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Abstract


Given a stable semistar operation of finite type � on an integral domain D, we show that it is possible to
define in a canonical way a stable semistar operation of finite type [�] on the polynomial ring D[X], such
that D is a �-quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-[�]-maximal ideal.
This result completes the investigation initiated by Houston–Malik–Mott [E. Houston, S. Malik, J. Mott,
Characterizations of ∗-multiplication domains, Canad. Math. Bull. 27 (1984) 48–52, Section 2. [17]] in the
star operation setting. Moreover, we show that D is a Prüfer �-multiplication (respectively, a �-Noetherian;
a �-Dedekind) domain if and only if D[X] is a Prüfer [�]-multiplication (respectively, a [�]-Noetherian;
a [�]-Dedekind) domain. As an application of the techniques introduced here, we obtain a new interpre-
tation of the Gabriel–Popescu localizing systems of finite type on an integral domain D (Problem 45 of
[S.T. Chapman, S. Glaz, One hundred problems in commutative ring theory, in: S.T. Chapman, S. Glaz
(Eds.), Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2000, pp. 459–476. [4]]),
in terms of multiplicatively closed sets of the polynomial ring D[X].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and background results


Let D be an integral domain with quotient field K . Let F (D) denote the set of all nonzero
D-submodules of K and let F (D) (respectively, f (D)) be the set of all nonzero fractional (re-
spectively, finitely generated fractional) ideals of D.


Following Okabe–Matsuda [20], a semistar operation on D is a map � :F (D) → F (D),
E �→ E�, such that, for all x ∈ K , x �= 0, and for all E,F ∈ F (D), (a) (xE)� = xE�; (b) E ⊆ F


implies E� ⊆ F�; (c) E ⊆ E� and E�� := (E�)� = E�. A (semi)star operation is a semistar op-
eration that, restricted to F (D), is a star operation (in the sense of [14, Section 32]). It is easy to
see that a semistar operation � on D is a (semi)star operation if and only if D� = D.


If � is a semistar operation on D, then we can consider a map �f :F (D) → F (D) defined by
E�f := ⋃{F� | F ∈ f (D) and F ⊆ E}, for each E ∈ F (D). It is easy to see that �f is a semistar
operation on D, called the semistar operation of finite type associated to �. A semistar operation
� is called a semistar operation of finite type if � = �f . It is easy to see that (�f )f = �f (that is,
�f is of finite type).


If �1 and �2 are two semistar operations on D, we say that �1 � �2 if E�1 ⊆ E�2 , for each
E ∈ F (D). Obviously, for each semistar operation � defined on D, we have �f � �. Let dD (or,
simply, d) be the identity (semi)star operation on D, clearly d � �, for all semistar operation �


on D.
We say that a nonzero ideal I of D is a quasi-�-ideal if I � ∩ D = I , a quasi-�-prime if it is a


prime quasi-�-ideal, and a quasi-�-maximal if it is maximal in the set of all proper quasi-�-ideals.
A quasi-�-maximal ideal is a prime ideal. It is possible to prove that each proper quasi-�


f
-ideal is


contained in a quasi-�f -maximal ideal. More details can be found in [12, p. 4781]. We will denote
by QMax�(D) (respectively, QSpec�(D)) the set of the quasi-�-maximal ideals (respectively,
quasi-�-prime ideals) of D. When � is a (semi)star operation the notion of quasi-�-ideal coincides
with the “classical” notion of �-ideal (i.e., a nonzero ideal I such that I � = I ).


If Δ is a nonempty set of prime ideals of an integral domain D, then the semistar operation �Δ


on D defined by E�Δ := ⋂{EDP | P ∈ Δ}, for each E ∈ F (D), is called the spectral semistar
operation associated to Δ. A semistar operation � on an integral domain D is called a spectral
semistar operation if there exists a nonempty subset Δ of the prime spectrum of D, Spec(D),
such that � = �Δ.


When Δ := QMax�f (D), we set �̃ := �Δ, i.e., E�̃ := ⋂{EDP | P ∈ QMax�f (D)}, for each
E ∈ F (D). A semistar operation � is stable if (E ∩ F)� = E� ∩ F�, for each E,F ∈ F (D).
Spectral semistar operations are stable [7, Lemma 4.1(3)]. In particular, �̃ is a semistar operation
stable and of finite type [7, Corollary 3.9].


By vD (or, simply, by v) we denote the v-(semi)star operation defined as usual by Ev := (D :
(D : E)), for each E ∈ F (D). By tD (or, simply, by t) we denote (vD)f the t-(semi)star operation
on D and by wD (or just by w) the stable semistar operation of finite type associated to vD (or,
equivalently, to tD), considered by F.G. Wang and R.L. McCasland in [26]; i.e., wD := ṽD = t̃D .
Clearly wD � tD � vD . Moreover, it is easy to see that for each (semi)star operation � of D, we
have � � vD and �f � tD (cf. also [14, Theorem 34.1(4)]).


Let R be an overring of an integral domain D, let ι :D ↪→ R be the canonical embedding
and let � be a semistar operation on D. We denote by �ι the semistar operation on R defined by
E�ι := E�, for each E ∈ F (R) (⊆ F (D)). It is not difficult to see that if � is a semistar operation
of finite type (respectively, a stable semistar operation) on D then �ι is a semistar operation of
finite type (respectively, a stable semistar operation) on R (cf. for instance [11, Proposition 2.8]
and [22, Propositions 2.11 and 2.13]).
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A different approach to the stable semistar operation is possible by using the notion of local-
izing system [7]. Recall that a localizing system of ideals F of D is a set of (integral) ideals of D


verifying the following conditions (a) if I ∈F and if I ⊆ J , then J ∈F ; (b) if I ∈F and if J is
an ideal of D such that (J :D iD) ∈F , for each i ∈ I , then J ∈F . To avoid uninteresting cases,
we assume that F is nontrivial, i.e., F is not empty and (0) /∈F .


The localizing systems, and the equivalent notions of Gabriel topologies (or, topologizing
systems) and hereditary torsion theories, were introduced in the 60s of the last century for the
purpose of extending to noncommutative rings the theory of localizations and for characterizing,
from an ideal-theoretic point of view, the topologies associated to the hereditary torsion theories
(cf. [13], [1, Ch. II, §2, Exercises 17–25, p. 157], [24], and [25, Ch. VI]).


For each nonempty subset Δ of prime ideals of D, set F(Δ) := {I ideal of D | I �⊆
P for each P ∈ Δ}. It is easy to verify that F(Δ) is a localizing system of D [8, Proposi-
tion 5.1.4]. If P is a prime ideal of D, we denote simply by F(P ) the localizing system F({P }).
It is obvious that F(Δ) = ⋂{F(P ) | P ∈ Δ}.


A spectral localizing system is a localizing system F such that F =F(Δ), for some subset Δ


of Spec(D). A localizing system of finite type is a localizing system F such that for each I ∈ F
there exists a finitely generated ideal J ∈F with J ⊆ I .


Let F be a localizing system of ideals of D. It is easy to see that, if I, J ∈ F , then IJ ∈ F ,
thus F is a multiplicative system of ideals and, inside the field of quotients K of D, it is possible
to consider the generalized ring of fractions of D with respect to F , i.e., DF := ⋃{(D : I ) | I ∈
F} = {z ∈ K | (D :D zD) ∈ F}. It is easy to see that, for each E ∈ F (D), EF := ⋃{(E : I ) |
I ∈ F} = {z ∈ K | (E :D zD) ∈ F} belongs to F (DF ) (⊆ F (D)). We collect in the following
lemma the main properties of the localizing systems that we will need in the present paper (cf.
[7, Propositions 2.4, 2.8, Theorem 2.10(B) and Corollary 2.11] and [8, (5.1e), Lemma 5.1.5(2),
Propositions 5.1.4, 5.1.7 ((1) ⇔ (4)) and 5.18]).


Lemma 1.1. Let F be a localizing system of ideals of an integral domain D.


(1) For each E ∈ F (D), the mapping E �→ EF defines a stable semistar operation on D, de-
noted by �F .


(2) If Δ(F) := {Q ∈ Spec(D) | Q /∈F}, then F ⊆F(Δ(F)).
(3) If F is a localizing system of finite type then F =F(Δ(F)).
(4) If F = F(Δ) is a spectral localizing system then F(Δ) = F(Δ(F)). Moreover, for each


E ∈ F (D), EF(Δ) = ⋂{EDP | P ∈ Δ}.
(5) F is a localizing system of finite type if and only if there exists a quasi-compact subspace ∇


of Spec(D) (endowed with the Zariski topology) such that F =F(∇).
(6) Let � be a semistar operation on D and set F� := {I nonzero ideal of D | I � = D�}. Then


F� is a localizing system on D and �F� = � if and only if � is stable.
(7) The mapping F �→ �F establishes a bijection between the set of the localizing systems


(respectively, the localizing systems of finite type) on D and the set of the stable semistar
operations (respectively, the stable semistar operations of finite type) on D.


The notion of quasi-Prüfer domain (i.e., integral domain with Prüfer integral closure) has a
semistar operation analog introduced in [3]. The starting point of the present work is [3, Corol-
lary 2.4] where it is shown that the t-quasi-Prüfer domains coincide with the UMt-domains (i.e.,
the integral domains such that each upper to zero in D[X] is a maximal tD[X]-ideal, cf. [18]
and [16]). There is no immediate extension to the semistar setting of the previous characteri-
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zation, since in the general case we do not have the possibility to work at the same time with
a semistar operation (like the t-operation) defined both on D and on D[X]. To overcome this
difficulty, given a semistar operation of finite type � on an integral domain D, we show that it is
possible to define in a canonical way a semistar operation of finite type [�] on D[X], such that
D is a �-quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-[�]-maximal
ideal. Moreover, we show that D is a P�MD (respectively, a �̃-Noetherian domain; a �̃-Dedekind
domain) if and only if D[X] is a P[�]MD (respectively, a [�]-Noetherian domain; a [�]-Dedekind
domain).


As a by-product of the techniques introduced here, we obtain a new interpretation of the
Gabriel localizing systems of finite type. More precisely, we give an explicit natural bijection
between the set of localizing systems of finite type F on an integral domain D and the set
of extended saturated multiplicative sets S of D[X]; moreover, EF = E · D[X]S ∩ K , for all
E ∈ F (D).


2. Stable semistar operations and polynomial rings


Let D be an integral domain with quotient field K , and let X be an indeterminate over K .
For each polynomial f ∈ K[X], we denote by cD(f ) (or, simply, c(f )) the content on D of the
polynomial f , i.e., the (fractional) ideal of D generated by the coefficients of f .


Let � be a semistar operation on D, if N � := {g ∈ D[X] | g �= 0 and cD(g)� = D�}, then we
set Na(D,�) := D[X]N � . The ring of rational functions Na(D,�) is called the �-Nagata domain
of D. When � = d the identity (semi)star operation on D, thenN d =N := {g ∈ D[X] | cD(g) =
D}. We set simply Na(D) instead of Na(D,d) = D[X]N . Note that Na(D) coincides with the
classical Nagata domain D(X) (cf. for instance [21, Chapter I, §6, p. 18] and [14, Section 33]).


Recall from [12, Propositions 3.1 and 3.4] that:


(a) N � = N �f = N �̃ = D[X] \ ⋃{P [X] | P ∈ QMax�f (D)} is a saturated multiplicatively
closed subset of D[X].


(b) Na(D,�) = Na(D,�f ) = Na(D, �̃) = ⋂{DP (X) | P ∈ QMax�f (D)}.
(c) QMax�f (D) = {M ∩ D | M ∈ Max(Na(D,�))}.


Furthermore, the stable semistar operation of finite type �̃ on D, canonically associated to �,
has the following representation:


E�̃ = E · Na(D,�) ∩ K, for each E ∈ F (D).


More generally, let R be an overring of D. We say that R is t-linked to (D,�) if, for each
nonzero finitely generated ideal I of D, I � = D� implies (IR)tR = R [5, Section 3]. It is known
that R is a t-linked overring to (D,�) if and only if R = R�̃ [3, Lemma 2.9].


Let ι :D ↪→ R be the canonical embedding of D in its overring R. If R is a t-linked overring
to (D,�) then (̃�)ι is a stable (semi)star operation of finite type on R and


E(̃�)ι = E · Na(D,�) ∩ K = E · D[X]N � ∩ K, for each E ∈ F (R)


(cf. [3, Lemma 2.9 ((i) ⇔ (v))] and the last part of Section 1).
At this point, given an arbitrary multiplicative subset S of D[X], it is natural to ask whether


the map E �→ ED[X]S ∩ K , defined for all E ∈ F (D), gives rise to a semistar operation � on D
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(having the properties that D� = R, where R := D[X]S ∩ K , and that R is t-linked to (D,�)).
A complete answer to this question is given next. First we need a definition. Set:


S� := D[X] \
⋃{


P [X] ∣∣ P ∈ Spec(D) and P [X] ∩ S = ∅}
.


It is clear that S� is a saturated multiplicative set of D[X] and that S� contains the saturation of S ,
i.e., S� ⊇ S = D[X] \ ⋃{Q | Q ∈ Spec(D[X]) and Q ∩ S = ∅}. We will call S� the extended
saturation of S in D[X] and a multiplicative set S of D[X] is called extended saturated if
S = S�. Set


Δ := Δ(S) := {
P ∈ Spec(D)


∣∣ P [X] ∩ S = ∅};
obviously, Δ(S) = Δ(S�). Let ∇ := ∇(S) be the set of the maximal elements of Δ(S).


Theorem 2.1. Let S be a multiplicative subset of the polynomial ring D[X] and set E�S :=
ED[X]S ∩ K , for all E ∈ F (D). Clearly E�S ∈ F (D) and ED[X]S = E�SD[X]S , for all
E ∈ F (D).


(a) The mapping �S :F (D) → F (D), E �→ E�S defines a semistar operation on D.
(b) �S is stable and of finite type, i.e., �S = �̃S .
(c) The extended saturation S� of S coincides withN�S := {g ∈ D[X] | g �= 0 and cD(g)�S =


D�S } and �S = �S� .
(d) If S is extended saturated then Na(D,�S) = D[X]S .
(e) QMax�S (D) = ∇(S). In particular, �S coincides with the spectral semistar operation


�∇(S), i.e.,


E�S =
⋂{


EDP


∣∣ P ∈ ∇(S)
}
, for all E ∈ F (D).


(f) �S is a (semi)star operation on D if and only if S ⊆ N vD or, equivalently, if and only if
D = ⋂{DP | P ∈ ∇(S)}.


(g) The map S �→ �S establishes a 1-1 correspondence between the extended saturated mul-
tiplicative subsets of D[X] (respectively, extended saturated multiplicative subsets of D[X]
contained in N vD ) and the set of the stable semistar (respectively, (semi)star) operations of
finite type on D.


(h) Let S be an extended saturated multiplicative set of D[X]. Then Na(D,vD) = D[X]S if and
only if S =N vD .


(i) Let R := D�S and let ι :D → R be the canonical embedding. The overring R is t-linked to
(D,�S) and S ⊆N vR (i.e., (�S)ι is a (semi)star operation on R). Moreover (�S)ι = wR


if and only if the extended saturation S�R of the multiplicative set S in R[X] coincides
with N vR .


Proof. For the simplicity of notation, set ∗ := �S . Since E ⊆ E∗ and E∗ = ED[X]S ∩ K ⊆
ED[X]S , then E∗D[X]S = ED[X]S .


(a) The proof is straightforward.
(b) It suffices to show that E∗ ⊆ E∗̃ for each E ∈ F (D). If 0 �= x ∈ E∗, then there exist 0 �=


f ∈ ED[X] and 0 �= g ∈ S such that x = f
g


∈ K . So xg = f , and thus xcD(g) = cD(f ) ⊆ E.
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Note that cD(g)∗ = D∗, since gD[X]S ⊆ cD(g)D[X]S and gD[X]S = D[X]S . Therefore g ∈
N ∗ = {h ∈ D[X] | h �= 0 and cD(h)∗ = D∗} and so x = f


g
∈ ED[X]N ∗ ∩ K = E · Na(D,∗) ∩


K = E∗̃.
(c) We have already observed (in the proof of (b)) that S ⊆ N ∗. Since the multiplicative


set N ∗ coincides with D[X] \ ⋃{P [X] | P ∈ QMax∗(D)} [12, Proposition 3.1(2)], then N ∗
is extended saturated and so S� ⊆ N ∗. If 0 �= g ∈ D[X] and g ∈ N ∗ \ S� then g ∈ Q[X], for
some prime ideal Q ∈ Spec(D) \ QMax∗(D) and Q[X] ∩ S = ∅. Note that Q∗ ∩ D �= D, i.e.,
Q∗ �= D∗, since QD[X]S �= D[X]S . Since ∗ is a semistar operation of finite type, we can find
a quasi-∗-maximal ideal P in D containing Q∗ ∩ D and hence also containing Q. Therefore
g ∈ P [X], contradicting the assumption that g ∈N ∗. Finally, using (b), we have �S = �̃S =
∗̃ = �N ∗ = �S� .


(d) is a straightforward consequence of (c).
(e) By [12, Proposition 3.1(5)] and by (c) we have QMax�S (D) = {M ∩ D | M ∈


Max(D[X]N ∗)} = ∇(S). The remaining statement follows from (b).
(f) Suppose that ∗′ is a (semi)star operation on D, and let g ∈ S . If g /∈ N vD , then


cD(g)−1 �= D, we can choose x ∈ cD(g)−1 \ D, so x = xg
g


∈ D[X]S ∩ K = D∗′
. Since D = D∗′


by assumption, we reach a contradiction. Thus g ∈ N vD . Conversely, assume S ⊆ N vD , then
D∗′ = D[X]S ∩ K ⊆ Na(D,v) ∩ K = Dw = D. The second equivalence follows from (e).


(g) Let � be a stable semistar operation of finite type on D. Then � = �Δ, where Δ :=
QMax�(D). Set S(Δ) := D[X] \ ⋃{P [X] | P ∈ Δ}. Clearly, S(Δ) is an extended saturated
multiplicative set of D[X] and ∇(S(Δ)) = Δ. Therefore �S(Δ) = �Δ = �. We easily conclude
by using (b), (c) and (f).


(h) is a straightforward consequence of (g).
(i) A part of this statement is a consequence of (f) and (h), after remarking that (�S)ι is a


(semi)star operation on R “of type �” (defined by a multiplicative set of R[X]). The fact that R


is t-linked to (D,�S) is a consequence of (b) and of [3, Lemma 2.9 ((i) ⇔ (v))]. �
The previous theorem leads to a new interpretation of the localizing systems of finite type on


an integral domain D in terms of multiplicatively closed sets of the polynomial ring D[X].


Corollary 2.2. The map F �→ S := S(F) := D[X] \ {Q[X] | Q ∈ Spec(D) and Q /∈ F} es-
tablishes a natural bijection between the set of localizing systems of finite type F on an in-
tegral domain D and the set of extended saturated multiplicative sets S of D[X]. Moreover,
EF = E · D[X]S(F) ∩ K (= E�S(F) ), for all E ∈ F (D).


Proof. Let Δ(F) := {Q ∈ Spec(D) | Q /∈F} and so S(F) := D[X] \ {Q[X] | Q ∈ Δ(F)}. Con-
versely, given an extended saturated multiplicative set S of D[X], consider the set Δ(S) :=
{P ∈ Spec(D) | P [X] ∩ S = ∅} and define F(S) := ⋂{F(P ) | P ∈ Δ(S)}, where F(P ) :=
{I | I is an ideal of D,I �⊆ P }. The map defined by F �→ S(F) is a bijection, having as in-
verse the map defined by S �→ F(S). As a matter of fact, given a localizing systems of finite
type F on D, then Δ(S(F)) = Δ(F) and thus F = F(S(F)), since for a localizing system
of finite type we have F = ⋂{F(P ) | P ∈ Δ(F)} [8, Lemma 5.1.5(2)]. Conversely, given an
extended saturated multiplicative set S of D[X], then it is easy to see that Δ(S) ⊆ Δ(F(S)).
On the other hand, if Q ∈ Δ(F(S)), then Q /∈ F(S) and so Q /∈ F(P ), i.e., Q ⊆ P , for some
P ∈ Δ(S), hence Q[X] ∩ S = ∅, i.e., Q ∈ Δ(S). From the fact that Δ(S) = Δ(F(S)) we have
S(F(S)) = D[X] \ {P [X] | P ∈ Δ(S)} = S� = S .
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By Lemma 1.1(7), the last statement follows by observing that F coincides with F� :=
{I nonzero ideal of D | I�S(F) ∩ D = D}. �


The notion of quasi-Prüfer domain has a semistar analog introduced in [3]. Recall that an
integral domain D is a �-quasi-Prüfer domain if for each prime ideal Q in D[X] such that
Q ⊆ P [X], for some P ∈ QSpec�(D), then Q = (Q ∩ D)[X].


As motivated in [3], the previous notion has particular interest in case of semistar operations
of finite type. Note that the d-quasi-Prüfer domains coincide with the quasi-Prüfer domains [3,
Theorem 1.1]. For � = v, we have observed in [3, Corollary 2.4(b)] that the t-quasi-Prüfer do-
mains coincide with the UMt-domains, i.e., the domains such that each upper to zero in D[X]
is a maximal tD[X]-ideal. There is no immediate extension to the semistar setting of the previous
characterization, since in the general case we do not have the possibility to work at the same time
with a semistar operation (like the t-operation) defined both on D and on D[X].


This motivated the following question posed in [3]: Given a semistar operation of finite type �


on D, is it possible to define in a canonical way a semistar operation of finite type �D[X] on D[X],
such that D is a �-quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-�D[X]-
maximal ideal?


In the next theorem and in the subsequent corollary we give a satisfactory answer to the
previous question, using the techniques introduced in Theorem 2.1.


Theorem 2.3. Let D be an integral domain with quotient field K , let X,Y be two indeterminates
over D and let � be a semistar operation on D. Set D1 := D[X], K1 := K(X) and take the
following subset of Spec(D1):


Δ�
1 := {


Q1 ∈ Spec(D1)
∣∣ Q1 ∩ D = (0) or Q1 = (Q1 ∩ D)[X] and (Q1 ∩ D)�f � D�


}
.


Set S�
1 := S(Δ�


1) := D1[Y ] \ (
⋃{Q1[Y ] | Q1 ∈ Δ�


1}) and:


E
�S�


1 := E[Y ]S�
1
∩ K1, for all E ∈ F (D1).


(a) The mapping [�] := �S�
1
: F (D[X]) → F (D[X]), E �→ E


�S�
1 is a stable semistar operation


of finite type on D[X], i.e., [̃�] = [�]. Moreover, if � is a (semi)star operation on D, then
[�] is a (semi)star operation on D[X].


(b) [̃�] = [�f ] = [�].
(c) (ED[X])[�] ∩ K = ED1[Y ]S�


1
∩ K = E�̃ for all E ∈ F (D).


(d) (ED[X])[�] = E�̃D[X], for all E ∈ F (D).
(e) QMax[�](D1) = {Q1 | Q1 ∈ Spec(D1) such that Q1 ∩ D = (0) and cD(Q1)


�f = D�} ∪
{P [X] | P ∈ QMax�f (D)}.


(f) [wD] = [tD] = [vD] = ṽD1 = wD1 .


Proof. Note that, if Q1 ∈ Spec(D[X]) is not an upper to zero and (Q1 ∩ D)�f � D�, then the
prime ideal Q1 ∩ D is contained in a quasi-�f -maximal ideal of D. Moreover if Q1 ∩ D = (0)


and cD(Q1)
�f � D� then cD(Q1)


�f is contained in a quasi-�f -prime ideal P of D and hence
Q1 ⊆ P [X] with P �f � D�. Set ∇�


1 := {Q1 ∈ Spec(D1) | either Q1 ∩ D = (0) and cD(Q1)
�f =


D� or Q1 = PD[X] and P ∈ QMax�f (D)}.
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It is easy to see that


S�
1 := D1[Y ]∖(⋃{


Q1[Y ] ∣∣ Q1 ∈ Δ�
1


}) = D1[Y ]∖(⋃{
Q1[Y ] ∣∣ Q1 ∈ ∇�


1


}) = S
(∇�


1


)
.


(a) follows from Theorem 2.1((a), (b) and (f)).
(b) Since QMax�f (D) = QMax̃�(D), the conclusion follows easily from the fact that S �̃


1 =
S�f


1 = S�
1 .


(c) Let N [�] := {g ∈ D1[Y ] | g �= 0 and cD1(g)[�] = D
[�]
1 }. Since by construction S�


1 is an
extended saturated multiplicative set of D1 we know that S�


1 =N [�] (Theorem 2.1(c)). On the
other hand, if h ∈N � = D[X] \ (


⋃{P [X] | P ∈ QMax�f (D)}) then h ∈ D[X][Y ] \ (
⋃{Q1[Y ] |


Q1 ∈ ∇�
1}) = N [�]. Therefore, for all E ∈ F (D), E�̃ = ED[X]N � ∩ K ⊆ ED1[Y ]N [�] ∩ K =


(ED1[Y ]N [�] ∩ K1) ∩ K = (ED1)
[�] ∩ K = (ED[X])[�] ∩ K .


For the reverse containment, let 0 �= z = f
g


∈ ED[X][Y ]S�
1


∩ K , where z ∈ K and f,g ∈
K[X,Y ] are nonzero polynomials such that f ∈ ED[X][Y ] and g ∈ S�


1 = N [�]. Set g = g0 +
g1Y + · · · + gnY


n, where gi ∈ D1 with gn �= 0 and n � 0; then cD1(g) = (g0, g1, . . . , gn) and
cD(g) = cD(g0)+cD(g1)+· · ·+cD(gn). Let Q1 ∈ Δ�


1. Since cD1(g)[�] = D
[�]
1 , then g /∈ Q1[Y ],


and hence (g0, g1, . . . , gn) � Q1. So at least one among the gi ’s is not contained in Q1, and thus
cD(g) � Q1 ∩ D. In particular cD(g) � P , for all P ∈ QMax�f (D), i.e., cD(g)̃� = D�̃. On the
other hand, zcD(g) = cD(zg) = cD(f ) ⊆ E. Hence z ∈ zcD(g)̃� ⊆ E�̃. Therefore we conclude
that ED[X]N � ∩ K = E�̃.


(d) By (c), (ED[X])[�] ∩ K = E�̃, and thus E�̃D[X] ⊆ (ED[X])[�], for all E ∈ F (D).
For the converse, let 0 �= h


�
= f


g
∈ (ED[X])[�] = ED[X][Y ]S�


1
∩ K1, where h, � ∈ K[X] are


nonzero polynomials such that GCD(h, �) = 1 in K[X], 0 �= f ∈ ED[X][Y ], and 0 �= g ∈ S�
1 .


Then �f = hg, and since K[X,Y ] is a UFD and GCD(h, �) = 1, we have � | g in K[X,Y ], i.e.,
g = � · γ for some γ ∈ K[X,Y ].


We claim that � ∈ K . Assume that � ∈ K[X] \ K . Choose a prime ideal Q1 of D1 = D[X]
such that �K[X] ∩ D[X] ⊆ Q1 and Q1 ∩ D = (0). Then g = � · γ ∈ Q1K[X,Y ] ∩ D[X,Y ] =
Q1[Y ] ∈ Δ�


1 and so g /∈ S�
1 , which is a contradiction.


Since 0 �= � ∈ K , set h′ := h
�


∈ K[X]. Then h′ = f
g


∈ ED[X][Y ]S�
1


∩ K[X] and so


h′ · g = f . Since g ∈ S�
1 , by the proof of (c) above, we have cD(g)̃� = D�̃, and hence


cD(h′) ⊆ cD(h′)cD(g)̃� ⊆ (cD(h′)cD(g)̃�)̃� = (cD(h′)cD(g))̃� = cD(h′ · g)̃� = cD(f )̃� ⊆ E�̃


(cf. [14, Corollary 28.3] for the fourth equality). We conclude that h′ = f
g


∈ E�̃D[X].
(e) By [12, Proposition 3.1(5)] we know that


QMax[�](D1) = {
M ∩ D1


∣∣ M ∈ Max
(
D1[Y ]N [�]


)}


and it is easy to verify that this last set coincides with ∇�
1.


(f) If �f = t , then by (e) QMax[�](D[X]) = {Q1 | Q1 ∈ Spec(D1) such that Q1 ∩D = (0) and
cD(Q1)


t = D} ∪ {P [X] | P ∈ Maxt (D)} = MaxtD[X](D[X]). The last equality holds because
it is well known that if P ∈ Maxt (D) then P [X] ∈ MaxtD[X](D[X]) [15, Proposition 4.3] and
[19, Proposition 1.1]; moreover, if Q1 ∈ Spec(D1) is such that Q1 ∩ D = (0), then Q1 is a tD1 -
maximal ideal if and only if cD(Q1)


t = D [19, Theorem 1.4]. Thus, by (a) and (b) and by the
fact that QMax[�](D[X]) = MaxtD[X](D[X]), we have [vD] = [tD] = [wD] = [̃wD] = ṽD[X] =
wD[X]. �
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Corollary 2.4. Let � be a semistar on an integral domain D and let [�] be the stable semistar
operation of finite type on D[X] canonically associated to � as in Theorem 2.3(a). The following
statements are equivalent:


(i) D is a �f -quasi-Prüfer domain.
(ii) D[X] is a [�]-quasi-Prüfer domain.


(iii) Each upper to zero is a quasi-[�]-maximal ideal of D[X].


Proof. The equivalence (i) ⇔ (iii) follows easily from Theorem 2.3(e) and from the fact that D


is a �f -quasi-Prüfer domain if and only if, for each upper to zero Q in D[X], c(Q)�f = D� [3,
Lemma 2.3].


For the equivalence between (i) and (ii), recall that D is a �f -quasi-Prüfer domain if and
only if DP is a quasi-Prüfer domain, for each quasi-�f -maximal ideal P of D [3, Theorem 2.16
((1�f


) ⇔ (11�f
))]. Moreover, for each prime ideal P of D, D[X]P [X] coincides with the Nagata


ring DP (X) and this is a quasi-Prüfer domain if and only if DP is a quasi-Prüfer domain [3,
Theorem 1.1 ((1) ⇔ (9))].


(i) ⇒ (ii). Since we know already that (i) ⇔ (iii), in the present situation we have
QMax[�](D[X]) = {Q1 | Q1 ∈ Spec(D1) such that Q1 ∩ D = (0)} ∪ {P [X] | P ∈ QMax�f (D)}.
The conclusion follows from the fact that D[X]Q1 is clearly a DVR for each upper to zero Q1


of D[X] and D[X]P [X] = DP (X) is a quasi-Prüfer domain, since DP is a quasi-Prüfer domain,
for each quasi-�f -maximal ideal P of D.


(ii) ⇒ (i) is obvious by the previous argument. �
From the previous corollary and from [3, Corollary 2.4(b)], we re-obtain that an integral


domain D is a UMt-domain if and only if the polynomial ring D[X] is a UMt-domain [10,
Theorem 2.4], since by Theorem 2.3(f), the semistar operation [tD] on D[X] coincides with
wD[X] and the notions of w-quasi-Prüfer domain and t-quasi-Prüfer domain coincide.


Let � be a semistar operation on an integral domain D. We say that D is a �-Noetherian
domain if D has the ascending chain condition on quasi-�-ideals of D. It is easy to show that
D is �-Noetherian if and only if each nonzero ideal I of D is �f -type, i.e., I �f = J �f for some
J ∈ f (D) and J ⊆ I . It is known that D is �̃-Noetherian if and only if Na(D,�) = D[X]N � is
Noetherian, [22, Theorem 4.36] or [23, Theorem 3.6] (cf. [2, Theorem 2.6] for the star operation
case). An I ∈ F (D) is said to be quasi-�-invertible (respectively, �-invertible) if (I : (D� : I ))� =
D� (respectively, (I : (D : I ))� = D�). Recall that D is a �-Dedekind domain if each nonzero
(integral) ideal of D is quasi-�f -invertible and D is a Prüfer �-multiplication domain (for short,
P�MD) if every nonzero finitely generated (integral) ideal of D is �f -invertible (cf. for instance
[9]). It is known that D is a �-Dedekind domain if and only if D is a P�MD and a �-Noetherian
domain [6, Proposition 4.1].


Corollary 2.5. Let � be a semistar on an integral domain D and let [�] be the stable semistar
operation of finite type on D[X] canonically associated to � as in Theorem 2.3(a). Then


(1) D is a P�MD if and only if D[X] is a P[�]MD.
(2) D is a �̃-Noetherian domain if and only if D[X] is a [�]-Noetherian domain.
(3) D is a �̃-Dedekind domain if and only if D[X] is a [�]-Dedekind domain.
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Proof. (1) By Theorem 2.3(d), we have (D[X])[�] = D�̃[X], and hence (D[X])[�] is integrally
closed if and only if D�̃ is integrally closed. Thus the result follows directly from Corollary 2.4
and [3, Corollary 2.17].


(2) Assume that D is a �̃-Noetherian domain. Then D[X]N � is Noetherian and so
(D[X]N � )[Y ] = (D[X][Y ])N � is also Noetherian. On the other hand, recall that N � ⊆ N [�]
(cf. the proof of Theorem 2.3(c)), and so (D[X][Y ])N [�] = ((D[X][Y ])N � )N [�] is Noetherian.
Hence, D[X] is [�]-Noetherian.


For the converse, let I be a nonzero ideal of D. Since D[X] is [�]-Noetherian, then
(ID[X])[�] = (f1, f2, . . . , fn)


[�], for a finite family of polynomials f1, f2, . . . , fn ∈ ID[X]. Set
J = cD(f1)+ cD(f1)+ · · ·+ cD(fn). Clearly (f1, f2, . . . , fn) ⊆ JD[X] and thus (ID[X])[�] =
(JD[X])[�]. Therefore, by Theorem 2.3(c), we have I �̃ = (ID[X])[�] ∩ K = (JD[X])[�] ∩ K =
J �̃ and so we conclude that D is �̃-Noetherian.


(3) This is an immediate consequence of (1), (2) and [6, Proposition 4.1]. �
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