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§1. Introduction. For each algebraic integer a, let Zn denote the ring of
integers of the algebraic number field Q(a). There has been continuing interest
in finding ring-theoretic conditions characterizing when Za coincides with its
subringZ[a] (c/[15,18,1,13,12]). One way to extend such work is to consider
the intermediate ring Z[a]+ , the seminormalization (in the sense of [17]) of
Z[a] in Za. Indeed, if we let /„ denote the conductor (Z[a]: Za), then it is
easy to see (cf. Proposition 3.1) that Z [ a ] = Z a , if, and only if, Z [ a ] + = Z a
and Ia is a radical ideal of Za. The condition Z[a]+ = Za seems worthy of
separate attention in view of recent results (cf. [3]) that seminormal rings
generated by algebraic integers are "often" automatically of the form Za. We
show in Proposition 3.3 that the condition Z[a]+ = Za is equivalent to several
universal properties, including notably that the canonical closed surjection
Spec (Za)-» Spec (Z[a]) be universally open, be universally going-down, or
be a universal homeomorphism.

Quadratic algebraic number fields present a situation in which the condition
Z[a]+ = Za may be characterized in terms of elementary number theory. Recall
that each quadratic number field K is uniquely of the form Q(V~d), for a
suitable square-free integer d. As usual, let

\+-fd
, if d=l(mod4),

d, if d = 2, 3 (mod 4).

It is well-known that the ring of integers of K (that is, the maximal order of
K) is Z[a>d], which is a free abelian group on the basis {1, cod}. Each non-
maximal order of K is uniquely of the form Z[ncod], for a suitable integer
n^2 . For a = ncod, the property Z[a]+ = Za is just Z[nwd]+ = Z[wd], and this
is characterized in Theorem 3.4 via divisibility and ramification conditions;
alternately, via divisibility and congruence conditions on d and n.

At the other extreme from the behaviour Z[a~\+ = Za is the condition
Z[a]+ = Z[a], i.e., the condition that Z[a] be seminormal. For the quadratic
case, a = na>d, Corollary 4.5 characterizes this new condition in the above
spirit of elementary number theory. This result generalizes some work of
Ooishi [16]. Moreover the main result of this paper, Theorem 4.4, identifies
Z[nwd]+ for d, n as above; that is, finds the m so that (1 =£ m \ n and) Z[ncod]+ =
Z[m<od]. As Z[o)d] is trivially (semi)normal, this amounts to finding the
seminormalization of an arbitrary order in a quadratic algebraic number field.
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If one omits universality from the considerations of the first paragraph,
one arrives at the condition "Spec (Za)-» Spec (Z[a]) is a homeomorphism
and Ia is a radical ideal of Za". It is easy to see (c/ Proposition 2.1) that this
is equivalent to "Z[a] is a GPVD". (A GPVD, or globalized pseudo-valuation
domain, is a particularly tractable type of seminormal integral domain intro-
duced via pullbacks in [4,5].) Theorem 2.5, which is the principal result in
section 2, identifies all the quadratic orders which are GPVD's. Since all rings
of integers are GPVD's, this amounts to characterizing when Z[nu)d] is a
GPVD; and this is done, in the above spirit of elementary number theory, via
conditions on divisibility, congruence, and Legendre symbols. These condi-
tions permit effective calculations, yielding for instance (in Remark 3.5(c))
the first known examples in which Z[na>d] is seminormal but not a GPVD. In
these examples, n = 2. It should be noted that the case n = 2 of Theorem 2.5
is a completion of the work begun in [5, Example 4], where it had been shown
that Z[Jd] is a GPVD, if, and only if, either d = 2, 3 (mod 4) or d = 5 (mod 8).
As to this paper's organization, we begin by generalizing this result from [5],
and the techniques lead naturally to seminormalization of quadratic orders.

The notations Za, Ia and a>d will always be used in the senses defined
above. For background, the reader is referred to the cited articles on seminor-
malization, weak normalization, universal properties and GPVD's; and to
standard texts such as [9,14,19]. The interested reader is invited to replace
Z wherever possible with a suitable one-dimensional Noetherian (possibly
Dedekind) integral domain.

§2. GPVD orders. The main result of this section, Theorem 2.5, determines
precisely which of the quadratic orders Z[na)d] is a GPVD. In preparation
for this, we give two propositions, each of some independent interest.

First, for the sake of completeness, we shall recall some background
definitions and facts from [4]. An integral domain R is said to be a pseudo-
domain (PVD) in the case when R has a (necessarily unique) valuation overring
V such that Spec(R) = Spec(V) as sets. PVD's may be characterized as the
pullbacks VxkK, where (V, M) is a valuation domain and K is a subfield of
k= V/M. An integral domain R is said to be a locally pseudo-valuation
domain (LPVD) if RM is a PVD for each maximal ideal M of R. Each PVD
is an LPVD, as is each Priifer domain as well. Finally, an integral domain R
is said to be a globalized pseudo-valuation domain (GPVD) if R has a
(canonically associated) Priifer overring T such that (a) the canonical contrac-
tion map Spec (T)-» Spec (R) is a bijection; and (b) there exists a nonzero
radical ideal A common to T and R such that each prime ideal of T (resp.,
R) which contains A is a maximal ideal of T (resp., R). Each Priifer domain
is a GPVD, and each GPVD is an LPVD. However, an LPVD need not be a
GPVD, even in the one-dimensional or Noetherian cases. For quasi-local
domains, the notions of PVD, LPVD, and GPVD coincide.

PROPOSITION 2.1. Let a be an algebraic integer and /:Spec(Za)-»
Spec(Z[a]) the canonical contraction map. Then the following conditions are
equivalent.
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(1) Z[a] is seminormal andf restricts to a bijection AssZa(Ia) -* Assz[o ](/O).
(2) Ia is a radical ideal of Za and f is a homeomorphism (with respect to

Zariski topology).
(3) /„ is a radical ideal of Za and f is a bijection.
(4) /„ is a radical ideal of Za and f induces a bijection

Spec (ZJIa) •* Spec (Z[o]//„).

(5) Z[a] is a GPVD.

Proof. (1)=>(4). Assume (1). Then Z[a] is "seminormal in" Za in the
sense of [17], and so [17, Lemma 1.3] yields that /„ is a radical ideal of Za.
(Cf. also [10, Theorem 1.1].) Of course, Ia 7*0 since Za is a module-finite
overring of Z[a]. We may assume without loss of generality that /„ is a proper
ideal of both Z[a] and Za. Next, we claim that the induced map
Spec (Za/Ia) -> Spec (Z[a]// a) is a bijection. For, since Z[a] and Za are each
one-dimensional Noetherian domains, an associated prime of Ia in Z[a] (resp.,
Za) is just a prime ideal of-Z[a]'(resp., Za) containing /„. As the set of these
primes is in canonical one-to-one correspondence with Spec (Z[a]/ / a) (resp.,
Spec(Za/ /J) , (4) follows.

(4)=»(3). By the lying-over property for integral extensions (cf. [14,
Theorem 44]), / is surjective in general. Given (4), one need only show that
if PeSpec(Z[a]) does not contain /„, then at most one QeSpec(Za) can
contract to P. This in turn follows from [14, Exercise 41(b), page 46], for any
such Q satisfies (Za)Q = (Z[a])P, whence Q = P(Z[a])PnZa.

(3)=>(5). Since Za is a (Dedekind, hence) Prufer domain, it is a GPVD
(cf. [4, p. 156]). Hence we may assume that Z[a] ^ Za and, in particular, that
/„ is a nonzero proper ideal. Since Z[a] and Za are each one-dimensional,
(3) easily leads to condition (1) in [4, Theorem 3.1] (with Ia playing the role
of the common radical ideal A), yielding (5).

(5)=»((1) and (2)). Assume (5). Then, since Z[a] is Noetherian, [4,
Proposition 3.6] yields that Za is the Prufer domain associated to (the GPVD)
Z[a]. Then (cf. [4, p. 156]) / is a homeomorphism. As we have noted via
one-dimensionality that the associated primes of /„ are just the prime ideals
containing Ia, the second assertion in (1) follows easily from the bijectivity
off. Moreover, by [4, p. 156 and Remarks 2.4(a)], (the GPVD) Z[a] is an
LPVD and, hence, seminormal. Then, as in the above proof that (1)=>(4),
we see that Ia is a radical ideal of Za.

Finally, since (2)=>(3) trivially, the proof is complete.

As a first step in specializing to the quadratic case, a = nu>d, we shall
characterize the condition " / is a bijection" that appeared above.

PROPOSITION 2.2. Let dbe a square-free integer and letn^l be an integer.
Let f: Spec (Z[o>d])-» Spec (Z[na>d]) be the canonical contraction map. Then
the following conditions are equivalent.

(1) f is a bijection.
(2) Z[nwd]c Z[wd] i5 an i-extension; i.e.,fis an injection.
(3) f is a homeomorphism.
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(4) Ifp is a rational prime such that p | n, then p is not split in Z[a)d].
(5) (a) Ifp is an odd rational prime such thatp\ n and p J( d, then (d/p) = — 1;

and
(b) ifd = 1 (mod 8), then n is odd.

Before proving Proposition 2.2, we collect some useful tools.

LEMMA 2.3. Let d and n be as in Proposition 2.2.
(i) Ifp is a rational prime such that p X n, thenpZ[(od]nZ[n<od] = pZ[ncod].

(ii) nZ[cod]nZ[nwd] = nZ[u)d] = (Z[ncod]:Z[(od])^nZ[ncod].
(iii) Let Pe Spec (Z[a>d]) be nonzero, with PnZ=pZ. Then P=> nZ[a>d~\,

if, and only if, p\n.
(iv) For a rational prime p, the following three conditions are equivalent (and

make no mention of n).
(1) Z[pcod]cZ[cod~\ is an i-extension.
(2) p is not split in Z[a>d].
(3) (a) Ifp is odd andpXd, then {d/p) = -\; and

(b) if d = 1 (mod 8), then p is odd.

Proof of Lemma 2.3. (i) One inclusion is clear. Conversely, let
eepZ[a)d]nZ[no>d]. T h e n e=p(a + bwd) = ax + bxno)d for s u i t a b l e a, b, ax,
ft, e Z. Then pa = a, and pb = b, n. Since p Jf n, the preceding equation yields
jo | i>,, say bx = pb2, with b2eZ. Then e = p(a + b2nu>d) e pZ[na)d], as desired.

(ii) The second equation follows easily from the fact that (a)d)2 eZ + Zo)d.
The other assertions are evident.

(iii) Note that nZ[wd]nZ = nZ. Hence if P=>nZ[(od] then inter-
secting with Z yields pZ^nZ, whence p\n. Conversely, if p\n, then
nZ[wd]c (-pZ)Z[(od] = pZ[wd]<= P, as desired.

(iv) Consider the function g:Z[pa)d]^Z/pZ which sends a + bpwd to
a+pZ for all a,beZ. Since ( « d ) 2 e Z + Zwd, one readily shows that g is a
surjective ring-homomorphism, with ker (g) = pZ[a>d]. In particular, pZ[wd]
is a prime of Z[pcod]. As (ii) established that pZ[wd~\ is the conductor of
Z[a»d] in Z[pu)d], one may infer from [14, Exercise 41 (b), page 46], the
one-dimensionality of these rings and the lying-over property that (1) holds,
if, and only if, (at most) one prime ideal of Z[cod] meets Z[pcod] in pZ[cod].
By the incomparability property, pZ[o)d] is the only prime of Z[p<ud] that lies
over pZ. Thus, (1) holds, if, and only if, (at most) one prime of Z[u>d] lies
over pZ. In other words, (1)<=>(2). Finally, (2)O(3) by classical facts about
Z[wd] (cf. [19, Chapter 6]). This completes the proof of the lemma.

Proof of Proposition 2.2. By integrality, / is surjective; hence,
Also by integrality, / is a closed (and continuous) map; hence, (1)<=>(3).
Moreover, since n factors as a nontrivial product of primes in Z, Lemma
2.3(iv) [(2)<=>(3)] easily leads to (4)O(5).

Notice also, via Lemma 2.3(ii) and [14, Exercise 41(b), page 46],
that / induces a bijection between Spec (Z[wd])\ V(nZ[a>d]) and
Spec (Z[ncod])\ V(nZ[wd]). (As usual, if / is an ideal of a ring A, then V(/)
denotes the set of prime ideals of A which contain /.)
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(2)=>(4). Assume (2). Then, given p\n, Z[peod] is contained between
2[ncod] and Z[a>d]; then, using (2), we see that Z[pa)d]<=-Z[wd] is an
/-extension. Hence, Lemma 2.3(iv) [ ( l )O(2) ] yields (4), as desired.

(4)=>(2). Let n =f ] p]> be the prime-power factorization of n in Z. Assume
(4). Then, by Lemma 2.3(iv), Z[pj(od]cZ[o)d] is an i-extension for each j .
Suppose that (2) fails. Then there exist distinct P, , P2eSpec (Z[wd~\) such
that P, nZ[niod] = P2nZ[nwd] = , say, P; and, by the second paragraph of
this proof, /jZ[wd]c p Let p be the rational prime such that P n Z =pZ. By
Lemma 2.3(iii), p = Pj for some j . Hence Pir\Z[pa)d] and P2r\Z[pcod] are
distinct primes of the one-dimensional ring Z[pwd], each containing pZ[wd].
Since the proof of Lemma 2.3(iv) showed that pZ[a>d] is a (nonzero) prime
of Z[pa)d], we have the desired contradiction, and the proof of Proposition
2.2 is complete.

Remark 2.4. (a) It is useful to record what was just proved. Given d and
n = ]~[ p]1 as in Proposition 2,2, then Z[n«d] <= Z[wd] is an ("-extension, if, and
only if, Z[pjcod]<=-Z[a)d] is an /-extension for each j . *"

(b) Let p be a rational prime and d a square-free integer, and consider
positive integers h < k. Given the above work, it seems interesting to note that
Z[pk<od]<=Z[phcod~\ is an i-extension. We shall now prove this.

To do so, first observe that (Z[pkcod]:Z[ph(od])=pk~hZ[phcodl (Cf. the
proof of Lemma 2.3(ii).) Call this ideal /. Then, by reasoning as in the proof
of Proposition 2.2, it will suffice to show that V(J) is a singleton subset of
Spec (Z[phajd]). As we saw in the proof of Lemma 2.3(iv), pZ[u>d] is a prime
of Z[po)d]; hence, P = pZ[wd]nZ[phwd] is a prime of Z[pha>d]. As this ring
is one-dimensional, it now suffices to show that P is the radical of / (for {P}
is then the required singleton set). One inclusion is easy since each element
of pZ[wd] has a suitable power in /. Conversely, let f e r a d ( / ) . Then
| = a + bpha>d for suitable integers a and b, and there exists an integer iV2=l
such that

(a + bphiod)N = £N e I =pkhZ+pkZwd.

Since co2
deZ + Zcod, the left-hand side is in aN + pZ + pZcod. Thus

N k-

aN epk

remark.

aNepk hZ+pZ, whence p\a and £ e P . This completes the proof of the

We are now able to interpret the conditions in Proposition 2.1 for an
arbitrary quadratic order.

THEOREM 2.5. Let d be a square-free integer and let n^2 be an integer.
Then the following four conditions are equivalent.

(1) Z[na)d] is a GPVD.
(2) Z[Mo>d]<= Z[wd] is an i-extension and nZ[(od] is a radical ideal of Z[<od].
(3) n is square-free and, for each rational prime p such that p \ n, p is inert

in Z[wd].



146 D. E. DOBBS AND M. FONTANA

(4) n is square-free. In addition, if n is even, then d = 5 (mod 8). If p is an
odd rational prime such that p \ n, then (p )( d and)

Moreover, if the above conditions hold, then Z[cod] is the Priifer domain
canonically associated to the GPVD, Z[nu>d].

Proof. (1)=>(2). In view of Lemma 2.3(ii) and integrality, this equivalence
is the special case a = nu>d of Proposition 2.1 [(5)O(3)].

(2)=>(3). Assume (2). If n were not square-free, q2\n for some rational
prime q, and it would follow that qerad (nZ[wd]) = nZood; then qeq2Z, a
contradiction. Hence, n is square-free. Next, let p be a rational prime dividing
n. By Lemma 2.3(iv) and Remark 2.4(a), p is not split in Z[cod]. If p
is not inert, then p ramifies: pZ[a>d] = P2, with P e Spec (Z[wd]). Then
nZ[a)d] = (np~l)P2, which has a unique factorization as a product of prime
ideals in the Dedekind domain Z[cod], cannot be a radical ideal, a contra-
diction. Hence, p is inert in Z[wd].

(3)=>(2). Assume (3). The ideas that were used to prove (2)=>(3) also
work here. To see why / = nZ[wd] is radical, note that n =l\Pi for pairwise
distinct rational primes /?,-; each PiZ[wd] = , say, P,eSpec(Z[wd]); and
J = Y[Pi = D Pi is evidently radical.

(3)O(4). This follows from classical quadratic theory, as in [19,
Chapter 6].

The final assertion follows from the Noetherianness of Z[nu>d] (cf [4,
Proposition 3.6]). The proof is complete.

Remark 2.6. Let d be a square-free integer, d = 1 (mod 4). By Theorem
2.5, Z[-Jd]( = Z[2o)d]) is a GPVD, if, and only if, d = 5 (mod 8). Thus Theorem
2.5 recovers the motivating result, [5, Example 4].

§3. When the seminormalization is the ring of integers. A sufficient condi-
tion for the property studied in Proposition 2.1 is thatZ[a] = Za. This condition
has been of recurring interest (cf. [15, 18, 1, 13, 12]). We next give a fresh
characterization of this condition in terms of seminormalization and other
concepts which figured in Section 2.

PROPOSITION 3.1. For an algebraic integer a, the following conditions are
equivalent.

(1) Z [ a ] + = ZO and Ia is a radical ideal of Z a .
(2) Z[a] = Zo .

Proof. (2)=»(1) trivially. (1)=»(2) directly via a result of Traverso [17,
Corollary 1.8] but, for the sake of completeness, we offer the following alternate
proof. It will be convenient to write R = Z[a] and T = Za. Assume (1).
Without loss of generality, R^T, and so /„ is a (nonzero) proper ideal. For
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each prime ideal P of R containing Ia, the seminormalization hypothesis gives
a unique QeSpec(T) contracting to P, and the canonical map R/P-* T/Q
is an isomorphism. One then has a commutative diagram

R/C\P

T/HQ > UT/Q

in which the horizontal maps are isomorphisms given by the Chinese Remain-
der Theorem; and the right-vertical map is (an isomorphism) given coordinate-
wise by the above isomorphisms /?/P-> T/Q. Then the left-vertical map is
also an isomorphism. Hence T= R + C\Q = R + radT (/„) = R + Ia = R,
completing the proof.

Remark 3.2. (a) As noted by Ooishi [16, Example 1], Z[V-4]+ = Z[i'].
(Another proof of this would follow from Theorem 3.4 below.) Thus, by taking
a = V-4 = 2\/- l , we see that the "radical" hypothesis on Ia cannot be deleted
from condition (1) of Proposition 3.1.

(b) Of course, the "Z[a]+ = Z a " condition also cannot be deleted. To
illustrate this, consider a = V5. Then (cf. [5, Example 4] and Proposition 2.1)
Ia is radical, although Z[a]+ = Z[a] ^ Za. The (not necessarily GPVD) semi-
normal quadratic orders are characterized in Theorem 4.1 below.

(c) If Z[a] = Za ) then Z[a] is a (Dedekind domain, hence a) GPVD.
Another way to see this is to relate condition (1) of Proposition 3.1 and
condition (2) of Proposition 2.1: in this case, the homeomorphic nature of/
is explained naturally via seminormalization.

In view of Proposition 3.1, we focus next on characterizing the condition,
"Z[a]+ = Za". In fact, we shall relate this condition to many of the universal
properties in [11, p. 240], [2, 8, 6, and 7]. (See these references as needed for
background information. In particular, (—)* denotes weak normalization in
the sense of [2].)

PROPOSITION 3.3. Let a be an algebraic integer, i:Z[a]-*Za the inclusion
(map), and /:Spec(Za)-»Spec(Z[a]) the induced contraction map. Then the
following conditions are equivalent.

(1) i is universally going-down.
(2) i is UGD.
(3) i is radiciel.
(4) i is universally mated.
(5) f is universally open.
(6) / is a universal homeomorphism.
(7) Z[a]* = Za.
(8) Z[a]+ = Za.

Proof. (8)<=>(3). (3) holds, if, and only if, (the surjective map) / is an
injection and the extensions of residue class fields induced by / are all
(algebraic) purely inseparable. As the residue class fields of R are all perfect,
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(3) is thus equivalent to requiring that/is a bijection and each of the extensions
of residue class fields induced by / is an isomorphism. In view of the
characterization of seminormalization in [17], the assertion follows.

(3)<=>(4). By [6, Theorems 2.1 and 2.5], (3) holds, if, and only if,
/ : S p e c (Za[X])^> Spec (Z[a][X]) is an injection; and (4) holds, if, and only
if, Z[a][X] -» Za[X] is mated. However, each of these conditions is equivalent
to fi being a bijection (and so the assertion follows). The point is that / , is
surjective since i is (universally) integral.

(4) =>(2). One-dimensionality assures that i satisfies going-down. Accord-
ingly, [6, Proposition 3.14] yields the assertion.

(2)=>(7). [6, Remark 3.6] yields this assertion.
(7)=>(6). By [2, Teorema 1], Spec (Z[a]*)-> Spec (Z[a]) is a universal

homeomorphism. The assertion follows.
(6)=>(5). Trivial.
(5)=^>(1). It suffices to recall that "open" implies "going-down" [11]. (Cf.

also [8].)
(1)=»(2). Apply [6, Corollary 3.20].
(2)=»(4). Apply [6, Corollary 3.12(b)].
The proof is complete.
We next use some of the material in Section 2 to interpret the condition

"Z[a] + = Z a " for a typical quadratic order, with a = no)d.

THEOREM 3.4. Let d be a square-free integer and let n 3= 2 be an integer.
Then the following conditions are equivalent.

(1) Z[nwd]+ = Z[codl
(2) Each rational prime p such that p \ n is ramified in Z [ w d ] .
(3) If d = 1 (mod 4), then n is odd. In addition, d is divisible by each odd

prime divisor of n.

Proof. By [17], (1) holds, if, and only if, both the following conditions
hold: Z[na>d]<=Z[a>d] is an /-extension, and k(P r\Z[na)d~\) —+ k(P) for each
P e Spec (Z[a>d\). As in the proof of Proposition 2.2, these conditions need
only be checked in case P contains the conductor, nZ[a>d]; that is, by Lemma
2.3(iii), in case P n Z = />Z withp\n. Set Px = PnZ\_pwd] and P2 = PnZ[na>d].
By incomparability, P, = pZ[wd] and P2 = pZ[a)d] nZ[n&>d]. Consider the field
extensions

k(P).

As noted in the proof of Lemma 2.3(iv), Z/pZ * fc(P,). Thus
Z/pZ—z^k(P2). Hence, using quadratic ramification theory (concerning
Z eift), we have the following assertions. If p is ramified in Z[wd], then
k{P2)——-» k(P); if p is inert in Z[cod], then /c(P2)c-> k{P) is two-dimensional.
By combining Proposition 2.2 [(2)<=>(4)] with the above consequence of [17],
we can now conclude that (1)<=>(2). Finally, (2)<=>(3) by classical quadratic
theory [19, Chapter 6]. The proof is complete.

Remark 3.5. (a) The conditions in Theorems 2.5 and 3.4 cannot hold
simultaneously: ramified primes are not inert! This is to be expected since
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each GPVD is (equal to its own) seminormal (ization), while «3=2 forces

(b)Let d be a square-free integer. Then either d = 2, 3 (mod 4) or d =
1 (mod 4). We could use condition (3) in Theorem 3.4 to develop examples
showing that this congruence information alone does not determine whether
Z[3wd]+ and Z[wd] coincide. However, it is enough to observe via this
condition that Z[3« d ] + = Z[a>d], if, and only if, 3|d.

(c) The case n = 2 deserves separate treatment. Let d be a square-free
integer. If d = 2, 3 (mod 4), then Z[2wd] = Z[2-/d] is not seminormal, since
l[2cod]+ = Z[u>d] = Z[y/d] in this case. However, if d = l ( m o d 4 ) , then
we see as above that Z[2a>d]+ * Z[cod]; since Z[2wd]cZ[2wd]+ t=Z[«d] ,
we have Z[2wd]+ = Z[2«d] in this case. In other words, if d = 1 (mod 4), then
Z[2wd] = Z[Vd] is seminormal. Thus, by Theorem 2.5, Z[2«17] = Z[VT7] is
an example of a seminormal quadratic order which is not a GPVD; for
a "complex" example, consider Z[V-7].

By extending this sort of reasoning, we shall determine all seminormal
quadratic orders in section 4. More generally, we shall identify the semi-
normalization of each quadratic order.

§4. The seminormal quadratic orders. The rings mentioned in this section's
title will be characterized in Corollary 4.5, as a consequence of this section's
main result, Theorem 4.4. The latter result computes the seminormalization
of an arbitrary quadratic order Z[nwd]; that is, computes the positive integer
m such that Z[nwd]+ = Z[ma)d~\. To prepare the way, we next generalize some
of the earlier sections' material concerning the inclusion Z[nwd]cZ[a>d] to
the context

LEMMA 4.1. Let d be a square-free integer and let m, n be positive integers.
(i) If m | n, then

(n/m)Z[mojd]nZ[nwd~\ = (n/m)Z[mcod] = {Z[nwd]:

(ii) Ifp is a rational prime, then pZ[m<od~\ is a prime ideal of Z[pmwd].

Proof, (i) As in the proof of Lemma 2.3(ii), this follows easily from the
fact that {1, ka>d) is a Z-basis of Z[faud], for each integer fcs* 1.

(ii) Consider the function g:Z[pmwd]-»Z/pZ which sends a + bpmwd to
a + pZ for all a,beZ. As in the proof of Lemma 2.3(iv), g is a surjective
ring-homomorphism, with ker (g) = pZ[m&)d], and the assertion is immediate.

LEMMA 4.2. Let d, m, n be as in Lemma 4.1, with m \ n. Then the following
three conditions are equivalent.

(1) Z[ncod]cZ[mcod] is an i-extension.
(2) Ifp is a rational prime such that p | (n/m) and pJfm, then p is not split

in Z[o>d].
(3) Let n = p i 1 . . . p / and m=p\l... pf° be the prime-power decompositions

ofn and m (with s*&r and 1 =£ g, ̂  e{for i *£ s). Letp — Pjfor some s +1 =Sj =£ r.
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If d = 1 (mod 8), then p is odd. Moreover, ifp is odd and p Xd, then

p
Proof. By Proposition 2.2, we may assume m # 1.
(1)=»(2). Deny this. Then there exists a rational prime p such that

p| (n/m), pJf m, and pZ[cod] = P^P2, where P, and P2 are distinct prime ideals
of Z[cod]. Put Q, = P,nZ[mwd]. As P,nZ = pZ, so also QtnZ = pZ. If
C?; contains (Z[ma)d]:Z[wd]) = mZ[(od], then intersecting with Z leads to
pZ => mZ[o)d]nZ, contradicting pXm. Thus Q, does not contain the con-
ductor, and so (cf. [14, Exercise 41 (b), p. 46]) the fact that P, ^ P2 assures that
Qi^Q2. By (1) and the condition p | (n/m), P ,nZ[pmwJ# Q2nZ[pmu>d].
However, we also have equality (and thus the desired contradiction):
pZ[mwd]ci QtnZ[pmcod] are primes of Z[pmcod] each lying over/?Z, whence
equality follows via incomparability.

(2)=»(1). Deny this. Then there exist distinct Qu Q2 in Spec(Z[mwd])
such that Q1nZ[ncod] = Q2nZ[na>d] =, say, P. Let p be the rational prime
such that PnZ=pZ. As P must contain (Z[n(Dd]:Z[ma)d]), Lemma 4.1(i)
readily yields p\(n/m). Next, choose (distinct) Px, P2e Spec (Z[wd]) such
that P,nZ[rawd]= Qt. One can now see that p \ m. Indeed, if p\m, then
incomparability would force the inclusion pZ[(od]c Pt nZ[piod] to be an
equality, so that intersecting with Z[m&>d] would lead to Qi = Q2, an absurdity.
By (2), only one prime ideal of Z[wd] lies overpZ. Hence P, = P2, the desired
contradiction.

(2)=>(3). Notice that {pt: j + l « / ^ r } is the set of all rational primes p
such that p\(n/m) and p)(m. Accordingly, (2)<=>(3) follows from classical
facts about Z[«d] (cf. [19, Ch. 6]). The proof of Lemma 4.2 is complete.

It should be noted that, aside from some trivial set-theoretic and topological
observations, setting m = 1 in Lemma 4.2 recovers Proposition 2.2.

LEMMA 4.3. Let d, m, n be as in Lemma 4.1, with m \ n, and suppose that
Z[n&>d]cZ[m<wd] i5 an i-extension.

(i) Let Pe Spec (Z[ncod]) be nonzero, let p be the rational prime such that
PnZ=pZ, and let QeSpec(Z[cod]) such that QnZ[m<od] = P. Suppose that
p\(n/m). Ifp\m,thenk(PnZ[na)d])^L^k(P) = Z/pZ. If pXm, then the
following four conditions are equivalent.

(1)
(2) [k(Q):Z/pZ] = l.
(3) p is ramified in Z[wd].
(4) If d = 1 (mod 4), then p is odd. In addition, ifp is odd, then p | d.
(ii) Let n=p\l... pe/and m=pf'... pg

s* be the prime-power decompositions
ofn and m (with s*sr and 1 =s g, =£ ejor i^s). Then the following four conditions
are equivalent (with (4) vacuously satisfied if s = r).

(1) Z[ma)d] is the seminormalization of Z[nwd] in Z[mu)d].
(2) k(PnZ[na)d]) —+ k(P) for each Pe Spec (Z[mcjd]).
(3) Ifp is a rational prime such that p\(n/m) and p X m, then p is ramified

in Z[cod].
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(4) Let p = pi for some s + l=£i'=£r. If d = 1 (mod4), then p is odd. In
addition, if p is odd, then p \ d.

Proof, (i) It is well known that (3 )o (4 ) (cf. [19, Ch. 6]). Next, note that
pZ[a>d]<^ QnZ[p<od] are prime ideals of Z[pwd~\ (cf. Lemma 4.1(ii)), each of
which lies over pZ. Thus, by incomparability, pZ[(od] = QnZ[pwd];
moreover, Z/pZ —^-> k(pZ[<od]) by the proof of Lemma 2.3(iv).

Suppose p | m. Then we have the tower of fields

Z/pZ^ k(PnZ[n<od])^ k{P)^ k(pZ[wd]).

By the above remarks, Z/pZ *k(P), and so the first assertion holds.
Suppose pX m. Then, by Lemma 4.2 [(1)=>(2)], only one prime of Z[«d]

(namely, Q) lies over pZ. By the fundamental equation of ramification theory,
(2)<=>(3). Next, notice that k(P) —^k(Q) since the condition pXm assures
that P does not contain mZ[a>d] = {Z[mwd]:Z[<od]). In view of the tower of
fields

k(Pr\Z[no)d])'-* k(QnZ[(n/m)iod])<^> k(QnZ[pa>d])

and the above remarks, ( 2 ) o ( l ) .
(ii) Since Z[nwd] c Z[mwd] is assumed to be an i-extension, the characteri-

sation of seminormalization in [17] immediately yields (1)<=>(2). It is easy to
see that the remaining equivalences follows from (i). (For some of these, one
is given p, and then uses lying-over to arrange a P to which (i) applies.) The
proof is complete.

We next present the main result of this section.

THEOREM 4.4. Let d be a square-free integer and let m =s n be positive
integers. Then the following four conditions are equivalent.

(1) Z[nwd]+ = Z[mcodl
(2) m is minimal among positive integers with respect to these three properties:

m\n, Z[mod]<^ Z[ma)d] is an i-extension, and k(P r\Z[na>d]) ——•* k(P) for each
PeSpec(Z[mo)d]).

(3) m = Y[ {p'- p is a rational prime, p \ n, and p is not ramified in Z[wd]}.
(4) m = FT {p is a rational prime, p\n, p X d if p is odd, and d = \ (mod 4)

Proof (l)<£>(2). Apply the characterization of semi-normalization in [ 17].
(2)<=>(3). If m\n, p is a rational prime such that pJf(n/m), and

PeSpec(Z[ma>d]) satisfies PnZ = pZ, then fc(PnZ[nwd])—-> k(P). (The
point is that P does not contain [Z[na)d] :Z[mwd]) = (n/m)Z[m<wd].) Hence,
by combining Lemma 4.2 with Lemma 4.3(i) (or by applying Lemma 4.3(ii)),
we see that (2) is equivalent to m being minimal among divisors of n such
that: whenever p is a rational prime such that p\(n/m) and pJfm, then p is
ramified in Z[wd ]. Using a prime-power decomposition of n, one readily shows
that this latter condition is equivalent to (3).
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(3)O (4). Apply the classical facts about ramification of rational primes
in quadratic number fields (cf. [19, Chapter 6]). The proof is complete.

COROLLARY 4.5. Let d be a square-free integer and n s= 2 an integer. Then
the following three conditions are equivalent.

(1) Z[ncod] is seminormal, that is, Z[na>d]+ = Z[ncod].
(2) n is square-free and no rational prime factor of n is ramified in Z[cod].
(3) n is square-free. If n is even, then d = 1 (mod 4). The greatest common

divisor of d and n is {either 1 or) an integral power of 2.

Proof. Interpret m = n for conditions (3) and (4) in the statement of
Theorem 4.4.

Remark 4.6 (a) It is conventional to interpret a product of integers
indexed by the empty set to be 1. Thus, taking m = 1, we see that Theorem
4.4 subsumes Theorem 3.4. Note that the above convention also renders
Theorem 4.4 valid in case n = 1 (= m), since Z[wd] is (semi)normal.

(b) The examples in Remark 3.5(c) are illuminated by the following result.
Let d b e a square-free integer and « s 2 a n integer. Then Z[«wd] is a GPVD,
if, and only if, Z[n<od] is seminormal such that Z[mod]cZ[wd] is an
i-extension. The easiest proof of this result is via the elementary number-
theoretic criteria in Theorem 2.5(4), Corollary 4.5(3), and Proposition 2.2(5).
Since each GPVD is seminormal, another proof follows from Proposition 2.1
[(5)<S>(3)] and [17, Lemma 1.3].

(c) Corollary 4.5 recovers all the facts implicit in Remark 3.5(c); for
instance, Z[vrf] is seminormal, for each square-free integer d. A far-reaching
generalization of this, originally discovered by Ooishi, is given in Corollary
4.7 below. _

(d) We have seen that if d is a square-free integer, then A = Z[Jd] is
seminormal. This is due to a variety of deep reasons. If d = 2, 3 (mod 4), A
is actually normal. If d = 5 (mod 8), then A is a GPVD [5, Example 4], note,
however, in this case that A is not root-closed [3, Proposition]. Finally, if
d = 1 (mod 8), the above references show that A is root-closed, but not a
GPVD. Thus, A is both root-closed and a GPVD, if, and only if, d = 2,
3 (mod 4); that is, if, and only if, A is the maximal order of Q(V3).

More generally, if n is any positive integer and d is as above, then
B = Z[n<od] is both root-closed and a GPVD, if, and only if, « = 1. This is a
consequence of the following result. Let R be an LPVD (for instance, a GPVD)
whose quotient field K is an algebraic number field. Suppose that R is
contained in the ring of integers D of K. Then R is integrally closed (that is,
R = D) if (and only if) R is root-closed.

For a proof, note first, by the Krull-Akizuki theorem, that R is a one-
dimensional Noetherian integral domain. Accordingly, by localizing and
applying a result of Angermiiller [3, Theorem 1], we have the desired assertion,
unless D has some residue field D/N = Z/2Z. In this remaining case, one
need only show that M=NnR is such that (the PVD) RM is integrally
closed. This, in turn, follows from the (L)PVD condition, as the isomorphism
R/M^ D/N( = Z/2Z) leads to RM = DNxD/NR/M = DN: an integrally closed
(DVR) integral domain.
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The "Noetherian" hypothesis is essential above, for one may construct a
one-dimensional root-closed PVD which is not integrally closed.

(e) Theorem 4.4(4) permits easy calculation of seminormalizations of
quadratic orders, significantly extending Remark 3.5(b). We next list several
additional applications.

Z[372]+ = Z[3w2]+ = Z[3o>2] = Z[3N/2],

Z[373]+ = Z[3w3]+ = Z[l«3] = Z[V3],
Z[4^2]+ = Z[2V2]+ = Z[72],
Z[4N/3]+ = Z[2V3]+ = Z[>/i],
Z[4w5]+ = Z[2w5] = Z[V?] * Z[w5],

] + = Z[2V6]+ =

In [16, Example 1, page 7], Ooishi characterized the non-square integers
N such that Z[v^V] is seminormal. We next recover this, as our final result.

COROLLARY 4.7. Let N be a nonsquare integer. Write N = n2d, with
prime-power decompositions n = 2f°p{>... p{? and d = ±28°ps + 1 . . . pr. {Here,
{Pi,..., ps} and { p s + i , . . . , pr) are each sets of pairwise distinct odd primes,
/o>0,/-3=l for all l=si=ss, and go=sl. If s = r, d = ±2g°.) Then Z[VJV] is
seminormal, if, and only if, N = ±2h°p\... p2

sps+\. • • pr with / i o ^ l and pt ^pj
whenever 1 ^ i =s s and s + 1 =£ j =s r.

Proof. As JV is not a perfect square, d^l. Thus, d is square-free. By
Remark 4.6(c) and the convention regarding products indexed by the empty
set, the assertion is verified if n = 1. Assume henceforth that n ^ 1. There are
two cases.

Suppose d = 2,3 (mod 4). Then Z[v/iV] = Z[nv/d] = Z[«wd]. By Corollary
4.5 [ ( l )O(3)] , Z[vTV] is seminormal, if, and only if, n =p , ...ps (^ 1) and
(d, n) = 1. The assertion is evidently verified in this case.

Finally, suppose d = l (mod4) . Then Z[\/TV] = Z[2n<ud]. By another
appeal to Corollary 4.5, Z[yfN] is seminormal, if, and only if, In is square-free
and (d, In) is (either 1 or) an integral power of 2; that is, if, and only if, f0 = 0,
/ , = . . . =/j = l, and {pi,...,ps}rt{ps+l,...,pr} = 0. The assertion clearly
holds in this case, completing the proof.
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