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Abstract

Let D be an integral domain with quotient field K and let X be an indeterminate over D. Also, let TTT :=
{Tλ | λ ∈ Λ} be a defining family of quotient rings of D and suppose that ∗ is a finite type star operation on D

induced byTTT . We show that D is a P∗MD (respectively, PvMD) if and only if (cD(fg))∗ = (cD(f )cD(g))∗
(respectively, (cD(fg))w = (cD(f )cD(g))w) for all 0 �= f,g ∈ K[X]. A more general version of this result
is given in the semistar operation setting. We give a method for recognizing PvMD’s which are not P∗MD’s
for a certain finite type star operation ∗. We study domains D for which the ∗-class group Cl∗(D) equals
the t-class group Clt (D) for any finite type star operation ∗, and we indicate examples of PvMD’s D such
that Cl∗(D) � Clt (D). We also compute Clv(D) for certain valuation domains D.
© 2007 Elsevier Inc. All rights reserved.
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Introduction and background

Let D be an integral domain with quotient field K . Let F (D) be the set of all nonzero D-
submodules of K and let F (D) be the set of all nonzero fractional ideals of D, i.e., E ∈ F (D) if
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E ∈ F (D) and there exists a 0 �= d ∈ D with dE ⊆ D. Let f (D) be the set of all nonzero finitely
generated D-submodules of K . Then, obviously f (D) ⊆ F (D) ⊆ F (D).

A semistar operation on D is a map � :F (D) → F (D), E �→ E�, such that the following
properties hold for all 0 �= x ∈ K and all E,F ∈ F (D):

(�1) (xE)� = xE�;
(�2) E ⊆ F implies E� ⊆ F�;
(�3) E ⊆ E� and E�� := (E�)� = E�.

Given a semistar operation � on D, the following basic formulas, which hold for all
E,F ∈ F (D), follow easily from the axioms:

(EF)� = (E�F )� = (EF�)� = (E�F �)�;
(E + F)� = (E� + F)� = (E + F�)� = (E� + F�)�;
(E : F)� ⊆ (E� : F�) = (E� : F) = (E� : F)�, if (E : F) �= (0);

(E ∩ F)� ⊆ E� ∩ F� = (E� ∩ F�)�.

(Cf. for instance [22, Theorem 1.2 and p. 174].)
A (semi)star operation is a semistar operation which when restricted to F (D) is a star opera-

tion (the reader may consult [31, Sections 32 and 34] for a quick review of star operations, which
are denoted by the symbol ∗). It is easy to see that a semistar operation � on D is a (semi)star
operation if and only if D� = D.

If � is a semistar operation on D, then there is a map �f :F (D) → F (D) defined as follows:

E�f :=
⋃{

F�
∣∣ F ∈ f (D) and F ⊆ E

}
for all E ∈ F (D).

It is easy to see that �f is a semistar operation on D, called the semistar operation of finite type
associated to �. Note that F� = F�f for all F ∈ f (D). A semistar operation � is called a semistar
operation of finite type (or a semistar operation of finite character) if � = �f . It is easy to see that
(�f )f = �f (i.e., �f is of finite type).

If �1 and �2 are two semistar operations on D, we say that �1 � �2 if E�1 ⊆ E�2 for all
E ∈ F (D). This is equivalent to saying that (E�1)�2 = E�2 = (E�2)�1 for all E ∈ F (D). Obvi-
ously, for any semistar operation � on D, we have �f � �, and if �1 � �2, then (�1)f � (�2)f .

Let I ⊆ D be a nonzero ideal of D and let � be a semistar operation on D. We say that I is
a quasi-�-ideal (respectively, �-ideal) of D if I � ∩ D = I (respectively, I � = I ). Similarly, we
call a quasi-�-ideal (respectively, �-ideal) of D a quasi-�-prime (respectively, �-prime) ideal of
D if it is also a prime ideal. We call a maximal element in the set of all proper quasi-�-ideals
(respectively, �-ideals) of D a quasi-�-maximal (respectively, �-maximal) ideal of D. Note that
if I ⊆ D is a �-ideal, then it is also a quasi-�-ideal, and when D = D� (i.e., when � is a(semi)star
operation), the notions of quasi-�-ideal and �-ideal coincide.

It is not hard to prove that a quasi-�-maximal ideal is a prime ideal and that each proper quasi-
�f -ideal is contained in a quasi-�f -maximal ideal. More details can be found in [25, p. 4781].
We will denote the set of quasi-�-prime (respectively, �-prime) ideals of D by QSpec�(D) (re-
spectively, Spec�(D)) and the set of quasi-�-maximal (respectively, �-maximal) ideals of D by
QMax�(D) (respectively, Max�(D)). By the previous observations, we have that QMax�f (D)
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(respectively, Max�f (D)) is nonempty for each semistar (respectively, (semi)star) operation �

on D.
If T is an overring of D, then we can define a semistar operation �{T } on D by E�{T } := ET

for all E ∈ F (D). It is easily seen that �{T } is a semistar (non(semi)star, if D � T ) operation of
finite type on D.

If {�λ | λ ∈ Λ} is a family of semistar operations on D, then ∧{�λ | λ ∈ Λ} is the semistar
operation on D defined as follows:

E∧{�λ|λ∈Λ} :=
⋂{

E�λ
∣∣ λ ∈ Λ

}
for all E ∈ F (D).

In particular, if TTT := {Tλ | λ ∈ Λ} is a given family of overrings of D, then ∧TTT denotes the
semistar operation ∧{�{Tλ} | λ ∈ Λ}.

Let Δ be a set of prime ideals of an integral domain D and LLL(Δ) the set of localizations
{DP | P ∈ Δ}. The semistar operation �Δ := ∧LLL(Δ) is called the spectral semistar operation
associated to Δ. A semistar operation � on an integral domain D is called a spectral semistar
operation if there exists a subset Δ of the prime spectrum Spec(D) of D such that � = �Δ. Note
that for Δ = ∅, we set �Δ := �{K}, where K is the quotient field of D.

When Δ := Δ(�f ) := QMax�f (D), we set �̃ := �Δ(�f ), i.e.,

E�̃ :=
⋂{

EDM

∣∣ M ∈ QMax�f (D)
}

for all E ∈ F (D).

A semistar operation � is said to be stable if (E ∩ F)� = E� ∩ F� for all E,F ∈ F (D).
Note that if T is an overring of an integral domain D, then �{T } is stable if and only if T is
D-flat (cf. [50, Proposition 1.7] and [42, Theorem 7.4(i)]). Clearly, if {�λ | λ ∈ Λ} is a family of
stable semistar operations on D, then ∧{�λ | λ ∈ Λ} is also a stable semistar operation on D. In
particular, if TTT is a family of flat overrings of D, then ∧TTT is a stable semistar operation on D.
Thus every spectral semistar operation is stable (cf. also [22, Lemma 4.1(3)]).

It is well known that the semistar operation �̃ is a stable semistar operation of finite type [22,
Corollaries 3.9 and 4.6]. We call �̃ the stable semistar operation of finite type associated to �.
Furthermore, it is not hard to prove that QMax̃�(D) = QMax�f (D) [25, Corollary 3.5(2)]; thus˜̃� = �̃ = �̃f . Clearly �̃ � �, and since ( �̃ )f = �̃, then �̃ � �f � �. Moreover, it is known that if
�1 � �2, then �̃1 � �̃2 [25, Propositions 3.1 and 3.4(3)].

For each E ∈ F (D), set E−1 := (D : E) := {z ∈ K | zE ⊆ D}. Clearly E ∈ F (D) \ F (D) if
and only if E−1 = {0}. As usual, we let vD (or just v) denote the v-(semi)star operation defined
by Ev := (D : (D : E)) = (E−1)−1 for all E ∈ F (D). (Note that E ∈ F (D) \ F (D) implies that
Ev = K .) We denote (vD)f by tD (or just by t), the t-(semi)star operation on D; and we denote
the stable semistar operation of finite type associated to vD (or, equivalently, to tD) by wD (or
just by w), i.e., wD := ṽD = t̃D . Clearly wD � tD � vD . Moreover, from [31, Theorem 34.1(4)],
we immediately deduce that � � vD , and thus �̃ � wD and �f � tD , for each (semi)star operation
� on D.

Remark. Note that the (semi)star operation ṽ coincides with the (semi)star operation defined as
follows:

Ew :=
⋃{

(E : H)
∣∣ H ∈ f (D) and Hv = D

}
for all E ∈ F (D).
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In the “star operation setting,” this operation was first considered by J. Hedstrom and E. Houston
in 1980 [35, Section 3] under the name of the F∞-operation. Later, from 1997, this operation was
intensively studied by F. Wang and R. McCasland (cf. [51] and [52]) under the name of the w-
operation. Also note that the notion of w-ideal coincides with the notion of semidivisorial ideal
considered by S. Glaz and W. Vasconcelos in 1977 [32]. Finally, in 2000, for each star operation
∗ on D, D.D. Anderson and S.J. Cook [7] considered the star operation ∗w on D defined as
follows:

E∗w :=
⋃{

(E : H)
∣∣ H ∈ f (D) and H ∗ = D

}
for all E ∈ F (D).

It can be shown that when � = ∗ is a star operation, then ∗w coincides with ∗̃ (defined in the
obvious way as a star operation on F (D)) [7, Corollary 2.10].

Finally, note that a deep link between the semistar operations of type �̃ and localizing systems
of ideals was established by M. Fontana and J. Huckaba in [22].

Let � be a semistar operation on the integral domain D.
For I ∈ F (D), we say that I is �-finite if there exists a J ∈ f (D) such that J � = I �. (Note

that in the above definition, we do not require that J ⊆ I .) It is immediate to see that if �1 � �2

are semistar operations and I is �1-finite, then I is �2-finite. In particular, if I is �
f

-finite, then it
is �-finite. The converse is not true in general, and one can prove that I is �

f
-finite if and only if

there exists J ∈ f (D), J ⊆ I , such that J � = I � [28, Lemma 2.3]. This result was proved in the
star operation setting by M. Zafrullah in [58, Theorem 1.1].

For I a nonzero ideal of D, we say that I is �-invertible if (II−1)� = D�. From the fact that
QMax̃�(D) = QMax�f (D), it easily follows that an ideal I is �̃-invertible if and only if I is �f -
invertible (note that if � is a semistar operation of finite type, then (II−1)� = D� if and only if
II−1 �⊆ M for all M ∈ QMax�(D)). It is well known that if I is �f -invertible, then I and I−1

are both �f -finite [28, Proposition 2.6].
An integral domain D is called a Prüfer �-multiplication domain (for short, P�MD) if every

nonzero finitely generated ideal of D is �f -invertible (cf. for instance [24]). Note that for � = ∗
a star operation of finite type on D, P∗MD’s were introduced by Houston, Malik, and Mott in
[37] as ∗-multiplication domains (for short, ∗-MD’s). When � = v, we have the classical notion
of PvMD (cf. for instance [33,40,44]); when � = d , where d denotes the identity (semi)star
operation, we have the notion of Prüfer domain [31, Theorem 22.1]. Note that from the definition
and from the previous observations, it immediately follows that the notions of P�MD, P�f MD,
and P̃�MD coincide.

Let K be the quotient field of an integral domain D and let X be an indeterminate over K . For
each 0 �= h ∈ K[X], we denote by cD(h) the content of h with respect to D, i.e., the D-submodule
of K generated by the coefficients of h. Clearly cD(h) ∈ f (D), and if T is an overring of D,
then cT (h) = cD(h)T .

Gauss’ Lemma for the content of polynomials holds for Dedekind domains (or, more gener-
ally, for Prüfer domains). A more precise statement is the following:

Gauss–Gilmer–Tsang Theorem. (See [31, Corollary 28.5].) Let D be an integral domain with
quotient field K . Then D is a Prüfer domain if and only if cD(fg) = cD(f )cD(g) for all 0 �=
f,g ∈ K[X].
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Remark. W. Krull [41, p. 557] showed that if D is an integrally closed domain with quotient
field K , then we have (cD(fg))v = (cD(f )cD(g))v for all 0 �= f,g ∈ K[X], and called it Gauss’
Theorem. Obviously the currently known Gauss’ Lemma (that goes as: the product of two prim-
itive polynomials over a UFD is again primitive [17, p. 165]) and Gauss’ own statement (let
f and g be monic polynomials in one indeterminate with rational coefficients, if the coeffi-
cients of f and g are not all integers, then the coefficients of fg are not all integers [19, p. 1])
follow from Krull’s above-mentioned result. As pointed out before the statement of the above
theorem, Krull’s Gauss’ Theorem also holds for Prüfer domains; because for D a Prüfer do-
main with quotient field K , we have (cD(f ))v = cD(f ) for all 0 �= f ∈ K[X]. Thus Krull’s
Gauss’ Theorem for Prüfer domains becomes: if D is a Prüfer domain with quotient field K ,
then cD(fg) = cD(f )cD(g) for all 0 �= f,g ∈ K[X]. The converse of this statement was in-
cluded in H. Tsang’s unpublished dissertation [49]. This result was later, and independently,
rediscovered by R. Gilmer and published in [30]. Since neither of these authors attributed their
result to Gauss, we feel it appropriate to include their names with Gauss’ name. For more on the
history of Gauss’ Lemma, the reader may consult Anderson [3].

For general integral domains, we always have the inclusion of ideals cD(fg) ⊆ cD(f )cD(g),
and more precisely we have the following:

Dedekind–Mertens Lemma. (See [31, Theorem 28.1].) Let 0 �= f,g ∈ K[X] and let m :=
deg(g). Then

cD(f )mcD(fg) = cD(f )m+1cD(g).

In Section 1, we prove a semistar extension of the Gauss–Gilmer–Tsang Theorem (as stated
above), i.e., we show that if � is a stable semistar operation of finite type defined on an integral
domain D, then D is a P�MD if and only if cD(fg)� = (cD(f )cD(g))� for all 0 �= f,g ∈ K[X].
Using this result, we show that there is an abundance of PvMD’s which are not P�MD’s for
appropriate stable (semi)star operations � of finite type on D.

For a finite type star operation ∗ on D, let Inv∗(D) be the group of ∗-invertible ∗-ideals
of D under ∗-multiplication and let Prin(D) be the subgroup of nonzero principal fractional
ideals of D. Call Cl∗(D) := Inv∗(D)/Prin(D) the ∗-class group of D. The ∗-class groups were
discussed in [10].

In Section 2, we study the ∗-class group and identify a situation in which for every finite type
star operation ∗ on D, we have Cl∗(D) = Clt (D); and using the results of Section 1, we give
examples of integral domains D for which Cl∗(D) � Clt (D) for some finite type star operation
∗ on D.

In Section 3, we deepen the study of the v-class group with special attention to the case
of valuation domains. In particular, we compute Clv(D) when D is a valuation domain with
branched maximal ideal.

1. Prüfer �-multiplication domains

With all the introduction at hand, we start right away with the promised characterization of
P�MD’s. Using Theorem 1.1 below, we conclude that D is a PvMD if and only if cD(fg)w =
(cD(f )cD(g))w for all 0 �= f,g ∈ K[X]. Also, using the proof of Theorem 1.1, we give a method
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for recognizing a PvMD which has a stable (semi)star operation � of finite type such that D is
not a P�MD.

Theorem 1.1. Let D be an integral domain with quotient field K , let X be an indeterminate
over K , and let � be a stable semistar operation of finite type defined on D. Then the following
are equivalent:

(i) cD(fg)� = (cD(f )cD(g))� for all 0 �= f,g ∈ K[X].
(ii) DM is a valuation domain for all M ∈ QMax�(D).

(iii) D is a P�MD.

Proof. By the observations in the previous section, we know that under the present hypotheses,
� = �̃ [22, Corollary 3.9(2)], and thus F�DM = FDM for all M ∈ QMax�(D) and F ∈ f (D).

(i) ⇒ (ii). Let M ∈ QMax�(D). From (i), we deduce that cDM
(fg) = cD(fg)DM =

cD(fg)�DM = (cD(f )cD(g))�DM = cD(f )cD(g)DM = cDM
(f )cDM

(g). This implies that DM

is a valuation domain (i.e., a local Prüfer domain) by the Gauss–Gilmer–Tsang Theorem.
(ii) ⇒ (iii). Let F ∈ f (D). Note that for each flat overring T of D, we have F−1T = (FT )−1.

Also recall that for all M ∈ QMax�(D), every nonzero finitely generated ideal is invertible in the
valuation domain DM . Therefore, we have that (FF−1)� = ⋂{(FF−1)DM | M ∈ QMax�(D)} =⋂{FDMF−1DM | M ∈ QMax�(D)} = ⋂{FDM(FDM)−1 | M ∈ QMax�(D)} = ⋂{DM | M ∈
QMax�(D)} = D�.

(iii) ⇒ (i). By the Dedekind–Mertens Lemma, cD(f )mcD(fg) = cD(f )m+1cD(g) for all 0 �=
f,g ∈ K[X], where m = deg(g). In particular, we have (cD(f )mcD(fg))� = (cD(f )m+1cD(g))�.
Since D is a P�MD, if F := cD(f ) ∈ f (D), then (FF−1)� = D� = (Fm(Fm)−1)�. Therefore:

cD(fg)� = ((
Fm

(
Fm

)−1)�
cD(fg)

)�

= (
cD(f )m

(
Fm

)−1
cD(fg)

)� = (
cD(f )m+1(Fm

)−1
cD(g)

)�

= (
Fm

(
Fm

)−1
cD(f )cD(g)

)� = ((
Fm

(
Fm

)−1)�
cD(f )cD(g)

)�

= (
cD(f )cD(g)

)�
. �

Corollary 1.2. Let D be an integral domain with quotient field K , let X be an indeterminate
over K , and let � be a semistar operation defined on D. Then the following are equivalent:

(i) cD(fg)̃� = (cD(f )cD(g))̃� for all 0 �= f,g ∈ K[X].
(ii) DM is a valuation domain for all M ∈ QMax�f (D).

(iii) D is a P�MD.

Proof. Apply Theorem 1.1 to �̃, the stable semistar operation of finite type associated to �. Recall
that from QMax�f (D) = QMax̃�(D), we already deduced that the notions of P�MD and P̃�MD
coincide. �
Corollary 1.3. Let D be an integral domain and let � be a semistar operation of finite type
induced by a family TTT of flat overrings of D, i.e., � = ∧TTT . Then D is a P�MD if and only if
cT (fg) = cT (f )cT (g) for all 0 �= f,g ∈ K[X] (i.e., T is a Prüfer domain) and all T ∈ TTT .
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Proof. Note that in this case, � is stable because each overring T ∈ TTT is flat, and � is of finite
type by assumption. Therefore � = �̃. Moreover, we have cD(h)�T = cD(h)T = cT (h) for all
0 �= h ∈ K[X]. The conclusion then follows immediately from Theorem 1.1 since cD(fg)� =⋂{cT (fg) | T ∈ TTT } and (cD(f )cD(g))� = ⋂{cT (f )cT (g) | T ∈ TTT }. �
Remark 1.4. Let D be an integral domain, Δ a subset of Spec(D), and � := �Δ, the spectral
semistar operation associated to Δ. If we assume that Δ is quasi-compact (as a subspace of
Spec(D) endowed with the Zariski topology), then the semistar operation � is a stable semistar
operation of finite type [22, Corollary 4.6(2)], and thus we can apply Corollary 1.3 to this case.

The next corollary is a particularly significant case of Corollary 1.3.

Corollary 1.5. Let D be an integral domain with quotient field K , let X be an indeterminate
over K , and let � be the (semi)star operation of finite type induced by a defining family TTT of D

consisting of quotient rings of D, i.e., TTT := {Tλ | λ ∈ Λ} with D = ⋂{Tλ | λ ∈ Λ} and each Tλ is
a ring of fractions of D. Then the following are equivalent:

(i) cD(fg)� = (cD(f )cD(g))� for all 0 �= f,g ∈ K[X].
(ii) Each Tλ ∈ TTT is a Prüfer domain.

(iii) D is a P�MD.

Since the w-operation is the (semi)star operation on D induced by the quotient rings TTT :=
{DQ | Q ∈ Maxt (D)}, i.e., w = ∧TTT , and since w is of finite type, we have the following applica-
tion of the previous corollary.

Corollary 1.6. An integral domain D is a PvMD if and only if cD(fg)w = (cD(f )cD(g))w for
all 0 �= f,g ∈ K[X].

Proof. Apply Corollary 1.5 and recall that, as a consequence of the fact that P̃�MD = P�MD,
we have PwMD = PvMD. �

This corollary on the one hand gives a nice general characterization of PvMD’s, and on the
other hand it establishes the “superiority” of the w-operation over the t-operation. As a matter of
fact, since F t = Fv for each finitely generated nonzero ideal F , by [48, Lemme 1], we have:

D is integrally closed ⇔ cD(fg)v = (
cD(f )cD(g)

)v for all 0 �= f,g ∈ K[X]
⇔ cD(fg)t = (

cD(f )cD(g)
)t for all 0 �= f,g ∈ K[X].

In other words, for a Gaussian-like characterization of PvMD’s, w can do what t cannot do.
As noted in the introduction, P∗MD’s were introduced by Houston, Malik, and Mott in [37]

for a finite type star operation ∗. Note that for any star operation ∗, a ∗-invertible ∗-ideal is a v-
ideal (cf. [39, Corollaire 1, p. 21], [10, Proposition 3.1]). Now since in a P∗MD every star ideal
of finite type is ∗f -invertible, and so is a v-ideal of finite type, we conclude that in a P∗MD,
where ∗ is a finite type star operation, every ∗-ideal is in fact a t-ideal.

It follows immediately by definition that for two semistar operations �1 and �2 on D, if �1 � �2
and if D is a P�1MD, then D is also a P�2MD. In particular, for each (semi)star operation � on D,
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we have that D is a P�MD implies that D is also a PvMD since � � v. Given a PvMD D, one
wonders if there is a nontrivial (semi)star operation � of finite type on D such that D is not
a P�MD. Fontana, Jara, and Santos provided such an example in [24, Example 3.4]. The next
corollary shows the way to construct more examples.

Corollary 1.7. Let D be a PvMD, let n � 1, and let TTT := {DSi
| 1 � i � n} be a finite family

of quotient rings of D such that D = ⋂n
i=1 DSi

. If some DSi
is not a Prüfer domain, then D is

a PvMD with a stable (semi)star operation � of finite type (e.g., � := ∧TTT ) such that D is not a
P�MD.

Proof. Let � := ∧TTT be the stable (semi)star operation induced by the family of overrings TTT , and
suppose that DS1 is not a Prüfer domain. Then since TTT is finite, and hence of finite character, �

is a (semi)star operation of finite type [2, Theorem 2(4)]. By Corollary 1.5 ((iii) ⇒ (ii)), D is not
a P�MD. �

By applying Corollary 1.7, the next corollary provides further examples of PvMD’s which are
not P�MD’s for some stable (semi)star operation � of finite type. For the following statement, we
fix a notation: given a 0 �= x ∈ D, we let Dx be the quotient ring DS , where S := {xk | k � 0}.

Corollary 1.8. Let D be a PvMD. Then the following hold:

(a) Suppose that D has nonzero nonunits x1, x2, . . . , xn with (x1, x2, . . . , xn)
v = D, n � 2, and

Dxi
is not a Prüfer domain for some i. Then there is a stable (semi)star operation � of finite

type on D such that D is not a P�MD.
(b) Suppose that M is a maximal ideal of D with DM not a valuation domain. If there is a

nonunit x ∈ D\M , then D has a stable (semi)star operation � of finite type such that D is
not a P�MD.

Proof. (a) The proof hinges on the fact that (x1, x2, . . . , xn)
v = D if and only if D = ⋂n

i=1 Dxi

[56, Theorem 6]. Now the same procedure as in Corollary 1.7 does the rest of the job.
(b) Note that there is a y ∈ M such that (x, y) = D. So, as in (a), we have D = Dx ∩ Dy , and

Dx is not a Prüfer domain since Dx ⊆ DM . �
Corollary 1.8(b) can be applied for instance to a nonquasi-local Krull domain of dimension

two. In particular, take D := K[X,Y ], where K is a field and X,Y are two indeterminates
over K . Clearly D is a non-Prüfer PvMD. Let M := (X + 1, Y )D. Observe that X ∈ D \ M

is a nonunit, DM is a Noetherian regular local domain of dimension two (and thus it is not a
valuation domain), and that, for instance, (X,X + 1)D = D.

On the other hand, there do exist examples of non-Prüfer PvMD’s D such that for each pair
of nonunits x, y ∈ D with ((x, y)D)v = D, we have that Dx and Dy are both Prüfer domains.
For instance, take a two-dimensional quasi-local Krull domain, e.g., D := K�X,Y �, where K is
a field. (In this case, if α,β ∈ D are nonunits such that ((α,β)D)v = D, then Dα and Dβ are
Dedekind domains and D = Dα ∩ Dβ .)

In the final part of this section, we examine the case of semistar operations of the type � = ∧TTT
without assuming finite character.
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Proposition 1.9. Let D be an integral domain with quotient field K and let � be the semistar
operation induced by a family TTT of overrings of D, i.e., � = ∧TTT . Consider the following state-
ments:

(i) cD(fg)� = (cD(f )cD(g))� for all 0 �= f,g ∈ K[X].
(ii) Each overring T ∈ TTT is a Prüfer domain.

(iii) (FF−1)� = D� for all F ∈ f (D).

Then (iii) ⇒ (ii) ⇔ (i). Moreover, if we assume that each T ∈ TTT is a quotient overring of D,
then (iii) ⇔ (ii) ⇔ (i).

Proof. Since � = ∧TTT , it is easy to see that cD(h)�T = cD(h)T = cT (h) for all 0 �= h ∈ K[X]
and all T ∈ TTT .

(i) ⇒ (ii). Apply the Gauss–Gilmer–Tsang Theorem to each T ∈ TTT .
(ii) ⇒ (i). Since we are assuming that each overring T ∈ TTT is a Prüfer domain, we have

cD(fg)� = ⋂{cT (fg) | T ∈ TTT } = ⋂{cT (f )cT (g) | T ∈ TTT } = (cD(f )cD(g))� for all 0 �= f,g ∈
K[X].

(iii) ⇒ (i). The proof is based on the Dedekind–Mertens Lemma, and it is analogous to the
proof of Theorem 1.1 ((iii) ⇒ (i)).

Assume that each T ∈ TTT is a quotient overring of D.
(ii) ⇒ (iii). Since each T ∈ TTT is a Prüfer flat overring of D, every nonzero finitely generated

fractional ideal of T is invertible and F−1T = (FT )−1 for all F ∈ f (D). Therefore,

(
FF−1)� =

⋂{(
FF−1)T ∣∣ T ∈ TTT

} =
⋂{

FT (FT )−1
∣∣ T ∈ TTT

}
=

⋂
{T | T ∈ TTT } = D�. �

Corollary 1.10. Let D be an integral domain with quotient field K . Set Eb := ⋂{EV | V

valuation overring of D} for all E ∈ F (D) (i.e., Eb is the completion of the D-module E

in the sense of Zariski and Samuel [60, Definition 1, p. 347]). If D is integrally closed, then
cD(fg)b = (cD(f )cD(g))b for all 0 �= f,g ∈ K[X].

Proof. Let TTT be the set of all valuation overrings of D. Clearly b = ∧TTT and b is a (semi)star op-
eration on the integrally closed domain D by Krull’s Theorem [31, Theorem 19.8]. The statement
then follows from Proposition 1.9 ((ii) ⇒ (i)). �

Recall that an integral domain D is called an essential domain if there exists a set of prime
ideals Δ of D such that D = ⋂{DP | P ∈ Δ} and DP is a valuation domain for each P ∈ Δ. The
set Δ is called a set of essential prime ideals for D. Every PvMD is essential, and an essential
domain having a set of essential primes Δ of finite character (i.e., every nonzero element of D

is a nonunit in only finitely many DP , P ∈ Δ) is necessarily a PvMD [33, pp. 717–718]. In
[36] Heinzer and Ohm gave an example of an essential domain which is not a PvMD. For more
examples of non-PvMD essential domains consult Zafrullah [57].

Corollary 1.11. Let D be an integral domain with quotient field K . Assume that D is an essential
domain and let Δ be a set of essential prime ideals for D. Then cD(fg)�Δ = (cD(f )cD(g))�Δ

for all 0 �= f,g ∈ K[X]. However, if D is neither a Prüfer domain nor a quasi-local domain, then
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there exists a stable (semi)star operation � of finite type on D, defined by a family TTT of quotient
overrings of D (i.e., � := ∧TTT ), such that cD(fg)� �= (cD(f )cD(g))� for some 0 �= f,g ∈ K[X].
In particular, D is not a P�MD.

Proof. The first statement follows from Proposition 1.9 ((ii) ⇒ (i)). Now assume that D is not
quasi-local. If M is a maximal ideal of D, then we can find an element x ∈ M such that y := 1+x

is not a unit in D. Therefore, we have found two nonzero nonunits x, y ∈ D such that (x, y) = D,
and thus D = Dx ∩ Dy . If D is not a Prüfer domain, then there exists a maximal ideal N of D

such that DN is not a valuation domain. Since at least one of x, y must avoid N (i.e., Dx ⊂ DN

or Dy ⊂ DN ), then Dx or Dy is not a Prüfer domain. Set TTT := {Dx,Dy} and � := ∧TTT . Clearly �

is a stable (semi)star operation of finite type on D. The conclusion follows from Proposition 1.9
((i) ⇒ (ii)) and Theorem 1.1 ((i) ⇒ (iii)). �
2. Class groups

A somewhat interesting use of the results of Section 1 can be made, yet we need to introduce
some terminology. While introducing the necessary terminology, we include some general facts
that either link this work with the literature or illuminate some aspects of the theory of class
groups. This, apparently discursive, treatment is also included to make a case for studying ∗-
class groups for star operations ∗ different from t .

Let Invt (D) be the set of t-invertible t-ideals of an integral domain D. Clearly Invt (D) is an
abelian group under t-multiplication and Invt (D) contains Prin(D), the set of nonzero principal
fractional ideals of D, as a subgroup. The quotient-group Clt (D) := Invt (D)/Prin(D) is called
the t-class group of D (note that it was introduced in [13] as “the class group” of the arbitrary
domain D). The t-class group has the interesting property that while it is defined for any integral
domain D, it is the divisor class group of D when D is a Krull domain and the ideal class group
of D when D is a Prüfer domain. Recall that in a Krull (respectively, Prüfer) domain D, the
nonzero fractional divisorial ideals F v(D) (respectively, nonzero finitely generated fractional
ideals f (D)) form an abelian group under the v-operation (respectively, d-operation, i.e., usual
product of ideals); the divisor class group (respectively, ideal class group) of D is the quotient-
group F v(D)/Prin(D) (respectively, f (D)/Prin(D)).

Moreover, a PvMD D is a GCD-domain if and only if Clt (D) is trivial [14, Corollary 1.5].
There are other results that indicate that Clt (D) is intimately related with the divisibility proper-
ties of D, see, e.g., [8,11,13,14,53]. For these reasons, apparently, Halter-Koch [34] adapted the
notion of the t-class group for monoids. In [10], D.F. Anderson surveyed the topic and introduced
a generalization of Clt (D) by noting that if ∗ is a star operation on D, then the set Inv∗(D) of
∗-invertible ∗-ideals is an abelian group under ∗-multiplication and indeed Prin(D) is a subgroup
of Inv∗(D). The quotient group Cl∗(D) := Inv∗(D)/Prin(D) is called the ∗-class group of D.

It is also possible to define a �-class group for a semistar operation � on an integral domain D,
but the generalization is not straightforward.

Let � be a semistar operation on D. We say that I ∈ F (D) is quasi-�-invertible (respectively,
�-invertible) if (I (D� : I ))� = D� (respectively, if I ∈ F (D) and (I (D : I ))� = D�). It is obvious
that �-invertible implies quasi-�-invertible, but the converse does not hold (even if � is a stable
semistar operation of finite type) [28, Example 2.9]. However, it is clear from the definition that
if � is a (semi)star operation and if I ∈ F (D) is quasi-�-invertible, then I must belong to F (D),
and so I is �-invertible. It is not hard to prove that I is quasi-�-invertible if and only if there
exists an H ∈ F (D) such that (IH)� = D� [28, Lemma 2.10].
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In the following proposition, we recall some known facts on �-invertibility and quasi-�-
invertibility (cf. [28, Propositions 2.15, 2.16, 2.18 and Corollary 2.17]).

Proposition 2.1. Let � be a semistar operation on an integral domain D.

(1) Let I ∈ F (D). Then I is quasi-�f -invertible if and only if I and (D� : I ) are �f -finite (hence,
�-finite) and I is quasi-�-invertible.

For the following statements, we assume I ∈ F (D).

(2) Let I be quasi-�-invertible. Then I is �-invertible if and only if (D : I )� = (D� : I ) (i.e.,
(I−1)� = (I �)−1).

(3) If � is a (semi)star operation, then I is quasi-�-invertible if and only if I is �-invertible.
(4) If � is stable and I ∈ f (D), then I is quasi-�-invertible if and only if I is �-invertible.
(5) I is �f -invertible if and only if I is �̃-invertible.

If � is a semistar operation on an integral domain D, then we can introduce a semistar mul-
tiplication “×�” (or, simply, “×,” if there is no danger for ambiguity) on the set Inv�(D) :=
{I ∈ F (D) | I is �-invertible and I = I �} by I ×� J := (IJ )�. Note that (Inv�(D),×) is not
a group in general, because, for instance, it does not have an identity element (e.g., when
D� ∈ F (D) � F (D)).

On the other hand, QInv�(D) := {I ∈ F (D) | I is quasi-�-invertible and I = I �}, with the
semistar multiplication “×” introduced above, is always an abelian group with identity D� and
the unique inverse of I ∈ QInv�(D) is the D-module (D� : I ) ∈ F (D) (it is not hard to prove that
(D� : I ) belongs to QInv�(D)). This fact also provides one of the motivations, in the semistar
operation setting, for introducing and studying QInv�(D) (and not just Inv�(D), as in the “classi-
cal” star operation case). Moreover, it is not difficult to prove that (Inv�(D),×) is a group if and
only if (D : D�) �= (0) [28, p. 657].

In particular, if � is a (semi)star operation on D, then as we have already observed, the notions
of quasi-�-invertible and �-invertible coincide. More precisely, in this case, we have:

QInv�(D) = Inv�(D) = {
I ∈ F (D)

∣∣ I is � -invertible and I = I �
}
.

Let ∗ be a star operation on an integral domain D. It is well known that every ∗-invertible
∗-ideal is a v-invertible v-ideal (see, e.g., [59, Theorem 1.1(a)]). This property has a semistar
analog. Given a semistar operation � on D, it is easy to see that the operation defined by

Ev(�) := (
D� : (D� : E)

)
for all E ∈ F (D)

is a semistar operation on D and � � v(�) [47, Section 1.2.5]. Set t (�) := v(�)f . It is obvious
that when � is a (semi)star operation, then v(�) (respectively, t (�)) coincides with the “classical”
v-operation (respectively, t-operation) on F (D).

Proposition 2.2. (See [28, Corollary 2.12].) Let � be a semistar operation on an integral domain
D and let I ∈ F (D). If I is quasi-�-invertible, then I is quasi-v(�)-invertible and I � = I v(�). In
particular, QInv�(D) is a subgroup of QInvv(�)(D).
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From the previous proposition (and its proof) and from Proposition 2.1(1), we easily deduce
that if I is quasi-�f -invertible, then I is quasi-t (�)-invertible and I �f = I t (�) (cf. also [47, Corol-
lary 3.13]). In particular, QInv�f (D) is a subgroup of QInvt (�)(D).

At this point, it is clear that we can also define class groups in the semistar operation setting.
We define the �-qclass group of D to be the abelian group QCl�(D) := QInv�(D)/Prin(D), and
under the assumption (D : D�) �= (0), we define the �-class group of D to be the abelian group
Cl�(D) := Inv�(D)/Prin(D). Clearly if � is a (semi)star operation, then QCl�(D) = Cl�(D).
When � = d is the identity (semi)star operation, then as in the classical case, we define the
Picard group of D to be the abelian group Pic(D) := QCld(D) = Cld(D) := Invd(D)/Prin(D),
where Invd(D) coincides with the group of the “usual” fractional invertible ideals of D. Note that
Invd(D) is a subgroup of QInv�(D) for each semistar operation � on D (respectively, of Inv�(D)

for each semistar operation � on D such that (D : D�) �= (0)). Therefore, following the classical
case considered in [13], we call the quotient-group QG�(D) := QCl�(D)/Pic(D) (respectively,
G�(D) := Cl�(D)/Pic(D) for each semistar operation � on D such that (D : D�) �= (0)) the local
�-qclass group (respectively, local �-class group) of D. It is straightforward that when � = t , the
group QGt (D) = Gt (D) coincides with the “classical” local class group G(D) [13].

From Proposition 2.2, we deduce that for each semistar operation � on an integral domain D,
we have QCl�(D) ⊆ QClv(�)(D), and under the assumption (D : D�) �= (0), we have Cl�(D) ⊆
Clv(�)(D). When � is a semistar operation of finite type, then the previous inclusions can be
replaced by QCl�(D) ⊆ QClt (�)(D) and Cl�(D) ⊆ Clt (�)(D), respectively. Furthermore, if � is a
(semi)star operation (respectively, a (semi)star operation of finite type), then we have Pic(D) ⊆
Cl�(D) ⊆ Clv(D) (respectively, Pic(D) ⊆ Cl�(D) ⊆ Clt (D)).

For the purposes of the present section, from now on we will only consider the “classical”
case of a star operation ∗. If ∗ is a star operation of finite type on D, then Cl∗(D) provides an
interesting generalization of the (t-)class group, but

(a) t-invertibility being somewhat abundant and more closely linked with divisibility [59], the t-
class group seems to have more applications, especially in view of its similarity to the divisor
class group for Krull domains and the facility of the t-operation with polynomial rings and
with rings of fractions.

On the other hand,

(b) there are very few examples of ∗-class groups that are not d-class groups, t-class groups, or
v-class groups.

Of course we cannot do much about (a), but we can use Corollary 1.8 to give examples of
∗-class groups such that Cl∗(D) � Clt (D) and of Cl∗(D) = Clt (D), where there is at least one
nonzero finitely generated ideal F of D such that F is t-invertible, but not ∗-invertible.

Proposition 2.3. Let D be an integral domain in which every t-invertible t-ideal is invertible.
Then Pic(D) = Cl∗(D) = Clt (D) for any star operation ∗ of finite type on D.

Proof. Indeed, we have already observed that every ∗-invertible ∗-ideal is a t-invertible t-ideal
and every invertible ideal is a ∗-invertible ∗-ideal for any star operation ∗ on D. So Inv(D) ⊆
Inv∗(D) ⊆ Invt (D). On the other hand, every t-invertible t-ideal is invertible by hypothesis.
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Combining these inclusions, we conclude that Inv(D) = Inv∗(D) = Invt (D). Hence Pic(D) =
Cl∗(D) = Clt (D) in this case. �

Now are there any integral domains that satisfy the hypothesis of Proposition 2.3? Indeed,
there are plenty. Recall from [55] that an integral domain D is a pre-Schreier domain if for
0 �= x, y, z ∈ D, x | yz implies that x = rs for some r, s ∈ D with r | y and s | z. Pre-Schreier
domains are a generalization of GCD-domains (cf. [16] and [18, Theorem 1]). It was indicated
in [14, Proposition 1.4] that if D is a pre-Schreier domain, then Clt (D) = 0. Obviously if D is a
pre-Schreier domain and ∗ is a star operation of finite type on D, then we must have Cl∗(D) =
Clt (D) = 0. We are aiming at a somewhat more general result:

Corollary 2.4. Let D be an integral domain. If Clt (DM) = 0 for all maximal ideals M of D (e.g.,
if D is a locally GCD-domain [14]), then Pic(D) = Cl∗(D) = Clt (D) for any star operation ∗
of finite type on D.

Proof. Indeed, the local class group G(D) = Clt (D)/Pic(D) = 0 if G(DM) = 0 (in particular,
if Clt (DM) = 0) for each maximal ideal M of D [14, Proposition 2.4]. �

This leaves us with the task of providing an example of an integral domain D such that
Cl∗(D) � Clt (D) (also see Example 3.10). For this, we recall that an integral domain D is a
generalized GCD (for short, G-GCD) domain if for every nonzero finitely generated ideal F

of D, we have that Fv is invertible [5]. Moreover, D is a G-GCD domain if and only if D is
a PvMD which is a locally GCD domain [55, Corollary 3.4]. So if we are looking for a PvMD
example of an integral domain D with Cl∗(D) � Clt (D), then D had better not be a G-GCD
domain.

Proposition 2.5. Let D be a PvMD such that there are nonzero nonunits x1, x2, . . . , xn ∈ D with
((x1, x2, . . . , xn)D)v = D. Suppose that for at least one j , 1 � j � n, Dxj

, is not a G-GCD
domain. Let ∗ be the stable star operation of finite type induced on D by the finite family of
overrings TTT := {Dxi

| 1 � i � n}, i.e., ∗ = ∧TTT , or equivalently, I ∗ := ⋂n
i=1 IDxi

for each I ∈
F (D). Then there exists a nonzero finitely generated ideal F of D such that Fv is not a ∗-
invertible (∗-)ideal. Consequently, in D we have Cl∗(D) � Clt (D).

Proof. We note that given a nonzero finitely generated ideal F of D, for Fv to be ∗-invertible
it is essential that (F−1Fv)Dxi

= Dxi
for each i = 1,2, . . . , n. Since for say i = j , Dxj

is not a
G-GCD domain, we conclude that there is a finitely generated ideal H of Dxj

such that Hvj is
not invertible in Dxj

(where vj denotes the v-operation on Dxj
). But as H is finitely generated

in Dxj
, we can assume that H = FDxj

, where F is a nonzero finitely generated ideal of D.
But, as D is a PvMD, F is a t-invertible ideal of D; thus we have Hvj = FvDxj

[14]. Since
Hvj is not invertible, we easily conclude that F−1FvDxj

�= Dxj
. Hence (F−1Fv)∗ �= D. The

“consequently” part is obvious. �
It seems important to also indicate the situations where there are two distinct star operations,

made from a general star operation ∗, say μ(∗) and ν(∗), where μ(∗) �= ν(∗), but Clμ(∗)(D) =
Clν(∗)(D). The constructions that we have in mind are the ∗f and the ∗̃ (= ∗w) constructions
from a general star operation ∗ mentioned in the introduction. Now ∗f and ∗̃ are not always
equal, but as a consequence of Proposition 2.1(5), Inṽ∗(D) = Inv∗f (D). Thus:
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Proposition 2.6. Let ∗ be a star operation on an integral domain D. Then Cl̃∗(D) = Cl∗f (D).
In particular, Clw(D) = Clt (D).

Let F v(D) := {I ∈ F (D) | I = I v} be the set of divisorial fractional ideals of D. It is well
known that F v(D) is a group under the v-multiplication, ×v , if and only if D is completely
integrally closed [31, Theorem 34.3]. In this situation, the group F v(D)/Prin(D) is called the
divisor class group of D. The t-class group has often been dubbed as a generalization of the
divisor class group because, as we remarked above, Clt (D) is precisely the divisor class group for
a Krull domain D. But the t-class group is in general far away from the divisor class group (when
defined). For instance, for a completely integrally closed domain D, the divisor class group of D

is zero only if I v is principal for every I ∈ F (D). However, there do exist completely integrally
closed GCD-domains (in fact, rank-one valuation domains) which contain nonprincipal proper
v-ideals. One example that comes to mind is a rank-one valuation domain V with value group Q
the rationals. In this case, the divisor class group of V is nonzero (see [54, Example 2.7] for an
elementary verification), but as V is a GCD-domain, Clt (V ) is zero [14, Example 1.2].

We next give a complete verification of the valuation domain example mentioned above. Let
us start by noting that, for a valuation domain D which is not a field, there are at most two distinct
star operations on D, the v-operation and the operation d = t [31, Exercise 12, p. 431]. There-
fore, for a valuation domain D, we have Clt (D) = Pic(D) = {0}. Let us also note that a valuation
domain D is completely integrally closed if and only if dim(D) � 1 [31, Theorem 17.5(3)], and
in this case, as observed above, F v(D) is a group under v-multiplication. Thus in this case,
Clv(D) coincides with the divisor class group of D. Next, let G be the value group of the valua-
tion domain D and let ω :K• → G be the valuation that gives rise to D (where K• := K \ {0}).
When dim(D) = 1, either D is a DVR or G is a dense subspace of the real numbers R (cf. [31,
p. 193] or [12, Chapitre 6, §4, N. 5, Propositions 7 et 8]).

Theorem 2.7. Let D be a (one-dimensional) valuation domain with value group G ⊆ R. Then

(1) If D is a DVR, then Pic(D) = Clv(D) = 0.
(2) If D is not a DVR, then Pic(D) = 0 and Clv(D) = R/G.

Proof. Suppose that D is not a DVR; so G is dense in R. Define a map ϕ :F (D) → R by
ϕ(I) := sup{ω(x) | I ⊆ xD for x ∈ K•}. Note that ϕ is well defined since

(a) yD ⊆ I ⊆ xD for x, y ∈ K• implies ω(x) � ω(y),
(b) G ⊆ R, with R complete, and
(c) ϕ(xD) = ω(x) for x ∈ K•.

Using these observations, we also note that ϕ(I) = sup{ω(x) | x ∈ K• and ω(x) � ω(i) for all
0 �= i ∈ I }. Therefore, for all 0 �= i ∈ I , we have ω(i) � ϕ(I). For the same reasons, if I ⊆ xD,
then ω(x) � ϕ(I). The proof of Theorem 2.7 then follows from the following four lemmas. �
Lemma 2.8. Let D be as in Theorem 2.7. Then the following statements are equivalent for
I, J ∈ F (D).

(i) ϕ(I) = ϕ(J ).
(ii) {xD | I ⊆ xD for x ∈ K•} = {xD | J ⊆ xD for x ∈ K•}.

(iii) I v = J v .
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Proof. Clearly (ii) ⇔ (iii) and (ii) ⇒ (i). For (i) ⇒ (ii), suppose that ϕ(I) = ϕ(J ), but there is
an x ∈ K• such that I ⊆ xD and J � xD. Then xD � J . So there is a y ∈ J such that I ⊆ xD �
yD ⊆ J. But then as already noted, we have ϕ(J ) � ω(y) < ω(x) � ϕ(I), a contradiction. �

From the above lemma, it follows that ϕ restricts to a (well-defined) injective map
ϕ :F v(D) → R.

Lemma 2.9. Let D and G be as in Theorem 2.7, and let ϕ :F v(D) → R be defined as above.
Then

ϕ−1(G) = Prin(D).

Proof. Let I ∈ ϕ−1(G). Then ϕ(I) = α ∈ G; so there is an x ∈ K• such that ω(x) = α. Since
ω(x) = ϕ(xD), we have ϕ(I) = ϕ(xD). By Lemma 2.8, we have I v = xD. But as I ∈ F v(D),
we have I = I v . Conversely, suppose that xD ∈ Prin(D). Then ϕ(xD) = ω(x) ∈ G. �
Lemma 2.10. Let D and G be as in Theorem 2.7. Then the map ϕ :F v(D) → R defined above
is surjective.

Proof. Let α ∈ R. Define Iα := ⋂{xD | x ∈ K• with ω(x) � α}. Since G is dense in R, there is a
y ∈ K• such that ω(y) > α. Therefore yD ⊆ xD for each x ∈ K• with ω(x) � α. This ensures,
in particular, that Iα is nonzero, and so Iα ∈ F v(D). In order to establish the surjectivity, we
show that ϕ(Iα) = α. Clearly ϕ(Iα) � α because G is dense in R. Suppose that ϕ(Iα) = β > α.
So there is a z ∈ K• such that Iα ⊆ zD and α < ω(z) = γ � β . Let γ ′ ∈ G such that α < γ ′ <

γ � β and let ω(z′) = γ ′ for some z′ ∈ K•. Then for any x ∈ K• with ω(x) � α, we have
ω(x) < ω(z′), forcing z′ ∈ Iα . Now from γ ′ < γ , we have ω(z′) < ω(z), which is equivalent to
zD � z′D (⊆ Iα), a contradiction. �
Lemma 2.11. The map ϕ :F v(D) → R is a group homomorphism.

Proof. Let I, J ∈ F v(D). We show that ϕ((IJ )v) = ϕ(I) + ϕ(J ). Let I ⊆ xD and J ⊆ yD

for x, y ∈ K•. Then IJ ⊆ xyD, and hence γ := ϕ((IJ )v) = ϕ(IJ ) � ω(xy) = ω(x) + ω(y).

Thus ϕ((IJ )v) � ϕ(I) + ϕ(J ). Suppose that ϕ(I) + ϕ(J ) < ϕ((IJ )v). Then there are α,β ∈ G
such that ϕ(I) � α, ϕ(J ) � β, and α + β < γ. Choose x, y ∈ K• with ω(x) = α and ω(y) = β.

Then xD ⊆ I and yD ⊆ J ; so xyD ⊆ IJ. Let IJ ⊆ zD for z ∈ K•. Then as xyD ⊆ zD, we
have ω(z) � ω(xy) = ω(x) + ω(y) = α + β < γ . So γ = ϕ((IJ )v) = sup{ω(z) | IJ ⊆ zD and
z ∈ K•} � ω(xy) = α + β < γ , a contradiction. �

Given a rank-one valuation domain D, if we assume in Theorem 2.7 that D is not a DVR and
that G �= R, then Clv(D) (which coincides in this case with the divisor class group of D) is not
zero, whereas the t-class group Clt (D) (= Pic(D)) is zero. Having shown that both the divisor
class group and t-class group can coexist without being equal, we conclude that the t-class group
is not a generalization of the divisor class group.

3. v-class groups and valuation domains

In the previous section, we have seen the divisor class group as the v-class group in the case of
one-dimensional valuation domains (Theorem 2.7) and, more generally, for completely integrally
closed domains [31, Theorems 17.5(3) and 34.3]. But thanks to the generality of its definition, the
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group Clv(D) does not need D to have any special properties. In other words, the v-class group
is defined for any integral domain. Now let us note that the v-operation being the coarsest star
operation, the v-class group (for v �= t) has hitherto been neglected. So, we do not have a lot of
examples from the literature to offer. However, to show that the v-class group has a life of its own
and some interesting properties, we study the v-class group of some integral domains of interest.

Let us first start with some relevant cases where the v-class group is the same as the t-class
group.

Proposition 3.1.

(1) Let D be an integral domain such that F−1 is of finite type for all F ∈ f (D). Then Clt (D) =
Clv(D).

(2) Let D be a valuation domain (in particular, 0 = Pic(D) = Clt (D)).
(2a) Assume that D is one-dimensional. Then Clv(D) = 0 if and only if either D is a DVR

or D has value group R. Moreover, Clv(D) is a divisible abelian group and may have
torsion elements. However, Clv(D) is torsion-free if the value group of D is Q.

(2b) Assume that D is an n-dimensional valuation domain, 1 � n � ∞, with maximal ideal
M . If M is principal, then all nonzero fractional ideals of D are divisorial. So d = v,
and thus 0 = Pic(D) = Clt (D) = Clv(D).

Proof. The proof of (1) is straightforward since by Proposition 2.1 we deduce that I ∈ F (D)

is t-invertible if and only if I and I−1 are t-finite and I is v-invertible. The main examples
of domains for which this result holds are Mori domains, which include Noetherian and Krull
domains as special cases.

For the proof of (2a) consult Theorem 2.7. The other statements are easy consequences of
the first one since R is an additive divisible group and any quotient group of a divisible group is
again divisible. It is easy to check that R/Q is torsion-free.

(2b) is well-known [31, Example 12, p. 431]. �
If D is an n-dimensional valuation domain, 1 � n � ∞, with maximal ideal M and M is

not principal, we get a completely different story. We essentially devote the major part of the
remainder of this section to this case. To give a clear idea of this situation, we start with an
example.

Example 3.2. Let V be a nondiscrete rank-one valuation domain with value group G, let K be
the quotient field of V , let X be an indeterminate over K , and let D := V + XK�X�. Then D

is a two-dimensional valuation domain (with quotient field K((X))); thus 0 = Pic(D) = Clt (D),
and moreover, Clv(D) = R/G.

The fact that D is a two-dimensional valuation domain follows from [31, Proposition 18.2(3)].
By using a very general theory of the class groups on pullback constructions [26,27], we have
Clv(D) ∼= Clv(V ) (see also the following Theorem 3.5). As a matter of fact [27, Corollary 2.7]
ensures that, given a quasi-local integral domain (T ,M,k) and a proper subring S of k, if R is
the integral domain arising from the following pullback of canonical homomorphisms

R S

T T/M = k,

then Clv(S) ∼= Clv(R). The conclusion then follows from Theorem 2.7(2).
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Since the case of valuation domains is rather peculiar and relevant, it deserves particular at-
tention. In this case, in fact, it is possible to give direct proofs of special cases of more general
results on ∗-class groups concerning pullback constructions (cf., in particular, [21] and [27]) by
using elementary direct methods that are elegant and simple to handle. The next goal is to show
how, in the previous Example 3.2, it is possible to avoid the use of [27, Corollary 2.7].

Recall that for each fractional ideal I of an integral domain D with quotient field K , we have
I v = ⋂{zD | z ∈ K and I ⊆ zD}. Moreover, as observed in [59, p. 432], I v �= D if and only if
there are 0 �= a, b ∈ D such that I ⊆ (aD : bD) and a � b. Also, recall from [9] that an integral
domain D is an IP-domain if every proper integral v-ideal of D is an intersection of integral
principal ideals of D.

Now let I be a proper integral ideal of a valuation domain V with quotient field K . Then I v =⋂{zV | z ∈ K and I ⊆ zV }. Since V is a valuation domain and I an integral ideal of V , we have
I v ⊆ V , and so

I v =
(⋂

{zV | z ∈ V and I ⊆ zV }
)

∩
(⋂

{zV | z ∈ K \ V and I ⊆ zV }
)

=
⋂

{zV | z ∈ V and I ⊆ zV }

(note that for z ∈ K , z ∈ K \ V is equivalent to z−1 ∈ V , and hence
⋂{zV | z ∈ K \ V and I ⊆

zV } = V ). So a valuation domain V is an IP-domain. Indeed, if I is nonzero principal, then
I = xV = I v . On the other hand, if I is not principal, then I is not finitely generated. This leads
to two cases:

(a) I v = V or (b) I v =
⋂

{zV | z ∈ V and I ⊆ zV � V }.

We now prepare to use the fact that if V is a valuation domain and P is a nonmaximal prime
ideal of V , then V/P is a valuation domain that is not a field.

Lemma 3.3. Let V be a valuation domain with maximal ideal M , P � M a prime ideal of V ,
and I an integral ideal of V with P � I . Then I v/P = (I/P )v . In particular, I/P is a v-ideal
of V/P if and only if I is a v-ideal of V .

Proof. For z ∈ V , we have I ⊆ zV if and only if I/P ⊆ (zV )/P = (zV + P)/P . Assume that
P � I ⊆ I v � V . As above, I v/P = (

⋂{zV | z ∈ V and I ⊆ zV ⊆ V })/P = ⋂{(zV )/P | z ∈ V

and I ⊆ zV ⊆ V } = (I/P )v . �
To prove the main theorem of this section, we need to prove yet another lemma.

Lemma 3.4. Let V be a valuation domain with maximal ideal M , P � M a prime ideal of V ,
and I an integral ideal of V with P � I . Then I/P is a v-invertible v-ideal of V/P if and only
if I is a v-invertible v-ideal of V .

Proof. Let I be a v-invertible ideal of V. Since (II−1)v = V , we claim that M ⊆ II−1 ⊆ V . Of
these, II−1 ⊆ V always holds; so we concentrate on M ⊆ II−1. If I is principal, then II−1 = V ,
and so trivially M ⊆ II−1. If on the other hand I is not finitely generated, then II−1 = Q is
a prime ideal of V [1, Theorem 1]. If Q were nonmaximal, then Q must be divisorial (with
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Q = (V : VQ)), and so V = (II−1)v = Q � V , a contradiction. Thus M = II−1, and in this
case too, M ⊆ II−1.

Next, since P � I , there exists an element j ∈ I \ P. Let J := jI−1; clearly J ⊆ V . We
claim that P � J . For if not, then as we are working in a valuation domain V , we must have J =
jI−1 ⊆ P . Multiplying both sides by I and applying the v-operation, we get jV = j (II−1)v =
(jII−1)v ⊆ P , because P is a v-ideal (being nonmaximal). This gives j ∈ P a contradiction.
Hence P � J .

Now (IJ )v = jV , and I, J , and jV all properly contain P . So by Lemma 3.3, (jV +P)/P =
(jV )/P = (IJ )v/P = (IJ/P )v = ((I/P )(J/P ))v , and this establishes that I/P is v-invertible
in V/P . Moreover, with an appeal again to Lemma 3.3, we conclude that if I is a v-invertible
v-ideal of V , then I/P is a v-invertible v-ideal of V/P .

Conversely, if I/P is a v-invertible v-ideal of V/P , then for some ideal J of V with P � J

we have ((I/P )(J/P ))v = (xV )/P , where x ∈ V \ P . From this fact, it is easy to deduce that
(IJ )v = xV , and so, I is a v-invertible v-ideal of V . �
Theorem 3.5. Let V be a valuation domain with maximal ideal M and proper quotient field K ,
and let P � M be a prime ideal of V. Then Clv(V ) ∼= Clv(V/P ).

Proof. We first show that if there is a v-invertible v-ideal I of V , then its class [I ] contains an
integral ideal J that properly contains P . Let I ∈ Clv(V ). Then I = [I ] for some v-invertible
v-ideal I of V . Since (II−1)v = V , as in the proof of Lemma 3.4, we have P � II−1. Thus
P � jI for some j ∈ I−1. Let J := jI . Define ϕ(I) := [J/P ]. Note that [J/P ] ∈ Clv(J/P ) by
Lemmas 3.3 and 3.4.

Since [J ] = [I ] in Clv(V ), it is enough to study the case of integral v-invertible v-ideals
I � P, in which case ϕ([I ]) = [I/P ]. We first show that ϕ is well defined. Let A and B be two
v-invertible v-ideals of V such that P � A,B ⊆ V and [A] = [B]. Then A = tB for some 0 �=
t ∈ K. Since t ∈ V or t−1 ∈ V , we can assume that t ∈ V (interchanging eventually A with B).
Once we assume that t ∈ V , we find that t ∈ V \ P because P � A. Thus A/P = (tB)/P =
((t + P)/P )(B/P ) in V/P . So, [A/P ] = [B/P ] in Clv(V/P ). Thus ϕ is well defined. Next we
show that ϕ is injective. Suppose that [A/P ] = [B/P ] in Clv(V/P ), where P � A,B ⊆ V are
v-invertible v-ideals of V . Then as before we can assume that A/P = ((t + P)/P )(B/P ) for
some t ∈ V \P . Thus A/P = (tB)/P , which forces A = tB , and hence [A] = [B] in Clv(V ). To
show that ϕ is surjective, let J ∈ Clv(V/P ). Then J = [J ] for some v-invertible integral v-ideal
J of V/P . By the above comments and Lemmas 3.3 and 3.4, J = I/P for some v-invertible
integral v-ideal I of V such that P � I . Thus ϕ([I ]) = [I/P ] = [J ] = J; so ϕ is surjective.
Finally, we show that ϕ is a group-homomorphism. Let [I ], [I ′] ∈ Clv(V ), where P � I, I ′ ⊆ V

are v-invertible v-ideals of V . Then ϕ([I ] · [I ′]) = ϕ([(II ′)v]) = [(II ′)v/P ] = [(II ′/P )v] =
[((I/P )(I ′/P ))v] = [I/P ] · [I ′/P ] = ϕ([I ]) ·ϕ([I ′]). (Here we have used the fact that P � I, I ′
implies that P � II ′.) Thus ϕ is an isomorphism. �

The next statement, which has already appeared in Proposition 3.1, can be easily reobtained
as a consequence of Theorem 3.5.

Corollary 3.6. Let V be a valuation domain with principal maximal ideal M . Then Clv(V ) = 0.

Proof. Let M = qV and set P := ⋂
n�1 qnV . Then P is a prime ideal of V , P � M , and

there is no prime ideal between P and M [31, Theorems 17.1 and 17.3]. This makes V/P a
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discrete rank-one valuation domain, and so Clv(V/P ) = 0. But then, by Theorem 3.5, we have
Clv(V ) ∼= Clv(V/P ) = 0. �

Let V be a valuation domain such that the maximal ideal M of V is idempotent (i.e., M2 = M)
and branched (i.e., has an M primary ideal different from M). Recall that M is idempotent if and
only if M is not finitely generated (i.e., not principal) and that M is branched if and only if there
is a prime ideal P � M such that there is no prime ideal between P and M [31, Theorem 17.3].
Let us call P the prime ideal directly below M . Indeed, this makes V/P a rank-one valuation
domain. If M is idempotent, then it is easy to check that Mv = V [23, Corollary 3.1.3].

Corollary 3.7. Let V be a valuation domain with maximal ideal M that is branched and idem-
potent, let P be the prime ideal directly below M , and let G be the value group of V/P . Then
Clv(V ) ∼= R/G.

Proof. By Theorem 3.5, we have Clv(V ) ∼= Clv(V/P ). Since V/P is a nondiscrete rank-one
valuation domain, its value group G is isomorphic to a subgroup of R, and thus we have
Clv(V/P ) = R/G (Theorem 2.7(2)). �

Note that Corollaries 3.6 and 3.7 let us compute Clv(V ) for any finite-dimensional valuation
domain V . Theorem 3.5 can also be used to give interesting statements relative to the D + M

construction of Gilmer. For instance, let V ′ be a valuation domain that is expressible as K + M ′,
where K is a field and M ′ the maximal ideal of V ′. Also let V be a valuation domain with
quotient field K . Then D := V + M ′ is a valuation domain such that Clv(D) ∼= Clv(V ).

The reader may wonder about the nature of the elements of Clv(V ) for the valuation domain
V of Corollary 3.7. The clue comes from the proof of Theorem 3.5 and the following result.

Proposition 3.8. Let V be a valuation domain with quotient field K and with maximal ideal M

that is idempotent and branched. Then for each nonprincipal v-invertible v-ideal I of V , there
exist two M-primary ideals Q and Q1 of V and two elements 0 �= x, y ∈ Ksuch that I = xQ and
I−1 = yQ1. Therefore Clv(V ) = {[Q] | Q is an M-primary nonfinitely generated v-invertible v-
ideal of V } ∪ {[V ]}.

Proof. As in the proof of Theorem 3.5, if I is a nonfinitely generated v-invertible integral v-ideal
of V , then II−1 = M. Since M is branched, we must have I = xQ for some 0 �= x ∈ V , where Q

is an M-primary ideal of V [1, Theorem 2]. So Q is a nonfinitely generated v-invertible v-ideal
of V and we have Q−1 = y−1H , where 0 �= y ∈ V and H is obviously a nonfinitely gener-
ated v-invertible integral v-ideal of V . Another appeal to [1, Theorem 2] gives that H = zQ1,
where Q1 is M-primary and 0 �= z ∈ V . Thus [I ] = [Q] and [I−1] = [x−1Q−1] = [(xy)−1H ] =
[z(xy)−1Q1] = [Q1], as claimed in the statement. The conclusion is now obvious once we note
that for every nonzero finitely generated (or, equivalently, principal) fractional ideal I of V , we
have [I ] = [V ], the identity element of Clv(V ). �

In order to extend Example 3.2, we can start with the value group G′ of a valuation domain V ′
of any dimension 1 � n � ∞. If G is a totally ordered additive subgroup of R, we can construct
the lexicographic direct sum Γ := G′ ⊕ G. The resulting group Γ is a totally ordered abelian
group upon which we can construct, using the Krull–Kaplansky–Jaffard–Heinzer–Ohm Theorem
(see for instance [31, Corollary 18.5] or [43]), a valuation domain D with a branched maximal



D. Anderson et al. / Journal of Algebra 319 (2008) 272–295 291
ideal M and a prime ideal P directly below M such that D/P is a rank-one valuation domain
with value group G [31, p. 223, Problem 20] and DP is a valuation domain with value group G′
[31, proof of Proposition (19.11)(3)]. An explicit example of this type is the following.

Example 3.9. Let V be a rank-one valuation domain with value group G and let K be the quotient
field of V . Let V ′ be an n-dimensional valuation domain, 1 � n � ∞, with value group G′
such that the residue field of V ′ is K (note that this is possible by [31, Corollary 18.5]), and
let π ′ :V ′ → K be the canonical projection. Then the pullback D := π ′−1(V ) is a valuation
domain such that D/P ∼= V and DP = V ′, where P := π ′−1(0). The value group of D is the
lexicographic direct sum G′ ⊕ G, dim(D) = n + 1 (respectively, ∞) if n �= ∞ (respectively,
n = ∞), and Clv(D) = R/G.

Arguing more or less as in Example 3.2, the properties listed in the above statement follow
from [31, Proposition 18.2(3)], [12, Chapitre 6, §10, N. 2, Lemme 2], Theorem 2.7(2), and The-
orem 3.5 (or, [27, Corollary 2.7]).

Note that in Example 3.2, if we set S := V \ {0}, then DS = K�X� is PID. So D is an example
of a two-dimensional valuation domain such that Clv(DS) = 0, while Clv(D) �= 0. On the other
hand, we can construct a valuation domain D such that Clv(D) = 0, but Clv(DS) �= 0 for some
ring of fractions DS of D. For instance, using the techniques of Examples 3.2 and 3.9, if we
construct a valuation domain D having as value group the lexicographic direct sum Q ⊕ Z, then
D is a two-dimensional valuation domain with the height-one prime ideal P of D such that D/P

is a DVR (hence the maximal ideal of D is principal) and DP is a rank-one valuation domain
with value group Q. Therefore Clv(D) = 0 since every nonzero ideal of D is divisorial [31,
Exercise 12, p. 431], but Clv(DP ) = R/Q.

Example 3.10. (1) Let G be any abelian group. Then there is a quasi-local Krull domain D with
Clv(D) = G (= Clt (D) [31, Corollary 44.3]) and Pic(D) = 0.

The first statement is due to L.G. Chouinard [15, Corollary 2]. It is obvious that Pic(D) = 0
since an invertible ideal in a quasi-local domain is principal [31, p. 72].

(2) Let D := K[X,Y ], where K is a field and X,Y are two indeterminates over K . Then
there are infinitely many distinct star operations on D (more precisely, the cardinal number is 2α ,
where α := max{|K|,ℵ0} [6, p. 1639]), and Cl∗(D) = 0 for all star operations ∗ on D.

Since D is a UFD, thus Clv(D) = 0 [31, Corollary 44.5]. The conclusion follows from the
fact that Cl∗(D) ⊆ Clv(D) for all star operations ∗ on D.

Remark 3.11. Recall from [28, p. 651] that an integral domain D with a semistar operation �

is an H(�)-domain if for each nonzero integral ideal I of D such that I � = D�, there exists a
nonzero finitely generated ideal J with J ⊆ I , such that J � = D� (i.e., I is �f -finite). When
� = v, the H(v)-domains coincide with the H-domains introduced by Glaz and Vasconcelos [32,
Remark 2.2(c)].

It is obvious that every integral domain is an H(�f )-domain, so the notion of H(�)-domain
becomes interesting only when � is not of finite type.

Clearly a �-Noetherian domain (i.e., an integral domain having the ascending chain condition
on the quasi-�-ideals [20, Section 3]) is an H(�)-domain [20, Lemma 3.3], thus we obtain in
particular that Mori domains (or v-Noetherian domains; e.g., Noetherian and Krull domains) are
H-domains. Houston and Zafrullah [38, Proposition 2.4] proved, more generally, that each TV-
domain (i.e., an integral domain such that the t-operation coincides with the v-operation) is an
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H-domain. Conversely, a general class of H-domains which are not TV-domain was also given
in [38].

It was shown in [59, Proposition 4.2] that an integral domain is an H-domain if and only if
every v-invertible ideal is t-invertible. This statement can be easily generalized to the arbitrary
star operation setting.

Let ∗ be a star operation on an integral domain D. Then the following conditions are equiva-
lent:

(i) D is an H(∗)-domain (respectively, an H-domain).
(ii) Each ∗f -maximal ideal of D is a ∗-ideal of D (respectively, each maximal t-ideal is a

v-ideal).
(iii) For each I ∈ F (D), I is ∗-invertible if and only if I is ∗f -invertible (respectively, I is

v-invertible if and only if I is t-invertible).
(iv) Cl∗f (D) = Cl∗(D) (respectively, Clt (D) = Clv(D)).

The equivalences (i) ⇔ (ii) ⇔ (iii) follow from [29, Proposition 11]. (iii) ⇒ (iv). Since
a ∗-ideal is trivially also a ∗f -ideal, thus under the assumption (iii), Inv∗(D) ⊆ Inv∗f (D).
Therefore Cl∗(D) ⊆ Cl∗f (D). Since the reverse inclusion holds in general, we have Cl∗(D) =
Cl∗f (D). (iv) ⇒ (iii). In this situation, Inv∗f (D) = Inv∗(D), i.e., for each I ∈ F (D), I is a
∗-invertible ∗-ideal if and only if I is a ∗f -invertible ∗f -ideal. Recall that if an ideal I is ∗-
invertible (respectively, ∗f -invertible), then I ∗ = I v (respectively, I ∗f = I t ) (Proposition 2.2).
Therefore, from the previous considerations we deduce that if I is ∗-invertible, then it is ∗f -
invertible. The converse is trivial.

From the previous remark, we deduce immediately the following two corollaries. The first
one generalizes Corollary 3.6 (cf. also Proposition 3.1(2b)).

Corollary 3.12. Let D be a quasi-local integral domain with principal maximal ideal M . Then
Cl∗(D) = 0 for all star operations ∗ on D.

Proof. By Remark 3.11 ((ii) ⇒ (i)), since M is principal, D is an H-domain, and since D is
quasi-local, Inv(D) = Prin(D), and so Clt (D) = 0. Therefore Cl∗(D) = Clt (D) = Clv(D) = 0
for all star operations ∗. �

The next corollary generalizes Example 3.10(2).

Corollary 3.13. If D is a pre-Schreier domain and an H-domain (e.g., if D is a UFD), then
Cl∗(D) = 0 for all star operations ∗ on D.

Proof. We have already observed above that Clt (D) = 0 for a pre-Schreier domain D [14,
Proposition 1.4]. The parenthetical statement follows from the fact that a GCD-domain is a pre-
Schreier domain, and a UFD is a GCD-domain and a Krull domain. �

We have seen that if V is a valuation domain with principal maximal ideal M , then Clv(V ) = 0
(Proposition 3.1(2b)), and we have found out that if the maximal ideal M is idempotent and
branched, then Clv(V ) is isomorphic to R/G, where G is the value group of a certain nondiscrete
rank-one valuation domain (Corollary 3.7). We also know that if the maximal ideal M of V is not
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idempotent then M is principal. This leaves us with the case of V with M unbranched (and thus
necessarily idempotent [31, Theorem 17.3(b)]). At present we know very little about this case,
but an example in [4, Example 1] gives a valuation domain V with unbranched maximal ideal M

such that V affords a nonfinitely generated v-ideal I with II−1 = M . Consequently, a valuation
domain with unbranched maximal ideal may have nonzero v-class group.

We end the paper with some observations in the not necessarily quasi-local setting, but related
to the valuation domain case. Recall that Bouvier [13, Proposition 2] proved that D is a GCD-
domain if and only if D is a PvMD and Clt (D) = 0 and, moreover, in [14, Proposition 1.4]
Bouvier and Zafrullah have shown that if D is a pre-Schreier domain, then Clt (D) = 0. An
interested reader may want to know if results similar to these hold for Clv(D). It appears that
one answer may suffice for both questions. Because Clt (D) ⊆ Clv(D), and so if D is a PvMD
with Clv(D) = 0, then D is a GCD-domain with a slight difference. The difference is that not
every GCD-domain D has Clv(D) = 0. One example comes from Theorem 2.7 and another
slightly more general example follows from Corollary 3.7. Indeed, as every GCD-domain is also
a Schreier domain (i.e., an integrally closed domain in which every element is primal in Cohn’s
sense [16]), and hence a pre-Schreier domain [18], and as a PvMD is pre-Schreier (or, Schreier)
if and only if it is a GCD-domain [14, Corollary 1.5], we conclude that for a pre-Schreier domain
D it is not necessary that Clv(D) = 0 (for an explicit example of this type cf. for instance [16]).
We can however make a somewhat more general statement in this connection. For this, recall that
an integral domain D is a v-domain if every nonzero finitely generated ideal of D is v-invertible.

Proposition 3.14. Let D be a v-domain (e.g., a completely integrally closed integral domain [31,
Theorem 34.3]). If Clv(D) = 0, then D is a GCD-domain, but not conversely.

Proof. Let I be a nonzero finitely generated ideal of D. Then (II−1)v = D. So I−1, being a v-
invertible v-ideal, must be principal because Clv(D) = 0. So for every nonzero finitely generated
ideal I of D, we have that I v = (I−1)−1 is principal, which makes D a GCD-domain. That the
converse is not true follows from comments prior to this proposition. �
Remark 3.15. (1) The previous, not very striking, statement gives us some interesting candidates
for the study of the v-class group.

(a) Nagata (in [45,46]) gave an example of a completely integrally closed one-dimensional
quasi-local integral domain D that is not a valuation domain. Obviously D is not a GCD-
domain (since, as recalled above, a GCD-domain is a particular PvMD). So by Proposition
3.14, Clv(D) �= 0. It would be of interest to find Clv(D) in this case.

(b) Let k be a field, let Y,Z,X1,X2, . . . ,Xn, . . . be indeterminates, set K := k(Y,Z,X1,X2,

. . . ,Xn, . . .) and R := k(X1,X2, . . . ,Xn, . . .)[Y,Z](Y,Z). Inside the field K , Heinzer and
Ohm [36, Section 2] and Mott and Zafrullah [44, Example 2.1] consider a domain D which is
not a PvMD. This domain D is the intersection of the regular local ring R with a denumerable
family of discrete valuation domains of rank one in K , and so D is completely integrally
closed. Not being a PvMD makes D non-GCD, and so Clv(D) �= 0. Again, it would be of
interest to know Clv(D).

The main question in both cases is: must Clv(D) be a homomorphic image of (R,+) as we
saw in the valuation domain cases?
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(2) Our study of v-class groups appears to raise a lot of other questions. We mention some of
those questions here.

• What is Clv(D[X]) in terms of Clv(D)?
• Halter-Koch in [34, pp. 167–185] talks about valuation monoids. Consider S a valuation

monoid under addition. Defining the v-operation on S and Clv(S) in the obvious fashion,
find analogs of Theorems 2.7 and 3.5. Also, study Clv(D[S]) when Clv(D) is known. In
particular, find Clv(D[Q+]) in terms of Clv(D).
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