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1. Introduction 

An integral domain R has the finite [finite presentation] overring property, if 
every overring of R in the quotient field K of R is a finitely generated [finitely 
presented] R-algebra. Papick in [24] (Proposition 23) has given a characterization 
of one-dimensional domains with the finite presentation overring property. In this 
paper, we remove the restriction on the dimension. Thri is achieved in Theorem 18 
using a characterization of domains with the finite overring property (Theorem 14). 

An important contribution in obtaining these results comes from a consideration 
of an analogue for overrings of the following theorem of Cohen [17, Theorem 71. 
Let 1 be an ideal of a commutative unitary ring R. Assume that I is not finitely 
generated and is maximal with respect to this property. Then I is a prime ideal of R. 

Studies on overrings of integral domains [ 12,13,14,18,28] suggest that, in 
multiplicative domains, overrings of domains play a role analogous to ideals in 
commutative rings and that valuation overrings may be thought of as analogues of 
prime ideals. Looking for an analogue of the above theorem of Cohen, we are led 
to introduce the following definition: Let R be a G-domain, with quotient field K. 
We say that an overring S of R in K is a Cohen overring of R, if S is not a finitely 
generated R-algebra and S is maximal with respect to this property. We show that 
Cohen overrings are always local rings (Proposition 2). We exhibit examples 
showing that they may not be valuation rings. However, we point out that there are 
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important classes of domains for which all Cohen overrings are valuation rings 
(Proposition 4). Thus our theory reinforces the analogy between valuation rings and 
prime ideals and suggests that Cohen overrings may be particularly useful in the 
study of non-integrally closed overrings, 

As is to be expected, our work is closely related to Papick’s paper (24). In that 
spirit, in Section 3, we consider the corresponding problem using non-finite 
presentation instead of non-finite generation. 

2. Cohen overrings and domains with the finite overring property 

Recall that R is a G-domain if the quotient field K of R is a finitely generated 
R-algebra or equivalently K is of the form K = R[ 1 A] for some t E K*. R is a strong 
G-domain [28] if every overring of R is of the form R[ l/f] or equivalently R is a 
finite intersection of valuation rings of well-ordered rank (with respect to inclusion 
of prime ideals). Notice that R has the finite overring property if and only if every 
non-empty family of overrings of R has a maximal element or equivalently the 
ascending chain condition holds for overrings of R. 

We begin with a result of Papick [24] giving a proof based on the abstract 
Riemann surface X of the integral domain R [30, p. 1 lo]. 

Recall that X is the space of all valuation overrings of R and that a basis for the 

open sets of its topology is given by the family of sets E(.v,,s~, . . . ,A-,) = { V: V is a 
valuation overring of R[s,, x2, . . . , s,] ), as x1, x2, . . . , s, run through the quotient 
field of R. It is well known that X is a quasi-compact space. 

Theorem 1 (Papick). Let R be a G-domain with qrrotient field K. lf every valuation 
oserring qf R is a finitely generated R-algebra, then the integral closure i? of R is 
II strong G-domain. 

Proof. Lxt ( b’, : i E I} be the family of minimal valuation overrings of R. By hypo- 
thesis, t) = R[.Y;, , .vI! , , . . . , xi,,] with s,, E K. By definition {&I-,, , .yz, . . . , x,,, : k 1)) is 
an open covering of the quasi-comp&t space X. Thus I must be a finite set. Hence 
/? i5 ;I finite intersection of valuation rings of K, say F’,, V2, . . . , Vk. We remark that 
cxh I ‘, has the finite overring property and SO is of well-ordered rank [28, 
Theorem 3 2. and Proposit ion 6.11. WC conclude that &! is a strong G-domain. 

This 
siderat 

paper 
on is 

b originated from an attempt 
that of Cohen overrings. 

to strengthen Theorem 1. Our basic con- 

Proposition 2. 1.~ K he II G-dormrn. Thc~~ ewry Cohen owrrings of R is a local 
dorwiti. 

Proof. Let S be a Cohen overring of the G-domain R with K as its quotient field. 
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We notice that S has the finite overring property. Henee for every p E Spec(S), there 
exists f E S\o such that the canonical map Sf+S,, is t e identity map 128, Prop&- 

tion 6.1). Furthermore S is semilocal, since s is a strong G-domain (Theorem 1). 
Let .K,,.4Q ,..., = be the maximal ideals of S. Assume rz 2. Then Shwi = S’ for 
some fi E S, 1 s is r and so is a finitely generated R-algebra, by the maxim&t y 

property of S, since rz2. Thus the map Spec(S)-*Spec(R) is a locally finitely 
generated morphism of affine schemes [ 15, Definition 1.6.2.1, p. 2971. Hence S 
itself is a finitely generated R-algebra [ 15, Proposition 1.6.2.5, p. 2991 - a con- 
tradiction. Thus we must haye r = 1, so that S is local. 

Corollary 3. Let R be a G-domain and S a Cohen overring of R. Then S is a valua- 
tion ring if and only if S is integrally closed. 

Proof. Since S has the finite overring property the conclusion follows from 
Theorem 3.3 of (20) and proposition above. 

Proposition 4. If R is a noetherian G-domain or a Prtifer G-domain, then every 
Cohen overring of R is a valuation ring. More generally the same conclusion holds, 
if R and all the overrings of R are coherent G-domains. 

Proof. It is known that if R is a ring in the first statement, then R and the overrings 
of R are coherent G-domains ([ 13, (33.9) and (33.8), pp. 481 and 480) and [7, 
(1 l-lO)(ii), p. 761). Hence it is enough to prove the last statement. Let S be a Cohen 
overring of R. By Corollary 3, it is enough to show that S is integrally closed. 
Assume R $ S$ s. Since s is a finitely generated R-algebra, there exists an R-algebra 
T= R[x,,q, . . . . x,] E S such that s is a finite T-module (the generators of s over 
R are integral over S; take xi to be the coefficients of the equations of integral 
dependence). Now T and each overring between T and S are coherent by 
hypothesis. Hence S is a finitely generated (even finitely presented) T-module [24, 
Corollary 14, p. 1671. This means S is a finitely generated R-algebra - a 
cant radict ion. 

We next give an example showing that a Cohen overring may not be a valuation 
ring. 

Example 5. Let G = (I??, +) be the additive group of real numbers and k =a@). 
Denote by G, the set of non-negative elements of G. Let K be the field of all func- 
tions f: G, +k with well-ordered support in the ordering of G. The elements of K 
can also be written as formal power series in one indeterminate X with exponents 
in G and coefficients in k. Let V be the subring of K consisting of those series with 
exponents in G,. It is well known that i, is a rank-l non-discrete valuation ring of 
K, having value group order-isomorphic to G. The maximal ideal - /f of V consists 
of those power series with constant term zero and the residue field is k. We denote 
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by v the corresponding valuation. Let G = 1, U 12, where II= [0, 1) is the half-open 
interval and I2 = (1,~). Let R be the subring of V of those functions f~ V such 
that j restricted to II takes values in Q. It is easy to see that R has K as its quotient 
field. Notice that V’=R[v?], because every function f~ I/ can always be written as 
f=gl + v’& with gl ,g2 E R. Thus i? = I/ and R is local. Denote by m = 4 f7 R the 
maximal ideal of R. Consider the subring S = k + . tt’ of K Clearly R $ S, since the 
power series fiXi’2 is in J, but not in R. Also mV= &#. Furthermore tr,..J = 
m.//V=2= . //, since V is non-discrete. Hence mS= ntR + tn.4 = J? so that 
S = R + mS. Now if S were a finitely generated R-algebra, then integral dependence 
would make it a finitely generated R-module and by Nakayama’s Lemma S would 
coincide with R - a contradiction. Thus S is not a finitely generated R-algebra. It 
is also clear that ekery proper overring of S in K contains V. Thus S is a Cohen over- 
ring of R, but S i.; not a valuation ring. 

The next result shows that in the above example S is the only Cohen overring of 
R, as the ideal ./f has to be contained in any Cohen overring of R. One would 
imagine that Coheln overrings are rather large and that their conductors in integral 
closures are quite big. We can substantiate it for example when the minimal valua- 
tion overrings are non-discrete. Recall that a valuation ring is discrete, if its maximal 
ideal is principal. 

Proposition 6. Let R be an integml domain with the finite overring property and 
R the integral closure of R. Assume that R$ R and that f is the conductor of R 
in I?. Then we have the following: 

(i) If ail the minimal valuation overrings of R are non-discrete, then the Jacobson 
rudicul j-( I? ) of i7 is contained in R. The diagram 

R-------H R/Y-(R) 

is II prr!lbac~k diagram and R/ y{R)+ R/ r;‘(iF) is a-finite extension of reduced artinian 
rings. 

(ii ) If rhe minimal valuation overrings of R are independent two by two and if 
no one of them is rank 1 discrete, then R/f and w/f are noetherian semilocal rings 
of dimension at most I. iwore precisely W/f is a finite direct product of artinian local 

r&s and runk 1 discrete valuation rings. 

tl’e will need the following result for the proof of Proposition 6. 

I.emma 7. Let R be u domain with the finite overring property. If V is a non- 
discrete vuhrution overring of R with maximal ideal . /I and m = . (4 n R, then m V = I #. 
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Proof. Let v be the Krull valuation associated to V. Consider the family of over- 
rings of R of the form R +xV with XE A. By the noetherian property for overrings, 
there exists a maximal overring of the form R +xV with XE .,/f. Since .k is not 
principal, XV+&. For every YE& \xV, we havexVSyl/ and so R+xV=R+yV 

Thus y = r+x~ with ae I/ and r ER. Hence v(y) = v(t) and yV= rV, whence r E in 
and mV= ,//. 

Proof of Proposition 6. (i) Consider the ring T= R + f(R). Assume R s;: T. T is a 

finitely generated R-module. Let c&i, 15 irr be the maximal ideals of R and 
ml, Q, 0.0 t m,, 1~~s their restrictions to R. We have f(R) =mlm2 l m, and by 
Lemma I f(R)&, = *diR..N{. Hence f(R)R =3(R). Also (< /(iR%k,)2 = adiR.4, because 
of non-discreteness so that f(R)f(l?) =c@). Thus T= R +f(R)T. Hence by 
Nakayama’s Lemma T= R. So j?(R) c R. The other statements of (i) are easily 
proven, if we observe that R is a strong G-domain. 

((ii) Let Mi, 15 is r be as before the maximal ideals of R. Because of the 
hypothesis, each L&i contains a largest prime ideal iyi which is not finitely generated 
[ 13, p. 2691. Notice that @i = t&i if and only if Relui is a non-discrete valuation ring. 
‘The hypothesis on the independence of the minimal valuation overrings of R 

guarantees that each ;?i is contained in exactly one maximal ideal -f/i. Hence the :pi 
are comaximal two by two. We claim that 

For, let T=R+.2; then we have~(R)R=,_~/P1.~~.=.~/f,e, with eirl, ldrr [17, 
Theorem S-71; also <Y(R)2 = 2, since K d’i cPiR.k, = cFiR.b,, i = 1,2,. . . , r, since ‘9iR.K, is 
not finitely generated in R &,. Again we conclude by Nakayama’s Lemma that 
2 c R and hence 9 Q; we have &#I= tyiR.RiC_fR.K, for every 1 s&r. If fi= 
fR., nR, then nl= I fi =: f. We have yi c fi c R, 15 is r. This shows that the fi’S are 
comaximal two by two and that R/fi is either an artinian local ring or a rank 1 

discrete valuation ring or the zero ring. Since R/f= niZ I R/fi and R/f is a finitely 
generated R/f-module, we get the stated result. 

Next we give some examples showing that the above description of f is the best 
possible in some sense. 

Example 8. We present an example of a G-domain R such that the integral closure 
R is a finitely generated R-module and is a valuation ring with principal maximal 
ideal I 4; l? contains a Cohen overring S of R with c /f SM. 

Let K =k((X, Y)) be the field of formal power series in two independent indeter- 
minates over a field k. Let IV= k((X))[[ Y]] = k((X)) + . l’fw with . ktv = YW. Let 
v= k[[X]] + * f/w. Then W and I;/ are valuation rings of rank I. and 2 respectively. 
Let 

~1 = Yk((X2))+ Y2k((X)), R = k[[X2]] + 2 
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and 
S = k[ [X2, X3]] + ti //w = R[X-‘, Y/X, Y/X3, . . . , Y/X2” + l, . l .]. 

R and S are two-dimensional local domains. Furthermore RCSC v/c W have the 
same field of quotients K. It is clear that R[X] = V and that the integral closure R 
of R is V. However S is not a finitely generated R-algebra, if we observe that 

Y Y 
- xtn+3 1 x ’ x3 **‘g9 x*n+l ’ 

S is in fact a Cohen overring of R ([3], Theorem 3.1) and . &, = XVe S. If we 
indicate by f the conductor of S in s, then S/f is a field and s/f is a non-reduced 
artinian local ring. 

Example 9. We show now that the ring R/f of Proposition 6 need not be artinian. 
Let F= Q(t/z) and K = F((X, Y)). Consider W= F((X))[[ Y]] = F((X)) + A& where 
.1/,,, = YW and V= F[[X]] + .//Ms and R=Q[[X]] + .Nw. Clearly RC K W have 
the same quotient field K. We have R = V and that V is a finitely generated 
R #module. It is easy to see that R satisfies the finite overring property ([ 13, Theorem 
3. I] or Theorem 14 below). The conductor f of R in R is . NW which is a height 1 
prime ideal of R and R. Thus R/f and R/f are rank-l discrete valuation rings (with 
different quotient fields). 

Example 10. We will construct yet another example, this time of a non-local 
noetherian G-domain R satisfying the finite overring property. The integral closure 
R 2 R will be a Dedekind semilocal domain, the conductor f of R in R will contain 
ilR) properly and R/f and R/f will be reduced semilocal artinian rings. 

Take K = k((X, , X2, X3)) the field of formal power series in three indeter- 
minates. Let 

v, = k(w2, ~~3MX, II, v,=4(& x,))[[x,ll, 

We have three rank- 1 discrete valuation rings of K incomparable two by two. 
Consider 

A I = k((X& X3)) + XI VI and A2 = k((Xf, X3)) + X2 V2 

and denote by R the integral domain R = A 1 f7A2n V3. It is easily seen that R is a 
noet herian one-dimensional G-domain with three maximal ideals and that 

a~ = I$ r) V2 n r/, . We have the following pullback diagram: 
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Here u is the product of the canonical embeddings 

k:=WX;, X,W+k, = kC&, X3)), 6 = 4(X,2, X3 N -+ kz = 4(X, 3 X3 )) 

and u is the natural projection from R to the product of the residue fields of two 
of its three maximal ideals. The results we claim follow easily from the general 
theory concerning pullback diagrams 19, Q 11. 

Remark 11. Other examples may be constructed using the k+ (M, fUW2) construc- 
tion in [ 141 or [ 181. If we choose k + M, and k + A& to be strong G-domains there, 
then D = k+ (Ml nM2) is local with n not local. it is easy to check that D has the 
finite overring property. The ring D* of Proposition 4.5 in 1141 is again a ring with 
the finite overring property. This ring D* is not local. 

We want now to characterize domains with the finite overring property. The 
following result will be needed in this connection. Recall that R is a /ocaUy pqr ring 
if for every p E Spec R, the localization R,= R, for some &R [28]. 

Proposition 12. Let R be an integral domain with integral closure I?. Assume that 
for every multiplicative subset Y’ of R, there exists t E R such that I?.(, = I?,. Then R 
is a locally pqr domain. In particular, the conclusion holds if R is a strong G- 
domain. 

Proof. Let p be a prime ideal of R. We want to show that there exists f f R\p such 
that R, = RJ. Let Y= R - p. By hypothesis, there exists t E I? such that R,, = R,. 
Now t-’ e&, so that t-l - -x/f with x&? and f E .?: Then 1 = tt-’ = tx/f. Hence 
f = txe R \p. We claim that Rf = R,. Clearly Rf c R,. Wow take any s E R \ w; we 
will show that l/s = r/f m for some r E R and m 11. Notice that t E Q for every 
q E Spec(R) with qn Y#0. Thus f = txe qn R for every such prime q. If q’~ Spec(R) 
and SE g’, then q’Q. Let now q be a prime ideal of R over 9’. Hence qn 9’#0. Then 
f E q’= qnR SO that rad(sR) 3J This shows that there exist m 2 1 and r E R such 

f ” =sr, as we wanted to prove. 

With simple topological techniques, we can prove a more general result: 

Proposition 13. Let R+ T be an integral extension of integral domuiz. If T is a 
locally pqr domain, then so is R. 

Proof. By [ 11, $31, it is enough to show that Spec(R) is an Alexandroff discrete 
topological space; i.e. that for every family of closed sets {Fi 1 i E I} in Spec(R) the 
union UiE, Fi is still a closed set of Spec(R). Denote by p : Spec( T)--Spec(R), the 
continuous map canonically associated to the given integral homomorphism R+ T. 
Clearly cp is surjective and closed [2, Theorem 5.1 and Ex. 1, p. 671. Now 
p-l (U Fi) = U VP1 (Fi) is a closed set of Spec( r’), since r is locally pqr. Thus 

U Fi = cP(p-‘(U Fi)) is a closed set of Spec(R). 
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Recall that R c T is called a very finite extension oi rings, it T and all the 
intermediate rings between R and T are finitely generated as R-modules (24, p. 1661. 
Examples of such extensions are the finite minimal homomorphisms in the sense of 
Ferand-Olivier (81, the finitely generated integral ring extensik “1s of noetherian rings 
and extensions arising via Ciilmer’s D + M constructions. As one would expect, this 
is the key to the characterization of integral domains with the finite overring 
property. 

Theorem 14. Let R be an integral domain. Then the follolGng statements are 

equivalent: 
(1) R has the finite overring property. 
(2) The integral closure I? of R is a strong G-domain and R or_ a is a very finite 

exlension. 

Proof. (I)= (2) Is clear from Theorem 1. 
(2) - ( 1). lf (1) is not valid, let S be a Cohen overring of R. If S is integrally 

cloccd, then S is a valuation ring by Corollary 3 and there exists f d such that 
S = R, 128, Theorem 3.5! Since R is a finite R-module, we see that S is a finitely 
generated R-algebra, cant radicting the assumption that S is a Cohen overring. 
Hence S is properly contained in its integral closure s and s is a finitely generated 
R-algebra. Iet T be the integral closure of R in s. Then s is a finitely generated 
T-algebra. Hence we can find a ring T*, Tc T*c S, such that T* is a finitely 
generated T-algebra and s is a finite T*-module. Now T is integrally closed in T*. 
Iet // be the maximal ideal of S and let m* = . /f n T* and m =, /f 0 T. Observe that 
T* is a local domain with maximal ideal m*. Since R and T are Prufer domains, 
wt’ deduce [ 22, Proposition 2.261 that Tc_ T* is quasi-finite at m* (see [29, p. 401 
for the definition). Since T* is local, we get immediately from Proposition 4 of [29, 
p. 331 that T* = Tm. Since T is integrally closed in S, so is Tn,. Thus T* = S. Hence 
.%- T,; = ?J for some fe T\m (Proposition 12). Since TG R, T is a finitely 
generated R-module by hypothesis. Hence S is a finitely generated R-algebra, again 
leading to a cant raction. We conclude that no Cohen overring of R can be found 
and that R has indeed the finite overring property. 

3. Son-finite presentation 

It is natural to attempt to force the conclusion of Proposition 4 by stronger 
assumptions. A variation on the theme is the notion of presentatiorr in the place of 
generation. I. Papick in [24] has already successfully explored this in a similar 
Ming. 

I-et R be a G-domain. By a Cohen overring of R with respect to presentation, we 
~IIMI an overring S of .R with is not finitely presented as an R-algebra and is 
m;rximal Gth respect to this property. One curixls phenomenon is the following: 
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A Cohen overring S with respect to presentation may not have the finite presenta- 
tion overring property! See Example 5 (contd.) below: While a proper overring of 
S is finitely presented as an R-algebra, it may not be so as an S-algebra! However 
S has the finite overring property and an analogue of Proposition 2 holds. 

Prsposition 15. Let R be a G-domain. Then every Cohen overring of R with respect 
to presentation is a local ring. 

Proof. Let S be one such ring. As remarked above, S has the finite overring 
prolperty. Hence we can apply the argument in Proposition 2. Thus S is semilocal 
and if S were not local, then for every maximal ideal A’ of S, S_# would be a 
finitely presented R _ ..+ qlrnGbra. Moreover for every PE Spec(S), there exists fe S\p 
such that Sp = Sj. Hence the canonical map Spec(S)*Spec(R) is a locally finitely 
presented morphism of schemes [15, Definition 1.6.2.1, p. 2971. We conclude (15, 
Proposition 1.6.2.9, p. 3021 that S itself is a finitely presented R-algebra - a con- 
tradiction. Hence S is local. 

As in the finite generation case, a Cohen overring with respect to presentation 
need not be integrally closed. 

Example 5 (contd.) We reconsider Example 5. We claim that the ring S is also a 
Cohen overring of R with respect to presentation. First we observe that the integral 
closure R is a finitely presented R-algebra. Indeed, if 2 is an indeterminate over R, 
then the canonical homomorphism o : R[Z]-+R[\/Z] = V sending 2 to fi has its 
kernel generated by Z2- 2, fiXZ - 2X and X2- \r2’X. Since there are no inter- 
mediate rings between S and V, our claim is established. Notice that S does not have 
the finite presentation property, since S is not coherent (Remark following 
Proposition 9 of [24, p. 661 and Theorem 3 of ([6]). In fact, something even stranger 
happens: the ring s= V is not even a finitely presented S-algebra or S-module ([ 15, 
Proposition 1.6.2.10] and [24, Lemma 6]), even though it is a finitely generated S- 
module. Finally, notice that the ring R is coherent, while the Cohen overring S is 
not. 

lt may happen that a Cohen overring (with respect to generation) may be properly 
contained is a Cohen overring with respect to presemation. 

Example 8 (contd.) We reconsider Example 8. We claim that R = V is not a finitely 
presented R-algebra. To see this, observe that R is a finitely presented S-algebra, 
since S is coherent ([6, Theorem 31 and proof of Corollary 1.4 of 1161). Now if R 
were finitely presented R-algebra, then S would be finitely generated over R - a 
contradiction (Lemma 13 of [24]). Thus the two types of Cohen overrings are 
distinct. In fact V in this case is a Cohen overring of R with respect to presentation. 
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We pass to the analogue of Proposition 4. We first consider a preliminary result 
suggested by the proof of Proposition 9 in 1241. 

Proposition 16. Let R be a coherent G-domain. Suppose that the integral closure 
R of R is a Prii,fer domain. Then local overrings of R which are finitely generated 
as R-algebras are also finitely presented as R-algebras. 

Proof. Let (S, . // ) be o !ocal overing of R finitely generated as an R-algebra. Let 
T be the integral closure 0’ R in S and m = . // n T. Then reasoning as in the proof 
of Theorem 14, we see via Proposition 2.26 of [22] that Tc S is a quasi-finite 
extension at m. We deduce that S= T, [29, Proposition 4, p. 431. Since S is a 
finitely generated T-algebra, we can find elements tl, tz, . . . , t, E T and xl, x2, . . . , x, E 

T\m such that S= T[t&, t,/x,, . . . . t&J. Let R*= R[tl,t2, . . . , tn,q,x2, . . . . x,J. 

Then S= R*[Ml, l/,uz, . . . . 1 /x,]. This shows that S is a finitely presented 
R*-algebra. Furthermore, R* is a finitely generated torsion-free module over the 
coherent domain R and so R * is a finitely presented R-module [la, Proof of 
Corollary 1.41. Then R * is also a finitely presented R-algebra [15, Proposition 
1.~.2.10, p. 3021. By transitivity ([15, p. 1351 or [19, F.2, p. 49]), we conclude that 
S is a finitely presented R-algebra. 

Proposition 17. Let R be a coherent G-domain such that all the overrings of R are 
coherent. then every Cohen overring of R with respect to presentation is a valuation 
rkg. 

Proof. Let S be one such Cohen overring. By Theorem 1 of [25], we know that the 
integral closure I? is a Priifer domain. Thus applying Proposition 16, we conclude 
that S can not be a finitely generated R-algebra. Hence S is also a Cohen overring 
of R with respect to generation. The result follows from Proposition 4. 

The following characterization of domains with the 
property generalizes Proposition 23 of Papick in 1241, 
t he dimension. 

finite presentation overring 
removing the restriction on 

Theorem 18. The following conditions on a G-domain are equivalent: 
(1) R has the finite presentation overring property. 
(2) R is coherent and has the finite overring property. 
(3) R is coherent, the integral closure R is a strong G-domain and R C R is a very 

finite extension. 

Proof. The equivalence of (1) and (2) is proved in Proposition 9 of [24] and the 
remark following it. That (2) and (3) are equivalent follo?vs from Theorem 14. 

WC close our study by posing two relevant questions: 
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Questions 19, What are those G-domains R for which all Cohen overrings are 
valuation rings? What are those G-domains for which the two types of Cohen over- 
rings that we have defined coincide? 
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