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We introduce a new general construction, denoted by R ��E, called the amalgamated
duplication of a ring R along an R-module E, that we assume to be an ideal in some
overring of R. (Note that, when E2 = 0, R��E coincides with the Nagata’s idealization
R�E.)

After discussing the main properties of the amalgamated duplication R �� E in
relation with pullback-type constructions, we restrict our investigation to the study of
R �� E when E is an ideal of R. Special attention is devoted to the ideal-theoretic
properties of R��E and to the topological structure of its prime spectrum.
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1. Introduction

If R is a commutative ring with unity and E is an R-module, the idealization R�E,
introduced by Nagata in 1956 (cf. [16], p. 2), is a new ring, containing R as a subring,
where the module E can be viewed as an ideal such that its square is (0).

This construction has been extensively studied and has many applications in dif-
ferent contexts (cf., e.g., [17, 6, 9, 11]). Particularly important is the generalization
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given by Fossum in [5], where he defined a commutative extension of a ring R by
an R-module E to be an exact sequence of abelian groups:

0 → E
ι−→ S

π−→ R → 0

where S is a commutative ring, the map π is a ring homomorphism and the
R-module structure on E is related to S and to the maps ι and π by the equation
s · ι(e) = ι(π(s) · e) (for all s ∈ S and e ∈ E). It is easy to see that the idealization
R � E is a very particular commutative extension of R by the R-module E (called
trivial extension of R by E in [5]).

In this paper, we will introduce a new general construction, called the amalga-
mated duplication of a ring R along an R-module E (that we assume to be an ideal
in some overring of R and so, E is an R-submodule of the total ring of fractions
T (R) of R) and denoted by R��E (see Lemma 2.4).

When E2 = 0, the new construction R��E coincides with the idealization R�E.
In general, however, R��E is not a commutative extension in the sense of Fossum.
One main difference of this construction, with respect to the idealization (or with
respect to any Fossum’s commutative extension), is that the ring R �� E can be a
reduced ring (and, in fact, it is always reduced if R is a domain).

Motivations and some applications of the amalgamated duplication R �� E are
discussed more in detail in two recent papers [1, 2]. More precisely, D’Anna [1] has
studied some properties of this construction when the R-module E = I is a proper
ideal of R, in order to construct reduced Gorenstein rings associated to Cohen–
Macaulay rings and he has applied this construction to curve singularities. D’Anna
and Fontana [2] have considered the case of the amalgamated duplication of a ring,
in a not-necessarily-Noetherian setting, along a multiplicative-canonical ideal in the
sense of Heinzer–Huckaba–Papick [10].

The present paper is devoted to a more systematic investigation of the general
construction R��E, with a particular consideration of the ideal-theoretic properties
and the topological structure of its prime spectrum. More precisely, the paper is
divided in two parts: in Sec. 2, we study the main properties of the amalgamated
duplication R �� E. In particular, we give a presentation of this ring as a pullback
(cf. Proposition 2.6) and from this fact (cf. also [4, 7]), we obtain several connec-
tions between the properties of R and the properties of R �� E, and some useful
information about Spec(R��E) (cf. Remark 2.13).

In Sec. 3 we consider the case when E = I is an ideal of R; this situation
allows us to deepen the results obtained in Sec. 2; in particular we give a complete
description of Spec(R��I) (cf. Theorems 3.5 and 3.8).

2. The General Construction

In this section, we will study the construction of the ring R �� E in a general
setting. More precisely, R will always be a commutative ring with unity, T (R)
(:= {regular elements}−1R) its total ring of fractions and E an R-submodule of
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T (R). Moreover, in order to construct the ring R �� E, we are interested in those
R-submodules of T (R) such that E · E ⊆ E.

Lemma 2.1. Let E be an R-submodule of T (R) and let J be an ideal of R.

(a) E ·E ⊆ E if and only if there exists a subring S of T (R) containing R and E,

such that E is an ideal of S.
(b) If E · E ⊆ E, then

R + E := {z = r + e ∈ T (R) | r ∈ R, e ∈ E}

is a subring of (E : E) := {z ∈ T (R) | zE ⊆ E} (⊆ T (R)), containing R as a
subring and E as an ideal.

(c) Assume that E ·E ⊆ E; the canonical ring homomorphism ϕ : R ↪→ R+E →
(R + E)/E , r �→ r + E , is surjective and Ker(ϕ) = E ∩ R.

(d) Assume that E · E ⊆ E; the set J + E := {j + e | j ∈ J, e ∈ E} is an ideal
of R + E containing E and (J + E) ∩ R = Ker(R ↪→ R + E → (R + E)/
(J + E)) = J + (E ∩ R).

Proof. (a) It is clear that the implication “if” holds. Conversely, set S := (E : E).
The hypothesis that E · E ⊆ E implies that E is an ideal of S and that S is a
subring of T (R) containing R as a subring.

(b) It is obvious that R + E is an R-submodule of (E : E) containing R and E.
Moreover, let r, s ∈ R and e, f ∈ E, if z := r + e and w := s + f (∈ R + E), then
zw = rs + (rf + se + ef) ∈ R + E and zf = rf + ef ∈ E.

(c) and (d) are straightforward.

From now on, we will always assume that E · E ⊆ E.
In the R-module direct sum R⊕E, we can introduce a multiplicative structure

by setting:

(r, e)(s, f) := (rs, rf + se + ef) , where r, s ∈ R and e, f ∈ E.

We denote by R ⊕̇ E the direct sum R ⊕ E endowed with the multiplication
defined above. The following properties are easy to check:

Lemma 2.2. With the notation introduced above, we have:

(a) R ⊕̇ E is a ring.
(b) The map j : R ⊕̇ E → R×(R+E), defined by (r, e) �→ (r, r+e), is an injective

ring homomorphism.
(c) The map i : R → R ⊕̇ E, defined by r �→ (r, 0), is an injective ring homomor-

phism.
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Remark 2.3. (a) With the notation of Lemma 2.1, note that if E = S is a subring
of T (R) containing a subring R, then R + S = S. Also, if I is an ideal of R, then
R + I = R.

(b) In the statement of Lemma 2.1(d), note that, in general, J + E does not
coincide with the extension of J in R + E: we have J(R + E) = {j + α | j ∈ J, α ∈
JE} ⊆ J + E, but the inclusion can be strict (cf. Lemma 3.4(a), (d) and (e)).

(c) For an arbitrary R-module E, Nagata introduced in 1955 the idealization
of E in R, denoted here by R�E, which is the R-module R ⊕ E endowed with a
multiplicative structure defined by:

(r, e)(s, f) := (rs, rf + se) , where r, s ∈ R and e, f ∈ E

(cf. [15; 16, p. 2; 11, Chap. VI, Sec. 25]). The idealization R � E, called also the
trivial extension of R by E [5], is a ring such that the canonical embedding R ↪→
R � E, r �→ (r, 0), defines a subring of R � E isomorphic to R and the embedding
E ↪→ R � E, e �→ (0, e), defines an ideal E� in R � E (isomorphic as an R-module
to E), which is nilpotent of index 2 (i.e. E� · E� = 0). Therefore, even if R is
reduced, the idealization R � E is not a reduced ring, except in the trivial case for
E = (0), since R�(0) = R. Moreover, if pR : R�E → R is the canonical projection
(defined by (r, e) �→ r), then

0 → E → R�E
p
R−→ R → 0

is an exact sequence.
Note that the idealization R � E coincides with the ring R ⊕̇ E (Lemma 2.2)

if and only if E is an R-submodule of T (R) that is nilpotent of index 2 (i.e.
E · E = (0)).

Lemma 2.4. With the notation of Lemma 2.2, note that δ := j◦i : R ↪→ R×(R+E)
is the diagonal embedding and set:

R� := (j ◦ i)(R) = {(r, r) | r ∈ R} and

R �� E := j(R ⊕̇ E) = {(r, r + e) | r ∈ R, e ∈ E}.
We have:

(a) The canonical maps R ∼= R� ⊆ R��E ⊆ R × T (R) are ring homomorphisms.
(b) R �� E is a subdirect product of the rings R and (R + E), i.e. if πi (i = 1, 2)

are the projections of R × (R + E) onto R and R + E, respectively, and if
Oi := Ker(πi|R��E), then (R �� E)/O1

∼= R, (R �� E)/O2
∼= R + E and

O1 ∩ O2 = (0).

Proof. (a) is obvious. For (b), recall that S is a subdirect product of a family of
rings {Ri | i ∈ I} if there exists a ring monomorphism ϕ : S ↪→ ∏

i Ri such that, for
each i ∈ I, πi ◦ ϕ : S → Ri is a surjection (where πi :

∏
i Ri → Ri is the canonical

projection) [13, p. 30]. Note also that O1 = {(0, e) | e ∈ E} and O2 = {(ε, 0) | ε ∈
E ∩ R}. The conclusion is straightforward (cf. [13, Proposition 10]).
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We will call the ring R��E, defined in Lemma 2.4, the amalgamated duplication
of a ring along an R-module E; the reason for this name will be clear after studying
the prime spectrum of R��E and comparing it with the prime spectrum of R (see
Proposition 2.13). The following is an easy consequence of the previous lemma.

Corollary 2.5. With the notation of Lemma 2.4, the following properties are
equivalent:

(a) R is a domain;
(b) R + E is a domain;
(c) O1 is a prime ideal of R��E;
(d) O2 is a prime ideal of R��E;
(e) R��E is a reduced ring and O1 and O2 are prime ideals of R��E.

We will see in a moment that R is a domain if and only if O1 and O2 are the
only minimal prime ideals R��E (cf. Remark 2.8).

Proposition 2.6. Let v : R × (R + E) � R × ((R + E)/E) and u : R ↪→ R ×
((R + E)/E) be the natural ring homomorphisms defined, respectively, by v((x, r +
e)) := (x, r + E) and u(r) := (r, r + E), for each x, r ∈ R and e ∈ E. Then
v−1(u(R)) = R �� E. Therefore, if v′ (:= π1|R��E) : R �� E � R is the canonical
map defined by (r, r + e) �→ r (cf. Lemma 2.4) and u′ : R �� E ↪→ R × (R + E) is
the natural embedding, then the following diagram:

R��E
v′−−−−→ R

u′


� u



�

R × (R + E) v−−−−→ R × ((R + E)/E)

is a pullback.

Proof. Since E is an ideal of R + E (Lemma 2.1(b)), O1 = (0) × E is a common
ideal of v−1(u(R)) and R× (R+E). Moreover, by definition, if x, r ∈ R and e ∈ E,
then (x, r + e) ∈ v−1(u(R)) if and only if (x, r + E) ∈ u(R), that is x − r ∈ E.
Therefore, we conclude that v−1(u(R)) = R��E. The second part of the statement
follows easily from the fact that v−1(u(R)) = R �� E and (R �� E)/O1

∼= R, with
O1 = Ker(v′) (Proposition 2.4(b)).

Corollary 2.7. The ring R × (R + E) is a finitely generated (R �� E)-module.
In particular, R �� E ⊆ R × (R + E) is an integral extension and dim(R �� E) =
dim(R × (R + E)) = sup{dim(R), dim(R + E)}.

Proof. Clearly, u : R ↪→ R × ((R + E)/E) is a finite ring homomorphism, since
R × ((R + E)/E) is generated by (1, 0) and (0, 1) as R-module. Since u is finite,
also u′ : R��E (= v−1(u(R))) ↪→ R × ((R + E)/E) is a finite ring homomorphism
[4, Corollary 1.5(4)]. The last statement follows from [12, Theorems 44 and 48] and
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from the fact that Spec(R × (R + E)) is homeomorphic to the disjoint union of
Spec(R) and Spec(R + E) (cf. Remark 2.8).

Remark 2.8. Recall that every ideal of the ring R × (R + E) is a direct product
of ideals I × J , with I ideal of R and J ideal of R + E. In particular, every
prime ideal Q of R × (R + E) is either of the type I × (R + E) or R × J , with
I prime ideal of R and J prime ideal of (R + E). Therefore, in the situation of
Lemma 2.4, if R is an integral domain (and so R + E is also an integral domain by
Corollary 2.5), then (0) × (R + E) and R × (0) are necessarily the only minimal
primes of R ×(R + E). By the integrality property (Corollary 2.7 and [12, Theorem
46]), then O1 = ((0) × (R + E)) ∩ (R��E) = (0) × E and O2 = (R × (0)) ∩ (R��
E) = (R ∩ E) × (0) are the only minimal primes of R��E.

Conversely, if O1 and O2 are the only minimal primes of R �� E, then clearly
R �� E is a reduced ring (Lemma 2.4(b)) and, by Corollary 2.5, R is an integral
domain.

Corollary 2.9. The following statements are equivalent:

(a) R and R + E are Noetherian;
(b) R × (R + E) is Noetherian;
(c) R��E is Noetherian.

Proof. Clearly (a) and (b) are equivalent. The statements (b) and (c) are equiv-
alent by the Eakin–Nagata Theorem [14, Theorem 3.7], since R × (R + E) is a
finitely generated (R��E)-module (Corollary 2.7).

Remark 2.10. (a) In the situation of Proposition 2.6, the pullback degenerates in
two cases:

(i) v′ : R��E → R is an isomorphism if and only if E = 0;
(ii) u′ : R��E → R × (R + E) is an isomorphism if and only if E is an overring of

R (i.e. if and only if E = R + E).

(b) By the previous remark, we deduce easily that R Noetherian does not imply, in
general, that R +E is Noetherian and, conversely, R +E Noetherian does not imply
that R is Noetherian: take, for instance, E to be an arbitrary overring of R. However,
if we assume that R + E is a finitely generated R-module (cf. Corollary 2.11), then
by the Eakin–Nagata Theorem [14, Theorem 3.7] R is Noetherian if and only if
R + E is Noetherian.

This same situation described above (i.e. when E is an arbitrary overring of R)
shows that, in Corollary 2.7, we may have that dim(R �� E) = dim(R) or that
dim(R��E) = dim(R + E) (with dim(R) 	= dim(R + E)).
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Corollary 2.11. Assume that E is a fractional ideal of R (i.e. there exists a regular
element d ∈ R such that dE ⊆ R); then the following statements are equivalent:

(a) R is a Noetherian ring;
(b) R + E is a Noetherian R-module;
(c) R × (R + E) is a Noetherian ring;
(d) R��E is a Noetherian ring.

Proof. By Corollary 2.9 and Remark 2.10(b), it is sufficient to show that, in this
case, R is a Noetherian ring if and only if R +E is a Noetherian R-module. Clearly,
if R is Noetherian, then E is a finitely generated R-module and so, R + E is also
a finitely generated R-module and thus, it is a Noetherian R-module. Conversely,
assume that R +E is a Noetherian R-module; since it is faithful, by [14, Theo-
rem 3.5], it follows that R is a Noetherian ring.

Corollary 2.12. In the situation described above:

(a) Let R′ and (R + E)′ be the integral closures of R and R + E in T (R). Then
R��E and R × (R + E) have the same integral closure in T (R)× T (R), which
is precisely R′ × (R +E)′. Moreover, if R +E is a finitely generated R-module,
then the integral closure of R� in T (R)×T (R) (Lemma 2.4) also coincides with
R′ × (R + E)′.

(b) If E ∩ R contains a regular element, then T (R �� E) = T (R × (R + E)) =
T (R) × T (R) and, moreover, R��E and R × (R + E) have the same complete
integral closure in T (R) × T (R).

Proof. (a) It is clear that (x, y) ∈ T (R) × T (R) is integral over R × (R + E) if
and only if (x, y) ∈ R′ × (R + E)′. Since the extension R �� E ↪→ R × (R + E)
(⊆ T (R) × T (R)) is integral (Corollary 2.7), we have the first statement. If, in
addition, we assume that R + E is a finitely generated R-module, then the ring
extension R� ↪→ R× (R + E) (Lemma 2.4) is finite (so, in particular, it is integral)
and thus, we have the second statement.

(b) Since E is an R-submodule of T (R), then clearly T (R) = T (R + E), hence it
is obvious that T (R × (R + E)) = T (R) × T (R). If e is a nonzero regular element
of E ∩R, then (e, e) is a nonzero regular element belonging to (E ∩R)× E, which
is a common ideal of R��E and R× (R + E). From this fact, it follows that R��E

and R × (R + E) have the same total quotient ring [8, p. 326] and so, T (R��E) =
T (R) × T (R). The last statement follows from [8, Lemma 26.5].

Note that, in Corollary 2.12(b), the assumption that E ∩ R contains a regular
element is essential, since if E is the ideal (0) of an integral domain R with quotient
field K, then R��(0) ∼= R and so T (R��(0)) ∼= K, but T (R × R) = K × K.

Remark 2.13. Using [4, Theorem 1.4(c) and Corollary 1.5(1)], the previous Propo-
sition 2.6 and Corollary 2.7 can be used to give a scheme-theoretic description of
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Spec(R �� E) and Spec(R × (R + E)). We do not give many details here, since in
the following Sec. 3, we will prove directly and in a more elementary way the most
part of the statements contained in this remark for the case E = I is an ideal of R.

Recall that if f : A → B is a ring homomorphism, fa : Spec(B) → Spec(A)
denotes, as usual, the continuous map canonically associated to f , i.e. fa(Q) :=
f−1(Q), for each Q ∈ Spec(B), if I is an ideal of A and if X := Spec(A), VX (I)
denotes the Zariski-closed set {P ∈ X | P ⊇ I} of X .

In the situation of Lemma 2.4 and with the notation of Proposition 2.6, set
X := Spec(R), Y := Spec(R��E) and Z := Spec(R× (R + E)) and set α := (u′)a :
Z → Y and β := (v′)a : X → Y . Then the following properties hold:

(a) The canonical continuous map α : Z → Y is surjective.
(b) The restriction of the map α : Z → Y to Z \VZ(O1) gives rise to a topological

homeomorphism:

α|Z\VZ (O1) : Z \ VZ(O1)
∼=−→ Y \ VY (O1).

Moreover, for each Q ∈ Spec(R × (R + E)), with Q 	⊇ O1, if Q := α(Q) =
Q ∩ (R �� E), then the canonical map (R �� E)Q → (R × (R + E))Q is a ring
isomorphism.

(c) β : X → Y defines a canonical homeomorphism of X with VY (O1); moreover,
for each Q ∈ Spec(R �� E) with Q ⊇ O1, the canonical ring homomorphism
(R��E)/Q → R/v′(Q) is an isomorphism.

We conclude this section by defining some distinguished ideals of R �� E that
are naturally associated to a given ideal J of R and by giving an example of the
general construction.

Proposition 2.14. In the situation of Proposition 2.6 and with the notation of
Lemma 2.1, for each ideal J of R we can consider the following ideals of R��E:

J1 := v′−1(J) , J2 := u′−1(R × J(R + E)) and J0 := Je := J(R��E).

Then we have:

(a) J1 = u′−1(J × (R + E)) = u′−1(J × (J + E)) = {(j, j + e) | j ∈ J, e ∈ E}.
(b) J0 = {(j, j + α) | j ∈ J, α ∈ JE}.
(c) J := J1 ∩ J2 = u′−1(J × J(R + E)).
(d) J0 ⊆ J1 ∩ J2.

Proof. (a) and (b) are straightforward. Statement (c) is obvious, since
J × J(R + E)= (J × (R +E))∩ (R×J(R +E)). (d) follows from (c) and from the
fact that J(R��E) ⊆ u′−1(J(R × (R + E))) = u′−1(J × J(R + E)).
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Example 2.15. Let R := k[t4, t6, t7, t9] (where k is a field and t an indeterminate),
S := k[t2, t3] and E := (t2, t3)S = t2k[t]. We have that R + E = S and hence,

R��E = {(f(t), g(t)) | f ∈ R, g ∈ S and g − f ∈ E}
= {(f(t), g(t)) | f ∈ R, g ∈ S and f(0) = g(0)}.

Since E is a maximal ideal of S, the prime ideals in R×S containing O1 are either
of the form P × S, for some prime ideal P of R, or R × E; hence the primes not
containing O1 are of the form R × Q, with Q ∈ Spec(S) and Q 	= E.

By Remark 2.13 and Proposition 2.14, we have that if P is a prime in R, the
ideal P1 = (v′)−1(P ) = (u′)−1(P × S) = {(p, p + e) | p ∈ P, e ∈ E} is a prime
in R �� E, containing O1, and R �� E/P1

∼= R/P . Moreover, with the notation of
Remark 2.13, in this way we describe completely VY (O1). Notice also that, if we
set M := (t4, t6, t7, t9)R, then the maximal ideals M × S and R×E of R× S have
the same trace in R��E, i.e. (R×E)∩ (R��E) = {(r, r + e) | r ∈ R∩E, e ∈ E} =
(M × S) ∩ (R��E).

On the other hand, again by Remark 2.13, we have that Y \ VY (O1) is home-
omorphic to Z \ VZ(O1). Hence, the prime ideals of R��E not containing O1 are
of the form (R × Q) ∩ (R��E), for some prime ideal Q of S, with Q 	= E.

3. The Prime Spectrum of R �� I

In this section, we study the case when the R-module E = I is an ideal of R (that
we will assume to be proper and different from (0), to avoid the trivial cases); in
this situation R + I = R. We start with applying to this case, some of the results
we obtained in the general situation.

Proposition 3.1. Using the notation of Proposition 2.6, the following commutative
diagram of canonical ring homomorphisms

R��I
v′−−−−→ R

u′


� u



�

R × R
v−−−−→ R × (R/I)

is a pullback. The ideal O1 = (0) × I = Ker(v′) = Ker(v) is a common ideal of

R �� I and R × R, the ideal O2 = Ker(R �� I
u′−→ R × R

π2−→ R) coincides with
I × (0) = (I × (0)) ∩ (R��I) and (R��I)/Oi

∼= R, for i = 1, 2.
In particular, if R is a domain, then R�� I is reduced and O1 and O2 are the

only minimal primes of R��I.

Proof. The first part is an easy consequence of Lemma 2.4(b) and Proposition 2.6;
the last statement follows from Corollary 2.5.



June 13, 2007 1:30 WSPC/171-JAA 00232

452 M. D’Anna & M. Fontana

Remark 3.2. Note that, when I ⊆ R, then R��I := {(r, r + i) | r ∈ R, i ∈ I} =
{(r + i, r) | r ∈ R, i ∈ I}. It follows that we can exchange the roles of O1 and O2

(and that O2 is also a common ideal of R��I and R × R).

If we specialize to the present situation, Corollary 2.7, Corollary 2.11 and Corol-
lary 2.12, then we obtain:

Corollary 3.3. Let R′ (respectively, R∗) be the integral closure (respectively, the
complete integral closure) of R in T (R), we have:

(a) dim(R��I) = dim(R).
(b) R is Noetherian if and only if R��I is Noetherian.
(c) The integral closure of R� and of R��I in T (R)× T (R) coincide with R′ ×R′.
(d) If I contains a regular element, then T (R��I) = T (R)×T (R) and the complete

integral closure of R �� I in T (R) × T (R) coincide with R∗ × R∗, which is the
complete integral closure of R × R in T (R) × T (R).

The next goal is to investigate directly the relations among Spec(R × R),
Spec(R�� I) and Spec(R), under the canonical maps associated to natural embed-
dings, i.e. the diagonal embedding δ : R ↪→ R �� I, (r �→ (r, r)) and the inclusion
R��I ↪→ R×R. With a slight abuse of notation, we identify R with its isomorphic
image R� in R��I (⊆ R × R) under the diagonal embedding (Lemma 2.4) and we
denote the contraction to R of an ideal H of R��I (or, H of R×R) by H∩R (or,
by H ∩ R).

We start with an easy lemma.

Lemma 3.4. With the notation of Proposition 2.14, let J be an ideal of R. Then:

(a) J1 (:= v′−1(J)) = u′−1(J × R) = u′−1(J × (J + I)) = {(j, j + i) | j ∈ J, i ∈
I} =: J �� I . If J = I, then I �� I (= I × I) is a common ideal of R �� I and
R × R.

(b) J2 (:= u′−1(R × J)) = {(j + i, j) | j ∈ J, i ∈ I}.
(c) J := J1∩J2 = u′−1(J×J) = {(j, j+i′) | j ∈ J, i′ ∈ I∩J} = {(j1, j2) | j1, j2 ∈

J, j1 − j2 ∈ I}.
(d) J0 (:= J(R��I)) = {(j, j + i′′) | j ∈ J, i′′ ∈ JI} (cf. [1, Lemma 8]).
(e) J0 ⊆ J1 ∩ J2.
(f) J1 = J2 ⇔ I ⊆ J .
(g) I + J = R ⇒ J0 = J1 ∩ J2.
(h) J1 ∩ R = J2 ∩ R = J0 ∩ R = J ∩ R = J .

Proof. (a) is a particular case of Proposition 2.14(a). The second part is straight-
forward.

(b) Let r ∈ R and j ∈ J ; we have that (r, j) ∈ R��I if and only if (r, j) = (s, s + i),
for some s ∈ R and i ∈ I. Therefore, r = s = j − i and (r, j) = (j + i′, j) for some
i′ ∈ I.
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(c) Let j1, j2 ∈ J ; we have that (j1, j2) ∈ R �� I if and only if (j1, j2) = (s, s + i),
for s ∈ R and i ∈ I. Therefore, j1 = s, j2 = j1 + i and j2 − j1 = i ∈ I.

Statements (d) and (e) are particular cases of Proposition 2.14(b) and (d).

(f) follows easily from (a) and (b), since

J1 = J2 ⇒ J + I = J ⇒ I ⊆ J ⇒ J1 = J2 .

(g) is a consequence of (c) and (d), since J + I = R implies that J ∩ I = JI.

(h) It is obvious that J1 ∩R = J = J2 ∩R and hence, by (c) and (e), we also have
J ∩ R = J0 ∩ R = J .

With the help of the previous lemma, we pass to describe the prime spectrum
of R��I. In the following, the residue field at the prime ideal Q of a ring A (i.e. the
field AQ/QAQ) will be denoted by kA(Q). Part of the next theorem is contained
in [1, Proposition 5].

Theorem 3.5. (a) Let P be a prime ideal of R and consider the ideals P1, P2,

P0 and P of R��I as in Lemma 3.4 (with P = J). Then:

(i) P1 and P2 are the only prime ideals of R��I lying over P .
(ii) If P ⊇ I, then P1 = P2 = P =

√P0 = P ��I. Moreover, kR(P ) ∼= kR��I(P).
(iii) If P 	⊇ I, then P1 	= P2. Moreover, P =

√P0 and kR(P ) ∼= kR��I(P1) ∼=
kR��I(P2).

(iv) If P is a maximal ideal of R, then P1 and P2 are maximal ideals of R��I.
(v) If R is a local ring with maximal ideal M , then R �� I is a local ring with

maximal ideal M =
√M0 = M �� I (using again the notation of Lemma 3.4

for M = J).
(vi) R is reduced if and only if R��I is reduced.

(b) Let Q be a prime ideal of R �� I and let O1 be as in Proposition 3.1. Two
cases are possible either Q � O1 or Q ⊇ O1.

(i) If Q � O1, then there exists a unique prime ideal Q of R × R such that
Q = Q ∩ (R �� I) with Q = R × P, where P := Q ∩ R (and P � I). In this
case, with the notation of the previous part (a), P1 	= P2 and

Q = P2 = {(p + i, p) | p ∈ P, i ∈ I}.
Furthermore, the canonical ring homomorphisms R��I ↪→ R×R

π2−→ R induce
for the localizations the following isomorphisms:

(R��I)Q ∼= (R × R)Q = (R × R)R×P
∼= RP (thus kR��I(Q) ∼= kR(P )) .

(ii) If Q ⊇ O1, then there exists a unique prime ideal P of R such that Q =
v′−1(P ) (or, equivalently, P = v′(Q)). With the notation of the previous part
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(a), if P ⊇ I then Q = P1 = P2. On the other hand, if P � I then Q =
P1 (	= P2). In both cases,

Q = {(p, p + i) | p ∈ P, i ∈ I}.
Furthermore, the canonical ring homomorphism v′ : R �� I → R induces the
following isomorphism:

(R��I)/Q ∼= R/P (thus kR��I(Q) ∼= kR(P )).

Proof. Note that the composition of the diagonal embedding δ : R ↪→ R �� I,
(r �→ (r, r)), with the inclusion R �� I ⊆ R × R, ((r, r + i) �→ (r, r + i)), coincides
with the diagonal embedding R ↪→ R × R, (r �→ (r, r)), which is a finite ring
homomorphism. Thus, in particular, both R ↪→ R �� I and R �� I ⊆ R × R are
integral homomorphisms. Note also that if Q is a prime ideal of R × R lying over
P , then necessarily Q ∈ {P × R, R × P} (Remark 2.8).

(a)(i) Note that P1 = u′−1(P × R) and P2 = u′−1(R × P ) (Lemma 3.4); hence
P1 and P2 are prime ideals lying over P . By integrality, if Q ∈ Spec(R �� I) and
Q ∩ R = P , then there exists Q̄ ∈ Spec(R × R) such that Q̄ ∩ (R �� I) = Q and
thus, Q̄ ∩ R = P . Therefore, Q̄ ∈ {P × R, R × P} and so, Q ∈ {P1, P2}.
(a)(ii) We know already by Lemma 3.4(f) and (c) that, if P ⊇ I, then P1 = P2 = P,
hence by part (a)(i), we conclude easily that P =

√P0. Moreover, we have the
following sequence of canonical homomorphisms:

R

P
⊆ R��I√P0

=
R��I

P ⊆ R × R

P × R
∼= R

P
∼= R × R

R × P
,

from which we deduce the last part of the statement.
(a)(iii) By Lemma 3.4(e) and (f), we know that, if P 	⊇ I, then P1 	= P2 and
P0 ⊆ P = P1 ∩ P2. By part (a)(i) and by the integrality of R ↪→ R �� I, we
conclude easily that P =

√P0. Finally, as in part (a)(ii), it is easy to see that
kR(P ) ∼= kR��I(P1) ∼= kR��I(P2).
(a)(iv) follows by the integrality of R ⊆ R��I.
(a)(v) follows immediately by part (a)(iv) and part (a)(ii).
(a)(vi) follows by integrality of R ↪→ R �� I and R �� I ⊆ R × R and from the fact
that R is reduced if and only if R × R is reduced.
(b) If P = Q ∩ R, then necessarily Q ∈ {P1, P2} by (a)(i).
(b)(i) Since Q � O1, then Q = P2, because P1 ⊇ O1. Note that P2 = (R×P )∩
R��I; it is easy to see that Q := R×P is the unique prime of R×R contracting over
Q. The elementwise description of P2 is a particular case of Lemma 3.4(b). Last
statement follows from the following canonical inclusions of localizations RP ↪→
(R��I)Q ↪→ (R × R)Q = (R × R)R×P

∼= RP .

(b)(ii) The first and the last statements are trivial consequences of the fact that v′

induces an isomorphism between R��I/O1 and R. It is easy to see that the prime
P is such that P = Q ∩ R. Therefore, the second statement follows from (b)(i).
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If P � I (and Q ⊇ O1), then Q = P1 (	= P2), since Q does not contain O2 (note
that a prime ideal of R�� I containing both O1 and O2 has a trace in R contain-
ing I). The elementwise description of P1 is a particular case of Lemma 3.4(a).

Remark 3.6. In the situation of Theorem 3.5, note that, if P is a prime ideal of
R, then by integrality of R ↪→ R �� I ⊆ R × R, inside the ring R × R, the prime
ideals P × R and R × P are the only minimal prime ideals of P × P = P0(R × R)
= P (R × R), and so

P0(R × R) = P × P = (P × R) ∩ (R × P ) =
√

P0(R × R)

is a radical ideal of R × R, with

(P × P ) ∩ (R��I) = ((P × R) ∩ (R × P )) ∩ (R��I) = P1 ∩ P2 = P.

Next example shows that in R��I, in general, P0 is not a radical ideal (i.e. it may
happen that P0 �

√P0 = P).

Example 3.7. Let V be a valuation domain with a nonzero nonmaximal
nonidempotent prime ideal P . (An explicit example can be constructed as fol-
lows: let k be a field and let X, Y be two indeterminates over k, then take
V := k[X ](X) + Y k(X)[Y ](Y ) and P := Y k(X)[Y ](Y ). It is well known that V

is the discrete valuation domain of dimension 2, and P is the height 1 prime ideal
of V [16, (11.4), p. 35]; [8, p. 192].)

In this situation, it is easy to see that the ideal P × P is a common (radical)
ideal of V �� P and of its overring V × V . Moreover, note that P0 = P (V �� P ) =
{(p, p+x) | p ∈ P, x ∈ P 2} (Lemma 3.4(d)) and that P (V ×V ) = P ×P ⊂ V ��P .
More precisely, by Lemma 3.4(c), we have:

P × P = (P × P ) ∩ (V ��P ) = (P × V ) ∩ (V × P ) ∩ (V ��P )

= P1 ∩ P2 = P = {(p, p + y) | p ∈ p, y ∈ P ∩ P = P} .

Clearly, since P 2 	= P , then P0 � P ; for instance, if z ∈ P \ P 2, then (p, p + z) ∈
P \ P (V ��P ).

We complete now the description of the affine scheme Spec(R �� I), initiated
in Theorem 3.5, determining in particular the localizations of R �� I in each of its
prime ideals. Part of the next theorem is contained in [1, Proposition 7].

Theorem 3.8. Let X := Spec(R), Y := Spec(R �� I) and Z := Spec(R × R) ∼=
Spec(R) � Spec(R) and let α : Z � Y and γ : Y � X be the canonical surjective
maps associated to the integral embeddings R�� I ↪→ R × R and R ∼= R� ↪→ R�� I

(proof of Theorem 3.5).

(a) The restrictions of α

α
∣∣
Z\VZ (Oi) : Z \ VZ(Oi) −→ Y \ VY (Oi)
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(for i = 1, 2) are scheme isomorphisms, and clearly

Z \ VZ(Oi) ∼= X \ VX(I).

In particular, for each prime ideal P of R, such that P 	⊇ I, if we set P̄1 := P×R

and P̄2 := R × P, we have Pi := P̄i ∩ (R��I), for 1 ≤ i ≤ 2, and the following
canonical ring homomorphisms are isomorphisms:

RP → (R��I)Pi
→ (R × R)P̄i

for 1 ≤ i ≤ 2.

(b) The restriction of γ

γ
∣∣
VY (O1)∩VY (O2) : VY (O1) ∩ VY (O2) → VX(I)

is a scheme isomorphism.
(c) If P ∈ Spec(R) is such that P ⊇ I and P ∈ Spec(R �� I) is the unique prime

ideal such that P ∩R = P, the following diagram of canonical homomorphisms:

(R��I)P −−−−→ RP

� uP


�

RP × RP
vP−−−−→ RP × (RP /IP )

is a pullback (where IP := IRP , uP (x) := (x, x + IP ) and vP ((x, y)) := (x, y +
IP ), for x, y ∈ RP ), i.e. (R��I)P ∼= RP ��IP (Proposition 3.1).

Proof. (a) Since O1 = {0} × I (respectively, O2 = I × {0}) is a common ideal of
R × R and R �� I, this statement follows from the general results on pullbacks [4,
Theorem 1.4] and from Theorem 3.5 (and its proof). Note that Z \ VZ(O1) ∼=
((X � X) \ (X � VX(I))) = X \ VX(I) = ((X � X) \ (VX(I) � X)) ∼= Z \ VZ(O2).
(b) Note that VY (O1)∩VY (O2) = VY (O1 +O2) and O1 +O2 = I×I. Therefore,
the present statement follows from the fact that the canonical surjective homomor-
phism R �� I → R/I, defined by (r, r + i) �→ r + I (for each r ∈ R and i ∈ I) has
kernel equal to I × I.
(c) If we start from the pullback diagram considered in Proposition 3.1 and we apply
the tensor product RP ⊗R — , then by [4, Proposition 1.9], we get the following
pullback diagram:

RP ⊗R (R��I) id⊗v′−−−−→ RP ⊗R R

id⊗u′


� id⊗u



�

RP ⊗R (R × R) id⊗v−−−−→ RP ⊗R (R × (R/I)) .

Note that, by the properties of the tensor product, we deduce immediately the
following canonical ring isomorphisms: RP ⊗R (R×R) ∼= RP ×RP , RP ⊗R R ∼= RP

and that RP ⊗R (R× (R/I)) ∼= RP × (RP ⊗R (R/I)) ∼= RP × (RP /IRP ). Therefore,
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the previous pullback diagram gives rise to the following pullback of canonical
homomorphisms:

RP ⊗R (R��I) −−−−→ RP


� uP



�

RP × RP
vP−−−−→ RP × (RP /IP ) .

On the other hand, recall that Spec(RP ⊗R (R �� I)) can be canonically identified
(under the canonical homeomorphism associated to the natural ring homomorphism
R �� I → RP ⊗R (R �� I)) with the set of all prime ideals H ∈ Spec(R �� I) such
that H ∩R ⊆ P . Since we know already that, in the present situation, there exists
a unique prime ideal P ∈ Spec(R�� I) such that P ∩ R = P (Theorem 3.5 (a)(ii))
and that the canonical embedding R ↪→ R��I has the going-up property, we deduce
that Spec(RP ⊗R (R��I)) can be canonically identified with the set of all the prime
ideals of R �� I contained in P. Therefore, RP ⊗R (R �� I) is a local ring with a
unique maximal ideal corresponding to the prime ideal P of R �� I and thus, we
deduce that the canonical ring homomorphism (R �� I)P → RP ⊗R (R �� I) is an
isomorphism.

Proposition 3.9. The ring R �� I can be obtained as a pullback of the following
diagram of canonical homomorphisms:

R �� I
ṽ′−−−−→ R/I

ũ′


� ũ



�

R × R
ṽ−−−−→ R/I × R/I

where ũ is the diagonal embedding, ṽ is the canonical surjection (x, y) �→ (x+ I, y +
I), ũ′ is the natural inclusion and ṽ′ is defined by (x, x+ i) �→ x+I, for all x, y ∈ R

and i ∈ I.

Proof. By Proposition 3.1, we know that

R �� I −−−−→ R


� u



�

R × R
v−−−−→ R × R/I

is a pullback. On the other hand, it is easy to verify that the following diagram:

R
ϕ−−−−→ R/I

u



� ũ



�

R × R/I
w−−−−→ R/I × R/I
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is a pullback, where w is the canonical surjection (x, y) �→ (x + I, y) and ϕ is the
natural proiection x �→ x + I, for each x ∈ R and for each y ∈ R/I. The conclusion
follows by juxtaposing two pullbacks.

Corollary 3.10. If R is a local ring, integrally closed in T (R) with maximal ideal
M and residue field k, then R �� M is seminormal in its integral closure inside
T (R) × T (R) (which, in this situation, coincides with R × R).

Proof. By the previous proposition, R �� M (which is a local ring) can be obtained
as a pullback of the following diagram of canonical homomorphisms:

R �� M
ṽ′−−−−→ k

ũ′


� ũ



�

R × R
ṽ−−−−→ k × k.

The statement follows from the fact that, in this case, the integral closure of R ��
M in T (R) × T (R) coincides with R × R (Corollary 3.3(c)). Therefore, since ũ

is a minimal extension, then ũ′ is also minimal [3, Lemme 1.4(ii)], and thus the
conclusion follows from [3, Thèoréme 2.2(ii))] and from [18, (1.1)] (keeping in mind
Theorem 3.5(c)).

Example 3.11. (a) Let R := k[[t]] (where k is a field and t an indeterminate) and
let I := tnR. Using Proposition 3.9, if we denote by h(i)(t) the ith derivative of a
power series h(t) ∈ k[[t]], it is easy to see that

R��I = {(f(t), g(t)) | f(t), g(t) ∈ R , f (i)(0) = g(i)(0) ∀ i = 0, . . . n − 1}.

(b) Let R := k[x, y] and I := xR. In this case,

R��I = {(f(x, y), g(x, y)) | f(x, y), g(x, y) ∈ R , f(0, y) = g(0, y)}.
Setting Y = Spec(R �� I) and X = Spec(R), by Proposition 2.13, VY (Oi) ∼=
Spec(k[x, y]). On the other hand, by Theorem 3.8, VY (O1) ∩ VY (O2) = VY ((xR ×
xR)) ∼= VX(xR) ∼= Spec(k[y]). Hence, the ring R �� I is the coordinate ring
of two affine planes with a common line. Note that we can present R �� I as
quotient of a polynomial ring in the following way: consider the homomorphism
λ : k[x, y, z] → R × R, defined by λ(x) := (x, x), λ(y) := (y, y) and λ(z) := (0, x).
It is not difficult to see that Im(λ) = R��I and Ker(λ) = (zx − z2)k[x, y, z].
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