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Factoring 1deals in almost Dedekind domains

By K. Alan Loper at Newark and Thomas G. Lucas at Charlotte

Abstract. A well-known property of Dedekind domains is that each nonzero ideal
can be uniquely factored as a finite product of powers of the maximal ideals that contain
the ideal. One of the questions to be addressed in this paper is to what extent this property
can be extended to the finitely generated ideals of an almost Dedekind domain. A related
question involves a way to measure how far a given almost Dedekind domain is from being
a Dedekind domain.

1. Introduction

There are two different but related notions which inspire our work in this paper. Both
are derived from elementary properties of Dedekind domains. The first involves factor-
ability of finitely generated ideals and the second is based on work of R. Gilmer [1]. We
wish to consider both in relation to almost Dedekind domains—those one-dimensional
domains with the property that each maximal ideal is locally principal. An alternate char-
acterization of almost Dedekind domains is that a domain D is almost Dedekind if D,/ is a
discrete rank one valuation domain for each maximal ideal M.

Recall that in a Dedekind domain, each nonzero ideal can be factored uniquely as a
finite product of positive powers of maximal ideals. What we would like to determine is
how close can an almost Dedekind domain come to satisfying a similar factorization prop-
erty. Our exact question is the following: Given an almost Dedekind domain D with max-
imal ideals Max(D) = {M,}, when can we find a family of finitely generated ideals {J,}
such that each finitely generated nonzero ideal of D can be factored as a finite product of
powers of ideals from the family {J,} with the family indexed over the set of maximal
ideals {M,} in such a way that J, Dy, = M,D,;,? We refer to such a family of ideals as a
factoring family for D. Two things we most likely will have to give up in the general case
are uniqueness of factorizations and the ability to restrict to using only positive powers
(regarding the latter, see the remark following the proof of Theorem 2.5 and Example 3.2).
We will find that in some cases, each nonzero finitely generated fractional ideal may factor
uniquely over the underlying set of some factoring family, but not factor uniquely with
respect to the family. Specifically, we might have a factoring family {J,} with family
members Jg and J, such that My #+ M, (equivalently f =+ y) but Jg = J,. This would mean
that while / = Jg = J, may factor uniquely over the underlying set of the family (as itself),
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it does not factor uniquely over the family. In Theorem 2.10, we give a general scheme for
constructing almost Dedekind domains that will have factoring families for which factori-
zation will be unique over the underlying set of ideals making up the family. The technique
applies to all of the examples we construct in Section 3. At this time we do not know of an
example of an almost Dedekind domain possessing a factoring family such that there is no
factoring family for the domain for which factorizations are unique over the underlying set
of factors. However, we give an example where uniqueness does fail for a particular family
(Example 3.2).

In a Dedekind domain, each nonzero ideal is invertible. The same happens for each
nonzero finitely generated ideal in an almost Dedekind domain. Domains for which each
nonzero finitely generated ideal is invertible are referred to as Priifer domains ([2], Theorem
22.1).

In a paper that appeared in 1966, Gilmer introduced the notion of a #-domain (read
as “sharp domain”) as an integral domain D such that for each pair of subsets .# and .4~ of
Max(D), having () Dy, = () Du, implies .4 = .4 ([1]). If D is a Priifer domain,

M, el Mge. N

then it is a #-domain if and onlgf if each maximal ideal contains a finitely generated ideal
which is contained in no other maximal ideal ([1], Theorem 2). Thus each Dedekind
domain is a #-domain. Moreover, an almost Dedekind domain is a #-domain if and only
if it is a Dedekind domain ([1], Theorem 3). On the other hand, an almost Dedekind
domain that is not Dedekind does have overrings which are #-domains. A trivial example
of such an overring is simply the localization of the domain in question at one of its maxi-
mal ideals. In some sense what we will be studying is how far a particular almost Dedekind
domain is from an overring that is a Dedekind domain.

With the exception of Theorem 2.6 and Corollary 2.7, D will always represent a one-
dimensional Priifer domain, frequently one which is an almost Dedekind domain. The
definitions which follow are restricted to one-dimensional Priifer domains. First, we say
that a maximal ideal M of a one-dimensional Priifer domain D is a sharp prime if it con-
tains a finitely generated ideal which is contained in no other maximal ideal. Since D is one-
dimensional, this is equivalent to saying that M is the radical of a finitely generated ideal.
Obviously we can split Max(D) into two disjoint sets, .#4 (D) containing the sharp primes
and .#;(D) containing the maximal ideals that are not sharp primes, for lack of a better
name we shall refer to these ideals as dull primes.

Mixing Gilmer’s terminology with ours we can say that a one-dimensional Priifer
domain D is a #-domain if (and only if) .Z4(D) = Max(D). If D fits the other extreme,
namely .#;(D) = Max(D), we will say that D is a dull domain. The second concern of this
paper involves constructing almost Dedekind domains that fit between these two extremes.

For a one-dimensional Priifer domain D we recursively define domains D; = D,
Dy= (1 (D1)y, and D, = N (Du-1)y,, With D, = K, the quotient field of

Mye.;(Dy) Mye . l;(Dyy)
D, if M(D,-1) is empty. In the event D, y; = K and D, is not K, we say that D has sharp
degree n. On the other hand we say that D has dull degree n if D, =D, + K and
D,y %+ D, (or n = 1). In section 3, we will give a fairly elementary way to construct almost
Dedekind domains with any prescribed finite dull or sharp degree (the latter for n greater
than one). The scheme we employ will also give rise to defining various infinite sharp and
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dull degrees. Note that a #-domain is the same as a domain with sharp degree 1 and a dull
domain is the same as a domain with dull degree 1.

As a convenience, we also define sharp degrees for ideals of D, both integral and
fractional. For a fractional ideal I of D, we say that I has sharp degree n if ID, + D, but
ID, 1 = D,;. It turns out that the primes of D which generate sharp primes of D, are
exactly the prime ideals of sharp degree n. For any ideal I, of finite sharp degree or not,
we let .#(I) denote the set of maximal ideals that contain / and let D; denote the ring

(1  Du. A property we shall use throughout the paper is that the only primes of D that
Me. (I
survi\% in Dy are those which contain /. The proof is quite elementary, for suppose P is
a maximal ideal that does not contain /. Then there is an element 4 € P such that
dD + I = D. 1t follows that d is not contained in any ideal M from the set .#(I). Hence

1/d € Dy for each M € .4 (I), which in turn implies that 1/d is in D;.

For fractional ideals that are not integral, we will mainly be concerned with those
that are finitely generated. In Corollary 2.4, we show that if each prime ideal has finite
sharp degree, then not only does there exist a factoring family for D, but there is one for
which each finitely generated fractional ideal factors uniquely and the factoring family is
actually a set with each member corresponding to a unique maximal ideal of D. Thus we
are led to declaring that a factoring family {J,} is a factoring set if no member appears
more than once.

Throughout the paper we use = to denote proper containment.

2. Factoring finitely generated ideals

We start with a lemma which characterizes primes of finite sharp degree in one-
dimensional Priifer domains.

Lemma 2.1. Let D be a one-dimensional Priifer domain. Then:

(@) If M is a maximal ideal of D,, then there is a maximal ideal P of D such that
P =MD, and PD,_ is a dull prime of D,_;.

(b) If P e Max(D) survives in D, then (i) PD,_; is a dull prime of D,_1, and (ii) PD,
is in My (D,) if and only if there is a finitely generated ideal I of D which is contained in P
and no other maximal ideal which survives in D,,.

Proof. Let M be a maximal ideal of D,. Since D is a one-dimensional Priifer do-
main, each prime of D, is extended from a prime of D ([1], Theorem 1). Thus M = PD, for
some P € Max(D). To show that PD,_; is a dull prime of D,_, consider what happens to a
sharp prime Q of D,,_. Since D,_; is a Priifer domain ([2], Theorem 26.1), Q is the radical
of a finitely generated ideal J ([1], Theorem 2). Thus J~! is contained in each localization of
D,_; at a dull prime. Hence J~! is contained in D,. But then JD, = JJ~'D, = D, and
therefore OD,, = D,. Hence PD,_; must be a dull prime of D,,_;.

To prove (b), suppose P € Max(D) survives in D,. Then by the above, PD,_; must be
a dull prime of D,_;. Obviously, if there is a finitely generated ideal I of D such that PD, is
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the only maximal ideal of D,, that contains ID,, then PD, = \/ID,, is a sharp prime of D,,.
Conversely, if PD,, is a sharp prime of D,, then there is a finitely generated ideal J,, of D,
for which PD,, = \/J,,. Since PD, is generated by the elements of P, there is a finitely gen-
erated ideal I of D whose extension to D, is contained in PD,, and contains J,. [

Note that if PD, is a sharp prime of D,, any ideal I that satisfies the conditions in
Lemma 2.1 must be contained in infinitely many primes which do not survive in D,,, for
otherwise P will be a sharp prime of Dy for some k < n and thus not survive in D,,.

It is known that if a finitely generated ideal of an almost Dedekind domain is con-
tained in only finitely many maximal ideals, then the ideal is a product of positive powers
of these maximal ideals ([2], Theorem 37.5). The converse is trivial. In our next lemma we
show that the finitely generated fractional ideals of sharp degree one in an almost Dedekind
domain are those that can be factored into finite products of nonzero powers of maximal
ideals.

Lemma 2.2 (cf. [2], Theorem 37.5). Let D be an almost Dedekind domain and let 1
be a finitely generated fractional ideal of D. Then I is a finite product of nonzero powers of
maximal ideals if and only if I has sharp degree one.

Proof. First, assume [ = M{'M,*--- M)» with each r; a nonzero integer and no
M = D. Since [ is finitely generated, it is invertible. Thus each M; is invertible and
therefore a sharp prime. As M;D, = D, for each i. The same happens for M;!. Thus
1D, = D, and we have that I has sharp degree one.

To complete the proof assume / has sharp degree one. Then ID, = D,. Partion
Max(D) into sets ./°(I) = {P e Max(D) | IDp = Dp}, 4" (I) = {P e Max(D) | IDp < PDp}
and .4~ (I) = {P e Max(D) |I"'Dp = PDp} (note that one or two of these may be empty).
Since each dull prime survives in D, and ID, = D,, each dull prime must be in the set .# 0(I ).

Therefore D = ()| Dpand Dy = () Dp are both Dedekind domains with non-
Pe.*(I) Pe.u(I)
zero Jacobson radicals. Thus each is semilocal which means that both .#*(I) and .4~ (I)

are finite sets. Note that .4~ (1) is empty if I is an integral ideal of D, but both may be non-
empty if I is fractional. Let .#* (1) = {My, M>,...,M,} and .4 (I) = {N1,Na,..., Ny}
It follows that IDy = M{"---M/"D} and I"'D; = N;'--- N:»D; for some positive in-
tegers r; and s;. We also have ID; = N, --- N, "Dy . By checking locally we see that
I=M]"---M"N"---N,*. This representation is unique since each M; and N; is a
maximal ideal. []

If D is an almost Dedekind domain and P is a maximal ideal of sharp degree n, then
not only is there a finitely generated ideal I of D such that no other maximal ideal of D,
contains /, but we may assume /Dp = PDp since PDp is principal. Thus in D,, we have
ID, = PD,,.

As a consequence, each prime of D, is extended from a prime of D ([1],
Theorem 1). Also if J is a finitely generated ideal whose radical is a maximal
ideal M, then J~!' is contained in Dp for each prime P different from M. Hence
both J and M will blow up in D,. Thus Max(D;) = {PD,| P e ./4;(D)}. As long as
D,, + DnJr] + K, Max(D,H]) = {PDnJr] |P € %T(Dn)}
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Theorem 2.3. Let D be an almost Dedekind domain. For each positive integer k
and each prime P, of sharp degree k, let J, be a finitely generated ideal of D such that
JyuDp, = P,Dp, and J, is contained in no other prime of Dy. If I is a finitely generated frac-
tional ideal of finite sharp degree, then I factors uniquely into a finite product of nonzero
powers of ideals from the family {J,}. In particular, the members of the family {J,} are dis-
tinct.

Proof. First note that if P, is a sharp prime of D, then by checking locally we see
that the corresponding J, is simply P, itself. Moreover, by checking locally in Dy we see
that if P, has sharp degree k, then J, Dy = P,Dj. Let P, and Py be distinct maximal ideals
of D with P, of finite sharp degree k. Then in D, we have J,D; = P,D; with P,D; a
maximal ideal of Di. Thus the only way to have PgD; contain J, is to have Pg blow up
in Di. In such a case Pg would have sharp degree m < k. While it might be that
J.Dp, = PgDp,, J, Dy, would be contained in P, D,, so that J,D,, cannot equal PyD,,. Thus
J, # Jp. It follows that if both P, and P have finite sharp degree, then J, # Jg. Moreover,
no nonzero powers can be equal and J,D, = D, for each n > k. We will take care of
uniqueness first. For this it suffices to show that there is no nontrivial factorization of D
since each of the J,s is invertible.

Assume D = [[J," is a finite factorization of D over the set {J,} with each J,,
having sharp degree m and e,, ; an integer, perhaps 0. Let n denote the highest sharp degree
of any “factor”. Then in D,, we have D, = HJ;:“,':" since Jy, ;D, =D, for m <n. As
Jn,iDy = P, iD, 1s a maximal ideal of D,, it must be that each ¢, ; = 0. Thus the factors J,f:’lii

are all superfluous. Continue the process to show all ¢, ; are 0.
For existence of factorizations we use induction and Lemma 2.2.

By Lemma 2.2, if I has sharp degree one, then / is a product of nonzero powers of
finitely many sharp maximal ideals, say I = M{'M,*--- M.

Now assume / has sharp degree two. Then ID; is a finitely generated fractional ideal
of D, whose sharp degree as an ideal of D, is one. Thus by Lemma 2.2 there are finitely
many maximal ideals P, D,, P,D,,...,P,D, of D, which locally contain either /D, or
(ID,)~'. For each i, we have a finitely generated ideal J; in the set {J,} such that
JiD> = P,D,. Thus in D, we can factor ID, uniquely as P;' Py* - -- P¢" D, for some nonzero
integers ey, es, ..., e,. This factorization is the same as the factorization J{'J52---J& D,
since P,D, = J;D, for each i. Let J = J{'J,*---J¢. Then I(D : J)D, = D;. As both I and
(D : J) are finitely generated fractional ideals of D, I(D : J) is a finitely generated frac-
tional ideal of D. It has sharp degree one since /(D : J)D, = D,. Thus by Lemma 2.2 there
are finitely many maximal ideals M, M>, ..., M, such that I(D : J) = M{'M,? - -- M for
some nonzero integers ;. Thus I = I(D : J)J = M['M3* - -- M)»J ' J32 - - J .

Now assume a factorization exists for each finitely generated fractional ideal of
sharp degree k or less (in every almost Dedekind domain). Let 7 be a finitely generated
fractional ideal of D which has sharp degree k + 1. Then ID; is a finitely generated frac-
tional ideal of D, which has sharp degree k. Thus ID, factors into a finite product, say
IDy = J{'Jy*---JemD,. To complete the proof simply repeat the steps used above for the
case of an ideal of sharp degree 2. Namely, set J = J;" ---J¢ and factor the fractional

m
ideal I(D : J) over the sharp primes of D. This establishes existence of a factorization. []
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Corollary 2.4. Let D be an almost Dedekind domain such that each prime ideal has
finite sharp degree. Then there is a factoring set {J,} such that each finitely generated frac-
tional ideal factors uniquely over {J,}. In particular, such a factoring set exists for each
almost Dedekind domain of finite sharp degree.

One special case we wish to consider is the one of an almost Dedekind domain with
exactly one dull prime.

Theorem 2.5. Let D be a one-dimensional Priifer domain. Then D is an almost
Dedekind domain with at most one noninvertible maximal ideal if and only if there is an
element d € D such that for each finitely generated nonzero ideal I there is a finite set of
maximal ideals {My, M>, ..., M,,} and integers ej,es,...,e, and n with n =0 such that
I=M"M?---M&(d)". Moreover, if either (hence both) holds and D is not Dedekind, then
the element d must be such that dDp = PDp for the noninvertible maximal ideal P and the set
{dD} U M (D) is a factoring set for D such that each finitely generated fractional ideal
factors uniquely.

Proof. For D Dedekind, we simply set d = 1. Thus we may assume D is not Dede-
kind.

Assume D is an almost Dedekind domain with one noninvertible maximal ideal P.
Then D, = Dp and therefore there is an element d € D such PD, = dD, since Dp is a dis-
crete rank one valuation domain. Thus by Theorem 2.3, the set {dD} U .#4(D) is a fac-
toring set for D such that each finitely generated fractional ideal factors uniquely as a finite
product of nonzero powers of members of this set.

For the converse, assume there is an element d € D such that each finitely generated
nonzero ideal can be written in the form M|" M3*--- M (d)" where each M, is a maximal
ideal, each ¢; is a nonzero integer and » is a non-negative integer. Let I be a finitely gen-
erated ideal of D and write I = M{'M5? - -- M"(d)" with no M" = D. Since D is a Priifer
domain, 7 is invertible. Combining this with the assumption that M is not equal to D, we
have that each M, is invertible.

As we are not assuming that D is almost Dedekind, we need to show that each sharp
prime is invertible. Let M € Max(D) be a noninvertible prime ideal of D, such a prime
exists since we are assuming D is not Dedekind. Then no (nonzero) power of M can appear
as a nontrivial factor (i.e., not D) in a factorization of a finitely generated ideal. Hence d
must be contained in M and each finitely generated ideal contained in M must have a
positive power of (d) in a factorization. It follows that MD,, = dD); and D), is a discrete
rank one valuation domain. Such a prime M cannot be sharp since to be sharp it would
have to contain a finitely generated ideal J that is contained in no other maximal ideal.
By checking locally, we would then find that M is the finitely generated (and therefore
invertible) ideal dD + J. So all of the sharp primes are invertible and the dull ones are
locally principal. Hence D is an almost Dedekind domain.

We next show that D has at most one dull maximal ideal. By way of contradiction
assume P; and P are distinct dull maximal ideals of D. Let b be an element of P; that is not
in P> and write (b) = M"M3*--- Mg (d)" with no M[" = D. As above, each M; must be
invertible. Thus neither P; nor P, appears in the factorization. Therefore n must be positive
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and d must be an element of P;. By repeating this argument for an element in P, that is not
in P, we find that d is also in P,. But then we have (b)Dp, = (d)"Dp, = P,Dp, which is a
contradiction. Hence there must be exactly one dull maximal ideal and the rest is both
sharp and invertible. []

Remark. With regard to the situation in Theorem 2.5, let D be an almost Dedekind
domain with exactly one dull prime, P, and let J be a finitely generated ideal with the
property that JDp = PDp. By Theorem 2.3, the set {J} U .#4 (D) forms a factoring family
for D where each finitely generated fractional ideal will factor uniquely. As J is not a
maximal ideal of D, there is an element a € P\J. Consider the ideal / = aD + J. On the one
hand, I properly contains J, but on the other we have PDp = JDp < IDp = PDp. Thus
1D, = JD; and thus from the proof of Theorem 2.3, it must be that the factorization of I is
of the form JM|" - -- M with each e; negative since J is properly contained in /.

Also note that it is not possible to deduce that D is one-dimensional from the assump-
tion that there is a fixed element d in D such that each finitely generated ideal factors as in
Theorem 2.5. For example, let V' be a two dimensional valuation domain with principal
maximal ideal M and height one prime Q for which OV} is principal. Select an element
d € Q such that dVp = OV, and let r € M be such that rV" = M. Then each nonzero non-
unit of V" has the form ud”r™ for some unit u and integers m and n = 0 with m > 0 when-
ever n = 0. Thus each finitely generated ideal factors as M™(d)" as desired.

The following result may be known but we have been unable to locate a reference.

Theorem 2.6. Let M be a height one maximal ideal of an integral domain D with
nonzero Jacobson radical. Then M is invertible if and only if it is principal.

Proof. Assume M is invertible and let d be a nonzero element in the Jacobson radi-
cal of D. Since M is invertible, M D, is principal. Let b € M be such that bDy; = MD,,.
Since M is height one, there are elements r,s € D\M and a positive integer n, rd = sb”.
Since d is in the Jacobson radical, s must be in each maximal ideal that does not contain b.
Since s is not in M, sbDy; = MDj,; with sb in the Jacobson radical.

Now consider the ideal sbM~'. This is a finitely generated ideal of D which is not
contained in M. But since sb is contained in the Jacobson radical, it is contained in every
other maximal ideal. Thus there is an element a € M such that a +sbM~! = D. Since
sbM~" is contained in every maximal ideal except M, a must be contained in M and
no other maximal ideal of D. If aDy = MDy;, we have (a) = M, otherwise we have
(a+sb)=M. O

We have several corollaries.

Corollary 2.7. Let D be an integral domain with #(D) % (0). If M is a height one
maximal ideal of D which is locally principal and the radical of a principal ideal, then M is
principal.

Proof. Let M be a height one maximal ideal of D which is locally principal and
the radical of the principal ideal (a). Let b € M be such that bDy, = MD,,. By checking
locally we see that M = (a,b). As M is finitely generated and locally principal, it must be
invertible. Thus M is principal by Theorem 2.6. []
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Corollary 2.8. Let M be a maximal ideal of D, an almost Dedekind domain with
nonzero Jacobson radical. If M has finite sharp degree k, then M Dy is principal. The converse
holds provided M Dy, is a proper ideal of Dy, otherwise M has sharp degree less than k.

Proof- Since D is a Priifer domain, each overring, other than the quotient field, has
a nonzero Jacobson radical. In particular, the Jacobson radical of Dy is not zero as long as
Dy + K. Thus if M € Max(D) has finite sharp degree k, then MDj is finitely generated and
thus principal. []

Theorem 2.9. Let D be an almost Dedekind domain where each finitely generated
ideal has finite sharp degree. If #(D) + (0), then D is Bezout.

Proof. By Corollary 2.8, each maximal ideal M of sharp degree k is a principal ideal
of Dy. Thus the ideals J, of Lemma 2.2 can be assumed to be principal. The result fol-
lows. []

Next we give a general construction scheme for producing an almost Dedekind do-
main which will have a factoring family for finitely generated ideals. By carefully selecting
the members we can produce a family such that each nonzero finitely generated fractional

ideal will factor uniquely over the underlying set of allowable factors.

Theorem 2.10. Let Ry < R, < --- be a chain of Dedekind domains which satisfy all of
the following:

(i) For i < j, each maximal ideal of R; survives in R;.

(ii) Each maximal ideal of R; contracts to a maximal ideal of R;.

(iii) If M' is a maximal ideal of R; and M = M' ~ Ry, then MRy = M'Rjpy.

Let D = JR,. Then:

(@) D is an almost Dedekind domain.

or i < j, each maximal ideal of R; is contained in only finitely many maxima

(b) Fori<j h imal ideal of R; i ned in only finitely y mal

ideals of R;. Moreover, if M; is a maximal ideal of R; and M; 1, M;», ..., M; , are the max-

imal ideals of R; that contain M;, then M;R; = [[ M, .

(c) For each finitely generated ideal I of D, there is a finitely generated ideal I; of some
R; such that I = I,D.

(d) 4 maximal ideal M is a sharp prime of D if and only if M = M, D for some
M, =M N R,.

(e) There is a family {J,} that is a factoring family for D for which each nonzero
finitely generated fractional ideal can be factored uniquely over the underlying set of the

family.



Loper and Lucas, Factoring ideals in almost Dedekind domains 69

(f) D is a Dedekind domain if and only if each maximal ideal of D, is contained in only
finitely many maximal ideals of D.

Proof. For each n, we let K, denote the quotient field of R,,.

Proof of (a). Let M be a maximal ideal of D and let M; = M n D;. Obviously, some
M; is not zero. But then no M; is zero. Let r/s € MD,, with s € D\ M. For some i, both r
and s are in D;. So r € M;. But then there is an element b € M, and an element 7 € D;\ M,
such that b/t = r/s. It follows that M Dy, = M;D,, for each i. Since each D; is Dedekind,
M;D;yy, 1s principal. Thus MD), is principal and height one. Hence D is an almost Dede-
kind domain.

Proof of (b). The first statement is a simple consequence of the fact that each ideal
of a Dedekind domain is contained in only finitely many maximal ideals. For the second let
M; be a maximal ideal of R; and let M; 1, M, ..., M, , be the maximal ideals of R; that
contain M;. Since the M; ;s are maximal ideals of R;, their intersection is the same as their
product. Thus M;R; is contained in [[ M. Equality comes from our assumption that
MiRju; . = Mj i Rjw .-

Proof of (c). Since the set {R;} forms a chain, each finitely generated ideal of D can
be generated by some finite subset of some R;.

Proof of (d). Since D is an almost Dedekind domain, a maximal ideal is sharp if and
only if it is finitely generated. Hence by (c), M is sharp if and only if some R, contains a
generating set for M. As M n R, = M,, is a maximal ideal of R,, M = M, D.

Proof of (e). For each maximal ideal M of D and each positive integer i, let
M; = M N R;. It is easy to see that M = |J M;. Hence the chain {M;} is uniquely deter-
mined by M. Moreover, if Ny £ N, < --- is a chain with each N; a maximal ideal of Ry,
then N = JN; is a maximal ideal of D. We say that {M;} is the chain determined by
M, and that N is the maximal ideal determined by the chain {N;}. Each member N; of
the chain {&;} uniquely determines the members of the chain below it since we have
N; = N;n R; for each i <j. Thus for each j, N is determined by the truncated chain

(N}

Since each R, is a Dedekind domain, the primes of any ring between R, and its
quotient field, K, are all extended from primes of R,. With the restrictions we have placed
on the maximal ideals, the quotient field of R, properly contains the quotient field of R,
with R,_1 = R, n K,,_1.

Let I be a fractional ideal of R,_;. We will show that I = IR, n K,,_;. We at least
have I = IR, n K,,_;. Since R,_; is a Dedekind domain, each of its fractional ideals is in-
vertible and therefore divisorial. Thus it suffices to show that each element of (R, : 1)
multiplies /R, N K, into R,_;. Since both (R,_;:I) and IR, n K, are contained in
K,_1, the product is there as well. Now use the fact that both 7 and IR, n K,,_ will gener-
ate IR, together with the fact that each element of (R,_; : I) is in (R, : IR,) to verify that
(Ry,_1: I)(IR, n K,_) is contained in R, ;. Thus IR, " K,,_| = 1.
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For each n and each maximal ideal M, of R,, let & ( ») denote the set of maximal
ideals of R, that contract to M,,. The set €(M,,) is finite since R, is a Dedekind domain.
Now select a member M, of ¥(M,) and then set # (M,,) = €(M,)\{M,+1}. We will refer
to M, as a (or the) discarded prime sometimes including the phrase of “R,.;” for em-
phasis. We refer to the members of (6( M,) as conjugates or conjugate factors of M,. If
%(M,) is a singleton set, then M, R, is a maximal ideal of R,,; and & (M,,) will be the
empty set. Note that in this case we will refer to M, R,,.| as a discarded prime even if M, is
not a discarded prime of R,. Forn = 1, let #(R,,) = | U{Z (M,) | M,, € Max(R,)}, then set
F (D)= Z (Ry). Next, let 9(D) ={MD|M € Max(R;) v Z (D)}. We will show that
each finitely generated ideal of D can be factored uniquely as a finite product of integer
powers of ideals from the set (D). Then we will show how to build a factoring family for
D using only the members of ¥(D).

For each integer n, let 4(R,) denote the set {PR,|P € Max(R;) or P e F(Ry) for
some k < n}. We use induction to show that each nonzero fractional ideal of R, can be
factored uniquely as a finite product of nonzero integer powers of members of %(R,). Since
ID n K,, = I for each fractional ideal I of R,, each finitely generated fractional ideal of D
will factor uniquely over 4(D).

Let I, be a nonzero fractional ideal of R,. The result is trivial if » =1 since
%(R;) = Max(R;), so we move on to the case n = 2. Since R, is a Dedekind domain, each
nonzero fractional ideal has sharp degree one. Thus Lemma 2.2 guarantees that the frac-
tional ideal I, factors uniquely as a finite product of nonzero integer powers of maximal

ideals of R,, say I, = H P/ If each P, is in Z(R;), then we at least have existence of a

i=

factorization. If not, then some P; must be a discarded prime. In such a case there is a
maximal ideal M; of R; that has P; as a factor in R;. If P; is the only maximal ideal of R,
that is a factor of M;, then we have M;R, = P;, and we simply ‘“‘substitute’” M;R, for P,—
they are in fact equal. On the other hand, if M; has more than one prime factor in R;, then
the other factors are in the set %(R,) as only one prime factor is discarded from a set of
conjugates. In this case, M;R, = P,Q; -- Qm where the O;s are the conjugates of P; each

of which is in g(Rz) Thus P, = MR, H Q;! and therefore P/ can be replaced by the

product M/" R, H 0. "". By doing this for each of the discarded primes in the product [] P"
s=1
we obtain a finite factorization of I, using ideals in the set ¥(R,).

Now assume that for each k < n, each finitely generated ideal of R; can be factored
into a finite product of nonzero integer powers of members of the set %(Ry). Let I, be a
nonzero fractional ideal of R,. As above, R, is a Dedekind domain so I, factors uniquely
as finite product of nonzero powers of maximal ideals of R,. If each P; is in # (R,_;), then
we have a factorization of I, over %(R,). If not, then some P; must be a discarded prime.

)
Let Q; = P, R, and let Hl N2“R,_ be a factorization over the set 4(R,_;) for Q;. If
a=

O:R,, = P;, we simply take the factorization of Q; in R,_ 1 and extend each factor to R, to
get a replacement for P,. If Q;R, &+ P;, then Q;R, = P; H M. where the M_s are the con-

c=1

jugates to P,. Thus each is in the set ¥(R,). As in the case n =2, P, = Q;R, H M. Now
c=1



Loper and Lucas, Factoring ideals in almost Dedekind domains 71

b b s
replace Q;R, by [[ Ni*R, to get P, = [[ N*R, - [] M '. Do this for each discarded prime
a=1 a=1 c=1
in the original factorization of I,. This will yield a finite factorization of I, over the set
9(R,). Extending both I, and each factor to D will yield a finite factorization of ,D over
the set (D). As each finitely generated ideal of D is the extension of some ideal 7, in some
R,, we have that each finitely generated ideal of D has a finite factorization over the set

9(D).

Since R; is a Dedekind domain, Lemma 2.2 implies each fractional ideal of R; can
be factored uniquely over the set Max(R;). This forms the base for a proof by induction.
Assume that for each integer k < n, each fractional ideal of R; can be factored uniquely
over the set %(Ry). Since each member of ¥(Ry) extends to a member of %(R,,) for each
m >k, our assumption is equivalent to simply saying that each fractional ideal of R, ;
factors uniquely over %(R,_1).

Let J be a nonzero fractional ideal of R, and let J =[] Q; - [[ (P.R,)™ with
i=1 a=1

i
k q

the Q;s in Z(R,—1) and the P,s in %(R,)\Z (R,—1). Suppose [] Nl - T[(M.R,)™
=1 =1

with the N, in Z(R,_;) and the M,s in %(R,)\Z (R,-1) is a poteﬁtially dif-
ferent factorization of J over %(R,). By multiplying by inverses we may obtain

m k q n
[107 - TI N =T1(M.R,)"™ - [](P.R;) ™. Since the left hand side of the equation is
i=1 c=1

e=1 a=1

a product of integer powers of maximal ideals of R, its form is unique once common fac-
tors are combined. Moreover, the primes on the left hand side are all nontrivial factors of
primes from R,_; and for each N. and Q; exactly one conjugate factor cannot appear in
this product. On the other hand, each M, and each P, is a prime of some smaller R that
either factors nontrivially in R, or generates a maximal ideal of R,. Those that generate
maximal ideals of R, can have no factor on the left hand side of the equation and those that
have a nontrivial factorization must be missing the corresponding discarded prime on the
left hand side. Thus the left hand side must reduce to R,. This can occur only if the factors
in [T Q" are simply a rearrangement of the factors in [[ N. As each factor is an in-
vertible fractional ideal of R,, we may cancel the products [] Q;" and [] N/c and obtain
[T(P.R,)* = [1(M.R,)™. Since IR, N K, = I for each fractional ideal of R,_;, we have
[T(P.R,1)* =T](M.R,_1)". Now simply invoke the induction hypothesis to get unique-
ness of factorizations.

It remains to show that we can build a factoring family using only the members of the
set 4(D). This is actually relatively easy because given any ideal J in (D), there is some
unique integer n such that J = P, D for some maximal ideal P, of R, that is not a discarded
prime of R,. This places P, in %(R,). While there may be primes above P, that are not
discarded primes, there is a unique chain of primes P,,; < P,.» < --- with each P; a dis-
carded prime of R; and Py n R, = P,. Let P, be the prime of D determined by this par-
ticular chain through P, and set J, =J = P,D. Since P, = P, " R,, J,Dp, = P,Dp,. Note
that this means there is a natural one-to-one correspondence between the set %(D) and the
subset of Max(D) consisting of those maximal ideals My for which there is a largest integer
n such that Mz N R, is not a discarded prime. There may be a (or even infinitely many)
maximal ideal M, of D for which there is no largest integer n such that M, n R, is not a
discarded prime. For such a prime, simply set J, equal to any member J = M, D of 4(D)
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such that M, n R, = M,. With this we have a factoring family for D such that the under-
lying set allows for unique factorization of nonzero finitely generated fractional ideals.

Proof of (f). By the proof of (e), we see that if each maximal ideal of R; is contained
in only finitely many maximal ideals of D, then each maximal ideal of D is finitely gen-
erated. Thus D is a Dedekind domain. Conversely, if D is a Dedekind domain, each max-
imal ideal of D is finitely generated. Thus for M € Max(D), there is a maximal ideal M,
of some D, such that M = M, D. Assume M, € Max(R);) is contained in infinitely many
maximal ideals of D. Then there must be a chain of maximal ideals { M} with each M, a
maximal ideal of R, such that each M, is contained in infinitely many maximal ideals of D.
Thus none of these ideals can generate a maximal ideal of D. Hence, M = | J M,, must be a
maximal ideal of D which is not finitely generated, a contradiction of the Dedekind as-
sumption. Therefore, each maximal ideal of R) is contained in only finitely many maximal
ideals of D. [J

3. Constructing almost Dedekind domains

Let ) = {N} and let 2| = {A4,1,41,2,..., A1} be a partition of N into finitely
many disjoint nonempty sets with n; > 1. Recursively for each positive integer m > 1,
let 2, ={Am1,Am2,...,Amn,} be a refinement of the partition 2,,_; with n, > n,_;
but allowing some A,, , to survive intact in P,. Let ¥ = [] X;. For each set 4, ,

ieN
let Y,,x= [] Xi.. For ease of notation, we let Yy =Y. Let R,, = () Vyr where
i€ Am i

Vi ke = K[Y,,Ll,YAYm’z, R Ym’n’”]<Ym.k)' Set D =J R,,. From the construction it is obvious
that Ry = Ry < R, --- is an ascending chain of semilocal Dedekind domains. Moreover,
each maximal ideal of R,, contracts to a maximal ideal of R,,_;. In particular, each con-
tracts to YK[Y] y) in Ry = K[Y]y). We say that a family of sets ./ = {Ap i, oo 18 @ chain
through the series of partitions P = { P}, _, if for each m, Ay 1, 2 A1 k,,,- Depending
on the choice of refinements £, there may be chains through £ which are eventually
constant. As we will see, such a chain corresponds to a sharp prime of D.

Theorem 3.1. Let D be as above. Then:

(@) If P is a nonzero maximal ideal of D, then P n Ry = YRy. Moreover, PDp = YDp.
(b) D is almost Dedekind domain with nonzero Jacobson radical.
(c) Each finitely generated ideal of D is principal.

(d) There is a natural one-to-one correspondence between the set of maximal ideals of
D and the set of chains through the family of partitions 2. Moreover, if M is a maximal ideal
of D, then the corresponding chain of sets o/ is such that Y,, x, Dy = MDyy for each A, i,
in.of.

(e) The set { Y k|0 =m,1 <k < my} contains the base set for a factoring family for
D. Moreover, the set can be selected in such a way that each nonzero finitely generated
fractional ideal will factor uniquely.
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(f) A maximal ideal M of D is sharp if and only if the corresponding chain of sets </ in
statement (d) stabilizes at some A, .

Proof. Statements (a), (b) and (c) follow from Theorem 2.10. In particular, (c) is a
result of Theorem 2.10(c) and the fact that each D; is a PID. Statement (d) follows from the
proof of Theorem 2.10(d) and the fact that each Y, , generates a maximal ideal of R,,. The
statement in (e) follows from the proof of Theorem 2.10(e). Since each member of the fac-
toring family is principal, each finitely generated ideal of D must be principal. Statement (f)
is simply a combination of statement (d) and Theorem 2.10(d). [

This construction can be used to form almost Dedekind domains with various sharp
degrees. Note that the domain D will have finite sharp degree if and only if there is an
integer n such that D, is semilocal.

We first show how to construct an almost Dedekind domain of sharp degree 2. This
domain satisfies the hypothesis of Theorem 2.5, so it gives an example of an almost Dede-
kind domain with a single noninvertible maximal ideal.

Example 3.2. Foreachm =1, let 2, = {{1},{2},...,{m},{k e N|k > m}}. Let D
be almost Dedekind domain determined by this chain of partitions of N. Then:

(a) D has exactly one maximal ideal M which is not sharp.
(b) D has sharp degree 2.
(c) D is a Bezout domain.

(d) My (D) ={X,D|n =1} and the set {X,D|n =1} u{YD} is a factoring set for
D such that each finitely generated ideal factors uniquely.

(e) There is a factoring family for D such that no nonzero finitely generated frac-
tional ideal has a unique factorization over the underlying set of ideals.

0
Proof. Let Y, = ][] Xk. The maximal ideals of R, consist of the ideal Y, R, and
k=n+1
the ideals of the form X R, for 1 < k < n. Thus for each integer n = 1, X, D is a maximal

ideal of D. Obviously each of these is a sharp prime of D. The only other maximal ideal of
D corresponds to the chain {Y,R,}. Thus D, = D, where M is the maximal ideal of D
determined by the chain {Y,R,}.

Since M is the only dull prime of D and YDy, = MD,; we have YD, = MD,. By
Theorem 2.5, the set { YD} u{X,D|n = 1} is a factoring set for D such that each finitely
generated fractional ideal factors uniquely over this set.

Proof of (e). For each n, let P, = X,D and write n =4k —i where kK =1 and
0 < i < 3. Build a factoring family for D as follows: (i) for M again use Jy = YD, (ii) if
i=0,letJ,=X; YD, (il if i =1, let J, = X5, YD, (iv) if i = 2, let J, = X3,_, YD, and
(v) if i =3, let J, = X2, YD. Since 3 —2 =1, X,,D is the product of (X2 YD)(X2YD) .
Hence the set {J,},_, is a factoring family for D. But factorizations are not unique. For
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example, X,,D can also be factored as (X2YD)*(X3YD) (YD) '. There are in fact infi-
nitely many different ways to factor each nonzero finitely generated fractional ideal of D.
By the construction of the family it is clear that each factorization of X;,D must contain
nonzero powers of both X2 YD and X3 YD. On the other hand, YD is redundant, as it can
be factored as (X2 YD)* (X YD)™'. O

Next we construct an almost Dedekind domain for which each maximal ideal is dull
and where at least some finitely generated ideals will fail to factor uniquely over whatever
factoring family we might use—but not necessarily fail to factor uniquely over the under-
lying set of potential factors.

Example 3.3. For each positive integer n, let 2, = {4, 1,A4n2,...,An 2} Where
Ay ={m2" +k|me Z,m = 0} for each integer 1 < k < 2".

(a) D is an almost Dedekind domain which is dull.

(b) There exists a factoring family {J,} such that each nonzero finitely generated
ideal factors uniquely over the underlying set of ideals making up the family.

(c) Given any factoring family {J,} for D, there exists a nonzero finitely generated
ideal I which does not factor uniquely over the family.

Proof.  As no chain of sets through £ stabilizes, D has no sharp primes. Hence D is
a dull domain. By the proof of Theorem 2.10(e) (or Theorem 3.1(e)), some subset of { ¥},  }
contains a set such that (i) each nonzero finitely generated fractional ideal factors uniquely,
and (ii) this set is the underlying set for a factoring family for D. The nonuniqueness is
simply a consequence of the fact that D has only countably many nonzero finitely gen-
erated fractional ideals but an uncountable number of maximal ideals. Thus for each fac-
toring family, at least two members are the same ideal of D. []

It is actually rather easy to modify the construction in Example 3.3 to obtain an
almost Dedekind domain of dull degree two. One quite trivial way is to simply replace each
set A, 1, with r = 1, by the sets {1} and {m2" + 1 |m € N}. This will yield exactly one sharp
prime, with the rest dull, and therefore destined to stay that way in D,. For a more elabo-
rate example with infinitely many sharp primes, we modify the #,s a bit more.

Example 3.4. Start with the partitions %, of Example 3.3. Then for each n
and each 0 =<r=<mn, split each set A,, into the singleton set {2} and the set
A 5, ={m2" +2"|me N}. Then D is an almost Dedekind domain with infinitely many
sharp primes and dull degree 2.

Proof.  Obviously each singleton set {2”} corresponds to a sharp prime M, D = X5 D.
Each of these primes blows up in D, the effect is the same as beginning the construction by
partitioning the set N\{2" | r = 0} as in Example 3.3. Thus D; is a dull domain. []

Before we construct almost Dedekind domains of larger sharp and dull degrees,
we add a little useful terminology. Given a set A, x, we consider the family of sets
{4, Anj S Amx,n = m} and call this the branch of the partition from A, . Such a
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branch is said to have sharp degree p, if each maximal ideal which has 4,, x in its corre-
sponding family of sets has sharp degree less than or equal to p and at least one such
maximal ideal has sharp degree p. On the other hand, a branch is said to have dull degree
p, 1if there is a maximal ideal which has 4,, x in its corresponding family of sets that does
not have finite sharp degree, and each maximal ideal of finite sharp degree which has A4,,
in its defining family of sets, has sharp degree less than or equal to p — 1, with at least one
such maximal ideal having sharp degree p — 1.

To build almost Dedekind domains of prescribed sharp and dull degrees, we need
a systematic way to build branches of the various sharp and dull degrees. We start with
branches of sharp degree two. Essentially these are built not differently than the entire
partition used in Example 3.2. Let {Z#,,} be a series of refinements. For ease of notation
assume that for each pair of integers m < n, the set 4, is infinite and A4,, | contains 4, ;.
Fix m and order the elements of 4,, | as a; < a, < a3 < ---. Then, as in Example 3.2, for
each integer n > m, let 4, | = {a1}, 4, , ={a2},..., 4, , ,, = {an-m} and let 4] ., be
the rest of 4,, ;. In each Z,, replace the sets which contain 4,, by the A,’L ; sets and leave
the rest of #, as it is. Then there is exactly one maximal ideal M whose corresponding
chain contains 4,1 and is not sharp, the one associated with the sets 4, , .. All other
maximal ideals associated with 4,, ; have chains which stabilize at some singleton set {a, }.
We refer to this technique as building a standard branch of sharp degree two. In our next
example we utilize this basic construction to build an almost Dedekind domain of sharp
degree 3. The construction of the partitions is more complicated, so we will give the details

of the construction in the proof rather than the statement of what we are going to build.

Example 3.5. There is a series of partitions 2 = {#,,},._, such that the resulting
almost Dedekind domain D has a unique maximal ideal M with sharp degree 3, so
D3 = Dy; and D has sharp degree 3.

Proof. Let 2, = {E, O} where E denotes the positive even integers and O denotes
the positive odd integers. From O, build the standard branch of sharp degree two. But
for E we proceed a little differently. First split E into the sets E4 o = {4m|m =1} and
E4sr={4m+2|m = 0}. From E4, build the standard branch of sharp degree two but
split Ey o into sets Eg g = {8m|m =1} and Eg4 = {8m +4|m = 0}. Then, as with Ej 5,
build the standard branch of sharp degree two from Ejg 4, and, as with Ej o, split Eg o into
sets Ejg 0 = {16m|m = 1} and Ej¢g = {16m + 8 |m = 0}. Continue this scheme for each
power of 2. Let D be the resulting almost Dedekind domain and let M be the maximal
ideal corresponding to the chain {E»» o}.

We will show that there is one prime of sharp degree two associated with O and that
each set Ej. 01 1s associated to exactly one prime of sharp degree two.

The only sharp primes of D are those associated with some singleton set {a}. For each

o0
positive integer n, there is exactly one prime of sharp degree two that contains [[ Xys, 0n-1,

r=0
the one associated with the chain {B™"}”_ where B™" = {2"r+2""!|r = m}. On the
other hand the chain associated with M consists of the sets of the form {2"r|n = 0,r = 1},
so N, E, E4, Es o, etc. For each n, there are infinitely many primes of sharp degree two
which are associated with E;. . Hence M cannot have sharp degree two. As it is the only
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dull prime which does not have sharp degree two, it must have sharp degree three. Thus D
has sharp degree three and D3 = Dy,. [

Theorem 3.6.  For each positive integer k = 2, there is a series of refinements { %} of
Py = {N} such that the resulting domain D is an almost Dedekind domain of sharp degree k.

Proof. The proof is by induction on k. Assume the result holds for k. The parti-
tioning scheme is somewhat a combination of those used in Examples 3.3 and 3.5.
As in Example 3.3, we let 2, ={0,E} and 2, ={Ay 1,422,423, A>4} with each
Az, = {m2%+r|m = 0}. The subsequent partitions will be different. Specifically, from
A> > and A>3 build branches of sharp degree k. On the other hand we split A, ; into A3 |
and A3 s and split A, 4 into A3 4 and A3 g as in the third stage of the process in Example
3.3. Now continue the pattern of splitting the sets 4, »» and A4, 1 as in Example 3.3, but
split the sets A4, ;1 and A, ,»-1,; into branches of sharp degree k. Each branch of the
infinitely many branches of sharp degree k, corresponds to maximal ideals of sharp degree
k. But the prime associated with the chain {4, »»} will not have sharp degree k since each
of the sets A, »» 1s in infinitely many chains associated with primes of sharp degree k. The
same is true for the prime associated with the chain {4, 1}. As these are the only chains
which do not lead to primes of sharp degree less than or equal to k, each has sharp degree
k + 1 and therefore D is an almost Dedekind domain of sharp degree k + 1. []

Things are only a slight bit more complicated in building an almost Dedekind domain
with arbitrary finite dull degree. The basic underlying notion is to split sets into ‘“‘thirds”
rather than “halves”. Unlike in the constructions above, it is convenient to allow infinite
sets to stabilize in the series of refinements. We start with an example illustrating how to
use thirds to build an almost Dedekind domain of dull degree two with infinitely many
sharp primes. The “‘convenience” is that our construction parallels the “excluded middle”
construction of a Cantor set. This makes it rather easy to increase the dull degree.

Example 3.7. For each pair of integers n > 1 and 1 < r < 3", let
Ay ={m3" +r|m =0}

and let r=ryr,_1---r be the trinary expansion of r. For each integer n =1, let
Py ={A4,,|noriisa}u{drs|1 =k <nis the smallest integer such that s, =2}. The
resulting domain D has dull degree two with infinitely many sharp primes.

Proof. We start with an explicit construction for the first few £,s. First
P = {411,412, A1 3}. Then for 2,, we leave the set A, ; as is but split A | into Az 1, A 4
and A, 7, and split 4; 3 into A 3, A2 ¢ and A4 9. The set 4 » will appear in each Z, from
here on as will the sets 4, 4 and 45 6. On the other hand, we split 4> | into A3 1, 43,10, and
A3_]19, A273 into A373, A3712 and A3721, A2,4 into A374, A3,13 and A3,22, and Az,g into A3‘9,
Az 13 and A3 »7. In 24, we simply keep each “middle third” as it is and split each pair of
outer thirds based on the remainders on division by 3*. Continue this process to build the
partitions £,. As each middle third set is stable once it appears in some Z,, each leads to a
sharp prime of D. On the other hand, if the chain of sets corresponding with M contains no
middle third set, then each set in the chain is associated with many infinitely many maximal
ideals, including infinitely many which are not associated with a middle third set. Thus D
has dull degree 2 with infinitely many sharp primes. []
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In the proof for the next theorem, we show how the construction in the previous ex-
ample can be used to construct an almost Dedekind domain of arbitrary (finite) dull degree
k= 2.

Theorem 3.8. For each integer k = 1, there exists an almost Dedekind domain of dull
degree k.

Proof. Examples 3.3 and 3.4 provide almost Dedekind domains of dull degree one
and two, respectively. As in Theorem 3.6, we modify a previous construction by taking
out sets which have stabilized and replacing them with branches of the appropriate sharp
degree. Our construction is based on that in Example 3.7.

Fix k = 3. The outer third sets are left as they are in Example 3.7, but each middle
third set is replaced by a branch of sharp degree k£ — 1. Each of the new chains will lead to
a maximal ideal of sharp degree k£ — 1 or less, with infinitely many of sharp degree & — 1.
This is the maximal sharp degree of any maximal ideal of D. Each prime resulting from a
chain of outer third sets remains dull in Dy. Thus Dy is a dull domain, with D;_; a proper
subring. Hence D has dull degree k. []

Theorem 3.9. There exists an almost Dedekind domain D such that D, is a proper
subring of D, for each positive integer n. Moreover, the ring D, =\ J D, may be a sharp
domain, a dull domain or have some other sharp or dull degree.

Proof.  We start with constructing a domain D such that D, has sharp degree one
with D, & D, for each n. Start with the basic Odd/Even partitioning scheme used to
construct branches of sharp degree k, but instead of changing each branch to one of sharp
degree k — 1, allow each new branch to have larger and larger sharp degree. By doing
so, once we hit a set high enough up in the branch of sharp degree n, we find a single prime
of sharp degree n and all others with smaller sharp degree. But now, the chain corre-
sponding to the powers of 2 sets will not lead to a prime of finite sharp degree. How-
ever, once we take the union of the D,s, we will obtain a domain of sharp degree one as
the only prime which does not have finite sharp degree is the one corresponding to the
chain {E, »}.

We use a similar scheme to build a domain D such that D is a dull domain with
primes of each finite sharp degree. Start with the basic scheme used in the proof of Theo-
rem 3.8, but now instead of replacing each middle third set with a branch of the same sharp
degree, replace them with branches of larger and larger sharp degree. We may leave the
first middle third set, A, alone. Then replace 4, 4 and A4, ¢ by branches of sharp degree
two. Continue by replacing each middle third set 4y , by a branch of sharp degree k. The
result will be that each branch through a middle third set leads only to primes of finite
sharp degree, but there is no uniform bound on the degree that holds for all branches
through all middle third sets. As in the proof of Theorem 3.8, the primes whose chains
involve only outer third sets will remain dull throughout each D, and remain dull in D.,.
Thus D, is a dull domain.

For sharp and dull degree two for D.,, replace branches of finite sharp degree with
ones which mimic the construction of a D, with sharp degree one. Continue this fractal
like approach to get larger and larger sharp and dull degrees for D,,. []
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