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Classes of Commutative Rings Characterized

by Going-Up and Going-Down Behavior.

DAVID E. DOBBS (*) - MARCO FONTANA (**)

1. Introduction and notation.

As chronicled in [7], the past decade has witnessed considerable
interest in various classes of commutative integral domains A for
which particular types of overring extensions A c B are assumed to
satisfy the going-down (GD) property, y often for homological or topo-
logical reasons. The present note represents the first contribution to
similar studies for arbitrary commutative rings A for which various
homomorphisms A - B are subjected to either GD or GU (going-up)
restrictions. The homomorphisms of particular interest are the cano-
nical ones, f p: A A, and gp: arising when P E Spec (A).
Although f, (resp., gp) always satisfies GD (resp., GU), it is evidently
restrictive to require that f p (resp., gp) satisfy GU (resp., GD). By
varying the kinds of prime ideals P for which such restrictions obtain,
we characterize rings A of (Krull) dimension zero (Proposition 2.1) ;
von Neumann regular rings (Corollary 2.2); certain rings of dimen-

sion at most 1 (Proposition 2.3); rings whose spectra are T,,-spaces
in the sense of [2] (Proposition 2.4); and those pm-rings, in the sense
of [6], whose spectra are T,-spaces in the sense of [2] (Proposition 2.5) )~
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(**) Indirizzo dell’A. : Università di Roma, 00185 Roma, Italy.
This work was supported in part by grants from the University of Ten-
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The second author wishes to thank the Department of Mathematics of the
University of Tennessee at Knoxville for its hospitality.
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The relations between the above sorts of rings are detailed in Remark 2.6.
Section 3 is devoted to a deeper study of the rings in Proposi-

tion 2.4, specifically the extent to which they differ from products
of 1-dimensional integral domains. Their characterization in Proposi-
tion 3.1 includes a condition whose delicate nature is reflected by the
analysis of three examples in Remark 3.3. In parts (a) and (b) of the
latter result, familiar subdirect products of 1-dimensional integral do-
mains and the construction in [14, section 4] are seen to lead to Baer
rings. Indeed, any Baer ring of dimension at most 1 satisfies the
conditions in Proposition 2.4. However, Remark 3.3 (c) presents a
new construction -in essence a modification, in the pullback spirit
of [8], of the topological method in [14]- which is of independent
interest, as it produces a Proposition 2.4-type of ring, necessarily
1-dimensional, which is not a Baer ring.

Throughout, all rings are assumed commutative, ring-homomor-
phisms are unital, the maps f p and gp are as above, dim denotes Krull
dimension, ht denotes height, and Area denotes the reduced ring cano-
nically associated to a given ring A.

The authors are indebted to Professor Akira Ooishi of Hiroshima

University for his comments about an earlier draft of this manuscript,
in particular for contributing Remark 2.6 ( e ) and for noticing the
restriction on characteristic in Remark 3.3 (a).

2. Characterizations of certain low-dimensional rings.

Our first result shows that 0-dimensional rings result when the

maps fp (resp., gp) are constrained to satisfy GU (resp., GD). The later
results in this section will be motivated by relaxing various of the
equivalent conditions also given in Proposition 2.1.

PROPOSITION 2.1. For a ring A, the following are equivalent:

(1) dim (A ) = 0,

( 2 ) each ring-homomorp h2sm f : A -~ B with domain A satisfies GD,

(3) gp satisfies GD, for each P E Spec (A),

(4) gp satisfies GD, for each nonminimal P E Spec (A),

(5) each ring-homorphism f: A -~ B with domain A satisfies G1J,

(6) f p satis f ies GU, for each P G spec (A),
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(7) f p sat2s f ies GU, for each nonmaximal P E Spec (A),

(8) gp zs flat, each nonminimal P E Spec (A).

PROOF. If dim (A ) = 0, it is evident that any ring-homomorphism
A - B must satisfy both GD and GU; i.e., (1) =&#x3E; (2) and (1) ~ (5).
Moreover, (2) ~ (3) =&#x3E; (4) and (5) =&#x3E; (6) =&#x3E; (7) trivially; and (1) + (8)
vacuously. Since flat maps always satisfy GD (cf. [7, Theorem 3.5]),
we also have (8) =&#x3E; (4), and so it remains only to establish the impli-
cations ( 4 ) I-&#x3E; (1) and ( 7 ) =&#x3E; (1).

We shall prove the contrapositive of (4) =&#x3E; (1). Indeed, if P c Q
are distict prime ideals of A, observe that gQ does not satisfy GD,
since no prime W of A/Q can satisfy (both W c Q/Q and) P.

Finally, if (7) holds and (1) fails, select distinct prime ideals
P c Q of A, and let h be the composite of the going-up maps
fp: A - Ap and Ap Then, h-1(0) = P, although no prime
ideal ‘~ of ApjP Âp can satisfy (both 0 c W and) h-’(W) = Q, con-
tradicting the fact that h satisfies G U. This completes the proof.

Much of [7], including the very definition of a going-down domain
[7, pp. 272-273], was motivated by the result that flat maps satisfy
GD (a result that was also used in the preceding proof). Accordingly,
in view of conditions (3) and (8) in Proposition 2.1, it is natural to

ask which (0-dimensional) rings sustain flat gp’s. (Of course, f p is

always flat). Corollary 2.2 gives the answer. It can be viewed as an
extension of the result that a ring A is von Neumann regular if and
only if each A-module is A-flat ([3, Theorem 1] and [9, Theorem 5];
cf. [4, Exercice 17, p. 64]).

COROLLARY 2.2. A ring A is von Neumann regular if, and only
if, gp is flat for each P E Spec (A).

PROOF. It is well known that A is von Neumann regular if and

only if both dim (A) = 0 and A is reduced (cf. [4, Exercice 16 (d),
p. 173]). By Proposition 2.1 and the above remarks, we need only
to show that A is reduced whenever each gp is flat. If this fails, select
a nonzero element b E A such that b2 = 0, and set I == ~a E A : ab = 01.
As 1 f! I, we may choose Q E Spec (A) such that I c Q. Since A/Q is

A-flat by hypothesis, we have a monomorphism h: 
given by for all al , a2 E A. Evidently,
the prime Q contains b since &#x26; e 7, and so h is the zero-map, whence
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Thus, I + Q = A, although I + Q = Q, the desired contradiction, to
complete the proof.

In view of Corollary 2.2, Proposition 2.3 is motivated by sub-
jecting fewer to the assumption of flatness. By further weak-
ening such flatness to assumptions of GD, one then motivates the
study of the rings in Proposition 2.4.

PROPOSITION 2.3. For a ring A, the following are equivalent:
(1) gp is flat, for each nonmaximal P E Spec (A. ) ;

(2) For each maximal ideal P of A, either ht (P) = 0 or A p is
a 1-dimensional integrali domain.

PROOF. Since (1) and (2) each hold in case dim (A. ) = 0, we may
assume that dim (A ) &#x3E; 0. By standard localization-globalization the-
ory (cf. [4, Proposition 11, p. 91; Corollaire, p. 116] ), we may further
reduce to the case A quasilocal, with maximal ideal P. It now suf-
fices to show, for each nonmaximal prime ideal Q of A, that gQ is flat
if and only if Q = 0.

It will be convenient to introduce the following notation. For

b E A, set and 

Now, gQ is flat if and only if the induced map 
is a monomorphism for each ideal I of A. Since I &#x26;A IIQI,
the typical element of I OA AIQ is a indecomposable tensor b 0 a + Q
(for some b E I, a E A) ; and so gQ is flat if and only if Ab OX A AIQ 
is a monomorphism for each b E A. By using standard isomorphisms
as in the proof of Corollary 2.2, we see that the latter condition is

equivalent to: + Q) - A/Q is a monomorphism for each b E A.
As the map in question sends the typical coset a + J, -I- Q to ab + Q,
we see that the preceding condition is itself equivalent to: .Kb c J~ + Q
for each b E A. However, .Kb = Q if b E .A - Q (since Q is prime);
and gb = A if b E Q. Thus, gQ is flat if and only if A c Jb + Q for
each b E Q. Since Q c P, this last condition is evidently equivalent
to the requirement that J5 = A for each b E Q, i.e. to Q = 0, which
completes the proof.

PROPOSITION 2.4. For a ring A, the following are equivalent:
(1) gp satisfies GD, for each nonmaximal P E Spec (A) ;
(2) dim (A ) ~ 1 and each prime ideal of A contains a unique mi-

nimal prime ideal.
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PROOF. Assume (2), and let P E Spec (A) be nonmaximal. If gp
is to be tested for GD, we may take distinct prime ideals Ql c Q2
of .A., and seek a prime ideal of A/P satisfying both W C Q2/P
and = Qt. Now, Q, is a maximal ideal since dim (A)  1, and
so P. Therefore, P and Q, are each minimal primes contained
in Q2 , whence P = QI by hypothesis. Then, W = 0 satisfies the re-

quired conditions, thus proving (2) ~ (1).
Conversely, y assume ( 1 ) . To see that dim (A ) 1, notice that the

existence of a chain Pl c P c P2 of distinct prime ideals in A would
ensure that gp does not satisfy GDy since no prime W of A/P can
(be within P2/p and) satisfy gP I ( ~~’) = Pl . Hence, if a prime Q of A
were to contain distinct minimal primes Q, and Q2’ observe that 
would have no prime V’ satisfying both and = Q2’
contrary to the hypothesis that satisfies GD. Thus, (1) =&#x3E; (2), and
the proof is complete.

Consideration of condition (1) in Proposition 2.4 might just as

well have been suggested by modifying the types of gp’s for which
GD is required in condition (4) of Proposition 2.1. A similar modi-
fication of the kinds of f p’s for which GU is specified in condition (7)
of Proposition 2.1 leads naturally to condition (1) in the next result.

PROPOSITION 2.5. For a ring A, the following are equivalent:

(1) f p satis f ies GU, f or each nonminimal P E Spec (A),

(2) dim (A) c 1 and each prime ideal of A is contained in a unique
maximal ideal.

PROOF. Assume (2), and let P E Spec (A ) be nonminimal. If f P
is to be tested for GU, we may take distinct prime ideals Q, c Q2
of A, and seek a prime ideal W of Ap satisfying both c W’ and

f p1 ( W ) - Q2’ Now, P, being nonminimal, must be maximal since

dim (A) - 1. Similarly, y Q2 is also maximal. Therefore, P and Q2 are
each maximal ideals containing Ql, whence P - Q2 by hypothesis.
Then, W = PAp satisfies the required conditions, thus proving (2) ~ (1).

We omit the proof that (1) =&#x3E; (2), as it also parallels the corre-
sponding portion of the proof of Proposition 2.4.

We close this section by describing the relations between the above
types of rings.

REMARK 2.6. (c~) First, although the above results were motivated
by GD- and GU-theoretic considerations, it is interesting to note that
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the most of rings involved may be characterized using topological
notions. Indeed, let A be a ring, and let X = Spec (A) equipped
with the usual Zariski topology (cf. [4, p. 125]). One has the fol-

lowing dictionary:

(For the definitions of Tys- and T,-spaces, see [2, pp. 30-31].) In

fact, the first assertion is trivial, the second is elementary (cf. [5,
Prop. 16]), and the third is a consequence of the following citations.
Each prime ideal of A is contained in a unique maximal ideal if and
only if X is a normal space [6, Theorem 1. 2 ] ; and dim (A)  1 if and

only if X is a T,-space [5, Prop. 6].

(b) It will be convenient to let A i denote the statement «the
ring A satisfies the conditions in Proposition (or Corollary) 2.i)&#x3E;.
We may take as evident the implications and 
=&#x3E; A3 =&#x3E; A4. The next (five) examples serve to show that no further
implications obtain among the A~’s.

A2 : Consider any Artinian local ring which is not a field
such as where T is an indeterminate over the field K.

A4 p A3 : It is enough to produce a 1-dimensional quasilocal ring
which is not an integral domain but has a unique minimal prime
ideal. To this end, let B be a ring of the type considered in the pre-
ceding paragraph, let P be the maximal ideal of B, let Y be an inde-
terminate over B, and then note that B[Y](p,,) satisfies the required
conditions (cf. [11, Theorem 38]).

A51~ ~4: It is enough to produce a 1-dimensional quasilocal ring
with precisely three prime ideals. There are several ways to find such
a ring. Here are three such. Appeal to [13, Theorem 2.10]; or con-
sider the pullback .R XkR, where 1~ is a 1-dimensional quasi-local ring
with residue field k (cf. [8, Theorem 1.4] ) ; or let U, V be algebraically
indipendent indeterminates over a field let S = V]f( 
= v] and consider ~’(~,~~.
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A;5: It is enough to consider any 1-dimensional integral do-
main, which is not quasilocal (for example, Z).

Ai: Consider any 1-dimensional integral domain (for ex-

ample, Z).

(c) Since Spec (Area) = Spec (A ) as topological spaces for any
ring A, it is of some interest to ask questions analogous to those
in (b) for reduced rings. Certainly, the final three examples in (b)
persist, since the presented rings are reduced. However, the first

example in (b) cannot carry over, as we recalled earlier that any
0-dimensional reduced ring must be von Neumann regular. Most

interestingly, the second example in (b) also fails to carry over. Indeed,
if A is reduced ring, then A4 ~ A3.

To prove the preceding assertion, let A be a 1-dimensional reduced
ring, let P E Spec (.A ) have height 1, and let Q be the unique minimal
prime contained in P. Since Ap is reduced, 0 = QAp E Spec (A,), so
that Ap is a 1-dimensional integral domain, as desired.

The main purpose of section 3 will be a deeper analysis of the

rings satisfying the conditions in Proposition 2.4. Because of the

preceding remarks, reduced rings will figure prominently in section 3.

(d) We next record the facts underlying the above proofs of

Proposition 2.4, Proposition 2.5, and the implications (4) =&#x3E; (1) and
(7) =&#x3E; (1) in Proposition 2.1. If P E Spec (A), then gp satisfies GD

(resp. f p satisfies GU) if and only if, whenever prime ideals Q and W
of A are such that W contains (resp., is contained in) both P and Q,
it follows that P c Q (resp., Q c P) . These assertions may be proved
by reasoning as above, using the nature of the primes in A/P (resp., Ap).
The interested reader may also wish to check how these assertions
lead to proofs of the above-cited results.

(e) Professor Akira Ooishi has communicated to us the following
sharpening of Corollary 2.2. A ring A is von Neumann regular if

(and only if) gM is flat for each maximal ideal lVl of A . (One proof
of this uses the fact that each gM satisfies GD, as characterized in (d)
above, to conclude that dim (A) = 0, and then follows the lines of

the earlier proof of Corollary 2.2, taking Q maximal in that proof).
Professor Ooishi has also noted that both Corollary 2.2 and Proposi-
tion 2.3 are consequences of the following observation, of indepen-
dent interest. If an ideal I of a ring A is contained in the Jacobson
radical of A and if A~I is A-flat, then 1 == 0.
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3. Subdirect product and Baer rings.

In case A is an integral domain, the conditions in Proposition 2.1
and Corollary 2.2 each reduce to A a field; in each of Proposition 2.3
and Proposition 2.4, to dim (A) 1; and in Proposition 2.5, to A

quasilocal such that dim (A) 1-. Accordingly, it is natural to ask
to what extent arbitrary reduced rings of the earlier types resemble
products of such integral domains. This section begins by answering
this question for the class of rings characterized in Proposition 2.4.
The later work in this section will assume some familiarity with Baer
rings (as in, for example, [1]) and the construction of Lewis-Ohm
in [14, section 4].

PROPOSITION 3.1..Z’or a ring A, the following two conditions are
equivalent:

(1 ) A satisfies the conditions in Proposition 2.4, i.e., dim (A) c 1
and each prime ideal o f A contains a unique minimal prime
ideal,

(2) A.red is a subdirect product of a family {Bi: i E .I ~ of integral
domains such that:

(2a) dim (Bi) c 1 for each i E I, and

(2b) for each P E Spec (A), there exists a unique index i =

i(P) E I such that there is an A-algebra isomorphism
AlP and Bi = 0 whenever i =1= j E I.

PROOF. (2) =&#x3E; (1): Assume (2). Set For each i EI,

let Pi be the kernel of the surjective map obtained by composing the
inclusion map with the canonical projection B ~ Bi . Since

Bi and Pi = for a uniquely determined Qi E Spec (A),
it follows that We claim that is the set of

minimal prime ideals of A.
Let P e Spec (A). For each k E I, we have Bk ~ + Qk).

Thus, by (2b), there exists a unique i = E I such that P + Q i ~ A ;
and, moreover, one sees easily from the A-algebra isomorphism

--)-- that Qi c P. In particular, i whenever k
and t are distinct elements of I. We may conclude that each minimal

prime of A takes the form 
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Conversely, to show that each Q~ is a minimal prime, suppose
not, and consider distinct primes P c Qk in A. Selecting i = i(P) as
in the preceding paragraph leads to Q £Qk and P + Q, ~ A # P + 
contradicting the uniqueness of i(P). These comments serve to estab-
lish the earlier claim, and actually set up a bijection between I and
the collection of minimal primes of A.

Finally, y (1) now follows from the observation that

since, by (2c~), we have dim 

(1) =~ ( 2 ) : The preceding argument shows the way we must go.
Let ~Qi : i c-11 be an indexing for the collection of minimal primes

of A, each such prime corresponding to a unique index. Set Bi =
= AlQi i and B B i . The canonical map - B is an injec-
tion since r1 Qi = and so Ared is evidently a subdirect product
of {Bi: i E 11. As it is now straightforward to use the above ideas
in order to infer (2a) and (2b) from (1), we omit the details, com-
pleting the proof.

The preceding proof shows that the relevant subdirect product
structure is essentially determined by A. The next result treats some
additional aspects of that structure.

COROLLARY 3.2. With the assumptions and notations of Proposi-
tion 3.1, we have the following:

(a) For each i E I, Bi . If i and j are distinct ele-

ments of I, then = 0.

(b) If hi : A + Bi denotes the canonical surjection for each i E I,
then Spec (A) is the disjoint union o f (Bi) ) : i E 11.

(c) The map A - B, obtac2ned by composing the canonical sur-
jection A - Area with the inclusion Ared - B, satisfies the

lying-over property.

PROOF. In view of the foregoing material, the details for ( a ) and ( b )
may safely be omitted. As for (c), let f denote the relevant map
A - B. Our task is to show that f -1: Spec (B) - Spec (A) is sur-

jective. To this end, consider P E Spec (A). Let i = i(P), so that

Qi c P. For ease of notation, we may assume I well-ordered, with
least element i. Let hi be as in the statement of (b), let P* =
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hi(P) e Spec (Bi) and set
. , - . , -

We claim that

Indeed, it is immediate from the definitions of P* and P’ that

f(P) c P’, that is, For the reverse inclusion, let x 
Then f(x) may be viewed as a pair (y, z), with g E P* Bj .

~~2

By the construction of P*, we have y = hi(v), for some How-

ever, y = hi(x) by the construction of f , and s o x - v E ker ( h i ) = Q i ,
whence x E P + Qi = P, completing the proof.

It is convenient next to recall the following definitions and related
facts. Let A be a ring. Min (A) denotes the set of minimal prime
ideals of A, equipped with the subspace topology inherited from the
Zariski topology on Spec (A). It is well known that Min (A) is a

Hausdorff space (cf. [1, p. 80]), but not necessarily compact. A is

said to be a Baer ring if the annihilator ideal of each element of A
is generated by an idempotent; i. e., if each principal ideal of A is

A-projective. Any (von Neumann) regular ring is a Baer ring. Any
Baer ring is reduced (cf. [12, Lemma 7.1], [1, Remark 1, p. 83]). More-
over, any Baer ring of dimension at most 1 satisfies the conditions in
Proposition 2.4, since Kist [12, Theorem 9.5] asserts that, if A is a

Baer ring, then each prime ideal of A contains a unique minimal
prime. Speed [15, Theorem 2.2] establishes the converse in the pres-
ence of an extra condition phrased in terms of annihilators. A most
helpful characterization for our purposes appears in Artico-Marconi

[1, Theorem, p. 83] (cf. also [16, Proposition 3.4] ) : A is a Baer ring
i f and onty if A is reduced, Min (A) is compact, and each prime ideal
of A contains ac unique minimal prime. Finally, we recall that any
product of integral domains must be a Baer ring [15, p. 259]; and
[15, Theorem 4.3] characterizes those Baer rings which are expres-
sible as products of integral domains.

Since a ring A satisfies the conditions in Proposition 2.4 if and

only if Area satisfies those conditions, the preceding observations lead
naturally to the following question. If A is a reduced ring satisfying
the conditions of Proposition 2.4 (equivalently, of Proposition 2.3),
must A be a Baer ring? As Remark 3.3 (c) will show, the answer is
negative in general, but we shall encounter some interesting examples
along the way.

REMARK 3.3 (a). To indicate the difficulty facing us (and the
adundance of Baer rings), we next sketch a result implying that the
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subring of n Zpz generated by is a Baer ring. To wit: if

D = fl Di is a product of family of integral domains Di each of

characteristic zero and if A is the (subdirect product) subring of D
generated by K = EÐ Di, then A is a Baer ring.

For the proof, we may take I infinite (lest A = D, a Baer ring by
earlier remarks). Solely for the ease of notation, take I = {1~ 2, 3, ...}.
Observe that the typical element of A is b = n + k, where n e Z
induces n = ( n, n, ...) CjD and k = (k,,, k2 , ... , ...}cK. Con-
sider the annihilator J = f a E A : ab = 0}. We shall show that J is

generated by an idempotent.
There are two cases to consider. First, suppose that n # 0. Define

e = (ei) E D by if and n ei = 0 otherwise.

Evidently, e = e2 E J. To show that J = Ae, note first that
if either or 

Thus each d E J satisfies d = de E Ae.
In the remaining case, n = 0, so that b = 7~ E K. Define e = (ei) E D

by e i = 0 if 1 c i c t and 0 ; e = 1 otherwise. Evidently, y e = e 2 E J.
Note that J = JI U J2 , y where

and

This explicit description of J now makes it easy to check that d = de
for each d E J, whence J = Ae, completing the proof.

(b) Since subdirect products of the sort in (a) are Baer rings
and it is difficult in any event to compute the dimension of such a
subdirect product, we turn next to a construction whose dimension
is easy to prearrange. Let I’ (resp., 1) be the set of positive (resp.,
nonnegative) integers. Consider mutually disjoint topological spaces
Xo = X. = X2 = ... , where is the only
nontrivial closed subset of X i . Let T be an indeterminate over a

field F. Set Rio = F and .Ri = for each i E 1’. Of course, we

have homeomorphisms Spec (Ri) ~ X and F-algebra homomorphisms
f i : for each i E I. Following Lewis-Ohm [14, p. 825], we con-
sider the subdirect product .R = Ir = ... ) ri = 

for all but finitely many i E 1’}. Lewis-Ohm have shown that Spec (.)
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is order-isomorphic to the ordered disjoint union of the sets X i , z E I
(and, by the proof of [14, Theorem 4.2], that R is a B6zout ring).
Thus .R is a reduced (1-dimensional) ring satisfying the conditions of
Proposition 2.4. We claim that .R is in fact a Baer ring.

By the earlier remarks, it is enough to show that lklin (.R ) is corn 

pact. As in [14], it is convenient to identify Xi with IP E Spec 
where Then Min (R) -

- ... 1. For the moment, fix Evidently, y Ai = Rei,
where ei = (1, 1, ... , 17 07 1, ...) is the idempotent of -B whose only
zero entry is in the i-th position. Thus, X = IP E Spec (.R) : 1- ei 0 P}
is a clopen subset of Spec (.R) . Since R/Ai = .Ri , the singleton set

{p i} is open in X i , 7 and so the denumerable set Y = p2 , ’"} is

a discrete subspace of Spec (.R). We claim that Min (R) is a one

point compactification of Y.
Since Min (R) is Hausdorff, any set of the form 7

... , where 1  ii  ...  7 is open in Min (~R). To complete
the proof, it is enough to show that each proper open subset of
Min (.R) which contains xo, must assume such a form. This however,
is a direct consequence of the conditions, found by Lewis-Ohm [14,
p. 827], and satisfied by each closed subset of Spec (.R) which does not
contain xo .

(c) As promised, we shall next construct a 1-dimensional reduced
ring S, in which each prime ideal contains a unique minimal prime,
such that S is not a Baer ring. In fact, Min (S) will be shown to be
a denumerable discrete space (and, hence, not compact). The reader

may wish to contrast the following construction with the Gillman-
Jerison technique (noted in [12, Theorem 9.4], [157 p. 258], [1, Re-
mark 3]): if X is a compact F-space which is not basically discon-
nected, then the ring C(X7 R) of continuous real-valued functions on X
is not a Baer ring, although each of its primes does contain a unique
minimal prime.

To construct S, we start with the ring .R constructed in ( b ) . By
a minor abuse of notation, let x,, and rnl denote the prime ideal of .Ro
and the maximal ideal of respectively. Let v denote the surjec-
tive composite

and let u : be the diagonal homomorphism. Set
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that is, 8 is the pullback of the diagram

More -concretely,

By virtue of [8, Theorem 1.4]. Spec (b~) is homeomorphic to the space
obtained by attaching Spec (F) to Spec (R), over the closed set

Spec (F X .F’), by the continuous map Spec (F x F) -+ Spec (.F’) . In fact,
Q = ker (v) = Ao r’1 ml e .R may be viewed as a prime ideal of S (also
satisfying Q = Q m 8 = Ao m 8 = /n1 m 8) sustaining a scheme-theore-
tic isomorphism

by [8, Theorem 1.4(d)]. This restricts to both a homeomorphism h
of the underlying topological spaces and an order-isomorphism g of
the corresponding posets (cf. [8, Corollary 1.5 (3)]). It is straight-
forward to verify that the only prime ideal of ,S, besides itself, that
Q is comparable with « is» pi; and that pI c Q, essentially because
m1 ~ p~ . Accordingly, g may be extended so that, qua poset, ’Spec (~S)
is just order-isomorphic to the ordered disjoint union of the sets Xi,
i E I’. (In other words, the passage from .R to S affects poset struc-
ture by identifying so with m1, as a ht 1 element containing no ht 0
element besides PI). Thus, all assertions except for the topological
nature of Min (8) are evident. However, the above information about
posets gives Min (8) ~ p2 , p3 , ...}== Y as sets. There is such a

bijection which is actually a homeomorphism: simply, restrict h. Since

it was shown in (b) that Y has the discrete topology, the proof is

complete.

(d) One should note that purely algebraic arguments suffice to
show that the ring 8 in (c) is not a Baer ring. (Althout one thereby
eliminates consideration of h and Y, the principal discussion, includ-
ing g, is still needed to show that S satisfies the conditions of Pro-

position 2.4). One such algebraic method is to verify that S does
not satisfy the conditions of Irlbeck [10, Theorem 1] characterizing
Baer rings. We shall choose instead the more direct path of producing
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an element s E S whose annihilator is not generated by an idempotent.
To this end, note first that the idempotents of S are of but two types:
(07 0, r2, r., ... , r., 0, 01 ... where whenever 2 c i c n ; and
(1, 1, 7’g, ... , r~, 1, 1, ...), where ri E {0, 1} whenever 2 c i ~ n. It is

easy to see that the element s = (0, T, 0, 0, ...) has the asserted

property.

(e) Finally, it may be of some interest to note the following
topological sufficient condition for a Baer ring. If the reduced ring A
satisfies the condition in Proposition 2.4, if B = fl Bi is the canoni-
cally associated product, as in Proposition 3.1 and Corollary 3.2,
and if the induced function Spec (B) - Spec (A) maps Min (B) into
Min (A), then A is a Baer ring.

To sketch the proof, one first uses the description Bi = A/Qi to
show that Min (A) is contained in the image of Min (B) and, hence,
by hypothesis, is that image. Next, Min (B) is compact, since B is
a product of integral domains. (We are indebted to W. Brandal for
his motivating observation that the minimal spectrum of a product
of denumerably many integral domains is homeomorphic to the Stone-
1ech compactification of the positive integers). Thus, Min (A), being
the Hausdorff continuous image of a compact space, is itself compact.
An application of the criterion of Artico-Marconi completes the proof.

In closing, we suggest that future studies of rings A along these
lines might well proceed by imputing GD to various injective homo-
morphisms with domain A. It is not clear at present how to choose
an interesting universe for codomains of such injections (as in [7, (4.1)]
for the case of integral domains). It is to be hoped that ensuing
studies will treat rings of arbitrary dimension.
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