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INVERSE LIMITS OF INTEGRAL DOMAINS ARISING
FROM ITERATED NAGATA COMPOSITION


DAVID E. DOBBS and MARCO FONTANA*


Abstract


By iterating the type of pullback constructions in which PrVDs arise by Nagata composition, we
are led to study a class of inverse limits A � lim An of integral domains indexed by N. After
identifying the prime spectrum, the localizations, and the integral closure of A, we then char-
acterize when, i.a., such (typically infinite-dimensional) A is a Pru« fer domain, Bëzout domain,
divided domain, or PrVD.


1. Introduction


As the literature contained several interesting examples of directed unions of
(commutative) integral domains, it was appropriate to study direct limits of
integral domains in [10], [9]. The present paper initiates a similar study of
inverse limits of integral domains, in part to expand upon examples such as
the following (cf. Theorem 2.1 (c) and Corollary 2.7): if k is a field, then


k��X1�� � X2k��X1����X2�� � X3k��X1;X2����X3�� � � � �
is a valuation domain. For simplicity (and with an eye on the intended ex-
amples), we consider only inverse limits of directed systems indexed by N,
the set of positive integers. As [10] was motivated largely by the result that
the class of Pru« fer domains is stable under direct limit, we begin by estab-
lishing the analogous result for inverse limit in the local case. Specifically,
Theorem 2.1 (g) states that any inverse limit of valuation domains is a va-
luation domain. We finally establish a non-local analogue (concerning in-
verse limits of Pru« fer domains) in Theorem 2.21. This result is developed in
context of the special type of inverse limit to which this paper is devoted.
This context is suggested by iterating the pullback construction of PrVDs in
[12, Thëore© me 1.3], itself a generalization of the so-called Nagata composi-
tion of valuation domains [20, page 35].
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Applications of PrVDs are not new: see, for instance, their role in realizing
arbitrary dimension sequences in [8] and their implicit role as iterated D�M
constructions in the work of Seidenberg [22] on constructing polynomial
rings which realize specified Krull dimensions. However, ``P1VDs'' such as
the ring displayed above are new, inasmuch as they have infinite Krull di-
mension. To expand upon this observation, we identify Spec �A� in Theorem
2.5 (a), where A is the type of inverse limit under consideration here. One
eventual upshot is Remark 2.9, which shows how to extend the factorization-
theoretic work in [3] to produce an infinite-dimensional non-fragmented va-
luation domain with no atoms. To prepare for other applications (such as
the above-mentioned result on Pru« fer domains), we determine the integral
closure of A (in Theorem 2.12) and the localizations of A (in Proposition
2.15 (d)). As additional applications, in the spirit of [10], we characterize
when A is a divided domain (in the sense of [5]) in Corollary 2.17, a PrVD in
Proposition 2.19, a pseudo-valuation domain (in the sense of [17]) in Cor-
ollary 2.20, and a Bëzout domain in Corollary 2.23.


If D is an integral domain, we let dim�D� denote the Krull dimension of D,
D0 the integral closure of D, qf �D� the quotient field of D, Max�D� the set of
maximal ideals of D, and u�D� the set of units of D. As in [5], P 2 Spec �D�
is a divided prime ideal of D if PDP � P; this is equivalent to saying that the
following diagram of canonical homomorphisms:


is a pullback. The integral domain D is a divided domain if each P 2 Spec �D�
is a divided prime ideal of D; and D is a locally divided domain if DP is a di-
vided domain for each P 2 Spec �D�. In this paper, the most important ex-
amples of divided domains are PrVDs (in particular, (pseudo-)valuation do-
mains), and our most important examples of locally divided domains are
Pru« fer domains. Following [19, page 28], we denote the properties of lying-
over, going-up, going-down and incomparability by LO, GU, GD and INC,
respectively. Any unexplained material is standard, as in [15], [19].


After this paper had been drafted, the second-named author gave a talk on
it at a meeting held in Fez, Morocco in October 1997. Following the talk,
Professor M. Tabaaª mentioned to him that some of our results overlap those
of Wiseman [24], a paper with which we had not been acquainted. Although
Wiseman's motivations involving linearly compact modules in [24] are dif-
ferent from ours here, one of his contexts [24, page 1109] is a special case of
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ours. As a result, [24] contains special cases of our Theorem 2.1 (d) and
Proposition 2.4 (d), as well as special cases of [11, Corollary 1.5 (5)]. Most
significantly, in view of Proposition 2.4 (c), whose assertion is a hypothesis
for the context of [24], we see that [24, Proposition 3.4] is essentially
equivalent to our Theorem 2.12, concerning the commuting of inverse limit
and integral closure.


2. Results


Recall that direct limit preserves integral domains [16, Proposition 6.1.6 (i)],
reduced rings [16, Corollaire 6.1.3], and Pru« fer domains [10, Proposition 2.5
(a)]. We begin by establishing some analogues for inverse limit.


Theorem 2.1. Let �An; 'n;m : An ! Am; n � m � 1� be an inverse system of
commutative rings, with 'n;n taken to be the identity map, and let A � lim An


be the inverse limit.
Put �n : A! An the canonical map, and Qn :� ker��n�. Then
(a) A � f�an� 2


Q
An : 'n�1;n�an�1� � an for each n 2 Ng.


(b) For each n 2 N, �n is the composite of the inclusion map A ,! Q
Ak and


the canonical projection
Q


Ak ! An.
(c) For each n 2 N, Qn � f�ak� 2 A : ak � 0 for each k � ng.
(d) Q1 � Q2 � Q3 � . . . and


T
Qn � 0.


(e) If An is an integral domain for each n, then A is an integral domain.
(f) If An is reduced for each n, then A is reduced.
(g) If An is a valuation domain for each n, then A is a valuation domain.


Proof. According to the usual construction of inverse limit we may view
A � f�an� 2


Q
An : 'n;m�an� � am whenever n � mg. Then (a), (b) and (c) are


immediate consequences of the definitions. Observe that the additive identity
of A is 0 � �0n� 2 A, where 0n is the additive identity element of An.


Next, (d) follows from (c).
(e) Deny. Then there exist nonzero � � ��n�, � � ��n� 2 A such that


��n�n� � �� � 0 � �0n� 2 A. As � 6� 0 � �0n�, there exists an index i such
that �i 6� 0i. Similarly, �j 6� 0j for some index j, since � 6� 0. Without loss of
generality, i � j. As 'i;j��i� � �j 6� 0j and 'i;j is a homomorphism, �i 6� 0i.
However, �i�i � 0i, contradicting the hypothesis that Ai is an integral do-
main.


(f) Suppose � � ��n� 2 A is nilpotent. Then for some � 2 N, �0n� � 0 �
�� � ���n�. Hence, for each n 2 N, ��n � 0n, and so �n � 0n since An is re-
duced. It follows that � � �0n� � 0, whence A is reduced.


(g) Consider nonzero elements � � ��n�, � � ��n� 2 A. By (a), it is enough
to show that either � 2 A� or � 2 A�.
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Case 1: for each n 2 N, �n � un�n for some un 2 An. If n � m, then


um�m � �m � 'n;m��n� � 'n;m�un�n� � 'n;m�un�'n;m��n� � 'n;m�un��m:
Since Am is an integral domain, either 'n;m�un� � um or �m � 0m. If �m 6� 0m
(regardless of the choice of n), then u :� �un� 2 A and � � u� 2 A�. So,
without loss of generality, �m � 0m for some m 2 N. Let k be the maximal
such m. (Note that k exists since � 6� 0 and 'i;j�0i� � 0j whenever i � j.) By
the above reasoning, 'n;m�un� � um whenever k < m � n. Also, if 1 � i � k,
then �i � 'k;i��k� � 'k;i�0k� � 0i, and so �i � ui�i � 0i. Consider
v � �vn� 2


Q
An defined by


vn �
un if n > k


'k�1;n�uk�1� if 1 � n � k :


�
Since we have an inverse system, 'n;m�vn� � vm whenever n � m, whence
v 2 A. Also, �n � vn�n for each n. (The assertion reduces to 0n � 0n if n � k
and to the choice of un if n > k.) Hence, � � v� 2 A�.


It remains to consider what happens if Case 1 does not apply. Since each
Ai is a valuation domain, we are reduced, without loss of generality, to


Case 2: for some n > m, there exist rn 2 An and sm 2 Am such that
�n � rn�n, �m � sm�m, �n =2 An�n, and �m =2 Am�m. In particular,
rn 2 Annu�An� and sm 2 Amnu�Am�. Then
�m � 'n;m��n� � 'n;m�rn�n� � 'n;m�rn�'n;m��n� � 'n;m�rn��m � 'n;m�rn�sm�m :


Since sm is a nonunit of Am, 'n;m�rn�sm 6� 1 and so, since Am is an integral
domain, �m � 0m. This contradict �m =2 Am�m. Therefore, Case 2 does not
occur.


We proceed to fix the riding assumptions and notation for the rest of the
paper. We assume given fA1; �Kn;Bn� : n 2 Ng such that for each n:
� Bn is a quasilocal integral domain with maximal ideal Mn 6� 0;
� Kn � Bn=Mn, 'n : Bn ! Kn is the canonical surjection and


qf �Bn� � Kn�1; and
� A1 is an integral domain but not a field, qf �A1� � K1.


For n > 1, let An�1 be the pullback An�1 :� Bn �Kn An. Note that An�1 is
canonically contained in Bn and so also in Kn�1. Since Mn 6� 0, An�1 and Bn


share a common nonzero ideal (i.e. Mn), and so qf �An�1� � qf �Bn�: cf. [15,
page 326]. Thus, the above data lead to the following set of pullback dia-
grams (reminiscent of the description of PrVDs in the diagram in [12, page
188]):
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where 'n;nÿ1 : An ! Anÿ1 is the canonical surjection arising from the fact
that An � 'ÿ1nÿ1�Anÿ1� for all n � 2. If n > m, consider the surjection


'n;m � 'm�1;m � � � � � 'n;nÿ1 : An ! Am;


with 'n;n : An ! An taken to be the identity map. The inverse system de-
termined by the homomorphisms 'n;m is called the inverse system generated
by fA1; �Kn;Bn� : n 2 Ng. Put, as above,


A :� lim An; �n : A! An the canonical map, and Qn :� ker��n� :


We next collect some basic facts.


Lemma 2.2. Under the riding assumptions, we have:
(a) For each n 2 N, �n is surjective.
(b) For each n 2 N, Qn 2 Spec �A� and A=Qn � An, so A is an integral do-


main.
(c) For each n 2 N, Mn � ker�'n�1;n� and Qn � �ÿ1n�1�Mn�.
Proof. (a) follows from Theorem 2.1 (b), since each 'n;nÿ1 is surjective.


Then (b) follows from the First Isomorphism Theorem and Theorem 2.1 (e),
since �n is surjective and An is an integral domain. Finally, for (c), observe
that the pullback description of An�1 yields that ker�'n�1;n� �Mn; then,
since �n � 'n�1;n � �n�1, we have that Qn � ker��n� � �ÿ1n�1�Mn�.


The next result will often permit us to assume, without loss of generality,
that Kn � qf �An� for each n 2 N.


Proposition 2.3. For each n 2 N, let K�n � q f �An� and B�n � Bn �Kn K
�
n .


Then:
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(a) For each n 2 N, there is a canonical isomorphism An�1 � B�n �K�n An.
(b) The inverse system generated by fA1; �K�n ;B�n� : n 2 Ng is the same as


the inverse system generated by fA1; �Kn;Bn� : n 2 Ng.
Proof. (a) follows from the canonical isomorphism


An�1 � Bn �Kn An � �Bn �Kn K
�
n � �K�n An � B�n �K�n An:


We thus see that the two inverse systems have the same 'n�1;n maps, and (b)
follows.


We pause to observe that in Proposition 2.3, B�n retains the property of Bn


of being a quasilocal integral domain with maximal ideal Mn (cf. [11, Theo-
rem 1.4, Proposition 2.1 (9)]). More precisely, by [2], Spec �Bn� � Spec �B�n�.


We observe also that, given our riding assumptions, A is never a Noe-
therian ring. As a matter of fact, if A is Noetherian then clearly An is also
Noetherian for each n � 1 (Lemma 2.2 (b)); but A2 is Noetherian if and only
if B1 is Noetherian, A1 is a field and A1 � K1 is a finite (-dimensional) field
extension [11, Theorem 2.3].


Finally, we observe that the ring


A � k��X1�� � X2k��X1����X2�� � X3k��X1;X2����X3�� � � � �
considered in the introduction, is the inverse limit of the inverse system gen-
erated by fk��X1��; �k��X1;X2; . . . ;Xn��; k��X1;X2; . . . ;Xn����Xn�1��� : n 2 Ng.
Since, in this case, A1 � k��X1�� and Bn � k��X1; . . . ;Xn����Xn�1�� are (discrete)
valuation domains, then, by induction on n � 1 and using Nagata composi-
tion, it is easy to see that


An�1 � k��X1�� � X2k��X1����X2�� � � � � � Xn�1k��X1;X2; . . . ;Xn����Xn�1��
is also a valuation domain, for each n 2 N. Therefore, by Theorem 2.1 (g), A
is a valuation domain.


We proceed to analyze the prime spectrum for the special type of inverse
limit being studied here, from which we will deduce, in particular, further
properties of our motivating example. For r � n in N, put Qr;n :� ker�'r;n�.


Proposition 2.4.
(a) Qr;n � �r�Qn� if r � n and Qr;n � 'ÿ1r;n�1�Mn� if r � n� 1.
(b) For each n 2 N, lim fQr;n : r � ng � Qn.
(c) If r � n, then Qr;n is a divided prime ideal of Ar.
(d) For each n 2 N, Qn is a divided prime ideal of A.


Proof. (a) As 'n;n is an identity map, its kernel, Qn;n, is 0. Of course,
�n�Qn� is also 0, since Qn � ker��n�. Thus, without loss of generality,
r � n� 1. As in the proof of Lemma 2.2 (c), �n � 'r;n � �r, whence
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Qn � �ÿ1n �0� � �ÿ1r �ker�'r;n�� � �ÿ1r �Qr;n�. Since �r is surjective, it follows
that �r�Qn� � Qr;n. Since 'r;n � 'n�1;n � 'r;n�1 and Mn � ker�'n�1;n�, we see
similarly that 'ÿ1r;n�1�Mn� � ker�'r;n� � Qr;n.


(b) If r � n, it follows from the surjectivity of 'r�1;r and the second as-
sertion in (a) that 'r�1;r restricts to a surjection Qr�1;n ! Qr;n. Since lim 
preserves monomorphisms, we can view lim fQr;n : r � ng inside
lim fAr : r � ng, which, by cofinality, is just A. It now follows easily from the
above comments that lim fQr;n : r � ng � Qn.


(c) By Proposition 2.3 (b), we may assume that Kn � q f �An� for each
n 2 N. Of course, Qr;n is a prime ideal of Ar, since 'r;n is a surjective homo-
morphism and An is an integral domain. It remains only to prove the ``di-
vided'' assertion. This is evident if r � n, since Qn;n � 0. Next, for r � n� 1,
observe that Qn�1;n �Mn by (a) and, by a calculation using Kn � q f �An�, we
check that Bn � �An�1�Mn


(cf. also [14, Lemma 1.1.6]). Then the pullback
description of An�1 may be identified with the statement that
An�1 � �An�1�Mn


�q f �An�1=Mn� �An�1=Mn�; i.e., Qn�1;n �Mn is a divided prime
ideal of An�1.


It follows easily from the second assertion in (a) that 'ÿ1r�1;r�Qr;n� � Qr�1;n.
Thus, in view of the pullback description of An�i for i � 2, a proof of (c) may
be completed (by induction on r) by proving the following general result.


If B is a quasilocal integral domain with maximal ideal M and residue
field K , ' : B! K the canonical surjection, D an integral domain with quo-
tient field K , and P a divided prime ideal of D, then P� :� 'ÿ1�P� is a di-
vided prime ideal of D� :� 'ÿ1�D� � D�K B.


For a proof, observe as above that the condition K � q f �D� ensures that
B � D�M , whence MD�M �M and, in particular, MD�P� �M. As we may
identify D � D�=M and DP � �D�=M�P�=M � D�P�=MD�P� � D�P�=M, we have
a pullback diagram


In addition, since P is a divided prime ideal of D, there is a pullback diagram


inverse limits of integral domains arising from iterated ... 23







{orders}ms/010120/dobbs.3d -29.3.01 - 15:31


As we may identify D�=P� � D=P, juxtaposition of the above diagrams pro-
duces a pullback diagram


thus showing that P� is divided in D�.
(d) We show that if a � �ak� 2 AnQn, then Qn � aQn. Let x � �xk� 2 Qn.


Then xr 2 Qr;n whenever r � n, by (b). Also by (b), ar 2 ArnQr;n whenever
r � n. Hence, by (c), if r � n, there exists yr 2 Qr;n such that xr � aryr;
moreover, yr is uniquely determined since ar 6� 0. Since 'r�1;r�xr�1� � xr and
Ar is an integral domain, we see easily that 'r�1;r�yr�1� � yr for each r � n.
Moreover, xi � 0 whenever i � n, by Theorem 2.1 (c). Since xn � anyn and
An is an integral domain, yn � 0. Put yi � 0 if 1 � i < n and
y :� �yk� 2


Q
Ak. Observe that y 2 A and xk � akyk for each k 2 N. In fact,


y 2 Qn by (b), and so x � ay 2 aQn.


Since A=Qn � An, Spec �An� embeds canonically in Spec �A�. For con-
venience, we identify Spec �An� with its image in Spec �A�. In particular,
Spec �An� � Spec �An�1� � Spec �A�. With this convention, the following
useful result is easy to state.


Theorem 2.5.
(a) Spec �A�nf0g � S1


n�1
Spec �An�.


(b) For each n 2 N, Max�A� �Max�An� �Max�A1�.
(c) Let a � �ak� 2 A. Then


a 2 u�A� , ak 2 u�Ak� for each (resp., some) k 2 N, a1 2 u�A1�:
Proof. (a) Since Mn 6� 0, it follows from Proposition 2.4 (a) that Qn 6� 0,


and so the zero prime ideal of A is not in (the canonical image of) Spec �An�.
Therefore, it suffices to show that if 0 6� P 2 Spec �A�, then P 2 Spec �Ak� for
some k 2 N. Now, for each k, since Qk is divided (by Proposition 2.4 (d)),
either P � Qk or Qk � P. As P 6� 0, it follows from Theorem 2.1 (d) that P is
not contained in


T
Qk. Hence, there exists k 2 N such that Qk � P. In par-


ticular, P 2 Spec �Ak�.
(b) Let n 2 N. By Proposition 2.4 (d), Qn is contained in each maximal


ideal of A. Using A=Qn � An and the above convention, we infer
Max�A� �Max�A=Qn� �Max�An�.


(c) If M 2Max�A�, use the identifications in (b) to view M as
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M�k� 2Max�Ak� for each k 2 N. Since �1�a� � a1, we see that
a 2M , a1 2M�1�. Therefore,


a 2 u�A� , a =2M for each M 2Max�A�
, a1 =2M�1� for each M�1� 2Max�A1� , a1 2 u�A1�:


Since ring-homomorphisms send units to units, the assertion follows.


Corollary 2.6. A is an integral domain and dim�A� � 1. Moreover, A is
quasilocal if and only if A1 is quasilocal.


Proof. The first assertion follows from Theorem 2.1 (e), the third from
Theorem 2.5 (b). To show dim�A� � 1, note that Spec �An� 6� Spec �An�1�
since Qn�1;n 6� 0.


We next revisit the theme of Theorem 2.1 (g) for the special type of inverse
limit under consideration.


Corollary 2.7. The following conditions are equivalent:
(1) For each n 2 N, An is a valuation domain;
(2) A1 is a valuation domain and, for each n 2 N, Bn is a valuation domain


and Kn � q f �An�;
(3) A is a valuation domain.


Proof. (1) ) (3) by Theorem 2.1 (g). Also, �3� ) �1� since A=Qn � An


and factor domains of valuation domains are valuation domains [15, Pro-
position 13.2 (2)].
�1� , �2�: It follows from [15, Theorem 26.1 (1)] that if An�1 is a valuation


domain, then Kn � q f �An�. Therefore, applying [11, Theorem 2.4 (1)] to the
pullback An�1 � Bn �Kn An leads to the following result: An�1 is a valuation
domain if and only if Bn and An are valuation domains and Kn � q f �An�.
Using this result repeatedly, we obtain both �1� ) �2� and �2� ) �1�.


Before addressing integral closure, we settle (in Remark 2.9) one of the
motivating questions mentioned in the Introduction. To this end, we need
only the following sortie into factorization theory.


Proposition 2.8. If An has no atoms (i.e., irreducible elements) for each
n 2 N, then A has no atoms.


Proof. Deny. Choose an atom � � �an� of A. As � 6� 0, we can assume
that an 6� 0 for each n (by passing to some �an�n�m and using cofinality). By
Theorem 2.5 (c), an is a nonunit of An for each n. By hypothesis, a1 is not an
atom of A1, and so a1 � b1c1 for some b1; c1 2 A1nu�A1�. Pick b�2 2 'ÿ12;1�b1�
and c2 2 'ÿ12;1�c1�. Then a2 ÿ b�2c2 2 ker�'2;1� � Q2;1. Now, c2 =2 Q2;1 since
c1 6� 0. Since Proposition 2.4 (c) ensures that Q2;1 is a divided prime ideal of
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A2, we have Q2;1 � A2c2, and so a2 ÿ b�2c2 � c2d2 for some d2 2 A2. It follows
that a2 � b2c2, with b2 :� b�2 � d2 2 A2. Since


0 � '2;1�c2d2� � '2;1�c2�'2;1�d2� � c1'2;1�d2�
and A1 is an integral domain, '2;1�d2� � 0. Therefore, '2;1�b2� � '2;1�b�2��
'2;1�d2� � b1 � 0 � b1. Iterating the above argument, we find for each n 2 N,
nonunits bn and cn of An such that an � bncn, 'n�1;n�bn�1� � bn, and
'n�1;n�cn�1� � cn. Evidently, � :� �bn� and  :� �cn� are in A; in fact, they are
nonunits of A, by Theorem 2.5 (c). However, � � �, contradicting that � is
an atom of A.


Remark 2.9. Following [3], an integral domain D is an antimatter do-
main if D has no atoms. As in [6], D is a fragmented domain if, for each
d 2 Dnu�D�, there exists e 2 Dnu�D� such that d 2 T1n�1 Den. Any frag-
mented domain is an antimatter domain, but the converse is false. Indeed,
for each n 2 N, [3, Corollary 3.11 (b)] uses repeated Nagata compositions to
produce an n-dimensional antimatter valuation domain An (therein denoted
Vn); and An is not fragmented since quasilocal fragmented domains are ei-
ther fields or infinite-dimensional [6, Corollary 2.8]. What about
A :� lim An? We see quickly that A is a valuation domain (by Theorem 2.1
(g)), dim�A� � 1 (by Corollary 2.6), and A is an antimatter domain (by
Proposition 2.8). To answer the question left open in [3], we now show that
A is not fragmented. Since A is a valuation domain, [6, Corollary 2.6]
translates the problem to showing that M, the maximal ideal of A, is not
unbranched in A; that is, that M is not the union of the nonmaximal prime
ideals of A. In view of Theorem 2.5 (a), (b), this conclusion follows from the
analogous fact about A2.


Theorems 2.10 and 2.12 address the integral closure of A.


Theorem 2.10. Assume that Kn � q f �An� for each n 2 N. Then the follow-
ing conditions are equivalent:


(1) For each n 2 N, An is integrally closed;
(2) A1 is integrally closed and, for each n 2 N, Bn is integrally closed;
(3) A is integrally closed.


Proof. If P is a divided prime ideal of an integral domain D, we have the
pullback description D � DP �DP=P D=P. It follows (cf. [11, Corollary 1.5
(5)]) that D is integrally closed if and only if both DP and D=P are integrally
closed.
�3� ) �1�: Assume (3) and fix n 2 N. By Proposition 2.4 (d), Qn is a di-


vided prime ideal of A. Hence, by the above remark, A=Qn is integrally
closed. Then (1) follows since A=Qn � An by Lemma 2.2 (b).
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�1� ) �3�: It suffices to show that if � 2 A0, then � 2 A. Write � � abÿ1,
with a 2 A and 0 6� b 2 A. By Lemma 2.2 (c), there exists m 2 N such that
b =2 Qm. Since � is integral over A, it is easy to see that
� :� �a�Qm��b�Qm�ÿ1 2 q f �A=Qm� is integral over A=Qm � Am. Since Am


is integrally closed by (1), � � c�Qm for some c 2 A. It follows that
q :� aÿ bc 2 Qm. As Qm is a divided prime ideal of A (by Proposition 2.4
(d)) and b =2 Qm, we have Qm � Ab. In particular, q 2 Ab, and so qbÿ1 2 A.
Hence, � � c� qbÿ1 2 A� A � A.
�1� , �2�: Since Kn � q f �An�, the pullback An�1 � Bn �Kn An leads cano-


nically to Mn � ker�'n� � ker�'n�1;n�, Bn � �An�1�Mn
, and An � An�1=Mn.


Hence, by the first comment of the proof, An�1 is integrally closed if and
only if both Bn and An are integrally closed. The assertion now follows by
induction on n.


It is of some technical interest to note that the proof of the equivalence
�1� , �3� in Theorem 2.10 did not use the hypothesis that Kn � q f �An� for
each n. Also, the following condition can be added in those in Theorem 2.10:


(4) there exists m 2 N such that An is integrally closed for each n � m.


Lemma 2.11. Let C1 be an overring of A1 which is not a field. For n 2 N,
define Cn�1 inductively by Cn�1 :� Bn �Kn Cn � 'ÿ1n �Cn�. If m � n in N, let
'm;n : Cm ! Cn denote the natural extension of 'm;n : Am ! An. Consider the
inverse system generated by fC1; �Kn;Bn� : n 2 Ng, and put C :� lim Cn. Then:


(a) For each n 2 N, Mn � �An�1 : Bn� � �Cn�1 : Bn�.
(b) If m > n in N, then Qm;n � ker�'m;n : Am ! An� � 'ÿ1m;n�1�Mn� �


ker�'m;n : Cm ! Cn�.
(c) For each n 2 N, Qn is a divided prime ideal of C.
(d) A and C have the same quotient field and the same complete integral


closure.


Proof. The assertions in (a) and (b) follow easily from Proposition 2.4 (a)
since Mn 6� 0. Moreover, replacing A1 with C1 in the earlier discussion, we
see that (c) follows from (b) and Proposition 2.4 (b), (d). Finally, since Pro-
position 2.4 (a) ensures that Q1 6� 0, (d) follows since A and C share a com-
mon nonzero ideal (cf. [15, Theorem 13.1 (3)]).


Theorem 2.12. Assume that for each n 2 N, Bn is integrally closed and
Kn � q f �An�. Then A0 is the inverse limit of the integral closures A0n of An; that
is, �lim An�0 � lim A0n.


Proof. Since B0n � Bn by hypothesis, it follows that A0n�1 � Bn and (cf.
[11, Corollary 1.5 (5)]) A0n�1 � Bn �Kn A


0
n. As in Lemma 2.11, consider the


inverse system generated by fA01; �Kn;Bn� : n 2 Ng. (The earlier theory ap-
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plies since, by integrality, A01 inherits from A1 the property of not being a
field.) Put R :� lim A0n. By Theorem 2.10, R is integrally closed; and by
Lemma 2.11 (d), A and R have the same quotient field. As lim preserves in-
clusions, A � lim An � lim A0n � R, and so it suffices to prove that R is in-
tegral over A.


Let x � �xn� 2 R �QA0n. Since x1 2 A01, we have


xr1 � a�1�rÿ1x
rÿ1
1 � � � � � a�1�1 x1 � a�1�0 � 0


for some r 2 N and elements a�1�k 2 A1. For each n 2 N, if 0 � k � rÿ 1,
choose b�n�k 2 'ÿ1n;1�a�1�k � 2 An; of course, b


�1�
k � a�1�k . For n � 2, put


y2 :� xr2 � b�2�rÿ1x
rÿ1
2 � � � � � b�2�1 x2 � b�2�0 2 A02:


As '2;1 is a homomorphism and '2;1�x2� � x1, we have '2;1�y2� � 0. Hence


c�2�0 :� ÿy2 2 ker�'2;1� � A2


satisfies xr2 � b�2�rÿ1x
rÿ1
2 � � � � � b�2�1 x2 � �b�2�0 � c�2�0 � � 0.


Since c�2�0 2 A2, we have a
�2�
0 :� b�2�0 � c�2�0 2 A2. Also, if 1 � k � rÿ 1, then


a�2�k :� b�2�k 2 A2. Repeating the above argument, we find elements a�3�k 2 A3,
0 � k � rÿ 1, such that


xr3 � a�3�rÿ1x
rÿ1
3 � � � � � a�3�1 x3 � a�3�0 � 0


and '3;2�a�3�k � � a�2�k for all k. Iterating the argument, we thus produce
ak � �a�n�k � 2 A, 0 � k � rÿ 1, such that for each n 2 N,


xrn � a�n�rÿ1x
rÿ1
n � � � � � a�n�1 xn � a�n�0 � 0 :


Therefore, xr � arÿ1xrÿ1 � � � � � a1x� a0 � 0; that is, x is integral over A.


In explaining that A01 is not a field, the proof of Theorem 2.12 appealed to
the lying-over theorem (cf. [19, Theorem 44]). It is natural to ask if LO (as
well as GU, GD and INC) satisfies an analogue of Theorem 2.12; in parti-
cular, if (the above type of) lim preserves LO. Our next result gives an af-
firmative answer. It is convenient to consider also the following property
which was introduced in [21]. Recall that an inclusion f : D! E of integral
domains is an i-extension if Spec �f � : Spec �E� ! Spec �D� is an injection.


Proposition 2.13. As above, consider the inverse system generated by
fA1;�Kn;Bn� : n 2 Ng, with A � lim An. Consider a(nother) inverse system
generated by fA�1; �K�n;B�n� : n 2 Ng, with A� � lim A�n; in the latter system,
denote structures '�m;n, ��n, Q�r;n, Q�n analogously to the corresponding ``un-
starred'' structures in the former system. For each n 2 N, suppose given an in-
jective ring-homomorphism hn : An ! A�n; and suppose that '��n�1�;n � hn�1 �
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hn � 'n�1;n for each n 2 N. Let h : A! A� be the induced injective ring-homo-
morphism. Then:


(a) Let Q 2 Spec �A�� and P :� hÿ1�Q� � Q \ A 2 Spec �A�. Then Q � 0 if
and only if P � 0.


(b) Fix n 2 N. Consider Q 2 Spec �A�n� � Spec �A�� and P 2 Spec �An� �
Spec �A�. Then hÿ1n �Q� � P if and only if hÿ1�Q� � P.


(c) Let p be one of the following five properties: LO, GU, GD, INC, ``(is
an) i-extension''. If hn satisfies p for each n 2 N, then h satisfies p.


Proof. (a) It is useful to view h and the maps hn as inclusions occasion-
ally, and the notation ``Q \ A'' in the statement of (a) is interpreted in this
sense. (Of course, h is an injection since lim preserves injections.) Now, of
course, 0 \ A � 0. Thus, it suffices to show that if Q 6� 0, then P 6� 0. By
Theorem 2.5 (a), we can view Q 2 Spec �A�n� for some n 2 N. Since
��n � h � hn � �n : A! A�n, functoriality of Spec gives a commutative dia-
gram


whose horizontal maps are viewed as inclusions. Chasing Q through this
diagram, we find that P � hÿ1�Q� is (the canonical image of)
hÿ1n �Q� 2 Spec �An�. By Theorem 2.5 (a), hÿ1n �Q� 6� 0 2 Spec �A�, and so
P 6� 0.


(b) This follows from the above commutative-diagram argument.
(c) All five proofs are similar. We give the proof for p � GU and leave


the other proofs to the reader. Thus, we suppose given primes P1 � P2 in
Spec �A� and P�1 2 Spec �A�� such that hÿ1�P�1� � P1, and we seek a prime
P�2 2 Spec �A�� such that hÿ1�P�2� � P2 and P�1 � P�2. Without loss of gen-
erality, P1 6� P2.


Case 1 : P1 � 0. By (a), P�1 � 0. It suffices to find P�2 2 Spec �A�� such
that hÿ1�P�2� � P2. Using Theorem 2.5 (a), choose n 2 N such that
P2 2 Spec �An�. Since hn is an injection which satisfies GU, [19, Theorem 42]
ensures that hn satisfies LO, and so there exists P�2 2 Spec �A�n� such that
hÿ1n �P�2� � P2. Then, by (b), hÿ1�P�2� � P2.


Case 2 : P1 6� 0. By (a), P�1 6� 0. By applying Theorem 2.5 (a) three times
and choosing the maximal of three subscripts, we find n 2 N such that
P1;P2 2 Spec �An� and P�1 2 Spec �A�n�. Next, note that the injections
Spec ��n� and Spec ���n� both preserve and reflect order (that is, inclusions
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of prime ideals). Thus, P1 � P2 when viewed in Spec �An�, and so, in view of
(b), it suffices to find P�2 in Spec �An� such that P�1 � P�2 when viewed in
Spec �A�n� and hÿ1n �P�2� � P2. This, in turn, is accomplished since hn satisfies
GU.


Recall from [21] that an integral domain D is an i-domain in case the in-
clusion map D! E is an i-extension for each overring E of D. Evidently,
being an i-domain is a local property of integral domains. It was shown in
[21, Proposition 2.14 and Corollary 2.15] that an integral domain D is an i-
domain if and only if D � D0 is an i-extension and D0 is a Pru« fer domain;
and that an integral domain D is a quasilocal i-domain if and only if D0 is a
valuation domain.


Proposition 2.14. Assume that for each n 2 N, Bn is integrally closed and
Kn � q f �An�. Then the following conditions are equivalent:


(1) For each n 2 N, An is a quasilocal i-domain;
(2) A1 is a quasilocal i-domain and, for each n 2 N, Bn is a valuation do-


main;
(3) A is a quasilocal i-domain.


Proof. By Theorem 2.5 (b), A is quasilocal , An is quasilocal for each
n, A1 is quasilocal. Thus, we may assume henceforth that each An is qua-
silocal. By Lemma 2.11 and Theorem 2.12, we have A0 � lim A0n, with
A0n � A0=Qn for each n 2 N (cf. [11, Corollary 1.5 (5)]). In particular, if A0 is
a valuation domain, then so is each A0n. Thus, in view of the material recalled
from [21], �3� ) �1�. On the other hand, �1� ) �3� by Theorem 2.12 and
Theorem 2.1 (g), for (1) leads to A0 being an inverse limit of valuation do-
mains. By Corollary 2.7, if A0n is a valuation domain for each n, then Bn is a
valuation domain for each n. Consequently, �1� ) �2�. Finally, to show that
�2� ) �1�, assume (2), observe that A01 is a valuation domain, and use Cor-
ollary 2.7 to conclude that A0 is a valuation domain.


The above material leads one naturally to ask if (the ambient type of) lim 
preserves Pru« fer domains or (not necessarily quasilocal) i-domains. For this
reason, we next address localizations of inverse limits. As usual, if D is an
integral domain and P 2 Spec �D�, it is convenient to let kD�P� denote
q f �D=P� � DP=PDP.


Proposition 2.15. Let 0 6� P 2 Spec �A�. Choose m 2 N such that
P 2 Spec �Am�; thus, P � Qm. (Such m exists by Theorem 2.5 (a).) Then for
each n � m in N, Pn :� �n�P� is a prime ideal of An. Then:


(a) P � lim fPn : n � mg.
(b) A=P � An=Pn for each n � m, and so A=P � lim fAn=Pn : n � mg.
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(c) kA�P� � kAn�Pn� for each n � m, and so kA�P� � lim fkAn�Pn� : n � mg.
(d) AP � lim f�An�Pn


: n � mg, the inverse limit of the inverse system gener-
ated by f�Am�Pm


; �Kn;Bn� : n � mg.
Proof. (a) Observe that Pm � P. Using Theorem 2.1 (d) and Lemma 2.2


(b), notice that 'ÿ1r;s �Ps� � Pr if r � s � m. It follows that P ,! A �
lim fAn : n � mg factors through lim fPn : n � mg, and (a) follows.


(b), (c): Notice that Pn 2 Spec �A� is identified with P=Qn 2 Spec �A=Qn� �
Spec �An� for each n � m. Then A=P � An=Pn by a standard isomorphism
theorem. These isomorphisms are compatible with the isomorphisms
An�1=Pn�1ÿ!� An=Pn induced by 'n�1;n, and (b), (c) follow easily.


(d) If n � m, we identify �n�2�P� � P � Qm � Qn�1, and so Proposition
2.4 (a) leads to


P � �n�2�Qn�1� � Qn�2;n�1 �Mn:


Thus, by the universal mapping property of localizations, the inclusion map
An�1 ! Bn extends to an inclusion �An�1�Pn�1 ! Bn. Moreover, since
'n�1;n�An�1nPn�1� � AnnPn, the surjection 'n�1;n induces a surjection
�An�1�Pn�1 ! �An�Pn


. In particular, 'ÿ1n ��An�Pn
� � �An�1�Pn�1 and we have a


pullback description �An�1�Pn�1 � Bn �Kn �An�Pn
. Let m be increased, if ne-


cessary, so that P properly contains Qm. Then we can let R :� lim �An�Pn
, the


inverse limit of the inverse system generated by f�Am�Pm
; �Kn;Bn� : n � mg.


By Lemma 2.11 (d), R has he same quotient field, say K , as A (and, hence,
the same as AP). Moreover, the universal mapping property of localization
gives ring-homomorphisms AP ! �An�Pn


which, in view of the universal
mapping property of lim , lead to a ring-homomorphism AP ! R. As this
map is evidently injective, we view it as an inclusion. It remains only to
prove that AP � R. To this end, observe via (a) that


AP �fabÿ1 2 K : a 2 A; b 2 AnPg � f�an : n � 1��bn : n � 1�ÿ1 2 K :


a � �an� 2 A; b � �bn� 2 A; bn 2 AnnPn for each n � m�b� � m � 1g
� lim f�An�Pn


: n � mg � R :


Corollary 2.16. Let 0 6� P 2 Spec �A�. As in Proposition 2.15, choose
m 2 N such that P 2 Spec �Am� properly contains Qm, and put Pn :� �n�P� for
each n � m in N. Then P is a divided prime ideal of A if and only if Pn is a di-
vided prime ideal of An for each (resp., some) n � m.


Proof. If Q is a divided prime ideal of an integral domain D and Q con-
tains I 2 Spec �D�, then Q=I is a divided prime ideal of D=I (cf. [5, Lemma
2.2 (c)]). Thus, if P is divided in A and n � m in N, then Pn � P=Qn is di-
vided in A=Qn � An. For the converse, suppose that Pm is divided in Am; that
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is, Am � �Am�Pm
�kAm �Pm� Am=Pm. Now, by the proof of Proposition 2.15 (d),


�An�1�Pn�1 � Bn �Kn �An�Pn
for each n � m. It follows from the pullback de-


scription of An that for each n � m, we have a canonical pullback diagram


In cases like this, lim commutes with pullbacks [18, Theorem 5.2, page 277].
Thus, by Proposition 2.15 (d), we have, with n � m, a pullback diagram


Since Pm is divided in Am, Proposition 2.15 (b), (c) gives a pullback diagram


Juxtaposing the last two pullback diagrams, we conclude that
A � AP �kA�P� A=P; that is, P is divided in A.


In Corollary 2.16, it may be shown directly, using the dividedness of Qn;m


(Proposition 2.4 (c)), that if Pm is divided, then so is Pn for each n � m.


Corollary 2.17. (a) The following two conditions are equivalent:
(1) For each n 2 N, An is a divided domain;
(2) A is a divided domain.


Moreover, if Kn � q f �An� for each n, then �1� and �2� are each equivalent to
(3) A1 is a divided domain and, for each n 2 N, Bn is a divided domain.
(b) The assertions in (a) are valid if ``divided'' is replaced throughout by


``locally divided''.
(c) Suppose that for all n 2 N, Bn is integrally closed and Kn � q f �An�.


Then the following conditions are equivalent:
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(1) For each n 2 N, An is an i-domain;
(2) A is an i-domain;
(3) A1 is an i-domain and, for each n 2 N, Bn is a valuation domain.


Proof. (a) Since each An is (isomorphic to) a factor domain of A,
�2� ) �1� by [5, Lemma 2.2 (c)]. Since the zero prime ideal is divided in any
integral domain, �1� ) �2� follows from the ``if'' assertion in Corollary 2.16.
Next, suppose that Kn � q f �An� for each n 2 N. Since An�1 � Bn �Kn An, it
can be shown that An�1 is a divided domain if and only if both Bn and An are
divided domains. (This assertion is essentially a translation of the first as-
sertion in [7, Proposition 2.12].) It is now evident that �3� , �1�.


(b) Any factor domain of a locally divided domain is locally divided [5].
Hence, �1� , �2� by (a) and Proposition 2.15 (d). For a proof that �3� , �1�,
assuming that Kn � q f �An� for each n, use the following translation of the
second assertion in [7, Proposition 2.12]: An�1 is locally divided if and only if
both Bn and An are locally divided.


(c) �2� ) �1� since D=P is an i-domain whenever P is a (divided) prime
ideal of an i-domain D [21, p. 3]. Next, since being an i-domain is a local
property, �1� ) �2� follows by combining Propositions 2.15 and 2.14. A si-
milar combination yields �1� , �3�, once we notice that A has a nonzero
prime ideal (cf. Theorem 2.5 (b)).


The next result will be used in determining when A is a PrVD.


Corollary 2.18. Fix n 2 N, and suppose that Km � q f �Am� for each
m � n in N. For m � n� 1, inductively define �B�n�m by


�B�n�n�1 :� 'ÿ1n�1�Bn� � Bn�1 ;


�B�n�m�1 :� 'ÿ1m�1��B�n�m� � Bm�1 if m � n� 1 :


Consider the inverse system generated by f�B�n�n�1; �Km;Bm� : m � n� 1g, and
put B�n � lim f�B�n�m : m � n� 1g. Then B�n � AQn.
Proof. The inverse system in question satisfies our riding hypotheses. (The
only issue may concern whether �B�n�n�1 is a field; if so, formally introduce
�B�n�n :� Bn, which is not a field.) Now, by Proposition 2.4 (a),
�n�1�Qn� �Mn; and, since Kn � q f �An�, �An�1��n�1�Qn� � �B�n�n�1 (cf. also
[14, Lemma 1.1.6]). Similarly, one shows by induction on m that
�Am��m�Qn� � �B�n�m for each m � n� 1. Now, since Proposition 2.4 (a) en-
sures that Qn 6� 0, Proposition 2.15 (d) may be applied to P :� Qn and the
above inverse system, with the result that


B�n � lim �B
�
n�m � lim �Am��m�Qn� � AQn :
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Recall from [17] that an integral domain D is a pseudo-valuation domain
(PVD) if D has a valuation overring V such that Spec �D� � Spec �V� as sets.
Any PVD is quasilocal and, in fact, a divided domain. It is useful to recall
from [17, Proposition 2.6] that if D is a PVD and P 2 Spec �D� is non-
maximal, then DP is a valuation domain; and from [2, Proposition 2.6] that
D is a PVD if and only if D � V �k F , where V is a valuation domain with
residue field k and F is a subfield of k.


From [12, Dëfinition 1.2 and Thëore© me 1.3] recall that a pseudo^valuation
domain of type r �PrVD� can be defined, by induction on r � 0, in the fol-
lowing way. A P0VD is a PVD and, for r � 1, a PrVD, D, is defined by a
pullback diagram of the following type:


where R is a Prÿ1VD, with maximal ideal N, F is its residue field, � is the
canonical projection and C is a PVD with field of quotients isomorphic to F .
For instance if k is a field and r � 0, then


k� X1k��Y1����X1�� � X2k��X1;Y1����X2�� � � � �
� Xr�1k��X1;Y1; . . . ;Xr;Yr����Xr�1��


is a PrVD.


Proposition 2.19. Let 0 � r 2 Z. Then the following conditions are equiva-
lent:


(1) There exists m 2 N such that, for each n � m in N, An is a PrVD;
(2) There exists m 2 N such that Am is a PrVD and, for each n � m in N, Bn


is a valuation domain and Kn � q f �An�;
(3) A is a PrVD.


Proof. �3� , �2�: By Proposition 2.4 (d), fQn : n � 1g is a family of di-
vided prime ideals of A. Using the definition of a PrVD (cf. also [12, Thëo-
re© me 1.3]), we see that A is a PrVD if and only if there exists m 2 N such that
A=Qm is a PrVD and AQm is a valuation domain. Of course, A=Qm � Am.
Now, if Kn � q f �An� for each n � m, Corollary 2.18 gives that


AQm � lim f�B
�
m�k : k � m� 1g � B�m :


Therefore, applying Corollary 2.7 to the construction in Corollary 2.18, we
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see that AQm is a valuation domain if and only if, for each k � m, Bk is a
valuation domain and Kk�1 � q f �Bk�. Thus, �2� ) �3�. Moreover, by [12,
Thëore© me 1.3] (3) implies that there exists m 2 N such that Am is a PrVD
and, for each n � m, that Kn � q f �An� and so �3� ) �2�.
�2� , �1�: Given Kn � q f �An�, we see from the pullback An�1 � Bn �Kn An


that An�1 is a PrVD if and only if An is a PrVD and Bn is a valuation domain
(cf. [12, Thëore© me 1.3]). Thus, �2� ) �1�. Moreover, in view of the above
comments, �1� ) �2�.


The next result is the PVD-theoretic analogue of Corollary 2.7 or of Pro-
position 2.19.


Corollary 2.20. The following conditions are equivalent:
(1) For each n 2 N, An is a PVD;
(2) A1 is a PVD and, for each n 2 N, Bn is a valuation domain and


Kn � q f �An�;
(3) A is a PVD.


Proof. It is well known that any factor domain of a PVD is a PVD. One
may use this fact, together with the material recalled above, to fashion a
proof of Corollary 2.20. Alternatively, the first sentence of this proof may be
combined with the case r � 0 of the proof of Proposition 2.19; the upshot is
another proof of Corollary 2.20, since a P0VD is the same as a PVD.


We next present the promised ``globalization'' of Corollary 2.7. Its proof
depends on Corollary 2.7 in much the same way that Corollary 2.17 (b) was
proved using Corollary 2.17 (a).


Theorem 2.21. The following conditions are equivalent:
(1) For each n 2 N, An is a Pru« fer domain;
(2) A1 is a Pru« fer domain and, for each n 2 N, Bn is a valuation domain and


Kn � q f �An�;
(3) A is a Pru« fer domain.


Proof. �3� ) �1� since An � A=Qn and factor domains of Pru« fer domains
are Pru« fer domains [15, Proposition 22.5]. For �1� ) �3�, assume (1); it suf-
fices to show that AP is a valuation domain for each 0 6� P 2 Spec �A�. By
Proposition 2.15 (d), AP � lim �An�Pn


for some Pn 2 Spec �An�, considering
all n � m � m�P�. By (1), each �An�Pn


is a valuation domain and so, by
Theorem 2.1 (c), AP is also a valuation domain.


Since An�1 � Bn �Kn An, it follows from well-known material on pullbacks
(cf. [11, Theorem 2.4 (3)]) that An�1 is a Pru« fer domain if and only if An is a
Pru« fer domain, Bn is a (quasilocal Pru« fer, that is) valuation domain, and
Kn � q f �An�. Accordingly, �2� , �1�.
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Pru« fer domains are the integrally closed i-domains (cf. [15]). In view of
Theorem 2.21, Corollary 2.17 (c) and Proposition 2.13 (c), we are led to
consider integral domains D such that the inclusion map D! E satisfies
INC for each overring E of D. According to [21, Proposition 2.26], these are
the integral domains D for which D0 is a Pru« fer domain. These integral do-
mains D were called quasi-Pru« fer domains by Ayache, Cahen and Echi; they
have been studied extensively in [14].


Corollary 2.22. Suppose that for all n 2 N, Bn is integrally closed and
Kn � q f �An�. Then the following conditions are equivalent:


(1) For each n 2 N, An is a quasi-Pru« fer domain;
(2) A1 is a quasi-Pru« fer domain and, for each n 2 N, Bn is a valuation do-


main;
(3) A is a quasi-Pru« fer domain.


Proof. �3� ) �1� since An � A=Qn and D=P is a quasi-Pru« fer domain
whenever P is a (divided) prime ideal of a quasi-Pru« fer domain D [14, Pro-
position 6.5.1]. For �1� ) �3�, combine Theorems 2.12 and 2.21 [�1� ) �3�].
Finally, �2� ) �1� follows from the result that (if Bn is integrally closed and
quasilocal, then) An�1 � Bn �Kn An is a quasi-Pru« fer domain if and only if An


is a quasi-Pru« fer domain, Bn is a valuation domain, and Kn � q f �An� [14,
Corollary 1.1.9 (1)].


We next consider when A is a Bëzout domain. Recall that an integral do-
main D is a Bëzout domain if each nonzero finitely generated ideal of D is
principal. Each Bëzout domain is a Pru« fer domain, but the converse is false
(cf. [15]).


Corollary 2.23. The following conditions are equivalent:
(1) For each n 2 N, An is a Bëzout domain;
(2) A1 is a Bëzout domain and, for each n 2 N, Bn is a valuation domain and


Kn � q f �An�;
(3) A is a Bëzout domain.


Proof. It follows from [13, Theorem 4.2 (c)] that if B� is a quasilocal in-
tegral domain with residue field K� and A� is a (proper) subring of K�, then
A�� :� B� �K� A� is a Bëzout domain if and only if A� is a Bëzout domain, B�


is a valuation domain, and K� � q f �A��. Thus, since An�1 � Bn �Kn An, we
see that An�1 is a Bëzout domain if and only if An is a Bëzout domain, Bn is a
valuation domain, and Kn � q f �An�. Therefore, �2� ) �1�. Moreover, since
any factor domain of a Bëzout domain is a Bëzout domain [15], we also have
that �1� ) �2� and (in light of Theorem 2.21 [�3� ) �2�]) that �3� ) �2�. It
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remains to show that [(1) and (2)] imply (3). Henceforth, assume (1) and (2);
in particular, Kn � q f �An� for each n.


Since A1 � A=Q1 and Q1 is a divided prime ideal of A (see Lemma 2.2 (b)
and Proposition 2.4 (d)), applying the above upshot of [13, Theorem 4.2 (c)]
to the pullback A � AQ1 �kA�Q1� A=Q1 yields the following conclusion: A is a
Bëzout domain if and only if A1 is a Bëzout domain and AQ1 is a valuation
domain. By (2), A1 is a Bëzout domain, and so we need only prove that AQ1


is a valuation domain. This, in turn, follows since A is a Pru« fer domain by
Theorem 2.21 [(1) or (2) implies (3)].


Remark 2.24. (a) In view of the motivation provided by [10], Theorem
2.21 [�1� ) �3�] is an appealing result. It is instructive to consider a direct
attempt at proving that A � lim An is a Pru« fer domain, assuming only that
each An is a Pru« fer domain and 'm;n : Am ! An is surjective for each m � n
in N. Using the criterion for Pru« fer domains that ``each nonzero finitely
generated ideal is invertible'', one can construct a proof, somewhat in the
spirit of that of Theorem 2.12, if one is free to use two facts: �n : A! An is
surjective for each n 2 N; and Qm;n :� ker�'m;n� is a divided prime ideal of
Am for each m � n in N. The first of these ``facts'' is valid, but the second
``fact'' was shown in Proposition 2.4 (c) as a result of our riding hypotheses.
Thus, we have sketched an alternate proof of Theorem 2.21 [�1� ) �3�].
More importantly, we have found a new way to motivate those riding hy-
potheses, for dividedness of the ideals Qn�1;n allows one to recover
f�Bn;Kn� : n 2 Ng as in our riding hypotheses, assuming only that A1 is not a
field and 'n�1;n is not an isomorphism. Indeed, taking Bn :� �An�1�Qn�1;n and
Kn � kAn�1�Qn�1;n� leads to data satisfying our riding hypotheses. One moral
is that both of our approaches to Theorem 2.21 [�1� ) �3�] naturally lead to
consideration of divided prime ideals.


(b) Although we have determined when A (under our riding hypotheses)
belongs to several important classes of integral domains, additional such re-
sults are possible. Analogously to Corollary 2.23, one could use part (b),
rather than part (c), of [13, Theorem 4.2] to determine when A is a G-GCD
domain (in the sense of [1]). Similarly, [13, Theorem 4.1] can be used to
characterize when A is a Pru« fer v-multiplication domain �PVMD�. We leave
the details to the interested reader.


In closing, we consider one of the motivations for much of [10] and the
above work. Recall (cf. [4]) that an integral domain D is a going-down do-
main if the inclusion map D! E satisfies GD for each integral domain E
containing D (equivalently, for each overring E of D). Many of the above-
considered types of integral domains are examples of going-down domains.
(For example, locally divided domains and i-domains are going-down do-
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mains; hence, so are valuation domains, divided domains, PrVDs, PVDs,
Pru« fer domains, and Bëzout domains: a redundant list which corresponds to
the order in which the concepts appeared above. On the other hand, a quasi-
Pru« fer domain need not be a going-down domain; the same holds for a G-
GCD domain and a PVMD.) Being a going-down domain is a local property
of integral domains (cf. [5]). Any locally divided domain is a going-down
domain [5, Remark 2.7 (b)]; the converse holds for integral domains which
are seminormal (in the sense of [23]), essentially by the proof of [5, Theorem
2.5].


Proposition 2.25. Consider the following three conditions:
(1) For each n 2 N, An is a going-down domain;
(2) A1 is a going-down domain and, for each n 2 N, Bn is a going-down do-


main;
(3) A is a going-down domain.
Then:
(a) �3� ) �1�.
(b) Assume that Kn � q f �An� for each n 2 N. Then �1� , �2�.
(c) Assume that for each n 2 N, Kn � q f �An�, Bn is seminormal and A1 is


seminormal. Then �1� ) �3�.
(d) Assume that for each n 2 N, Kn � q f �An� and Bn is integrally closed.


Then �1� ) �3�.
Proof. Since any factor domain of a going-down domain is a going-down


domain [5, Remark 2.11 and Remark 3.2 (a), (b)], we have that �3� ) �1�,
giving (a). Assume henceforth that Kn � q f �An� for each n 2 N. Then, by
translating [7, Corollary 2.3] and applying it to the pullback
An�1 � Bn �Kn An, we see that An�1 is a going-down domain if and only if
both An and Bn are going-down domains. Then (b) follows easily.


(c) Notice that An�1 is seminormal if and only if both An and Bn are
seminormal. Then, given (1) and the assumptions in (c), we have that An is a
seminormal going-down domain for each n 2 N. By the above remarks, An is
locally divided for each n 2 N and so, by Corollary 2.17 (b), A is a locally
divided domain. In particular, A is a going-down domain, yielding (3) and
completing the proof of (c).


(d) It is enough to show that AP is a going-down domain for each max-
imal P 2 Spec �A�. By Proposition 2.15 (d), we may suppose A is quasilocal;
by Corollary 2.6, A1 is also quasilocal (and, by hypothesis, a going-down
domain). Recall the following criterion [5, Theorem 2.5]: a quasilocal in-
tegral domain D is a going-down domain if and only if D has an integral
overring E such that E is a divided domain and the inclusion map D! E is
an i-extension. For D :� A1, take C1 to be such an E. Notice, by integrality,
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that C1 is not a field (since A1 is not a field). For each n 2 N, put
Cn�1 :� Bn �Kn Cn, and consider C :� lim Cn. By the above criterion, it suf-
fices to show that C is an integral overring of A, C is a divided domain, and
the inclusion map A! C is an i-extension.


By Lemma 2.11 (d), C is an overring of A. (Of course, we may view A � C
since lim preserves injections.) Moreover, by [11, Corollary 1.5 (5)], Cn is
integral over An, for each n 2 N. It follows from the hypotheses that Cn is
overring of An for each n, and so, by Theorem 2.12, C � A0. In particular, C
is an integral overring of A. Next, notice that for each n, Bn is a quasilocal
(semi)normal going-down domain and so, by the above comments, it follows
from [5] that Bn is a divided domain. Hence, by applying [7, Proposition
2.12] to the pullback construction of Cn�1, we see by induction on n that Cn


is a divided domain for each n. Therefore, by Corollary 2.17 (a), C is a di-
vided domain. Finally, since An�1 � Cn�1 �Cn An, the topological description
of prime spectra of pullbacks [11, Theorem 1.4] gives that An ! Cn is an i-
extension for each n. Therefore, by Proposition 2.13 (c), A! C is an i-ex-
tension, completing the proof.
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