Tutorato 5 di Algebra 110

a cura di Andrea Cattaneo e Simone Mastrodonato

Universita' degli studi RomaTRE, Corso di Laurea in Matematica Anno Accademico 2011/2012

Esercizio 1.

Si dimostri per induzione che:

$$\forall n > 1: \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n};$$

$$\forall n \geq 1 : \binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \dots + (-1)^n \binom{n}{n} = 0.$$

Esercizio 2.

Sia $S = \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$. Si consideri la relazione \leq definita su S nel seguente modo:

$$X \leq Y \iff X = Y \text{ oppure } x \leq y \quad \forall \ x \in X \text{ e } y \in Y.$$

- 1. Stabilire se \leq è d'ordine.
- 2. Stabilire se \leq è d'ordine totale.
- 3. Trovare gli eventuali elementi massimali, minimali, massimi e minimi di S rispetto a \leq .

Esercizio 3.

Sia dato il sottinsieme di \mathbb{N}

$$S = \left\{ \left. 2^a 5^b 11^c \mid a, b, c \in \mathbb{N} \right. \right\}.$$

Si consideri la relazione ρ d'equivalenza su S definita nel seguente modo:

$$(2^a 5^b 11^c) \rho (2^d 5^e 11^f) \Longleftrightarrow a + b + c = d + e + f.$$

 ${\rm Determinare} \,\, [1]_{\rho} \,, [4]_{\rho} \,, [5]_{\rho} \,, [10]_{\rho} \,, [110]_{\rho} \,, [111]_{\rho} \,.$

Esercizio 4.

Si dia per buono che ogni $n \in \mathbb{N}_+$ è univocamente scritto nella forma $2^{\alpha}(2s+1)$, con $\alpha, s \in \mathbb{N}$. Si consideri la seguente relazione binaria ρ su \mathbb{N}_+ : presi $n = 2^{\alpha}(2s+1)$ e $m = 2^{\beta}(2t+1)$ diremo che

$$n \rho m \iff (n = m)$$
 oppure $(\alpha < \beta)$ oppure $\alpha = \beta \text{ ed } s < t$).

- 1. Stabilire se ρ è d'ordine.
- 2. Stabilire se ρ è d'ordine totale.
- 3. Dire se $5 \rho 22$, $4 \rho 9$, $16 \rho 20$, $10 \rho 15$.
- 4. Trovare gli eventuali elementi massimali, minimali, massimi e minimi di \mathbb{N}_+ rispetto a ρ .

Esercizio 5.

Siano a, b numeri interi non entrambi nulli e sia MCD(a, b) = d.

- (i) Provare che esistono più identità di Bèzout per d.
- (ii) Provare che ax + by = au + bv = 1, per qualche $x, y, u, v \in \mathbb{Z}$ se e solo se esiste $n \in \mathbb{Z}$ tale che x = u + nb e y = v na.
- (iii) Provare che ax + by = au + bv = d, per qualche $x, y, u, v \in \mathbb{Z}$ se e solo se esiste $n \in \mathbb{Z}$ tale che $x = u + n \frac{\operatorname{mcm}(a,b)}{a}$ e $y = v n \frac{\operatorname{mcm}(a,b)}{b}$.

Esercizio 6.

Utilizzando $\neg(\neg P) \Leftrightarrow P$, semplificare la seguente proposizione:

Non ha torto chi afferma che non è vero che non sia credibile che Homer ignori in quale stato sia Spingfield.

Esercizio 7.

Dire per quali $\lambda \in \mathbb{Z}$ l'equazione diofantea $(2\lambda + 4)X + 5Y = 16$ ha soluzioni. Determinare inoltre tutte le soluzioni della stessa per il più piccolo valore positivo di λ per cui esistono soluzioni.

Esercizio 8.

- 1. Provare che 3 è l'unico primo p tale che anche $p^2 + 2$ è primo.
- 2. Provare che se p>3 è un numero primo tale che p+2 è primo, allora 12|(2p+2).
- 3. Provare che l'unico numero primo positivo della forma $n^3 1$ è 7.