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Abstract An example shows that if A = lim←− An is the inverse limit of an inverse system {ϕmn :
Am → An | m ≥ n} of Bézout (hence Prüfer) domains An , then A need not be a Prüfer (or a
Bézout) domain. If, however, each transition map ϕmn is surjective, the question whether A must
be a Prüfer domain is more subtle. A partial result is given for this context. Enhancement of this
result is considered by means of associated inverse systems of C P I -extensions, with applications
to Prüfer domains, Bézout domains and locally divided domains.

7.1 Introduction

This note is a sequel to the work initiated on inverse limits of integral domains in [5]. Because much
of [5] had to do with applications to certain infinite-dimensional integral domains called P∞V Ds,
it was natural to restrict attention in [5] to inverse limits of some special types of inverse systems
indexed by N, the set of positive integers. The contexts of several other applications in [5] were
motivated by the work in [6] on direct limits of integral domains. As a central result in [6] stated
that any direct limit (over a directed index set) of Prüfer domains is a Prüfer domain, it was natural
to ask in [5] whether the class of Prüfer domains is stable under inverse limit. In the quasilocal case,
there is a complete answer [5, Theorem 2.1 (g)]: the inverse limit of any inverse system of valuation
domains (indexed by N) is a valuation domain. For the special type of inverse system emphasized in
[5], it was established in [5, Theorem 2.21] that the class of Prüfer domains is stable under inverse
limit for that type of inverse system. The general question of whether the class of Prüfer domains
is stable under inverse limits of arbitrary inverse systems indexed by N was left open in [5]. In this
note, we resolve that question.

Sadly, the answer is negative, as Example 7.2.1 presents an inverse system of Prüfer domains
whose index set is N and whose inverse limit is not a Prüfer domain. From the point of view of
category theory, this fact is somewhat palatable, since a nontrivial product of rings is an inverse
limit (granted not over a directed index set) and is never an integral domain (Prüfer or otherwise).
Nevertheless, and more to the point, we notice that the inverse system {ϕmn : Am → An | m ≥ n}

59



60 On Inverse Limits of Bézout Domains

in Example 7.2.1 lacks one important ingredient; namely, its transition maps ϕmn are not surjective.
We thus come to a sharpening of the question: Is the class of Prüfer domains stable under inverse
limits of inverse systems which are indexed by N and which have surjective transition maps? The
bulk of this paper studies this question.

The prime ideals P of A := lim←− An include those of the An (assuming surjective ϕmn ) but we
do not know if that is essentially the complete story, as it was in the earlier context [5, Theorem
2.5 (a)]. (A related problem is that if B := lim←− Bn is another inverse limit such that Spec(An ) ∼=
Spec(Bn ) as partially ordered sets for each n, then it need not be the case that Spec(A) ∼= Spec(B)
[11, page 354, lines 1–14; Propositions 2.1 and 3.1]; for a positive partial result in this regard, see
[11, Theorem 5.7].) Our methods consider only P ∈ ∪ Spec(An ) as we seek to determine if AP
is a valuation domain. Theorem 7.2.3 and Corollary 7.2.4 provide a positive answer if each An is
a Bézout domain and each ϕmn is surjective when restricted to unit groups. Proposition 7.2.6 (b)
shows that two canonical valuation domains containing AP are isomorphic and hence, in a sense,
equally approximate AP . One of these canonical extensions of AP is studied via an associated
inverse system in which each An is replaced with a suitable C P I -extension (in the sense of [1]) so
that each transition map in the new inverse system has kernel a divided prime ideal (in the sense of
[2]). The latter inverse system falls under the rubric of [5], thus permitting use of results such as the
above-mentioned [5, Theorem 2.21]. For the sake of clarity, some of the “Prüferian” applications
in Proposition 7.2.6 (a) are couched in the more general context of locally divided domains (in the
sense of [2], [3]). Finally, Remark 7.2.7 explains that if the An are merely (commutative) rings
rather than integral domains, then even in the presence of surjective transition maps, Spec(lim←− An)

may be much larger than ∪ Spec(An ).
In addition to the notational conventions indicated above, we mention the following. All rings

considered are commutative with identity. If A is a ring, then U (A) denotes the set of units of A,
Spec(A) denotes the set of prime ideals of A and “dimension” refers to the Krull dimension of A.
If A is a domain with quotient field K , then an overring of A is any ring B such that A ⊆ B ⊆ K .
Any unexplained material is standard, as in [9], [10].

7.2 Results

We begin with a negative answer to the naı̈ve question.

Example 7.2.1 There exists an inverse system {ϕmn : Am → An | m ≥ n} such that An is a Bézout
(hence Prüfer) domain for each n ∈ N but A := lim←− An is not a Prüfer domain (and hence is not a
Bézout domain).

Proof Suppose, for the moment, that there exists an integrally closed integral domain A such that
A is not a Prüfer domain and the set of minimal valuation overrings of A is denumerable, say
{Vi | i ∈ N}. For each n ∈ N, put An := ∩n

i=1Vi . By [10, Theorem 107], An is a Bézout (and,
hence, Prüfer) domain for each n ∈ N. Moreover, ∩∞

n=1 An = ∩∞
i=1Vi = A since A is integrally

closed [9, page 231]. If m ≥ n in N, define ϕmn : Am → An to be the inclusion map. Then
{ϕmn | m ≥ n} evidently forms an inverse system, but its inverse limit, lim←− An = ∩∞

n=1 An = A, is
not a Prüfer (or a Bézout) domain.

It remains to construct an integral domain A with the properties supposed above. To this end,
let k be a countable field, X an indeterminate over k and V = k(X) + M a valuation domain with
maximal ideal M 
= 0. Then A := k + M has the desired properties. Indeed, A is integrally closed
but not a Prüfer domain, by standard facts about D + M constructions [9, Exercise 11 (2), page
202; Exercise 13 (2), page 286]. Also, the set of minimal valuation overrings of A is in one-to-one
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correspondence with the set of (minimal) valuation domains W of k(X) contained properly between
k and k(X): see [9, Exercise 13 (2), page 203]. Since k is countable, the set of monic irreducible
polynomials in k[X ] (resp., k[X−1]) is denumerable (cf. [10, Exercise 8, page 8]). It is well known
that such polynomials serve to classify the valuation domains W in question (cf. [12]) and so the
set of such W is denumerable. �

We next fix the riding assumptions and notation for the rest of the paper. We assume given
an N-indexed inverse system of integral domains Ak , {ϕmn : Am → An | m ≥ n}, which has the
property that each of its transition maps ϕmn is surjective. Put

A := lim←− An , �n : A → An the canonical map, Qn := ker(�n)

and
Qmn := ker(ϕmn) for m ≥ n.

The next result collects some useful facts. They may be proved as in the corresponding parts of
[5, Theorem 2.1, Lemma 2.2 and Proposition 2.4], although the ambient hypotheses for the cited
results were more stringent than our current riding assumptions.

Lemma 7.2.2 (a) A = {(an) ∈ ∏ An | ϕn+1,n(an+1) = an for each n ∈ N}.
(b) For each n ∈ N, �n is surjective and is the composite of the inclusion map A ↪→ ∏ Ak and

the canonical projection
∏

Ak → An .
(c) For each n ∈ N, Qn ∈ Spec(A) and A/Qn ∼= An.
(d) For each n ∈ N, Qn = {(ak) ∈ A | ak = 0 for each k ≤ n}.
(e) Q1 ⊇ Q2 ⊇ Q3 ⊇ . . . and ∩Qn = 0.
(f) If r ≥ n ∈ N, then Qrn = �r (Qn), �

−1
r (Qrn ) = Qn , ϕr+1,r restricts to a surjection

Qr+1,n → Qrn, and ϕ−1
r+1,r (Qrn ) = Qr+1,n .

(g) If r ≥ n ∈ N, then lim←−{Qrn | r ≥ n} = Qn canonically.

We turn now to the main question, namely, whether An being a Prüfer domain for each n implies
that A is a Prüfer domain; i.e., that AP is a valuation domain for each (without loss of generality)
nonzero P ∈ Spec(A). Our proofs require the restriction that P contain some Qν , a condition that
was automatically satisfied by the pullbacks treated in [5]. (See [5, Theorem 2.5 (a)]. We do not
know if the riding assumptions of the present paper ensure the P ⊇ Qν condition. See also Remark
7.2.7.) In view of Example 7.2.1, it seems natural to focus first on the case in which each An is a
Bézout domain. For this context, Theorem 7.2.3 gives a positive conclusion if ϕn+1,n (U (An+1 )) =
U (An ) for each n. (Notice that, since ϕn+1,n is surjective for each n, the latter condition holds
automatically if An+1 is quasilocal, that is a valuation domain, for each n. However, if An+1 is not
quasilocal, it need not be the case that ϕn+1,n(U (An+1 )) = U (An ).) Note that, in contrast with the
methods in [5], Theorem 7.2.3 and Corollary 7.2.4 avoid the assumption that Qn+1,n is a divided
prime ideal of An+1 for each n.

Theorem 7.2.3 For each n, suppose that An is a Bézout domain and that ϕn+1,n induces a surjec-
tion U (An+1)→ U (An ). If, in addition, P ∈ Spec(A) is such that P ⊇ Qν for some ν, then AP is
a valuation domain.

Proof It is enough to show that if α, γ ∈ AP , then either α ∈ γ AP or γ ∈ αAP . Without loss
of generality, we may assume that α, γ ∈ P. Write α = (αn), γ = (γn) ∈ ∏ An . By restricting
attention to the (cofinal) set {n ∈ N | n ≥ ν} and relabeling, we may assume that P ⊇ Q1, and so
αn, γn ∈ Pn := �n(P) for each n ≥ 1. Without loss of generality, αn 
= 0 and γn 
= 0 for all n.

Since An is a Bézout domain, it is a GCD-domain (in the sense of [10, page 32]). Let dn :=
gcd(αn, γn); in other words, dn is a greatest common divisor of αn and γn in An . Then αn = dnα

′
n
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and γn = dnγ
′
n , where α′n, γ ′

n ∈ An and gcd(α′n , γ ′
n) = 1. Fix n for the moment. Then, with

ϕ := ϕn+1,n , we have the equations

αn = ϕ(αn+1) = ϕ(dn+1)ϕ(α
′
n+1) = dnα

′
n,

γn = ϕ(γn+1) = ϕ(dn+1)ϕ(γ
′
n+1) = dnγ

′
n.

Since An+1 is a Bézout domain, 1 = gcd(α′n+1, γ
′
n+1) is an An+1-linear combination of α′n+1 and

γ ′
n+1. Applying ϕ, we see that 1 is an An -linear combination of ϕ(α′n+1) and ϕ(γ ′

n+1). Thus,
gcd(ϕ(α′n+1), ϕ(γ

′
n+1)) = 1. It now follows via [10, Theorem 49 (a)] from the above displayed

equations that
gcd(αn, γn) = ϕ(dn+1) gcd(ϕ(α′n+1), ϕ(γ

′
n+1)) = ϕ(dn+1).

As any two gcds of αn and γn are associates, there exists un ∈ U (An ) such that ϕn+1,n(dn+1)

= undn .
Since U (A1) = ϕ21(U (A2)), we may redefine d2 (to be an associate of the former d2) so as to

ensure that ϕ21(d2) = d1. (Specifically, replace d2 with v2d2, where v2 ∈ U (A2) satisfies ϕ21(v2) =
u−1

1 .) Similarly, we may use the hypotheses to redefine d3, d4, . . . so that ϕn+1,n (dn+1) = dn for all
n ≥ 1. By abus de langage, we keep the above α′n, γ ′

n notation. Then (α′n) ∈ A, since ϕ := ϕn+1,n
satisfies

dnϕ(α
′
n+1) = ϕ(dn+1)ϕ(α

′
n+1) = ϕ(αn+1) = αn = dnα

′
n

and dn 
= 0. Similarly, (γ ′
n) ∈ A. Observe that it suffices to show that (α′n)AP and (γ ′

n)AP

are comparable under inclusion, for δ := (dn) ∈ A satisfies α = δ(α′n) and γ = δ(γ ′
n). Thus,

we may replace α and γ with (α′n) and (γ ′
n), respectively. In other words, we may assume that

gcd(αn, γn) = 1 for each n.
We next give two ways to complete the proof. First, recall that gcd(αn, γn) = 1 for each n.

Hence, αn An + γn An = An for each n. Then localizing at Pn yields that

(An )Pn = αn(An )Pn + γn(An )Pn ⊆ Pn(An )Pn ⊂ (An )Pn ,

the desired contradiction.
The following is an alternate way to finish the proof. Since inverse limit preserves monomor-

phisms, we can view A ⊆ D := lim←−(An )Pn . As An is a Prüfer domain, (An )Pn is a valuation
domain for each n, and so by [5, Theorem 2.1 (g)], D is a valuation domain. Thus, without loss of
generality, αγ−1 ∈ D. In particular, ξn := αnγ

−1
n ∈ (An )Pn for all n. Hence, ξn = bnz−1

n for some
bn ∈ An and zn ∈ An \ Pn . As αnγ

−1
n is in “lowest terms” and An is a GCD-domain, it follows

that γn|zn in An , whence zn ∈ Anγn ⊆ Pn , the desired contradiction, thus completing the alternate
proof. �

For an example illustrating Theorem 7.2.3, begin with a valuation domain (V , M) having prime
spectrum

M = P1 ⊃ P2 ⊃ · · · ⊃ Pn ⊃ Pn+1 ⊃ · · · ⊃ 0

and consider the inverse system defined by An := V/Pn, with the transition maps ϕmn : V/Pm →
V/Pn the canonical surjections if m ≥ n.

Corollary 7.2.4 For each n, suppose that An is a Bézout domain and that ϕn+1,n induces a surjec-
tion U (An+1) → U (An ). If, in addition, Spec(A) = ∪{im(Spec(An ) → Spec(A)) | n ∈ N}, then
A is a Prüfer domain.

Proposition 7.2.6 studies further the condition that AP is a valuation domain. First, recall from
[1], [7] that if P is a prime ideal of an integral domain R, the C P I - extension of R with respect to
P is the integral domain given by the following pullback:

R(P) := RP ×RP/P RP R/P = R + P RP .
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We assume familiarity with the material on Spec(R(P)) in [1], [7]. Note also that P RP is a divided
prime ideal of R(P): cf. [1, Proposition 2.5, Theorem 2.4], [2, Lemma 2.4 (b), (c)].

Suppose that {ϕmn : Am → An | m ≥ n} satisfies our riding hypotheses. We proceed to define
an inverse system {ϕ∗mn : A∗

m → A∗
n | m ≥ n ≥ 2}, called the associated inverse system of {ϕmn},

which is more tractable. For each n ≥ 2 in N, let

A∗
n := An (Qn1) = An + Qn1(An )Qn1 .

Define ϕ∗n+1,n : A∗
n+1 → A∗

n by

ϕ∗n+1,n (a + qz−1) = ϕn+1,n (a)+ ϕn+1,n (q)ϕn+1,n (z)
−1

for all a ∈ An+1 , q ∈ Qn+1,1 and z ∈ An+1 \ Qn+1,1. Since Lemma 7.2.2 (f) ensures that
Qn+1,1 = ϕ−1

n+1,n (Qn1), an easy calculation verifies that ϕ∗n+1,n is well defined. Then the inverse
system {ϕ∗mn} is obtained by defining

ϕ∗mn := ϕ∗n+1,n ◦ ϕ∗n+2,n+1 ◦ · · · ◦ ϕ∗m,m−1 if m > n + 1 ≥ 3.

By analogy with the riding notation, we put A∗ := lim←− A∗
n , Q∗

n := ker(A∗ → A∗
n) and Q∗

mn :=
ker(ϕ∗mn) if m ≥ n ≥ 2.

Lemma 7.2.5 (a) establishes that, apart from rescaling by using all n ≥ 2, {ϕ∗mn} satisfies our rid-
ing hypotheses, and Lemma 7.2.5 (b) shows that {ϕ∗mn} has a desirable property which was assumed
for the inverse systems treated in [5].

Lemma 7.2.5 Let {ϕmn : Am → An | m ≥ n} be an N-indexed inverse system of locally divided
integral domains for which ϕmn is surjective for each m ≥ n in N. Let {ϕ∗mn : A∗

m → A∗
n | m ≥ n}

be the associated inverse system (using the notation introduced above). Then:
(a) ϕ∗mn is surjective for each m ≥ n ≥ 2 in N.
(b) Q∗

n+1,n is a divided prime ideal of A∗
n+1 for each n ≥ 2.

Proof (a) Without loss of generality, m = n + 1. Then it is easy to verify the assertion by using
the explicit construction of ϕ∗n+1,n given above, since Lemma 7.2.2 (f) ensures that ϕn+1,n sends
Qn+1,1 onto Qn1 and An+1 \ Qn+1,1 onto An \ Qn1.

(b) Since Qn+1,n ⊆ Qn+1,1, a direct calculation using the above explicit construction of ϕ∗n+1,n
shows that

Q∗
n+1,n := ker(ϕ∗n+1,n ) = Qn+1,n (An+1)Qn+1,1 .

The assertion is a consequence of the following useful fact: if P ⊆ Q are prime ideals of an
integral domain R such that RQ is a divided domain, then P RQ is a divided prime ideal of R(Q) :=
R + QRQ . (Apply this fact to R = An+1 , P = Qn+1,n , and Q = Qn+1,1.) To prove the above
“useful fact”, note by an easy calculation that one has to show that P RP = P RQ , and so an
appeal to the proof of a characterization of locally divided domains [3, Theorem 2.4] completes the
argument. �

Proposition 7.2.6 Let {ϕmn : Am → An | m ≥ n} satisfy the riding hypotheses, with A := lim←− An.
Let {ϕ∗mn : A∗

m → A∗
n | m ≥ n} be the associated inverse system, with A∗ := lim←− A∗

n . Then:
(a) Let C be a class of integral domains. If An ∈ C for each n ∈ N, then A∗ ∈ C in each of the

following cases: C is the class of all (i) Prüfer domains, (ii) Bézout domains, (iii) divided domains,
(iv) locally divided domains.

(b) Suppose that An is a locally divided domain for each n (for instance, repeat the hypotheses
in (a).) Let P ∈ Spec(A) with P ⊇ Q1; take Pn := �n(P). Put B := lim←− An (Pn). Then
P := lim←− Pn(An )Pn ∈ Spec(B). Moreover, the canonical injection AP → BP is an isomorphism if
and only if the canonical injection AP → lim←−(An )Pn is an isomorphism. Indeed, BP and lim←−(An )Pn

are isomorphic as AP -algebras.
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Proof (a) Note that A∗
n ∈ C for each n ≥ 2. Indeed, for (i) and (ii), this holds since each overring

of a Prüfer (resp., Bézout) domain is a Prüfer (resp., Bézout) domain [9], while for (iii) and (iv),
the proof of [4, Proposition 2.12] combines with [2, Lemma 2.2 (a), (c)] to ensure that the class of
divided (resp., locally divided) domains is stable for C P I -extensions. Let {ϕ∗mn : A∗

m → A∗
n} be

the associated inverse system, with A∗ := lim←− A∗
n .

The strategy is now to apply appropriate results of [5] to {ϕ∗mn}. To be able to do so, we must
verify that {ϕ∗mn} satisfies the riding assumptions of [5]. In view of Lemma 7.2.5, it follows from
[5, Remark 2.24] that we need only verify that A∗

2 is not a field and Q∗
n+1,n 
= 0 for all n ≥ 2.

If A∗
2 is a field, then by cofinality, we can delete the index 2 ∈ N. If the concern persists, then by

cofinality, we may assume that A∗
n+1 = An+1(Qn+1,1) is a field for each n ∈ N, whence Qn+1,1 = 0

and ϕn+1,1 is an isomorphism for each n ∈ N. In that case, A ∼= A1 ∈ C and so, since A∗
n
∼= An for

each n, A∗ ∼= lim←− An = A ∈ C.
Similarly, if passing to cofinal index sets does not remove concerns about Q∗

n+1,n , then we may
assume that Q∗

n+1,n = 0 for each n ∈ N. By Lemma 7.2.5, it follows that A∗ ∼= A∗
2 ∈ C.

We may now apply the results of [5] to {ϕ∗mn} as follows: for (i), use [5, Theorem 2.21]; for (ii),
use [5, Corollary 2.23]; for (iii), use [5, Corollary 2.17 (a)]; and for (iv), use [5, Corollary 2.17 (b)].

(b) As P ⊇ Q1 ⊇ Qn = ker(�n), we have Pn ∈ Spec(An ) for each n. As P = �−1
n (Pn), we

infer a canonical ring homomorphism α : AP → D := lim←−(An )Pn . It is straightforward to use the
construction of α to verify that α is an injection. We next sketch how to rework the construction of
the “associated inverse system” to produce B.

We produce an inverse system {ψmn : Bm → Bn | m ≥ n ≥ 2} as follows. For each n ∈
N, consider the C P I -extension Bn := An(Pn) = An + Pn(An )Pn . As ϕ−1

n+1,n (Pn) = Pn+1 (as
a consequence of Lemma 7.2.2 (f), (g)), we can mimic the construction of ϕ∗n+1,n to produce a
surjective ring homomorphism ψn+1,n : Bn+1 → Bn and, hence, the required surjection ψmn :
Bm → Bn by composition if m > n + 1 ≥ 3. We show that the methods of [5] apply, more or less,
in studying B := lim←− Bn .

Observe that the kernel of ψn+1,n is Qn+1,n(An+1 )Pn+1 . Since the hypothesis in (b) ensures
that (An+1 )Pn+1 is a divided domain, reasoning as in the proof of Lemma 7.2.5 (b) shows that
ker(ψn+1,n ) is a divided prime ideal of Bn+1. There are two ways that the methods of [5] might
not apply: either each such ψn+1,n is an isomorphism or each Bn is a field. In the first case, all
the canonical maps in question are isomorphisms, since AP , BP and lim←−(An )Pn all canonically
identify with (A1)P1 in this case. In the second case, each Pn = 0 by the standard theory of C P I -
extensions, whence the inverse systems defining A and B are essentially the same, with AP , BP
and lim←−(An )Pn all canonically identified with the quotient field of A1 in this case. Thus, we can
assume henceforth that the inverse system {ψmn} satisfies the riding assumptions in [5].

View P := lim←− Pn(An )Pn canonically inside lim←− Bn = B. It is straightforward to use the

condition ϕ−1
n+1,n (Pn) = Pn+1 to verify that P ∈ Spec(B). (The same conclusion holds in the

two cases noted above, for then P ∼= P1(A1)P1 and B ∼= B1.) Therefore, by [5, Proposition
2.15 (d)], the canonical ring homomorphism β : BP → E := lim←−(Bn)Pn (An )Pn

is an isomor-
phism. Moreover, there is an isomorphism γ : D → E because one has compatible isomorphisms
(An )Pn → (Bn)Pn (An )Pn

at every level. To finish the proof of (b), it suffices to find a ring homomor-
phism δ : AP → BP such that β ◦ δ = γ ◦ α : AP → E .

By composing the inclusions A → B and B → BP , one obtains an injection f : A → BP . We
claim that f (A \ P) ⊆ B \ P. Indeed, if a = (an) ∈ A ∩ P, then an ∈ Pn(An )Pn ∩ An = Pn
for each n, whence a ∈ lim←− Pn = P, thus proving the claim. The universal mapping property of
localization produces a unique ring homomorphism δ : AP → BP that extends f , and a routine
calculation verifies that β ◦ δ = γ ◦ α, to complete the proof. �

In the context of Proposition 7.2.6 (b), suppose that An is a Prüfer (hence, locally divided) domain
for each n. Then both BP and lim←−(An )Pn are valuation domains, by [5, Theorem 2.21 and Theorem
2.1 (g)]. (In the two degenerate cases noted above, the assertion about BP follows since B ∼= B1 is
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Prüfer in these cases.) Thus, we come to the main point of Proposition 7.2.6 (b): these two standard
ways to produce a valuation domain containing AP are isomorphic, and AP coincides with the first
of these valuation domains if and only if AP coincides with the second.

Remark 7.2.7 It is well known (cf. [6]) that if {Bi } is a directed system of (commutative) rings
indexed by a directed index set, then Spec(lim−→ Bi ) ∼= lim←− Spec(Bi ). Accordingly, it may seem
reasonable to speculate that if {Dn} is an inverse system of rings which is indexed by N and has
surjective transition maps, then there should be a close connection between Spec(lim←− Dn) and lim−→
Spec(Dn ). If each Dn is an integral domain, this is indeed so for certain natural inverse systems:
see [5, Theorem 2.5 (a)]. However, the following example shows that the situation can be more
complicated if the Dn are not integral domains. In this example, each Dn is a principal ideal ring.

Let {ki | i ∈ N} be any sequence of fields. For each n ∈ N, put Dn := ∏n
i=1 ki . If r ≥ n

in N, let ϕrn : Dr → Dn denote the canonical projection map; of course, each ϕrn is surjective.
Moreover, lim−→ Spec(Dn ) is countable, since it can be viewed as a union of a countable chain of finite
sets. However, {ϕrn | r ≥ n} leads to D := lim←− Dn which is such that Spec(D) is not countable.

Indeed, D ∼=∏∞
i=1 ki canonically, and so Spec(D) is the Stone-Čech compactification of N when N

is endowed with the discrete topology. (The “Stone-Čech” part of the preceding assertion seems to
be folklore. In case ki = R for all i, this piece of folklore follows from [8, items 7.10 and 7.11, page
105].) We conclude from this example that care must be taken if one attempts to extend the work
in [5] and this note to N-indexed inverse systems having surjective transition maps for arbitrary
(commutative) rings.
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