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ABSTRACT. Let T be a domain of the form K + M, where K is a field and M is a maximal ideal
of T. Let D be a subring of K such that R D + M is universally catenarian. Then D is

universally catenarian and K is algebraic over k, the quotient field of D. If [K:k] < oo then T is

universally catenarian. Consequently, T is universally catenarian if R is either Noetherian or a

going-down domain. A key tool establishes that universally going-between holds for any domain
which is module-finite over a universally catenarian domain.
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1. INTRODUCTION.
All rings considered below are (commutative integral) domains. As in Bouvier et al [1], a ring

A is said to be catenarian if, for each pair P c Q of prime ideals of A, all saturated chains of primes
from P to Q have a common finite length; and A is said to be universally catenarian if the
polynomial rings A[X X,] are catenarian for each positive integer n. Let T be a domain of the
form K + M, where K is a field and M is a maximal ideal of T. Let D, with quotient field k, be a

subring of K; put R D + M. In order to develop a then-new class of universally catenarian tings,
Anderson et al [2] proved that if K is algebraic over k and both D and T are universally catenarian,
then R is universally catenarian [2, Corollary 2.3]. In [2, Corollary 2.4], they established the
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converse for a special case of the classical D + M construction (in the sense of Gilmer [3, Appendix
II]) in which T is assumed to be a valuation domain. This sequel to [2] is devoted to a deeper
study of that converse.

Specifically, we ask whether the universal catenarity of R implies that K is algebraic over k
and both D and T are universally catenarian. Affirmative answers are given in case R is

Noetherian (in Corollary 2.4) and in case R is a going-down domain (in the sense of Dobbs [4], in

Corollary 2.5). The latter result generalizes [2, Corollary 2.4] and, i.a., includes the case of (Krull)
dimension 1. Our general results may be summarized as follows. If R is universally catenarian,
then K is algebraic over k and D is universally catenarian (Proposition 2.1); and if, in addition,
[K:k] < o, then W is universally catenarian (Corollary 2.3).

Corollary 2.3 depends on an idea that was not anticipated in [2], namely that universally going-
between holds for any domain which is module-finite over a universally catenarian domain

(Proposition 2.2). As defined in section 2, "universally going-between" is a universalization of the
"going-between" property introduced by Ratliff [5]. The study of this property began with the
following question of Krull [6]. If A c B is an integral extension of domains such that A is

integrally closed, must each saturated chain of prime ideals of B contract to a saturated chain in A?
This ,question was answered in the negative by Kaplansky [7].

Throughout, T,K,M,D,k and R retain the meanings assigned above.
2. RESULTS.

It was established in [1, Theorem 5.1(a)] that the class of universally catenarian domains is the
largest class of catenarian domains with the following four properties: it is stable under factor
domains and localizations, and each of its members A satisfies dim,(A) dim(A) and the altitude
formula. The first three of these properties figure in the proof of Proposition 2.1; and the fourth is
central to the proof of Proposition 2.2.

PROPOSITION 2.1. Let R be universally catenarian. Then:
()
(b)
()

D is universally catenarian.
K is algebraic over k.
In order to determine whether T is universally catenarian, one may suppose that D k
and T is quasilocal. (This reduction replaces D with k and T with a localization, thus
possible changing M; K and k remain unchanged).

PROOF. (a) Since R/M
_

D, this assertion follows from the fact that the class of universally
catenarian domains is stable under factor domains [1, Corollary 3.3]. (b) and (c): We first
establish the reductions announced in the statement of (c). Let S D\ {0}. Evidently,
S-1R k + M, and so we may assume that D k without loss of generality. It follows that the
canonical map Spec(T) Spec(R) is a bijection. Indeed, it is a homeomorphism (for the Zariski
topology), and hence an order-isomorphism. (This may be seen by viewing R as the pullback

TxKk and applying [8, Theorem 1.4] of Fontana [8]).
Let Q be a maximal ideal of T other than M. (If no such Q exists, this paragraph and the next

one may be omitted.) Let P be the corresponding maximal ideal of R. We claim that TQ Rp.
This follows directly from [8, Theorem 11.4 (c)]. (Another instructive way to see this is to use the
above order-isomorphism to show that the saturation in T of the multiplicatively closed set R\P is

T\Q, and then conclude via [8, Proposition 1.9] that Rp TQXoO~ TQ. A similar proof shows

Rp--TR\P by direct calculation, and then invokes Gilmer [9, Corollary 5.2] to conclude that
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(TR\p= TO). Since being a universally catenarian domain is a local property, it follows from the

above claim that T(resp., R) is universally catenarian if and only if TM (resp., RM) is. We show

next that replacing R c T with RM C TM has no effect on k and K.
Consider the ring A k + MRM. This is a CPI-extension in the sense of Boisen-Sheldon [10];

namely, we have canonical isomorphisms

(This may also be seen computationally, as in several proofs in Dobbs [11]). Thus RM=k + MRM;
and, similarly, TM K + MTM. To complete the reduction (and the proof of (c)), it suffices to

show that MRM MTM. This follows by another application of [8, Proposition 1.9]. Indeed, we see

as above that T\M is the saturation in T of R\M, and so the cited result yields that RM " TMZKk.

Hence

It remains to establish (b). We have seen that T (and hence R k + M) may be taken quasilocal.

Now R, being (universally) catenarian, is locally finite-dimensional, hence finite-dimensional. Since

dim(R) dimvR by [1, Corollary 3.3], R is a Jaffard domain, in the sense of Bouvier and Kabbaj

[12] and Anderson et al [13]. An application of [13, Proposition 2.5] now yields that K is algebraic

over k, completing the proof.
It is convenient next to introduce a concept that was promised in the introduction. First,

recall from [6] that an integral extension A c B of rings satisfies going-between in case each

saturated chain of prime ideals of B contracts to a saturated chain in A; that is, in case

ht(Q./Q1)= for prime ideals Q1 c Q2 of B implies ht(P/Pl)= where Pi=Qif3A. (Of course,

P1 # P2, by virtue of INC: cf. Kaplansky [14, Theorem 44].) In the spirit of [1], we can now make

the following definition. An integral extension A C B satisfies universally going-between if

A[XI,...,X,] C B[XI,...,X,] satisfies going-between for each positive integer n.

The next result provides a key step. It is in the spirit of an observation of Kaplansky [7,
penultimate paragraph].

PROPOSITION 2.2. Let A c B be a module-finite (hence integral) extension of domains. If A
is universally catenarian, then A B satisfies universally going-between.

PROOF. Since A[Xa,...,X,] B[Xa,...,X,] inherits the assumptions on A C/3, it suffices to

show that A C B satisfies going-between. Consider primes Q1 c 2 of B such that ht(Q2/Q)= 1; put

P, O, fqA. Suppose there exists P s Spec(A) contained strictly between P1 and P2. Pass to the

extension D AlP C E T/Q1. Of course, D inherits universal catenarity from A [1, Corollary 3.3];
thus, D is locally finite-dimensional and satisfies the altitude formula [1, Corollary 4.8]. Moreover,
E is of finite type over D; and q O,2/Q meets D in iv P2/P. It follows from the altitude formula

(as defined in [1, page 29]), that

ht(q) ht(p) + t.d.D(E t.d.D/p(E/q).
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However, the transcendence degree terms are each 0, because of integrality; ht(q) by assumption;

and ht(p)> 2 since 0 P/P1 # P. This contradiction shows that no such P exists, completing the

proof.
We may now state our main result.
COROLLARY 2.3. Suppose that [K:k] < . Then R is universally catenarian if and only if

both D and T are universally catenarian.
PROOF. The "if" assertion is a special case of [2, Corollary 2.3] since K is algebraic over k.

For the converse, Proposition 2.1 (a) takes care of the assertion about D. Next, observe (directly or

via [8]) that [K:k] < implies (in fact, is equivalent to the fact) that T is module-finite over R.
Hence, B T[X Xn] is module finite over the universally catenarian domain A R[X Xn]. By
Proposition 2.2, A c B satisfies going-between. To show that T is universally catenarian, it suffices

to show that ht(Q2)= ht(Q)+ whenever Q1 c Q2 are adjacent primes of B, that is, whenever

ht(Q2/Q1) 1. Put P, Q, c a. By going-between, P and P2 are adjacent. Since A is catenarian, it

follows that ht(P2)= ht(P1)+ 1. It therefore suffices to show that hi(Q,)= ht(P,). This, in turn,
follows via the altitude formula, as in the proof of Proposition 2.2. This completes the proof.

We next consider two cases of special interest.

COROLLARY 2.4. Suppose that R is Noetherian. Then R is universally catenarian if and

only if both D and T are universally catenarian.
PROOF. By Corollary 2.3, it suffices to show that [K:k] < . Moreover, k + M is

Noetherian, since it is a ring of fractions of R. Thus, without loss of generality, D k. Now, if T
were quasilocal, we would have Spec(T) Spec(R) as sets, whence [K:k] < oo (by Anderson and

Dobbs [15, Corollary 3.29], for instance). However, we saw in the fourth paragraph of the proof of

Proposition 2.1 that replacing R c T with RM C TM has no effect on k c K; moreover, RM (resp.,

TM) is universally catenarian if R(resp., T) is. Thus, without loss of generality, T is quasilocal, and

the proof is complete.
COROLLARY 2.5. Suppose that R is a going-down domain. Then R is universally catenarian

(if and) only if K is algebraic over k and both D and T are universally catenarian.

PROOF. Since R is a going-down domain, so is its ring of fractions k + M. In view of

Proposition 2.1, we may assume D k and T is quasilocal; it remains only to show that T is

universally catenarian. Now, since R is a universally catenarian going-down domain, its integral
closure/t’ is a (finite-dimensional) Priifer domain, by [1, Theorem 6.2, (1) ==> (4)]. However, R’
is also the integral closure of T (except in the trivial case M O) since the algebraicity of K over k
assures that T is an integral overring of R. Moreover, T is a (finite-dimensional) going-down
domain because it has the same prime spectrum as the going-down domain R[15, Proposition B.2].
(In view of integrality, this also follows via Dobbs [16, Lemma 2.3].) Thus, by [1, Theorem 6.2, (4)
--> (1)], T is universally catenarian, completing the proof.

REMARK 2.6. (a) By easily adapting the above proof, one may obtain two variants of

Corollary 2.5. Without changing the conclusion, these alter the hypothesis about R to either "T is

a going-down domain" or "k + M is going-down domain." (b) We next sketch a proof of Corollary
2.5 which depends on Corollary 2.3. As before, we may take D k and T quasilocal. View T’ as

the directed union of the rings (F + M)’, where F is a finite-dimensional field extension of k inside

K. As above, each F + M is a going-down domain; moreover, F + M is universally catenarian by

Corollary 2.3. Hence, each (F + M)’ is a Priifer domain, and so is their directed union T’. (This
follows from a classic fact [9, Proposition 22.6], which also admits a direct limit generalization;
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three proofs of this generalization are given in Dobbs, et al [17].) As above, it suffices to show T is

a going-down domain; this, in turn, follows via [15] or [16] as above, or via [17, Corollary 2.7]. (c)
Despite (b), it need not be the case that a direct limit of universally catenarian domains is

universally catenarian. This has been noticed by Kabbaj [18, Chapitre IV, Exemple 3.5], as an

application of [1, Theorem 2.4 and Corollary 2.2], the pertinent directed union being uQ[X x,].
In view of Proposition 2.1 and Corollary 2.3, the question whether the universal catenarity of R

implies that of T may be studied with the assumptions D k, T quasilocal, and K infinite-

dimensional (and algebraic) over k. Our last result develops a new role for "universally going-
between" in this context. Notice that a new proof for Corollary 2.3 is available by placing an

appeal to Proposition 2.7 after the fifth sentence of the earlier proof.
PROPOSITION 2.7. Suppose that D k. Then the following conditions are equivalent:

(1) R is universally catenarian and R C T satisfies universally going-between;
(2) T is universally catenarian and K is algebraic over k.

PROOF. (1) ==> (2): Assume (1). By Proposition 2.1 (b), it only remains to show that
B= T[X X,,] is universally catenarian, where n is any positive integer. It suffices to prove

ht(Q2)=ht(Q)+ if Ol ( Q2 are primes of B such that ht(Q2/Q1)= 1. Put P,=Q,fA, where
A R[X,...,X,,]. Since R CT satisfies universally going-between, ht(P2/P1)= 1. Thus, since A is

catenarian, ht(P2) ht(P)+ 1. Hence, it suffices to show that ht(Qi) hi(P,).
If P, does not contain M[Xa,...X,,], the desired equality follows from the isomorphism BQ - Ap(obtained by applying [8, Theorem 1.4 (c)] to the pullback A BzED where D k[X )] and

E= K[X,...,X,,]). So we may suppose M[X X]C P,. Notice, via [8, Theorem 1.4], that

M[X X] has the same height (call it h) in A as in B. Moreover,
htE(Q,/M[X Xn])=htD(P,/M[X Xn]): call this H; indeed, this follows since D C E satisfies

incomparability and going-down (cf. [9, Corollary 12.11]). As ht(Q,)>_ H+h trivially and

ht(P,) H + h by the catenarity of A, we have ht(Q,) >_ ht(P,). But the reverse inequality also holds
since A C B satisfies incomparability. Thus, (1) ==> (2).

(2) ==> (1): By [2, Corollary 2.3], R is universally catenarian. Let A,B,D and E be as in the
proof that (1) ==> (2). Since T is integral over R, it is enough to prove that if Q1 c Q2 are

adjacent primes of B, then P,=QinA must satisfy ht(P2/P1)= 1. Suppose not. Then some Pe
Spec(A) lies properly between P1 and P2" By going-up, one finds primes Q c Q3 in B which contain

Q1 and satisfy Q cA P and Q3cA=P2. Since Q and Q3 each lie over P2, it follows via

incomparability and going-down that ht(Q2)=ht(P:)=ht(Q3). However, since B is catenarian,
ht(Q,) ht(Q,/Q1 + ht(Q1). Thus, since the existence of Q assures that ht(Q3/Q1 > 2,

+ ht(Qi) ht(Q2) ht(Q3) >_ 2 + ht(Qi).

All these heights are finite since T is locally finite-dimensional. So we have the desired

contradiction, completing the proof.
We close with the following observation. In view of Propositions 2.1 (b) and 2.7 and Corollary

2.3, it would be of interest to find sufficient conditions for direct limit to preserve (universally)
going-between.
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