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The amalgamated duplication of a ring along
a multiplicative-canonical ideal

Marco D’Anna and Marco Fontana

Abstract. After recalling briefly the main properties of the amalgamated duplication of

a ring R along an ideal I, denoted by R��I, see M. D’Anna and M. Fontana, to appear in

J. Algebra Appl., we restrict our attention to the study of the properties of R��I, when I is

a multiplicative canonical ideal of R, see W. J. Heinzer, J. A. Huckaba and I. J. Papick, Comm.

Algebra. In particular, we study when every regular fractional ideal of R��I is divisorial.

1. Introduction

If R is a commutative ring with unit and E is an R-module, the idealization
R�E (also called trivial extension), introduced by Nagata in 1956 (cf. Nagata’s
book [14, p. 2]), is a new ring where the module E can be viewed as an ideal such
that its square is (0). This construction has been used in many contexts to produce
examples of rings satisfying preassigned conditions (see e.g. Huckaba’s book [10]).
In particular, in [16, Theorem 7] Reiten proved that, if R is a local Cohen–Macaulay
ring, then R�E is Gorenstein if and only if E is a canonical module of R (cf. also
[7, Theorem 5.6]).

Fossum, in [6], generalized the idealization defining a commutative extension
of a ring R by an R-module E and proved that, if R is a local Cohen–Macaulay
ring and if E is a canonical module of R, then any commutative extension S of R

by E is a Gorenstein ring [6, Theorem].
In this paper, we deal with some applications of a similar general construction,

introduced recently in [5], called the amalgamated duplication of a ring R along an
R-module E, which is an ideal in some overring of R, and denoted by R��E. When
E2=0, the new construction R��E coincides with the Nagata’s idealization R�E.

The authors were partially supported by MIUR, under grants PRIN 2005-011955 and 2005-
015278.
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In general, however, R��E is not a commutative extension in the sense of Fossum.
One main difference of this construction, with respect to the idealization (or with
respect to any commutative extension, in the sense of Fossum) is that the ring R��E

can be a reduced ring (and it is always reduced if R is a domain).
As it happens for the idealization, one interesting application of this construc-

tion is the fact that it allows one to produce rings satisfying (or not satisfying)
preassigned conditions. Moreover, in many cases, the amalgamated duplication of
a ring preserves the property of being reduced (see [4] and [5]). Note also that this
new construction has already been applied for studying questions concerning the
diameter and girth of the zero-divisor graph of a ring (see [12]).

M. D’Anna [4] has studied this construction in case E=I is a proper ideal of
R, proving that, if R is a local Cohen–Macaulay ring with canonical module ωR,
then R��I is a Gorenstein ring if and only if I∼=ωR.

Since in the one-dimensional local Cohen–Macaulay case the Gorenstein rings
are characterized by the property that the regular ideals are divisorial, it is natural
to ask in a general (non necessarily Noetherian) setting, when I is a multiplicative
canonical ideal of R, whether every regular fractional ideal of the ring R��I is
divisorial. Recall that the notion of multiplicative canonical ideal was introduced
in the integral domain case by W. Heinzer, J. Huckaba and I. Papick [9], and it
can be easily extended to any commutative ring: a regular ideal I of a ring R

is a multiplicative-canonical (or, simply, m-canonical) ideal of R if each regular
fractional ideal J of R is I-reflexive, i.e. J=(I :(I :J))∼=HomR(HomR(J, I), I).

It turns out that the previous question has a positive answer if we assume
a stronger condition on I: for each n≥1, every regular R-submodule of Rn is
I-reflexive. Under this hypothesis we obtain that, for each m≥1, every regular
R��I-submodule of (R��I)m is HomR(R��I, I)-reflexive (see Proposition 3.2 and
Corollary 3.3). Moreover, HomR(R��I, I) is isomorphic to R��I as an R��I-module
(see Theorem 4.1). In particular, every regular fractional ideal of R��I is divisorial
(see Corollary 4.2).

As a by-product, we obtain that, if R is a Noetherian local integral domain
with an m-canonical ideal I, then R��I is a reduced Noetherian local ring such that
every regular fractional ideal is divisorial (see Corollary 4.6).

2. Background on R��I

Let R be a commutative ring with unity, T (R) (:={regular elements}−1R) its
total ring of fractions. In this section we will give the definition of the ring R��E,
where E is an R-submodule of T (R) such that E ·E⊆E (note that this condition is
equivalent to requiring that there exists a subring S of T (R) containing R and E,
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such that E is an ideal of S) and we will summarize some of its properties that we
will need in this paper. For the sake of simplicity, we will state these properties for
E being a nonzero (integral) ideal of R. Mutatis mutandis the results hold in the
general situation (cf. [5], where the interested reader can also find the details of the
proofs).

Let R��E be the following subring of R×T (R) (endowed with the usual com-
ponentwise operations):

R �� E := {(r, r+e) | r∈R and e∈E}.

It is obvious that, if in the R-module direct sum R⊕E we introduce a multiplicative
structure by setting (r, e)(s, f):=(rs, rf +se+ef), where r, s∈R and e, f∈E, then
we get the ring isomorphism R��E∼=R⊕E.

If E=I is an ideal in R (which we will assume to be proper and different
from (0), to avoid the trivial cases), then the ring R��I is a subring of R×R and it
is not difficult to see that both the diagonal embedding R↪!R��I and the inclusion
R��I⊂R×R are integral. Moreover, there exist two distinguished ideals in R��I,
O1 :=(0)×I and O2 :=I×(0), such that R∼=R��I/Oi, for i=1, 2.

As consequences of the previous facts we have the following result.

Proposition 2.1. Let I be a nonzero ideal of a ring R.
(1) If R is a domain then R��I is reduced and O1 and O2 are the only minimal

primes of R��I.
(2) R is reduced if and only if R��I is reduced.
(3) dim(R��I)=dim(R).
(4) R is Noetherian if and only if R��I is Noetherian.

Moreover it is possible to describe explicitly the prime spectrum of R��I.

Proposition 2.2. Let P be a prime ideal of R and set

P := {(p, p+i) | p∈P and i∈ I∩P},
P1 := {(p, p+i) | p∈P and i∈ I},
P2 := {(p+i, p) | p∈P and i∈ I}.

(a) If I⊆P , then P=P1=P2 is a prime ideal of R��I and it is the unique
prime ideal of R��I lying over P .

(b) If I�P , then P1 �=P2, P1∩P2=P and P1 and P2 are the only prime
ideals of R��I lying over P .

(c) The extension P (R��I) of P in R��I coincides with {(p, p+i)|p∈P, i∈IP}
and, moreover,

√
P (R��I)=P.
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Furthermore, in case (a) we have

R/P ∼= (R �� I)/P and (R �� I)P ∼= RP �� IP ;

and in case (b) we have

R/P ∼= (R �� I)/Pi and RP
∼=(R �� I)Pi

for i = 1, 2.

In particular, R is a local ring if and only if R��I is a local ring.

3. Remarks on reflexivity

We start this section recalling some definitions and results related to the notion
of multiplicative canonical ideal of a domain, and giving the suitable generalizations
for the non-domain case.

Given an R-module H , for each R-module F , we can consider the R-module
F ∗H :=HomR(F, H). We have the following canonical homomorphism:

ρF : F −! (F ∗H )∗H , a 	−! ρF (a), where ρF (a)(f) := f(a),

for all f∈F ∗H , a∈F . We say that the R-module F is H-reflexive (respectively,
H-torsionless) if ρF is an isomorphism (respectively, monomorphism) of R-modules.

Let F be a regular R-submodule of T (R) (i.e. F contains a T (R)-unit). It is not
hard to prove that each R-homomorphism F!T (R) can be canonically extended
to an R-homomorphism T (R)!T (R). Since HomR(T (R), T (R)) is canonically iso-
morphic to T (R), we have that each R-homomorphism from F into T (R) is achieved
by a multiplication on F by a unique element of T (R).

Given a regular ideal I of the ring R and an R-submodule F of T (R), set
(I :F ):={z∈T (R)|zF⊆I}∼=HomR(F, I). If F =J is a regular fractional ideal of
R then (I :J) is also a regular fractional ideal of R. Therefore, by the previous
considerations, we have a canonical isomorphism (I :(I :J)) ∼−!(I :J)∗I

∼−!(J∗I )∗I .
In this situation, we can identify the map ρJ : J!(J∗I )∗I with the inclusion J⊆(I :
(I :J)), so J is I-torsionless.

We say that a regular ideal I of a ring R is a multiplicative-canonical ideal of R

(or simply an m-canonical ideal) if each regular fractional ideal J of R is I-reflexive,
i.e. the map ρJ : J!(J∗I )∗I is an isomorphism or, equivalently, J=(I :(I :J)).

Note that this definition is a natural extension of the concept introduced in
the integral domain case by W. Heinzer, J. Huckaba and I. Papick [9] and of the
notion of canonical ideal given by J. Herzog and E. Kunz [11, Definition 2.4] and by
E. Matlis [13, Chapter XV] for one-dimensional Cohen–Macaulay rings. In general,
given a Cohen–Macaulay local ring (R, M, k) of dimension d, a canonical module of
R is an R-module ω such that the k-dimension of Exti

R(k, ω) is 1 for i=d and 0
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for i �=d. If R is not local, a canonical module for R is an R-module ω such that all
the localizations ωM at the maximal ideals M of R are canonical modules of RM .
When a canonical module ω exists and it is isomorphic to an ideal I of R, I is
called a canonical ideal of R. In [9, Proposition 4.3] it is shown that a Noetherian
domain with dimension bigger than 1 does not admit an m-canonical ideal, while
there exist (Noetherian) Cohen–Macaulay domains of dimension bigger than 1 with
canonical ideal (e.g. a Noetherian factorial domain D of dimension ≥2; in this case,
D is a Gorenstein domain [3, Corollary 3.3.19]). Hence in higher dimension the
notions of canonical ideal and m-canonical ideal do not coincide.

The following proposition extends outside of the integral domain setting some
results proved in [9, Lemma 2.2 (a), (c) and Proposition 5.1]. The proof is standard
and we omit the details.

Proposition 3.1. Let I be an m-canonical ideal of a ring R; then we have:
(a) (I :I)=R∼=HomR(I, I) (the isomorphism is realized by the canonical multi-

plication map R!HomR(I, I)).
(b) If L is an invertible ideal of R (i.e. a regular ideal such that LL−1=R,

where L−1 :=(R:L)), then IL is also an m-canonical ideal of R; in particular, for
each regular element x∈R, the ideal xI is also an m-canonical ideal of R.

(c) Let S be an overring of R, R⊆S⊆T (R), such that (R:S) is a regular ideal
of R. Then (I :S) (∼=HomR(S, I)=S∗I ) is an m-canonical ideal of S.

We recall that a regular fractional ideal J of a ring R is called a divisorial ideal
of R if (R:(R:J))=J . Clearly, an invertible ideal of R is a divisorial ideal. If every
regular fractional ideal of R is divisorial, then R itself is an m-canonical ideal.

The goal of the remaining part of this paper is to study when every regular
fractional ideal of R��I is divisorial. We start by studying some reflexivity proper-
ties related to the notion of m-canonical ideal, in order to find an R��I-module E

with the property that every regular ideal of R��I is E-reflexive.
Let I be a regular ideal of a ring R and set

F1 :=F1(R) :={F |F is a regular (I-torsionless) R-submodule of R}
={J | J is a regular ideal of R};

then we say that the ring R is (I,F1(R))-reflexive (or, simply, (I,F1)-reflexive) if
each F in F1(R) is I-reflexive. It is obvious that R is (I,F1)-reflexive if and only if I

is an m-canonical ideal of R. (Note that each regular fractional ideal J is I-reflexive
if and only if dJ is I-reflexive, for each regular element d∈R such that dJ⊆R.)

Let I be a regular ideal of a ring R. We have already observed that every regular
ideal of R is I-torsionless. This property holds more generally for every regular R-
submodule of Rn, for each n≥1. In other words, if F is a regular R-submodule of Rn
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and if x∈F \{0}, then we can find h∈HomR(F, I) such that h(x) �=0. As a matter
of fact, write x=(x1, x2, ..., xn) with xi �=0, and let πi : Rn!R be the projection on
the ith coordinate. Choose y∈I such that xiy �=0, and take h∈HomR(F, I) to be
the composition F⊆Rn πi−!R

y−!I. Set

F :=F(R) := {F |F is a regular (I-torsionless) R-submodule of Rn

for some n≥ 1}.
We say that the ring R is (I,F(R))-reflexive (or, simply, (I,F)-reflexive) if every
F∈F(R) is I-reflexive (i.e. the canonical monomorphism

ρF : F −!HomR(HomR(F, I), I)

is an isomorphism of R-modules).
Note that if R is (I,F)-reflexive then I is an m-canonical ideal of R, since each

regular ideal J of R belongs to F(R).

Proposition 3.2. Let R be a ring admitting a regular ideal I such that R

is (I,F(R))-reflexive, let T be a subring of Rm, for some m≥2, containing the
image of R under the diagonal embedding and set IT :=HomR(T, I). Let E be any
T -module. Then the following canonical maps are isomorphisms of T -modules:

HomT (E, IT )∼=HomR(E, I),

HomT (HomT (E, IT ), IT )∼=HomR(HomR(E, I), I)).

Proof. Let E be a T -module. We can consider E as an R-module and so, by
the “Hom-tensor adjointness”, we have that the map

HomR(E, IT )−!HomR(E⊗RT, I)= HomR(E, I)

defined by h 	!h′, where h′(e):=h(e)(1) for all e∈E, establishes an isomorphism of
R-modules. On the other hand, note that IT is endowed with a structure of T -
module, by setting z ·f(t):=f(zt) for each f∈IT and z, t∈T ; similarly HomR(E, I)
is a T -module, by setting z ·h′(e):=h′(ze) for all e∈E, z∈T and h′∈HomR(E, I).

From the previous remarks it follows easily that the map:

Φ: HomT (E, IT )−!HomR(E, I), h 	−!h′, where h′(e) := h(e)(1), e∈E,

is bijective and preserves the sums. Moreover, Φ is T -linear, since Φ(zh)(e)=
(zh(e))(1)=h(ze)(1)=Φ(h)(ze)=(zΦ(h))(e), for all e∈E, z∈T , h∈HomT (E, IT ).
Therefore the map Φ establishes an isomorphism of T -modules.

By the previous isomorphism it follows that the canonical maps establish the
following isomorphisms (as T - and R-modules):

HomT (HomT (E, IT ), IT )∼=HomR(HomT (E, IT ), I)∼= HomR(HomR(E, I), I)). �
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Corollary 3.3. Let R be a ring admitting a regular ideal I such that R is
(I,F(R))-reflexive, let T be a subring of Rm, for some m≥2, containing the image
of R under the diagonal embedding and set IT :=HomR(T, I). Then every regular
T -submodule of T n, for every n≥1, is IT -reflexive.

Proof. From the previous proposition, it follows that E is an IT -torsionless
(respectively, IT -reflexive) T -module if and only if E is I-torsionless (respectively,
I-reflexive) as a R-module. Moreover, if E is a regular T -submodule of T n, then
clearly E is a regular R-submodule of Rmn. The conclusion is now straightfor-
ward. �

Notice that, in general, IT is not isomorphic to an ideal of T . However, we
will see in the next section that IT is isomorphic to T when T =R��I and I is
m-canonical.

4. R��I when I is an m-canonical ideal

In this section we will investigate the construction R��I in case I is an
m-canonical ideal. In particular we will extend, to not necessarily Noetherian rings,
one of the main results obtained in [4, Theorem 11].

Theorem 4.1. Let R be a ring and I be an ideal of R such that the canon-
ical (multiplication) map R!HomR(I, I) is an isomorphism (e.g. let I be an m-
canonical ideal of R; see Proposition 3.1 (a)). Then HomR(R��I, I) is isomorphic
as R��I-module to R��I.

Proof. As I∼=HomR(R, I) (under the map ι 	!ι·− for ι∈I) and R∼=HomR(I, I)
(under the map x 	!x·− for x∈R), we deduce immediately that there is a canonical
isomorphism of R-modules R��I∼=R⊕I∼=HomR(R, I)⊕HomR(I, I). Moreover we
have the following canonical isomorphism of R-modules:

HomR(R, I)⊕HomR(I, I)−!HomR(R �� I, I), (g1, g2) 	−! g,

(where g : R��I!I, (z, z+j) 	!g1(z)+g2(j) for each z∈R and i∈I).
Note that the composition map

R �� I −!HomR(R �� I, I), (x, x+i) 	−! g(x,i),

where g(x,i)((z, z+j)):=iz+xj (for all x, z∈R and i, j∈I) is obviously an R-iso-
morphism, but it is not an R��I-isomorphism.

In order to get an R��I-isomorphism we consider the map

σ : R �� I −!HomR(R �� I, I), (x, x+i) 	−! f(x,i),

where f(x,i)(z, z+j):=xj+(z+j)i, for all x, z∈R and i, j∈I.
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It is not difficult to check that σ is an injective R��I-homomorphism (recall
that the natural structure of R��I-module on HomR(R��I, I) is defined by the
scalar multiplication by (x′, x′+i′)·f((z, z+j)):=f((x′, x′+i′)(z, z+j))).

It remains to prove that σ is surjective, that is: for each f∈HomR(R��I, I),
there is (x, x+ι)∈R��I, such that f =σ((x, x+ι))=f(x,ι). Let ι:=f((1, 1)) and let
x:=(f((−j, 0))/j) for some nonzero (regular) element j∈I. Note that (f((−j, 0))/j)
does not depend on the choice of j, as j′(f((−j, 0))=f((−jj′, 0))=j(f((−j′, 0)),
i.e. (f((−j, 0))/j)=(f((−j′, 0))/j′) for any two nonzero (regular) elements j, j′∈I.
The previous relation shows also that (f((−j, 0))/j)I⊆I, therefore from the canoni-
cal isomorphism of R-modules HomR(I, I)∼=R, we deduce that (f((−j, 0))/j) (which
a priori is an element of T (R)) belongs to R. Note also that, for each j∈I,
f((0, j))=f((−j, 0))+jf((1, 1))=(x+ι)j. Therefore, for each z∈R and j∈I, we
have

f((z, z+j)) =f((z, z))+f((0, j))
=zf((1, 1))+jf((1, 1))+f((−j, 0))
=(z+j)ι+xj

=f(x,ι)((z, z+j)).

Hence we can conclude that the map σ : R��I! HomR(R��I, I) is an isomor-
phism of R��I-modules. �

We remark that an alternative proof of the previous result can be given by
showing that HomR(R��I, I) is a free R��I-module of rank one: if we denote by
π : R��I!I the canonical projection, (r, r+i) 	!i (=(r+i)−r), then it is possible
to show that {π} is a basis for HomR(R��I, I) as an R��I-module.

Corollary 4.2. Let R be a ring admitting a regular ideal I such that R is
(I,F(R))-reflexive. Then R��I is (R��I,F(R��I))-reflexive. In particular, every
regular fractional ideal of R��I is divisorial.

Proof. If we set T :=R��I, by Theorem 4.1 we have IT ∼=T ; moreover by Prop-
osition 3.3, T is (IT ,F(T ))-reflexive. �

It is natural to ask whether the last statement of Corollary 4.2 holds assuming
that I is an m-canonical ideal if R. A related problem is to find conditions on R

so that if I is an m-canonical ideal of R, then R is (I,F)-reflexive. The remaining
part of this section is an investigation in this direction.

Recall that a Marot ring is a ring such that each regular ideal is generated
by its set of regular elements and a ring has few zero divisors if the set of zero
divisors is a finite union of prime ideals [10, p. 31]. Recall that a Noetherian ring
is always a ring with few zero divisors and a ring with few zero divisors is a Marot
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ring; moreover an overring of a Marot ring is a Marot ring [10, Theorem 7.2 and
Corollary 7.3].

The following result extends [9, Proposition 3.6] to the non-integral domain
case and shows that the conclusion of Corollary 4.2 can be characterized in several
ways in the context of Marot rings.

Proposition 4.3. Given a Marot ring R, the following statements are equi-
valent :

(i) R has a principal m-canonical ideal ;
(ii) R has an invertible m-canonical ideal ;
(iii) R has a divisorial m-canonical ideal ;
(iv) each regular fractional ideal of R is divisorial.

Proof. It is obvious that (iv)⇒(i)⇒(ii)⇒(iii).
(iii)⇒(iv). We start by showing a generalization of [9, Lemma 3.1]:

Claim 1. Given two regular fractional ideals I and J of R, we have

(I : (I : J))=
⋂

{zI | z is a regular element of T (R) with J ⊆ zI}.

Let x∈(I :(I :J)) and let z∈T (R) be a regular element such that J⊆zI. Then,
clearly, x(I :J)⊆I and z−1J⊆I. Therefore xz−1∈I, i.e. x∈zI, and so

(I : (I : J))⊆
⋂

{zI | z is a regular element of T (R) with J ⊆ zI}.

On the other hand, let

x∈
⋂

{zI | z is a regular element of T (R) with J ⊆ zI}.

If u is a regular element of (I :J), then J⊆u−1I. Therefore, x∈u−1I, i.e. xu∈I. Since
(I :J) is a regular fractional ideal of the Marot ring R, it follows that x∈(I :(I :J)).

Since (I :J) is a regular fractional ideal of the Marot ring R, if u is a regular
generator of (I :J), then we have that J⊆u−1I. Therefore, x∈u−1I, i.e. xu∈I, and
so

⋂
{zI | z is a regular element of T (R) with J ⊆ zI}⊆ (I : (I : J)).

Claim 2. If {Jα |α∈A} is a family of divisorial ideals of R such that
⋂

α Jα �=(0),
then

⋂
α Jα is divisorial.



Marco D’Anna and Marco Fontana

Let {zβ |β∈B} be a family of regular elements in T (R) such that
⋂

β zβR �=(0).
Note that, for each zβ, we have (R:zβR)⊆(R:(

⋂
β zβR)) and so

∑
β(R:zβR)

⊆(R:(
⋂

β zβR)). Moreover, it is easy to see that, given a family of regular frac-
tional ideals {Lβ |β∈B} of R,

(
R :

∑

β

Lβ

)
=

⋂

β

(R : Lβ).

Therefore
⋂

β

zβR⊆
(

R :
(

R :
(⋂

β

zβR

)))
⊆

(
R :

∑

β

(R : zβR)
)

=
⋂

β

(R : ((R : zβR)))=
⋂

β

zβR.

Hence
⋂

β zβR is a divisorial ideal of R.
The conclusion follows easily, since by Claim 1 (for I=R), a divisorial ideal in

a Marot ring is the intersection of a family of principal regular fractional ideals.

Claim 3. Given two regular fractional ideals I and J of R, assume that I is
divisorial. Then (I :(I :J)) is divisorial.

This is an easy consequence of Claims 1 and 2, since I divisorial implies that
zI is divisorial, for each regular element z∈T (R).

Now we can easily conclude the proof since, if J is a regular fractional ideal of
R and I is the divisorial m-canonical ideal of R, then J=(I :(I :J)) and, by Claim 3,
(I :(I :J)) is divisorial. �

Remark 4.4. (a) Note that the hypothesis that R is a Marot ring is essential
in Claim 1 of the proof of Proposition 4.3, see [10, Theorem 8.3 and Section 27,
Example 11]. Several classes of examples of Marot rings are given in [10, Section 7].

(b) Note that if R is a ring with few divisors and I is an ideal of R then R��I

has few zero divisors and so is a Marot ring.

Let R be an integral domain and I be a nonzero ideal of R. Recall that R is
said to be I-reflexive (respectively, I-divisorial) in the sense of Bazzoni and Salce [2]
(cf. also [15]), if each I-torsionless HomR(I, I)-module of finite rank (respectively,
of rank 1) is I-reflexive.

Proposition 4.5. Let R be an integral domain and I be a nonzero ideal of R.
Then R is (I,F)-reflexive (respectively, (I,F1)-reflexive) if and only if R is I-
reflexive (respectively, I-divisorial) and R=(I :I).
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Proof. First note that, if I is an m-canonical ideal of R (i.e. if (I,F1)-reflexive;
this happens when R is (I,F)-reflexive), then HomR(I, I)∼=R (Proposition 3.1 (a)).

If R is (I,F)-reflexive (respectively, (I,F1)-reflexive) we need to verify that
each I-torsionless R-module G of finite rank (respectively, of rank 1) is I-reflexive.
By [8, Lemma 5.1], such a G can be embedded in In, where n is the rank of G,
hence G belongs to F (respectively, F1) and so G is I-reflexive.

Conversely, let R=(I :I) and let F∈F (respectively, F ∈F1). For each nonzero
element i∈I, then iF is an I-torsionless R-module of finite rank (respectively, of
rank 1) by [8, Lemma 5.1], since iF⊆iRn⊆In (respectively, iF⊆iR⊆I). Therefore
iF is I-reflexive and so F is I-reflexive. �

Corollary 4.6. Let R be a Noetherian local integral domain and let I be an
m-canonical ideal of R and set T :=R��I. Then T is a Noetherian local reduced ring,
with dim(T )=dim(R), such that every regular fractional ideal of T is divisorial.

Proof. By Propositions 2.1 and 2.2 we know that T is a Noetherian local
reduced ring with dim(T )=dim(R). Note that I is an m-canonical ideal of an
integral domain R if and only if it is I-divisorial and (I :I)=R (Proposition 4.5).
Moreover, in the Noetherian local integral domain case, if (I :I)=R, then R is
I-divisorial if and only if R is I-reflexive, by Bazzoni’s generalization of Matlis’ one-
dimensional theorem [1, Theorem 3.2]. By reapplying Proposition 4.5 we know, in
this case, that R is I-reflexive and (I :I)=R if and only if R is (I,F(R))-reflexive.
The conclusion follows immediately from Corollary 4.2. �

Note that the assumption that a Noetherian domain R admits an m-canonical
ideal implies that dim(R)≤1 (by [9, Proposition 4.3]). Therefore, under the as-
sumptions of Corollary 4.6, we can conclude that R��I is a one-dimensional reduced
Gorenstein local ring [11, Korollar 3.4].
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