2 Algoritmo euclideo di divisione

In questo paragrafo intendiamo mostrare come alcune importanti proprietà dell'aritmetica elementare di \mathbb{Z} traggano origine dalla validità in \mathbb{N} del "Principio del Minimo" (ovvero, equivalentemente, dal "Principio di Induzione", cfr. Teorema 1.2).

Teorema 2.1. (Algoritmo euclideo di divisione) Siano $a, b \in \mathbb{Z}, b \neq 0$. Allora, esistono e sono univocamente determinati due interi $q \in \mathbb{Z}$ (detto, quoziente) ed $r \in \mathbb{N}$ (detto resto) in modo tale che:

$$a = bq + r$$
, $0 \leqslant r < |b|$.

Dimostrazione. Mostriamo, dapprima, l'esistenza di q ed r.

Caso 1. Supponiamo che b > 0. Notiamo, innanzitutto, che l'insieme:

$$S := \{a - nb : a - nb \ge 0, n \in \mathbb{Z}\} (\subseteq \mathbb{N})$$

è non vuoto (ad esempio, se $n' = - \mid a \mid$, allora $a - n'b \in S$). Per il "Principio del Minimo" (Teorema 1.2), possiamo trovare un primo elemento nell'insieme S, che denotiamo con r := a - qb. Mostriamo che r < b. Se, per assurdo, fosse $r \ge b$ allora si avrebbe:

$$r - b = a - qb - b = a - (q+1)b \geqslant 0,$$

e, dunque, anche r - b (< r) apparterrebbe ad S. Ciò contraddice la minimalità di $r \in S$.

Caso 2. Supponiamo che b < 0. Applichiamo il Caso 1 alla coppia di interi a, -b ed avremo l'esistenza di due interi $q, r \in \mathbb{Z}$ che verificano le seguenti condizioni:

$$a = -bq + r = b(-q) + r$$
, $0 \le r < -b = |-b| = |b|$.

Mostriamo, ora, l'unicità di q, r. Supponiamo di avere $q, q', r, r' \in \mathbb{Z}$ in modo tale che:

$$a = bq + r = bq' = r', \qquad 0 \leqslant r, r' < |b|,$$

allora $(q-q')b=r'-r<\mid b\mid b$, dunque $\mid q-q'\mid\mid b\mid<\mid b\mid$, cioè $\mid q-q'\mid<1$, ovvero q=q'. Da ciò segue immediatamente che anche r=r'.

Definizione 2.2. Dati due elementi $a, b \in \mathbb{Z}$.

(a) Diremo che a divide b (oppure che b è divisibile per a), in breve scriveremo " $a \mid b$ ", se esiste un elemento $c \in \mathbb{Z}$ in modo tale che ac = b. Se ciò non accade, diremo che a non divide b, e scriveremo " $a \nmid b$ ". Notiamo che:

$$x \mid x$$
, $x \mid 0$, $1 \mid x$, per ogni $x \in \mathbb{Z}$;

```
\begin{array}{llll} 0 \mid x & \Leftrightarrow & x=0\,;\\ x \mid 1 & \Leftrightarrow & x=\pm 1;\\ a \mid b & \mathrm{e} & b \mid a & \Leftrightarrow & a=\pm b\,;\\ a \mid b & \mathrm{e} & b \mid c & \Rightarrow & a \mid c\,;\\ z \mid a & \mathrm{e} & z \mid b & \Rightarrow & z \mid ax+by\,, & \mathrm{presi\ comunque}\ x,y \in \mathbb{Z}\,;\\ a \mid b & \Leftrightarrow & ac \mid bc & \mathrm{per\ ogni}\ c \in \mathbb{Z}\,. \end{array}
```

(b) Se $ab \neq 0$ (cioè, se a e b non sono contemporaneamente nulli) si chiama $Massimo\ Comun\ Divisore\ di\ a,b$ (in breve, MCD(a,b)) un intero $d \in \mathbb{Z}$ tale che:

(MCD1)
$$d \mid a, d \mid b;$$

(MCD2) $d' \in \mathbb{Z}, d' \mid a, d' \mid b \Rightarrow d' \mid d.$

Notiamo che se a=0 e $b\neq 0$, allora b (ovvero, -b) è un Massimo Comun Divisore di 0 e b.

Infine, osserviamo che MCD(0, 0) non è definito, in quanto ogni intero $x \in \mathbb{Z}$ è tale che $x \mid 0$ (e, quindi, non esiste un intero "massimo con tale proprietà", cioè non esiste un intero che verifica anche la proprietà (MCD2)).

(c) Se a, b non sono entrambi nulli, diremo che a e b sono relativamente primi (ovvero, coprimi) se MCD(a, b) = 1.

Teorema 2.3. Dati comunque $a, b \in \mathbb{Z}$, non entrambi nulli, esiste sempre un Massimo Comun Divisore d di a e b in \mathbb{Z} . Se d_1 e d_2 sono due Massimi Comun Divisori di a e b allora $d_1 = \pm d_2$.

Il Massimo Comun Divisore d di a e b esiste ed è univocamente determinato in \mathbb{N} (in tal caso, esso è il più grande tra i divisori positivi comuni ad a e b, quindi la scrittura $d:=\mathrm{MCD}(a,b)$ ha un significato univoco quando si sceglie $d\in\mathbb{N}$) ed esso coincide con il minimo intero positivo nell'insieme:

$$S_{a,b} := \{ax + by \mid x, y \in \mathbb{Z}, ax + by > 0\}.$$

Dimostrazione. Sia $d := ax_0 + by_0$ il minimo intero (positivo) dell'insieme non vuoto $S_{a,b}$. Mostriamo che, preso comunque $z := ax + by \in \mathbb{Z}$, con $x, y \in \mathbb{Z}$ (dove z può anche non appartenere ad $S_{a,b}$), allora $d \mid z$. Possiamo, ovviamente, supporre che $z \neq 0$. Per il Teorema 2.1, possiamo trovare $q, r \in \mathbb{Z}$, in modo tale che:

$$z = dq + r, \qquad 0 \leqslant r < d,$$

ovvero,

$$ax + by - (ax_0 + by_0)q = r$$
 cioè $a(x - x_0q) + b(y - y_0q) = r$

dunque se r > 0 allora $r(< d) \in S_{a,b}$. Per la minimalità di d possiamo concludere che r = 0, ovvero che $d \mid z$. In particolare, $d \mid a$ (per x = 1 e y = 0) e $d \mid b$ (per x = 0 e y = 1), (proprietà (MCD1) per d).

Per terminare, mostriamo che d verifica anche la proprietà (MCD2). Se $d' \mid b$ e $d' \mid b$, allora è subito visto dalla definizione di divisibilità che $d' \mid a\alpha + b\beta$, presi comunque $\alpha, \beta \in \mathbb{Z}$. Dunque, in particolare, $d' \mid d$ (prendendo $\alpha = x_0 \in \beta = y_0$).

Osservazione 2.4. Dati comunque $a, b \in \mathbb{Z}$, non entrambi nulli, da quanto precede segue immediatamente che:

$$MCD(a, b) = MCD(|a|, |b|)$$
.

Corollario 2.5. (Identità di Bézout (1730–1783)) Dati comunque $a, b \in \mathbb{Z}$, non entrambi nulli, esistono $x, y \in \mathbb{Z}$ in modo tale che:

$$MCD(a, b) = ax + by$$
.

Corollario 2.6. (Lemma di Euclide, IV-III Sec. A.C.) Siano $a, b, c \in \mathbb{Z}$. Allora:

$$MCD(a, b) = 1 \ e \ a \mid bc \Rightarrow a \mid c$$
.

Dimostrazione. Dal Corollario 2.5 sappiamo che esistono $x, y \in \mathbb{Z}$ con 1 = ax + by. Pertanto, $c = c \cdot 1 = acx + bcy$. Inoltre, per ipotesi, esiste un intero $k \in \mathbb{Z}$ in modo tale che ak = bc. Sostituendo abbiamo c = acx + aky = a(cx + ky), da cui ricaviamo che $a \mid c$.

Definizione 2.7. Dati due elementi $a, b \in \mathbb{Z}$. Si chiama *minimo comune multiplo di* a, b (in breve, mcm(a, b)) un intero $h \in \mathbb{Z}$ tale che:

$$(mcm1) \ a | h, b | h;$$

(mcm2)
$$h' \in \mathbb{Z}$$
, $a \mid h'$, $e \mid b \mid h' \Rightarrow h \mid h'$.

Notiamo che, dalle proprietà della relazione di divisibilità, discende immediatamente che mcm(a, 0) = mcm(0, b) = mcm(0, 0) = 0.

Osservazione 2.8. Dati comunque $a, b \in \mathbb{Z}$, se h_1 e h_2 sono due minimi comuni multipli di a e b allora $h_1 = \pm h_2$. Pertanto, un minimo comune multiplo h di a e b, se esiste, esso è univocamente determinato in \mathbb{N} (in tal caso esso coincide con il minimo tra tutti gli interi positivi che seguono a e b e che somo multipli sia di a che di b, quindi la scrittura h := mcm(a, b) ha un significato univoco quando si sceglie $d \in \mathbb{N}$). Il prossimo risultato mostra l'esistenza del mcm(a, b), per ogni coppia di elementi $a, b \in \mathbb{Z}$. E' ovvio, da quanto precede, che mcm(a, b) = mcm(|a|, |b|).

Teorema 2.9. Dati comunque $a,b \in \mathbb{Z}$, non entrambi nulli, esiste ed è univocamente determinato in \mathbb{N} il mcm(a,b) e risulta:

$$MCD(a, b) \cdot mcm(a, b) = |ab|$$
.

Dimostrazione. Per le Osservazioni 2.8 e 2.4 non è restrittivo supporre che a > 0, b > 0. Sia d := MCD(a, b). Allora, esistono $\alpha, \beta, x, y \in \mathbb{Z}$ in modo tale che:

$$a = d\alpha$$
, $b = d\beta$, $e \quad d = ax + by$.

Poniamo $m:=\frac{ab}{d}\in\mathbb{N}$. Allora abbiamo che $m=a\beta=b\alpha$ e quindi che $a\mid m$ e $b\mid m$ (proprietà (mcm1)). Sia ora h' un multiplo comune di a e b, cioè $a\mid h'$ e $b\mid h'$, ovvero $h'=a\alpha'=b\beta'$, per una qualche coppia $\alpha',\beta'\in\mathbb{N}$. Notiamo che:

$$\frac{h'}{m} = \frac{h'd}{ab} = \frac{h'(ax + by)}{ab} = \frac{h'}{b}x + \frac{h'}{a}y = \beta'x + \alpha'y \in \mathbb{Z},$$

pertanto $m \mid h'$ (proprietà **(mcm2)**). Da ciò ricaviamo che $\frac{ab}{d} = m = \text{mcm}(a,b)$ e, quindi, che ab = MCD(a,b)mcm(a,b).

Osservazione 2.10. Per ogni $x \in \mathbb{Z}$, denotiamo con $x\mathbb{Z} := \{xk : k \in \mathbb{Z}\}$. Allora, si può facilmente verificare che:

- (a) $a\mathbb{Z} \supseteq b\mathbb{Z} \iff a \mid b$;
- **(b)** $MCD(a, b)\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z} := \{ax + by \mid x, y \in \mathbb{Z}\};$
- (c) $mcm(a, b)\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$.

Definizione 2.11. Un intero $p \ge 2$ si dice *primo* se dati $a, b \in \mathbb{Z}$ allora:

$$p \mid ab \quad e \quad p \nmid a \quad \Rightarrow \quad p \mid b$$
.

Un intero $q \ge 2$ si dice *irriducibile* se dati $a, b \in \mathbb{Z}$ allora:

$$q = ab$$
 e $q \neq \pm a$ \Rightarrow $q = \pm b$ (e quindi $a = \pm 1$).

Proposizione 2.12. Per un intero $p \ge 2$, le seguenti affermazioni sono tra loro equivalenti:

- (i) p è primo;
- (ii) p è irriducibile;
- (iii) i divisori positivi di p sono soltanto 1 e p.

Dimostrazione. (i) \Rightarrow (ii). Supponiamo che p=ab e che $p \neq \pm a$. Allora, ovviamente, $p \mid ab$. Inoltre, $p \nmid a$, perché se esistesse un intero $k \in \mathbb{Z}$ in modo tale che pk=a, allora avremmo che p=ab=pkb, da cui dedurremmo che 1=kb (Legge di cancellazione, Esercizio 1.3 (c)), cioè $b=\pm 1$ ovvero $p=\pm a$, pervenendo così ad una contraddizione. Allora, avendo assunto la validità di (i), otteniamo che $p \mid b$. Pertanto, deve esistere un intero $h \in \mathbb{Z}$ in modo tale che ph=b. Quindi p=ab=ahp, cioè 1=ah (Legge di cancellazione, Esercizio 1.3 (c)), dunque $a=\pm 1$ ovvero $p=\pm b$.

- (ii) \Rightarrow (iii). Se, per assurdo la proprietà (iii) non fosse verificata, allora potremmo trovare due interi positivi 1 < a, b < p in modo tale che p = ab. Ma questo fatto contraddice (ii).
- (iii) \Rightarrow (i). Se p verifica (iii) e $p \nmid a$, allora necessariamente MCD(p, a) = 1. Pertanto la conclusione che $p \mid b$ discende dal Lemma di Euclide (Corollario 2.6).

Teorema 2.13. (Teorema Fondamentale dell'Aritmetica, Euclide IV-III Sec. A.C.) Un qualunque intero $a \in \mathbb{Z} \setminus \{0, 1, -1\}$ ammette una decomposizione unica (a meno dell'ordine dei fattori) del tipo:

$$a = \pm p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$

dove $r \geqslant 1$, p_i è un intero primo, $e_i \geqslant 1$, per ogni $1 \leqslant i \leqslant r$, ed inoltre $p_i \neq p_j$, se $1 \leqslant i \neq j \leqslant r$.

Dimostrazione. Non è ovviamente restrittivo limitare la dimostrazione del teorema al caso $a \ge 2$.

Dimostramo dapprima l'esistenza della decomposizione. Procediamo per induzione su a.

Base dell'induzione: a=2. L'enunciato è banalmente vero, essendo a=2 un numero primo.

Passo Induttivo: Supponiamo, per ipotesi induttiva, che l'enunciato sia vero per ogni intero $2 \le b < a$. Se a è un numero primo, non c'è nulla da dimostrare. Se a non è primo, allora a = xy, con $2 \le x, y < a$. Per l'ipotesi induttiva (applicata ad x ed y), possiamo scrivere:

$$x = p_1^{f_1} p_2^{f_2} \dots p_n^{f_n}$$
 e $y = p_1^{g_1} p_2^{g_2} \dots p_m^{g_m}$

dunque:

$$a = p'_{1}^{f_{1}} p'_{2}^{f_{2}} \dots p'_{n}^{f_{n}} p''_{1}^{g_{1}} p''_{2}^{g_{2}} \dots p''_{m}^{g_{m}}.$$

Dopo aver raccolto gli eventuali fattori con la stessa base, otteniamo proprio una decomposizione del tipo enunciato.

Dimostriamo ora l'unicità della decomposizione. Supponiamo di avere due decomposizioni di a con le proprietà enunciate:

$$p_1^{e_1}p_2^{e_2}\dots p_r^{e_r}=a=q_1^{f_1}q_2^{f_2}\dots q_s^{f_s}$$
.

Poiché p_1 è un numero primo e $p_1 \mid q_1^{f_1}q_2^{f_2}\dots q_s^{f_s}$, allora $p_1 \mid q_j$, per un qualche $1 \leqslant j \leqslant s$. Essendo anche q_j un numero primo (ovvero irriducibile), allora necessariamente $p_1 = q_j$. Dividendo le due decomposizioni di a per p_1 (quella di destra) e per q_j (quella di sinistra) (o, più precisamente, applicando la Legge di cancellazione, Esercizio 1.3 (c)) ed iterando il procedimento precedente, otteniamo necessariamente che r = s, $p_i = q_i$ (a meno di un cambiamento degli indici dei fattori ovvero del loro ordine) e $e_i = f_i$, per ogni $1 \leqslant i \leqslant r$.

2. Esercizi e Complementi

2.1. Siano $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ $n (\geq 2)$ interi non tutti nulli. Un *Massimo Comun Divisore di* a_1, a_2, \ldots, a_n (in breve, $MCD(a_1, a_2, \ldots, a_n)$) è un intero $d \in \mathbb{Z}$ tale che:

(MCD1)
$$d \mid a_i$$
, per ogni $1 \leq i \leq n$;

(MCD2)
$$d' \in \mathbb{Z}$$
, $d' \mid a_i$, per ogni $1 \leq i \leq n \Rightarrow d' \mid d$.

Mostrare che esiste un unico Massimo Comun Divisore $d \in \mathbb{N}$ di a_1, a_2, \ldots, a_n , il quale coincide con in minimo intero nell'insieme non vuoto:

$$S_{a_1,a_2,\ldots,a_n} := \{ a_1 y_1 + a_2 y_2 + \ldots + a_n y_n : y_i \in \mathbb{Z}, \ 1 \leqslant i \leqslant n, \\ a_1 y_1 + a_2 y_2 + \ldots + a_n y_n > 0 \}.$$

In particolare, esistono $x_1, x_2, \dots, x_n \in \mathbb{Z}$ in modo tale che il Massimo Comun Divisore (univocamente determinato in \mathbb{N}) si può esprimere nella forma seguente:

$$MCD(a_1, a_2, \dots, a_n) = a_1x_1 + a_2x_2 + \dots + a_nx_n$$
 (Identità di Bézout).

[Suggerimento. Basta seguire, con le appropriate modifiche, la dimostrazione del Teorema 2.3.]

- **2.2.** Siano a,b,c degli interi non nulli di \mathbb{N} . Mostrare che valgono le seguenti proprietà:
 - (a) MCD(a, MCD(b, c)) = MCD(a, b, c) = MCD(MCD(a, b), c).
 - **(b)** MCD(a, 1) = 1.
 - (c) MCD(ab, ac) = aMCD(b, c).
 - (d) $d = MCD(a, b) \Rightarrow MCD(\frac{a}{d}, \frac{b}{d}) = 1.$
 - (e) $MCD(a, b) = 1 = MCD(a, c) \Rightarrow MCD(a, bc) = 1.$
 - (f) $a \mid c$, $b \mid c$, e $MCD(a, b) = 1 \Rightarrow ab \mid c$.

[Suggerimento. (a) Ci limitiamo a dimostrare la prima uguaglianza. Sia d := MCD(a,b,c) e $\tilde{d} := \text{MCD}(a,\text{MCD}(b,c))$. Poiché $d \mid b$ e $d \mid c$, allora, $d \mid \text{MCD}(b,c)$ e, quindi $d \mid \tilde{d} = \text{MCD}(a,\text{MCD}(b,c))$. Viceversa, poché \tilde{d} divide a,b,c, allora $\tilde{d} \mid d = \text{MCD}(a,b,c)$. Dunque, $d = \tilde{d}$.

- (b) Segue dal fatto che $1 \mid a$ e se $x \mid 1$, allora $x = \pm 1$.
- (c) Sia t := MCD(b,c) e $\tilde{t} := \text{MCD}(ab,ac)$. E' ovvio che $at \mid ab$ e $at \mid ac$, quindi $at \mid \text{MCD}(ab,ac) = \tilde{t}$. Poiché $a \mid \text{MCD}(ab,ac) = \tilde{t}$ allora $\tilde{t} = ax$, per un qualche intero x. D'altra parte sappiamo che $at \mid \tilde{t} = ax$, quindi $t \mid x$. Inoltre $ax = \tilde{t} \mid ab$ e $ax = \tilde{t} \mid ac$, quindi $x \mid b$ e $x \mid c$, dunque $x \mid \text{MCD}(b,c) = t$. Pertanto $x = \pm t$, ovvero $\tilde{t} = \pm at$.
- (d) Da (c) ricaviamo che $d = \text{MCD}(a, b) = \text{MCD}(d\frac{a}{d}, d\frac{b}{d}) = d\text{MCD}(\frac{a}{d}, \frac{b}{d})$, quindi $1 = \text{MCD}(\frac{a}{d}, \frac{b}{d})$.
- (e) Per l'identità di Bézout, esistono $x, y, u, v \in \mathbb{Z}$ in modo tale che ax + by = 1 = au + cv. Quindi 1 = (ax + by)(au + cv) = a(axu + byu + cvx) + bc(yv) = a(u + cvx) + bc(yv), da cui si ricava che 1 = MCD(a, bc) (Teorema 2.3).
- (f) Poiché $a \mid c$, allora $ab \mid cb$. Analogamente si prova che $ab \mid ac$. Dunque $ab \mid \text{MCD}(cb, ca) = c\text{MCD}(b, a) = c$.

2.3. Algoritmo euclideo delle divisioni successive (metodo algoritmico per il calcolo del MCD di due elementi in \mathbb{Z}). Siano a e b due interi non nulli di \mathbb{Z} dei quali si vuole calcolare il MCD. Dal momento che $\mathrm{MCD}(a,b) = \mathrm{MCD}(|a|,|b|)$, allora possiamo supporre, senza perdere in generalità che $a \geq b > 0$. Applicando ricorsivamente l'Algoritmo di divisione abbiamo:

$$\begin{array}{lll} a = bq_1 + r_1 \,, & 0 < r_1 < b =: r_0 \\ b = r_1q_2 + r_2 \,, & 0 < r_2 < r_1 \\ r_1 = r_2q_3 + r_3 \,, & 0 < r_3 < r_2 \\ \vdots & \vdots & \vdots \\ r_k = r_{k+1}q_{k+2} + r_{k+2} \,, & 0 < r_{k+2} < r_{k+1} \\ \vdots & \vdots & \vdots \\ r_{n-2} = r_{n-1}q_n + r_n \,, & 0 < r_n < r_{n-1} \\ r_{n-1} = r_nq_{n+1} + 0 \,, & 0 = r_{n+1} < r_n \end{array}$$

dove $n \ge 0$. Mostrare che:

- (a) $MCD(a,b) = r_n$.
- (b) $r_n = ax_n + by_n$ (Identità di Bézout)

dove x_n e y_n in $\mathbb Z$ sono calcolabili ricorsivamente tramite le seguenti formule:

$$\begin{array}{lll} x_0 := 0 & y_0 := 1 \\ x_1 := 1 & y_1 := -q_1 \\ \vdots & \vdots & \vdots \\ x_k := x_{k-2} - q_k x_{k-1} & y_k := y_{k-2} - q_k y_{k-1} \,, \quad \text{per ogni } k \geqslant 2. \end{array}$$

[Suggerimento. (a) Osserviamo che se a = bq + r, con $0 \le r < b$, allora MCD(a,b) = MCD(b,r). Infatti l'insieme dei divisori comuni di a e b coincide con l'insieme dei divisori comuni di b ed r = a - bq e quindi, ovviamente, il "massimo" elemento del primo insieme coincide con il "massimo" elemento del secondo insieme. Applicando ricorsivamente questa proprietà alla successione di divisioni euclidee, abbiamo $MCD(a,b) = MCD(b,r_1) = MCD(r_1,r_2) = \ldots = MCD(r_{n-1},r_n) = r_n$.

(b) Per induzione. Base dell'induzione:

$$\begin{array}{ll} n=0 \ : & r_0:=b=a\cdot 0+b\cdot 1 \, \Rightarrow \, x_0=0 \, , \, y_0=1 \, . \\ n=1 \ : & r_1=a\cdot 1-bq_1 \, \Rightarrow \, x_1=1 \, , \, y_1=-q_1 \, . \end{array}$$

Passo induttivo. Supponiamo che, per ogni h, con $0 \le h \le k$, con $k \ge 1$, si abbia $r_h = ax_h + by_h$. Poiché:

$$r_{k-1} = r_k q_{k+1} + r_{k+1}$$
, cioè $r_{k+1} = r_{k-1} - r_k q_{k+1}$,

allora l'espressione di r_{k+1} , come combinazione lineare di a e b, può essere calcolata ricorsivamente:

$$r_{k+1} = r_{k-1} - r_k q_{k+1} = ax_{k-1} + by_{k-1} - (ax_k + by_k)q_{k+1} =$$

= $a(x_{k-1} - q_{k+1}x_k) + b(y_{k-1} - q_{k+1}y_k)$.

2.4. Siano a e b due interi non nulli di \mathbb{Z} . Utilizziamo le notazioni dell'Esercizio 2.3. Per il calcolo del MCD(a,b), abbiamo già osservato che non è restrittivo supporre che a>b>0. Definiamo lunghezza $\lambda(a,b)$ dell'algoritmo euclideo della coppia (a,b) il numero n+1 di divisioni necessarie per ottenere un resto $r_{n+1}=0$. Definiamo lunghezza euclidea di a, $\lambda(a)$, il massimo valore raggiunto da $\lambda(a,b)$, al variare di b, con a>b>0, i.e.

$$\lambda(a) := \text{Max}\{\lambda(a,b) : b \in \mathbb{N}, a > b > 0\}.$$

- (a) Mostrare che: $\lambda(a) = 1 \iff a = 2$.
- (b) Calcolare $\lambda(a)$ per tutti gli interi a, con $2 \le a \le 8$.

La successione di Fibonacci è la successione di numeri naturali definita induttivamente nella maniera seguente:

$$u_0 := 1$$
, $u_1 := 1$, $u_n := u_{n-1} + u_{n-2}$, per ogni $n \ge 2$.

Dunque, $u_2 := 2$, $u_3 := 3$, $u_4 := 5$, $u_6 := 8$, $u_7 := 13$,

- (c) Mostrare che $\mathrm{MCD}(u_{n+1},u_n)=1$ e che $\lambda(u_{n+1},u_n)=n$, per ogni $n\geq 1$. Date due coppie di interi positivi (a,b), (a',b') con a>b e a'>b', diremo che (a,b) precede (a',b') se $\lambda(a,b)\leq \lambda(a',b')$.
- (d) Fissato $n \ge 1$, mostrare che (u_{n+1}, u_n) precede tutte le coppie (a, b), con a > b, tali che $\lambda(a, b) = n$.
- (e) (Teorema di Lamé, 1845) Mostrare che: $\lambda(u_{n+1}) = n$ e, se $\lambda(a) = n$, allora $a \ge u_{n+1}$.
 - (f) Mostrare che $\lambda(a,b) \leq 2\log_2(b) + 1$.

Osservare che tale stima è collegata al numero delle cifre, $cf_2(b)$, del numero b nella sua scrittura in base 2 (ad esempio, se $b = 8 = (1000)_2$, $cf_2(8) = 4$, $\log_2(8) = 3$). Infatti, per ogni $b \ge 1$, $\log_2(b) < cf_2(b)$.

- (g) Mostrare che $\lambda(a) < 2cf_2(a) + 1$.
- (h) Mostrare per induzione su $n \ge 1$ che:

$$u_n \le \left(\frac{7}{4}\right)^{n+1}$$
.

Per ottenere una migliore approssimazione del valore di u_n , abbiamo bisogno di richiamare la nozione di numero aureo. Ricordiamo che il rapporto aureo tra due lunghezze era quella proporzione giudicata la più armoniosa secondo i canoni estetici classici tra le lunghezze a e b dei lati di un rettangolo e si ha quando a > b e

$$\frac{a}{b} = \frac{a+b}{a}$$
 ovvero $\frac{a}{b} = \frac{1+\sqrt{5}}{2} =: \omega$,

(si noti che il numero reale ω (\approx 1.61803), detto numero aureo, è una delle due radici reali dell'equazione $X^2-X-1=0$, equazione determinata dalla relazione di rapporto aureo; l'altra soluzione è $\overline{\omega}:=\frac{1-\sqrt{5}}{2}~(\approx-0.618034)$).

(i) Mostrare per induzione su $n \ge 0$ che:

$$u_n = \frac{\omega^{n+1} - \overline{\omega}^{n+1}}{\sqrt{5}}.$$

(j) Dedurre dal punto precedente che, per ogni $n \geq 1$,

$$\left| u_n - \frac{\omega^{n+1}}{\sqrt{5}} \right| < \frac{1}{2},$$

dunque u_n è l'intero più prossimo al numero reale $\frac{\omega^{n+1}}{\sqrt{5}}$ e quindi:

$$u_n \gtrapprox \frac{\omega^{n+1}}{\sqrt{5}}$$
.

(k) Sia a un intero positivo, denotiamo con $cf_{10}(a)$ il numero delle cifre di a nella sua scrittura decimale (ad esempio, se a = 9705 allora $cf_{10}(a) = 4$). Mostrare che:

$$\begin{split} \pmb{\lambda}(a) \lessapprox \log_{\omega}(a) + \tfrac{1}{2}\log_{\omega}(5) - 2 &\approx \log_{\omega}(a) - 0.327724 \; \approx \\ &\approx 4.78497 \cdot \operatorname{Log}(a) - 0.327724 \; < \; 5\textit{cf}_{10}(a) \,. \end{split}$$

[Suggerimento. (a, \Leftarrow) Se a=2, allora b=1, quindi a=2b+0, cioè, in questo caso, $r_1=0$, dunque $\lambda(a)=1$.

 $(\mathbf{a}, \Rightarrow)$ Se, per assurdo, a > 2, prendiamo b := a - 1, allora:

$$a = b \cdot 1 + 1$$
, $b = 1 \cdot b + 0$,

dunque $\lambda(a) \geq \lambda(a, a-1) = 2$.

- **(b)** $\lambda(3) = \lambda(4) = \lambda(6) = 2$; $\lambda(5) = \lambda(7) = 3$; $\lambda(8) = 4 = \lambda(8, 5)$.
- (c) Dalla definizione stessa dei numeri di Fibonacci abbiamo che:

$$\begin{split} u_{n+1} &= u_n \cdot 1 + u_{n-1} \,, & 0 < u_{n-1} < u_n \\ u_n &= u_{n-1} \cdot 1 + u_{n-2} \,, & 0 < u_{n-2} < u_{n-1} \\ \vdots & \vdots & \vdots \\ u_3 &= u_2 \cdot 1 + u_1 \,, & 0 < 1 = u_1 < u_2 \\ u_2 &= u_1 \cdot 2 + 0 \,. \end{split}$$

- (d) Per minimalizzare il valore di a, in un algoritmo euclideo che conta n divisioni con il resto, dobbiamo prendere gli interi q_1, q_2, \ldots, q_n ed r_{n-1} il più piccoli possibile e, poi, ricavare attraverso le equazioni dell'algoritmo i valori di $r_{n-2}, r_{n-1}, \ldots, r_1, b, a$. Poiché $q_1, q_2, \ldots, q_{n-1} \geq 1$ e $q_n \geq 2$ (dal momento che $q_n r_{n-1} = r_{n-2} > r_{n-1}$) ed, inoltre, $r_{n-1} \geq 1$ (dal momento che $r_{n-1} > r_n = 0$), allora prendendo esattamente $q_1 = q_2 = \ldots = q_{n-1} = 1$, $q_n = 2$ e $r_{n-1} = 1$, otteniamo proprio che a deve coincidere con u_{n+1} (in tal caso, poi, $b = u_n$).
- (e) Se $u_{n+1} \geq a > b > 0$ e se $\lambda(a,b) = m$ allora, per il punto (d), $a \geq u_{m+1}$ e quindi $u_{n+1} \geq u_{m+1}$. Pertanto $m \leq n$, dunque $\lambda(a) \leq n$. In particolare, per $a = u_{n+1}$, ricaviamo $\lambda(u_{n+1}) \leq n$. Quindi, utilizzando (c), concludiamo che $\lambda(u_{n+1}) = n$.
- (f) Supponiamo che $\lambda(a,b)=n+1$. E' subito visto che $r_{-1}:=a>2r_1$ e $r_0:=b>2r_2$. In generale, $r_{k-2}>2r_k$, per ogni k, con $1\le k\le n$. Pertanto, se n è pari, allora $b>2^{\frac{n}{2}}$; se n è dispari, allora $b>2^{\frac{n-1}{2}}$. In ogni caso, $b>2^{\frac{n-1}{2}}$, dunque $\log_2(b)>\frac{n-1}{2}$. Pertanto, $2\log_2(b)+1>n$, quindi $2\log_2(b)+1\ge n+1=\lambda(a,b)$.
- (g) è una conseguenza immediata di (f), dal momento che a>b e, quindi, $\log_2(a)>\log_2(b)$.
- (h) Per n = 0, 1, 2 la disuguaglianza è banalmente verificata:

$$u_0 = 1 = (\frac{7}{4})^0$$

 $u_1 = 1 < (\frac{7}{4})^1 = 1.75$
 $u_2 = 2 < (\frac{7}{4})^2 \approx 3.0625$.

Sia $n \geq 3$, applicando l'ipotesi induttiva ai casi n-1 ed n-2, allora possiamo concludere:

$$u_n = u_{n-1} + u_{n-2} < \left(\frac{7}{4}\right)^{n-1} + \left(\frac{7}{4}\right)^{n-2} = \left(\frac{7}{4}\right)^{n-2} \left(\frac{7}{4} + 1\right) < \left(\frac{7}{4}\right)^{n-2} \left(\frac{7}{4}\right)^2.$$

(i) Per n=0 e per n=1 l'uguaglianza è banalmente verificata:

$$u_0 = \frac{\omega - \overline{\omega}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1$$

$$u_1 = \frac{\omega^2 - \overline{\omega}^2}{\sqrt{5}} = \frac{\omega + 1 - (\overline{\omega} + 1)}{\sqrt{5}} = 1$$

(si ricordi che $\omega^2-\omega-1=0=\overline{\omega}^2-\overline{\omega}-1$). Supponiamo, per ipotesi induttiva che, per $n\geq 2,\ u_{n-1}=\frac{\omega^n-\overline{\omega}^n}{\sqrt{5}}\ \ \ \ \ \ u_{n-2}=\frac{\omega^{n-1}-\overline{\omega}^{n-1}}{\sqrt{5}}.$ Allora:

$$u_{n} = u_{n-1} + u_{n-2} = \frac{\omega^{n} - \overline{\omega}^{n}}{\sqrt{5}} + \frac{\omega^{n-1} - \overline{\omega}^{n-1}}{\sqrt{5}} = \frac{\omega^{n-1}(\omega+1) - \overline{\omega}^{n-1}(\overline{\omega}+1)}{\sqrt{5}} = \frac{\omega^{n+1} - \overline{\omega}^{n+1}}{\sqrt{5}}.$$

(j) Basta osservare che, per ogni $n \ge 1$,

$$\left| \frac{\overline{\omega}^n}{\sqrt{5}} \right| < \left| \frac{\overline{\omega}}{\sqrt{5}} \right| \approx 0.276393 < \frac{1}{2}.$$

(k) Se $n = \lambda(a)$ allora $a \ge u_{n+1} \gtrsim \frac{\omega^{n+2}}{\sqrt{5}}$, dunque:

$$\log_{\omega}(a) \gtrsim n + 2 - \log_{\omega}(\sqrt{5}) \quad \Rightarrow \quad n \lesssim \log_{\omega}(a) + \frac{1}{2}\log_{\omega}(5) - 2.$$

La conclusione discende dal momento che $\log_{\omega}(5) \approx 3.34455$, $\frac{1}{2}\log_{\omega}(5) - 2 \approx -0.327724$, $\log_{\omega}(a) = \log(a)/\log(\omega) \approx 4.78497 \cdot \log(a)$, $\log(a) < cf_{10}(a)$.

- **2.5.** Siano $a \in b$ due interi non nulli di \mathbb{Z} e sia d := MCD(a, b).
 - (a) Mostrare che, nell'espressione d = ax + by, nota come Identità di Bézout, la coppia di interi $x, y \in \mathbb{Z}$ non è univocamente determinata (mostrare con un esempio esplicito, ad esempio a = 4, b = 6, d = 2, che possono esistere due coppie distinte di interi in modo tale che d = ax + by = ax' + by').
 - (b) Siano $x_0, y_0 \in \mathbb{Z}$ tali che $ax_0 + by_0 = 1$. Preso comunque $n \in \mathbb{Z}$, poniamo $x_n := x_0 + nb$ e $y_n := y_0 na$. Verificare che, per ogni $n \in \mathbb{Z}$, risulta $ax_n + by_n = 1$.
 - (c) Mostrare che, se $ax_0 + by_0 = 1 = ax + by$, con $x_0, y_0, x, y \in \mathbb{Z}$, allora esiste un intero $n \in \mathbb{Z}$ in modo tale che $x = x_0 + nb$ e $y = y_0 na$.
 - (d) Mostrare che, se $ax_0 + by_0 = d = ax + by$ con $x_0, y_0, x, y \in \mathbb{Z}$, allora esiste un intero $n \in \mathbb{Z}$ in modo tale che $x = x_0 + n \frac{\text{mcm}(a,b)}{a}$ e $y = y_0 n \frac{\text{mcm}(a,b)}{b}$.

[Suggerimento. (a) Basta prendere, ad esempio, (x,y) = (-1,1) e (x',y') = (2,-1).

(b) $ax_n + by_n = a(x_0 + nb) + b(y_0 - na) = ax_0 + by_0 = 1.$

(c) Se $ax_0 + by_0 = 1$, allora MCD(a, b) = 1 (Teorema 2.3). Da $ax_0 + by_0 = 1 = ax + by$, ricaviamo che $a(x - x_0) = b(y_0 - y)$, cioè $a \mid b(y_0 - y)$, quindi $a \mid y_0 - y$. Se poniamo $n := \frac{(y_0 - y)}{a}$ allora abbiamo $x = x_0 + nb$ e $y = y_0 - na$.

(d) Poiché

$$a\frac{x_0}{d} + b\frac{y_0}{d} = 1 = a\frac{x}{d} + b\frac{y}{d},$$

allora, per (c), $x = x_0 + n \frac{b}{d}$ e $y = y_0 - n \frac{a}{d}$. Per concludere basta ricordare che:

$$\operatorname{mcm}(a,b) = \operatorname{mcm}(a,b) \frac{\operatorname{MCD}(a,b)}{d} = \frac{ab}{d}.$$

2.6. Mostrare la validità della seguente variante dell'algoritmo euclideo di divisione (Teorema 2.1):

Siano $a, b \in \mathbb{Z}, b \neq 0$. Allora, esistono e sono univocamente determinati due interi $q, r \in \mathbb{Z}$ in modo tale che:

$$a = bq + r \,, \qquad -\frac{1}{2} \mid b \mid \leqslant r < \frac{1}{2} \mid b \mid .$$

[Suggerimento. Sappiamo (Teorema 2.1) che esistono e sono univocamente determinati due interi $q,r\in\mathbb{Z}$ in modo tale che a=bq+r, con $0\leqslant r<\mid b\mid$. Se $(0\leqslant)\ r<\frac{1}{2}\mid b\mid$, allora non c'è null'altro da dimostrare. Supponiamo, dunque, che $\frac{1}{2}\mid b\mid\leqslant r<\mid b\mid$). In tal caso, $0<\mid b\mid -r\leqslant\mid b\mid -\frac{1}{2}\mid b\mid =\frac{1}{2}\mid b\mid\leqslant r<\mid b\mid$. Scriviamo $r=(\mid b\mid -r)+r'$, con $r':=2r-\mid b\mid$. Dunque, per un'opportuna scelta del segno (dipendente dal segno di $\mid b\mid$), abbiamo $a=qb+r=(q\pm 1)b+(r'-r)$. Se poniamo $q'':=q\pm 1$ e $r'':=r'-r=r-\mid b\mid$, allora abbiamo a=q''b+r'', con $q'',r''\in\mathbb{Z}$ ed, inoltre, $-\frac{1}{2}\mid b\mid\leqslant r''<0$. Si vede facilmente che q'' e r'' sono univocamente determinati perché q ed r (da cui sono dedotti) sono univocamente determinati.

Si noti che, utilizzando tale versione dell'algoritmo di divisione, si ottiene una versione modificata dell'algoritmo euclideo delle divisioni successive (Esercizio 2.3; nel caso attuale $\frac{-|r_k|}{2} \leq r_{k+1} < \frac{|r_k|}{2}$) che tende ad arrestarsi più rapidamente del tradizionale algoritmo euclideo, dal momento che i resti si avvicinano più rapidamente allo zero.

2.7. Siano $a, b \in \mathbb{Z} \setminus \{0, 1, -1\}$ due interi dei quali sia nota la fattorizzazione in numeri primi:

$$a = \pm p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$
 e $b \pm p_1^{f_1} p_2^{f_2} \dots p_r^{f_r}$

con $e_i \ge 0$ e $f_i \ge 0$, per ogni $1 \le i \le r$ (ammettendo, come abbiamo fatto ora, che alcuni esponenti possano essere uguali a 0, possiamo assumere che i fattori primi che appaiono nella decomposizione di a e di b siano gli stessi (!), senza per questo perdere di generalità). Mostrare che:

- (a) $MCD(a,b) = p_1^{u_1} p_2^{u_2} \dots p_r^{u_r}$, dove $u_i := Min(e_i, f_i)$, per ogni $1 \le i \le r$.
- **(b)** $mcm(a, b) = p_1^{v_1} p_2^{v_2} \dots p_r^{v_r}$, dove $v_i := Max(e_i, f_i)$, per ogni $1 \le i \le r$.

[Suggerimento. (a) Se p è un divisore primo di a e di b allora, necessariamente, $p=p_i$, per un qualche i, con $1 \le i \le r$. Pertanto un divisore comune t di a e b ha una decomposizione in numeri primi del tipo $t=p_1^{\tau_1}p_2^{\tau_2}\dots p_r^{\tau_r}$, con $\tau_i \le u_i$, per ogni i. Pertanto il massimo di questi divisori comuni di a e b è dato da $d=p_1^{u_1}p_2^{u_2}\dots p_r^{u_r}$.

(b) Se m è un multiplo comune di a e b, allora $p_i^{v_i} \mid m$, per ogni i, con $1 \leqslant i \leqslant r$. Quindi $p_1^{v_1} p_2^{v_2} \dots p_r^{v_r} \mid m$. Pertanto il minimo tra questi multipli comuni di a e b è proprio $p_1^{v_1} p_2^{v_2} \dots p_r^{v_r}$.]

- 2.8. (a) (Euclide, IV-III Sec. A.C.). Mostare che esistono infiniti interi primi.
 - (b) Dimostare che, preso comunque un intero N > 0 (grande come si vuole), è possibile trovare N interi consecutivi, nessuno dei quali è primo.
 - (c) Mostrare che, per ogni intero n > 0, esiste sempre un primo p in modo tale che n .

[Suggerimento. (a) Per assurdo sia $\{p_1, p_2, \ldots, p_N\}$ l'insieme (finito) di tutti i numeri primi. L'intero positivo $n := p_1 p_2 \ldots p_N + 1$ (> p_i , per ogni $1 \le i \le N$), come ogni intero non primo, deve possedere un fattore primo. Dunque, deve esistere j, con $1 \le j \le N$, in modo tale che $p_j \mid n = p_1 p_2 \ldots p_N + 1$. Poiché, ovviamente, $p_j \mid p_1 p_2 \ldots p_N$, allora $p_j \mid 1 = n - p_1 p_2 \ldots p_N$. Si perviene così ad un assurdo.

(b) Basta considerare i seguenti N interi consecutivi:

$$(N+1)! + 2$$
, $(N+1)! + 3$, $(N+1)! + 4$, $(N+1)! + N + 1$,

e notare che $k \mid (N+1)! + k$, per ogni $2 \leq k \leq N+1$.

- (c) Se p è un numero primo e se $p \le n$ allora ovviamente $p \mid n!$ (dunque, $p \nmid n! + 1$). Pertanto, se q è un fattore primo di n! + 1, allora $n < q \le n! + 1$.
- 2.9. Utilizzare le proprietà dei numeri primi ed il Teorema Fondamentale della Aritmetica per dimostrare:
 - (a) (Pitagora, VI Sec. A.C.) $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. (Con un argomento simile si dimostri che, più generalmente, $\sqrt{p} \in \mathbb{R} \setminus \mathbb{Q}$, per ogni numero primo p.)
 - (b) Presi $n, r \in \mathbb{N}$, con $\sqrt[r]{n}$ non intero, allora $\sqrt[r]{n} \in \mathbb{R} \setminus \mathbb{Q}$.
 - (c) $\operatorname{Log}_{10}(2) \in \mathbb{R} \setminus \mathbb{Q}$.

[Suggerimento. (a) Per assurdo, se $\sqrt{p} \in \mathbb{Q}$, allora $b^2p = a^2$ per una qualche coppia di interi $a, b \in \mathbb{Z}$, con $b \neq 0$ e MCD(a, b) = 1. Da cui ricaviamo che $p \mid a^2$, dunque $p \mid a$. Pertanto pk = a, per un qualche $k \in \mathbb{Z}$. Quindi $b^2p = a^2 = p^2k^2$, cioè $b^2 = pk^2$, dunque $p \mid b$. Questo contraddice il fatto che MCD(a, b) = 1. La dimostrazione di (b) è del tutto simile a quella di (a).

(c) Per assurdo, se $\text{Log}_{10}(2) \in \mathbb{Q}$, allora $b\text{Log}_{10}(2) = a$, per una qualche coppia di interi $a, b \in \mathbb{N}$, con $b \neq 0$ e MCD(a, b) = 1. Dunque, $2^b = 10^a = 2^a 5^a$. Per il Teorema Fondamentale dell'Aritmetica deve essere b = a ed a = 0, perveniamo così ad una contraddizione.]