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Let R be an integral domain. It is proved that R’, the integral closure of R, is a Priifer domain 

if and only if the canonical map Spec(R(X)) + Spec(R) is a homeomorphism. As a consequence, 

R(X) is treed if and only if R is treed and R’ is Priifer. We also characterize when R(X) is going- 

down, an i-domain, universally going-down. Examples show that these situations are distinct. 

Analogous characterizations are obtained for the ring R(X). Also, it is proved that if R is 

integrally closed, its inclusion map into the completion Rb is universally going-down if and only 

if R is a Priifer domain. 

1. Introduction 

Let R be a (commutative integral) domain, with integral closure R’. If X is an 

indeterminate over R, the Nag&a ring R(X) is the ring of fractions R[X],, where 

S is the set of polynomials with unit content. (Useful references on Nagata rings are 

[28, p. 181 and [21, Section 331. The latter is especially useful for the extension to 

several variables.) Nagata rings are rather well behaved: the maximal ideals of R(X) 
are the ideals MR(X), where A4 ranges over the maximal ideals of R [28,6.17(4)]. 

Nagata rings have been helpful in studying Priifer domains because a (integrally 

closed) domain R is a Priifer domain if and only if R(X) is a Priifer domain [21, 

Theorem 33.41. Our main purpose here is to show that Nagata rings are equally 

helpful in studying related properties. 
The definition of one such property is recalled next. As in [12], R is said to be 

treed in case Spec(R), as a poset under inclusion, is a tree; that is, in case no maxi- 

mal ideal of R contains incomparable prime ideals. Each Priifer domain is treed 

(since it is locally a valuation domain), as is each domain of (Krull) dimension at 

most 1. Given the above information, it is reasonable to ask this article’s motivating 
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question: when is R(X) treed? The answer is not “if and only if R is treed”. As 

Theorem 2.10 establishes, the answer is “if and only if R is treed and R’ is a Prufer 

domain”. Along the way, we find the following useful technical fact in Theorem 

2.7: R’ is a Prtifer domain if and only if the canonical surjection Spec(R(X)) + 
Spec(R) is injective. Other characterizations of Prufer domains appear in Corol- 

laries 2.9, 2.13 and 2.14; Proposition 2.19; and Theorem 2.20. 

Much of Section 2 concerns analogues of Theorem 2.10. Many classes of rings 

are naturally interposed between the Prtifer domains and the treed domains. For in- 

stance, 

Prtifer domain * universally going-down domain 

* i-domain * going-down domain * treed domain. 

(Definitions and background are recalled in Section 2 as needed.) In general, none 

of these implications is reversible. Does this remain the case when attention is re- 

stricted to Nagata rings? For instance, is there a treed Nagata ring which is not a 

going-down domain? Section 2 details an affirmative answer to such questions in 

a comprehensive way, by characterizing when R(X) is a universally going-down 

domain, when R(X) is an i-domain, and when R(X) is a going-down domain. 

Another result in Section 2 is worthy of note. Assume now that R is integrally 

closed, with completion Rb. A result of Arnold and Brewer [4] asserts that R is a 

Prufer domain if and only if Rb is flat over R[X]. This is recovered in Theorem 

2.20, where we show that R is a Priifer domain if and only if the inclusion map 

R -+ Rb is a universally going-down homomorphism (in the sense of [18]). 

Section 3 is briefer, and concerns related results for R(X). By definition, R(X) = 

R[Xl,, where U is the set of manic polynomials in R[X]. The ring R(X) has 

received much attention because of its role in [30]; convenient references on R(X) 
are [2,26]. It is known [8] that R(X) is a Prufer domain if and only if R is a Prtifer 

domain and dim(R)<l. We characterize when R(X) is a universally going-down 

domain, an i-domain, a going-down domain, or a treed domain. Many of the 

themes established in Section 2 carry over to R(X). One exception is given in 

Theorem 3.2: R(X) is treed if and only if R(X) is a going-down domain. 

We shall let D’ denote the integral closure of a domain D. It will be convenient 

to let D+ and D* be the seminormalization and the weak normalization of D, in the 

sense of [32] and [3], respectively. As in [25, p. 281, the properties of incompar- 

ability, going-up and going-down will be denoted by INC, GU and GD, respectively. 

If f is a polynomial, then c(f) denotes the ideal generated by the coefficients off. 

We assume familiarity with the material in [27, p. 7071 on uppers and in [5, Chapters 

I-II] on flatness. Any unexplained material is standard, as in [21,25]. 

2. Results on R(X) 

It is convenient to begin with six preliminary results. Only the first three of these, 
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2.1-2.3, are needed for the proof of our first main result, Theorem 2.7. The others, 

2.4-2.6, are first needed in the proof of Corollary 2.9. In the interest of economy, 

we have included parallel treatment of R(X) in 2.5 and 2.6, but the reader may 

defer that discussion until beginning Section 3. 

Lemma 2.1. Let R be a domain. For each r E R, let f, be the R-algebra autornor- 
phism of R [X] sending X to X-t r. Then: 

(a) Let r E R and Q1, Q2 E Spec(R[X]). Then Q1 C Q2 if and only if f,(Ql)C 

f,(Qz). 
(b) If rE R and PE Spec(R), then f,(P[X]) = P[X]. 
(c) IfreR and QESpec(R[X]), thenf,(Q)nR=QflR. 
(d) If PE Spec(R) and P[X] contains an upper of 0, then P[X] contains infinitely 

many uppers of 0. 

Proof. (a) Only the ‘if’ assertion needs attention. This follows since f-,(&(Q)) = Q 
for each Q E Spec(R [Xl). 

(b) Since f, preserves R elementwise, PCJ;(P[X]). Thus P[X] Cf,(P[X]) since 

fr(P[X]) is an ideal of R [Xl; similarly, P[X] c f_r(P[X]). Applying f, and using 

(a), we have L(PtXl)CL(f-,(P[Xl)) =PWl Cf,(P[XI), yielding (b). 
(c) Qfl R CA(Q) n R since f, fixes R elementwise. Similarly, f,(Q) n R c 

f-,(f,(Q)) n R = Q n R, yielding (c). 

(d) P[X] contains Q, an upper of 0. Thus Pf 0, R is not a field, and R is infinite. 

Note, via (b) and (c), that f,(Q) is an upper of 0 for each s E R; moreover, by (a) 

and (b), f,(Q)CP[X]. Thus it suffices to show, for each rE R, that f,(Q) =f,(Q) 

for only finitely many s E R. Choose nonzero g E Q of minimal degree. Suppose 

f,(Q) =f,(Q). It suffices to show that g(r) =g(s), since the (nonzero) polynomial 

g-g(r) has only finitely many roots. Now, since f, is degree-preserving, it is easy 

to see that f,(g) =g(X+ r) is of minimal degree in f,(Q); similarly, g(X+s) is of 

minimal degree in f,(Q). Since g(X+ r) and g(X+s) have the same leading term 

and f,(Q) =f,(Q), it follows from minimality that g(X+ r) - g(X+ s) = 0. Applying 

the R-algebra homomorphism R [X] + R that sends X to 0, we find g(r) -g(s) = 0; 
i.e., g(r)=g(s), as desired. q 

Proposition 2.2. Let R be a domain such that R(X) is treed. Then: 
(a) R is treed. 
(b) R is a strong S-domain. 
(c) The canonical map h : Spec(R(X)) + Spec(R) is a bijection. 

Proof. (a) If a maximal ideal M of R contained incomparable primes P, and P2, 
then MR(X) would contain incomparable primes P,R(X) and P2R(X). In other 

words, if R were not treed, then neither would R(X) be. 

(b) Deny. Then there exist adjacent primes P, C P2 of R and a prime Q of R [X] 
strictly between P1 [X] and P2 [Xl. Note that Q is an upper of P, . Thus, for poly- 
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nomials over the domain R/P,, we have that Q= Q/P,[X] is an upper of 0 con- 

tained in P,[X], where P2=P2/P,. By Lemma 2.1(d), pZ[X] contains infinitely 

many (incomparable) uppers of 0. Hence P,[X] in R[X] contains infinitely many 

incomparable primes (in fact, uppers of PI). Passing to R(X), we find P,R(X) 
containing infinitely many incomparable primes, contradicting the hypothesis that 

R(X) is treed. 

(c) For each PeSpec(R), PR(X)eSpec(R(X)) and h(PR(X))= P. If the asser- 

tion fails, there exist PeSpec(R) and W~Spec(R(x)) such that h(W)=P and 

Wf PR(X). Then q = Wn R [X] is an upper of P. Choose a maximal ideal MR(X) 
of R(X) containing W (for a suitable maximal ideal M of R). By analyzing P[X] c 
qCM[X] as we did for PI [X] C QC P2[X] in the proof of (b), we find the desired 

contradiction. 0 

We next show that condition (c) in Proposition 2.2 descends under integrality. 

Lemma 2.3. Let R C T be an integral extension of domains. If the canonical map 
hT: Spec(T(X)) - Spec(T) is a bijection, then h R : Spec(R(X)) --+ Spec(R) is also a 
bijection. 

Proof. Deny. As in the proof of Proposition 2.2(c), we have 

P[X] c N, c M[X] c N2 

where P is some prime of R, N, is an upper of P, A4 is a maximal ideal of R, and 

N2 is an upper of M. By integrality, R [X] C T[X] satisfies GU and so there is a 

chain Qi c Q2 C Q, c Q4 of primes in T[X] which lies over the displayed chain in 

R[X]. Thus Q,nR=P=Q,flR, and so (QlflT)nR=Q,nTnR. Since RCTsatis- 

fies INC, Q, fl T= Q2 fl T. In other words, Q2 is an upper. Similarly, Q4 is an upper 

and Q3 = N[X] for some maximal ideal N of T. Put q = Qz n T. Then h,(qT(X)) = q = 
Q2 fl T= hT(QZ T(X)). As hr is an injection, qT(X) = Q2 T(X). Thus, intersecting with 

T[X], we have q[X] = Q2, contradicting the fact that Qz is an upper. q 

The next three results concern the behavior of R(X) and R(X) under semi- (or 

weak) normalization. Note that the proof of Lemma 2.4 carries over for reduced 

rings (provided that the total quotient rings of R and T compare). 

Lemma 2.4. (a) If R is a domain, then Rt is the intersection of the seminormal 
overrings of R. 

(b) If R c T is an extension of domains, then R’ C T’. 

Proof. (a) Let S be the intersection of the seminormal overrings of R. Then SC 

Ri, since R’ is a seminormal overring of R. (For the reduced case, cf. [31, 

Theorem 2.5, Lemma 2.4, Lemma 2.31.) For the reverse inclusion, it suffices to 

show that R+CD for each seminormal overring D of R. This, in turn, follows via 

[31, Corollary 4.21, since Rf= +DR~D. 
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(b) View R + and Tf via (a). The assertion is now an easy consequence of the 

following observation. If D is a seminormal overring of T and K is the quotient 

field of R, then Dn K is a seminormal overring of R. 0 

Lemma 2.5. Let RCT be an integral extension of domains. Let U be the set of 
manic polynomials in R[X]. Let Ul={f~R[x]: c(f)=R} and v’={f~T[Xl: 
c(f) = T}. Then: 

(a) V’ is the saturation of U’ in T[X]. Hence T[X],, = T(X). 

(b) W-1, = T(X). 

Proof. (a) The first assertion was established in the proof of [23, Theorem 3(a)]. 

Hence T[X],=T[X],, which, by definition, is T(X). 
(b) Let V be the set of all manic polynomials in T[X]. It was shown in the proof 

of [lo, Lemma l] (even in the presence of zero-divisors) that T[X].=T[X], 
which, by definition, is T(X). 0 

Proposition 2.6. Let R be a domain. Then: 
(a) R(X)’ = R’ (X) and R(X)’ = R’ (X). 
(b) R(X)+ = R+(X) and R(X)+ = R+(X). 
(c) R(X)* = R*(X) and R(X)* = R*(X). 

Proof. (a) With T=R’, let U’ and V’ be as in Lemma 2.5. Then 

R(X)’ = (R [Xl,,)’ = (R [Xl’),, = R’[X]., = R’(X). 

Indeed, the first equation holds by definition of the Nagata ring; the second, be- 

cause integral closure commutes with localization; the third, because R [Xl’= R’[X]; 
and the fourth, by Lemma 2.5(a). The second assertion admits a parallel proof, with 

U replacing U’ and Lemma 2.5(b) replacing Lemma 2.5(a). 

(b) This is proved as in (a), with T now taken as R+. Use the following documen- 

tation. Seminormalization commutes with localization (cf. [31, Proposition 2.91); 

and R[X]+ =R+[X] (a consequence of [22, Theorem 1.61 and Lemma 2.4(b)). 

(c) Argue as above, with T now taken as R *. The documentation for (c) follows 

from the universality of weak normalization (cf. [3, Teorema 11). Alternatively, 

note that weak normalization commutes with localization (cf. [33, Corollary of 

Proposition 21); and a polynomial ring over a weakly normal domain is weakly 

normal (verify the criterion in [33, Theorem l] by reasoning as in the proof of [9, 

Theorem 11). 0 

We may now present our first main result, giving characterizations of condition 

(c) in Proposition 2.2. 

Theorem 2.7. Let R be a domain and h = hR : Spec(R(X)) --t Spec(R) the canonical 
map. Then the following conditions are equivalent: 
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(1) h is a bijection; 
(2) h is an injection; 
(3) h is an isomorphism of posets (with respect to inclusion); 
(4) h is a homeomorphism (with respect to the Zariski topology); 
(5) If PE Spec(R) and M is a maximal ideal of R, then no upper of P is contained 

in M[X]; 
(6) If M is a maximal ideal of R, then no upper of 0 is contained in M[X]; 
(7) R’ is a Priifer domain. 

Proof. As we recalled in the proof of Proposition 2.2(c), h is surjective, with 

h(PR(X)) =P for each PE Spec(R). Hence, (1) # (2). Since h is inclusion-preserving, 

we also see that (1) e (3). Moreover, (4) * (3) trivially; and, since h is a spectral 

map, [24, Proposition 151 assures that (3) * (4). 

Next, one may establish (the contrapositive of) (5) * (2) as in the proofs of 

Proposition 2.2(c) and Lemma 2.3. Conversely, to establish (the contrapositive of) 

(2) = (5), note that if Q, = P[X] cQ2cM[X] for some upper Q2 of P, then 

h(Q,R(X)) = P= h(Q,R(X)), so that h is not injective. 

It now suffices to show that (5), (6), and (7) are equivalent. Given (7), we see 

easily that hRz: Spec(R’(X)) + Spec(R’) is a bijection (cf. [21, Theorems 32.10, 

32.15, and 33.4]), and so an appeal to Lemma 2.3 yields (5). Thus, (7) * (5). More- 

over, (5) * (6) trivially. 

Finally, we shall establish (the contrapositive of) (6) * (7). Assuming (7) fails, we 

have (cf. [29, Proposition 2.261) that RcR[u] does not satisfy INC for some u in 

K, the quotient field of R. Hence, by [14, Theorem 2.31, there exist distinct primes 

q, C q2 of R [u] and a maximal ideal M of R such that qi fl R = M. Let e : R [X] -+ K 
be the R-algebra homomorphism sending X to U. Put Qi = e-](q;) and Q = ker(e). 

As Q, C Q2 are distinct primes of R [X] which each lie over M, it follows that Qi = 

M[X]. Since Q, contains Q, which is an upper of 0, (6) fails, as desired. •I 

Since each Prufer domain is integrally closed, Theorem 2.7 immediately yields the 

following result. 

Corollary 2.8. A domain R is a Priifer domain if and only if R is integrally closed 
and the canonical map Spec(R(X)) --* Spec(R) is a bijection. 

Corollary 2.9. Let R be a domain. For each nonnegative integ,er n, let h, : 

Spec(R(X,,..., X,+J-tSpec(R(Xi,...,X,)) andg,:Spec(R(Xi,...,X,,+,))+Spec(R) 
denote the canonical maps. Then the following conditions are equivalent: 

(1) h, is a bijection for each n 2 0; 
(2) h, is an injection for some n r 0; 
(3) g,, is a bijection for each n 2 0; 
(4) g, is an injection for some n 2 0; 
(5) R’ is a Prtifer domain. 
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Proof. ho = go = h, : Spec(R(X,)) + Spec(R) is surjective. Moreover, g, = ho 0 ... 0 
h,_loh, for each nzl. Now, R(X,,...,X,+,)=R(X,,...,X,)(X,+,) for each d 
[l, Lemma], and so each hi is surjective. Thus, each g, is surjective. Both (1) * (3) 

and (4) * (2) now follow easily. Also, (3) * (4) trivially. Thus, it suffices to show 

that (2) * (5) * (1). 

Let n?l and put S=R(X,,..., X,-i). We have the following chain of equiva- 

lences: 

h, is an injection 

H h, is a bijection (by Theorem 2.7) 

H R(X,, . ..) X,)’ is a Prufer domain (by Theorem 2.7) 

H S(X,J’ is a Prufer domain (by the result recalled from [l] above) 

H S’(X,,) is a Prufer domain (by Proposition 2.6(a)) 

* S’ is a Prufer domain (by [21, Theorem 33.41) 

* h,-, is an injection (as above) 

H h,-, is a surjection (as above). 

By iterating the above argument and appealing to Theorem 2.7, we find that 

(2) * (5) * (1). q 

The next main result answers the introduction’s motivating question. 

Theorem 2.10. For a domain R, the following conditions are equivalent: 
(1) R(X) is treed; 
(2) R is treed and the canonical map Spec(R(X)) + Spec(R) is a bijection; 
(3) R is treed and R’ is a Priifer domain; 

(4) R(X,, . . . . X,,) is treed for some n 2 1; 

(5) R(X,, . . . . X,) is treed for each n 2 1. 

Proof. (1) * (2) by Proposition 2.2(a),(c). 

(2) * (1). Deny. Then some maximal ideal Mof R is such that MR(X) contains 

incomparable primes Q,, Q2 of R(X). Put qi = Qi n R[X]. As qi CM[X], it follows 

from condition (5) in Theorem 2.7 that qi= P,[X] for some P;~spec(R). Since 

Qi = q;R(X) = P, R(X), it follows that P, and P2 are incomparable. As Pi = qi fl R C 
MR(X) n R =M, this contradicts the hypothesis that R is treed. 

(2) CJ (3). Invoke Theorem 2.7. 

Thus, (1) e (2) ej (3). 

Before completing the proof, we note one upshot of the proof of Corollary 2.9. 

To wit: R’ is a Prufer domain e R(X,, . . . . X,)’ is a Prufer domain for some d 2 
1 H R(X,,..., X,)’ is a Priifer domain for each d 2 1. 

In order to complete the proof, it now suffices to establish the following asser- 

tion. If n 22, then R(X,, . . . , X,) is treed if and only if S = R(X,, . . . , X, _ t) is treed 
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and R’ is a Priifer domain. Now, by the one-variable case established above, 

R(X,, . . . . X,) = S(X,) is treed if and only if S is treed and S’ is a Prufer domain. 

But, by the above ‘upshot’, S’ is a Prufer domain if and only if R’ is a Prufer do- 

main. 0 

Remark 2.11. The conditions mentioned in Theorem 2.10(3) are independent. First, 

to see that “R is treed” does not imply “R’ is a Prufer domain”, consider an (one- 

dimensional, integrally closed) example such as 0 + XQ( Y) [ [Xl]. Secondly, 129, 

Example 2.281 presents a two-dimensional example showing that “R’ is a Prufer 

domain” does not imply “R is treed”. 

Following [12], we say that a domain R is a going-down domain in case RC T 
satisfies GD for each domain T containing R; according to [20, Theorem 11, atten- 

tion may be restricted to valuation overrings T of R. Each Prufer domain is a going- 

down domain, as is each one-dimensional domain. Each going-down domain is 

treed [12, Theorem 2.21; according to an example of W.J. Lewis (cf. [16, Remark 

2.1(a)]), the converse is false. We next present a ‘going-down’ analogue of Theorem 

2.10. 

Corollary 2.12. For a domain R, the following conditions are equivalent: 
(1) R(X) is a going-down domain; 
(2) R is a going-down domain and the canonical map Spec(R(X)) + Spec(R) is 

a bijection; 
(3) R is a going-down domain and R’ is a Prtifer domain; 

(4) R(X,, . . . . X,,) is a going-down domain for some n 2 1; 

(5) R(X,, . . . . X,) is a going-down domain for each n 11. 

Proof. (2) H (3) follows directly from Theorem 2.7. Next, recall that each going- 

down domain is treed. To show that (1) * (2), it suffices (by Theorem 2.10) to show 

that if R(X) is a going-down domain, then so is R. Consider a valuation overring 

I/ of R, prime ideals PCM of R, and a prime N of V such that Nfl R =M. Let I/* 

be the trivial extension of V (cf. [21, p. 401]), viewed as usual as a valuation overring 

of R(X). Let Z be the prime of V* such that Zfl V= N. Note that Zn R(X) =MR(X) 
since (Zn R(X)) n R =Mand Spec(R(X)) + Spec(R) is injective. As R(X) c V* satis- 

fies GD, Z contains a prime J of V* such that .Ztl R(X) = PR(X). Hence Q = Jtl V 

is a prime of V such that QcN and Q n R = P. It follows that R c V satisfies GD, 

and so R is a going-down domain. Hence, (1) * (2). 
Next, we assume (2) and shall derive (1). By Theorem 2.7, ‘test data’ consist of 

primes PR(X)cMR(X) of R(X), arising from primes PCM of R, and a valuation 

overring (W,Z) of R(X) such that In R(X) =MR(X). Consider I/= WfI K, where 

K is the quotient field of R. Then V is a valuation (hence Prufer) overring of R, 
with maximal ideal N= Z tl V’. Note that N tl R = M. As R C V satisfied CD, N con- 

tains a prime Q of V such that Q fl R = P. Now, since V is a going-down domain, 

Vc Wsatisfies CD, producing a prime Jof Wsuch that JcZand Jfl V= Q. Observe 
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that Jfl R(X) = RR(X) since (Jtl R(X)) fl R = P and Spec(R(X)) -+ Spec(R) is 

injective. Hence R(X)c W satisfies CD, and so R(X) is a going-down domain. It 

follows that (2) * (1). Thus, (1) # (2) e (3). 

The equivalences involving (4) and (5) may now be established by repeating the 

last paragraph of the proof of Theorem 2.10, with ‘treed’ being replaced by ‘a 

going-down domain’. 0 

Examples going back to Krull show that an integrally closed treed domain need 

not be a Prufer domain. (In fact, the first ring noted in Remark 2.11 illustrates this 

too.) The next result shows that no such example is a Nagata ring. 

Corollary 2.13. For a domain R, the following conditions are equivalent: 
(1) R(X) is integrally closed and treed; 
(2) R(X) is an integrally closed going-down domain; 
(3) R is integrally closed and R(X) is treed; 
(4) R is integrally closed and R(X) is a going-down domain; 
(5) R is a Priifer domain. 

Proof. It is well known (and easy to see) that R(X) n K= R, where K is the quotient 

field of R. Hence, if R(X) is integrally closed, so is R. The converse also holds: just 

apply Proposition 2.6(a). In other words, R(X) is integrally closed if and only if 

R is integrally closed. Thus, (1) tl (3); and (2) # (4). By Corollary 2.12, (5) * (4). 

Moreover, since going-down domains are treed, (4) =) (3). It suffices now to estab- 

lish that (3) * (5), and an appeal to Theorem 2.10 accomplishes this. 0 

The next result gives another characterization of treed Nagata rings in the context 

of going-down domains. Following [6], we say that a domain R is catenarian if, for 

each pair PC Q of prime ideals of R, all saturated chains of prime ideals from P to Q 

have a common finite length. If R is a Cohen-Macaulay domain, then R [X1, . . . ,X,1 

is catenarian for each n L 0. If R [X] is catenarian, then R is a strong S-domain [6, 

Lemma 2.31. Note that if R is catenarian, then R is locally finite-dimensional (or 

LFD, for short), in the sense that each maximal ideal of R has finite height. 

Corollary 2.14. Let R be an LFD going-down domain. Then the following condi- 
tions are equivalen I: 

(1) R[X] is catenarian; 

(2) R[X,, . . . . X,,] is catenarian for each n 2 1; 

(3) R is a strong S-domain; 
(4) R ’ is a Priifer domain ; 

(5) R(X) is a going-down domain; 
(6) R(X) is treed. 

Proof. Using INC, one sees easily that R’ is LFD. Hence, (2) * (4) follows from 

[6, Theorem 6.21. Trivially, (2) = (1); and we recalled above that (1) * (3). More- 
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over, (3) ($ (2) by [7, Theorem I]. Also, (4) 9 (5) by Corollary 1.12. Finally, since 

going-down domains are treed, Theorem 2.10 yields (4) H (6). 0 

Remark 2.15. (a) In the absence of a ‘going-down’ hypothesis, the conditions 

in Corollary 2.14 are not equivalent. Indeed, consider a local Cohen-Macaulay 

domain R of dimension at least 2. Then R is LFD and R[X,, . . . ,X,] is catenarian 

for each n 2 1. However, R(X) is not treed, by Proposition 2.2(a), since a treed 

Noetherian domain has dimension 51 (cf. [25, Theorem 1441). 

(b) Following [29], we say that a domain R is an open domain in case the canoni- 

cal continuous map Spec(T) --f Spec(R) is open for each domain T containing R. 

Each open domain is a going-down domain, but the converse is false (cf. [29, 

Theorem 3.161). We can now state another result in the spirit of Theorem 2.10 and 

Corollary 2.12. For a domain R, the following five conditions are equivalent: 

(1) R(X) is an open domain; 

(2) R is an open domain and the canonical map Spec(R(X)) + Spec(R) is a bi- 

jection; 

(3) R is an open domain and R’ is a Prufer domain; 

(4) R(X,, . . . . X,) is an open domain for some n 2 1; 

(5) R(X,, . . . . X,) is an open domain for each n 2 1. 

To obtain a proof, one can show (1) # (2) # (3) by combining the characteriza- 

tion of open domains in [29, Theorem 3.161 with Corollary 2.12 and Theorem 2.7; 

and then establish the equivalences involving (4) and (5) as in Theorem 2.10, mutatis 

mutandis. 

Before we develop additional results in the spirit of Theorem 2.10, it is convenient 

to recall the following material. As in [19], a domain R is said to be a universally 
going-down domain in case the inclusion map R + T is a universally going-down 

homomorphism for each domain T containing R. Each Priifer domain is a univer- 

sally going-down domain, but not conversely [19, Remark 2.5(a)]. In fact, a domain 

R is a universally going-down domain if and only if R* is a Prtifer domain (cf. [19, 

Theorem 2.41). 

Following [29], we say that an extension R C T of domains is an i-extension in case 

the canonical map Spec(T)+ Spec(R) is an injection. A domain R is called an 

i-domain if R C T is an i-extension for each overring T of R. Each universally going- 

down domain is an i-domain [19, Proposition 2.2(b)], but not conversely [19, 

Remark 2.5(c)]. Each i-domain is a going-down domain (cf. [13, Corollary 2.3; 29, 

Corollary 2.13]), but not conversely (cf. [29, Proposition 2.231). A domain R is an 

i-domain if and only if R’ is a Prtifer domain and RcR’ is an i-extension [29, 

Proposition 2.141; equivalently, if and only if Rh is a valuation domain for each 

maximal ideal A4 of R (cf. [29, Corollary 2.151). 

Corollary 2.16. Let R be a domain. Then: 

(a) R(X) is a universally going-down domain if and only if R is a universally 
going-down domain. 
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(b) R(X) is an i-domain if and only if R is an i-domain. 

Proof. (a) We have the following equivalences: 

R(X) is a universally going-down domain 

@ R(X)* is a Prtifer domain (by [19, Theorem 2.41) 

# R*(X) is a Priifer domain (by Proposition 2.6(c)) 

% R* is a Priifer domain 

# R is a universally going-down domain. 

(b) We noted in the proof of Theorem 2.10 that R(X)’ is a Priifer domain if and 

only if R’ is a Priifer domain. Moreover, if R’ is a Priifer domain, then Theorem 

2.7 shows that R C R(X) is an i-extension. This in turn implies that if Q E Spec(R’), 

then QR’(X) fl R(X) = (Qfl R)R(X). Thus, if R’ is a Prtifer domain, then R(X)c 
R(X)‘= R’(X) is an i-extension if and only if R c R’ is an i-extension. We therefore 

have the following equivalences: R(X) is an i-domain * R(X)’ is a Priifer domain 

and R(X) c R(X)’ is an i-extension # R’ is a Priifer domain and R c R’ is an i-exten- 

sion # R is an i-domain. 0 

Remark 2.17. The interested reader can use the criteria recalled above to develop 

several other proofs of Corollary 2.16(b). We next sketch one such proof. It is 

known that R(X),(,) = RM(X) for each maximal ideal M of R (cf. [ll, Proposi- 

tion l(3)]). But R(X)hRC,)=Rh(X) is a valuation domain if and only if Rh is a 

valuation domain (cf. [21, Theorem 33.4 and Proposition 33.1(3)]). Universally 

quantifying over A4 completes the proof. 

The material recalled above includes the implications 

Prufer domain * universally going-down domain 

* i-domain * going-down domain * treed domain; 

and the fact that none of these implications is reversible in general. We next show 

that these implications’ converses remain false even when attention is restricted to 

Nagata rings. 

Examples 2.18. (a) A universally going-down domain of the form R(X) need not 

be a Priifer domain: by Corollary 2.6(a) and [21, Theorem 33.41, it suffices to take 

R to be a universally going-down non-Prufer domain. 

(b) Similarly, Corollary 2.16 leads to an i-domain of the form R(X) which is not 

a universally going-down domain. 

(c) Next, recall that [29, Example 2.171 constructs a one-dimensional Noetherian 

domain R such that R c R’ is not an i-extension. By Corollary 2.16(b), R(X) is not 

an i-domain. However, according to Corollary 2.12, R(X) is a going-down domain, 
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since R is a going-down domain and R’ (being a Dedekind domain) is a Prufer 

domain. 

(d) Finally, we produce a domain R such that R(X) is a treed domain which is 

not a going-down domain. According to Theorem 2.10 and Corollary 2.12, this 

means finding a treed domain R such that R’ is a Prufer domain and R is not a 

going-down domain. A two-dimensional domain R with these properties is de- 

veloped in [16, Example 2.31. 

We close this section with some material on completions. As in [21, section 321, 

if R is an integrally closed domain, then the completion Rb is the minimum 

Kronecker function ring of R. Part of the next (easy) result was implicit in the proof 

that (7) * (5) in Theorem 2.7. 

Proposition 2.19. For a domain R, the following conditions are equivalent: 
(1) R is integrally closed and the canonical map g : Spec(Rb) + Spec(R) is a bi- 

jection; 
(2) R is a Priifer domain. 

Proof. As in [17], if D is a domain, we let X(D) denote the set (actually, spectral 

topological space) of all valuation overrings of D. According to the natural transfor- 

mation established in [17, Corollary 4.5(b)], there is a commutative diagram 

F 
X(Rb) - Spec(R b, 

G I I g f 
X(R) - Speck) 

(We have assumed, without loss of generality, that R is integrally closed. F (resp., 

f) sends a valuation domain to its center on Rb (resp., R).) Now, G is an isomor- 

phism (cf. [21, p. 4041); and F is an isomorphism since Rb is a Prtifer domain. 

Hence, g is an isomorphism if and only iffis an isomorphism. Thus, by [17, Propo- 

sition 2.21, (1) holds if and only if R is a Prufer domain. 0 

A result of Arnold and Brewer [4] states that an integrally closed domain R is a 

Prufer domain if and only if Rb is a flat R[X]-module. Our next result recovers, 

and sharpens, this assertion. 

Theorem 2.20. Let R be an integrally closed domain. Then the following conditions 
are equivalent: 

(1) The inclusion map R + Rb is a universally going-down homomorphism; 
(2) Rb is a flat R-module; 
(3) R is a universally going-down domain; 
(4) The inclusion map R[X] + Rb is a universally going-down homomorphism; 
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(5) Rb is a flat R[X]-module; 

(6) R is a Priifer domain. 
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Proof. (6) * (3) by [19, Theorem 2.41 since R=R’ forces R*=R. 

(3) * (1). Trivial. 

(6) * (5). If R is a Priifer domain, then Rb= R(X) [21, Theorem 33.41, which is 

a ring of fractions of, and hence flat over, R[X]. 

(5) * (4). Any flat homomorphism is universally going-down (cf. [18, p. 4181). 

(4) * (5). Any universally going-down overring extension of an integrally closed 

domain must be flat [ 15, Theorem 31. 

(5) * (2). R[X] is R-free (hence R-flat). Thus, if Rb is R[X]-flat, then Rb is 

R-flat. 

(2) * (1). Flat implies universally going-down. 

(1) * (3). Assume (1). According to [18, Corollary 2.31 and [19, Theorem 2.61, 

it suffices to show that A = R [X,, . . . , X,] C B = V[X,, . . . ,X,?] satisfies GD for each 

valuation overring I/ of R and each positive integer n. Consider prime ideals PC A4 

of A and a prime N of B such that NnA =M. Let D= V*[X,, . . ..X.], where V* 

is the trivial extension of V. Since I/* is a faithfully-flat V-module, Dr V*oV B is 

a faithfully flat B-module. In particular, there exists ZE Spec(D) such that Zn B =N; 

hence, ZflA =M. 

Put E=Rb[X1, . . . . X,]. Since Rb is a Priifer (hence, universally going-down) 

domain, EcD satisfies GD. Moreover, AcEzA OR Rb satisfies GD since, by 

hypothesis, R + R b is universally going-down. Thus, A CD satisfies GD. This pro- 

duces JE Spec(D) such that JcZ and Jfl A = P. Then Q = .Zfl BE Spec(B) satisfies 

Qclv and Qn A = P. Hence, A C B satisfies GD. 0 

By formally taking n = 0 and deleting “universally” in the preceding proof that 

(1) * (3), we obtain a proof of the following assertion. An integrally closed domain 

R is a going-down domain if (and only if) R C R b satisfies GD. 

3. Results on R(X) 

This section discusses topics for R(X) (where R is a domain) analogous to those 

considered for R(X) in Section 2. One striking difference in behavior is this: the 

canonical map Spec(R(X))-+ Spec(R) is injective (if and) only if R is a field. 

Indeed, if rE R is a nonzero nonunit, then (rX- l)R(X) is a prime of R(X) that 

meets R in 0 (cf. [5, Exercise 15(a), p. 5491). Another way in which R(X) behaves 

differently from R(X) is given in Theorem 3.2: R(X) is treed if and only if R(X) 

is a going-down domain. (Contrast this with Examples 2.18(d).) First, we record 

some useful material from [8]. Note that Lemma 3.1(a) is due independently to 

LeRiche [26, Theorem 2.11. 
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Lemma 3.1. (Brewer-Costa [S, Lemma 1, Theorem l(i)]). Let R be a domain. Then: 
(a) dim(R(X)) = dim(R [Xl) - 1. 

(b) R(X) is a Priifer domain ifand only ifR is a Prtifer domain and dim(R)< 1. 

Theorem 3.2. For a domain R, the following conditions are equivalent: 
(1) R(X) is treed; 
(2) R(X) is a going-down domain; 
(3) dim(R(X)) I 1; 

(4) dim(R [Xl) 52; 

(5) R’ is a Prtifer domain and dim(R)< 1. 

Proof. (4) H (3). Invoke Lemma 3.1(a). Moreover, (3) * (2) * (1) on general principles. 

(1) * (5). Suppose that R(X) is treed. Since RC R(X) c R(X), we see that R(X) 
is a ring of fractions of R(X), and so R(X) is treed. Then, by Theorem 2.10, R’ 
is a Prufer domain. It remains to show that dim(R) I 1. Deny, and choose nonzero 

prime ideals PCQ of R. Pick r E Q\P. By [5, Exercise 15(a), p. 5491, PI = 
(rX - 1) E Spec(R [Xl). Similarly, N = P[X] + P, E Spec(R [Xl), since R [Xl/N z 
(R/P)[X]/(FX- 1). Observe that P, and P[X] are incomparable primes of R[X] 
which are both contained in N. This will contradict the fact that R(X) is treed, pro- 

vided we show that N survives in R(X). But if survival fails, some manic poly- 

nomial is in N, whence 1 E P+ RrC Q, a contradiction. 

(5) * (4). Assuming (5) and appealing to [21, Proposition 30.141, we have 

dim(R [Xl) = dim(R’[X]) = dim(R’) + I= dim(R) + 152. 0 

We next state an analogue of Corollary 2.13. Its straightforward proof may be 

fashioned from Lemma 3.1(b), Theorem 3.2, and the fact that R(X) integrally 

closed implies R integrally closed. 

Corollary 3.3. For a domain R, the following conditions are equivalent: 
(1) R(X) is integrally closed and treed; 
(2) R(X) is an integrally closed going-down domain; 
(3) R(X) is a Prtifer domain; 
(4) R is a Prtifer domain and dim(R) I 1. 

The next result is an analogue of Corollary 2.16. 

Corollary 3.4. Let R be a domain. Then: 
(a) R(X) is a universally going-down domain if and only if R is a universally 

going-down domain and dim(R) 5 1; 

(b) R(X) is an i-domain if and only if R is an i-domain and dim(R) I 1. 

Proof (Sketch). The proof is analogous to that of Corollary 2.16. In the proof of 

(b), one must note if dim(R)< 1 and R’ is a Prtifer domain, then R(X) C R’(X) is 
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an i-extension. This follows essentially because each upper of 0 in R [X] is lain over 

by only one upper of 0 in R’[X] (cf. [27, Theorem 2(i)]). 0 

In the spirit of Remark 2.17, we note that another proof of Corollary 3.4(b) may 

be built by observing that R(X) MRcxj = R,(X) for each maximal ideal A4 of R. 

Details are left to the interested reader. 

We saw in Theorem 3.2 that R(X) does not behave as Examples 2.18(d) might 

lead us to expect. We show next that the rest of Examples 2.18 does carry over to 

R(X). 

Examples 3.5. (a) A universally going-down domain of the form R(X) need not be 

a Prufer domain: by Corollary 3.4(a) and Lemma 3.1(b), it suffices to take R to be 

a one-dimensional universally going-down domain, as in [19, Remark 2.5(a)]. 

(b) Similarly, Corollary 3.4 shows that the domain R = IR + XC[[X]] in [19, 

Remark 2.5(c)] is such that R(X) is an i-domain but not a universally going-down 

domain. 

(c) Finally, a going-down domain of the form R(X) need not be an i-domain. 

Indeed, by Theorem 3.2 and Corollary 3.4(b), the ring in Examples 2.18(c) is such 

an R. Cl 

We close by pursuing additional analogies with Section 2. 

Remark 3.6. (a) Let R be a domain. If R(X) is treed, then R[X] is catenarian. 

(This may be regarded as an analogue of the implication (6) = (1) in Corollary 

2.14.) Indeed, under the given hypothesis, it follows from Theorem 3.2 that R[X] 

has dimension at most 2, and so is trivially catenarian. 

The converse, however, fails. To see this, let R be any valuation domain of finite 

dimension at least 2. Then R[X] is catenarian by Corollary 2.14, but Theorem 3.2 

shows that R(X) is not treed. 

(b) The analogue of Remark 2.15(b) asserts the following. If R is a domain, then 

R(X) is an open domain (if and) only if R is a field. The proof uses Theorem 3.2; 

the result that all open domains are semiquasilocal [29, Theorem 3.161; our earlier 

observation that (rX- 1) E Spec(R(X)) for each nonzero nonunit r E R; and the fact 

that any domain with only finitely many nonunits is a field. 
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