AL110 - Algebra 1 - A.A. 2010/2011 Appello C - Giugno 2011

$\text{Matricola (O ALTRO IDENTIFICATIVO)} \rightarrow $													
Cognome:	Nome:												
esercizio	1.1	1.2	1.3	1.4	2	3.1	3.2	4.1	4.2	4.3	4.4	4.	5
punti max	2	2	2	3	4	2	5	2	2	2	2	3	
punti assegnati													
totale													
esercizio	5.1	5.2	5.3	5.4	5.5	5.6	6.1	6.2	6.3	7.1	7.2	.1	7.2.2
punti max	8	5	4	2	3	4	3	8	2	4	3		6
punti assegnati							İ			l			

AVVERTENZE: Svolgere gli esercizi in modo conciso, ma esauriente, nello spazio assegnato nel presente fascicolo. Non verranno accettati altri fogli aggiuntivi.

totale

- Fino a "due punti" ulteriori (bonus) potranno essere assegnati agli elaborati scritti in modo molto chiaro.
- Fino a " **due punti" (malus)** potranno essere tolti agli elaborati scritti con calligrafia difficilmente leggibile.

ESERCIZIO 1. Siano $\mathbb Z$ l'anello degli interi relativi e $\mathbb Q$ il campo dei numeri razionali.

Dotiamo $\mathbb{Z} \times \mathbb{Q}$ della struttura naturale di anello (detto prodotto diretto) le cui operazioni sono definite componente per componente, cioè:

$$(a,b)+(a',b'):=(a+a',b+b'), (a,b)\cdot(a',b'):=(aa',bb'), \forall a,a'\in A, \forall b,b'\in B.$$

- (1) Determinare se $(\mathbb{Z} \times \mathbb{Q}, +, \cdot)$ è un anello commutativo o/e unitario.
- (2) Determinare se $(\mathbb{Z} \times \mathbb{Q}, +, \cdot)$ è un dominio o/e un campo.
- (3) Stabilire se, dato I un ideale di $\mathbb Z$, allora $I \times \{0\}$ o/e $I \times \mathbb Q$ è un ideale di $(\mathbb Z \times \mathbb Q, +, \cdot)$.
- (4) Sia I un ideale di \mathbb{Z} , verificare che l'applicazione $\varphi: \mathbb{Z} \times \mathbb{Q} \to (\mathbb{Z}/I) \times \mathbb{Q}$ definita ponendo

$$\varphi((a,b)) := (a+I,b), \quad \text{dove } a+I := \{a+i \mid i \in I\},$$

è un omomorfismo suriettivo di anelli. Determinare, poi, esplicitamente $\mathrm{Ker}(\varphi).$

ESERCIZIO 2. Determinare tutte le eventuali soluzioni del sistema di congruenze seguente, descrivendo brevemente il metodo utilizzato:

$$\begin{cases} 5X \equiv 2 \pmod{7} \\ 4X \equiv 1 \pmod{9} \\ -3X \equiv 4 \pmod{11} \end{cases}.$$

ESERCIZIO 3. Sia $f:\mathbb{Q}\setminus\{2\}\to\mathbb{Q}$ l'applicazione definita ponendo

$$f(x) := \frac{3x+1}{x-2} \qquad \text{ per ogni } x \in \mathbb{Q} \setminus \{2\}.$$

- (1) Stabilire se l'applicazione f è iniettiva e/o suriettiva o/e biiettiva.
 (2) Determinare tutte e sole le estensioni f̂: ℚ → ℚ di f (cioè, tutte le applicazioni f̂ tali che f̂|_{ℚ\{2}} coincide con f) che siano biiettive.

ESERCIZIO 4. Nel gruppo (S_4, \circ) delle biiezioni di $\{1, 2, 3, 4\}$ si considerino gli elementi:

$$\varphi := \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array} \right) \qquad \psi := \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{array} \right)$$

Si ponga $G:=\{\mathrm{id},\varphi,\psi,\varphi\circ\psi\}$ (dove id è la biiezione identità di $\{1,2,3,4\}$).

- (1) Calcolare l'ordine di φ e di ψ , cioè, il più piccolo intero positivo n [rispettivamente, m] tale che $\varphi^n = id$ [rispettivamente, $\psi^m = id$].
- (2) Dimostrare che la composizione \circ è una operazione su G (cioè, mostare che presi comunque due elementi $\alpha, \beta \in G$, allora $\alpha \circ \beta \in G$; potrebbe essere utile calcolare esplicitamente $\psi \circ \varphi$).
- (3) Dedurre che (G, \circ) è un sottogruppo di (S_4, \circ) .
- (4) Stabilire se (G, \circ) è un sottogrupo normale in (S_4, \circ) .
- (5) Definire esplicitamente, se esiste, un isomorfismo gruppale tra (G, \circ) e il gruppo additivo $((\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}), +)$ (quest'ultimo è il prodotto diretto del gruppo $(\mathbb{Z}/2\mathbb{Z}), +)$ con sé stesso).

ESERCIZIO 5. Sia T un'indeterminata su \mathbb{Z} .

- (1) Siano $f(T), g(T) \in \mathbb{Z}[T]$ con $g(T) \neq 0$. Assumendo che g(T) è un polinomio monico, dimostrare che esistono, e sono univocamente determinati, due polinomi q(T) e r(T) in $\mathbb{Z}[T]$ in modo tale che f(T) = q(T)g(T) + r(T), con r(T) = 0 oppure $\deg(r(T)) \leq \deg(g(T))$.
- (2) Mostrare con un esempio che (1) non vale in generale se g(T) non è un polinomio monico.
- (3) Calcolare il MCD dei seguenti polinomi, spiegando il metodo utilizzato: $a(T) = -48 + 46T + 13T^2 9T^3 + T^4$, and $b(T) := -10 3T + T^2$.
- (4) Sia $f(T) \in \mathbb{Z}[T]$. Dimostrare che esistono, e sono univocamente determinati, due polinomi $q_f(T)$ e $r_f(T) := a_f + b_f T$ di $\mathbb{Z}[T]$ in modo tale che

$$f(T) = q_f(T)(T^2 - 2T + 1) + r_f(T)$$
.

(5) Siano $a',b',a'',b'' \in \mathbb{Z}$. Dopo aver calcolato esplicitamente il polinomio prodotto:

$$\varphi(T) := (a'T + b')(a'' + b''T)$$

determinare esplicitamente (in funzione di a',b',a'',b'') il resto della divisione del polinomio $\varphi(T)$ per T^2-2T+1 .

(6) Siano f(T) e g(T) due polinomi in $\mathbb{Z}[T]$ e siano $r_f(T) := a_f T + b_f$ e $r_g(T) := a_g T + b_g \in \mathbb{Z}[T]$ come in (1). Utilizzando (5), determinare il resto della divisione del polinomio prodotto f(T)g(T) per $T^2 - 2T + 1$, in funzione di a_f , b_f , a_g , b_g .

ESERCIZIO 6.

- (1) Enunciare il "piccolo" teorema di Fermat e la sua generalizzazione detta teorema di Euler-Fermat.
- (2) Dimostrare il "piccolo" teorema di Fermat. (3) Determinare un intero a, con $0 \le a \le 100$ in modo tale che $501^{500} \equiv a$ $\pmod{101}$.

ESERCIZIO 7. Si risolva, ricorrendo, eventualmente, a una delle formulazioni equivalenti del Principio di Induzione, ciascuna delle seguenti questioni.

- (1) È vero che, per ogni $n \in \mathbb{N}$, il numero $3^{n+2} + 4^{2n+1}$ è divisibile per 13?
- (2) Sia $M_2(\mathbb{Z})$ l'insieme delle matrici 2×2 a entrate in \mathbb{Z} , e sia · l'operazione di prodotto riga per colonna su $M_2(\mathbb{Z})$. Per ogni matrice $X := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z})$ e ogni $m \in \mathbb{Z}$, si ponga $m \star X := \begin{pmatrix} ma & mb \\ mc & md \end{pmatrix}$. Sia $I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ la matrice identità di $M_2(\mathbb{Z})$ e sia $A := \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \in \mathbb{Z}$.
 - (2.1) Dimostrare (calcolandoli esplicitamente) che esistono $\alpha, \beta \in \mathbb{Z}$, in modo tale che:

$$A^2 = \alpha \star A + \beta \star I .$$

(2.2) Dimostrare che, per ogni intero $n \geq 2$, esistono $\alpha_n, \beta_n \in \mathbb{Z}$ in modo tale che

$$A^n = \alpha_n \star A + \beta_n \star I.$$

[Suggerimento: utilizzare (senza dimostrare) che prese comunque $X,Y \in M_2(\mathbb{Z})$, sussiste la seguente identità: $Y \cdot (m \star X) = m \star (Y \cdot X)$.]