avec des monoi'des comaximaux plutot qu'avec des elements comaximaux.
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2 Theoremes de Horrocks, versions construct ives


2.1 Preuves construct ives du theoreme local et du theoreme quasi-
global


*~i


Si G est un sous-groupe de SLn(A) et A, B G Anxl nous noterons A ~ B pour 3H G
G, HA = B. II est clair qu'il s'agit d'une relation d'equivalence.


Nous sommes interesses par la possibilite de trouver dans la classe d'equivalence d'un vecteur
defini sur A [ X ] un vecteur defini sur A, en un sens convenable. La remarque banale suivante
nous sera utile.


Remarque 11 Soit f(X) € A.[X]nxl. Alors on a :


r, v\ « v - - i - - j / r/r.x -, A n x l r/ v\ SLn(A[^])f(X) ~ /(O) «=* 3 ( ? € A n X l f(X) ~ g.


En efFet si f(X) = H(X)g avec H(X) G SLn(A[X]), alors /(O) = H(0)g.


Nous utiliserons aussi le lemme suivant :


Lemme 12 Soit A un anneau et f(X) = t ( f i ( X ) , . . . , fn(X)) un vecteur unimodulaire dans
A [ X ] n X l , avec f\ unitaire de degre d et /2, • • • ,/n de degres < d. Notons /,-j le coefficient de
X-7 dans /,-. Alors I'ideal engendre par les /y pour i = 2 , . . . ,n contient 1.


Preuve du lemme Soit / cet ideal. On a : 1 = u\f\ modulo /. Soit ra le degre de u\ on a
Mi,m = 0 modulo / puisque /i est unitaire. De proche en proche, on montre en descendant que
tous les coefficients w1?J de u\ sont dans /. Supposons qu'on 1'ait deja montre pour j + 1, . . . , m.
Exprimons le coefficient de degre j -\- d dans u\f\. On trouve 0 = u\tj + ui,j+i/i((f-i + • • • ce qui
donne 0 = u\j modulo /. Done finalement 1 = u\f\ = 0 modulo /. D


Theoreme de Horrocks local
Soit un entier n > 3, A un anneau local et f(X) = l( / i(X), . . . ,/n(X)) un vecteur unimodu-
laire dans A[A']"xl


; avec fi unitaire. Alors


1
0


Preuve Soit d le degre de f\. Par manipulations elementaires de lignes, on ramene /a , . . . , fn


a etre de degres < d. Notons /,-j le coefficient de XJ dans /,-. Le vecteur t ( f i ( X ) , . . . , fn(X))
reste unimodulaire. Si d = 0 c'est termine. Sinon vu le lemme 12 et puisque 1'anneau est local,
1'un des /{j pour i — 2 , . . . ,n est une unite. Supposons par exemple que /2,fc est inversible. On
va voir que 1'on peut trouver deux polynomes vt et v2 tels que le polynome g% — uj/i + ^2/2
soit unitaire de degre d — 1. Si k — d — 1 cela marche avec vi = 0 et v% constant. Si k < d — 1
considcrons la disjonctiori suivante


/2,d_! € Ax V f24_, € Rad(A).
Dans le premier cas, on est ramene a k = d — 1. Dans le deuxieme cas le polynome qi —
Xf-2 — f-2,d-ifi est de degre < d — 1 et verifie : ^2,^+1 est une unite. On a done gagne un cran.
II suffit done d'iterer le processus.
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Nous avons done maintenant g-2 — v\f\ + ^2/2 de degre d — 1 et unitaire. On peut done diviser
/3 par g-2 et on obtient </;; = /3 — g^q de degre < r/ — 1 (q € A), done le polynome


h\ = 92 + .93 = ./s + gi(\ - - q) = /3 + (1 - <?)*>i/i -f (1 -


est unitaire de degre d~ 1. Ainsi par tine manipulation elemeritaire de lignes on a pu remplacer
l(/i ' /2i /s) Par I(/1 1 /2. /*i ) ave(-~ /M unitaire de degre d — I .
Nous pouvons done par une suite de transformations elementaires de lignes ramener
'(/^A),... , f n ( X ) ) avce /! unitaire dc degre d a ' ( / i j (AA), . . . , h n ( X ) ) avec hi unitaire de
degre d — 1 . D


Le lemme suivant est im medial,.


Lemme 13 Soil A un anneau, S un monoi'de dans A. Soil une matrice H ( X ) G En(As[A]) ;


a/ors ?/ eziste s e 5 f e / (/we //(A") € En(A[l /<s][X]).


Theorenie de Horrocks quasi-global
Soit un cntier n > 3, A i/,n anneav, et f ( X ) = l ( f i ( X } , . . . , J~n(X)) un vecteur unimodulaire
dans A[A']nx1, avec. f\ unitaire. Alors il exist e. des elements comaximaux a\, . . . , a( tels que.


fi


/(A;


Autrement dit, pour eha,que i — \ , . . . , P. il existe une matrice Ifi(X) G E n(A[l /a j ][A]) telle
que f f , - (X) / (X)= f ( l , 0 , . . . , 0 ) .


Preuve En relisant la preuve du theoreme local comnie on 1'a indique dans la section 1.1, on
voit que, pour faire descendre le degre de d a d — 1 il faut, apres avoir rendu les degres de
/2? • • • ; / ? ? strictement inferieurs a d par division euclidienrie, rendre inversible 1'un des /ZJ pour
i = 2, . . . , n. Et on sait que les f,tj sont comaximaux d'apres le lemme 12. Ensuite, on utilise
plusieurs fois (au plus d — 1 fois) une disjonction du type


/,,d_, € Ax V /2,d_! € Rad(A),


(dans le cas inversible le calcul se termine sans nouvelle disjonction). Notre relecture de la
preuve. pour faire descendre le degre de d a d — 1 cree done des localises AS} (avec les Sj
comaximaux) dont le nombre est majore par d(n — l)(d — 1).
La mise a plat complete de la preuve cree en definitive des localises (avec des monoi'des coma-
ximaux) dont le nombre est majore par


d(d - l )(n - 1) x • • • x 6(n - 1) x 2(n - 1) x (n - 1) < (di)2 x (n - l ) d < (nd'2}d .


Pour chacun des localises A; on a une matrice H{(X] G En(A,-[X]) telle que H i ( X ) f ( X ) =
^l, 0, . . . , 0). On termine en appliquant le lemme 13. D


Remarque 14 Ce calcul peut etre fait dans la situation generique ou 1'entier n ainsi que les
degres des /z et les degres des u, sont fixes dans 1'egalite polynomiale


wi/i + ---- (- unfn = 1 (*).


En outre on prend tous les coefficients comme des indeterminees, soumises aux seules relations
donnees par 1'egalite (*).
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2.2 Un principe local-global concret
Les calculs dans cette section n'ont rien de bien original, mais leur agencement et 1 'in-


terpretation que nous leur donnons en termes de principe local-global concret nous semblent
particulierement eclairants.


Lemme 15 Soit A un anneau integre, b G A et H(X) G SLn(A[l/&][X]). Alors pour un a G A
egal a une certaine puissance de b on a H(X -f- aY)H(X)~l G SLn(A[X, K]).
De maniere equivalente : si S est un monoide de A et H(X) G SL^AsfX]), alors pour un
s G S on a H(X + SY}H(X)~1 G SLn(A[X,y]).


Preuve Soit L(X) = s l H ( X ] G Mn(A[X}) avec 5l G S et


s = sf = det(L(X)) = det(L(X + Y ) } .


Soit M ( X ) la matrice cotransposee de L ( X ) . On considere la matrice


B(X, Y) = H(X + Y)H(X)~l = L(X + Y)L(X)-1 = s~lL(X + Y } M ( X ) = s~lBi(X, Y).


On a B!(X,Y) G A[X,K], 5i(X,0) = sln et done fii(X,K) = sln + Yd(X,Y)) avec
Ci(X,y) 6 A[X,y]. Done 5i(X,sy) - s(In + rCi^^r) et /f(X + sY)H(X)-1 =


. a
Corollaire 16 5ozf A un anneau integre, S un monoide de A et f ( X ) G A[X]nxl. Alors


Preuve Si /(X) = H(X)f(V) avec /f(X) G SLn(A5[A']) alors f(X + sY) = H(X + sY)f(Q)
et H(X + sV)//^)-1/^) = /(X + sY). II suffit done de prendre s comme dans le lemme 15.
D


Lemme 17 Soit f ( X ) G A[X]nxl, soil


Alors I est un ideal de A.


Preuve Si /(X + aK ) = Pa(X, K)/(X) et /(X + 6F) = Pfc(X, F)/(X) alors,


et f ( X + acY) = P a ( X , c Y ) f ( X ) . D


Le corollaire 16 et le lemme 17 mis ensemble peuvent etre enonces sous forme d'un principe
local-global concret :


Principe local-global concret 18 Soienl A un anneau integre, S"i, . . . , Sk des monoi'des co-
rnaximaux ct /(X) G A[X]nxl. Alors


n s .
f(X) ^ /(O) ^ /\ f(X) -' /(O).


«=i
Preuve En appliquant les resultats precedents on obtient


c'est-a-dire f(X + Y) = Q ( X , Y ) f ( X ) avec Q(X,Y) G SLn(A[X,y]) et done aussi, en faisant
D
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2.3 Preuve du theoreme global et de la conjecture de Serre
Le principe local-global concret 18 permet de transformer le theoreme de Horrocks quasi-


global en sa version globale, de maniere constructive.


Theoreme de Horrocks global
Soit un entier n > 3, A un anneau integre et f ( X ) = t ( f i ( X ) , . . . , fn(X)) un vecteur unimo-
dulaire dans A[A] n x l , avcc f\ umtaire, alors il existc une matrice H G SLn(A[X]) telle que


Preuve Vue la remarque 11 on applique le theoreme quasi-global puis le principe local-global
concret 18. D


Remarque 19 Si 1'anneau generique clecrit dans la remarque 14 est integre (ce qui semble
probable), le calcul peut etre fait une fois pour toutes (dans cet anneau) et se specialise ensuite
dans n'importe quel anneau, integre ou non. ce qui pennet d'enlever 1'hypothese d'integrite
dans le theoreme global.


Theoreme de Quillen-Suslin
Soit. K un corps, A — K[A'i, . . . , A',.] et dans A"xl un vecteur unirnodulaire


f — ( /I ( AI , • • • , Ar ) , . . . , fn(Xi, • • • , Xr ) ),


alors il exist e une matrice II € SLn(A) telle que II f = *(1, 0,. . . , 0).


Preuve Si n = 1 ou 2, le resultat est immediat. Si n > 2 et r = 1 le resultat provierit du
fait que A est un anneau principal. 11 est donne explicitement par une reduction de Smith de
la matrice colonne /. Pour r > 2 on raisonne par induction sur r. En appliquant le theoreme
de Horrocks global a 1'anneau B = K [ A [ , . . . , A r_i] on a gagne si 1'un des /, est un polynome
unitaire en Xr. Si le corps a suffisarnment d'elements, on obtient cela par un changement lineaire
de variable. Sinon, on fait un changement de variable a la Nagata : Yr = A,., et pour 1 < j < r,
Yj = Xj + X^3, avec un entier d suffisarnment grand. D


Solution de la conjecture de Serre (Quillen-Suslin)
Soit K un corps, A = K[A^, . . . . Xr] et M un A-module project// de type fini stablerneni libre,
alors M est libre.


Preuve On a par hypothese un isomorphisme


</? : A ' ® M —> A


pour deux entiers k et i. Si A: = 0 il n 'y a rien a faire. Supposons k > 0. Le vecteur
/ = ^( (RA- , I , DM)) (oil ek,i est le premier vecteur de la base ca.nonique de A f c) est unirnodu-
laire : considerer la forme lineaire A sur A.f+k qui a un vecteur y fait correspondre la premiere
coordonnee de ̂ (y). On a A ( t / i , . . . ,yk+i) = u\y\ + h uk+fyk+i et A(/) = 1.
Corisiderons / comrne un vecteur colonne. Eri cornposant (p avec 1'isomorphisme donrie dans le
theoreme de Quillcri-Suslin on obtient un isomorphisme '0 qui erivoic (e /c , i ,OA/) sur ejt+^j. En
passant au quotient par A ( C / C J , O M ) ct Ac^+ej on obtient un isomorphisme


& : Ak~
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3 Une preuve constructive d'un theoreme de stabilite de
Suslin


Dans cette section, nous examinons la preuve du theoreme de stabilite de Suslin dans le cas
des corps, telle qu'elle est donnee dans [9] en s'appuyant sur une methode locale-globale. Nous
la decryptons en une preuve constructive selon la methode exposee dans la section 1.


3.1 Un theoreme local et sa version quasi-globale


Le seul veritable argument non constructif dans [9] est I'utilisation du lemme II 3.6 page 46.
Ce lemme est de nature locale mais il est ensuite utilise dans un argument de type local-global.
C'est le lemme suivant, dans lequel ( ) designe le symbole de Mennicke.


Lemme 20 (local)
Soit A un anneau local et /, g € A[X] avec f unitaire et af + bg = 1. Alors on a : ,


Preuve (cf. [9])
Notons pour commencer qu'on peut diviser b par / et qu'on obtient alors une egalite <Zi/ -\-b\g —
1 avec deg(6i) < deg(/) et done, puisque / est unitaire, deg(ai) < deg(g). Nous supposerons
done sans perte de generalite que deg(6) < deg(/) et deg(a) < deg(g).
Rappelons que En(A) est un sous-groupe distingue de SL7l(A) si n > 3, et que le symbole de
Mennicke (') represente la classe d'equivalence de la matrice


B =
f 9 0


-b a Q
0 0 1


dans le groupe quotient SLa/Es (la classe d'equivalence ne depend pas du choix de a et 6), et
qu'on a les proprietes suivantes (cf. Proposition II 3.5 page 44 dans [9]) :


u ) = n = i p-«* A*, (af)=(•/) (;\ ( f \=H, (•+")=( a
a) \0j ' \ b j \bj\b }'\bj V«/ V b ) \l>


Soit r le reste de la division euclidienne de g par /. Alors (^) = (^). En particulier si deg(/) = 0
on a termine. Sinon on peut supposer deg(g) < deg(/) et on raisonne par induction sur deg(/).
Puisque A est local, c/(0) est inversible ou dans le radical M. de A.
Supposons tout d'abord g(Q) inversible. Alors


A //-s(0)-'/(0)a\
J = ( s )


si bien que nous pouvons supposer /(O) = 0 et / = X f \ . Alors
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et la preuve est terminee par induction puisque J\ est unitaire.
Supposons maintenant que </(0) est dans J\A. On note que o(0)/(0) -f 6(0)g(0) = 1, done
a(0)/(0) G 1 + M C A x et done a(0) G A x . Or


/ g 0
-6 a 0
0 0 1


-6 9 + a 0
a 0
0 1


modE3(A[A]),


done


avec / — b unitaire de memo degrc que /, deg(</ + a) < deg(/) et (g + a)(0) G Ax + M = Ax .
On est done rarnene au cas precedent. La preuve est complete. D


Notre machinerie de relecture automatique de la preuve locale donne le lemme quasi-global
suivant (qui ne se trouve pas dans [9]), par application directe du principe general 5 :


Lemme 21 (quasi-global)
Soil A un anneau et f , g G A [A'] avec f unitaire et af -f bg = 1. Alors, il exist e dans A des
elements comaximaux s,- tels que dans chaque localise A[!/,SJ] on ait I'egalite des symboles de
Mennicke suivant e


'S
I '


3.2 Un principe local-global concret et la preuve constructive d'un
theoreme global


Maintenant nous rappelons le lemme I 5.9 page 26 dans [9].


Lemme 22 Soit n > 3 et A G SU(A[X]) avec ,4(0) = In . Soil


Alors I est un ideal de A.
La belle preuve constructive de ce beau lemme (dont seule la version abstraite est qualifiee


de theoreme) occupc les pages 22 a 26 de [9].
Ce lemme aurait pu etre reformule sous la forme du principe local-global concret suivant,


qui est d'ailleurs a tres peu pres le lemme I 5.8 de [9] :


Principe local-global concret 23 Soient n > 3, A un anneau, Si,...,Sk des monoi'des co-
maximaux et A G SLn(A[X]) avec A(Q) = ln. Alors


k
A G E n ( A [ A ' ] ) 4=^ /\ A G E n ( A 6 - [ A ] )


z = l


Le principe local-global concret 23 et le lernme 21 donnent alors le theoreme global suivant
(corollaire II 3.8 de [9]).


Theoreme 24 (version globale du lemme 20)
Soient n > 3, A un anneau et f , g G A[A] avec f unitaire et af + bg = 1. Alors on a I'egalite
des symboles de Mennicke smvanlc


'
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Preuve Soit B la matrice donnee au debut de la preuve du lemme 20. L'egalite (^) = (^/"|)
signifie : A — BB(O)"1 G E3(A[X]). On a evidemment A(Q) = I3. Le principe local-global
concret 23 nous dit qu'il suffit de verifier 1'assertion dans des anneaux localises ASi pour une
famille 5,- d'elements comaximaux. Et le lemme 21 nous constmit cette famille. D


Enfin la preuve que ce corollaire implique le theoreme de stabilite de Suslin est simple et
constructive, telle que donnee dans [9].


Theoreme de stabilite de Suslin (cas des corps)
SiK est un corps etn>3, SLn(K[Xj,... ,Xk]) = En(K[^i>.. . , X k ] ) .


Remarque 25 Du point de vue constructif, pour faire tourner les algorithmes correspon-
dants au theoreme precedent et au theoreme de Quillen-Suslin, nous devons supposer que les
operations du corps et le test d'egalite sont explicites, c'est-a-dire dans le langage de 1'algebre
constructive ([24]), que le corps est un corps discret. En fait le test d'egalite a 0 est necessaire
pour pouvoir faire les changements de variables en vue de rendre des polynomes unitaires. Enfin
il reste un travail interessant a faire pour rendre constructives des versions plus generales de
ces theoremes. Notamment les versions qui utilisent comme anneau de base, non plus un corps,
mais un anneau noetherien de dimension de Krull fixee.


Une preuve de nature differente pour le dernier theoreme, utilisant 1'artillerie des bases de
Grobner et basee sur la connaissance des vrais ideaux maximaux de K[Xi, . . . , Xn] a ete donnee
par Park et Woodburn dans [25].


Une preuve basee sur les memes idees que les notres, mais s'appliquant dans un cadre
beaucoup plus general (anneaux noetheriens de dimension de Krull majoree) nous a ete signalee
par I. Yengui (cf. [28]).
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Abstract


We present constructive versions of Krull's dimension theory for commutative rings
and distributive lattices. The foundations of these constructive versions are due to Joyal,
Espanol and the authors. We show that the notion of Krull dimension has an explicit
computational content in the form of existence (or lack of existence) of some algebraic
identities. We can then get an explicit computational content where abstract results about
dimensions are used to show the existence of concrete elements. This can be seen as a
partial realization of Hilbert's program for classical abstract commutative algebra.
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Introduction


We present constructive versions of Krull's dimension theory for commutative rings and dis-
tributive lattices. The foundations of these constructive versions are due to Joyal, Espanol
and the authors. We show that the notion of Krull dimension has an explicit computational
content in the form of existence (or lack of existence) of some algebraic identities. This confirms
the feeling that commutative algebra can be seen computationally as a machine that produces
algebraic identities (the most famous of which being called Nullstellensatz). This can be seen
as a partial realization of Hilbert's program for classical abstract commutative algebra.


Our presentation follows Bishop's style (cf. in algebra [19]). As much as possible, we kept
minimal any explicit mention to logical notions. When we say that we have a constructive
version of an abstract algebraic theorem, this means that we have a theorem the proof of
which is constructive, which has a clear computational content, and from which we can recover
the usual version of the abstract theorem by an immediate application of a well classified
non-constructive principle. An abstract classical theorem can have several distinct interesting
constructive versions.


In the case of abstract theorems in commutative algebra, such a non-constructive principle
is the completeness theorem, which claims the existence of a model of a formally consistent
propositional theory. We recall the exact formulation of this theorem in the appendix, as well
as its derivation from the compactness theorem When this is used for algebraic structures of
enumerable presentation (in a suitable sense) the compactness and completeness theorem can
be seen as a reformulation of Bishop LLPO (a real number is > 0 or < 0).


To avoid the use of completeness theorem is not motivated by philosophical but by practical
considerations. The use of this principle leads indeed to replace quite direct (but usually hidden)
arguments by indirect ones which are nothing else than a double contraposition of the direct
proofs, with a corresponding lack of computational content. For instance [2] the abstract proof
of 17th Hilbert's problem claims : if the polynomial P is not a sum of rational fractions there
is a field K in which one can find an absurdity by reading the (constructive) proof that the
polynomial is everywhere positive or zero. The direct version of this abstract proof is: from the
(constructive) proof that the polynomial is everywhere positive or zero, one can show (using
arguments of the abstract proofs) that any attempt to build K will fail. This gives explicitly
the sum of squares we are looking for. In the meantime, one has to replace the abstract result:
"any real field can be ordered" by the constructive theorem: "in a field in which any attempt
to build an ordering fails — 1 is a sum of squares". One can go from this explicit version to the
abstract one by completeness theorem, while the proof of the explicit version is hidden in the
algebraic manipulations that appear in the usual classical proof of the abstract version.


Here is the content of the paper.


Distributive lattices
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In this section, we present basic theorems on distributive lattices. An important simplification of
proofs and computations is obtained via the systematic use of the notion of entailment relation,
which has its origin in the cut rule in Gentzen's sequent calculus, with the fundamental theorem
1.7.


Dimension of distributive lattices In this section, we develop the theory of Krull di-
mension of distributive lattices, explaining briefly the connection with Espanol's developments
of Joyal' s theory. We show that the property to have a Krull dimension < i can be formulated
as the existence of concrete equalities in the distributive lattice.


Zariski and Krull lattice In section 3 we define the Zariski lattice of a commutative ring
(whose elements are radicals of finitely generated ideals), which is the constructive counterpart
of Zariski spectrum : the points of Zariski spectrum are the prime ideals of Zariski lattice,
and the constructible subsets of Zariski spectrum are the elements of the Boolean algebra
generated by the Zariski lattice. Joyal's idea is to define Krull dimension of a commutative
ring as the dimension of its Zariski lattice. This avoids any mention of prime ideals. We show
the equivalence between this (constructive) point of view and the (constructive) presentation
given in [14], showing that the property to have a Krull dimension < i can be formulated as
the existence of concrete equalities in the ring.


Conclusion
This article confirms the actual realization of Hilbert's program for a large part of abstract
commutative algebra, (cf. [2, 4, 10, 11, 12, 13, 14, 15, 16, 17]). The general idea is to
replace ideal abstract structures by partial specifications of these structures. The very short
elegant abstract proof which uses these ideal objects has then a corresponding computational
version at the level of the partial specifications of these objects. Most of classical results in
abstract commutative algebra, the proof of which seem to require in an essential way excluded
middle and Zorn's lemma, seem to have in this way a corresponding constructive version. Most
importantly, the abstract proof of the classical theorem always contains, more or less implicitly,
the constructive proof of the corresponding constructive version.
Finally, we should note that the explicit characterizations of Krull dimension of distributive
lattices (Theorem 2.9), of spectral spaces (Theorem 2.14), and of rings (Corollary 3.6), are new.


1 Distributive lattice, Entailment relations
Elementary though it has become after successive presentations and simplifications, the theory
of distributive lattices is the ideal instance of a mathematical theory, where a syntax is specified
together with a complete description of all models, and what is more, a table of semantic concepts
and syntactic concepts is given, together with a translation algorithm between the two kinds of
concepts. Such an algorithm is a "completeness theorem" (G. C. Rota [20]).


1.1 Distributive lattices, filters and spectrum
As indicated by the quotation above, the structure of distributive lattices is fundamental in
mathematics, and G.C. Rota has pointed out repeatedly its potential relevance to commutative
algebra and algebraic geometry. A distributive lattice is an ordered set with finite sups and
infs, a minimum element (written 0) and a maximum element (written 1). The operations sup
and inf are supposed to be distributive with respect to each other. We write these operations
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V and A . The relation a < b can then be defined by a V 6 = b or, equivalently, a A b = a.
The theory of distributive lattices is then purely equational. It makes sense then to talk of
distributive lattices defined by generators and relations.


A quite important rule, the cut rule, is the following


( ( ( x A a) < 6) & (a < (x V b))} => a < b.


In order to prove this, write x A a A & = z A a and a = a A (x V b) hence


a = (a A x) V (a A 6) = (a A x A b) V (a A 6) = a A 6.


A totally ordered set is a distributive lattice as soon as it has a maximum and a minimum
element. We write n for the totally ordered set with n elements (this is a distributive lattice for
n =£ 0.) A product of distributive lattices is a distributive lattice. Natural numbers with the
divisibility relation form a distributive lattice (with minimum element 1 and maximum element
0). If L and Lf are two distributive lattices, the set Hom(L, L') of all morphisms (i.e., maps
preserving sup, inf, 0 and 1) from L to L' has a natural order given by


A map between two totally ordered distributive lattices L and S is a morphism if, and only if,
it is nondecreasing and 0^ and \i are mapped into 0$ and 15.


The following proposition is direct.


Proposition 1.1 Let L be a distributive lattice and J a subset of L. We consider the dis-
tributive lattice L' generated by L and the relations x = 0 for x G J (L' is a quotient of L).
Then


• the equivalence class of 0 is the set of a such that for some finite subset JQ of J:


a < V x in L


• the equivalence class of 1 is the set of b such that for some finite subset JQ of J:


in L1 = (b V V
\ ieJo


More generally a <£,/ b if, and only if, for some finite subset JQ of J:


a < (by V
V xeJ0


In the previous proposition, the equivalence class of 0 is called an ideal of the lattice; it is
the ideal generated by J. We write it (J)L. We can easily check that an ideal / is a subset
such that:


o e /
x,y € / => x V y € /


x € /, z € L =$• x A z € /


(the last condition can be written (x £ I, y < x) =$• y e /).
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Furthermore, for any morphim (p : L\ — » L2, <p~l(ty ls an ideal of LI.
A principal ideal is an ideal generated by one element a. We have (a)L = {x 6 L ; a: < a}.


Any finitely generated ideal is principal.
The dual notion to ideal is that of filter. A filter F is the inverse image of 1 by a morphism.


This is a subset such that:


l € F
x,y G F =» x A y € F


x e F, z&T => x V z(=F


Notation 1.2 We write Pt(X) for the set of all finite subsets of the set X, If A is a finite
subset of a distributive lattice L we define


\jA:=\Jx and f\A:= /\x
x&A x£A


We write A h I? or A \-L B for the relation defined on the set Pf(L):


A h B « f\A < \JB


Note the relation A h B is well defined on finite subsets because of the associativity, commu-
tativity and idempotence of the operations A and V . Note also 0 h {x} =>• x — 1 and
{y} h 0 => y = 0. This relation satisfies the following axioms, where A, B, A', B' € Pf(£); we
write x for {x} and A, B for A U B.


a h a (/?)
(A h B) & (A C A') & (5 C 5') =» A' h B' (M)


(A,x h B ) & ( A h B,x) => A h B (T)


We say that the relation is reflexive, monotone and transitive. The last rule is also called thecui
rule. Let us also mention the two following rules of "distributivity" :


(A, x h B) & (A, y h B) «=* A, x V y h B
(A h B, x) & (A h B, y) <=> A h B, x A y


The following is proved in the same way as Proposition 1.1.


Proposition 1.3 Let L be a distributive lattice and (J, U) a pair of subsets of L. We consider
the distributive lattice L' generated by L and by the relations x = 0 for a: € J and y — 1 for
y € U (L1 is a quotient of L). We have that:


• the equivalence class of 0 is the set of elements a such that:


3J0 E Pf(J), f/0 € Pf(tf) a, f/0 HL J0


• the equivalence class of 1 is the set of elements b such that: verifient:


3J0 € Pf(J), UQ 6 Pf(C7) UQ hL 6, J0


• More generally a <L> b if, and only if, there exists a finite subset JQ of J and a finite
subset UQ of U such that, in L:


a, f/o (~L b, JQ
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We shall write L/(J = 0, U = 1) for the quotient lattice L' described in Proposition 1.3.
Let t/j : L —> L' be the canonical surjection. If / is the ideal ^>~1(0) and F the filter ^~1(1), we
say that the ideal I and the filter F are conjugate. By the previous proposition, an ideal / and
a filter F are conjugate if, and only if, we have:


[Jo € Pf(J), F0 € Pf(F), (x, Fo h /„)] =J> a; € / and
[/o e P f(7), Fo € Pf(F), (F0 h x, 70)1 => x e F.


This can also be formulated as follows:


(/ € F, x A / e /) => x 6. / and (j € /, x V j € F) ==» x € F.


When an ideal / and a filter F are conjugate, we have


1 6 7 4=> O e F <=^ ( I , F ) = (L,L).


We shall also write !//(/, F) for L' = T/( J = 0, C7 = 1) . By Proposition 1.3, a homomorphism
(/? from L to another lattice L\ satisfying <p(J) = {0} and <p(U) = {1} can be factorised in an
unique way through the quotient L'.


As shown by the example of totally ordered sets a quotient of distributive lattices is not in
general characterized by the equivalence classes of 0 and 1.


Classically a prime ideal I of a lattice is an ideal whose complement F is a filter (which is
then a prime filter). This can be expressed by


1 ^ 7 and (x A y) <E 7 => (x G 7 or y e 7) (*)


which can also be expressed by saying that 7 is the kernel of a morphism from L into the lattice
with two elements written 2. Constructively, at least in the case where L is discrete, it seems
natural to take the definition (*), where "or" is used constructively. The notion of prime filter
is then defined in a dual way.


Definition 1.4 Let L be a distributive lattice.


• An idealistic prime m L is given by a pair (J, U) of finite subsets of L. We consider this
as an incomplete specification for a prime ideal P satisfying J C P and U D P = 0.


• To any idealistic prime (J, U) we can associate a pair (7, F) as described in Proposition
1.3 where I is an ideal, F is a filter and 7, F are conjugate.


• We say that the idealistic prime (J, U) collapses iff we have I = F — L. This means that
the quotient lattice L' = T/(J — 0, U = 1) is a singleton i.e., 1 <L' 0, which means also
U h J.


Theorem 1.5 (Simultaneous collapse for idealistic primes) Let (J,U) be an idealistic prime
for a lattice L and x be an element of L. If the idealistic primes (J U {x}, U) and (J, U U {x})
collapse, then so does (J,U).


Proof.
We have two finite subsets J0, J\ of J and two finite subsets UQ, U\ of U such that


x, U0 h J0 and U\ h x, Ji


hence
x, C70, Ui h J0, Ji and C70, U\ \~ x, J0, Ji


By the cut rule
t/0, t/i h J0, Ji


D


Notice the crucial role of the cut rule.







Hidden Constructions in Algebra 483


1.2 Distributive lattices and entailment relations
An interesting way to analyze the description of distributive lattices defined by generators and
relations is to consider the relation A h B defined on the set Pf(L) of finite subsets of a
lattice L. Indeed if S C L generates the lattice L, then the relation h on Pf(S') is enough to
characterize the lattice L, because any formula on S can be rewritten, in normal conjunctive
form (inf of sups in S) and normal disjunctive form (sup of infs in S). Hence if we want to
compare two elements of the lattice generated by S we write the first in normal disjunctive
form, the second in normal conjunctive form, and we notice that


^ A (V (A* h Bf)


Definition 1.6 For an arbitrary set S, a relation over Pf(S) which is reflexive, monotone and
transitive (see page 5) is called an entailment relation.


The notion of entailment relations goes back to Gentzen sequent calculus, where the rule (T)
(the cut rule) is first explicitly stated, and plays a key role. The connection with distributive
lattices has been emphasized in [3, 4]. The following result (cf. [3]) is fundamental. It says
that the three properties of entailment relations are exactly the ones needed in order to have a
faithfull interpretation in distributive lattices.


Theorem 1.7 (fundamental theorem of entailment relations) Let S be a set with an entailment
relation \~s over Pf(S). Let L be the lattice defined by generators and relations as follows: the
generators are the elements of S and the relations are


whenever A \~s B. For any finite subsets A and B of S we have


A \-L B <^=> A \-s B.


Proof.
We give an explicit possible description of the lattice L. The elements of L are represented by
finite sets of finite sets of elements of S


(intuitively X represents A^i V ' ' ' V A Ai)- We define then inductively the relation A -< Y
with A G Pf(S) and Y € L (intuitively f\A< VCey (A <?))


• if B € Y and B C A then A -< Y


• if A \~s y\ , • • • , ym and A, yj -< Y for j = 1 , . . . , m then A -< Y


It is easy to show that if A -< Y and A C A' then we have also A' -< Y. It follows that A -< Z
holds whenever A -« Y and B -< Z for all B e Y. We can then define X < Y by A -< Y for all
A € X and one can then check that L is a distributive lattice1 for the operations


0 = 0, i = {0}, X V Y = XUY, x /\Y = {AUB\A<=X, B<=Y}.
For establishing this one first show that if C -< X and C -< Y we have C -< X A Y by induction
on the proofs of C -< X and C -< Y. We notice then that if A \~s yi, • . . , ym and A, yj hg B
for all j then A \~s B using m times the cut rule. It follows that if we have A (-/, B, i.e.,
A -< {{6} | b e B}, then we have also A hs B. D


1 L is actually the quotient of Pf (Pf (5)) by the equivalence relation: X < Y and Y < X.
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As a first application, we give the description of the Boolean algebra generated by a dis-
tributive lattice. A Boolean algebra can be seen as a distributive lattice with a complement
operation x *-+ x such that x A x = 0 and x V x = 1. The application x t— > x is then a map
from the lattice to its dual.


Proposition 1.8 Let L be a distributive lattice. There exists a free Boolean algebra generated
by L. It can be described as the distributive lattice generated by the set LI = L U L (2) with the
entailment relation hLl defined as follows: if A, B, A', B' are finite subsets of L we have


A,T* \-Ll A',!? & A,B'\-A',B in L


// we write LBOOI for this lattice (which is a Boolean algebra), there is a natural embedding of
LI in LBOOI o-nd the entailment relation of LBOOI induces on L\ the relation \~il .


Proof.
See [3]. D


Notice that by Theorem 1.7 we have x \~i y if, and only if, x h^ y hence the canonical map
L — »• LI is one-to-one and L can be identified to a subset of L] .


1.3 Spectrum and completeness theorem
The spectrum of the lattice I/, written Spec(L) is defined as the set Hom(L, 2). It is isomorphic
to the ordered set of all detachable prime ideals. The order relation is then reverse inclusion.
We have Spec(2) ~ 1, Spec(3) ~ 2, Spec(4) ~ 3, etc. . .


Proposition 1.9 The completeness theorem implies the following result. If (J,U) is an ide-
alistic prime which does not collapse then there exists ip € Spec(L) such that J C (p~1(0) and
U C (p~l(l). In particular if a ^ b, there exists (p € Spec(L) such that </?(a) = 1 and ip(b) = 0.
Also, if L / 1, Spec(L) is nonempty.


Proof.
This follows from the completeness theorem for geometric theories (see Appendix). D


A corollary is the following representation theorem (Birkhoff theorem)


Theorem 1.10 (Representation theorem) The completeness theorem implies the following re-
sult. The map OL : L —> 7?(Spec(L)) defined by a >— > { < / ? £ Spec(L) ; (f>(d) = 1} is an injective
map of distributive lattice. This means that any distributive lattice can be represented as a
lattice of subsets of a set.


Another corollary is the following proposition.


Proposition 1.11 The completeness theorem implies the following result. Let (p : L — > L' a
map of distributive lattices; (p is injective if, and only if, Spec(t^) : Spec(L') — » Spec(L) is
surjective.


L is a disjoint copy of L.
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a A 6 ^ a V 6 <=» a V 6 ̂  a A b


Proof.
We have the equivalence


Assume that Spec(<£>) is surjective. If a ^ b in L, take a' = (p(a), b' = <^(6) and let T/> € Spec(L)
be such that VKa V 6) = 1 and i/>(a A 6) = 0. Since Spec(</?) is surjective there exists i/>' €
Spec(L') such that ^ = V>V hence ^'(a/ V 6*) = 1 is ^'(a/ A &') = °> hence a' V 6' ^ a' A 6'
and a' ^ b'.
Suppose that </? is injective. We identify L to a sublattice of L'. If ̂  € Spec(L), take / = tp~1(0)
and F = ^>~1(1). By the compactness theorem (see appendix), there exists ij}' € Spec(L') such
that if/ (I) = 0 and if)'(F) = 1, which means ^ = if)' o (p. D


Of course, these three last results are hard to interpret in a computational way. An intuitive
interpretation is that we can proceed "as if" any distributive lattice is a lattice of subsets of a
set. The goal of Hilbert's program is to give a precise meaning to this sentence, and explain
what is meant by "as if" there.


2 Krull dimension of distributive lattices


2.1 Definition of Kr/(L)


To develop a suitable constructive theory of the Krull dimension of a distributive lattice we
have to find a constructive counterpart of the notion of increasing chains of prime ideals.


Definition 2.1 To any distributive lattice L and i € N we associate a distributive lattice
Kr^(L) which is the lattice defined by the generators <fi(x) for i < i and x 6 L (thus we have
l+l disjoint copies of L and we let fa be the bisection between L and the ith copy) and relations


h


,<pi(b) h


h <pi(a)t(pi(b)


) h y»(&) whenever a < b in L


(a) h y?i(a) fori<t


Let S be the disjoint union \Jy>i(L) and \~s the entailment relation generated by these relations.


From this definition, we get directly the following theorem.


Theorem 2.2 The maps (fi are morphisms from the lattice L to the lattice Krf(I/). Further-
more the lattice Kr^L) with the maps (pi is then a solution of the following universal problem:
to find a distributive lattice K and i + 1 homomorphisms <f>o > (p\ > • • • > (pf from L to K such
that, for any lattice L' and any morphism TJJQ > t/Ji > • • • > fa € Hom(L, L') we have one and
only one morphism 77 : K — » L' such that r/</?o = t/>0; Wi — ̂ \i • • • > Wi ~ ^t-


The next theorem is the main result of this paper, and uses crucially the notion of entailment
relation.
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Theorem 2.3 IfUi and Ji (i = 0, . . . ,1) are finite subsets of L we have in Kr^(L)


<po(U0) A ... A (f>e(Ue) < <A>( Jo) V ... V <pt(Je)


if, and only if,


s <A)(Jo), • - • ,


, and on/y i/j i/iere exist xi, . . . , xe e L suc/i i/ia< (where h Z5 i/ie entailment relation of L):


xi, f/0 h J0


xz, Ui h Ji, xi


Xf, f / f_i h Jf_i, x^_i
C/f f- Jf, xf


Proof.
The equivalence between the first and the second statement follows from Theorem 1.7.


We show next that the relation on Pf(S') described in the statement of the theorem is
indeed an entailment relation. The only point that needs explanation is the cut rule. To
simplify notations, we take £ = 3. We have then 3 possible cases, and we analyze only one case,
where X,(f>\(z) \~s Y and X \-$ Y,(pi(z), the other cases being similar. By hypothesis we have
xi,X2,x3,yi,y2,yz such that


Xi , U0 h Jo I/I, f/0 l~ Jo


x2, f/i, 2 h Ji, Xi y2, Ui h Ji,yi, z
£3, f/2 r- J2, x2 1/3, C/2 H J2,y2


f/3 h J3, x3 C/3 h J3, y3


The two entailment relations on the second line give


£2, 2/2, tA, ^ ^ Ji, 2:1, yi ^2, 3/2, fA l~ Ji, ^i, 2/i, -2


hence by cut


^2 A y2, C/i h Ji, Xi V yi


Finally, using distributivity


(xi V yj) , f/0 h J0


(x2 A y2), f/j h Ji, (X! V yj)
(x3 A 3/3), t/2 h J2, (x2 A y2)


t/3 h J3, (x3 A y3)


and hence (p0(U0), . . . , ̂ 3(^3) \~s <£>o(Jo), • • • , Va W-
Finally it is left to notice that the entailment relation we have defined is clearly the least
possible relation ensuring the </?$ to form a non- increasing chain of morphisms. D


Notice that the morphisms ^ are injective: it is easily seen that for a, b € L the relation
Vtl0) ^s <£t(&) implies a h 6, and hence that <pi(a) — (f>i(b] implies a = b.
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2.2 Partially specified chains of prime ideals
Definition 2.4 In a distributive lattice L, a partial specification for a chain of prime ideals
(that we shall call idealistic chain J is defined as follows. An idealistic chain of length I is a list
of t + 1 idealistic primes of L: C = (( JQ, UQ), . . . , (J^, Ut)). An idealistic chain of length 0 is
nothing but an idealistic prime.


We think of an idealistic chain of length £ as a partial specification of an increasing chains
of prime ideals P0, . . . , P\ such that Ji C /*, Ui n Pi - 0, (i = 0, . . . , £).


Definition 2.5 We say that an idealist chain ((Jo, UQ), . . . , ( J^ Ui)} collapses if, and only if,
we have in


Thus an idealistic chain (( Jo, UQ ) , . . . , (Jt, Ut}) collapses in L if, and only if, the idealistic
prime P = (ipo(Jo), • • • , <f>e(Je)', <A)(^o)> • • • > ^((Ut)) collapses in Krg(L). From the completeness
theorem we deduce the following result which justifies this idea of partial specification.


Theorem 2.6 (formal Nullstellensatz for chains of prime ideals) The completeness theorem
implies the following result. Let L be a distributive lattice and ((Jo,Uo), . . . , (Jt,Ui)) be an
idealistic chain in L. The following properties are equivalent:


(a) There exist f + 1 prime ideals PQ C • • • C Pf such that J, C Pi; [7; n P; = 0, (» = ( ) , . . . , £ ) •


(b) The idealistic chain does not collapse.


Proof.
If (6) holds then the idealistic prime P — (<fo(Jo), . . . ,pe(J()] <po(Uo), . . . ,tpe(Ue)) does not
collapse in Kr^(L). It follows then from Proposition 1.9 that there exists a € Spec(Kr£(L))
such that u is 0 on <^o(«^o)> • • • , ̂ (Je) and 1 on <f>o(Uo), . . . , (pe(Ue)). We can then take Pi —
(a o y?i)~1(0). That (a) implies (b) is direct. D


2.3 Krull dimension of a distributive lattice
Definition 2.7


1) An elementary idealistic chain in a distributive lattice L is an idealistic chain of the form


(with Xi in L).


2) A distributive lattice L is of dimension < i— 1 iff it satisfies one of the equivalent conditions


— Any elementary idealistic chain of length i collapses.


— For any sequence Xi, . . . , £ / € L we have


The following result shows that this definition coincides with the classical definition of Krull
dimension for lattices.
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Theorem 2.8 The completeness theorem implies that the Krull dimension of a lattice L is
< i — 1 if, and only if, there is no strictly increasing chains of prime ideals of length i.


Using Theorem 2.3, we get the following characterisation.


Theorem 2.9 A distributive lattice L is of Krull dimension < i ~ 1 if, and only if, for all
Xi, . . . , Xf € L there exist a1; . . . , a^ £ L such that


ai A Xi — 0, aa A X2 < GI V Xi, , . . . , o^ A X( < a^_i V X£_i, 1 = ag V Xf


In this way we have given a concrete form of the statement that the distributive lattice L
has a dimension < 0. — 1 in the form of an existence of a sequence of inequalities.


In particular the distributive lattice L is of dimension < — 1 if, and only if, 1 = 0 in L, and
it is of dimension < 0 if, and only if, L is a Boolean algebra (any element has a complement).


We have furthermore.


Lemma 2.10 A distributive lattice L generated by a set G is of dimension < i — 1 if, and only
if, for any sequence x\, . . . , X( e G


, . . . , (f>e(xe)


in Kr^(L).


Indeed using distributivity, one can deduce


a V a', A h b V 6', B a A a' h b A b' , B


from a, A h b,B and a', A h b', B. Furthermore any element of L is an inf of sups of elements
of G.


2.4 Implicative lattice
A lattice L is said to be an implicative lattice [5] or Heyting algebra [8] if, and only if, there is
a binary operation — > such that


a A b < c 4=S> a < b — > c


Theorem 2.11 If L is an implcative lattice, we have in Kr^(L)


if, and only if,
! = « « - » (jt V (««-! -»• (jl-l V . . . (UQ -» jo))))


where Uj = AC/,- and jfc = V Jfc.


In the case where L is an implicative lattice, we can write explicitely that L is of dimension
< i — 1 as an identity. For instance that L is of dimension < 0 is equivalent to the identity


1 = x V -ix


where ->x = x — * 0 and that L is of dimension < 1 is equivalent to the identity


1 = x2 V (x2 -> (zi V -xO)


and so on.


Corollary 2.12 An implicative lattice L is of dimension < i— 1 if, and only if, for any sequence
Xi,...,X(


1 = Xi V (Xt -> - - - (Z2 V (X2 -^ (Xi V -1X1))) . . .)
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2.5 Decidability
To any distributive lattice L we have associated a family of distributive lattices Kif(L) with
a complete description of their ordering. A lattice is discrete if, and only if, its ordering
is decidable, which means intuitively that there is an algorithm to decide the ordering (or,
equivalently, the equality) in this lattice. It should be intuitively clear that we could find a
discrete lattice L such that Kri(L) is not discrete since, by 2.3, the ordering on Krj(L) involves
an existential quantification on the set L, that may be infinite (this point is discussed in [1],
with another argument). However we can use the characterization of Theorem 2.3 to give a
general sufficient condition ensuring that all Kr^(L) are discrete.


Theorem 2.13 Suppose that the lattice L is a discrete implicative lattice then each Kr^(L) is
discrete.


Proof.
This is direct from Theorem 2.11. n


2.6 Dimension of Spectral Spaces
This subsection is written from a classical point of view. Following [7], a topological space
X is called a spectral space if it satisfies the following conditions: (a) X is a compact TQ-
space; (b) X has a compact open basis which is closed under finite intersections; (c) each
irreducible closed subspace of X has a generic point. Spec(jR), with the Zariski topology, is
spectral for any commutative ring R with identity. Similary, if we take for basic open the sets
Ua = {0 € Spec(L) | 0(a) = 1} then Spec(L) is spectral for any distributive lattice. The
compact open subsets of a spectral space form a distributive lattice, and it is well-known [21, 8]
that, if L is an arbitrary distributive lattice, then L is isomorphic to the lattice of compact
open subsets of the space Spec(//).


If [/, V are open subsets of a topological space X we define U —> V to be the largest open
W such that W fl U C V and -> U = U —> 0. In a classical setting a spectral space X is said
to be of dimension < i — I if, and only if, there is no strictly increasing chains of length i of
irreducible closed subsets of X. We can reformulate Theorem 2.9 as follows.


Theorem 2.14 A spectral space X is of dimension < i — 1 if, and only if, for any compact
open subsets X i , . . . , Xf of X


X = xf\/(xe->...(x2V (x2 -> (an V --I!)))...)


2.7 Connections with Joyal's definition
Let L be a distributive lattice, Joyal [6] gives the following definition of dim(L) < i. Let
(p\ : L —> Kr£(L) be the £+1 universal morphisms. By universality of Kr^+i(L), we have (+1
morphisms CTJ : Krf+1(L) —> Krf(L) such that o~i o ipj+l = ^ if j < z and cr, o <p*+l = tpj_1


if j > i. Joyal defines then dim(L) < C to mean that (GO, - . . , o-g) : Kr£+1(L) —»• Kii(L)e+l is
injective. This definition can be motivated by Proposition 1.11: the elements in the image of
Sp(ai) are the chains of prime ideals (a0, ...,ae) with c^ = ai+i, and Sp(ao,..., <7f) is surjective
if, and only if, for any chain (QCQ, . . . , ae) there exists i < ( such that o^ = Qfj+i. This means
exactly that there is no nontrivial chain of prime ideals of length ^+1. Using the completeness
theorem, one can then see the equivalence with Definition 2.7. One could check directly this
equivalence using a constructive metalanguage, but for lack of space, we shall not present here
this argument. Similarly, it would be possible to establish the equivalence of our definition with
the one of Espanol [6] (here also, this connection is clear via the completeness theorem).
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3 Zariski and Krull lattice


3.1 Zariski lattice


Let R be a commutative ring. We write { J) or explicitly (J)R for the ideal of R generated by
the subset J C R. We write M(U) for the monoid (3) generated by the subset U C R. Given a
commutative ring R the Zariski lattice Zar(/?) has for elements the radicals of finitely generated
ideals (the order relation being inclusion). It is well defined as a lattice. Indeed \fT[ =• \fT\
and x/^2 = x/^2 imply Vhh ~ \fJ\Ji (which defines \fl[ A v/^a) and \/I\ + I2 = \/J\ + Ji
(which defines \fl{ V VlQ. The Zariski lattice of R is always distributive, but may not be
discrete, even if R is discrete. Nevertheless an inclusion \f7[ C ^/T^ can always be certified in
a finite way if the ring R is discrete. This lattice contains all the informations necessary for a
constructive development of the abstract theory of the Zariski spectrum.
We shall write a for \f(a}- Given a subset S of A we write S for the subset of Zar(Jt?) the
elements of which are 's for s € S. We have a\ V • • • V o^ = \/{ai, . . . , am) and a\ A • • • A a^ =
ai • • • am


Let U and J be two finite subsets of R, we have


This describes completely the lattice Zar(/?). More precisely we have:


Proposition 3.1 The lattice Zar(fi) of a commutative ring R is (up to isomorphism) the
lattice generated by (R, h ) where h is the least entailment relation over R such that


O h x, y h x y
h i xy h x x + y \~ x, y


Proof.
It is clear that the relation U h J defined by "Ai(t/) meets (J)" satisfies these axioms. It is
also clear that the entailment relation generated by these axioms contains this relation. Let
us show that this relation is an entailment relation. Only the cut rule is not obvious. Assume
that M(U,a] meets (J) and that M(U] meets (J, a). There exist then mi, ma € M(U] and
k G N, x € jR such that akm\ 6 (J) , m^ + ax € (J). Eliminating a this implies that M(U]
intersects { J) . D


We have a = b if, and only if, a divides a power of 6 and 6 divides a power of a.


Proposition 3.2 In a commutative ring R to give an ideal of the lattice Zar(fi) is the same
as to give a radical ideal of R. If I is a radical ideal of R one associates the ideal


J = { J e Zar(#) | J C /}


of Zar(.R). Conversely ijT is an ideal of Zar(/?) one can associate the ideal


which is a radical ideal of R. In this bijection the prime ideals of the ring correspond to the
prime ideals of the Zariski lattice.


A monoid will always be multiplicative.
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Proof.
We only prove the last assertion. If / is a prime ideal of R, if J, J' 6 Zar(fi) and J A J' e T,
let ai, . . . , On € -R be some "generators" of J (i.e., J = -\/{ai>- .. ,an}) and let 61, . . . , bm e A
be some generators of J'. We have a^ G / and hence a» € / or 6j G / for all i,.?. It follows from
this (constructively) that we have Oj 6 / for all i or bj € / for all j. Hence J € 1. or J' 6 X and
Z is a prime ideal of Zar(/?).
Conversely if J is a prime ideal of Zar(7?) and if we have xy € T then x A y e T and hence
z € J or y € J. This shows that {x € ^4 | x e J} is a prime ideal of 7?. D


3.2 Krull lattices of a commutative ring
Definition 3.3 We define Kvue(R] := Kr£(Zar(#)). This is called the Krull lattice of order t
of the ring R. We say also that R is of Krull dimension < i iff the distributive lattice Zar(.R)
is of dimension < t.


Theorem 3.4 The ring R is of dimension < i — 1 if, and only if, for any x\, . . . , xn € R we
have in Ktut(R)


< x . . . - x h > £ . .


Proof.
This is a direct consequence of Lemma 2.10 and the fact that the elements x generates Zar(.R).
D


Theorem 3.5 Let C = ((JQ, C/0), • • • , (Jt, ^)) be a list of£+l pairs of finite subsets of R, the
following properties are equivalent:


1. there exist ji € ( Jj), Ui € M.(Ui), (i = 0, . . . , C), such that


u0 • ( « ! • ( • • • (ut + jt] + • • • ) + Ji) + Jo = 0


2. there exist L\, . . . , Lg € Zar(jR) such that in Zax(R):


Li, Uo \~ Jo
1/2, U\ h Ji, I/i


Le, Ue-i \- Je-i, Le^i
Ut h Jt, Lt


3. there exist xi, . . . , xe € R such that (for the entailment relation described in Proposition
3.1):


X i , UQ \~ J0


X2, Ui \~ Ji, Xi


h Je-i,


Proof.
It is clear that 1 entails 3: simply take


= Ut + jt, Xt-\ = XtUt-i + ji-i, . . . , XQ = X-^UQ + JQ
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and that 3 entails 2.
Let us prove that 2 implies 3. We assume:


Li, UQ \- IQ
L2, Ui h /i, L!


t/2 h /2, L2


The last line means that M(Uz) intersects 72 + L2 and hence 72 + (x2) for some element x2 of
L2. Hence we have f/2 l~ ^2, ^2- Since x~2 < ^2 in Zar(fi) we have x~2, f/i h 7i, LI. We have
then replaced L2 by f2. Reasoning as previously one sees that one can replace as well LI by a
suitable x\. One gets then 3.


Finally, let us show that 3 entails 1 : if we have for instance


, U\
,


by the last line we know that we can find T/2 both in the monoid M2 = Ai(C/2) + (72) and in
(x2) . Since t/2 h x\


y2, Ui \- /i, xj


and since y2 € M2 we can find i/j both in the monoid MI = M2Ai(f/i) + (/i) and in (xi). We
have y\ h Xi and hence


yi,t/o H IQ


D


,


and since 7/1 € Mj this implies 0 € MiA/f(f/0) + (/o) as desired.


Corollary 3.6 A ring R is of Krull dimension < I — 1 iff for any sequence Xi, . . . ,X£ there
exist ai, . . . , ae 6 /? and mi, . . . , m^ 6 N suc/i i/ia^


= 0


Proof.
By Theorem 3.4, we have in


(/?otei), • • • 5 v^-itef) ^~ vitei)i • • • i ftfat)
we can then apply Theorem 3.5 to the elementary idealistic chain


and we get in this way ji G (xj) , jo = 0 and Uj 6 jW(Xj), UQ = I such that


as desired. n


This concrete characterisation of the Krull dimension of a ring can be found in [14], where
it is derived using dynamical methods [2].


Lemma 3.7 If R is coherent and noetherian then Zar(7?) is an implicative lattice.
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Proof.
Let L e Zar(/2), radical of an ideal generated by elements y\, . . . , yn and x G R, we show how
to define an element x —> L 6 Zar(.R) such that, for any M € Zar(R)


M/\x<L «=> M <x -* L


For this, we consider the sequence of ideals


Ik = {z€R\ zxk e(yi,...,yn}}


Since R is coherent, each /*. is finitely generated. Since furthermore R is noetherian and
Ik Q Ik+i the sequence Ik is stationary and \Jk Ik is finitely generated. We take for x — » L the
radical of this ideal.


If M € Zax(R) then M is the radical of an ideal generated by finitely many elements
X i , . . . , xm and we can take M — » L = (x\ — * L) A . . . A (5^ — »• L). D


Corollary 3.8 // .R is coherent, noetherian and strongly discrete then each lattice Krn(R) is
discrete.


Proof.
Using Theorem 2.13 and Lemma 3.7 we are left to show that Zar(.R) is discrete. We have
M < L if , and only if, 1 = M — » L. But to test if an element of Zar(.R) is equal to the ideal
(1) is decidable since R is strongly discrete. D


The hypotheses of this corollary are satisfied if R is a polynomial ring K[X\, . . . , Xn] over
a discrete field K [19].


3.3 Krull dimension of a polynomial ring over a discrete field
Let R be a commutative ring, let us say that a sequence xj, . . . , Xg is singular if, and only if,
there exists ai , . . . , a^ € R and mi , . . . , m,( € N such that


*r(' ' ' «'(! + aixi) + • • • ) + aizi) = 0


A sequence is pseudo regular if, and only if, it is not singular. Corollary 3.6 can be reformulated
as: a ring R is of Krull dimension < £ — 1 if, and only if, any sequence in R of length i is
singular.


Proposition 3.9 Let K be a discrete field, R a commutative K -algebra, and x\, . . . , xg in R
algebraically dependent over K. The sequence xi, . . . , X£ is singular.


Proof.
Let Q ( X I , . . . , X ( ) = 0 be a algebraic dependence relation over K. Let us order the nonzero
monomials of Q along the lexicographic ordering. We can suppose that the coefficient of the
first monomial is 1. Let x™lx™* • • • x™1 be this momial, it is clear that Q can be written on the
form


Q = xr • • • x?1 +


and this is the desired collapsus. D


Let us say that a ring is of dimension £ if it is of dimension < i but not of dimension < i — 1.
It follows that we have:
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Theorem 3.10 Let K be a discrete field. The Krull dimension of the ring K[X\,..., Xg] is
equal to i.


Proof.
Given Proposition 3.9 it is enough to check that the sequence (Xi,..., Xg] is pseudo regular,
which is direct. D


Notice that we got this basic result quite directly from the characterisation of Corollary
3.6, and that our argument is of course also valid classically (with the usual definition of Krull
dimension). This contradicts the current opinion that constructive arguments are necessarily
more involved than classical proofs.
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Annex: Completeness, compactness theorem, LLPO and
geometric theories


A.4 Theories and models
We fix a set V of atomic propositions or prepositional letters. A proposition 0, r / > , . . . is a
syntactical object built from the atoms p, g, r 6 V with the usual logical connectives


0, 1, 0 A t f > , 0Vt /> , 0 -»Vi -"0


We let PV be the set of all propositions. Let F? be the Boolean algebra with two elements. A
valuation is a function v € F% that assigns a truth value to any of the atomic propositions.
Such a valuation can be extended to a map Py —> {0,1}, 0 i—> v(0) in the expected way. A
theory T is a subset of Py. A model of T is a valuation i; such that v((/)) = 1 for all 0 € T.


More generally given a Boolean algebra B we can define S-valuation to be a function
v e Bv. This can be extended as well to a map Py —» B, <$> \—> v(0)- A B-model of T is a
valuation v such that v(</>) = 1 for all 0 G T. The usual notion of model is a direct special case,
taking for B the Boolean algebra F2. For any theory there exists always a free Boolean algebra
over which T is a model, the Lindenbaum algebra of T, which can be also be defined as the
Boolean algebra generated by T, thinking of the elements of V as generators and the elements
of T as relations. The theory T is formally consistent if, and only if, its Lindenbaum algebra is
not trivial.


A.5 Completeness theorem
Theorem A. 11 (Completeness theorem) Let T be a theory. I f T is formally consistent then
T has a model.


This theorem is the completeness theorem for prepositional logic. Such a theorem is strongly
related to Hilbert's program, which can be seen as an attempt to replace the question of
existence of model of a theory by the formal fact that this theory is not contradictory.


Let B the Lindenbaum algebra of T. To prove completeness, it is enough to find a morphism
B —» F-2. assuming that B is not trivial, wich is the same as finding a prime ideal (which is
then automatically maximal) in B. Thus the completeness theorem is a consequence of the
existence of prime ideal in nontrivial Boolean algebra. Notice that this existence is clear in the
case where B is finite, hence that the completeness theorem is direct for finite theories.


A.6 Compactness theorem
The completeness theorem for an arbitrary theory can be seen as a corollary of the following
fundamental result.


Theorem A. 12 (Compactness theorem) Let T be a theory. If all finite subsets of T have a
model then so does T.


Suppose indeed that the compactness theorem holds, and let T be a formally consistent
theory. Then an arbitrary finite subset TO of T is also formally consistent. Furthermore, we
have seen that this implies the existence of a model for T<>. It follows then from the compactness
theorem that T itself has a model.
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Conversely, it is clear that the compactness theorem follows from the completeness theorem,
since a theory is formally consistent as soon as all its finite subsets are.


A simple general proof of the compactness theorem is to consider the product topology on
(0,1}V and to notice that the set of models of a given subset of T is a closed subset. The
theorem is then a corollary of the compactness of the space W := {0,1}V when compactness is
expressed (in classical mathematics) as: if a family of closed subsets of W has non-void finite
intersections, then its intersection is non-void.


A.7 LPO and LLPO


If V is countable (i.e., discrete and enumerable) we have the following alternative argument.
One writes V = {po,pi, • • •} and builds by induction a partial valuation vn on {pi \ i < n} such
that any finite subset of T has a model which extends vn, and vn+\ extends vn. To define vn+\
one first tries vn+i(pn) = 0. If this does not work, there is a finite subset of T such that any of
its model v that extends vn satisfies v(pn) = I and one can take vn+\(pn) = 1.


The non-effective part of this argument is contained in the choice of fn+i(pn)» which demands
to give a gobal answer to an infinite set of (elementary) questions.


Now let us assume also that we can enumerate the infinite set T. We can then build a
sequence of finite subsets of T in a nondecreasing way KQ C K] C . . . such that any finite
subset of T is a subset of some Kn. Assuming we have construct vn such that all Kj's have a
model extending vn, in order to define vn+\(pn) we have to give a global answer to the questions:
do all KJ'S have a model extending vn+\ when we choose vn+i(pn) = 1 ? For each j this is an
elementary question, having a clear answer. More precisely let us define gn : N —> {0,1} in
the following way: gn(j] = 1 if there is a model vnj of Kj extending vn with vnj(pn} — 1, else
9n(j) = 0. By induction hypothesis if gn(j) — 0 then all Kt have a model vnj extending vn


with vnj(pn) — 1, and all models vn<t of Kf extending vn satisfy vn<e(pn) = 1 if i > j. So we
can "construct" inductively the infinite sequence of partial models vn by using at each step the
non-constructive Bishop's principle LPO (Least Principle of Omniscience): given a function
/ : N —> {0,1}, either / = 1 or 3j € N f(j) ^ 1. This principle is applied at step n to the
function gn.


In fact we can slightly modify the argument and use only a combination of Dependant
Choice and of Bishop's principle LLPO (Lesser Limited Principle of Omniscience), which is
known to be strictly weaker than LPO: given two non-increasing functions g, h : N —> {0,1}
such that, for all j


g(j} = 1 V h(j) = 1


then we have g = I or h = 1. Indeed let us define hn :N —* {0,1}in a symmetric way: hn(j) — 1
if there is a model vnj of Kj extending vn with vn<j(pn) = 0, else hn(j) = 0. Cleraly gn and hn are
non-increasing functions. By induction hypothesis, we have for all j gn(j) = 1 V hn(j] = 1. So,
applying LLPO, we can define vn+i(pn) = I if gn — I and vn+i(pn) — 1 if hn = I . Nevertheless,
we have to use dependant choice in order to make this choice inifnitely often since the answer
"g = 1 or h = 1" given by the oracle LLPO may be ambiguous.


In a reverse way it is easy to see that the completeness theorem restricted to the countable
case implies LLPO.


A.8 Geometric formulae and theories


What would have happened if topologies without points had been discovered before topologies
with points, or if Grothendieck had known the theory of distributive lattices? (G. C. Rota [20]).
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A formula is geometric if, and only if, it is built only with the connectives 0,
from the prepositional letters in V. A theory if a (prepositional) geometric theory iff all the
formula in T are of the form <f> — » V where 0 and if) are geometric formulae.


It is clear that the formulae of a geometric theory T can be seen as relations for generating
a distributive lattice LT and that the Lindenbaum algebra of T is nothing else but the free
Boolean algebra generated by the lattice LT- It follows from Proposition 1.8 that T is formally
consistent if, and only if, LT is nontrivial. Also, a model of T is nothing else but an element of
Spec(Lr).


Theorem A. 13 (Completeness theorem for geometric theories) Let T be a geometric theory.
If T generates a nontrivial distributive lattice, then T has a model.


The general notion of geometric formula allows also existential quantification, but we restrict
ourselves here to the prepositional case. Even in this restricted form, the notion of geometric
theory is fundamental. For instance, if R is a commutative ring, we can consider the theory
with atomic propositions D(x) for each x e R and with axioms


• D(0R) -> 0


• 1 -» £>(!*)


. D(x) A D(y) -» D(xy)


• D(xy] -> D(x)


This is a geometric theory T. The model of this theory are clearly the complement of the prime
ideals. What is remarkable is that, while the existence of models of this theory is a nontrivial
fact which may be dependent on set theoretic axioms (such as dependent axiom of choices) its
formal consistency is completely elementary (as explained in the beginning of Section 3). This
geometric theory, or the distributive lattice it generates, can be seen as a point-free description
of the Zariski spectrum of the ring. The distributive lattice generated by this theory (called in
this paper the Zariski lattice of R) is isomorphic to the lattice of compact open of the Zariski
spectrum of R, while the Boolean algebra generated by this theory is isomorphic to the algebra
of the constructible sets.
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