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Amalgamated algebras along an ideal

Marco D’Anna, Carmelo Antonio Finocchiaro and Marco Fontana

Abstract. Let f : A → B be a ring homomorphism andJ an ideal ofB. In this paper, we
initiate a systematic study of a new ring construction called the “amalgamation ofA with B along
J with respect tof ”. This construction finds its roots in a paper by J.L. Dorroh appeared in 1932
and provides a general frame for studying the amalgamated duplication of a ring along an ideal,
introduced and studied by D’Anna and Fontana in 2007, and other classical constructions such as
theA + XB[X] andA + XB[[X]] constructions, the CPI-extensions of Boisen and Sheldon, the
D + M constructions and the Nagata’s idealization.
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1 Introduction

LetA andB be commutative rings with unity, letJ ba an ideal ofB and letf : A −→ B
be a ring homomorphism. In this setting, we can define the following subringofA×B:

A 1
f J = {(a, f(a) + j) | a ∈ A, j ∈ J}

calledthe amalgamation ofA withB alongJ with respect tof . This construction is a
generalization of the amalgamated duplication of a ring along an ideal (introduced and
studied in [8] and [9]). Moreover, other classical constructions (such as theA+XB[X ]
construction, theD +M construction and the Nagata’s idealization) can be studied as
particular cases of the amalgamation.

On the other hand, the amalgamationA 1
f J is related to a construction proposed

by D.D. Anderson in [1] and motivated by a classical construction due toDorroh [8],
concerning the embedding of a ring without identity in a ring with identity.

The level of generality that we have choosen is due to the fact that the amalgamation
can be studied in the frame of pullback constructions. This point of view allows us to
provide easily an ample description of the properties ofA1

fJ , in connection with the
properties ofA, J andf .

In this paper, we begin a study of the basic properties ofA1
fJ . In particular,

in Section 2, we present all the constructions cited above as particular cases of the
amalgamation. Moreover, we show that the CPI extensions (in the sense of Boisen and
Sheldon [3]) are related to amalgamations of a special type and we compare Nagata’s
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idealization with the amalgamation. In Section 3, we consider the iteration of the
amalgamation process, giving some geometrical applications of it.

In the last two sections, we show that the amalgamation can be realized as a pull-
back and we characterize those pullbacks that arise from an amalgamation (Proposition
4.7. Finally we apply these results to study the basic algebraic properties ofthe amal-
gamation, with particular attention to the finiteness conditions.

2 The genesis

LetA be a commutative ring with identity and letR be a ring without identity which is
anA-module. Following the construction described by D.D. Anderson in [1],we can
define a multiplicative structure in theA–moduleA ⊕ R, by setting(a, x)(a′, x′) :=
(aa′, ax′ + a′x+ xx′), for all a, a′ ∈ A andx, x′ ∈ R. We denote byA⊕̇R the direct
sumA⊕R endowed also with the multiplication defined above.

The following properties are easy to check.

Lemma 2.1.[1, Theorem 2.1]With the notation introduced above, we have:

(1) A⊕̇R is a ring with identity(1,0), which has anA–algebra structure induced by
the canonical ring embeddingιA : A →֒ A⊕̇R, defined bya 7→ (a,0) for all
a ∈ A.

(2) If we identifyR with its canonical image(0)×R under the canonical embedding
ιR : R →֒ A⊕̇R, defined byx 7→ (0, x), for all x ∈ R, thenR becomes an ideal
in A⊕̇R.

(3) If we identifyA withA× (0) (respectively,R with (0)×R) insideA⊕̇R, then the
ring A⊕̇R is anA–module generated by(1,0) andR, i.e.,A(1,0) +R = A⊕̇R.
Moreover, ifpA : A⊕̇R ։ A is the canonical projection (defined by(a, x) 7→ a
for all a ∈ A andx ∈ R), then

0 → R
ι
R−→ A⊕̇R

p
A−→ A→ 0

is a splitting exact sequence ofA–modules. 2

Remark 2.2.(1) The previous construction takes its roots in the classical construction,
introduced by Dorroh [8] in 1932, for embedding a ring (with or without identity,
possibly without regular elements) in a ring with identity (see also Jacobson [14], page
155). For completeness, we recall Dorroh’s construction starting with acase which is
not the motivating one, but that leads naturally to the relevant one (Case 2).

Case 1. Let R be a commutative ring (with or without identity) and let Tot(R)
be its total ring of fractions, i.e., Tot(R) := N−1R, whereN is the set of regular
elements ofR. If we assume thatR has a regular elementr, then it is easy to see that
R ⊆ Tot(R), and Tot(R) has identity 1 := r

r
, even ifR does not. In this situation we

can considerR[1] := {x + m · 1 | x ∈ R,m ∈ Z}. Obviously, ifR has an identity,
thenR = R[1]; otherwise, we have thatR[1] is a commutative ring with identity, which
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contains properlyR and it is the smallest subring of Tot(R) containingR and 1. It is
easy to see that:

(a) R andR[1] have the same characteristic,

(b) R is an ideal ofR[1] and

(c) if R ( R[1], then the quotient-ringR[1]/R is canonically isomorphic toZ/nZ,
wheren (≥ 0) is the characteristic ofR[1] (or, equivalently, ofR).

Case 2. Let R be a commutative ring (with or without identity) and, possibly,
without regular elements. In this situation, we possibly haveR = Tot(R), so we
cannot perform the previous construction. Following Dorroh’s ideas,we can consider
in any caseR as aZ-module and, with the notation introduced at the beginning of this
section, we can construct the ringZ⊕̇R, that we denote byDh(R) in Dorroh’s honour.
Note thatDh(R) is a commutative ring with identity 1Dh(R) := (1,0). If we identify,
as usual,R with its canonical image inDh(R), thenR is an ideal ofDh(R) andDh(R)
has a kind of minimal property overR, sinceDh(R) = Z(1,0) + R. Moreover, the
quotient-ringDh(R)/R is naturally isomorphic toZ.

On the bad side, note that ifR has an identity 1R, then the canonical embedding
of R into Dh(R) (defined byx 7→ (0, x) for all x ∈ R) does not preserve the identity,
since(0,1R) 6= 1Dh(R). Moreover, in any case (wheneverR is a ring with or without
identity), the canonical embeddingR →֒ Dh(R) may not preserve the characteristic.

In order to overcome this difficult, in 1935, Dorroh [9] gave a variation of the
previous construction. More precisely, ifR has positive characterisiticn, thenR can
be considered as aZ/nZ-module, soDhn(R) := (Z/nZ) ⊕̇R is a ring with identity, ha-
ving characteristicn. Moreover, as above,Dhn(R) = (Z/nZ) (1,0)+R andDhn(R)/R
is canonically isomorphic toZ/nZ.

(2) Note that a general version of the Dorroh’s construction (previous Case 2) was
considered in 1974 by Shores [18, Definition 6.3] for constructing examples of local
commutative rings with arbitrarily large Loewy length. We are indebted to L. Salce
for pointing out to us that the amalgamated duplication of a ring along an ideal[6] can
also be viewed as a special case of Shores construction (cf. also [17]). Moreover, be-
fore Shores, Corner in 1969 [4], for studying endomorphisms ringsof Abelian groups,
considered a similar construction called “split extension of a ring by an ideal”.

A natural situation in which we can apply the previous general construction(Lemma
2.1) is the following. Letf : A→ B be a ring homomorphism and letJ be an ideal of
B. Note thatf induces onJ a natural structure ofA–module by settinga·j := f(a)j,
for all a ∈ A andj ∈ J . Then, we can considerA⊕̇J .

The following properties, except (2) that is easy to verify, follow from Lemma 2.1.

Lemma 2.3.With the notation introduced above, we have:

(1) A⊕̇J is a ring.

(2) The mapf1 : A⊕̇J → A × B, defined by(a, j) 7→ (a, f(a) + j) for all a ∈ A
andj ∈ J , is an injective ring homomorphism.



4 Marco D’Anna, Carmelo Antonio Finocchiaro and Marco Fontana

(3) The mapιA : A → A⊕̇J (respectively,ιJ : J → A⊕̇J), defined bya 7→ (a,0)
for all a ∈ A (respectively, byj 7→ (0, j) for all j ∈ J), is an injective ring homo-
morphism (respectively, an injectiveA–module homomorphism). If we identifyA
with ιA(A) (respectively,J with ιJ (J)), then the ringA⊕̇J coincides withA+J .

(4) Let pA : A⊕̇J → A be the canonical projection (defined by(a, j) 7→ a for all
a ∈ A andj ∈ J), then the following is a split exact sequence ofA–modules:

0 → J
ιJ−→ A⊕̇J

pA
−−→ A→ 0 . 2

We set
A1

fJ := f1(A⊕̇J), Γ(f) := {(a, f(a)) | a ∈ A}.

Clearly,Γ(f) ⊆ A1
fJ and they are subrings ofA × B. The motivation for replacing

A⊕̇J with its canonical imageA1
fJ insideA × B (underf1) is related to the fact

that the multiplicative structure defined inA⊕̇J , which looks somewhat “artificial”,
becomes the restriction toA1

fJ of the natural multiplication defined componentwise
in the direct productA×B. The ringA1

fJ will be calledthe amalgamation ofA with
B alongJ , with respect tof : A→ B.

Example 2.4.The amalgamated duplication of a ring.
A particular case of the construction introduced above is the amalgamated duplication
of a ring [6]. LetA be a commutative ring with unity, and letE be anA–submodule of
the total ring of fractions Tot(A) of A such thatE · E ⊆ E. In this case,E is an ideal
in the subringB := (E : E) (:= {z ∈ Tot(A) | zE ⊆ E}) of Tot(A). If ι : A → B is
the natural embedding, thenA1

ιE coincides withA1E, the amalgamated duplication
of A alongE, as defined in [6]. A particular and relevant case is whenE := I is
an ideal inA. In this case, we can takeB := A, we can consider the identity map
id := idA : A → A and we have thatA1 I, the amalgamated duplication ofA along
the idealI, coincides withA1

idI, that we will call alsothe simple amalgamation ofA
alongI (instead of the amalgamation ofA alongI, with respect to idA).

Example 2.5.The constructionsA+ XB[X] andA+ XB[[X]].
Let A ⊂ B be an extension of commutative rings andX := {X1, X2, . . ., Xn} a fi-
nite set of indeterminates overB. In the polynomial ringB[X], we can consider the
following subring

A+ XB[X] := {h ∈ B[X] | h(0) ∈ A} ,

where0 is then−tuple whose components are 0. This is a particular case of the general
construction introduced above. In fact, ifσ′ : A →֒ B[X ] is the natural embedding and
J ′ := XB[X], then it is easy to check thatA1

σ′

J ′ is isomorphic toA+ XB[X] (see
also the following Proposition 5.1(3)).

Similarly, the subringA + XB[[X]] := {h ∈ B[[X]] | h(0) ∈ A} of the ring of
power seriesB[[X]] is isomorphic toA1

σ′′

J ′′, whereσ′′ : A →֒ B[[X]] is the natural
embedding andJ ′′ := XB[[X]].
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Example 2.6.TheD +M construction.
Let M be a maximal ideal of a ring (usually, an integral domain)T and letD be a
subring ofT such thatM ∩D = (0). The ringD +M := {x+m | x ∈ D, m ∈ M}
is canonically isomorphic toD1

ιM , whereι : D →֒ T is the natural embedding.
More generally, let{Mλ | λ ∈ Λ} be a subset of the set of the maximal ideals

of T , such thatMλ ∩ D = (0) for all λ ∈ Λ, and setJ :=
⋂

λ∈Λ Mλ. The ring
D + J := {x+ j | x ∈ D, j ∈ J} is canonically isomorphic toD1

ιJ . In particular,
if D := K is a field contained inT andJ := Jac(T ) is the Jacobson ideal of (the
K–algebra)T , thenK + Jac(T ) is canonically isomorphic toK 1

ι Jac(T ), where
ι : K →֒ T is the natural embedding.

Example 2.7.The CPI–extensions (in the sense of Boisen-Sheldon [3]).
Let A be a ring andP be a prime ideal ofA. Let k(P ) be the residue field of the
localizationAP and denote byψP (or simply, byψ) the canonical surjective ring ho-
momorphismAP −→ k(P ). It is wellknown thatk(P ) is canonically isomorphic
to the quotient field ofA/P , so we can identifyA/P with its canonical image into
k(P ). Then the subringC(A,P ) := ψ−1(A/P ) of AP is called theCPI–extension of
A with respect toP . It is immediately seen that, if we denote byλP (or, simply, by
λ) the localization homomorphismA −→ AP , thenC(A,P ) coincides with the ring
λ(A) + PAP . On the other hand, ifJ := PAP , we can considerA 1

λ J and we have
the canonical projectionA 1

λ J → λ(A)+PAP , defined by(a, λ(a)+j) 7→ λ(a)+j,
wherea ∈ A and j ∈ PAP . It follows that C(A,P ) is canonically isomorphic to
(A 1

λ PAP )/(P × {0}) (Proposition 5.1(3)).
More generally, letI be an ideal ofA and letSI be the set of the elementss ∈ A

such thats + I is a regular element ofA/I. Obviously,SI is a multiplicative subset
of A and if SI is its canonical projection ontoA/I, then Tot(A/I) = (SI)−1(A/I).
Let ϕI : S−1A −→ Tot(A/I) be the canonical surjective ring homomorphism defined
by ϕI(as−1) := (a + I)(s + I)−1, for all a ∈ A and s ∈ S. Then, the subring
C(A, I) := ϕ−1

I (A/I) of S−1
I A is called theCPI–extension ofA with respect toI. If

λI : A −→ S−1
I A is the localization homomorphism, then it is easy to see thatC(A, I)

coincides with the ringλI(A) + S−1
I I. It will follow by Proposition 5.1(3) that, if

we consider the idealJ := S−1
I I of S−1

I A, thenC(A, I) is canonically isomorphic to
(A 1

λI J)/(λ−1
I (J)× {0}).

Remark 2.8.Nagata’s idealization.
Let A be a commutative ring andM a A–module. We recall that, in 1955, Nagata
introduced the ring extension ofA calledthe idealization ofM in A, denoted here by
A⋉M, as theA–moduleA⊕M endowed with a multiplicative structure defined by:

(a, x)(a′, x′) := (aa′, ax′ + a′x) , for all a, a′ ∈ A andx, x′ ∈ M

(cf. [15], Nagata’s book [16, page 2], and Huckaba’s book [13,Chapter VI, Section
25]). The idealizationA⋉M is a ring, such that the canonical embeddingιA : A →֒
A⋉M (defined bya 7→ (a,0), for all a ∈ A) induces a subringA⋉ (:= ιA(A)) of
A⋉M isomorphic toA and the embeddingιM : M →֒ A⋉M (defined byx 7→ (0, x),
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for all x ∈ M) determines an idealM⋉ (:= ιM(M)) in A⋉M (isomorphic, as an
A–module, toM), which is nilpotent of index 2 (i.e.M⋉ ·M⋉ = 0).

For the sake of simplicity, we will identifyM with M⋉ andA with A⋉. If pA :
A⋉M → A is the canonical projection (defined by(a, x) 7→ a, for all a ∈ A and
x ∈ M), then

0 → M
ι
M−−→ A⋉M

p
A−→ A→ 0

is a spitting exact sequence ofA–modules. (Note that the idealizationA⋉M is also
called in [11]the trivial extension ofA byM.)

We can apply the construction of Lemma 2.1 by takingR := M, whereM is an
A–module, and consideringM as a (commutative) ring without identity, endowed with
a trivial multiplication (defined byx·y := 0 for all x, y ∈ M). In this way, we have that
the Nagata’s idealization is a particular case of the construction consideredin Lemma
2.1. Therefore, the Nagata’s idealization can be interpreted as a particular case of the
general amalgamation construction. LetB := A⋉M andι (= ιA) : A →֒ B be the
canonical embedding. After identifyingM with M⋉, M becomes an ideal ofB. It is
now straighforward thatA⋉M coincides with the amalgamationA1

ιM.
Although this, the Nagata’s idealization and the constructions of the typeA1

fJ
can be very different from an algebraic point of view. In fact, for example, ifM is
a nonzeroA–module, the ringA⋉M is always not reduced (the element(0, x) is
nilpotent, for allx ∈ M), but the amalgamationA1

fJ can be an integral domain (see
Example 2.6 and Proposition 5.2).

3 Iteration of the construction A1
fJ

In the following all rings will always be commutative with identity, and every ring
homomorphism will send 1 to 1.

If A is a ring andI is an ideal ofA, we can consider the amalgamated duplication
of the ringA along its idealI (= the simple amalgamation ofA alongI), i.e.,A1I :=
{(a, a+ i) | a ∈ A, i ∈ I} (Example 2.4). For the sake of simplicity, setA′ := A1 I.
It is immediately seen thatI ′ := {0}×I is an ideal ofA′, and thus we can consider
again the simple amalgamation ofA′ alongI ′, i.e., the ringA′′ := A′

1 I ′ (= (A 1

I)1 ({0}×I)). It is easy to check that the ringA′′ may not be considered as a simple
amalgamation ofA along one of its ideals. However, we can show thatA′′ can be
interpreted as an amalgamation of algebras, giving in this way an answer toa problem
posed by B. Olberding in 2006 at Padova’s Conference in honour of L. Salce.

We start by showing that it is possible to iterate the amalgamation of algebras and
the result is still an amalgamation of algebras.

More precisely, letf : A → B be a ring homomorphism andJ an ideal ofB.
SinceJ ′f := {0} × J is an ideal of the ringA′f := A1

fJ , we can consider the
simple amalgamation ofA′f alongJ ′f , i.e.,A′′f := A′f 1 J ′f (which coincides with
A′f 1

idJ ′f , where id := idA
′f is the identity mapping ofA′f ). On the other hand, we

can consider the mappingf (2) : A → B(2) := B × B, defined bya 7→ (f(a), f(a))
for all a ∈ A. SinceJ (2) := J × J is an ideal of the ringB(2), we can consider
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the amalgamationA 1
f (2)

J (2). Then, the mappingA′′f → A 1
f (2)

J (2), defined by
((a, f(a)+j1), (a, f(a)+j1)+(0, j2)) 7→ (a, (f(a), f(a))+(j1, j1 +j2)) for all a ∈ A

andj1, j2 ∈ J , is a ring isomorphism, having as inverse map the mapA 1
f (2)

J (2) →
A′′f , defined by(a, (f(a)+j1, f(a)+j2)) 7→ ((a, f(a)+j1), (a, f(a)+j1)+(0, j2−j1))
for all a ∈ A and j1, j2 ∈ J . We will denote byA 1

2,f J or, simply,A(2,f) (if no
confusion can arise) the ringA1

f (2)

J (2), that we will call the2-amalgamation of the
A–algebraB alongJ (with respect tof ).

Forn ≥ 2, we define then-amalgamation of theA−algebraB alongJ (with respect
to f ) by setting

A1
n,fJ := A(n,f) := A1

f (n)

J (n),

wheref (n) : A → B(n) := B × B × ... ×B (n–times) is the diagonal homomorphism
associated tof andJ (n) := J × J × ...× J (n–times). Therefore,

A1
n,fJ = {(a, (f(a), f(a), ..., f(a))+ (j1, j2, ..., jn)) | a ∈ A, j1, j2, ..., jn ∈ J} .

Proposition 3.1.Let f : A → B be a ring homomorphism andJ an ideal ofB. Then
A1

n,fJ is canonically isomorphic to the simple amalgamationA(n−1,f)
1J (n−1,f) (=

A(n−1,f)
1

idJ (n−1,f)), whereJ (n−1,f) is the canonical isomorphic image ofJ inside
A(n−1,f) and id := idA(n−1,f) is the identity mapping ofA(n−1,f).

Proof. The proof can be given by induction onn ≥ 2. For the sake of simplicity, we
only consider here the inductive step fromn = 2 ton+ 1 (= 3). It is straightforward
that the mappingA1

3,fJ → A′′f1J ′′f , defined by(a, (f(a), f(a), f(a))+ (j1, j2, j3))
7→ (a′′, a′′ + j′′), wherea′′ := ((a, f(a) + j1), (a, f(a) + j1) + (0, j2 − j1)) ∈ A′′f

andj′′ := ((0,0), (0, j3 − j2)) ∈ J ′′f , for all a ∈ A andj1, j2, j3 ∈ J establishes a
canonical ring isomorphism.

In particular, letA be a ring andI an ideal ofA, the simple amalgamation ofA′ :=
A 1 I alongI ′ := {0} × I, that isA′′ := A′

1I ′, is canonically isomorphic to the
2-amalgamationA1

2,idI = {(a, (a, a) + (i1, i2)) | a ∈ A, i1, i2 ∈ I}.

Example 3.2.We can apply the previous (iterated) construction to curve singularities.
Let A be the ring of an algebroid curve withh branches (i.e.,A is a one-dimensional
reduced ring of the formK[[X1, X2, . . ., Xr]]/

⋂h

i=1Pi, whereK is an algebraically
closed field,X1, X2, . . ., Xr are indeterminates overK andPi is an heightr − 1 prime
ideal ofK[[X1, X2, . . ., Xr]], for 1 ≤ i ≤ r). If I is a regular and proper ideal ofA,
then, with an argument similar to that used in the proof of [5, Theorem 14](where the
case of a simple amalgamation of the ring of the given algebroid curve is investigated),
it can be shown thatA 1

n I is the ring of an algebroid curve with(n+ 1)h branches;
moreover, for each branch ofA, there are exactlyn+1 branches ofA 1

n I isomorphic
to it.

4 Pullback constructions

Let f : A −→ B be a ring homomorphism andJ an ideal ofB. In the remaining
part of the paper, we intend to investigate the algebraic properties of the ringA1

fJ , in
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relation with those ofA,B, J andf . One important tool we can use for this purpose is
the fact that the ringA1

fJ can be represented as a pullback (see next Proposition 4.2).
On the other hand, we will provide a characterization of those pullbacks that give rise
to amalgamated algebras (see next Proposition 4.7). After proving these facts, we will
make some pertinent remarks useful for the subsequent investigationon amalgamated
algebras.

Definition 4.1.We recall that, ifα : A → C, β : B → C are ring homomorphisms,
the subringD := α ×

C
β := {(a, b) ∈ A × B | α(a) = β(b)} of A × B is called the

pullback(or fiber product) of α andβ.

The fact tatD is a pullback can also be described by saying that the triplet(D, pA, pB)
is a solution of the universal problem of rendering commutative the diagram built onα
andβ

D
p

A−−−−→ A

p
B





y

α





y

B
β

−−−−→ C

wherepA (respectively,pB ) is the restriction toα×C β of the projection ofA×B onto
A (respectively,B).

Proposition 4.2.Let f : A → B be a ring homomorphism andJ be an ideal ofB. If
π : B → B/J is the canonical projection and̆f := π ◦ f , thenA1

fJ = f̆ ×
B/J

π.

Proof. The statement follows easily from the definitions.

Remark 4.3.Notice that we have many other ways to describe the ringA1
fJ as a

pullback. In fact, ifC := A× B/J andu : A → C, v : A× B → C are the canonical
ring homomorphisms defined byu(a) := (a, f(a) + J), v((a, b)) := (a, b + J), for
every(a, b) ∈ A×B, it is straightforward to show thatA1

fJ is canonically isomorphic
to u×

C
v. On the other hand, ifI := f−1(J), ŭ : A/I → A/I×B/J andv̆ : A×B →

A/I×B/J are the natural ring homomorphisms induced byu andv, respectively, then
A1

fJ is also canonically isomorphic to the pullback of ˘u andv̆.

The next goal is to show that the rings of the formA1
fJ , for some ring homomor-

phismf : A → B and some idealJ of B, determine a distinguished subclass of the
class of all fiber products.

Proposition 4.4.Let A,B,C, α, β as in Definition 4.1, and letf : A → B a ring
homomorphism. Then the following conditions are equivalent.

(i) There exist an idealJ ofB such thatA1
fJ is the fiber product ofα andβ.

(ii) α is the compositionβ ◦ f .

If the previous conditions hold, thenJ = Ker(β).
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Proof. Assume condition (i) holds, and leta be an element ofA. Then(a, f(a)) ∈
A1

fJ and, by assumption, we haveα(a) = β(f(a)). This prove condition (ii).
Conversely, assume thatα = β ◦ f . We want to show that the ringA 1

f Ker(β) is
the fiber product ofα andβ. The inclusionA 1

f Ker(β) ⊆ α ×C β is clear. On the
other hand, let(a, b) ∈ α×

C
β. By assumption, we haveβ(b) = α(a) = β(f(a)). This

shows thatb − f(a) ∈ Ker(β), and thus(a, b) = (a, f(a) + k), for somek ∈ Ker(β).
ThenA 1

f Ker(β) = α×
C
β and condition (i) is true.

The last statement of the proposition is straightforward.

In the previous proposition we assume the existence of the ring homomorphism
f . The next step is to give a condition for the existence off . We start by recalling
that a ring homomorphismr : B → A is calleda ring retractionif there exists a ring
homomorphismι : A → B, such thatr ◦ ι = idA. In this situation,ι is necessarily
injective,r is necessarily surjective, andA is called aretract ofB.

Example 4.5.If r : B → A is a ring retraction andι : A →֒ B is a ring embedding such
thatr ◦ ι = idA, thenB is naturally isomorphic toA 1

ι Ker(r). This is a consequence
of the facts, easy to verify, thatB = ι(A) + Ker(r) and thatι−1(Ker(r)) = {0} (for
more details see next Proposition 5.1(3)).

Remark 4.6.Let f : A → B be a ring homomorphism andJ be an ideal ofB. Then
A is a retract ofA1

fJ . More precisely,π
A

: A1
fJ → A, (a, f(a), j) 7→ a, is a

retraction, since the mapι : A→ A1
fJ , a 7→ (a, f(a)), is a ring embedding such that

πA ◦ ι = idA.

Proposition 4.7.LetA,B,C, α, β, pA , pB be as in Definition 4.1. Then, the following
conditions are equivalent.

(i) p
A

: α×
C
β → A is a ring retraction.

(ii) There exist an idealJ of B and a ring homomorphismf : A → B such that
α×

C
β = A1

fJ .

Proof. SetD := α ×
C
β. Assume that condition (i) holds and letι : A →֒ D be

a ring embedding such thatp
A
◦ ι = idA. If we consider the ring homomorphism

f := pB ◦ ι : A → B, then, by using the definition of a pullback, we haveβ ◦ f =
β◦p

B
◦ι = α◦p

A
◦ι = α◦idA = α. Then, condition (ii) follows by applying Proposition

4.4. Conversely, letf : A → B be a ring homomorphism such thatD = A1
fJ ,

for some idealJ of B. By Remark 4.6, the projection ofA1
fJ onto A is a ring

retraction.

Remark 4.8.Let f, g : A → B be two ring homomorphisms andJ be an ideal of
B. It can happen thatA1

fJ = A 1
g J , with f 6= g. In fact, it is easily seen that

A1
fJ = A1

gJ if and only if f(a)− g(a) ∈ J , for everya ∈ A.
For example, letf, g : A[X ] → A[X ] be the ring homomorphisms defined byf(X) :=
X2, f(a) := a, g(X) := X3, g(a) := a, for all a ∈ A, and setJ := XA[X ]. Then
f 6= g, butA[X ] 1

f J = A[X ] 1
g J , sincef(p)− g(p) ∈ J , for all p ∈ A[X ].
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The next goal is to give some sufficient conditions for a pullback to be reduced.
Given a ringA, we denote by Nilp(A) the ideal of all nilpotent elements ofA.

Proposition 4.9.With the notation of Definition 4.1, we have:

(1) If D (= α×
C
β) is reduced, then

Nilp(A) ∩ Ker(α) = {0} and Nilp(B) ∩ Ker(β) = {0}.

(2) If at least one of the following conditions holds

(a) A is reduced andNilp(B) ∩ Ker(β) = {0},

(b) B is reduced andNilp(A) ∩ Ker(α) = {0},

thenD is reduced.

Proof. (1) AssumeD reduced. By simmetry, it sufficies to show that Nilp(A) ∩
Ker(α) = {0}. If a ∈ Nilp(A) ∩ Ker(α), then (a,0) is a nilpotent element ofD,
and thusa = 0.

(2) By the simmetry of conditions (a) and (b), it is enough to show that, if condition
(a) holds, thenD is reduced. Let(a, b) be a nilpotent element ofD. Thena = 0,
sincea ∈ Nilp(A) andA is reduced. Thus we have(a, b) = (0, b) ∈ Nilp(D), hence
b ∈ Nilp(B) ∩ Ker(β) = {0}.

We study next the Noetherianity of a ring arising from a pullback construction as in
Definition 4.1.

Proposition 4.10.With the notation of Definition 4.1, the following conditions are
equivalent.

(i) D (= α×
C
β) is a Noetherian ring.

(ii) Ker(β) is a NoetherianD–module (with theD–module structure naturally in-
duced byp

B
) andp

A
(D) is a Noetherian ring.

Proof. It is easy to see that Ker(p
A
) = {0} × Ker(β). Thus, we have the following

short exact sequence ofD–modules

0 −→ Ker(β)
i

−→ D
p

A−→ p
A
(D) −→ 0,

wherei is the naturalD–module embedding (defined byx 7→ (0, x) for all x ∈ Ker(β)).
By [2, Proposition (6.3)],D is a Noetherian ring if and only if Ker(β) andp

A
(D) are

Noetherian asD–modules. The statement now follows immediately, since theD–
submodules ofp

A
(D) are exactly the ideals of the ringp

A
(D).

Remark 4.11.Note that, in Proposition 4.10, we did not requireβ to be surjective.
However, ifβ is surjective, thenpA is also surjective and sopA(D) = A. Therefore, in
this case,D is a Noetherian ring if and only ifA is a Noetherian ring and Ker(β) is a
NoetherianD–module.
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5 The ring A1
fJ : some basic algebraic properties

We start with some straightforward consequences of the definition of amalgamated
algebraA1

fJ .

Proposition 5.1.Let f : A → B be a ring homomorphism,J an ideal ofB and let
A1

fJ := {(a, f(a) + j) | a ∈ A, j ∈ J} be as in Section 2.

(1) Let ι := ιA,f,J : A → A1
fJ be the natural the ring homomorphism defined by

ι(a) := (a, f(a)), for all a ∈ A. Thenι is an embedding, makingA1
fJ a ring

extension ofA (with ι(A) = Γ(f) (:= {(a, f(a)) | a ∈ A} subring ofA1
fJ).

(2) LetI be an ideal ofA and setI1
fJ := {(i, f(i)+j) | i ∈ I, j ∈ J}. ThenI1

fJ is
an ideal ofA1

fJ , the composition of canonical homomorphismsA
ι
→֒ A1

fJ ։

A1
fJ/I1

fJ is a surjective ring homomorphism and its kernel coincides withI.
Hence, we have the following canonical isomorphism:

A1
fJ

I1fJ
∼=
A

I
.

(3) Letp
A

: A1
fJ → A andp

B
: A1

fJ → B be the natural projections ofA1
fJ ⊆

A×B intoA andB, respectively. Thenp
A

is surjective andKer(p
A
) = {0}× J .

Moreover,p
B
(A1

fJ) = f(A) + J and Ker(p
B
) = f−1(J) × {0}. Hence, the

following canonical isomorphisms hold:

A1
fJ

({0} × J)
∼= A and

A1
fJ

f−1(J)× {0}
∼= f(A) + J .

(4) Let γ : A1
fJ → (f(A) + J)/J be the natural ring homomorphism, defined by

(a, f(a) + j) 7→ f(a) + J . Thenγ is surjective andKer(γ) = f−1(J)× J . Thus,
there exists a natural isomorphism

A1
fJ

f−1(J) × J
∼=
f(A) + J

J
.

In particular, whenf is surjective we have

A1
fJ

f−1(J)× J
∼=
B

J
.

2

The ringB⋄ := f(A) + J (which is a subring ofB) has an important role in the
constructionA1

fJ . For instance, iff−1(J) = {0}, we haveA1
fJ ∼= B⋄ (Proposition

5.1(3)). Moreover, in general,J is an ideal also inB⋄ and, if we denote byf⋄ : A→ B⋄

the ring homomorphism induced fromf , thenA1
f⋄J = A1

fJ . The next result shows
one more aspect of the essential role of the ringB⋄ for the constructionA1

fJ .

Proposition 5.2.With the notation of Proposition 5.1, assumeJ 6= {0}. Then, the
following conditions are equivalent.
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(i) A1
fJ is an integral domain.

(ii) f(A) + J is an integral domain andf−1(J) = {0}.

In particular, if B is an integral domain andf−1(J) = {0}, thenA1
fJ is an integral

domain.

Proof. (ii)⇒(i) is obvious, sincef−1(J) = {0} implies thatA1
fJ ∼= f(A)+J (Propo-

sition 5.1(3)).
Assume that condition (i) holds. If there exists an elementa ∈ A\{0} such that

f(a) ∈ J , then(a,0) ∈ (A1
fJ)\{(0,0)}. Hence, ifj is a nonzero element ofJ ,

we have(a,0)(0, j) = (0,0), a contradiction. Thusf−1(J) = {0}. In this case, as
observed above,A1

fJ ∼= f(A) + J (Proposition 5.1(3)), sof(A) + J is an integral
domain.

Remark 5.3.(1) Note that, ifA1
fJ is an integral domain, thenA is also an integral

domain, by Proposition 5.1(1).
(2) LetB = A, f = idA andJ = I be an ideal ofA. In this situation,A1

id
AI (the

simple amalgamation ofA alongI) coincides with the amalgamated duplication ofA
alongI (Example 2.4) and it is never an integral domain, unlessI = {0} andA is an
integral domain.

Now, we characterize when the amalgamated algebraA1
fJ is a reduced ring.

Proposition 5.4.We preserve the notation of Proposition 5.1. The following conditions
are equivalent.

(i) A1
fJ is a reduced ring.

(ii) A is a reduced ring andNilp(B) ∩ J = {0}.

In particular, if A andB are reduced, thenA1
fJ is reduced; conversely, ifJ is a

radical ideal ofB andA1
fJ is reduced, thenB (andA) is reduced.

Proof. From Proposition 4.9(2, a) we deduce easily that (ii)⇒(i), after noting that, with
the notation of Proposition 4.2, in this case Ker(π) = J.

(i)⇒(ii) By Proposition 4.9(1) and the previous equality, it is enough to show that
if A1

fJ is reduced, thenA is reduced. This is trivial because, ifa ∈ Nilp(A), then
(a, f(a)) ∈ Nilp(A1

fJ).
Finally, the first part of the last statement is straightforward. As for the second part,

we have{0} = Nilp(B) ∩ J = Nilp(B) (sinceJ is radical, and soJ ⊇ Nilp(B)).
HenceB is reduced.

Remark 5.5.(1) Note that, from the previous result, whenB = A, f = idA (= id) and
J = I is an ideal ofA, we reobtain easily thatA1I (= A1

idI) is a reduced ring if and
only if A is a reduced ring [7, Proposition 2.1].

(2) The previous proposition implies that the property of being reduced for A1
fJ

is independent of the nature off .
(3) If A andf(A)+J are reduced rings, thenA1

fJ is a reduced ring, by Proposition
5.4. But the converse is not true in general. As a matter of fact, letA := Z, B :=
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Z × (Z/4Z), f : A → B be the ring homomorphism such thatf(n) = (n, [n]4), for
everyn ∈ Z (where[n]4 denotes the class ofn modulo 4). If we setJ := Z × {[0]4},
thenJ ∩ Nilp(B) = {0}, and thusA1

fJ is a reduced ring, but(0, [2]4) = (2, [2]4) +
(−2, [0]4) is a nonzero nilpotent element off(Z) + J .

The next proposition provides an answer to the question of whenA1
fJ is a Noethe-

rian ring.

Proposition 5.6.With the notation of Proposition 5.1, the following conditions are
equivalent.

(i) A1
fJ is a Noetherian ring.

(ii) A andf(A) + J are Noetherian rings.

Proof. (ii)⇒(i). Recall thatA1
fJ is the fiber product of the ring homomorphism

f̆ : A→ B/J (defined bya 7→ f(a)+J) and of the canonical projectionπ : B → B/J .
Since the projectionp

A
: A1

fJ → A is surjective (Proposition 5.1(3)) andA is a
Noetherian ring, by Proposition 4.10, it sufficies to show thatJ(= Ker(π)), with the
structure ofA1

fJ−module induced byp
B

, is Noetherian. But this fact is easy, since
everyA1

fJ−submodule ofJ is an ideal of the Noetherian ringf(A) + J .
(i)⇒(ii) is a straighforward consequence of Proposition 5.1(3).

Note that, from the previous result, whenB = A, f = idA (= id) andJ = I is an
ideal ofA, we reobtain easily thatA1 I (= A1

idI) is a Noetherian ring if and only if
A is a Noetherian ring [6, Corollary 2.11].

However, the previous proposition has a moderate interest because theNoetheri-
anity ofA1

fJ is not directly related to the data (i.e.,A,B, f andJ), but to the ring
B⋄ = f(A) + J which is canonically isomorphicA1

fJ , if f−1(J) = {0} (Proposi-
tion 5.1(3)). Therefore, in order to obtain more useful criteria for theNoetherianity of
A1

fJ , we specialize Proposition 5.6 in some relevant cases.

Proposition 5.7.With the notation of Proposition 5.1, assume that at least one of the
following conditions holds:

(a) J is a finitely generatedA–module (with the structure naturally induced byf ).

(b) J is a NoetherianA–module (with the structure naturally induced byf ).

(c) f(A) +J is Noetherian asA–module (with the structure naturally induced byf ).

(d) f is a finite homomorphism.

ThenA1
fJ is Noetherian if and only ifA is Noetherian. In particular, ifA is a Noethe-

rian ring andB is a NoetherianA–module (e.g., iff is a finite homomorphism [2,
Proposition 6.5]), thenA1

fJ is a Noetherian ring for all idealJ ofB.

Proof. Clearly, without any extra assumption, ifA1
fJ is a Noetherian ring, thenA is

a Noetherian ring, since it is isomorphic toA1
fJ/({0} × J) (Proposition 5.1(3)).

Conversely, assume thatA is a Noetherian ring. In this case, it is straighforward
to verify that conditions (a), (b), and (c) are equivalent [2, Propositions 6.2, 6.3, and
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6.5]. Moreover (d) implies (a), sinceJ is anA–submodule ofB, andB is a Noetherian
A–module under condition (d) [2, Proposition 6.5].

Using the previous observations, it is enough to show thatA1
fJ is Noetherian if

A is Noetherian and condition (c) holds. Iff(A) + J is Noetherian as anA–module,
thenf(A) + J is a Noetherian ring (every ideal off(A) + J is anA–submodule of
f(A) + J). The conclusion follows from Proposition 5.6((ii)⇒(i)).

The last statement is a consequence of the first part and of the fact that, if B is a
NoetherianA–module, then (a) holds [2, Proposition 6.2].

Proposition 5.8.We preserve the notation of Propositions 5.1 and 4.2. IfB is a Noethe-
rian ring and the ring homomorphism̆f : A → B/J is finite, thenA1

fJ is a Noethe-
rian ring if and only ifA is a Noetherian ring.

Proof. If A1
fJ is Noetherian we already know thatA is Noetherian. Hence, we only

need to show that ifA andB are Noetherian rings and̆f is finite thenA1
fJ is Noethe-

rian. But this fact follows immediately from [10, Proposition 1.8].

As a consequence of the previous proposition, we can characterize when rings of
the formA + XB[X ] andA + XB[[X ]] are Noetherian. Note that S. Hizem and A.
Benhissi [12] have already given a characterization of the Noetherianity of the power
series rings of the formA + XB[[X ]]. The next corollary provides a simple proof of
Hizem and Benhissi’s Theorem and shows that a similar characterization holds for the
polynomial case (in several indeterminates). At the Fez Conference inJune 2008, S.
Hizem has announced to have proven a similar result in the polynomial ringcase with
a totally different approach.

Corollary 5.9. LetA ⊆ B be a ring extension andX := {X1, . . ., Xn} a finite set of
indeterminates overB. Then the following conditions are equivalent.

(i) A+ XB[X] is a Noetherian ring.

(ii) A+ XB[[X]] is a Noetherian ring.

(iii) A is a Noetherian ring andA ⊆ B is a finite ring extension.

Proof. (iii)⇒(i, ii). With the notations of Example 2.5, recall thatA + XB[X] is
isomorphic toA 1

σ′

XB[X] (andA + XB[[X]] is isomorphic toA 1
σ′′

XB[[X]]).
Since we have the following canonical isomorphisms

B[X]

XB[X]
∼= B ∼=

B[[X]]

XB[[X]]
,

in the present situation, the homomophism ˘σ′ : A →֒ B[X]/XB[X] (or, σ̆′′ : A →֒
B[[X ]]/XB[[X]]) is finite. Hence, statements (i) and (ii) follow easily from Proposition
5.8.

(i) (or, (ii)) ⇒ (iii). Assume thatA+XB[X ] (or,A+XB[[X]]) is a Noetherian ring.
By Proposition 5.6, or by the isomorphism(A+ XB[X])/XB[X] ∼= A (respectively
(A+XB[[X]])/XB[[X]] ∼= A), we deduce thatA is also a Noetherian ring. Moreover,
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by assumption, the idealI of A + XB[X] (respectively, ofA + XB[[X ]]) generated
by the set{bXk | b ∈ B,1 ≤ k ≤ n} is finitely generated. HenceI = (f1, f2, . . ., fm),
for somef1, f2, . . ., fm ∈ I. Let {bjk | 1 ≤ k ≤ n} be the set of coefficients of linear
monomials of the polynomial (respectively, power series)fj, 1 ≤ j ≤ m. It is easy to
verify that{bjk | 1 ≤ j ≤ m,1 ≤ k ≤ n} generatesB asA–module; thusA ⊆ B is a
finite ring extension.

Remark 5.10.Let A ⊆ B be a ring extension, and letX be an indeterminate overB.
Note that the idealJ ′ = XB[X ] of B[X ] is never finitely generated as anA–module
(with the structure induced by the inclusionσ′ : A →֒ B[X ]). As a matter of fact,
assume that{g1, g2, . . ., gr} (⊂ B[X ]) is a set of generators ofJ ′ asA−module and set
N := max{deg(gi) | i = 1,2, . . ., r}. Clearly, we haveXN+1 ∈ J ′ \

∑r

i=1Agi, which
is a contradiction. Therefore, the previous observation shows that the Noetherianity of
the ringA1

fJ does not imply thatJ is finitely generated as anA–module (with the
structure induced byf ); for instanceR + XC[X ] (∼= R 1

σ′

XC[X ], whereσ′ : R →֒
C[X ] is the natural embedding) is a Noetherian ring (Proposition 5.9), butXC[X ] is
not finitely generated as anR–vector space. This fact shows that condition (a) (or,
equivalently, (b) or (c)) of Proposition 5.7 is not necessary for the Noetherianity of
A1

fJ .

Example 5.11.LetA ⊆ B be a ring extension,J an ideal ofB andX := {X1, . . ., Xr}
a finite set of intederminates overB. We setB′ := B[X], J ′ := XJ [X] and we denote
by σ′ the canonical embedding ofA into B′. By a routine argument, it is easy to see
that the ringA 1

σ′

J ′ is naturally isomorphic to the ringA+XJ [X]. Now, we want to
show that, in this case, we can characterize the Noetherianity of the ringA+ XJ [X],
without assuming a finiteness condition on the inclusionA ⊆ B (as in Corollary 5.9
(iii)) or on the inclusionA+XJ [X] ⊆ B[X]. More precisely,the following conditions
are equivalent.

(i) A+ XJ [X] is a Noetherian ring.

(ii) A is a Noetherian ring,J is an idempotent ideal ofB and it is finitely generated
as anA–module.

(i)⇒(ii). Assume thatR := A+XJ [X] = A+J ′ is a Noetherian ring. Then, clearly,A
is Noetherian, sinceA is canonically isomorphic toR/J ′. Now, consider the idealL of
R generated by the set of linear monomials{bXi | 1 ≤ i ≤ r, b ∈ J}. By assumption,
we can findℓ1, ℓ2, . . ., ℓt ∈ L such thatL =

∑t

k=1 ℓkR. Note thatℓk(0,0, . . .,0) = 0,
for all k, 1 ≤ k ≤ t. If we denote bybk the coefficient of the monomialX1 in the
polynomialℓk, then it is easy to see that{b1, b2, . . ., bt} is a set of generators ofJ as an
A–module.

The next step is to show thatJ is an idempotent ideal ofB. By assumption,J ′ is a
finitely generated ideal ofR. Let

gh :=
mh
∑

j1+...+jr=1

ch,j1...jrX
j1
1 · · ·Xjr

r , with h = 1,2, . . ., s,
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be a finite set of generators ofJ ′ in R. Setj1 := max{j1 | ch,j10...0 6= 0, for 1 ≤ h ≤

s}. Take now an arbitrary elementb ∈ J and consider the monomialbXj1+1
1 ∈ J ′.

Clearly, we have

bXj1+1
1 =

s
∑

h=1

fhgh, with fh :=
nh
∑

e1+...+er=0

dh,e1...erX
e1
1 · · ·Xer

r ∈ R .

Therefore,

b =
s

∑

h=1

∑

j1+e1=j1+1

ch,j10...0dh,e10...0 .

Sincej1 < j1 + 1, we have necessarily thate1 ≥ 1. Henceforthfh belongs toJ ′ and
sodh,e10...0 ∈ J , for all h, 1 ≤ h ≤ s. This proves thatb ∈ J2.

(ii)⇒(i). In this situation, by Nakayama’s lemma, we easily deduce thatJ = eB,
for some idempotent elemente ∈ J . Let {b1, . . ., bs} be a set of generators ofJ as an
A–module, i.e.,J = eB =

∑

1≤h≤s bhA. We consider a new set of indeterminates
overB (andA) and preciselyY := {Yih | 1 ≤ i ≤ r,1 ≤ h ≤ s}. We can define
a mapϕ : A[X ,Y ] → B[X] by settingϕ(Xi) := eXi, andϕ(Yih) := bhXi, for
all i = 1, . . ., r, h = 1, . . ., s. It is easy to see thatϕ is a ring homomorphism and
Im(ϕ) ⊆ R (= A+ XJ [X ]). Conversely, let

f := a+
r

∑

i=1





ni
∑

ei1+...+eir =0

ci,ei1 ...eir
X

ei1
1 · · ·X

eir
r



Xi ∈ R (and soci,ei1 ...eir
∈ J) .

SinceJ =
∑

1≤h≤s bhA, then for all i = 1, . . ., r and ei1, . . ., eir , with ei1 + . . . +
eir ∈ {0, . . ., ni}, we can find elementsai,ei1 ...eir ,h ∈ A, with 1 ≤ h ≤ s, such that
ci,ei1 ...eir

=
∑s

h=1 ai,ei1 ...eir ,hbh. Consider the polynomial

g := a+
r

∑

i=1

s
∑

h=1

ni
∑

ei1+...+eir =0

ai,ei1 ...eir ,hX
ei1
1 · · ·X

eir
r Yih ∈ A[X ,Y ].

It is straightforward to see thatϕ(g) = f and so Im(ϕ) = R. By Hilbert Basis Theo-
rem, we conclude easily thatR is Noetherian.

Remark 5.12.We preserve the notation of Example 5.11.
(1) Note that in the previous example, whenJ = B, we reobtain Corollary 5.9

((i)⇔(iii)). If B = A andI is an ideal of ofA, then we simply have thatA + XI[X]
is a Noetherian ring if and only ifA is a Noetherian ring andI is an idempotent ideal
of A. Note the previous two cases were studied as separate cases by S. Hizem, who
announced similar results in her talk at the Fez Conference in June 2008,presenting
an ample and systematic study of the transfer of various finiteness conditions in the
constructionsA+ XI[X] andA+ XB[X].
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(2) The Noetherianity ofB it is not a necessary condition for the Noetherianity
of the ringA + XJ [X]. For instance, takeA any field,B the product of infinitely
many copies ofA, so that we can considerA as a subring ofB, via the diagonal ring
embeddinga 7→ (a, a, . . .), a ∈ A. SetJ := (1,0, . . .)B. ThenJ is an idempotent ideal
of B and, at the same time, a cyclicA-module. Thus, by Example 5.11,A+ XJ [X ]
is a Noetherian ring. Obviously,B is not Noetherian.

(3) Note that, ifA + XJ [X] is Noetherian andB is not Noetherian, thenA ⊆ B
andA + XJ [X] ⊆ B[X] are necessarily not finite. Moreover, it is easy to see that
A+ XJ [X] ⊆ B[X] is a finite extension if and only if the canonical homomorphism
A →֒ B[X]/(XJ [X]) is finite. Finally, it can be shown that last condition holds if and
only if J = B andA ⊆ B is finite.
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