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Amalgamated algebras along an ideal

Marco D’Anna, Carmelo Antonio Finocchiaro and Marco Foiatan

Abstract. Let f : A — B be a ring homomorphism and an ideal of B. In this paper, we
initiate a systematic study of a new ring construction chtfee “amalgamation oft with B along

J with respect tof”. This construction finds its roots in a paper by J.L. Dorr@peared in 1932
and provides a general frame for studying the amalgamatplicdtion of a ring along an ideal,
introduced and studied by D’Anna and Fontana in 2007, andratlassical constructions such as
the A + X B[X] and A + X B[X] constructions, the CPI-extensions of Boisen and Sheldn, t
D + M constructions and the Nagata’s idealization.
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1 Introduction

Let A andB be commutative rings with unity, letba anideal o3 andletf : A — B
be a ring homomorphism. In this setting, we can define the following subfidg< B:

AT ={(a, f(a)+j) |a€ A, je T}
calledthe amalgamation oft with B along J with respect tof. This construction is a

generalization of the amalgamated duplication of a ring along an ideal (irteddand
studied in[[8] and[9]). Moreover, other classical constructionsi{sisched + X B[ X]

construction, théd + M construction and the Nagata'’s idealization) can be studied as

particular cases of the amalgamation.

On the other hand, the amalgamatidnx? .J is related to a construction proposed
by D.D. Anderson in[[fl] and motivated by a classical construction dizotwoh [&],
concerning the embedding of a ring without identity in a ring with identity.

The level of generality that we have choosen is due to the fact that tHgametion
can be studied in the frame of pullback constructions. This point of viewvallgs to
provide easily an ample description of the propertieg s J, in connection with the
properties of4, J and f.

In this paper, we begin a study of the basic propertiesisf’.J. In particular,
in Section 2, we present all the constructions cited above as particukes ofshe
amalgamation. Moreover, we show that the CPI extensions (in the sEBsesen and
Sheldon[[3]) are related to amalgamations of a special type and we oeiNpgata’s
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idealization with the amalgamation. In Section 3, we consider the iteration of the
amalgamation process, giving some geometrical applications of it.

In the last two sections, we show that the amalgamation can be realizedulis a p
back and we characterize those pullbacks that arise from an amalgarfixtposition
[47. Finally we apply these results to study the basic algebraic properties amal-
gamation, with particular attention to the finiteness conditions.

2 The genesis

Let A be a commutative ring with identity and I8tbe a ring without identity which is
an A-module. Following the construction described by D.D. Andersonlin&]can
define a multiplicative structure in thé&—moduleA & R, by setting(a, z)(a’, ') :=
(ad,ax’ + a'z + xz'), foralla,a’ € A andz, 2’ € R. We denote bydA@R the direct
sumA®R endowed also with the multiplication defined above.

The following properties are easy to check.

Lemma 2.1.[1, Theorem 2.1With the notation introduced above, we have:

(1) AGR is aring with identity(1, 0), which has am—algebra structure induced by
the canonical ring embedding, : A — A®R, defined byu — (a,0) for all
a € A.

(2) If we identifyR with its canonical imag€0) x R under the canonical embedding
g i R — A@R, defined by: +— (0, ), for all z € R, thenR becomes an ideal
in AGR.

(3) If we identifyA with A x (0) (respectivelyR with (0) x R) inside A®R, then the
ring A@R is an A-module generated ki, 0) andR, i.e., A(1,0) + R = ABR.
Moreover, ifp4 : A@R — A is the canonical projection (defined iy, =) — a
forall € Aandz € R), then

O—)RiA@R&A—)O

is a splitting exact sequence af-modules. O

Remark 2.2.(1) The previous construction takes its roots in the classical construction,
introduced by Dorroh[]8] in 1932, for embedding a ring (with or withouritity,
possibly without regular elements) in a ring with identity (see also Jacoliglydage
155). For completeness, we recall Dorroh’s construction starting wédsa which is
not the motivating one, but that leads naturally to the relevant one (Gase 2

Case 1 Let R be a commutative ring (with or without identity) and let T8}
be its total ring of fractions, i.e., ToR) := N~R, where N is the set of regular
elements ofR. If we assume thaR has a regular element then it is easy to see that
R C Tot(R), and TotR) has identity 1+ £, even if R does not. In this situation we
can conside?[1] := {z+m - 1| x € R,m € Z}. Obviously, if R has an identity,
thenR = R[1]; otherwise, we have that[1] is a commutative ring with identity, which
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contains properly? and it is the smallest subring of Tdt) containingR and 1. Itis
easy to see that:

(a) R andR[1] have the same characteristic,
(b) Ris an ideal ofR[1] and

(c) if R € R[1], then the quotient-ring?[1]/R is canonically isomorphic t@/nZ,
wheren (> 0) is the characteristic aR[1] (or, equivalently, ofR).

Case 2 Let R be a commutative ring (with or without identity) and, possibly,
without regular elements. In this situation, we possibly h&e= Tot(R), so we
cannot perform the previous construction. Following Dorroh’s idess¢an consider
in any casek as aZ-module and, with the notation introduced at the beginning of this
section, we can construct the rifigh R, that we denote bph(R) in Dorroh’s honour.
Note thatbh(R) is a commutative ring with identitypl z) := (1,0). If we identify,
as usual R with its canonical image iDh(R), thenR is an ideal oDh(R) andDh(R)
has a kind of minimal property oveR, sinceDh(R) = Z(1,0) + R. Moreover, the
quotient-ringdh(R)/R is naturally isomorphic t&.

On the bad side, note that # has an identity %, then the canonical embedding
of R into Dh(R) (defined byz — (0O, z) for all z € R) does not preserve the identity,
since(0, 1r) # 1pnr)- Moreover, in any case (whenevAris a ring with or without
identity), the canonical embeddirigg<— Dh(R) may not preserve the characteristic.

In order to overcome this difficult, in 1935, Dorroh| [9] gave a variatidrite
previous construction. More precisely,fif has positive characterisitic, then R can
be considered asz/nZ-module, s®h, (R) := (Z/nZ) &R is a ring with identity, ha-
ving characteristia.. Moreover, as abov®h,,(R) = (Z/nZ) (1,0)+ R andbh,, (R)/R
is canonically isomorphic té@ /nZ.

(2) Note that a general version of the Dorroh’s construction (previdase 2) was
considered in 1974 by Shores [18, Definition 6.3] for constructingngtes of local
commutative rings with arbitrarily large Loewy length. We are indebted todlces
for pointing out to us that the amalgamated duplication of a ring along an[Blezdn
also be viewed as a special case of Shores construction (cf._algo [Adfeover, be-
fore Shores, Corner in 1969 [4], for studying endomorphisms rifidgbelian groups,
considered a similar construction called “split extension of a ring by ari’idea

A natural situation in which we can apply the previous general construgtemma
[2.0) is the following. Letf : A — B be a ring homomorphism and Iétbe an ideal of
B. Note thatf induces onJ a natural structure ai—module by setting-j := f(a)j,
foralla € Aandj € J. Then, we can considetd.J.

The following properties, except (2) that is easy to verify, follow froemime 2.11.

Lemma 2.3.With the notation introduced above, we have:
(1) AdJis aring.

(2) The mapf™ : A®J — A x B, defined by(a, j) — (a, f(a) + j) forall a € A
andj € J, is an injective ring homomorphism.
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(3) The mapa : A — AdJ (respectively,; : J — A®J), defined byu — (a,0)
for all a € A (respectively, by — (0, 5) for all j € J), is an injective ring homo-
morphism (respectively, an injectivie-module homomorphism). If we identily
with .4 (A) (respectively,] with (7)), then the ringAd.J coincides withA + J.

(4) Letps : A©DJ — A be the canonical projection (defined by, j) — a for all
a € Aandj € J), then the following is a split exact sequencedeimodules:

0—>Ji>AQ.9Jp—A>A—>0. O

We set
AxI T = 1 (AT), T(f):={(a, f(a))|a€ A}.

Clearly,(f) € AXf.J and they are subrings of x B. The motivation for replacing
AdJ with its canonical imageix/.J inside A x B (under f*) is related to the fact
that the multiplicative structure defined i¥p.J, which looks somewnhat “artificial”,
becomes the restriction té>/.J of the natural multiplication defined componentwise
in the direct productl x B. The ringAx7.J will be calledthe amalgamation aft with

B alongJ, with respect tof : A — B.

Example 2.4.The amalgamated duplication of a ring.

A particular case of the construction introduced above is the amalgamaédation
of aring [6]. LetA be a commutative ring with unity, and I&tbe anA-submodule of
the total ring of fractions T@td) of A such thatt’ - F C E. In this caseF is an ideal
in the subringB := (E : E) (:= {z € Tot(A) | zE C E}) of Tot(A). If : : A — Bis
the natural embedding, thetx‘E coincides withAx E, the amalgamated duplication
of A along F, as defined in[[6]. A particular and relevant case is wiien= I is
an ideal inA. In this case, we can takB := A, we can consider the identity map
id :=ids : A — A and we have thatl X I, the amalgamated duplication dfalong
the ideall, coincides with4 X“J, that we will call alsathe simple amalgamation of
along (instead of the amalgamation dfalongI, with respect to id).

Example 2.5.The constructionst + X B[ X ] and A + X B[ X].

Let A C B be an extension of commutative rings aikd:= {X;, X, ..., X,,} a fi-
nite set of indeterminates ovér. In the polynomial ringB[X], we can consider the
following subring

A+ XB[X]:={he B[X]|h(0) € A},

where0 is then—tuple whose components are 0. This is a particular case of the general
construction introduced above. In factgif: A < B[X] is the natural embedding and
J' = X B[X], then it is easy to check thaitx'J is isomorphic toA + X B[ X] (see
also the following Proposition 5.1(3)).

Similarly, the subringd + X B[X] := {h € B[X] | h(0) € A} of the ring of
power serie3[ X is isomorphic tod x”" J”, wheres” : A — B[X] is the natural
embedding and” := X B[ X].
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Example 2.6.The D + M construction.

Let M be a maximal ideal of a ring (usually, an integral domahand letD be a
subring ofT" such thatv N D = (0). TheringD + M :={z+m |z € D, me M}
is canonically isomorphic t& X“M, where, : D — T is the natural embedding.

More generally, le{ M, | A € A} be a subset of the set of the maximal ideals
of T, such thatMy N D = (0) for all A € A, and setJ := (oo M. The ring
D+ J:={x+j|ze€ D, je J}is canonically isomorphic t@ X‘J. In particular,
if D := K is a field contained if" andJ := JaqT) is the Jacobson ideal of (the
K-algebra)T, then K + JadT) is canonically isomorphic td X* JadT’), where
¢t : K — T is the natural embedding.

Example 2.7.The CPI-extensions (in the sense of Boisen-Sheldon [3]).

Let A be a ring andP be a prime ideal ofd. Let k(P) be the residue field of the
localization Ap and denote by p (or simply, by) the canonical surjective ring ho-
momorphismAp — k(P). It is wellknown thatk(P) is canonically isomorphic
to the quotient field ofd/P, so we can identifyd/ P with its canonical image into
k(P). Then the subring@ (A, P) := ¢~1(A/P) of Ap is called theCPI-extension of
A with respect taP. It is immediately seen that, if we denote hy (or, simply, by
A) the localization homomorphis A — Ap, thenC/(A4, P) coincides with the ring
A(A) + PAp. On the other hand, if := PAp, we can consided X* .J and we have
the canonical projectiod X* J — A(A) + PAp, defined by(a, A(a) +j) — A(a) + 4,
wherea € A andj € PAp. It follows that C(A4, P) is canonically isomorphic to
(AN PAp)/(P x {0}) (Proposition 511(3)).

More generally, lef be an ideal ofA and letS; be the set of the elemenisc A
such thats + I is a regular element ol /I. Obviously,S; is a multiplicative subset
of A and if S is its canonical projection ontd/I, then TotA/I) = (S;)~Y(A/I).
Letyr : S™*A — Tot(A/I) be the canonical surjective ring homomorphism defined
by or(as™t) := (a+ I)(s+ 1)L, foralla € A ands € S. Then, the subring
C(A,I) := p;*(A/I) of S; A is called theCPl—extension ofl with respect tal. If
A1 1 A — S7Als the localization homomorphism, then it is easy to see@Hat, I)
coincides with the ring\;(A) 4+ S;*1. 1t will follow by Proposition[5.1(3) that, if
we consider the ideal := S; ' of S;1A, thenC(A4, I) is canonically isomorphic to
(A J)/(ATHT) % {0}).

Remark 2.8.Nagata’s idealization.

Let A be a commutative ring and1 a A—module. We recall that, in 1955, Nagata
introduced the ring extension df calledthe idealization ofM in A, denoted here by
A x M, as theA—moduleA & M endowed with a multiplicative structure defined by:

(a,z)(d,2') := (ad’,az’ + da'z), foralla,a’ € Aandz,z’ € M

(cf. [15], Nagata's book [16, page 2], and Huckaba'’s baok [@Bapter VI, Section
25]). The idealizatiomrd x M is a ring, such that the canonical embedding A —
Ax M (defined bya — (a,0), for all « € A) induces a subringl™* (:= 14(A)) of
Ax M isomorphic toA and the embedding.; : M — Ax M (defined byr — (0, z),
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for all 2 € M) determines an ideaU™ (:= y(M)) in Ax M (isomorphic, as an
A-module, taM), which is nilpotent of index 2 (i.eM™ - M* = 0).

For the sake of simplicity, we will identifyM with M™ and A with A*. If p4 :
Ax M — Ais the canonical projection (defined Wy, z) — a, for alla € A and
x € M), then

0 MM AxMP 420

is a spitting exact sequence @-modules. (Note that the idealizatiohx M is also
called in [11]the trivial extension ofi by M.)

We can apply the construction of Leminal2.1 by takitg= M, whereM is an
A—module, and consideringyt as a (commutative) ring without identity, endowed with
a trivial multiplication (defined by:-y := 0 for all z, y € M). In this way, we have that
the Nagata’s idealization is a particular case of the construction consitelrethma
[2.1. Therefore, the Nagata’s idealization can be interpreted as a fartiase of the
general amalgamation construction. let= Ax M and. (= v4) : A — B be the
canonical embedding. After identifyingt with M*, M becomes an ideal d3. Itis
now straighforward thatl x M coincides with the amalgamatiofi<‘ M.

Although this, the Nagata’s idealization and the constructions of the sypé&/
can be very different from an algebraic point of view. In fact, foamwle, if M is
a nonzeroA-module, the ring4d x M is always not reduced (the elemeit z) is
nilpotent, for allz € M), but the amalgamatiod /.7 can be an integral domain (see
Exampld2.6 and Proposition 5.2).

3 lteration of the construction A Xf.J

In the following all rings will always be commutative with identity, and eveingr
homomorphism will send 1 to. 1

If Aisaring andl is an ideal of4, we can consider the amalgamated duplication
of the ring A along its ideall (= the simple amalgamation cf alongl), i.e., AXT :=
{(a,a+1i) | a € A, ie I} (Exampld2.4). For the sake of simplicity, s&t:= AXI.

It is immediately seen that := {0} x I is an ideal of4’, and thus we can consider
again the simple amalgamation df along7’, i.e., the ringA” := A’ X[’ (= (AN
I)X ({0} x1)). Itis easy to check that the ringf’ may not be considered as a simple
amalgamation ofd along one of its ideals. However, we can show tHdtcan be
interpreted as an amalgamation of algebras, giving in this way an ansaeradlem
posed by B. Olberding in 2006 at Padova’s Conference in honour $élce.

We start by showing that it is possible to iterate the amalgamation of algetuas a
the result is still an amalgamation of algebras.

More precisely, letf : A — B be a ring homomorphism and an ideal ofB.
Since J's := {0} x J is an ideal of the ringd’s := AX7J, we can consider the
simple amalgamation oft’s alongJ's, i.e., A”s := A’ ) J'r (which coincides with
At J's where id = id 4/, is the identity mapping oft’s ). On the other hand, we
can consider the mapping? : A — B® := B x B, defined bya — (f(a), f(a))
foralla € A. SinceJ® := J x J is an ideal of the ring3®, we can consider
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the amalgamationt x/” 7. Then, the mappingl”s — A x/® J@ defined by
((a, f(a) +41), (a, f(a) + 1) +(0,52)) = (a, (f(a), f(a)) + (j1, j1+72)) foralla € A
andji, j» € J, is a ring isomorphism, having as inverse map the ma»pf<2)J<2) —
A”s, defined by(a, (f(a)+71, f(a)+i72)) = ((a, f(a)+41), (a, f(a) +71) +(0, j2—j1))
for all « € A andji,j, € J. We will denote byA <2/ 7 or, simply, A7) (if no
confusion can arise) the ring </ 7, that we will call the2-amalgamation of the
A-algebraB along J (with respect tof).

Forn > 2, we define th@-amalgamation of the —algebraB alongJ (with respect
to f) by setting

AmS ] = AE) = gped™ ()

wheref(™ : A — B(®) := B x B x ... x B (n—times) is the diagonal homomorphism
associated tg andJ(™) 1= J x J x ... x J (n—times). Therefore,

A|><|n’fJ = {(a, (f(a),f(a), ey f(a)) + (jl,jZ, ;]n)) | ac Av J1,J25 -5 Jn € ']} .

Proposition 3.1.Let f : A — B be a ring homomorphism andlan ideal of B. Then
Ax™/ J is canonically isomorphic to the simple amalgamatigt —%/) s =1./) (=
Ar=L1) pqe (=10 "where.J (1) is the canonical isomorphic image dfinside
A=15) and id :=id 4n-1.p is the identity mapping o (»~1.7),

3

Proof. The proof can be given by induction en> 2. For the sake of simplicity, we
only consider here the inductive step fraim= 2 ton + 1 (= 3). Itis straightforward
that the mappingi x>/ — A”sxJ"s, defined by(a, (f(a), f(a), f(a)) + (41, j2, j3))
— (a”,a" 4 j"), whered” = ((a, f(a) + j1), (a, f(a) + j1) + (0,52 — j1)) € A"
andj” := ((0,0),(0,j3 — j2)) € J'f, for all a € A andji, j»,j3 € J establishes a
canonical ring isomorphism. O

In particular, letA be a ring and an ideal ofA, the simple amalgamation ef :=
AN T alongI’ := {0} x I, that isA” := A’X[’, is canonically isomorphic to the
2-amalgamatiom }?“I = {(a, (a,a) + (i1,i2)) | a € A, i1,ip € I}.

Example 3.2.We can apply the previous (iterated) construction to curve singularities.
Let A be the ring of an algebroid curve withbranches (i.e.A is a one-dimensional
reduced ring of the formK [ Xy, X, .. .,XT]]/ﬂﬁlzl P;, where K is an algebraically
closed field, X;, X», ..., X,. are indeterminates ové¥ and P, is an height — 1 prime
ideal of K[ X1, X>,...,X,], for 1 < i < r). If I is aregular and proper ideal of,
then, with an argument similar to that used in the proof of [5, Theorenfvildgre the
case of a simple amalgamation of the ring of the given algebroid curvedstigated),

it can be shown thatl ™ I is the ring of an algebroid curve wittn + 1)k branches;
moreover, for each branch df, there are exactly + 1 branches ofi X" I isomorphic

to it.

4 Pullback constructions

Let f : A — B be a ring homomorphism and an ideal of B. In the remaining
part of the paper, we intend to investigate the algebraic properties of the kifi.J, in
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relation with those ofd, B, J and f. One important tool we can use for this purpose is
the fact that the ringl X/.J can be represented as a pullback (see next Propdsifion 4.2).
On the other hand, we will provide a characterization of those pullbackgitherise

to amalgamated algebras (see next Propodifidn 4.7). After proving thets, we will
make some pertinent remarks useful for the subsequent investigatiamalgamated
algebras.

Definition 4.1. We recall that, ifa. : A — C, 5 : B — C are ring homomorphisms,
the subringD := a x, 8 = {(a,b) € Ax B | a(a) = 5(b)} of A x B is called the
pullback (or fiber producj of o and .

The fact tatD is a pullback can also be described by saying that the tipleb 4, ps)
is a solution of the universal problem of rendering commutative the afadpuilt onc
andg

DP—A>A

P l al
B¢
wherep, (respectivelyp,,) is the restriction tax x , 5 of the projection ofA x B onto
A (respectively,B).

Proposition 4.2.Let f : A — B be a ring homomorphism andl be an ideal of5. If
7 . B — B/J is the canonical projection and := 7 o f, thenAx/.J = f Xp,y T

Proof. The statement follows easily from the definitions. |

Remark 4.3.Notice that we have many other ways to describe the Ang.J as a
pullback. In fact, ifC := Ax B/Jandu: A — C,v: A x B — C are the canonical
ring homomorphisms defined by(a) := (a, f(a) + J), v((a,b)) = (a,b+ J), for
every(a,b) € Ax B, itis straightforward to show thatx7.J is canonically isomorphic
tou x v. Onthe other hand, if := f~%(J),u: A/I — A/Ix B/Jandy: Ax B —
A/I x B/J are the natural ring homomorphisms induceddandv, respectively, then
A/ .J is also canonically isomorphic to the pullbackwoéiridy.

The next goal is to show that the rings of the forw/.J, for some ring homomor-
phismf : A — B and some ideal of B, determine a distinguished subclass of the
class of all fiber products.

Proposition 4.4.Let A, B,C,a, 8 as in Definition[4.]l, and lef : A — B aring
homomorphism. Then the following conditions are equivalent.

(i) There exist an ideal of B such thatAx/ ] is the fiber product ofv and j3.
(i) « is the compositiors o f.
If the previous conditions hold, theh= Ker(3).
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Proof. Assume condition (i) holds, and letbe an element ofi. Then(a, f(a)) €
Am/J and, by assumption, we hawga) = 3(f(a)). This prove condition (ii).

Conversely, assume that= 3 o f. We want to show that the ring x/ Ker(g) is
the fiber product ofv and 3. The inclusionA X/ Ker(8) C a x, 3 is clear. On the
other hand, leta, b) € a x 5. By assumption, we hav&(b) = a(a) = 5(f(a)). This
shows thabt — f(a) € Ker(3), and thug(a,b) = (a, f(a) + k), for somek € Ker(;3).
ThenA &7 Ker(3) = a x . 3 and condition (i) is true.

The last statement of the proposition is straightforward. O

In the previous proposition we assume the existence of the ring hombisorp
f. The next step is to give a condition for the existencef ofWe start by recalling
that a ring homomorphism: B — A is calleda ring retractionif there exists a ring
homomorphism : A — B, such that- o = id4. In this situation, is necessarily
injective,r is necessarily surjective, antlis called aretract of B.

Example 4.5.If r : B — Ais aring retraction and: A — B is a ring embedding such
thatr o . = id 4, thenB is naturally isomorphic tol X“Ker(r). This is a consequence
of the facts, easy to verify, tha@ = «(A) + Ker(r) and that.—*(Ker(r)) = {0} (for
more details see next Proposition]5.1(3)).

Remark 4.6.Let f : A — B be a ring homomorphism anfibe an ideal ofB. Then
A 'is a retract ofAX/.J. More precisely,r, : AX/'J — A, (a, f(a),j) — a, is a
retraction, since the mag A — AX7/.J, a +— (a, f(a)), is a ring embedding such that
m, oL =id4.

Proposition 4.7.Let A, B,C, a, 3,p,,p, be as in Definitiom 4]1. Then, the following
conditions are equivalent.

() p, :ax, B — Aisaring retraction.

(i) There exist an ideall of B and a ring homomorphisnf : A — B such that
ax, f=AXJ.

Proof. SetD = a x, 8. Assume that condition (i) holds and let A — D be
a ring embedding such that, o . = id4. If we consider the ring homomorphism
f =pzot: A — B,then, by using the definition of a pullback, we have f =
Bop, oL = aop, oL = aoid 4 = a. Then, condition (i) follows by applying Proposition
44. Conversely, lef : A — B be a ring homomorphism such that = Ax/J,
for some ideal/ of B. By Remark 4.5, the projection of</.J onto A4 is a ring
retraction. O

Remark 4.8.Let f, g : A — B be two ring homomorphisms andél be an ideal of
B. It can happen thatixfJ = A 9], with f # g. In fact, it is easily seen that
AMIJ = Ax9J if and only if f(a) — g(a) € J, for everya € A.

For example, lef, g : A[X] — A[X] be the ring homomorphisms defined pyX ) :=
X2 f(a) :=a, g(X) = X3, g(a) = a, foralla ¢ A, and set/ := X A[X]. Then
f # g, butA[X] xFJ = A[X] X9, sincef(p) — g(p) € J, forallp € A[X].
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The next goal is to give some sufficient conditions for a pullback to Heaed.
Given aringA, we denote by NilpA) the ideal of all nilpotent elements df.

Proposition 4.9.With the notation of Definition 4l.1, we have:
(1) If D (= « x, ) is reduced, then

Nilp(A) N Ker(«) = {0} and Nilp(B) N Ker(3) = {0}.
(2) If at least one of the following conditions holds

(@) Aisreduced andNilp(B) N Ker(3) = {0},
(b) B is reduced andNilp(A4) N Ker(a) = {0},

thenD is reduced.

Proof. (1) AssumeD reduced. By simmetry, it sufficies to show that Ny N
Ker(a) = {0}. If a € Nilp(A) N Ker(«), then(a,0) is a nilpotent element oD,
and thus: = 0.

(2) By the simmetry of conditions (a) and (b), it is enough to show that rifltmn
(a) holds, thenD is reduced. Lefa,b) be a nilpotent element ab. Thena = O,
sincea € Nilp(A) and A is reduced. Thus we have,b) = (0,b) € Nilp(D), hence
b € Nilp(B) nKer(3) = {0}. o

We study next the Noetherianity of a ring arising from a pullback constnuetiin
Definition[4.1.

Proposition 4.10.With the notation of Definition 4.1, the following conditions are
equivalent.

(i) D (=« x. B) is a Noetherian ring.

(i) Ker(B) is a NoetherianD—module (with theD—module structure naturally in-
duced by ) andp, (D) is a Noetherian ring.

Proof. It is easy to see that Kgr,) = {0} x Ker(3). Thus, we have the following
short exact sequence BFmodules

0 — Ker(8) —— D p, (D) — O,

where; is the naturaD—module embedding (defined by— (0, z) for all 2 € Ker(g)).
By [2, Proposition (6.3)]D is a Noetherian ring if and only if K¢5) andp , (D) are
Noetherian asD—modules. The statement now follows immediately, sincelthe
submodules op, (D) are exactly the ideals of the ring (D). i

Remark 4.11.Note that, in Proposition 4.10, we did not requiteo be surjective.
However, if 3 is surjective, them 4 is also surjective and g9, (D) = A. Therefore, in
this case D is a Noetherian ring if and only ift is a Noetherian ring and Kgs) is a
NoetherianD—module.
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5 The ring AXYJ: some basic algebraic properties

We start with some straightforward consequences of the definition olgamated
algebradx/.J.

Proposition 5.1.Let f : A — B be a ring homomorphismJ an ideal of B and let
AXSJ = {(a, f(a)+j) |a € A, j € J} beasin Section 2.

(1) Lete := 1455 1 A — AXSJ be the natural the ring homomorphism defined by
i(a) := (a, f(a)), for all a € A. Then. is an embedding, making/.J a ring
extension ofd (with .(A) =T (f) (:= {(a, f(a)) | a € A} subring of Ax/.J).

(2) LetI be anideal ofd and setf /. := {(i, f(i)+j) | i € I,j € J}. ThenI X/ Jis
an ideal of A</ .7, the composition of canonical homomorphisms= Ax/J —

AxFJ /17 T is a surjective ring homomorphism and its kernel coincides With
Hence, we have the following canonical isomorphism:

AMfJgA
IXf]  T°

(3) Letp, : AXFJ — Aandp, : AXFJ — B be the natural projections ofxf.J C
A x Binto A and B, respectively. Thep, is surjective andKer(p,) = {0} x J.
Moreover,p, (AXfJ) = f(A) + J andKer(p,) = f~1(J) x {0}. Hence, the
following canonical isomorphisms hold:

AxTJ Anl g

@xn -t Fsqe W

(4) Lety : AXSJ — (f(A) + J)/J be the natural ring homomorphism, defined by
(a, f(a) +j) — f(a) + J. Theny is surjective anKer(y) = f~1(J) x J. Thus,
there exists a natural isomorphism

AxTJ f(A)+J
f1J) x J J

I

In particular, whenf is surjective we have

AxS . B O
X))y xJ —J

The ring B, := f(A) + J (which is a subring of3) has an important role in the
constructionA/.J. For instance, iff ~1(J) = {0}, we havedx/.J = B, (Proposition
[£.1(3)). Moreover, in general,is an ideal also irB,, and, if we denote by, : A — B,
the ring homomorphism induced frofathenAx/eJ = AX/J. The next result shows
one more aspect of the essential role of the figfor the constructiomd 7.7,

Proposition 5.2.With the notation of Proposition 5.1, assunie# {0}. Then, the
following conditions are equivalent.
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(i) Ax/Jis an integral domain.
(i) f(A)+ Jisan integral domain ang—*(J) = {0}.

In particular, if B is an integral domain ang—1(.J) = {0}, thenAx/J is an integral
domain.

Proof. (ii)=(i) is obvious, sincef~*(J) = {0} implies thatAx/.J = f(A)+.J (Propo-
sition[5.1(3)).

Assume that condition (i) holds. If there exists an elememrt A\{0} such that
f(a) € J, then(a,0) € (AX/J)\{(0,0)}. Hence, ifj is a nonzero element of,
we have(a,0)(0, ) = (0,0), a contradiction. Thug~1(J) = {0}. In this case, as
observed aboved Xf.J = f(A) + J (Propositio 5.11(3)), sg(A) + J is an integral
domain. O

Remark 5.3.(1) Note that, ifAX/.J is an integral domain, thed is also an integral
domain, by Proposition 5.1(1).

(2) LetB = A, f =id4 andJ = I be an ideal ofd. In this situation,A X" I (the
simple amalgamation ol alongI) coincides with the amalgamated duplication/dof
along! (Example2.1) and it is never an integral domain, unless {0} and A is an
integral domain.

Now, we characterize when the amalgamated algdbta/ is a reduced ring.

Proposition 5.4.We preserve the notation of Propositlon|5.1. The following conditions
are equivalent.

(i) Ax/Jis areduced ring.
(i) Ais areduced ring andNilp(B) N J = {0}.

In particular, if A and B are reduced, themi</.J is reduced; conversely, if is a
radical ideal of B and A/ J is reduced, ther (and A) is reduced.

Proof. From Proposition 419(2, a) we deduce easily tha&f{ii), after noting that, with
the notation of Propositidn 4.2, in this case ker= J.

(i)=(ii) By Proposition4.9(1) and the previous equality, it is enough to showv tha
if Ax7J is reduced, thent is reduced. This is trivial because,dfe Nilp(A), then
(a, f(a)) € Nilp(AXT).

Finally, the first part of the last statement is straightforward. As for éwesd part,
we have{0} = Nilp(B) nJ = Nilp(B) (sinceJ is radical, and s/ 2 Nilp(B)).
HenceB is reduced. O

Remark 5.5.(1) Note that, from the previous result, when= A4, f =id4 (= id) and
J = I is an ideal ofA4, we reobtain easily that X T (= AX"]) is a reduced ring if and
only if A is areduced rind [7, Proposition 2.1].

(2) The previous proposition implies that the property of being reduced /.7
is independent of the nature ¢f

(3) If Aandf(A)+.J are reduced rings, thetix/J is a reduced ring, by Proposition
[B.4. But the converse is not true in general. As a matter of facd let Z, B =
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Z x (2)4Z), f : A — B be the ring homomorphism such thé&tn) = (n, [n]s), for
everyn € 7 (where[n]4 denotes the class efmodulo 4). If we set/ := Z x {[0]4},
thenJ N Nilp(B) = {0}, and thus4 ¥/ J is a reduced ring, bui0, [2]4) = (2,[2]4) +
(—2,]0]4) is a nonzero nilpotent element 6Z) + J.

The next proposition provides an answer to the question of wien/ is a Noethe-
rian ring.

Proposition 5.6.With the notation of Proposition 8.1, the following conditions are
equivalent.

(i) Ax/Jis a Noetherian ring.
(i) Aandf(A)+ J are Noetherian rings.

Proof. (ii)=(i). Recall thatAx/J is the fiber product of the ring homomorphism
f:A— B/J (defined bya — f(a)+J)and of the canonical projection: B — B/J.
Since the projectiop, : AX/J — A is surjective (Proposition 5.1(3)) andl is a
Noetherian ring, by Propositidn 4]10, it sufficies to show that Ker(r)), with the
structure ofAx7.J—module induced by ., is Noetherian. But this fact is easy, since
every Ax/.J—submodule of/ is an ideal of the Noetherian ring(A) + J.

()= (ii) is a straighforward consequence of Proposifion 5.1(3). i

Note that, from the previous result, whéh= A, f =id4 (=id) andJ = I is an
ideal of A, we reobtain easily thal X I (= AX"“]) is a Noetherian ring if and only if
A is a Noetherian ring [6, Corollary 2.11].

However, the previous proposition has a moderate interest becaubkméiieeri-
anity of Ax7.J is not directly related to the data (i.e4, B, f and.J), but to the ring
B, = f(A) + J which is canonically isomorphig x/J, if f~1(J) = {0} (Proposi-
tion[5.1(3)). Therefore, in order to obtain more useful criteria forNlbetherianity of
AxZ.J, we specialize Propositidn .6 in some relevant cases.

Proposition 5.7.With the notation of Propositidn 5.1, assume that at least one of the
following conditions holds:

(a) J is a finitely generatedi—-module (with the structure naturally induced By
(b) J is a NoetherianA—module (with the structure naturally induced By

(c) f(A)+ Jis Noetherian asi—module (with the structure naturally induced py
(d) fis afinite homomorphism.

ThenAx/.J is Noetherian if and only ifl is Noetherian. In particular, ifA is a Noethe-
rian ring and B is a NoetherianA—module (e.g., iff is a finite homomorphism_[2,
Proposition 6.5]), themdx/.J is a Noetherian ring for all ideal/ of B.

Proof. Clearly, without any extra assumption,Afx/.J is a Noetherian ring, thed is

a Noetherian ring, since it is isomorphic #0477 / ({0} x J) (Propositioi 5.1L(3)).
Conversely, assume thatis a Noetherian ring. In this case, it is straighforward

to verify that conditions (a), (b), and (c) are equivalent [2, Prgjms 6.2, 6.3, and
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6.5]. Moreover (d) implies (a), sincgéis anA—submodule oB, andB is a Noetherian
A—module under condition (d)][2, Proposition 6.5].

Using the previous observations, it is enough to show thaf.J is Noetherian if
A is Noetherian and condition (c) holds. fifA) + J is Noetherian as ad—module,
then f(A) + J is a Noetherian ring (every ideal gf A) + J is an A—submodule of
f(A) + J). The conclusion follows from Proposition 5.6(&iXi)).

The last statement is a consequence of the first part and of the facif thais a
NoetherianA—module, then (a) hold5][2, Proposition 6.2]. O

Proposition 5.8.We preserve the notation of Propositions 5.1 4.B.if a Noethe-
rian ring and the ring homomorphisth: A — B/ J is finite, thenAx/.J is a Noethe-
rian ring if and only if A is a Noetherian ring.

Proof. If AX/.J is Noetherian we already know thatis Noetherian. Hence, we only
need to show that ift and B are Noetherian rings anglis finite then4x7.J is Noethe-
rian. But this fact follows immediately from [10, Proposition 1.8]. |

As a consequence of the previous proposition, we can charactereae nivtys of
the formA + X B[X] and A + X B[X] are Noetherian. Note that S. Hizem and A.
Benhissi[12] have already given a characterization of the Noetligriaithe power
series rings of the forml + X B[X]. The next corollary provides a simple proof of
Hizem and Benhissi's Theorem and shows that a similar characterizatids for the
polynomial case (in several indeterminates). At the Fez Conferendenia 2008, S.
Hizem has announced to have proven a similar result in the polynomiatase with
a totally different approach.

Corollary 5.9. Let A C B be aring extension an&X = {Xj, ..., X,,} a finite set of
indeterminates oveB. Then the following conditions are equivalent.

() A+ X B[X]is aNoetherian ring.
(i) A+ X B[X] is a Noetherian ring.
(iif) A is a Noetherian ring andi C B is a finite ring extension.

Proof. (iii) =(i, ii). With the notations of Example_2.5, recall thdt+ X B[X] is
isomorphic toA X" X B[X] (and A + X B[X] is isomorphic to4 xX°” X B[XT]).
Since we have the following canonical isomorphisms

BX| ... BIX]
X B[X] XB[X]’

IR
I

in the present situation, the homomophisfm: A — B[X]/X B[X] (or,5" : A —
B[X]/X B[X]) is finite. Hence, statements (i) and (ii) follow easily from Proposition
5.8.

(i) (or, (ii)) = (iii). Assume thatA+ X B[X| (or, A+ X B[ X]) is a Noetherian ring.
By Propositio 5.6, or by the isomorphigm + X B[X])/ X B[X]| = A (respectively
(A+ X B[X])/XB[X] = A), we deduce thatl is also a Noetherian ring. Moreover,
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by assumption, the idedlof A + X B[ X (respectively, ofA + X B[ X]) generated
by the sef{bX}, | b € B,1 < k < n} is finitely generated. Hence= (f1, f2,.. ., fm)s
for somefy, fo, ..., fm € I. Let{b;; | 1 < k < n} be the set of coefficients of linear
monomials of the polynomial (respectively, power serigsil < j < m. Itis easy to
verify that{b,; | 1 < j < m,1 < k < n} generated3 asA-module; thusA C Bis a
finite ring extension. ]

Remark 5.10.Let A C B be a ring extension, and I&f be an indeterminate ovés.
Note that the idea)’ = X B[X] of B[X] is never finitely generated as alx-module
(with the structure induced by the inclusieh : A — B[X]). As a matter of fact,
assume thag, g2, - . ., 9-} (C B[X]) is a set of generators df asA—module and set
N :=max{dedy;) | i =1,2,...,r}. Clearly, we havex¥*1 € J'\ 37 | Ag,, which
is a contradiction. Therefore, the previous observation shows thatdaghdtianity of
the ring Ax7/.J does not imply that/ is finitely generated as an—module (with the
structure induced by); for instanceR + X C[X] (= R X° XC[X], whereo’ : R —
C[X] is the natural embedding) is a Noetherian ring (Propositioh 5.9) Xt | is
not finitely generated as dR—vector space. This fact shows that condition (a) (or,
equivalently, (b) or (c)) of Propositidn 5.7 is not necessary for tioetNerianity of
AXT .

Example 5.11.Let A C B be aring extension] an ideal ofB andX = {X3,..., X}

a finite set of intederminates ovBr We setB’ := B[X], J' := X J[X] and we denote
by ¢’ the canonical embedding of into B’. By a routine argument, it is easy to see
that the ring4 x°".J' is naturally isomorphic to the ring + X J[X]. Now, we want to
show that, in this case, we can characterize the Noetherianity of thelrfing J[X],
without assuming a finiteness condition on the inclusib B (as in Corollary 5.0
(iii)) or on the inclusionA+ X .J[ X] C B[X]. More preciselythe following conditions
are equivalent.

(i) A+ X J[X]is aNoetherian ring.

(i) A is a Noetherian ring,J is an idempotent ideal dB and it is finitely generated
as anA-module.

()= (ii). Assumethaf? := A+ X J[X] = A+J’ is a Noetherian ring. Then, clearly,
is Noetherian, sincd is canonically isomorphic t&®/.J’. Now, consider the idedl of
R generated by the set of linear monomi@s(; | 1 < i <r, b € J}. By assumption,
we can findéy, (z, . .., ¢; € L such thatl, = 3"} _, ¢+ R. Note that/,(0,0,...,0) = 0,
forall k, 1 < k < t. If we denote by, the coefficient of the monomiaX; in the
polynomial?,, then it is easy to see théfi;, by, . . ., b} is a set of generators dfas an
A—module.

The next step is to show thdtis an idempotent ideal 8. By assumption/’ is a
finitely generated ideal aR. Let

mMp
gn = Z Chojrjp X1t XIr, withh = 1,2,.. s,
71++77‘=1
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be a finite set of generators df in R. Setj; :== max{j1 | ¢nj0.0# 0, for1 < h <

s}. Take now an arbitrary elemehtc J and consider the monomiale1+1 c J.
Clearly, we have

23

bXP =S frgnowith fri= T dpeye X§ - X € R,
h=1

e1+...4+e-.=0

Therefore,

S
b= > chjo.odne0.0-

h=1"jitei=ji+1

Sincej; < j1 + 1, we have necessarily thet > 1. Henceforthf;, belongs taJ’ and
S0dj 0.0 € J, forall b, 1 < h < s. This proves thak € J2.

(ii))=-(i). In this situation, by Nakayama’s lemma, we easily deduce that eB,
for some idempotent elemeate J. Let {b1,...,bs} be a set of generators dfas an
A-module, i.e..J] = eB = > ,_, ., bnA. We consider a new set of indeterminates
over B (and A) and preciselyy ;= {Y;;, | 1 <i < 7,1 < h < s}. We can define
a mapy : A[X,Y] — B[X] by settingp(X;) := eX;, andp(Y;p,) = by X;, for
alli =1,...,r, h =1,....s. Itis easy to see that is a ring homomorphism and
Im(¢) C R (= A+ X J[X]). Conversely, let

Uz

fr=a+> S oo, Xi o X0 |Xi € R(and soei, e, € J).

=1 €ipt...+ei, =0

SinceJ = Y, ,<.bnA, thenforalli = 1,....r ande;,,... e;, with e;, + ... +
ei, € {0,...,n;}, we can find elements; ., ., »n € A, with 1 < h < s, such that
Cieiyoeiy = Sor_y ies, ..c;,,hbR. CONsider the polynomial

I s n;
g:=a+ Z Z Z Uieyy e n Xyt X 7Y € A[X, Y]
=1 h=1 ei1+'“+@ir:0

It is straightforward to see that(g) = f and so Infy) = R. By Hilbert Basis Theo-
rem, we conclude easily thatis Noetherian.

Remark 5.12.We preserve the notation of Example 5.11.

(1) Note that in the previous example, whén= B, we reobtain Corollarj 59
((iy=(iii)). If B = A andI is an ideal of of4, then we simply have that + X I[X]
is a Noetherian ring if and only ifl is a Noetherian ring and is an idempotent ideal
of A. Note the previous two cases were studied as separate cases by S, Wizem
announced similar results in her talk at the Fez Conference in June 20688¢nting
an ample and systematic study of the transfer of various finiteness casditiache
constructionsd + X I[X | andA + X B[ X].
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(2) The Noetherianity ofB it is not a necessary condition for the Noetherianity
of the ring A + X J[X]. For instance, takel any field, B the product of infinitely
many copies of4, so that we can considet as a subring o3, via the diagonal ring
embedding: — (a,a,...),a € A. SetJ := (1,0,...)B. ThenJ is an idempotent ideal
of B and, atthe same time, a cyclicmodule. Thus, by Example 5114, + X J[X]
is a Noetherian ring. Obviously3 is not Noetherian.

(3) Note that, ifA + X J[X] is Noetherian and3 is not Noetherian, thed C B
andA + X J[X]| C B[X] are necessarily not finite. Moreover, it is easy to see that
A+ X J[X| C B[X] is afinite extension if and only if the canonical homomorphism
A — B[X]/(XJ[X]) is finite. Finally, it can be shown that last condition holds if and
onlyif J = BandA C B is finite.
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