ME410 - Matematiche Elementari da un Punto di Vista Superiore ${\rm A.A.~2012/2013-Valutazione~"in~itinere"-Seconda~Prova}$

AVVERTENZE: Svolgere il tema, utilizzando al più 2 facciate di un foglio protocollo e scrivendo in modo chiaro e conciso (nel punteggio si terrà conto della leggibilità del testo elaborato).

TEMA: Spazio topologico booleano duale di un'algebra booleana; algebra booleana duale di uno spazio topologico; enunciato del teorema di Stone.

ESERCIZIO 1. Nell'anello degli interi di Gauss $\mathbb{Z}[i]$, si considerino le seguenti due fattorizzazioni di $10 \in \mathbb{Z}[i]$:

$$(3+i)(3-i) = 10 = 2 \cdot 5$$
.

- (1) Stabilire se 2, 5, 3 + i, 3 i sono elementi irriducibili o primi in $\mathbb{Z}[i]$ e se da tali fattorizzazioni si possa dedurre che $\mathbb{Z}[i]$ non è un dominio a fattorizzazione unica.
 - (2) Determinare, se esiste in $\mathbb{Z}[i]$, MCD(3 + i, 2).

ESERCIZIO 2. Sia $f_1 := 1$, $f_2 := 1$ ed $f_n := f_{n-1} + f_{n-2}$, per $n \ge 3$. Determinare $MCD(f_{12}, f_8)$.

ESERCIZIO 3.

Sia $\mathbb{F}_2 := \{0,1\}$ l'algebra booleana con due elementi e sia \mathcal{A} l'algebra booleana

$$(\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2, \vee, \wedge, ', \mathbf{0}, \mathbf{1})$$
.

- (1) Mostrare esplicitamente che esiste una corrispondenza biunivoca tra l'insieme degli omomorfismi di algebre booleane $\operatorname{Hom}_{\mathsf{bool}}(\mathcal{A}, \mathbb{F}_2)$ e l'insieme degli ideali massimali di \mathcal{A} .
- (2) Descrivere tutti gli ideali massimali \mathcal{A} (cioè, elencare per ciascuno di essi tutti gli elementi).
- (3) Mostrare che l'insieme $X := X(\mathcal{A}) := \operatorname{Hom}_{\mathsf{bool}}(\mathcal{A}, \mathbb{F}_2)$ dotato della topologia indotta da quella di $\mathbb{F}_2^{\mathcal{A}}$ (insieme di tutte le applicazioni da \mathcal{A} a \mathbb{F}_2 , dotato della topologia prodotto assumendo che \mathbb{F}_2 è uno spazio topologico con la topologia discreta) è uno spazio topologico booleano.
- (4) Definire esplicitamente un isomorfismo di algebre booleane tra \mathcal{A} e l'algebra booleana $\mathcal{A}(X)$ duale dello spazio topologico (booleano) X (cioè, l'algebra booleana –sottoalgebra booleana di $\mathcal{P}(X)$ che ha come elementi i sottoinsiemi aperti–chiusi dello spazio topologico X).

1