DIVISORIAL PRIME IDEALS IN PRÜFER DOMAINS

BY

MARCO FONTANA* JAMES A. HUCKABA AND IRA J. PAPICK

ABSTRACT. Given a Prüfer domain R and a prime ideal P in R, we study some conditions which force P to be a divisorial ideal of R. This paper extends some recent work of Huckaba and Papick.

1. Introduction. Let R be an arbitrary Prüfer domain and $P \in \text{Spec}(R)$. In this paper we study some conditions which force P to be divisorial, i.e., $P = P_v$. This work expands upon a recent paper of Huckaba and Papick [5]. In particular we generalize [5, Proposition 3.10] and [5, Proposition 3.11]. Unexplained terminology and unreferenced facts about Prüfer domains may be found in [3].

2. Some sufficient conditions for P to be divisorial. Let R be an arbitrary Prüfer domain with quotient field K, and P a nonzero prime ideal of R. It is known that if P is maximal, then P is divisorial if and only if P is invertible [5, Corollary 3.4]. Hence, we shall concentrate on nonzero, non-maximal prime ideals of R.

Let P be a nonzero, non-maximal prime ideal of R. We know that P^1 is a subring of K [5, Theorem 3.8] and in particular $P^{-1} = (P :_K P)$ [5, Proposition 2.3], as well as $P^{-1} = R_P \cap (\bigcap \alpha R_{M_\alpha})$, where $\{M_\alpha\}$ is the set of maximal ideals of R not containing P [5, Theorem 3.2]. Hence we have the following inclusion of rings:

$$R \subseteq P^{-1} \subseteq S \subseteq K \cap \left(\bigcap \alpha R_{M_\alpha}\right).$$

We shall prove that if $P^{-1} \not\subseteq S$, then P is divisorial. However, first let us consider a somewhat novel result which is at the opposite extreme of our Prüfer setting.

PROPOSITION 2.0. Let R be an arbitrary integral domain with quotient field K and $(0) \neq P \in \text{Spec}(R)$. If P^{-1} is not a subring of K, then P is divisorial.

Proof. Since P^{-1} is not a subring of K, then $(P :_K P) \not\subseteq P^{-1}$. Let $J = (R : P^{-1})$. Recall that $J = P_v$ [5, Lemma 2.1]. To complete the proof we will show that
J = P. It suffices to prove that \(J \subseteq P \). Let \(r \in J \). Since \(rP^{-1}P \subseteq P \) and \(PP^{-1} \not\subseteq P \), it follows that \(r \in P \). Hence, \(J = P \).

We are now prepared to state our main result.

Theorem 2.1. Let \(R \) be a Prufer domain with quotient field \(K \), and \(P \) a nonzero, non-maximal prime ideal of \(R \). If \(P^{-1} \not\subseteq S = K \cap (\bigcap M_\alpha) \), where \(\{M_\alpha\} \) is the set of maximal ideals of \(R \) not containing \(P \), then \(P \) is divisorial.

Before we establish Theorem 2.1, a lemma is needed.

Lemma 2.2. Same notation as the theorem. Then \(P^{-1} \not\subseteq S \) if and only if there exists a finitely generated ideal \(I \) of \(R \) such that \(I \subseteq P \) and \(I \not\subseteq M_\alpha \) for each \(\alpha \).

Proof. Recall that \(P^{-1} = R_p \cap S \), and use [4, Corollary 2].

Proof of Theorem 2.1. Since \(R \) is a Prufer domain, it suffices to show that \(P \) is an intersection of finitely generated ideals of \(R \). Let \(I \) be a finitely generated ideal of \(R \) such that \(I \subseteq P \) and \(I \not\subseteq M_\alpha \) for each \(\alpha \). For \(a \in R \setminus P \), we claim that \(P \subseteq (I, a) \). It is enough to check this assertion locally. For \(M \in \{M_\alpha\} \), we obviously have \(R_M = (I, a) R_M = PR_M \). If \(M \not\in \{M_\alpha\} \), then \(PR_M \subseteq aR_M = (I, a) R_M \) in the valuation ring \(R_M \). Finally, we wish to show that \(P = \bigcap \{(I, r) : r \in R \setminus P\} \). Since \(P \) is non-maximal, it will suffice to show for \(M \) maximal with \(P \subseteq M \), and \(r \in M \setminus P \) that \(r \notin (I, r^2) \). This follows since \(r \notin (r^2) R_M = (I, r^2) R_M \).

Corollary 2.3. Same notation as the theorem. If \(P \not\subseteq \bigcup M_\alpha \), then \(P \) is divisorial.

Proof. Let \(a \in P \setminus \bigcup M_\alpha \) and set \(I = (a) \). The desired conclusion follows from Lemma 2.2 and Theorem 2.1.

Corollary 2.4. Same notation as the theorem. If \(P \) is the radical of an invertible ideal \(I \), then \(P \) is divisorial.

Proof. Apply Lemma 2.2 and Theorem 2.1.

Corollary 2.5 [5, Proposition 3.10]. Same notation as the theorem. If \(P \) is contained in all but a finite number of maximal ideals, then \(P \) is divisorial.

Proof. Use Corollary 2.3 and Theorem 2.1 to obtain the result.

Before stating our final corollary, we need some terminology. A domain \(R \) has property \((\#)\) if \(\bigcap_{M \in V_1} R_M \neq \bigcap_{M \in V_2} R_M \) for any two distinct subsets \(V_1 \) and \(V_2 \) of \(\text{Max}(R) \); \(\text{Max}(R) \) being the set of maximal ideals of \(R \).

Corollary 2.6. Let \(R \) be a Prufer domain having each overring satisfy property \((\#)\). If \(P \) is a nonzero, non-maximal prime ideal of \(R \), then \(P \) is divisorial.

Proof. This follows immediately from [4, Theorem 3], Lemma 2.2, and Theorem 2.1.
Corollary 2.7. Same notation as the theorem. If $P = PR_p$, then P is divisorial.

Proof. The fact that $P = PR_p$, implies that P is comparable with all ideals of R, and in particular, P is contained in each maximal ideal of R. Hence P is divisorial by Corollary 2.5.

Remark 2.8. There exists a nonzero, non-maximal prime ideal P of the ring of entire functions R (R is a Bézout domain) such that P is not divisorial. In fact, $P^{-1} = R$ [5, Example 3.12].

3. The ideal transform of P. In this final section we study an interesting special case arising from the previous section. More specifically, let R be a Prüfer domain and P a nonzero, non-maximal prime ideal of R. Recall the ideal transform of P, $T(P) = \bigcup_{n=1}^{\infty} (R :_{P} P^n)$, and note that $T(P) = P_0 \cap (\bigcap_{\lambda} R_{M_\lambda})$, where $P_0 = \bigcap_{n=1}^{\infty} P^n$ and $\{M_\lambda\}$ is the set of maximal ideals of R not containing P [3, Exercise 11, p. 331]. Hence, since $P^{-1} = R_0 \cap (\bigcap_{\lambda} R_{M_\lambda})$ [5, Theorem 3.2], we have the following tower of rings:

$$R \subseteq P^{-1} \subseteq T(P) \subseteq S.$$

Note that if $P^{-1} \neq T(P)$, it is immediate from Theorem 2.1 that P is divisorial. It is our intent to study when $P^{-1} \neq T(P)$, and as one consequence of our efforts we will give a different proof of the fact that P is divisorial in this setting.

Lemma 3.0. Let R be a Prüfer domain and P a nonzero, non-maximal prime ideal of R. Then, P is a prime ideal of P^{-1}. (Recall that P is an ideal of P^{-1}, since $P^{-1} = (P :_{P} P)$ [5, Proposition 2.3].)

Proof. Since $P \in \text{Spec}(R)$, we know that $PR(x) \in \text{Spec}(R(x))$, where $R(x) = R[x]_U$, $U = \{f \in R[x] : c(f) = R\}$ [1, Theorem 4]. Also, $R(x)$ is a Bézout domain, as R is a Prüfer domain [1, Theorem 4 and p. 558]. Hence the overring $P^{-1}(x)$ is a quotient ring of $R(x)$. Notice that $P(P^{-1}(x)) \neq P^{-1}(x)$ [3, Proposition 33.1(4)]. Hence, $PR(x)(P^{-1}(x)) = P(P^{-1}(x))$ is a prime ideal of $P^{-1}(x)$. Whence, there exists a $Q \in \text{Spec}(P^{-1})$ such that $P(P^{-1}(x)) = Q(P^{-1}(x))$ [1, Theorem 4]. Therefore $P = Q$ [3, Proposition 33.1(4)], and so P is a prime ideal of P^{-1}.

We are now ready to analyze when $P^{-1} \notin T(P)$.

Theorem 3.1. Let R be a Prüfer domain and P a nonzero, non-maximal prime ideal of R. If $P^{-1} \notin T(P)$, then

(a) $P^{-1} \notin T(P)$ is a minimal extension, i.e., there are no rings properly between P^{-1} and $T(P)$.

(b) P is an invertible maximal ideal of P^{-1}.

(c) P is a divisorial ideal of R.

(d) \(T(P) = \bigcap Q = S' \) where \(\{Q_\alpha\} \) is the set of prime ideals of \(R \) not containing \(P \).

(e) \(P^{-n} \) is never a ring for \(n > 1 \).

Proof. (a). Let us suppose \(A \) is a ring satisfying \(P^{-1} \subseteq A \subseteq T(P) \). Since \(T(P) \) and \(A \) are intersections of localizations of \(R \) at certain prime ideals of \(R \) (\(R \) is a Prüfer domain), there exists a prime ideal \(Q \) in \(R \) such that \(A \subseteq R_Q \) and \(T(P) \subseteq R_Q \). We claim \(P \subseteq Q \), for if \(P \not\subseteq Q \) there exists \(Q \in \text{Spec}(T(P)) \) such that \(T(P)_Q = R_Q \) [6, Exercise 16(c), p. 149]. This contradiction establishes our claim. Hence \(A \subseteq R_Q \subseteq R_P \), and so \(A \subseteq R_P \cap (\bigcap \alpha R_{M_\alpha}) = P^{-1} \) [5, Theorem 3.2]. Therefore \(A = P^{-1} \), and the proof is complete.

(b) Assume \(P \) is not a maximal ideal of \(P^{-1} \). (Recall by Lemma 3.0 that \(P \) is a prime ideal of \(P^{-1} \).) Since \(P^{-1} \subseteq T(P) \) is a minimal extension, we know that \(P^{-1} = (P_R :_{P^{-1}}) = P^{-2} \). However \(P^{-1} = P^{-2} \). Thus, since \(P^{-n} = (R : P^n) = ((R : P^{n-1}) : P) \), we can conclude by induction that \(P^{-n} = P^{-1} \) for each positive integer \(n \). Therefore \(P^{-1} = T(P) \), the desired contradiction.

(c) As \(P \) is a non-maximal prime ideal of \(R \), we see by (b) that \(P^{-1} \neq R \), and thus \(P \neq R \). Therefore, \(P = R_P \), as \(P \) is an ideal of \(P^{-1} \) [5, Lemma 2.1].

(d) Since \(T(P) \subseteq \bigcap \alpha R_{Q_\alpha} = S' \) [6, Exercise 16(d), p. 149], it suffices to show \(S' \subseteq T(P) \). Assume otherwise. As in part (a), there exists a prime ideal \(Q \in \text{Spec}(R) \) such that \(T(P) \subseteq R_Q \) and \(S' \not\subseteq R_Q \). Hence \(P \subseteq Q \), and so \(T(P) \subseteq R_Q \subseteq R_P \). Whence, \(T(P) \subseteq R_P \cap (\bigcap \alpha R_{M_\alpha}) = P^{-1} \), a contradiction. Therefore, \(T(P) = S' \).

(e) Suppose \(P^{-n} \) is a ring for some \(n > 1 \). Then \(P^{-n} = R_P \cap (\bigcap \alpha R_{M_\alpha}) = P^{-1} \) [5, Theorem 3.2], and by induction \(P^{-1} = T(P) \). This contradiction completes the proof.

Remark 3.2. (a) Let \(R \) be an arbitrary integral domain with quotient field \(K \), and \(P \in \text{Spec}(R) \). Note that if \(P^{-1} \) is a subring of \(K \), then \(P^{-1} = (P : K) \) [5, Proposition 2.3]. Hence \(P \) is an ideal of \(P^{-1} \), but \(P \) need not be a prime ideal of \(P^{-1} \) [5, Example 2.5]. However, if \(R \) is a Prüfer domain, then Lemma 3.0 shows that \(P \in \text{Spec}(P^{-1}) \).

(b) The converse of Theorem 3.1 (b) is valid, i.e.; under the assumptions of Theorem 3.1, if \(P \) is an invertible maximal ideal of \(P^{-1} \), then \(P^{-1} \subseteq T(P) \). To see this notice that \(P^{-1} \subseteq (P^{-1} :_K P) = P^{-2} \subseteq T(P) \).

(c) The converse of Theorem 3.1(c) is not generally true. Let \(R \) be a valuation domain, and \(P \) a nonzero, non-maximal prime ideal of \(R \) such that \(P = P^2 \). Then \(P^{-1} = T(P) \), yet \(P = P_v \) (Corollary 2.5).
(d) The converse of Theorem 3.1(d) is not generally true. Let R be a valuation domain and P a nonzero, non-maximal prime ideal of R such that P is unbranched, i.e., $P = \bigcup_{Q \in \text{Spec}(R)} Q$. Observe that $P^{-1} = R_p$ [5, Corollary 3.6] and $S' = \bigcap_{Q \in \text{Spec}(R)} R_Q = R_p$. Therefore,

$$P^{-1} = R_p \subseteq T(P) \subseteq S' = R_p,$$

and so $T(P) = S'$, yet $P^{-1} = T(P)$.

(e) The converse of Theorem 3.1(e) is obviously true.

REFERENCES