Corrigendum to “New algebraic properties of an amalgamated algebra along an ideal”

Marco D'Anna, Carmelo A. Finocchiaro & Marco Fontana

To cite this article: Marco D'Anna, Carmelo A. Finocchiaro & Marco Fontana (2017) Corrigendum to “New algebraic properties of an amalgamated algebra along an ideal”, Communications in Algebra, 45:9, 3703-3705, DOI: 10.1080/00927872.2016.1243699

To link to this article: http://dx.doi.org/10.1080/00927872.2016.1243699

Accepted author version posted online: 11 Nov 2016.
Published online: 11 Nov 2016.

Article views: 26

View related articles

View Crossmark data
Corrigendum to “New algebraic properties of an amalgamated algebra along an ideal”

Marco D’Annaa, Carmelo A. Finocchiarob, and Marco Fontanac

aDipartimento di Matematica e Informatica, Università di Catania, Catania, Italy; bInstitute of Analysis and Number Theory, University of Technology, Graz, Austria; cDipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Roma, Italy

ABSTRACT
At some point, after publication, we realized that Proposition 4.1(2) and Theorem 4.4 in [2] hold under the assumption (not explicitly declared) that \(B = f(A) + J \). Furthermore, we provide here the exact value for the embedding dimension of \(A \oslash J \), also when \(B \neq f(A) + J \), under the hypothesis that \(J \) is finitely generated as an ideal of the ring \(f(A) + J \).

ARTICLE HISTORY
Received 22 August 2016
Communicated by S. Bazzoni

KEYWORDS
Cohen-Macaulay; \(D + M \) construction; embedding dimension; Gorenstein; idealization; Krull dimension; pullback; Zariski topology

2010 MATHEMATICS SUBJECT CLASSIFICATION
13A15; 13B99; 14A05

Let \(f : A \rightarrow B \) be a ring homomorphism and let \(J \) be an ideal of \(B \). As it is well known, when \(A \) is a local ring with maximal \(M \) contained in the Jacobson radical of \(B \), then \(A \oslash J \) is a local ring with maximal ideal \(M' := \{ (m, f(m) + j) \mid m \in M, j \in J \} \). As it was proved in [2, Proposition 4.1(1)], if \(A \oslash J \) is a local ring with finitely generated maximal ideal, then the maximal ideal \(M \) of \(A \) is finitely generated and the following inequality \(\text{embdim}(A) \leq \text{embdim}(A \oslash J) \) holds. However, part 2 of [2, Proposition 4.1] and Theorem 4.4 hold under the additional assumption, not explicitly declared, that \(B = f(A) + J \).

The following example shows that it is possible that \(B \supseteq f(A) + J \) and \(J \) is finitely generated as an ideal of \(B \), but not finitely generated as an ideal of \(f(A) + J \).

Example. Let \(A := K \) be a field and \(T, U \) be indeterminates over \(K \). Set \(B := K[U][T]_T \) and \(J := TK(U)[T]_T \). By [1, Example 2.6], the integral domain \(K + TK(U)[T]_T \) is canonically isomorphic to \(A \oslash J \), where \(f : A \rightarrow B \) is the natural embedding. By [2, Lemma 2.7 and Corollary 2.3], \(f(A) + J = K + TK(U)[T]_T \) is local and 1-dimensional and the prime spectrum of \(f(A) + J \) coincides with that of the discrete valuation domain \(B \). Since the field extension \(K \subseteq K(U) \) is not finite, it is easy to infer that \(f(A) + J \) is non-Noetherian and thus its maximal ideal \(J \), as an ideal of \(f(A) + J \), is not finitely generated.

If \(B \neq f(A) + J \), the correct assumption in [2, Proposition 4.1(2)] in order to ensure that \(M' \) is finitely generated is to require that \(M \) is a finitely generated ideal of \(A \) and \(J \) is a finitely generated ideal of \(f(A) + J \), as shown in the next result.

Proposition. Let \(f : A \rightarrow B \) be a ring homomorphism and let \(J \) be an ideal of \(B \). Assume that \(A \) is local with finitely generated maximal ideal \(M \), that \(J \) is finitely generated, as an ideal of \(f(A) + J \), and that \(J \) is contained in the Jacobson radical of \(B \). Then, the ring \(A \oslash J \) is local with finitely generated maximal ideal.
and, moreover, we have
\[
\text{embdim}(A \otimes f) = \text{embdim}(A) + v(f),
\]
where, now, \(v(f)\) denotes the minimum number of generators of \(f\) as an ideal of \(f(A) + J\).

Proof. Let \(\{m_1, m_2, \ldots, m_r\}\) (respectively, \(\{j_1, j_2, \ldots, j_s\}\)) be minimal sets of generators of \(M\) (respectively, of \(J\) as an ideal of \(f(A) + J\)). We now claim that
\[
G := \{(m_i, f(m_i)), (0, j_h) \mid i = 1, 2, \ldots, r, h = 1, 2, \ldots, s\}
\]
is a minimal set of generators of \(M^f\). The fact that \(G\) generates \(M^f\) is straightforward and we left its easy proof to the reader. To prove that \(G\) is minimal with respect to the property of generating \(M^f\), it suffices to show that the canonical image of \(G\) into \(M^f / (M^f)^2\) is linearly independent over the residue field \(K\) of \(A\). Let \(a_1, a_2, \ldots, a_r, \alpha_1, \alpha_2, \ldots, \alpha_s \in A\) be such that
\[
\sum_{i=1}^{r} [a_i, M](m_i, f(m_i))]_{M^f} + \sum_{h=1}^{s} [\alpha_h, M](0, j_h)]_{M^f} = 0 \quad \text{in} \quad M^f / (M^f)^2. \quad (\star)
\]
The same argument given in [2, Theorem 4.4] proves that \(a_i \in M\), for \(i = 1, 2, \ldots, r\), and thus \((\star)\) is equivalent to state that
\[
x := \sum_{h=1}^{s} (0, f(\alpha_h)j_h) \in (M^f)^2.
\]
By definition, \(x\) is sum of elements of the type \((\mu_k, f(\mu_k) + u_k)(\mu_k', f(\mu_k') + u_k')\), for \(k = 1, 2, \ldots, t\), with \(\mu_k, \mu_k' \in M\) and \(u_k, u_k' \in J\). It follows that \(\sum_{k=1}^{t} \mu_k \mu_k' = 0\), and then \(\sum_{h=1}^{s} f(\alpha_h)j_h \in f(M)J + f^2 \subseteq f(f(A) + J)\). By contradiction, assume that there exists some index \(h\) such that \(\alpha_h \in A \setminus M\). Say \(h = 1\), let \(\lambda_1\) be the inverse of \(\alpha_1\) in \(A\). Then \(f(\lambda_1) \sum_{h=1}^{s} f(\alpha_h)j_h \in J(f(M) + J)\). Take elements \(\eta_1, \eta_2, \ldots, \eta_s \in M\) and \(v_1, v_2, \ldots, v_s \in f(A) + J\) such that
\[
j_1 + f(\lambda_1) \sum_{h=1}^{s} f(\alpha_h)j_h = f(\lambda_1) \sum_{h=1}^{s} f(\alpha_h)j_h = \sum_{h=1}^{s} (f(\eta_h) + v_h)j_h.
\]
It follows that \(j_1 \left(1 - f(\eta_1) - v_1\right) \in (j_2, j_3, \ldots, j_s)(f(A) + J)\). Since \(f(M)J + f\) is the maximal ideal of the local ring \(f(A) + J\), it follows that \(1 - f(\eta_1) - v_1\) is invertible in \(f(A) + J\), that is, \(j_1 \in (j_2, j_3, \ldots, j_s)(f(A) + J)\), contradicting the minimality of \(\{j_1, j_2, \ldots, j_s\}\). The proof is now complete. \(\square\)

Remark. Note that if \(J\) is finitely generated as an \(A\)-module (with the structure induced by the ring homomorphism \(f\)), then it is finitely generated as an ideal of \(f(A) + J\) too, as it is easily seen. The converse is not true, by [1, Remark 5.10].

Remark. If \(A\) is local with finitely generated maximal ideal \(M\) such that \(f(M)B = B\) and \(J\) is finitely generated as an ideal of (the local ring) \(f(A) + J\), then Nakayama’s Lemma implies that \(J = 0\), according to the above proposition and [2, Proposition 4.3].

Question. Is there a local amalgamation \(A \otimes f J\) with finitely generated maximal ideal such that \(J\) is not finitely generated as an ideal of \(f(A) + J\) and \(f(M)B \neq B\) (where \(M\) is the maximal ideal of \(A\))?

Acknowledgment

This work was partially supported by GNSAGA of Istituto Nazionale di Alta Matematica. The second author was also supported by a Post Doc Grant from the University of Technology of Graz - Austrian Science Fund (FWF), # P 27816.
References
