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AN OVERRING-THEORETIC APPROACH TO POLYNOMIAL
EXTENSIONS OF STAR AND SEMISTAR OPERATIONS
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Call a semistar operation ! on the polynomial domain D!X" an extension (respectively,
a strict extension) of a semistar operation # defined on an integral domain D, with
quotient field K, if E# = $E!X"%! ∩ K (respectively, E#!X" = $E!X"%!) for all nonzero
D-submodules E of K. In this article, we study the general properties of the above
defined extensions and link our work with earlier efforts, centered on the stable semistar
operation case, at defining semistar operations on D!X" that are “canonical” extensions
(or, “canonical” strict extensions) of semistar operations on D.

Key Words: Kronecker function ring; Localizing system of ideals; Nagata ring; Polynomial domain;
Star and semistar operation; v–, t–, w–, b–operation.
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1. BACKGROUND RESULTS

Let D be an integral domain with quotient field K. Let !F!D" denote the set
of all nonzero D-submodules of K, and let F!D" be the set of all nonzero fractional
ideals of D, i.e., E ∈ F!D" if E ∈ !F!D", and there exists a nonzero d ∈ D with dE ⊆
D. Let f !D" be the set of all nonzero finitely generated D-submodules of K. Then,
obviously f !D" ⊆ F!D" ⊆ !F!D".

Following Okabe and Matsuda [28], a semistar operation on D is a map # $
!F!D" → !F!D"%E %→ E#, such that, for all x ∈ K, x &= 0, and for all E%F ∈ !F!D", the
following properties hold:

!#1" !xE"# = xE#;
!#2" E ⊆ F implies E# ⊆ F #;
!#3" E ⊆ E# and E## $= !E#"# = E#.

The semistar operation defined by E# = K for all E ∈ !F!D" is called the trivial
semistar operation on D, and it is denoted by eD (or, simply, by e). A (semi)star
operation is a semistar operation that, restricted to F!D", is a star operation (in the
sense of [12, Section 32]). It is easy to see that a semistar operation # on D is a
(semi)star operation if and only if D# = D.
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1957

If ! is a semistar operation on D, then we can consider a map !f " !F#D$ →
!F#D$ defined, for each E ∈ !F#D$, as follows:

E!f "=
⋃
%F ! $F ∈ f #D$ and F ⊆ E&'

It is easy to see that !f is a semistar operation on D, called the semistar operation
of finite type associated to !. Note that, for each F ∈ f #D$, F ! = F !f . A semistar
operation ! is called a semistar operation of finite type if ! = !f . It is easy to see that
#!f $f = !f (that is, !f is of finite type).

If !1 and !2 are two semistar operations on D, we say that !1 ≤ !2 if E!1 ⊆ E!2 ,
for each E ∈ !F#D$. This is equivalent to say that #E!1$!2 = E!2 = #E!2$!1 , for each
E ∈ !F#D$. Obviously, for each semistar operation !, we have !f ≤ !. Let dD (or,
simply, d) be the identity (semi)star operation on D; clearly, d ≤ !, for all semistar
operation ! on D.

We say that a nonzero ideal I of D is a quasi-!-ideal if I! ∩D = I , a quasi-!-
prime ideal if it is a prime quasi-!-ideal, and a quasi-!-maximal ideal if it is maximal
in the set of all proper quasi-!-ideals. A quasi-!-maximal ideal is a prime ideal. It is
possible to prove that each proper quasi-!f -ideal is contained in a quasi-!f -maximal
ideal. More details can be found in [10, p. 4781]. We will denote by QMax!#D$
(respectively, QSpec!#D$) the set of the quasi-!-maximal ideals (respectively, quasi-
!-prime ideals) of D. When ! is a (semi)star operation, the notion of quasi-!-ideal
coincides with the “classical” notion of !-ideal (i.e., a nonzero ideal I such that
I! = I).

If ( is a set of prime ideals of an integral domain D, then the semistar
operation !( defined on D

E!( "=
⋂
%EDP $P ∈ (&) for each E ∈ !F#D$)

is called the spectral semistar operation on D associated to (. A semistar operation !
on an integral domain D is called a spectral semistar operation if there exists a subset
( of the prime spectrum of D, Spec#D$, such that ! = !(.

When ( "= QMax!f #D$, we set !̃ "= !(, i.e.,

E!̃ "=
⋂
%EDP $P ∈ QMax!f #D$&) for each E ∈ !F#D$'

A semistar operation ! is stable if #E ∩ F$! = E! ∩ F !, for each E)F ∈ !F#D$.
Spectral semistar operations are stable [6, Lemma 4.1(3)]. In particular, !̃ is a
semistar operation stable and of finite type; and, conversely, if a semistar operation
! is stable and of finite type then ! = !̃ [6, Corollary 3.9(2)].

Let T be an overring of an integral domain D, let * " D↪→ T be the canonical
embedding, and let ! be a semistar operation on D. We denote by !* the semistar
operation on T defined by E!* "= E!, for each E ∈ !F#T$#⊆ !F#D$$.

Conversely, let ∗ be a semistar operation on T , and let ∗* be the semistar
operation on D defined by E∗* "= #ET$∗, for each E ∈ !F#D$.

It is not difficult to see that #∗*$f = #∗f $* and if ! is a semistar operation of
finite type (respectively, a stable semistar operation) on D, then !* is a semistar
operation of finite type (respectively, a stable semistar operation) on T (cf. for
instance [9, Proposition 2.8] and [29, Propositions 2.11 and 2.13]).
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1958 CHANG AND FONTANA

Clearly, if ! = dD, then "dD#$ = dT . In case ∗ = dT , the semistar operation of
finite type "dT #

$ (defined by E "→ ET for all E ∈ %F"D#) is denoted also by !%T&, and
it is stable if and only if T is a flat overring of D [34, Proposition 1.7] and [25,
Theorem 7.4(1)].

By vD (or, simply, by v), we denote the v-(semi)star operation defined as
usual by Ev '= "D ' "D ' E##, for each E ∈ %F"D#. By tD (or, simply, by t) we denote
"vD#f the t-(semi)star operation on D and by wD (or just by w) the stable semistar
operation of finite type associated to vD (or, equivalently, to tD), considered by
Wang and McCasland in [35] (cf. also [13]); i.e., wD '= ṽD = t̃D. Clearly, wD ≤ tD ≤
vD. Moreover, it is easy to see that for each (semi)star operation ! on D, we have
! ≤ vD and !f ≤ tD (cf. also [12, Theorem 34.1(4)]).

We recall from [7, Chapter V] (see also [31, Chapter 4]) that a localizing system
of ideals of D is a family ! of ideals of D such that:

(LS1) If I ∈ ! and J is an ideal of D such that I ⊆ J , then J ∈ ! ;
(LS2) If I ∈ ! and J is an ideal of D such that "J 'D iD# ∈ ! , for each i ∈ I , then

J ∈ ! .

A localizing system ! is finitely generated if, for each I ∈ ! , there exists a
finitely generated ideal J ∈ ! such that J ⊆ I .

The relation between stable semistar operations and localizing systems has
been investigated by Fontana and Huckaba in [6] and by Halter-Koch in the
context of module systems [17]. In the following proposition, we summarize some
of the results that we need (see [6, Proposition 2.8, Proposition 3.2, Proposition 2.4,
Corollary 2.11, Theorem 2.10(B)]).

Proposition 1. Let D be an integral domain.

(1) If ! is a semistar operation on D, then ! ! '= %I ideal of D ( I! = D!& is a localizing
system (called the localizing system associated to !).

(2) If ! is a semistar operation of finite type, then ! ! is a finitely generated localizing
system.

(3) Let !! or, simply,%! be the semistar operation associated to a given localizing system
! of D and defined by E "→ E%! '= ⋃

%"E ' J# ( J ∈ ! &, for each E ∈ %F"D#. Then !!
(called the semistar operation associated to the localizing system ! ) is a stable
semistar operation on D.

(4) %! ≤ ! and ! ! = !%!.
(5) %! = ! if and only if ! is stable.
(6) If ! is a finitely generated localizing system, then !! is a finite type (stable) semistar

operation.
(7) ! !f = "! !#f '= %I ∈ ! ! ( I ⊇ J( for some finitely generated ideal J ∈ ! !& and !̃ =

%!f , i.e., !̃ is the stable semistar operation of finite type associated to the localizing
system ! !f . In particular, for each E ∈ %F"D#, we have:

E!̃ =
⋃
%"E ' J# ( J ∈ f "D#( J ⊆ D( and J ! = D!&)

(8) If ! ′ and ! ′′ are two localizing systems of D, then ! ′ ⊆ ! ′′ if and only if !! ′ ≤ !! ′′ .
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1959

If I is a nonzero fractional ideal of D, we say that I is !-invertible if "II−1#! =
D!. From the definitions and from the fact that QMax!f "D# = QMax!̃"D# [10,
Corollary 3.5(2)] it follows easily that a nonzero fractional ideal I is !̃-invertible if
and only if I is !f -invertible. An integral domain D is called a Prüfer !-multiplication
domain (for short, P!MD) if each I ∈ f "D# is !f -invertible. It is easy to see that
the notions of PvMD, PtMD and PwMD coincide. Obviously, a PdMD is a Prüfer
domain, and conversely [12, Theorem 22.1].

If R is a ring (not necessarily an integral domain) and X an indeterminate over
R, then the ring R"X# $= %f/g # f& g ∈ R'X( and c"g# = R) (where c"g# is the content
of the polynomial g) is called the Nagata ring of R [12, Proposition 33.1].

In case of an integral domain equipped with a semistar operation, we have a
general “semistar version” of the Nagata ring. The following result was proved in
[10, Propositions 3.1 and 3.4] (cf. also [23, Proposition 2.1]).

Proposition 2. Let ! be a nontrivial semistar operation on an integral domain D. Set
! ! $= ! !

D $= %h ∈ D'X( #h $= 0 and c"h#! = D!) and

Na"D& !# $= D'X(! ! *

Then,

(1) ! ! is a saturated multiplicative subset of D'X( and ! ! = ! !f =
D'X(!⋃

%Q'X( #Q ∈ QMax!f "D#).
(2) Max"Na"D& !## = %Q'X(! ! #Q ∈ QMax!f "D#) and QMax!f "D# coincides with the

canonical image in Spec"D# of Max"Na"D& !##.
(3) Na"D& !# = ⋂

%DQ"X# #Q ∈ QMax!f "D#).
(4) For each E ∈ %F"D#, E!̃ = ENa"D& !# ∩ K.

Let ! be a semistar operation on D. If F is in f "D#, we say that F is
!-eab (respectively, !-ab) if "FG#! ⊆ "FH#! implies that G! ⊆ H!, with G&H ∈ f "D#,
(respectively, with G&H ∈ %F"D#).

An operation ! is said to be eab (respectively, ab) if each F ∈ f "D# is !-eab
(respectively, !-ab). An ab operation is obviously an eab operation. We note that if
! is an eab semistar operation, then !f is also an eab semistar operation, since they
agree on all finitely generated ideals. Let ! be a semistar operation of finite type.
Then ! is an eab semistar operation if and only if ! is an ab semistar operation.
In this situation, we say that ! is an (e)ab semistar operation. In particular, from
the previous result, it follows that the notions of !-eab semistar operation and
!f -(e)ab semistar operation coincide [11, Lemma 3 and Proposition 4].

Given an arbitrary semistar operation ! on an integral domain D, it is possible
to associate to !, an eab semistar operation of finite type !a of D, called the ab
semistar operation associated to !, defined as

F !a $= ∪%""FH#! $ H# #H ∈ f "D#)& for each F ∈ f "D#&

and, in general,

E!a $= ∪%F !a #F ⊆ E&F ∈ f "D#)& for each E ∈ %F"D#&
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1960 CHANG AND FONTANA

[9, Definition 4.4]. Note that if ! is an (e)ab semistar operation of finite type, then
! = !a, and conversely [9, Proposition 4.5]. More information on the operation !a,
introduced for ideal systems in [22, p. 41] (see also Lorenzen’s original article [24])
can be found in [8, 15, 16, 27, 28].

Let ! be a semistar operation on D, and let V be a valuation overring of
D. We say that V is a !-valuation overring of D if, for each F ∈ f "D#, F ! ⊆ FV
(or equivalently, !f ≤ !$V%). Note that a valuation overring V of D is a !-valuation
overring of D if and only if V !f = V . More details of semistar valuation overrings
can be found in [8, 9] (cf. also [15, 18, 22]).

Proposition 3. ([9, Proposition 3.3, Theorem 3.11, Theorem 5.1, Corollary 5.2,
Corollary 5.3], [8, Theorem 3.5]). Let ! be any semistar operation defined on an integral
domain D with quotient field K and let !a be the ab semistar operation associated to !.
Set

Kr"D& !# '= $f/g $ f& g ∈ D(X) \ $0% and there exists h ∈ D(X) \ $0%
such that "c"f#c"h##! ⊆ "c"g#c"h##!% ∪ $0%*

Then, we have:

(1) Kr"D& !# is a Bézout domain with quotient field K"X#& called the Kronecker
function ring of D with respect to the semistar operation !;

(2) Na"D& !# ⊆ Kr"D& !#;
(3) Kr"D& !# = Kr"D& !a#;
(4) E!a = EKr"D& !# ∩ K& for each E ∈ 'F"D#;
(5) Kr"D& !# = ⋂

$V"X# $V is a ! -valuation overring of D%*
(6) If F '= "a0& a1& * * * & an# ∈ f "D# and f"X# '= a0 + a1X + · · · + anX

n ∈ K(X)& then

FKr"D& !# = f"X#Kr"D& !# = c"f#Kr"D& !#*

When ! = d, the d-valuation overrings of D are just the valuation overrings
of D. In this case, we set

Kr"D# '= Kr"D&d# =
⋂
$V"X# $V is a valuation overring of D%*

Moreover, if we denote by bD (or, simply, by b) the ab semistar operation of finite
type "dD#a, then for each E ∈ 'F"D#,

Eb = EKr"D# ∩ K =
⋂
$EV $V is a valuation overring of D%*

Remark 4. Recall that a Prüfer domain D can be characterized by the fact that
each F ∈ f "D# is invertible. Since an invertible ideal is always a v-ideal (and, in
particular, a t-ideal), then the following are equivalent [12, Theorem 24.7 and
Theorem 34.1(4)]:

(i) D is a Prüfer domain;
(ii) D is integrally closed and d = b;
(iii) D is integrally closed and d = t.
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1961

2. RESULTS

Let D be an integral domain with quotient field K, and let X be an
indeterminate over K. We start with some basic facts. Note that some of the
statements contained in the following result were also proved in [26, Proposition
2.1] and, in the star operation setting, in [20, Propositions 2.1 and 2.2].

Lemma 5. Given a semistar operation ! on D!X", for each E ∈ "F#D$ set

E!0 %= #E!X"$! ∩ K&

Then:

(1) !0 is a semistar operation on D called the semistar operation canonically induced
by ! on D. In particular, if ! is a (semi)star operation on D!X", then !0 is a
(semi)star operation on D;

(2) #E!0 !X"$! = #E!X"$! for all E ∈ "F#D$;
(3) #!

f
$0 = #!0$f ;

(4) If ! is a semistar operation of finite type (respectively, stable), then !0 is a semistar
operation of finite type (respectively, stable);

(5) If !′ and !′′ are two semistar operations on D!X" and !′ ≤ !′′, then !′
0 ≤ !′′

0;
(6) #!̃$0 = !̃0;
(7) #dD!X"$0 = dD, #wD!X"$0 = wD, #tD!X"$0 = tD, #vD!X"$0 = vD, and #bD!X"$0 = bD.

Proof. (1) Set ' %= !0. It is easy to see that, if E ∈ "F#D$, then E ⊆ E', and if
E1(E2 ∈ "F#D$ with E1 ⊆ E2, then E'

1 ⊆ E'
2. Moreover,

#E'$' = ###E!X"$! ∩ K$!X"$! ∩ K

⊆ ##E!X"$!!X" ∩ K!X"$! ∩ K

= ##E!X"$! ∩ K!X"$! ∩ K

⊆ ##E!X"$!$! ∩ K = #E!X"$! ∩ K = E'&

Thus #E'$' = E'. Moreover, for each nonzero z ∈ K, we have

zE' = z##E!X"$! ∩ K$

= #z#E!X"$! ∩ zK$ = #z#E!X"$! ∩ K$

= #zE!X"$! ∩ K = #zE$'&

In particular, if #D!X"$! = D!X", then D' = #D!X"$! ∩ K = D!X" ∩ K = D.

(2) Note that E!X" ⊆ E!0 !X" = ##E!X"$! ∩ K$!X" ⊆ #E!X"$! ∩ K!X" ⊆
#E!X"$!. Therefore, #E!X"$! ⊆ #E!0 !X"$! ⊆ ##E!X"$!$! = #E!X"$!.

(3) Let z ∈ E#!f $0 . Then there exists F ∈ f #D!X"$ such that F ⊆ E!X" and z ∈
F! ∩ K. Let I %= cD#F$. Clearly, I ∈ f #D$, I ⊆ E, and F ⊆ I!X" ⊆ E!X". Therefore,
z ∈ F! ∩ K ⊆ #I!X"$! ∩ K = I!0 , and so z ∈ E#!0$f . Conversely, if z ∈ E#!0$f , then z ∈
I!0 = #I!X"$! ∩ K for some I ∈ f #D$, I ⊆ E. This implies that z ∈ E#!f $0 .
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1962 CHANG AND FONTANA

(4) The “finite type part” is a particular case of (3). The “stable part" is a
straightforward consequence of the definitions.

(5) is straightforward.

(6) Clearly, !!̃"0 ≤ !̃0, since !!̃"0 ≤ !0 by (5) and !!̃"0 is a stable operation
of finite type by statement (4). Let a ∈ E!̃0 with E ∈ #F!D". Then, there exists
a nonzero finitely generated ideal J of D such that J!0 = D!0 and aJ ⊆ E. On
the other hand, !J#X$"! = !J!0 #X$"! = !D!0 #X$"! = !D#X$"! by (2). Since J#X$ is a
nonzero finitely generated ideal of D#X$, !J#X$"! = !D#X$"!, and aJ#X$ ⊆ E#X$, then
a ∈ !E#X$"!̃, and so a ∈ !E#X$"!̃ ∩ K = E!!̃"0 .

(7) The statement for the d-operations is trivial. For the w-, t-, and v-
operation, it is an easy consequence of the following equalities [19, Proposition 4.3]
for all fractional ideals E ∈ F!D" (see also [32]).

!E#X$"vD#X$ = EvD #X$% !E#X$"tD#X$ = EtD #X$% !E#X$"wD#X$ = EwD #X$&

(Note that if E ∈ #F!D"\F!D", then E#X$ ∈ #F!D#X$"\F!D#X$", and so EvD #X$ = K#X$
and !E#X$"vD#X$ = K!X"; however, !E#X$"vD#X$ ∩ K = K = EvD .)

We want to prove next that

!E#X$"bD#X$ = EbD #X$% for all E ∈ #F!D"&

We use the fact that EbD = ⋃
'!EI ( I" & I ∈ f !D") (respectively, !E#X$"bD#X$ =⋃

'!E#X$F ( F" &F ∈ f !D#X$")) (see [36, p. 349] and [14, Section 19.3]). Let z ∈
EbD #X$!⊆ K#X$". Then z ∈ !EI ( I"#X$ = !E#X$I#X$ ( I#X$" for some I ∈ f !D", and
so, in particular, z ∈ ⋃

'!E#X$F ( F" &F ∈ f !D#X$"). Conversely, let z ∈ ⋃
'!E#X$F (

F" &F ∈ f !D#X$")!⊆ K#X$". Then zF ⊆ E#X$F , and so (by [12, Theorem 28.1])
there exists a positive integer m such that cD!z"!cD!z"mcD!F"" = cD!z"m+1cD!F" =
cD!z"mcD!zF" ⊆ cD!z"mcD!E#X$F" ⊆ cD!z"mcD!E#X$"cD!F" = E!cD!z"mcD!F"", where
cD!z"mcD!F" ∈ f !D". Therefore, cD!z" ⊆ EbD , and thus z ∈ cD!z"#X$ ⊆ EbD #X$. "

Remark 6. Note that the equality !E#X$"bD#X$ = EbD #X$, for all E ∈ #F!D" proved in
(7) of Lemma 5, is equivalent to each of the following equalities:

E#X$Kr!D#X$% bD#X$" ∩ K!X" = !EKr!D% bD" ∩ K"#X$

= EKr!D% bD" ∩ K#X$%
⋂
'E#X$W &W valuation overring of D#X$)

= !
⋂
'EV &V valuation overring of D)"#X$&

Remark 7. Given an arbitrary multiplicative subset ! of D#X$, Chang and
Fontana in [3] investigated the map E '→ ED#X$! ∩ K, defined for all E ∈ #F!D",
showing that it gives rise to a semistar operation * on D, having the properties that
D* = R (= D#X$! ∩ K, and that R is t-linked to !D% *" (i.e., for each nonzero finitely
generated ideal I of D, I* = D* implies !IR"tR = R [5, Section 3]; or, equivalently,
R = R*̃ [4, Lemma 2.9].) One of the main results of the article by Chang and
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1963

Fontana [3, Theorem 2.1] is recalled below, since it is strictly linked to the theme of
the present work.

Note that, to a multiplicative subset ! of D!X", we can associate the semistar
operation !! on D!X" defined by A!! #= A! = ⋃

$%A # J& ! J ideal of D!X"' J ∩! #=
∅( = AD!X"! , for all A ∈ &F%D!X"& [6, Proposition 2.10]. Therefore, by Lemma
5, we obtain immediately that the map E '→ ED!X"! ∩ K =# E"! , defined for all
E ∈ &F%D&, gives rise to a semistar operation "! on D coinciding with %!! &0.
Clearly, if &! #= D!X"\⋃$Q !Q ∈ Spec%D!X"& and Q ∩! = ∅( is the saturation of
the multiplicative set ! , then !! = !&! and so, in particular, "! = "&! .

In order to deepen our knowledge of the semistar operation "! , we need a
definition of a stronger version of saturation. Set

! ) #= D!X" \
⋃
$P!X" !P ∈ Spec%D& and P!X" ∩! = ∅(*

It is clear that ! ) is a saturated multiplicative set of D!X" and that ! ) contains the
saturation of ! , i.e., ! ) ⊇ &! ⊇ ! . We call ! ) the extended saturation of ! in D!X"
and a multiplicative set ! of D!X" is called extended saturated if ! = ! ). Clearly,
in general, !! ) ≥ !! %= !&! &. However, it can be shown that %!! ) &0 = %!! &0. For
this, let

! #= !%! & #= $P ∈ Spec%D& !P!X" ∩! = ∅(+

obviously, !%! & = !%! )&. Let " #= "%! & be the set of the maximal elements of
!%! &. Then, by [3, Theorem 2.1], we have:

(a) "! is stable and of finite type, i.e., "! = "̃! .
(b) The extended saturation ! ) of ! coincides with ""! #= $g ∈ D!X" ! g #=

0 and cD%g&"! = D"! ( and "! = "! ) .
(c) If ! is extended saturated, then Na%D'"! & = D!X"! .
(d) QMax"! %D& = "%! &. In particular, "! coincides with the spectral semistar

operation associated to "%! &, i.e.,

E"! =
⋂
$EDP !P ∈ "%! &(' for all E ∈ &F%D&*

(e) "! is a (semi)star operation on D if and only if ! ⊆ " vD #= $g ∈
D!X" ! g #= 0 and cD%g&vD = D( or, equivalently, if and only if D = ⋂

$DP !P ∈
"%! &(.

(f) The map ! '→ "! establishes a 1-1 correspondence between the extended
saturated multiplicative subsets of D!X" (respectively, extended saturated
multiplicative subsets of D!X" contained in " vD ) and the set of the stable
semistar (respectively, (semi)star) operations of finite type on D.

(g) Let ! be an extended saturated multiplicative set of D!X". Then, Na%D' vD& =
D!X"! if and only if ! = " vD .

(h) Let R #= D"! and let , # D → R be the canonical embedding. The overring R
is t-linked to %D'"! & and ! ⊆ " vR #= $g ∈ R!X" ! g #= 0 and cR%g&vR = R( (i.e.,
%"! &, is a (semi)star operation on R). Moreover %"! &, = wR if and only if the
extended saturation ! )R #= R!X"\⋃$Q!X" !Q ∈ Spec%R& and Q!X" ∩! = ∅( of
the multiplicative set ! in R!X" coincides with " vR .
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1964 CHANG AND FONTANA

From Remark 7(f), we deduce that each semistar operation ! on D which is
stable and of finite type is equal to "!! #0 = "! for a unique extended saturated
multiplicative set ! of D$X%.

Corollary 8. Let ! be a finite type stable semistar operation on an integral domain D
with field of quotients K, and let X be an indeterminate over K. Let ! "!# &= " ! &= 'g ∈
D$X% " cD"g#! = D!(. Then:

(1) ! "!# is an extended saturated multiplicative set of D$X% and, more precisely,
! "!# = D$X%\⋃'Q$X% "Q ∈ QMax!f "D#( with ! "!#) = D$X%\⋃'P$X% "P ∈
Spec"D# and P$X% ∩! "!# = ∅( = ! "!#;

(2) ! = "! "!# = "!! "!##0 and ! "!# is unique among the extended saturated
multiplicative set ! of D$X% for which "! = !.

Proof. (1) Clearly, ! "!# = D$X%\⋃'Q$X% "Q ∈ QMax!f "D#( since, for 0 %= g ∈
D$X%, cD"g#! = cD"g#!f = D! if and only if cD"g# %⊆ Q for all Q ∈ QMax!f "D# and,
for each prime ideal Q of D, cD"g# %⊆ Q if and only if g %∈ Q$X%. Moreover, clearly,⋃
'Q$X% "Q ∈ QMax!f "D#( ⊆ ⋃

'P$X% "P ∈ Spec"D# and P$X% ∩! "!# = ∅(. On the
other hand, if P ∈ Spec"D# and P$X% ∩! "!# = ∅, this means that P$X% ⊆⋃
'Q$X% "Q ∈ QMax!f "D#( and so

⋃
'P$X% "P ∈ Spec"D# and P$X% ∩! "!# = ∅( ⊆⋃

'Q$X% "Q ∈ QMax!f "D#(.

(2) Note that, by assumption, ! = !̃ and so, for each E ∈ 'F"D#, E!̃ =
ENa"D* !# ∩ K = ED$X%" ! ∩ K = ED$X%! "!# ∩ K [10, Proposition 3.4]. Therefore, if
!! "!# is the finite type stable semistar operation on D$X% defined by the flat overring
D$X%! "!#, i.e., A

!! "!# &= A! "!# = AD$X%! "!# for all A ∈ 'F"D$X%#, then ! = "!! "!##0 =
"! "!#. The uniqueness follows from Remark 7(f). #

Note that from E!0 = "E$X%#! ∩ K, by tensoring with the D-algebra D$X%,
we have E!0 $X% = "E$X%#! ∩ K$X%, for all E ∈ 'F"D#. Moreover, it may happen that
E!0 $X% $ "E$X%#! for some E ∈ 'F"D#. For instance, this happens if E!0 = K and
if K$X% is not a !-overring of D$X% (i.e., if K$X% $ K$X%!). An explicit example
is given by ! = vD$X%; in this case K"vD$X%#0 $X% = K$X% $ "K$X%#vD$X% = K"X#. Another
example (even in case of finite type stable semistar operations) is given next by using
Corollary 8.

Example 9. Let P be a given nonzero prime ideal of an integral domain D.
Let + &= 'P(, and set ! &= !+, i.e., ! is the finite type stable semistar operation
defined by E! &= EDP , for all E ∈ 'F"D#. Clearly, QMax!+"D# = 'P(. Thus, ! "!# &=
D$X%\P$X% and ! = !̃ = "! "!# = "!! "!##0, by Corollary 8 (2). (Note that A!! "!# =
AD$X%P$X% = ADP"X# for each A ∈ 'F"D$X%#.) On the other hand, for each E ∈
F"D#, E!$X% = EDP$X% $ ED$X%P$X% = E$X%DP"X# = "E$X%#!! "!# (even if E!$X% =
EDP$X% = "EDP"X# ∩ K#$X% = E$X%DP"X# ∩ K$X% = "E$X%#!! "!# ∩ K$X%).

In order to better investigate this situation, we introduce the following
definitions. A semistar operation ! on the polynomial domain D$X% is called an
extension (respectively, a strict extension) of a semistar operation ! defined on D if
E! = "E$X%#! ∩ K (respectively, E!$X% = "E$X%#!) for all E ∈ 'F"D#. Clearly, a strict
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1965

extension is an extension. By Lemma 5, a semistar operation ! on D!X" is an
extension of # $= !0.

Given two semistar operations !′ and !′′ on the polynomial domain D!X",
we say that they are equivalent over D, for short !′ ∼ !′′, (respectively, strictly
equivalent over D, for short !′ ≈ !′′) if %E!X"&!′ ∩ K = %E!X"&!

′′ ∩ K (respectively,
%E!X"&!

′ = %E!X"&!
′′ ) for each E ∈ $F%D&.

Clearly, two extensions (respectively, strict extensions) !′ and !′′ on D!X"
of the same semistar operation defined on D are equivalent (respectively, strictly
equivalent). In particular, we have

!′ ≈ !′′ ⇒ !′ ∼ !′′ ⇔ !′
0 = !′′

0 '

We will see that the converse of the first implication above does not hold in general.
In order to construct some counterexamples, we need a deeper study of the problem
of “raising” semistar operations from D to D!X"; i.e., given a semistar operation #
on D, finding all the semistar operations ! on D!X" such that # = !0.

Recall that, given a family of semistar operations (#) ' ) ∈ *+ on an integral
domain D, the semistar operation ∧#) on D is defined for all E ∈ $F%D& by setting

E∧#) $=
⋂
(E#) ' ) ∈ *+'

The following statement is a straightforward consequence of the definitions.

Proposition 10.

(1) Let # be a semistar operation on an integral domain D. Given a family of semistar
operations (!) ' ) ∈ *+ on D!X" that are extensions (respectively, strict extensions)
of #, then ∧!) is also an extension (respectively, a strict extension) of #.

(2) Given a family of semistar operations (!) ' ) ∈ *+ of D!X", suppose that !)′ ∼ !)′′

(respectively, !)′ ≈ !)′′) for all )′, )′′ ∈ *, then ∧!) is equivalent (respectively,
strictly equivalent) to !$) for each$) ∈ *.

From the previous proposition, we deduce that, if a semistar operation on D
admits an extension (respectively, a strict extension) to D!X", then it admits a unique
minimal extension (respectively, a unique minimal strict extension).

At this point, it is natural to ask the following questions:

(Q1) Given a semistar operation # defined on D, is it possible to find “in a
canonical way” an extension (respectively, a strict extension) of # on D!X"?

(Q2) Given an extension ! on D!X" of a semistar operation # defined on D.
Is it possible to define a strict extension !′ on D!X" of # (and thus !′ ∼ !)? (In
the statement of the previous question, we do not require that !′ ≈ !, since this
condition would imply that the extension ! on D!X" was already a strict extension
of #.)

In the remaining part of this paper, we start the investigation of questions (Q1)
and (Q2), by considering semistar operations on D defined by families of overrings.
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1966 CHANG AND FONTANA

In this particular, but rather important setting, we will provide positive answers to
both questions.

Let !!! != "T# ! # ∈ $% be a nonempty set of overrings of D, and let E∧!!! !=⋂
# ET# for each E ∈ $F&D'. Then ∧!!! is a semistar operation on D, and ∧!!! is

(semi)star if and only if D = ⋂
# T#. It is easy to see that, for each E ∈ $F&D' and for

each # ∈ $,

E∧!!! T# = ET#(

(see [1, Theorem 2] for further details in the star operation case). If !!! = "K%
(respectively, "D%) then obviously ∧"K% (respectively, ∧"D%) is the trivial semistar
operation eD&= )"K%' (respectively, the identity (semi)star operation dD&= )"D%'). In
case !!! = ∅, we also set ∧∅ != eD.

Note that, for each T#, ET# =
⋂
"&ET#'M !M ∈ Max&T#'% =

⋂
"E&T#'M !M ∈

Max&T#'%; hence E∧!!! = ⋂
#&
⋂
"E&T#'M !M ∈ Max&T#'%'. If !!! is nonempty, replacing

the family !!! = "T# ! # ∈ $% with the family "&T#'M ! # ∈ $(M ∈ Max&D#'%, without
loss of generality, whenever convenient for the context, we can assume that each T#

in the family of overrings !!! is a quasi-local domain.
If !!! ′ and !!! ′′ are two families of overrings of D, then clearly

∧!!! ′
∧
∧!!! ′′ = ∧!!! ′∪!!! ′′ *

Let !!! = "T# ! # ∈ $% be a family of overrings of an integral domain D with
quotient field K. Let X be an indeterminate over K, and denote by T#&X' the Nagata
ring of T#. For each A ∈ $F&D+X,', we set

A&∧!!! ' !=
⋂

#

AT#&X'(

A(∧!!! ) != A&∧!!! ' ∩ AK+X,(

A+∧!!! , != ∩#AT#+X,*

Clearly, A+∧!!! , ⊆ A(∧!!! ) ⊆ A&∧!!! ' for all A ∈ $F&D+X,', and hence +∧!!! , ≤ (∧!!! ) ≤
&∧!!! '. Moreover, if !!! is nonempty, &D+X,'(∧!!! ) ⊆ K+X,, but 1/&1+ X' ∈ ⋂

# T#&X' =
&D+X,'&∧!!! '. Hence, &D+X,'(∧!!! ) ! &D+X,'&∧!!! ', and so (∧!!! ) " &∧!!! '.

Proposition 11. Let !!! = "T# ! # ∈ $% be a family of overrings of an integral domain
D with quotient field K. Set &!!! ' != "T#&X' ! # ∈ $%, (!!! ) != "T#&X' ! # ∈ $% ∪ "K+X,%,
and +!!! , != "T#+X, ! # ∈ $%. Then:

(1) &∧!!! ', (∧!!! ), and +∧!!! , are semistar operations on D+X, and, more precisely,

&∧!!! ' = ∧&!!! '( (∧!!! ) =∧ (!!! )( and +∧!!! , = ∧+!!! ,*

Moreover, if we consider the set """ != "K+X,% consisting of the unique overring
K+X, of D+X,, then

(∧!!! ) = &∧!!! '
∧

∧"""&= ∧&!!! '

∧
∧"""'*
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1967

(2) The following are equivalent:

(i) ∧!!! is a (semi)star operation on D;
(ii) "∧!!! # is a (semi)star operation on D!X";
(iii) !∧!!! " is a (semi)star operation on D!X".

(3) If !!! is not empty and !!! $= #K$, then !∧!!! " ! "∧!!! #.
(4) For each E ∈ &F%D&,

%E!X"&!∧!!! " = E∧!!! !X" = %E!X"&"∧!!! # and %E!X"&%∧!!! & = E∧!!! %X&'

(5) For each E ∈ &F%D&,

E∧!!! = %E!X"&!∧!!! " ∩ K = %E!X"&"∧!!! # ∩ K = %E!X"&%∧!!! & ∩ K'

(6) If !!! is a finite family of overrings of D, then ∧!!! is a semistar operation of finite
type on D.

(7) If each overring T ∈ !!! is a flat overring of D, then ∧!!! is a stable semistar operation
on D.

Proof. (1) is obvious and (2) is straightforward, since it is easy to see that⋂
#T(!X" ( ( ∈ )$ = %

⋂
#T( ( ( ∈ )$&!X" and

⋂
#T(%X& ( ( ∈ )$ = %

⋂
#T( ( ( ∈ )$&%X&.

(3) Without loss of generality, we can assume that T( is local with nonzero
maximal ideal M( and we can take the (maximal) ideal %M(* 1+ X& of T(!X".
Set Q += %M(* 1+ X& ∩D!X". Then, Q!∧!!! " " Q"∧!!! # (for Q!∧!!! " ∩D!X" ⊆ %M(* 1+ X& ∩
D!X" = Q " D!X" and, on the other hand, since M( $= %0& and Q%∧!!! & = D!X"%∧!!! &,
then Q"∧!!! # ∩D!X" = Q%∧!!! & ∩QK!X" ∩D!X" = D!X"%∧!!! & ∩D!X" = D!X").

(4) is straightforward, and (5) is a trivial consequence of (4).

(6) Clearly, for each T ∈ !!! , the operation ∧#T$ (defined by A∧#T$ += AT , for
all A ∈ &F%D&, i.e., ∧#T$ = ,#T$) is a semistar operation of finite type on D. Let !!! +=
#T1*T2* ' ' ' *Tn$, and let z ∈ A∧!!! . Then, z ∈ FiTi, for some Fi ⊆ A, Fi ∈ f %D& and for
each 1 ≤ i ≤ n. Set F += F1 + F2 + · · · + Fn; clearly, F ∈ f %D&; F ⊆ A, and z ∈ FTi

for all i, thus z ∈ F∧!!! .

(7) Let A*B ∈ &F%D&. Since T( is flat, %A ∩ B&T( = AT( ∩ BT( [2, Chapter 1,
§2, N. 6]. The conclusion is now straightforward. #

From Proposition 11, we deduce immediately the following corollary.

Corollary 12. With the notation of Proposition 11, assume that !!! is nonempty and
!!! $= #K$. Then we have

(1) !∧!!! ", "∧!!! #, and %∧!!! & (respectively, !∧!!! " and "∧!!! #) are distinct extensions
(respectively, distinct strict extensions) of ∧!!! ;

(2) !∧!!! " ∼ "∧!!! # ∼ %∧!!! & and, moreover, !∧!!! " ≈ "∧!!! #, but neither !∧!!! " nor "∧!!! # are
strictly equivalent to %∧!!! &.
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1968 CHANG AND FONTANA

Example 13. Let !!! != "W# ! # ∈ $% be a family of valuation overrings of D, and
let ∧!!! be the ab semistar operation on D defined by the family of valuation
overrings !!! of D (i.e., E∧!!! != ⋂

"EW !W ∈ !!! % for all E ∈ $F&D') [9, Proposition
3.7(1)]. In this case,

(a) &∧!!! ' is an ab semistar operation on D(X) defined by the family of valuation
overrings !!! &X' != "W#&X' ! # ∈ $% of D(X) and (by [9, Corollary 3.8]) for each
A ∈ $F&D(X)',

A&∧!!! ' =
⋂

#

AW#&X'*

(b) For each E ∈ $F&D',

E&∧!!! '0 = &E(X)'&∧!!! ' ∩ K =
(⋂

#

EW#&X'

)
∩ K

=
⋂

#

&EW#&X' ∩ K' =
⋂

#

EW#

= E∧!!! *

(c) For each F ∈ f &D',

F &∧!!! '0 = F∧!!! = FKr&D+∧!!! ' ∩ K,

In particular, by (b), Lemma 5(2) and [11, Proposition 9]

&∧!!! '0+f = &∧!!! 'f+0 = &∧!!! 'a+0 = ∧!!! +a = ∧!!! +f

(where &∧!!! '0+f (respectively, &∧!!! 'f+0; &∧!!! 'a+0; ∧!!! +a; ∧!!! +f ) denotes the semistar
operation of finite type on D associated to &∧!!! '0 (respectively, the semistar
operation on D canonically induced by &∧!!! 'f ; the semistar operation on D
canonically induced by &∧!!! 'a; the ab semistar operation on D associated to ∧!!! ;
the semistar operation of finite type on D associated to ∧!!! ).

Example 14.

(1) The identity (semi)star operation dD on an integral domain D, is defined by the
family of a single overring """ != "D% of D, i.e., dD = ∧""". Set

(dD) != (∧""")+ &dD' != &∧"""'+ &dD' != &∧"""',

Clearly, if D is not a field, dD(X) = (dD) ! &dD' ! &dD' and &dD' (and (dD)) is a
(semi)star operation on D(X), but in general &dD' is not a (semi)star operation
on D(X). Moreover, &dD', &dD' (and (dD)) are stable semistar operations of finite
type, since &dD' is defined by the two flat overrings D&X' and K(X) of D(X)
and &dD' is defined by a unique flat overring D&X' of D(X) (Proposition 11(6)
and (7)).
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1969

(2) As observed above, the trivial semistar operation eD on an integral domain D,
with quotient field K, is defined by the family of a single overring !!! != "K# of
D, i.e., eD = ∧!!!. Set

$eD% != $∧!!!%& "eD# != "∧!!!#& 'eD( != '∧!!!()

Clearly, $eD% = "eD# ! 'eD( = eD$X%, where $eD%'= "eD#( is the stable semistar
operation of finite type on D$X% defined by the flat overring K$X%, i.e., $eD% =
"eD# =∧ "K$X%#'= *"K$X%#(.

We study now the important case in which the family of valuation overrings
""" of D coincides with the family of all valuation overrings of D.

Proposition 15. Let ### be the family of all valuation overrings of an integral domain
D with quotient field K. Note that ∧### coincides with bD (the b-operation on D; see
Section 1). Set

$bD% != $∧### %& "bD# != "∧### #& 'bD( != '∧### ()

(1) $bD%, "bD#, and 'bD( are semistar operations on D$X% with $bD% ≤ "bD# ≤ 'bD(. If
D is integrally closed, then $bD% and "bD# are (semi)star operations on D$X%. In
general, 'bD( is not a (semi)star operation on D$X% even if D is integrally closed
(or, equivalently, even if bD is a (semi)star operation on D).

(2) If D %= K, i.e., if D has at least one nontrivial valuation overring, then $bD%, "bD#,
and 'bD( (respectively, $bD% and "bD#) are distinct extensions (respectively, distinct
strict extensions) of bD.

(3) "bD# and 'bD( are ab semistar operations such that

$bD% ≤ $bD%a = bD$X% ≤ "bD# ≤ 'bD(

and, in general, $bD% is not an eab semistar operation.

Proof. (1) and (2) follow from Proposition 11((1), (2), and (3)) and Corollary 12.

(3) Clearly, 'bD( is an ab semistar operation on D$X%, since it is defined by
the family of valuation overrings ### 'X( != "V'X( &V ∈ ### #.

Moreover, if $$$ != "K$X%# and $$$′ != "K$X%M &M ∈ Max'K$X%(#, then clearly,
∧$$$ = ∧$$$′ . Therefore, "bD# = "∧### # = '∧### (

∧∧$$$ = ∧### 'X(

∧∧$$$′ and, hence "bD# is
also an ab semistar operation on D$X%.

Note that bD$X% ≤ "bD# because ### 'X(
⋃

$$$′ is a subset of the family of all
valuation overrings of D$X%.

Let W be a valuation overring of D$X% with maximal ideal N . Two cases are
possible. If W ∩ K = K, then K$X% ⊆ W , and hence W = K$X%M for some maximal
ideal M of K$X%. Next, if W ∩ K " K, then V != W ∩ K is a valuation overring of
D with nonzero maximal ideal n, and so W is a valuation overring of V$X%. If
W %= V'X( = V$X%n$X% the maximal ideal N of W must contract on a maximal ideal
of V$X% upper to the maximal ideal n of V , i.e., N ∩ V$X% # n$X%. Therefore, we
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1970 CHANG AND FONTANA

have necessarily that V!X" ⊂ W ⊆ V#X$. From the previous observations, we easily
deduce that !bD"a = bD!X".

We next construct an integral domain D such that !bD" is not an eab
semistar operation. Let D %= !+ T"!!T"", i.e., D is a pseudo-valuation domain with
canonically associated valuation overring V %= "!!T"" and quotient field K %= "##T$$.
Since ! ⊂ " is a finite field extension the valuation overrings of D are just V and
K, thus it is straightforward to see that that dD ! bD = ∧&V' and

dD!X" ! !bD" = ∧&V!X"(K!X"' ≤ bD!X" ≤ %bD& =∧ &V#X$(K!X"' ! #bD$ = ∧&V#X$'

(Proposition 11(3)). Moreover, !bD" is not an eab semistar operation on D!X",
because if !bD"#= ∧&V!X"(K!X"' = )&V!X"'$ was an eab semistar operation on D!X",
since it is of finite type, then bD!X" = #dD!X"$a ≤ !bD" ≤ bD!X", i.e., )&V!X"' = !bD" =
bD!X", which is a contradiction since V!X" is not a Prüfer domain. "

In the next result, we provide another application of Proposition 11.

Proposition 16. Let ) be a semistar operation of an integral domain D with
quotient field K and let X be an indeterminate over K. Set ### %= ####)$ %= &DQ 'Q ∈
QMax)f #D$'. It is well known that, in this case, ∧### coincides with )̃, the stable semistar
operation of finite type associated to ). Set

#)̃$ %= #∧###$( %)̃& %= #∧###$( and !)̃" %= !∧###"*

(1) For each A ∈ )F#D!X"$,

A!)̃" =
⋂
&ADQ!X" 'Q ∈ QMax)f #D$'(

A%)̃& = ANa#D( )$ ∩ AK!X"( and A#)̃$ = ANa#D( )$*

(2) !)̃", %)̃&, and #)̃$ are stable semistar operations of D!X"; moreover, %)̃& and #)̃$ are
also of finite type. Therefore,

%)̃& =% )̃&f = %̃)̃&( #)̃$ = #)̃$f = #̃)̃$*

(3) For each E ∈ )F#D$,

#ED!X"$!)̃" = E)̃!X" = #ED!X"$%)̃& and #ED!X"$#)̃$ = ENa#D( )$+

and so

E)̃ = #ED!X"$!)̃" ∩ K = #ED!X"$%)̃& ∩ K = #ED!X"$#)̃$ ∩ K*

Proof. (1) and (2). Note that the semistar operation !)̃" (respectively, %)̃&; #)̃$)
on D!X" is defined by the family of flat overrings &DQ!X" 'Q ∈ QMax)f #D$'
(respectively, &DQ#X$ 'Q ∈ QMax)f #D$' ∪ &K!X"'; &DQ#X$ 'Q ∈ QMax)f #D$') of
D!X" and so is a stable semistar operation of D!X". The first equality in (1) is a
transcription of the definition. The last two equalities in (1) are consequences of
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1971

the fact that
⋂
!ADQ"X# !Q ∈ QMax$f "D#% = ANa"D& $# (Proposition 2(2) or [10,

Proposition 3.1(3)]). Finally, it is easy to see that "$̃# (respectively, #$̃$) is a (stable)
semistar operation of finite type, since it is defined by a unique flat overring of D'X(,
i.e., Na"D& $# (respectively, by two flat overrings of D'X(, i.e., Na"D& $# and K'X()
Proposition 11 (6) and (7).

(3) is an application of Proposition 11 (4) and (5). !

It is natural to ask if, eventually, '$̃( %= '$̃(
f
. The answer to this question is

negative (i.e., '$̃( is also a semistar operation of finite type (and stable)). In order to
show this fact, we deepen the study of the semistar operation '$̃( defined on D'X(.

Proposition 17. Let D, X, $ and '$̃( be as in Proposition 16. Then, for all A ∈
&F"D'X(#,

A'$̃( =
⋃
!"A ) F# !F ∈ f "D# and F $̃ = D$̃%

=
⋃
!"A ) H# !H ∈ f "D#& H ⊆ D& and H $̃ = D$̃%*

In particular, '$̃( is a (stable) semistar operation of finite type on D'X( and so '$̃( =
'$̃(f = '̃$̃(.

Proof. Set A1 )=
⋃
!"A ) F# !F ∈ f "D# and F $̃ = D$̃% and A2 )=

⋃
!"A ) H# !H ∈

f "D#&H ⊆ D& and H $̃ = D$̃%. Clearly, A2 ⊆ A1.
We start by showing that A1 ⊆ A'$̃(. Note that F $̃ = D$̃ if and only if FDQ =

DQ for all Q ∈ QMax$f "D# = QMax$̃"D#. If z ∈ A1, then zF ⊆ A for some F ∈ f "D#
and F $̃ = D$̃. Hence, z ∈ zDQ'X( = zFDQ'X( ⊆ ADQ'X( for all Q ∈ QMax$f "D# and
so z ∈ A'$̃(.

Now, we show that A'$̃( ⊆ A2. Let z ∈ A'$̃( = ⋂
!ADQ'X( !Q ∈ QMax$f "D#% and

set I )= !d ∈ D !dz ∈ A%. It is easy to see that I is an ideal of D (depending on A and
z) and, moreover, I %⊆ Q, i.e., IDQ = DQ for all Q ∈ QMax$f "D#. Since I $̃ = D$̃, we
can find H ∈ f "D# with H ⊆ I and H $̃ = D$̃. Therefore, zH ⊆ zI ⊆ A, and so z ∈ A2.

The last statement follows easily from Proposition 16(2) and from the fact
that, if z ∈ A'$̃( = ⋃

!"A ) F# !F ∈ f "D# and F $̃ = D$̃%, then zF0 =) G0 ⊆ A for some
F0 ∈ f "D#, with F $̃

0 = D$̃, and so G0 ∈ f "D#, and z ∈ "G0 ) F0# ⊆ G'$̃(
0 ⊆ A'$̃(f . !

From Corollaries 8 and 12 and from Propositions 16 and 17, we easily obtain
the following corollary.

Corollary 18. Let $, $̃, D, K, X, '$̃(, #$̃$, and "$̃# be as in Proposition 16. Let ! "$#
and "! "$# be as in Corollary 8. Assume that DQ # K for some Q ∈ QMax$f "D#.

(1) '$̃(, #$̃$, and "$̃# (respectively, '$̃(, and #$̃$) are distinct finite type stable semistar
extensions to D'X( (respectively, distinct finite type stable semistar strict extensions)
of $̃. Moreover, "$̃# is the unique finite type stable semistar extension to D'X( of $̃
defined by an extended saturated multiplicative set of D'X(, i.e., "$̃# = "! "$#, where
! "$# = " $ )= !g ∈ D'X( ! cD"g#$ = D$%.

(2) '$̃( ∼ #$̃$ ∼ "$̃# and, moreover, '$̃( ≈ #$̃$, but neither '$̃( nor #$̃$ are strictly
equivalent to "$̃#.
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1972 CHANG AND FONTANA

Remark 19. Picozza [30] has studied a different approach for the extension to the
polynomial ring D!X" of a semistar operation defined on an integral domain D.

First, he proves the following [30, Propositions 3.1 and 3.2].

(a) Let ! be a localizing system of ideals of D, and set:

! !X" #= $J ideal of D!X" ! J ⊇ I!X" for some ideal I of ! %&

(a.1) ! !X" is a localizing system on D!X",
(a.2) ! !X" = $J ideal of D!X" ! J ∩D ∈ ! %.
(a.3) If ! is a localizing system of finite type of D, then ! !X" is a localizing

system of finite type on D!X".

Then, he uses some of the results by Fontana and Huckaba recalled in
Proposition 1. More precisely, if ! is a localizing system on D, Picozza considers
the semistar operation '! !X" on D!X" canonically associated to the localizing system
! !X" on D!X" introduced in (a). In particular, if ! is the localizing system associated
to a given semistar operation ' defined on D, i.e., ! = ! ', he considers the stable
semistar operation on D!X" associated to the localizing system ! '!X". Set '!X" #=
''! !X" (Picozza denotes by '′ this semistar operation on D!X" [30, Theorem 3.3]).

We are now in a position to compare the semistar operations on the
polynomial rings studied by Picozza and the semistar operation !'̃" introduced in
Proposition 16. The following result improves [30, Proposition 3.4].

(b) Using the notation introduced above, then

!'̃" = '̃!X" = '̃!X"

= 'f !X" = '!X"f &

It is clear that '̃!X" = 'f !X", since

! 'f = $I ideal of D ! I'f = D'f %

= $I ideal of D ! I &⊆ Q for all Q ∈ QMax'f (D)%

= $I ideal of D ! I &⊆ Q for all Q ∈ QMax'̃(D)%

= $I ideal of D ! I '̃ = D'̃%

= ! '̃&

By Proposition 17, we know that A!'̃" = ⋃
$(A # H) !H ∈ f (D)*H ⊆ D, and H '̃ =

D'̃% for all A ∈ (F(D!X"). On the other hand (by definition of a semistar
operation associated to a localizing system Proposition 1(3) and by (a.2), we have
A'̃!X" = ⋃

$(A # J) ! J ideal of D!X" such that (J ∩D)'̃ = D'̃% for all A ∈ (F(D!X").
Therefore, if z ∈ A!'̃", then z ∈ (A # H) = (A # H!X") for some finitely generated ideal
H of D such that (H!X" ∩D)'̃ = D'̃, thus z ∈ A'̃!X".

Conversely, let z ∈ A'̃!X". Therefore, z ∈ (A # J) for some ideal J of D!X" such
that (J ∩D)'̃ = D'̃. In this situation, we can find a finitely generated ideal H in D
such that H ⊆ J ∩D and H '̃ = D'̃. Since H ⊆ J , then (A # J) ⊆ (A # H), thus z ∈ (A #
H) and so z ∈ A!'̃".
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1973

From the previous results, we deduce:

(c) !dD" = dD!X" = dD!X";
(d) !wD" = wD!X" = tD!X" ≤ wD!X" ≤ tD!X".

The statement (c) is a straightforward consequence of (b), since dD = d̃D =
dD#f and the localizing system ! dD !X" = $D!X"% = ! dD!X" .

The equalities in (d) are obtained from (b) (and Proposition 16) by taking & =
vD (and so, &̃ = wD and &f = tD). Moreover, it is always true that the w-operation
is smaller than or equal to the t-operation. Finally, note that wD!X" (respectively,
wD!X") is the stable (semi)star operation of finite type on D!X" canonically
associated to the localizing system ! wD !X" = $J ideal of D!X" " J ⊇ I!X" with IwD =
D% (respectively, ! wD!X" = $J ideal of D!X" " JwD!X" = D!X"%) [6, Theorem 2.10(B)].
Since IwD = D implies that IwD !X" = D!X" and so also I!X"wD!X" = D!X" (see the proof
of Lemma 5(7)), then ! wD !X" ⊆ ! wD!X" . From this, we conclude that wD!X" ≤ wD!X".

Note that, in (d), it may happen that !wD" = wD!X" ! wD!X" (e.g., by [30,
Remark 2], let Q be a prime ideal of D!X" not extended from D and such that
Q ∩D is a tD-maximal (= wD-maximal) ideal of D; since 'Q ∩D(!X" " Q and 'Q ∩
D(!X" is a tD!X"-maximal (= wD!X"-maximal) ideal of D!X" ([21, Proposition 1.1] and
[8, Corollary 3.5(2)]), then Q is not a wD!X"-(maximal) ideal, but clearly Q is a
!wD"-ideal).

Remark 20.

(1) Using the techniques introduced in [3] and recalled in Remark 7, Sahandi
[33, Theorem 2.1, Proposition 2.2 and Remark 2.3] has recently given another
description of the stable semistar operation !&̃".

Let D1 )= D!X", K1 )= K'X(, Y an indeterminate over K1, and consider the
following subset of Spec'D1(:

*1 )= *1#& )= $Q1 ∈ Spec'D1( " either Q1 ∩D = '0( or 'Q1 ∩D(&f " D&f %+

Set

" ,
1 )= " ,

1#& )= " ,'*1#&( )= D1!Y" \
(⋃

$Q1!Y" "Q1 ∈ *1#&%
)
+

Clearly, " ,
1 is an extended saturated multiplicative system of D1!Y", and so we can

consider the stable semistar operation of finite type on D1, #" ,
1
, defined by setting

for each A ∈ 'F'D1( = 'F'D!X"(

A
#

",
1 )= AD1!Y"" ,

1
∩ K1+

We have already observed in Remark 19(b) that !&̃" is the unique stable
semistar operation on D1'= D!X"( determined by the localizing system of
finite type !1 )= !1#& )= ! &f !X" = ! &̃!X". Moreover, the map ! ) !1 (→ " '!1( )=
D

1
!Y"\⋃$P1!Y" "P1 *∈ !1% establishes a bijection between the set of the localizing

systems of finite type on D1 and the extended saturated multiplicative systems of
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1974 CHANG AND FONTANA

D1!Y" and, under this map, the corresponding associated stable semistar operations
of finite type on D1 coincide [3, Corollary 2.2]. Since it is straightforward that
#1$% coincides with the set &P1 ∈ Spec'D1( "P1 #∈ !1$%), then clearly " *

1$% corresponds
canonically to !1$% under !. Therefore, !%̃" coincides with !" *

1
. Moreover, we

also have Na'D1$ !%̃"( = D1!Y"" *
1
or, equivalently, " *

1 = &0 #= g1 ∈ D1!Y" " cD1
'g1(

!%̃" =
D!%̃"

1 ) =+ # !%̃"
1 [3, Theorem 2.1(c) and (d)].

Let ,1$% be the set of the maximal elements of #1$%.
It is easy to see that

,1$% = &Q1 ∈ Spec'D1( " either Q1 ∩D = '0( and cD'Q1(
%f = D%f

or Q
1
∩D ∈ QMax%f 'D()$

since a prime ideal Q1 ∈ Spec'D1( such that Q1 ∩D = '0( is not contained in any
ideal of the type Q!X" with Q ∈ QMax%f 'D( if and only if cD'Q1(

%f = D%f .
For the sake of simplicity, set %1 +=!" *

1
'= !%̃"(. Then, by the previous remarks,

we can conclude that QMax%1'D1( = ,1$% [3, Theorem 2.1(e)].
Putting together the previous information with Proposition 16(1), for all A ∈

%F'D!X"(, we have

⋂
&ADQ!X" "Q ∈ QMax%f 'D() = A!%̃" =

⋂
&AD!X"Q1

"Q1 ∈ ,1$%)

= AD!X$ Y"# !%̃"
1
∩ K'X(

= ANa'D!X"$ !%̃"( ∩ K'X(-

In particular, for all E ∈ %F'D(,

ENa'D$ %( ∩ K = E%̃ = E%̃!X" ∩ K

= 'E!X"(!%̃" ∩ K

= 'ENa'D!X"$ !%̃"( ∩ K'X(( ∩ K

= ENa'D!X"$ !%̃"( ∩ K-

(2) Like !%̃", also &%̃', and '%̃( are finite type stable semistar operations on D1 +=
D!X" (Propositions 16(2) and 17) then, for the following multiplicative subsets
of D1,

" *
1 '&%̃'( += # &%̃'

1 += &0 #= g1 ∈ D1!Y" " cD1
'g1(

&%̃' = D&%̃'
1 )$

" *
1 ''%̃(( += # '%̃(

1 += &0 #= g1 ∈ D1!Y" " cD1
'g1(

'%̃( = D'%̃(
1 )$

and, for all A ∈ %F'D!X"(, using also Proposition 16(1), we have

A&%̃' = AD!X$ Y"# &%̃'
1

∩ K'X( = ANa'D!X"$ &%̃'( ∩ K'X(

= ANa'D$ %( ∩ AK!X"$
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POLYNOMIAL EXTENSIONS OF SEMISTAR OPERATIONS 1975

A!"̃# = AD$X% Y&! !"̃#
1

∩ K!X# = ANa!D$X&% !"̃## ∩ K!X#

= ANa!D% "#'

In particular, for all E ∈ #F!D#, we have

ENa!D% "# ∩ K = E"̃ = E"̃$X& ∩ K = !E$X&#$"̃% ∩ K = ENa!D$X&% $"̃%# ∩ K

= !E$X&#!"̃# ∩ K = ENa!D$X&% !"̃## ∩ K%

with !E$X&#!"̃# = ENa!D% "#.
Note that, by the previous descriptions of $"̃% and !"̃#, we have

P1 ∈ QSpec$"̃%!D$X&# ⇔ P1Na!D% "# ∩ P1K$X& ∩D$X& = P1%

P1 ∈ QSpec!"̃#!D$X&# ⇔ P1Na!D% "# ∩D$X& = P1'

Since Na!D% "# = D$X&! " , where ! " (= )g ∈ D$X& ' 0 (= g and cD!g#" = D"*, then

QSpec$"̃%!D$X&# = )P1 ∈ Spec!D$X&# ' cD!P1#
"f ! D" or P1 ∩D = !0#*%

QSpec!"̃#!D$X&# = )P1 ∈ Spec!D$X&# ' cD!P1#
"f ! D"*'

Therefore, since Max!Na!D% "## = )Q$X&! " 'Q ∈ QMax"f !D#* [10, Proposition
3.1(2) and (3)], we can conclude that

QMax$"̃%!D$X&# = )Q1 ∈ Spec!D$X&# 'Q1 = Q$X& for some Q ∈ QMax"f !D#* ∪
)!0# (= Q1 ∈ Spec!D$X&# 'Q1 ∩D = !0# and cD!Q1#

"f = D"*%

QMax!"̃#!D$X&# = )Q1 ∈ Spec!D$X&# 'Q1 = Q$X& for some Q ∈ QMax"f !D#*'

We already observed that the construction described in Remark 20(1) is a
modification of a previous construction due to Chang and Fontana [3, Theorem 2.3].
More precisely, Chang and Fontana considered the following subset of Spec!D1#:

+′
1 (= +′

1%" (= )Q1 ∈ Spec!D1# ' either Q1 ∩D = !0# or

Q1 = !Q1 ∩D#$X& and !Q1 ∩D#"f ! D"*'

Then, they considered the following associated extended saturated multiplicative
system in D1$Y&:

" ′
1 (= " ′

1%" (= " !+′
1%"# (= D1$Y& \

(⋃
)Q1$Y& 'Q1 ∈ +′

1%"*
)

and the stable semistar operation of finite type of D1 defined by

A
"" ′

1%" (= AD1$Y&" ′
1
∩ K1% for all A ∈ #F!D1#'

They proved that, when " is the v-operation (or the t-operation, or the w-operation)
on D, then "" ′

1%"
coincides with the w-operation of D$X& [3, Theorem 2.3(f)]. (Note
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1976 CHANG AND FONTANA

that, in that article, the authors denoted the semistar operation !! ′
1!"

of D#X$ by #"$;
we avoid now this notation, since we already use it here with a different meaning.)

Proposition 21. Let " be a semistar operation defined on an integral domain D. Let
"′1 %=!! ′

1!"
be the stable semistar operation of finite type on D#X$ defined above, and let

"1 be the semistar operation defined in Remark 20(1) (i.e., !1 %=!! &
1!"
= #"̃$).

(1) #"̃$ = "1 ≤ "′1.
(2) "′1 = #"̃$.

Proof. (1) follows easily from the fact that '1!" ⊇ '′
1!" or, equivalently, !

&
1 ⊆ ! ′

1.

(2) We know that QMax"
′
1(D1) = *Q1 ∈ Spec(D1) (Q1 ∩D = (0) and

cD(Q1)
"f = D"+ ∪ *Q#X$ (Q ∈ QMax"f (D)+ [3, Theorem 2.3(e)]. On the other hand,

by what we observed in Remark 20(2),

QMax"
′
1(D#X$) = QMax#"̃$(D#X$)!

and so, since "′1 and #"̃$ are both stable semistar operations of finite type, we
conclude that "′1 = #"̃$. "

As a final remark (with the notation of the present article), note that in [3,
Corollary 2.5(1)] the authors prove that D is a Prüfer "-multiplication domain if
and only if D#X$ is a Prüfer #"̃$-multiplication domain. On the other hand, it is
not true that D is a Prüfer "-multiplication domain if and only if D#X$ is a Prüfer
#"̃$-multiplication domain (take, for instance, D a Prüfer domain, but not a field,
and " = dD, in this case # d̃D$ = #dD$ = dD#X$ and, obviously, D#X$ is not a Prüfer
domain). This fact justifies the terminology used in [3], where the authors call the
semistar operation denoted here by #"̃$ the stable semistar operation of finite type
canonically associated to ".
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